Interannual temperature variability is a principal driver of low-frequency fluctuations in marine fish populations
1.Caddy, J. F. & Gulland, J. A. Historical patterns of fish stocks. Mar. Policy 7, 267–278 (1983).
Google Scholar
2.Steele, J. H. & Henderson, E. W. Coupling between physical and biological scales. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 343, 5–9 (1994).
Google Scholar
3.Bjornstad, O. N., Fromentin, J. M., Stenseth, N. C. & Gjosaeter, J. Cycles and trends in cod populations. Proc. Natl Acad. Sci. USA 96, 5066–5071 (1999).CAS
PubMed
PubMed Central
Google Scholar
4.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15, e0226087 (2020).CAS
PubMed
PubMed Central
Google Scholar
5.Oremus, K. L. Climate variability reduces employment in New England fisheries. Proc. Natl Acad. Sci. USA 16, 26444–26449 (2018).
Google Scholar
6.Shelton, A. O. & Mangel, M. Fluctuations of fish populations and the magnifying effect of fishing. Proc. Natl Acad. Sci. USA 108, 7075–7080 (2011).CAS
PubMed
PubMed Central
Google Scholar
7.Essington, T. E. et al. Fishing amplifies forage fish population collapses. Proc. Natl Acad. Sci. USA 112, 6648–6652 (2015).CAS
PubMed
PubMed Central
Google Scholar
8.Memarzadeha, M., Britten, G. L., Wormd, B. & Boettigere, C. Rebuilding global fisheries under uncertainty. Proc. Natl Acad. Sci. USA 116, 15985–15990 (2019).
Google Scholar
9.Pauly, D. & Zeller, D. Sea Around Us Concepts, Design and Data (seaaroundus.org) (2015).10.Bjornstad, O. N., Nisbet, R. M. & Fromentin, J. M. Trends and cohort resonant effects in age-structured populations. J. Anim. Ecol. 73, 1157–1167 (2004).
Google Scholar
11.Botsford, L. W., Holland, M. D., Field, J. C. & Hastings, A. Cohort resonance: a significant component of fluctuations in recruitment, egg production, and catch of fished populations. ICES J. Mar. Sci. 71, 2158–2170 (2014).
Google Scholar
12.Di Lorenzo, E. & Ohman, M. D. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proc. Natl Acad. Sci. USA 110, 2496–2499 (2013).PubMed
PubMed Central
Google Scholar
13.Bjorkvoll, E. et al. Stochastic population dynamics and life-history variation in marine fish species. Am. Naturalist 180, 372–387 (2012).
Google Scholar
14.Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).CAS
PubMed
Google Scholar
15.Beamish, R. J., McFarlane, G. A. & Benson, A. Longevity overfishing. Prog. Oceanogr. 68, 289–302 (2006).
Google Scholar
16.Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).CAS
PubMed
Google Scholar
17.Hutchings, J. A. & Myers, R. A. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 50, 2468–2474 (1993).
Google Scholar
18.Bobko, S. J. & Berkeley, S. A. Maturity, ovarian cycle, fecundity, and age-specific parturition of black rockfish (Sebastes melanops). Fish. Bull. 102, 418–429 (2004).
Google Scholar
19.Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).
Google Scholar
20.Longhurst, A. Murphy’s law revisited: longevity as a factor in recruitment to fish populations. Fish. Res. 56, 125–131 (2002).
Google Scholar
21.Stawitz, C. C. & Essington, T. E. Somatic growth contributes to population variation in marine fishes. J. Anim. Ecol. 88, 315–329 (2019).PubMed
Google Scholar
22.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS
PubMed
Google Scholar
23.Hollowed, A. B., Hare, S. R. & Wooster, W. S. Pacific basin climate variability and patterns of Northeast Pacific marine fish production. Prog. Oceanogr. 49, 257–282 (2001).
Google Scholar
24.Holsman, K. K., Aydin, K., Sullivan, J., Hurst, T. & Kruse, G. H. Climate effects and bottom-up controls on growth and size-at-age of Pacific halibut (Hippoglossus stenolepis) in Alaska (USA). Fish. Oceanogr. 28, 345–358 (2019).
Google Scholar
25.Whitten, A. R., Klaer, N. L., Tuck, G. N. & Day, R. W. Accounting for cohort-specific variable growth in fisheries stock assessments: A case study from south-eastern Australia. Fish. Res. 142, 27–36 (2013).
Google Scholar
26.Heessen, H. J. L., Daan, N. & Ellis, J. R. Fish atlas of the Cebtic Sea, North Sea, and Baltic Sea (KNNV Publishing and Wageningen Academic Publishers, 2015).27.Froese, R. & Pauly, D. FishBase, version (01/2021) https://www.fishbase.org (2021).28.Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).CAS
PubMed
PubMed Central
Google Scholar
29.Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).30.Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. int. Explor. Mer. 39, 175–192 (1980).
