The metabolic cost of turning right side up in the Mediterranean spur-thighed tortoise (Testudo graeca)
1.Lyson, T. R. et al. Origin of the unique ventilatory apparatus of turtles. Nat. Commun. 5(5211), 1–11. https://doi.org/10.1038/ncomms6211 (2014).CAS
Article
Google Scholar
2.Gans, C. & Hughes, G. The mechanism of lung ventilation in the tortoise Testudo graeca Linné. J. Exp. Biol. 47(1), 1–20 (1967).CAS
Article
PubMed
Google Scholar
3.Jackson, D. C., Singer, J. H. & Downey, P. T. Oxidative cost of breathing in the turtle Chrysemys picta bellii. Am. J. Physiol. 261, R1325–R1328 (1991).CAS
PubMed
Google Scholar
4.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a semi-aquatic turtle, Trachemys scripta. J. Exp. Zool. 311A, 551–562. https://doi.org/10.1002/jez.478 (2009).Article
Google Scholar
5.Ruhr, I., Rose, K., Sellers, W., Crossley, D. II. & Codd, J. Turning turtle: Scaling relationships and self-righting ability in Chelydra serpentina. Proc. R. Soc. B. 288, 20210213. https://doi.org/10.1098/rspb.2021.0213 (2021).Article
PubMed
PubMed Central
Google Scholar
6.Pritchard, P. C. H. Encyclopaedia of Turtles (TFH, 1979).
Google Scholar
7.Carr, A. Handbook of Turtles: The Turtles of the United States, Canada, and Baja California (Cornell University Press, 1952).
Google Scholar
8.Rivera, G. Ecomorphological variation in shell shape of the freshwater turtle Pseudemys concinna inhabiting different aquatic flow regimes. Int. Comp. Biol. 48(6), 769–787. https://doi.org/10.1093/icb/icn088 (2008).Article
Google Scholar
9.McNeill Alexander, R. Gaits of mammals and turtles. J. R. Soc. Jpn. 11(3), 314–319 (1993).Article
Google Scholar
10.Zani, P. A. & Kram, R. Low metabolic cost of locomotion in ornate box turtles, Terrapene ornate. J. Exp. Biol. 211, 3671–3676. https://doi.org/10.1242/jeb.019869 (2008).Article
PubMed
Google Scholar
11.Sellers, W. I., Rose, K. A. R., Crossley, D. A. II. & Codd, J. R. Inferring cost of transport from whole-body kinematics in three sympatric turtle species with different locomotor habits. Comp. Biochem. Physiol. A. 247, 110739. https://doi.org/10.1016/j.cbpa.2020.110739 (2020).CAS
Article
Google Scholar
12.Chiari, Y., van der Meijden, A., Caccone, A., Claude, J. & Gilles, B. Self-righting potential and the evolution of shell shape in Galápagos tortoises. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-15787-7 (2017).CAS
Article
Google Scholar
13.Woledge, R. C. The energetics of tortoise muscle. J. Physiol. 197(3), 685–707 (1968).CAS
Article
PubMed
PubMed Central
Google Scholar
14.Steyermark, A. C. & Spotila, J. R. Body temperature and maternal identity affect snapping turtle (Chelydra serpentina) righting response. Copeia 4, 1050–1057. https://doi.org/10.1643/0045-8511(2001)001[1050:BTAMIA]2.0.CO;2 (2001).Article
Google Scholar
15.Rubin, A. M., Blob, R. W. & Mayerl, C. J. Biomechanical factors influencing successful self-righting in the Pleurodire turtle, Emydura subglobosa. J. Exp. Biol. 221, jeb182642. https://doi.org/10.1242/jeb.182642 (2018).Article
PubMed
Google Scholar
16.Penn, D. & Brockmann, H. J. Age-biased stranding and righting in male horseshoe crabs, Limulus polyphemus. Anim. Behav. 49, 1531–1539. https://doi.org/10.1016/003-3472(95)90074-8 (1995).Article
Google Scholar
17.Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): Influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372. https://doi.org/10.1006/bjls.2000.0504 (2001).Article
Google Scholar
18.Zuffi, M. A. L. & Corti, C. Aspects of population ecology of Testudo hermanni hermanni from Asinara Island, NW Sardinia (Italy, Western Mediterranean Sea): Preliminary data. Amphib-Reptil. 24, 441–447 (2003).Article
Google Scholar
19.Domokos, G. & Várkonyi, P. L. Geometry and self-righting of turtles. Proc. R. Soc. B. 275(1630), 11–17. https://doi.org/10.1098/rspb.2007.1188 (2008).Article
PubMed
Google Scholar
20.Mann, G. K. H., O’Riain, M. J. & Hofmeyr, M. D. Shaping up to fight: Sexual selection influences body shape and size in the fighting tortoise (Chersina angulata). J. Zool. 269, 373–379. https://doi.org/10.1111/j.1469-7998.2006.00079x (2006).Article
