Experience-dependent learning of behavioral laterality in the scale-eating cichlid Perissodus microlepis occurs during the early developmental stage
1.Rogers, L. J. & Andrew, R. J. Comparative Vertebrate Lateralization (Cambridge University Press, 2002).
Google Scholar
2.Bisazza, A. & Brown, C. Lateralization of cognitive functions in fish. In Fish Cognition and Behavior 2nd edn (eds Brown, C. et al.) 298–324 (Wiley-Blackwell, 2011).
Google Scholar
3.Rogers, L. J., Vallortigara, G. & Andrew, R. J. Divided Brains: The Biology and Behaviour of Brain Asymmetries (Cambridge University Press, 2013).
Google Scholar
4.Versace, E. & Vallortigara, G. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization. Front. Psychol. 6, 233 (2015).PubMed
PubMed Central
Google Scholar
5.Vallortigara, G. & Versace, E. Laterality at the neural, cognitive, and behavioral levels. In APA Handbook of Comparative Psychology: Vol. 1. Basic Concepts, Methods, Neural Substrate, and Behavior (eds. Call, J., Burghardt, G.M., Pepperberg, I.M., Snowdon, C.T. & Zentall, T.) 557–577 (2017).6.Frasnellis, E., Vallortigara, G. & Rogers, L. J. Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 36, 1273–1291 (2012).
Google Scholar
7.Byrne, R. A., Kuba, M. J. & Meisel, D. V. Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 68, 1107–1114 (2004).
Google Scholar
8.Byrne, R. A., Kuba, M. J., Meisel, D. V., Griebel, U. & Mather, J. A. Octopus arm choice is strongly influenced by eye use. Behav. Brain Res. 172, 195–201 (2006).PubMed
Google Scholar
9.Lucky, N. S., Ihara, R., Yamaoka, K. & Hori, M. Behavioral laterality and morphological asymmetry in the Cuttlefish, Sepia lycidas. Zoolog. Sci. 29, 286–292 (2012).PubMed
Google Scholar
10.Stancher, G., Sovrano, V. A. & Vallortigara, G. Chapter 2-Motor asymmetries in fishes, amphibians, and reptiles. In Progress in Brain Research (eds Forrester, G. S. et al.) 33–56 (Elsevier, 2018).
Google Scholar
11.Miletto Petrazzini, M. E., Sovrano, V. A., Vallortigara, G. & Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 14, 11 (2020).PubMed
PubMed Central
Google Scholar
12.Roy, E. A., Bryden, P. & Cavill, S. Hand differences in pegboard performance through development. Brain Cogn. 53, 315–317 (2003).PubMed
Google Scholar
13.Michel, G. F., Tyler, A. N., Ferre, C. & Sheu, C. F. The manifestation of infant hand-use preferences when reaching for objects during the seven- to thirteen-month age period. Dev. Psychobiol. 48, 436–443 (2006).PubMed
Google Scholar
14.Porac, C. & Searleman, A. The effects of hand preference side and hand preference switch history on measures of psychological and physical well-being and cognitive performance in a sample of older adult right-and left-handers. Neuropsychologia 40, 2074–2083 (2002).PubMed
Google Scholar
15.Rogers, L. J. Light experience and asymmetry of brain function in chickens. Nature 297, 223–225 (1982).ADS
CAS
PubMed
Google Scholar
16.Rogers, L. J. Development and function of lateralization in the avian brain. Brain Res. Bull. 76, 235–244 (2008).ADS
PubMed
Google Scholar
17.Rogers, L. J. Asymmetry of motor behavior and sensory perception: Which comes first?. Symmetry 12, 690 (2020).
Google Scholar
18.Tang, A. C. & Verstynen, T. Early life environment modulates ‘handedness’ in rats. Behav. Brain Res. 131, 1–7 (2002).PubMed
Google Scholar
19.Bisazza, A., Cantalupo, C. & Vallortigara, G. Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata). Physiol. Behav. 61, 31–35 (1997).CAS
PubMed
Google Scholar
20.Bisazza, A., Dadda, M. & Cantalupo, C. Further evidence for mirror-reversed laterality in lines of fish selected for leftward or rightward turning when facing a predator model. Behav. Brain Res. 156, 165–171 (2005).PubMed
Google Scholar
21.Izvekov, E. I. & Nepomnyashchikh, V. A. Laterality of the initial stage of escape response in roach (Rutilus rutilus) upon impact of alternating electric current. Biol. Bull. 35, 30–36 (2008).
Google Scholar
22.Hata, H. & Hori, M. Inheritance patterns of morphological laterality in mouth opening of zebrafish, Danio rerio. Laterality 17, 741–754 (2012).PubMed
Google Scholar
23.Lee, H. J., Kusche, H. & Meyer, A. Handed foraging behavior in scale-eating Cichlid Fish: Its potential role in shaping morphological asymmetry. PLoS ONE 7, e44670 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
24.Yasugi, M. & Hori, M. Lateralized behavior in the attacks of largemouth bass on Rhinogobius gobies corresponding to their morphological antisymmetry. J. Exp. Biol. 215, 2390–2398 (2012).PubMed
Google Scholar
25.Matsui, S., Takeuchi, Y. & Hori, M. Relation between morphological antisymmetry and behavioral laterality in a Poeciliid Fish. Zoolog. Sci. 30, 613–618 (2013).PubMed
Google Scholar
26.Takeuchi, Y. et al. Specialized movement and laterality of fin-biting behaviour in Genyochromis mento in Lake Malawi. J. Exp. Biol. 222, 191676 (2019).