Google Scholar
31.Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 1–6 (2020).
Google Scholar
32.Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 28, 64–77 (2019).
Google Scholar
33.Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109, 19310–19314 (2012).CAS
PubMed
PubMed Central
Google Scholar
34.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS
PubMed
Google Scholar
35.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).CAS
Google Scholar
36.Ives, A. R. Measuring resilience in stochastic-systems. Ecol. Monogr. 65, 217–233 (1995).
Google Scholar
37.Alheit, J. & Niquen, M. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 60, 201–222 (2004).
Google Scholar
38.Pinsky, M. L., Jensen, O. P., Ricard, D. & Palumbi, S. R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl Acad. Sci. USA 108, 8317–8322 (2011).CAS
PubMed
PubMed Central
Google Scholar
39.Spencer, P. D. & Collie, J. S. Patterns of population variability in marine fish stocks. Fish. Oceanogr. 6, 188–204 (1997).
Google Scholar
40.FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals. (Food and Agriculture Organization of the United Nations, Rome, 2018).41.Barnett, L. A. K., Branch, T. A., Ranasinghe, R. A. & Essington, T. E. Old-growth fishes become scarce under fishing. Curr. Biol. 27, 2843–2848 (2017).CAS
PubMed
Google Scholar
42.Rouyer, T. et al. Shifting dynamic forces in fish stock fluctuations triggered by age truncation? Glob. Change Biol. 17, 3046–3057 (2011).
Google Scholar
43.Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).
Google Scholar
44.Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).CAS
PubMed
Google Scholar
45.Portner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish. Biol. 77, 1745–1779 (2010).CAS
PubMed
Google Scholar
46.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS
PubMed
Google Scholar
47.de Gee, A. & Kikkert, A. H. Analysis of the grey gurnard (Eutrigla gurnardus) samples collected during the 1991 international stomach sample project. ICES Document CM 1993/G:14, 25 (1993).48.Sparholt, H. In Fish Atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 377–381 (KNNV Publishiing and Wageningen Academic Publishers, 2015).49.Arnott, S. A. & Ruxton, G. D. Sandeel recruitment in the North Sea: demographic, climate and trophic effects. Mar. Ecol. Prog. Ser. 238, 199–210 (2002).
Google Scholar
50.van Deurs, M., van Hal, R., Tomczak, M. T., Jonasdottir, S. H. & Dolmer, P. Recruitment of lesser sandeel Ammodytes marinus in relation to density dependence and zooplakton composition. Mar. Ecol. Prog. Ser. 381, 249–258 (2009).
Google Scholar
51.Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. Change Biol. 24, E352–E364 (2018).
Google Scholar
52.Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. D: Atmospheres 108, ACL 2-1–ACL 2–29 (2003).
Google Scholar
53.Papworth, D. J., Marini, S. & Conversi, A. Novel, unbiased analysis approach for investigating population dynamics: A case study on Calanus finmarchicus and its decline in the North Sea. PLoS One 11, e0158230 (2016).PubMed
PubMed Central
Google Scholar
54.Bergstad, O. A., Hoines, A. S. & Jorgensen, T. Growth of sandeel Ammodytes marinus, in the northern North Sea and Norwegian coastal waters. Fish. Res. 56, 9–23 (2002).
Google Scholar
55.Wright, P. J. Otolith microstructure of the lesser sandeel, Ammodytes marinus. J. Mar. Biol. Assoc. U.K. 73, 245–248 (1993).
Google Scholar
56.Sell, A. & Heessen, H. in Fish atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 295−299 (KNNV Publishing and Wageningen Academic Publishers, 2015).57.Bergstad, O. A., Hoines, A. S. & Kruger-Johnsen, E. M. Spawning time, age and size at maturity, and fecundity of sandeel, Ammodytes marinus, in the north-eastern North Sea and in unfished coastal waters off Norway. Aquat. Living Resour. 14, 293–301 (2001).
Google Scholar
58.Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).
Google Scholar
59.van der Sleen, P. et al. Non-stationary responses in anchovy (Engraulis encrasicolus) recruitment to coastal upwelling in the Southern Benguela. Mar. Ecol. Prog. Ser. 596, 155–164 (2018).
Google Scholar
60.Cushing, D. H. Upwelling and production on fish. Adv. Mar. Biol. 9, 255–334 (1971).
Google Scholar
61.Pauly, D. & Lam, V. W. Y. In Large marine ecosystems: Status and Trends (eds IOC-UNESCO and UNEP) 113–137 (United Nations Environmental Programme, 2016). More