Synergy between an emerging monopartite begomovirus and a DNA-B component
1.Sicard, A., Michalakis, Y., Gutiérrez, S. & Blanc, S. The strange lifestyle of multipartite viruses. PLoS Pathog. 12, 1–19 (2016).
Google Scholar
2.Lucía-sanz, A. & Manrubia, S. Multipartite viruses: Adaptive trick or evolutionary treat ?. NPJ Syst. Biol. Appl. 34, 1–11 (2017).
Google Scholar
3.Rojas, M. R., Hagen, C., Lucas, W. J. & Gilbertson, R. L. Exploiting chinks in the plant’s armor: Evolution and emergence of geminiviruses. Annu. Rev. Phytopathol. 43, 361–394 (2005).CAS
PubMed
Google Scholar
4.Zerbini, F. M. et al. ICTV virus taxonomy profile: Geminiviridae. J. Gen. Virol. 98, 131–133 (2017).CAS
PubMed
PubMed Central
Google Scholar
5.Varsani, A. et al. Establishment of three new genera in the family Geminiviridae: Becurtovirus, Eragrovirus and Turncurtovirus. Arch. Virol. 159, 1873–1882 (2014).CAS
PubMed
Google Scholar
6.Zhou, X. Advances in understanding begomovirus satellites. Annu. Rev. Phytopathol. 51, 357–381 (2013).CAS
PubMed
Google Scholar
7.Lozano, G. et al. Characterization of non-coding DNA satellites associated with sweepoviruses (Genus Begomovirus, Geminiviridae)—Definition of a distinct class of Begomovirus-associated satellites. Front. Microbiol. 7, 1–13 (2016).
Google Scholar
8.Fondong, V. N. Geminivirus protein structure and function. Mol. Plant Pathol. 14, 635–649 (2013).CAS
PubMed
PubMed Central
Google Scholar
9.Shafiq, M., Asad, S., Zafar, Y., Briddon, R. W. & Mansoor, S. Pepper leaf curl Lahore virus requires the DNA B component of tomato leaf curl New Delhi virus to cause leaf curl symptoms. Virol. J. 7, 367 (2010).CAS
PubMed
PubMed Central
Google Scholar
10.Hanley-Bowdoin, L. et al. Geminiviruses : models for plant DNA replication, transcription and cell cycle regulation. Crit. Rev. Plant Sci. 18, 71–106 (1999).CAS
Google Scholar
11.De Bruyn, A. et al. East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus. BMC Evol. Biol. 12, 1–18 (2012).
Google Scholar
12.Navas-Castillo, J., Fiallo-Olivé, E. & Sanchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 49, 219–248 (2011).CAS
PubMed
Google Scholar
13.Rey, M. E. C. et al. Diversity of dicotyledenous-infecting geminiviruses and their associated DNA molecules in southern Africa, including the South-west Indian ocean islands. Viruses 4, 1753–1791 (2012).CAS
PubMed
PubMed Central
Google Scholar
14.Brown, J. K. et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch. Virol. 160, 1593–1619 (2015).CAS
PubMed
Google Scholar
15.Ouattara, A. et al. Diversity, distribution and prevalence of vegetable-infecting geminiviruses in Burkina Faso. Plant Pathol. 69, 379–392 (2019).
Google Scholar
16.Tiendrébéogo, F. et al. Characterization of pepper yellow vein Mali virus in Capsicum sp. Burkina Faso. Plant Pathol. J. 7, 155–161 (2008).
Google Scholar
17.Zhou, Y. C. et al. Evidence of local evolution of tomato-infecting begomovirus species in West Africa: Characterization of tomato leaf curl Mali virus and tomato yellow leaf crumple virus from Mali. Arch. Virol. 153, 693–706 (2008).CAS
PubMed
Google Scholar
18.Hamilton, W. D. O., Bisaro, D. M., Coutts, R. H. A. & Buck, K. W. Demonstration of the bipartite nature of the genome of a single-stranded DNA plant virus by infection with the doned DNA component. Nucleic Acids Res. 11, 7387–7396 (1983).CAS
PubMed
PubMed Central
Google Scholar
19.Padidam, R., Beachy, R. N. & Fauquet, C. M. Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. J. Gen. Virol. 76, 25–35 (1995).CAS
PubMed
Google Scholar
20.Rochester, D. E., DePaulo, J. J., Fauquet, C. M. & Beachy, R. N. Complete nucleotide sequence of the geminivirus tomato yellow leaf curl virus Thailand isolate. J. Gen. Virol. 75, 477–485 (1994).CAS
PubMed
Google Scholar
21.Chakraborty, S., Pandey, P. K., Banerjee, M. K., Kalloo, G. & Fauquet, C. M. Tomato leaf curl Gujarat virus a new begomovirus species causing a severe leaf curl disease of tomato in Varanasi India. Phytopathology 93, 1485–1495 (2003).CAS
PubMed
Google Scholar
22.Sattar, M. N. et al. First identification of begomoviruses infecting tomato with leaf curl disease in Burkina Faso. Plant Dis. 99, 732–732 (2015).