Google Scholar
27.Sorvano, V. A., Rainoldi, C., Bisazza, A. & Vallortigara, G. Roots of brain specializations: Preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav. Brain Res. 106, 175–180 (1999).CAS
PubMed
Google Scholar
28.Sovrano, V. A., Bisazza, A. & Vallortigara, G. Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiol. Behav. 74, 237–244 (2001).CAS
PubMed
Google Scholar
29.Raffini, F. & Meyer, A. A comprehensive overview of the developmental basis and adaptive significance of a textbook polymorphism: head asymmetry in the cichlid fish Perissodus microlepis. Hydrobiologia 832, 65–84 (2019).
Google Scholar
30.Berlinghieri, F., Panizzon, P., Penry-Williams, I. L. & Brown, C. Laterality and fish welfare-a review. Appl. Anim. Behav. Sci. 236, 105239 (2021).
Google Scholar
31.Koblmüller, S., Egger, B., Sturmbauer, C. & Sefc, K. M. Evolutionary history of Lake Tanganyika’s scale-eating cichlid fishes. Mol. Phylogenet. Evol. 44, 1295–1305 (2007).PubMed
Google Scholar
32.Takeuchi, Y., Ochi, H., Kohda, M., Sinyinza, D. & Hori, M. A 20-year census of a rocky littoral fish community in Lake Tanganyika. Ecol. Freshw. Fish 19, 239–248 (2010).
Google Scholar
33.Poll, M. Poissons Cichlidae. Resultats scientifiques, Exploration hydrobiologique du Lac Tanganyika. Inst. R. Sci. Nat. Belg. 3, 1–619 (1956).
Google Scholar
34.Liem, K. & Stewart, D. Evolution of scale-eating cichlid fishes of Lake Tanganyika: a generic revision with a description of a new species. Bull. Mus. Comp. Zool. 147, 319–350 (1976).
Google Scholar
35.Hori, M. Frequency-dependent natural-selection in the handedness of scale-eating cichlid fish. Science 260, 216–219 (1993).ADS
CAS
PubMed
Google Scholar
36.Takeuchi, Y., Hori, M. & Oda, Y. Lateralized kinematics of predation behavior in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 7, e29272 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
37.Hori, M., Ochi, H. & Kohda, M. Inheritance pattern of lateral dimorphism in two cichlids (a scale eater, Perissodus microlepis, and an herbivore, Neolamprologus moorii) in Lake Tanganyika. Zoolog. Sci. 24, 486–492 (2007).PubMed
Google Scholar
38.Raffini, F., Fruciano, C., Franchini, P. & Meyer, A. Towards understanding the genetic basis of mouth asymmetry in the scale-eating cichlid Perissodus microlepis. Mol. Ecol. 26, 77–91 (2017).CAS
PubMed
Google Scholar
39.Takeuchi, Y., Hori, M., Tada, S. & Oda, Y. Acquisition of lateralized predation behavior associated with development of mouth asymmetry in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 11, e0147476 (2016).PubMed
PubMed Central
Google Scholar
40.Takeuchi, Y. & Oda, Y. Lateralized scale-eating behaviour of cichlid is acquired by learning to use the naturally stronger side. Sci. Rep. 7, 8984 (2017).ADS
PubMed
PubMed Central
Google Scholar
41.Brainard, M. S. & Doupe, A. J. What songbirds teach us about learning. Nature 417, 351–358 (2002).ADS
CAS
PubMed
Google Scholar
42.Nelson, D. A., Marler, P. & Palleroni, A. A comparative approach to vocal learning: Intraspecific variation in the learning process. Anim. Behav. 50, 83–97 (1995).
Google Scholar
43.Chaiken, M., Böhner, J. & Marler, P. Song acquisition in European starlings, Sturnus vulgaris: a comparison of the songs of live-tutored, tape-tutored, untutored, and wild-caught males. Anim. Behav. 46, 1079–1090 (1993).
Google Scholar
44.Todt, D. & Böhner, J. Former experience can modify social selectivity during song learning in the nightingale (Luscinia megarhynchos). Ethology 97, 169–176 (1994).
Google Scholar
45.Schneirla, T.C. The concept of development in comparative psychology. Concept Dev. 78–108 (1957).46.Alcock, J. Animal Behavior: An Evolutionary Approach (Sinauer Associates, 2001).
Google Scholar
47.Nshombo, M., Yanagisawa, Y. & Nagoshi, M. Scale-eating in Perissodus microlepis (Cichlidae) and change of its food-habits with growth. Jpn. J. Ichthyol. 32, 66–73 (1985).
Google Scholar
48.Zar, J. H. Biostatistical Analysis (Pearson Education, 1999).