Google Scholar
21.Golubović, A., Bonnet, X., Djordjević, S., Djurakic, M. & Tomović, L. Variations in righting behavior across Hermann’s tortoise populations. J. Zool. 291, 69–75. https://doi.org/10.1111/jzo.12047 (2013).Article
Google Scholar
22.Golubović, A., Andelkovic, M., Arsovski, D., Bonnet, X. & Tomović, L. Locomotor performances reflect habitat constraints in an armoured species. Behav. Ecol. Sociobiol. 71, 93. https://doi.org/10.1007/s00265-017-2318-0 (2017).Article
Google Scholar
23.Ashe, V. M. The righting reflex in turtles: A description and comparison. Psychol. Sci. 20, 150–152. https://doi.org/10.3758/BF03335647 (1970).Article
Google Scholar
24.Golubović, A., Tomović, L. & Ivanović, A. Geometry of self-righting: The case of Hermann’s tortoises. Zool. Anz. 254, 99–105. https://doi.org/10.1016/j.jcz.2014.12.003 (2015).Article
Google Scholar
25.Finkler, M. S. Influence of water availability during hatching on hatchling size, body composition, desiccation tolerance, and terrestrial locomotor performance in the snapping turtle, Chelydra serpentina. Physiol. Biochem. Zool. 72, 714–722. https://doi.org/10.1086/316711 (1999).CAS
Article
PubMed
Google Scholar
26.Stojadinović, D., Milošević, D. & Crnobrnja-Isailović, J. Righting time versus shell size and shape dimorphism in adult Hermann’s tortoises: Field observations meet theoretical predictions. Anim. Biol. 63(4), 381–396. https://doi.org/10.1163/15707563-00002420 (2013).Article
Google Scholar
27.Delmas, V., Baudry, E., Girondot, M. & Prevot-Julliard, A.-C. The righting reflex as a fitness indicator in freshwater turtles. Biol. J. Linn. Soc. 91, 99–109. https://doi.org/10.1111/j.1095-8312/2007.00780.x (2007).Article
Google Scholar
28.Burger, J. Behavior of hatchling diamondback terrapins (Malaclemys terrapin) in the field. Copeia 1976, 742. https://doi.org/10.2307/1443457 (1976).Article
Google Scholar
29.Landberg, T., Mailhot, J. D. & Brainerd, E. L. Lung ventilation during treadmill locomotion in a terrestrial turtle, Terrapene carolina. J. Exp. Biol. 206, 3391–3404. https://doi.org/10.1242/jeb.00553 (2003).Article
PubMed
Google Scholar
30.Gaunt, A. S. & Gans, C. Mechanics of respiration in the snapping turtle, Chelydra serpentina (Linné). J. Morph. 128, 195–227. https://doi.org/10.1002/jmor.1051280205 (1969).Article
Google Scholar
31.Lambertz, M., Böhme, W. & Perry, S. F. The anatomy of the respiratory system in Platysternon megacephalum Gray, 1831 (Testudines: Crytodira) and related species, and its phylogenetic implications. Comp. Biochem. Physiol. 156, 330–336. https://doi.org/10.1016/j.cbpa.2009.12.016 (2010).CAS
Article
Google Scholar
32.de Souza, R. B. B. & Klein, W. The influence of the post-pulmonary septum and submersion on the pulmonary mechanics of Trachemys scripta (Cryptodira: Emydidae). J. Exp. Biol. 224(12), 242386. https://doi.org/10.1242/jeb.242386 (2021).Article
Google Scholar
33.Jodice, P. G. R., Epperson, D. M. & Visser, G. H. Daily energy expenditure in free-ranging gopher tortoises (Gopherus polyphemus). Copeia 2006(1), 129–136. https://doi.org/10.1643/0045-8511(2006)006[0129:DEEIFG]2.0.CO;2 (2006).Article
Google Scholar
34.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Ann. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).Article
Google Scholar
35.Shadmehr, R., Huang, H. J. & Ahmed, A. A. A representation of effort in decision-making and motor control. Curr. Biol. 26, 1929–1934. https://doi.org/10.1016/j.cub.2016.05.065 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
36.Shepard, E. L. C. et al. Energy landscapes shapes animal movement ecology. Am. Nat. 182(3), 298–312. https://doi.org/10.1086/671257 (2013).Article
PubMed
Google Scholar
37.Baudinette, R. V., Miller, A. M. & Sarre, M. P. Aquatic and terrestrial locomotory energetics in a toad and a turtle: A search for generalisations among ectotherms. Physiol. Biochem. Zool. 73(6), 672–682. https://doi.org/10.1086/318101 (2000).CAS
Article
PubMed
Google Scholar
38.Hailey, A. & Coulson, I. M. Measurement of time budgets from continuous observation of thread-trailed tortoises (Kinixys spekii). Herp. J. 9, 15–20 (1999).