Google Scholar
23.Ouattara, A. et al. Tomato leaf curl Burkina Faso virus: a novel tomato-infecting monopartite begomovirus from Burkina Faso. Arch. Virol. 162, 1427–1429 (2017).CAS
PubMed
Google Scholar
24.Tiendrébéogo, F. et al. Molecular and biological characterization of pepper yellow vein Mali virus (PepYVMV) isolates associated with pepper yellow vein disease in Burkina Faso. Arch. Virol. 156, 483–487 (2011).PubMed
Google Scholar
25.Chen, L.-F. et al. A severe symptom phenotype in tomato in Mali is caused by a reassortant between a novel recombinant begomovirus (Tomato yellow leaf curl Mali virus ) and a betasatellite. Mol. Plant Pathol. 10, 415–430 (2009).CAS
PubMed
PubMed Central
Google Scholar
26.Rojas, M. R. et al. Functional analysis of proteins involved in movement of the monopartite begomovirus, tomato yellow leaf curl virus. Virology 291, 110–125 (2001).CAS
PubMed
Google Scholar
27.Ranjan, P., Kumar, R. V. & Chakraborty, S. Differential pathogenicity among tomato leaf curl Gujarat virus isolates from India. Virus Genes 47, 524–531 (2013).CAS
PubMed
Google Scholar
28.Jyothsna, P. et al. Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Appl. Microbiol. Biotechnol. 97, 5457–5471 (2013).CAS
PubMed
Google Scholar
29.Duan, Y. P., Powell, C. A., Purcifull, D. E., Broglio, P. & Hiebert, E. Phenotypic variation in transgenic tobacco expressing mutated geminivirus movement/pathogenicity (BC1) proteins. Mol. Plant- Microbe Interact. 10, 1065–1074 (1997).CAS
PubMed
Google Scholar
30.Hussain, M., Mansoor, S., Iram, S., Fatima, A. N. & Zafar, Y. The nuclear shuttle protein of tomato leaf curl New Delhi virus is a pathogenicity determinant. J. Virol. 79, 4434–4439 (2005).CAS
PubMed
PubMed Central
Google Scholar
31.Geoghegan, J. L. & Holmes, E. C. The phylogenomics of evolving virus virulence. Nat. Rev. Genet. 19, 756–769 (2018).CAS
PubMed
PubMed Central
Google Scholar
32.Péréfarres, F. et al. Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
Google Scholar
33.Wang, H. L., Gilbertson, R. L. & Lucas, W. J. Spatial and temporal distribution of bean dwarf mosaic geminivirus in Phaseolus vulgaris and Nicotiana benthamiana. Phytopathology 86, 1204–1214 (1996).
Google Scholar
34.Hanley-Bowdoin, L., Bejarano, E. R., Robertson, D. & Mansoor, S. Geminiviruses: Masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 11, 777–788 (2013).CAS
PubMed
Google Scholar
35.Londono, A., Riego-Ruiz, L. & Arguello-Astorga, G. R. DNA-binding specificity determinants of replication proteins encoded by eukaryotic ssDNA viruses are adjacent to widely separated RCR conserved motifs. Arch. Virol. 155, 1033–1046 (2010).CAS
PubMed
Google Scholar
36.Gutiérrez, S., Michalakis, Y., Van Munster, M. & Blanc, S. Plant feeding by insect vectors can affect life cycle, population genetics and evolution of plant viruses. Funct. Ecol. 27, 610–622 (2013).
Google Scholar
37.Lee, C. H. et al. A single amino acid substitution in the movement protein enables the mechanical transmission of a geminivirus. Mol. Plant Pathol. 00, 1–18 (2020).
Google Scholar
38.Froissart, R., Doumayrou, J., Vuillaume, F., Alizon, S. & Michalakis, Y. The virulence-transmission trade-off in vector-borne plant viruses: A review of (non-)existing studies. Philos. Trans. R. Soc. B 365, 1907–1918 (2010).CAS
Google Scholar
39.Ditta, G., Stanfield, S. & Corbin, D. Broad host range DNA cloning system for Gram-negative bacteria: Construction of a gene bank of Rhizobium meliloti. Proc. Natl. Acad. Sci. 77, 7347–7351 (1980).CAS
PubMed
PubMed Central
Google Scholar
40.Lapidot, M., Cohen, L., Machbash, Z. & Levy, D. Development of a scale for evaluation of tomato yellow leaf curl virus resistance level in tomato plants. Phytopathology 96, 1404–1408 (2006).CAS
PubMed
Google Scholar
41.Vernerey, M. S., Pirolles, E., Blanc, S. & Sicard, A. Localizing genome segments and protein products of a multipartite virus in host plant cells. Bio-Protoc. 9, 1–14 (2019).
Google Scholar
42.Lefeuvre, P., Hoareau, M., Delatte, H., Reynaud, B. & Lett, J. M. A multiplex PCR method discriminating between the TYLCV and TYLCV-Mld clades of tomato yellow leaf curl virus. J. Virol. Methods 144, 165–168 (2007).CAS
PubMed
Google Scholar
43.Urbino, C. et al. Within-host dynamics of the emergence of tomato yellow leaf curl virus recombinants. PLoS ONE 8, 1–14 (2013).
Google Scholar
44.Conflon, D. et al. Accumulation and transmission of alphasatellite, betasatellite and tomato yellow leaf curl virus in susceptible and Ty-1 resistant tomato plants. Virus Res. 253, 124–134 (2018).CAS
PubMed
Google Scholar
45.R Development Core Team. R: A language and environment for statistical computing. (2017).46.Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models. (2016).47.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).MathSciNet
MATH
Google Scholar More