Google Scholar
49.Morishita, H. & Hensch, T. K. Critical period revisited: impact on vision. Curr. Opin. Neurobiol. 18, 101–107 (2008).CAS
PubMed
Google Scholar
50.Hess, E. H. Imprinting: Early Experience and the Developmental Psychobiology of Attachment (Van Norstrand, 1973).
Google Scholar
51.Scott, J. P. Critical periods (Dowden, Hutchinson & Ross, 1978).
Google Scholar
52.Kroodsma, D. Ontogeny of bird song. In Behavioral Development, 518–532 (Cambridge University Press, 1981).53.Rosa-Salva, O. et al. Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition 213, 104552 (2021).PubMed
Google Scholar
54.Vallortigara, G. Born Knowing: Imprinting and the Origins of Knowledge (MIT Press, 2021).
Google Scholar
55.Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).CAS
PubMed
Google Scholar
56.Penfield, W. & Roberts, L. Speech and Brain Mechanisms (Princeton University Press, 2014).
Google Scholar
57.Rauschecker, J. P. & Singer, W. The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. 310, 215–239 (1981).CAS
PubMed
PubMed Central
Google Scholar
58.Pasternak, T. & Leinen, L. Pattern and motion vision in cats with selective loss of cortical directional selectivity. J. Neurosci. 6, 938–945 (1986).CAS
PubMed
PubMed Central
Google Scholar
59.Rauschecker, J. P. & Schrader, W. Effects of monocular strobe rearing on kitten striate cortex. Exp. Brain Res. 68, 525–532 (1987).CAS
PubMed
Google Scholar
60.Sengpiel, F., Stawinski, P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2, 727–732 (1999).CAS
PubMed
Google Scholar
61.Marler, P. R. & Slabbekoorn, H. Nature’s Music: The Science of Birdsong (Elsevier, 2004).
Google Scholar
62.Zann, R. Vocal learning in wild and domesticated zebra finches: signature cues for kin recognition or epiphenomena? In Social Influences on Vocal Development (eds Snowdon, C. T. & Hausberger, M.) 85–97 (Cambridge University Press, 1997).
Google Scholar
63.Curtiss, S. The Case of Genie, A Modern Day ‘Wild Child’ (Academic Press, 1977).
Google Scholar
64.Pinker, S. The Language Instinct: The New Science of Language and Mind Vol. 7529 (Penguin, 1995).
Google Scholar
65.Lenneberg, E. H. The biological foundations of language. Hosp. Pract. 2, 59–67 (1967).
Google Scholar
66.Patkowski, M. S. The sensitive period for the acquisition of syntax in a second language 1. Lang Learn. 30, 449–468 (1980).
Google Scholar
67.Johnson, J. S. & Newport, E. L. Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cogn. Psychol. 21, 60–99 (1989).CAS
PubMed
Google Scholar
68.Carroll, S. B., Greinier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, 2001).
Google Scholar
69.Evidence from genes to behavior. Wullimann, MF. & Mueller T. Teleostean and mammalian forebrains contrasted. J. Comp. Neurol. 475, 143–162 (2004).
Google Scholar
70.Salas, C. et al. Neuropsychology of learning and memory in teleost fish. Zebrafish 3, 157–171 (2006).PubMed
Google Scholar
71.Mills, E. L., Widzowski, D. V. & Jones, S. R. Food conditioning and prey selection by young yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 44, 549–555 (1987).
Google Scholar
72.Warburton, K. Learning of foraging skills by fish. Fish Fish. 4, 203–215 (2003).
Google Scholar
73.Lee, H. J. et al. Lateralized feeding behavior is associated with asymmetrical neuroanatomy and lateralized gene expressions in the brain in scale-eating cichlid fish. Genome Biol. Evol. 9, 3122–3136 (2017).CAS
PubMed
PubMed Central
Google Scholar
74.Takeuchi, Y., Ishikawa, A., Oda, Y. & Kitano, J. Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. Comp. Biochem. Physiol. D 28, 99–106 (2018).CAS
Google Scholar
75.Raffini, F., Fruciano, C. & Meyer, A. Morphological and genetic correlates in the left–right asymmetric scale-eating cichlid fish of Lake Tanganyika. Biol. J. Linn. Soc. 124, 67–84 (2018).
Google Scholar
76.Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
77.Cartner, S. C. et al. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (Academic Press, 2020).
Google Scholar
78.Takahashi, R., Moriwaki, T. & Hori, M. Foraging behaviour and functional morphology of two scale-eating cichlids from Lake Tanganyika. J. Fish Biol. 70, 1458–1469 (2007).
Google Scholar
79.Sazima, I. Scale-eating in characoids and other fishes. Environ. Biol. Fish. 9, 87–101 (1983).
Google Scholar
80.Webb, P. W. Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus. J. Exp. Biol. 63, 451–465 (1975).
Google Scholar
81.Wöhl, S. & Schuster, S. The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start. J. Exp. Biol. 210, 311–324 (2007).PubMed
Google Scholar
82.Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–589 (2005) (discussion 589-633).PubMed
Google Scholar More