Google Scholar
39.Kram, R. & Taylor, C. R. Energetics of running: A new perspective. Nature 346, 265–267. https://doi.org/10.1038/346265a0 (1990).CAS
Article
ADS
PubMed
Google Scholar
40.Taylor, C. R. Relating mechanics and energetics during exercise. Adv. Vet. Sci. Comp. Med. 38A, 181–215 (1994).CAS
PubMed
Google Scholar
41.Cavagna, G. A. & Kaneko, M. Mechanical work and efficiency in level walking and running. J. Physiol. 268(2), 467–481. https://doi.org/10.1113/jphysiol.1977.sp011866 (1977).CAS
Article
PubMed
PubMed Central
Google Scholar
42.Carrier, D. R., Deban, S. M. & Fischbein, T. Locomotor function of the pectoral girdle “muscular sling” in trotting dogs. J. Exp. Biol. 209, 2224–2237. https://doi.org/10.1242/jeb.02236 (2006).Article
PubMed
Google Scholar
43.Heglund, N. C. & Cavagna, G. A. Efficiency of vertebrate locomotory muscles. J. Exp. Biol. 115, 283–292. https://doi.org/10.1242/jeb.115.1.283 (1985).CAS
Article
PubMed
Google Scholar
44.Barclay, C. J. The basis of difference in thermodynamic efficiency among skeletal muscles. Clin. Exp. Pharm. Physiol. 44(12), 1279–1286. https://doi.org/10.1111/1440-1681.12850 (2017).MathSciNet
CAS
Article
Google Scholar
45.Nwoye, L. O. & Goldspink, G. Biochemical efficiency and intrinsic shortening speed in selected fast and slow muscles. Experientia 37, 856–857. https://doi.org/10.1007/BF1985678 (1981).CAS
Article
PubMed
Google Scholar
46.Lambert, M. Temperature, activity and field sighting in the Mediterranean spur-thighed or common garden tortoise Testudo graeca. Biol. Conserv. 21, 39–54. https://doi.org/10.1016/0006-3207(81)90067-7 (1981).Article
Google Scholar
47.Tracy, R., Zimmerman, L., Tracy, C., Bradley, K. & Castle, K. Rates of food passage in the digestive tract of young desert tortoises: Effects of body size and diet quality. Chelonian Conserv. Biol. 5(2), 269–273. https://doi.org/10.2744/1071-8443(2006)5[269:ROFPIT]2.0.co;2 (2006).Article
Google Scholar
48.Huey, R. & Kingsolver, J. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4(5), 131–135. https://doi.org/10.1016/0169-5347(89)90211-5 (1989).CAS
Article
PubMed
Google Scholar
49.Lailvaux, S. & Irschick, D. Effects of temperature and sex on jump performance and biomechanics in the lizard Anolis carolinensis. Funct. Ecol. 21(3), 534–543. https://doi.org/10.1111/j.1365-2435.2007.01263.x (2007).Article
Google Scholar
50.Lighton, J. Measuring Metabolic Rates: A Manual for Scientists (Oxford University Press, 2008).Book
Google Scholar
51.Brody, S. Bioenergetics and Growth (Reinhold, 1945).
Google Scholar More