More stories

  • in

    Jointly modeling marine species to inform the effects of environmental change on an ecological community in the Northwest Atlantic

    Species dataSpecies CPUE data were obtained from the National Oceanographic and Atmospheric Administration (NOAA) Northeast Fishery Science Center (NEFSC) U.S. NES bottom trawl survey, which, for almost 50 years, has collected abundance data for over 250 fish species in the spring and fall. The survey employs a stratified random design, with stations allocated proportionally to the stratum area. A 12 mm mesh coded liner is used to retain small-bodied and juvenile fish. All fish caught are weighed and counted18. We downloaded the data from OceanAdapt.com, which calibrates the CPUE for each species depending on survey ship. We cleaned the data for the years from 1998 to 2020, excluding years prior to 1997 due to many missing values for chlorophyll (Chla). We only included strata that were consistently sampled in the spring and fall. To account for the seasonal migrations of many of the studied species, we modeled spring and fall seasons separately. We present the results for the fall CPUE, with the spring results and presence/absence results in the supplemental materials. We selected species that were present in at least 400 tows and with a biomass of at least 0.5 kg/tow (CPUE) in more than 100 tows. Finally, we removed roughly 400 tows per season with missing environmental covariates (see below). In the fall, we selected 30 species with 5217 observations, and in the spring, we selected 24 species with 5935 observations (see Supplemental Tables S1, S2).Environmental dataThe study region includes Southern New England and The Gulf of Maine. We selected environmental covariates known to influence marine fish distributions and abundances. Depth, temperature (bottom and surface) and salinity (bottom and surface) were measured in situ during trawl surveys. Missing values were augmented with the data-assimilative HYbrid Coordinate Ocean Model (HYCOM) daily and then monthly data. HYCOM is an oceanographic model that produces 32 vertical layers including ocean temperature, salinity, sea surface height, and wind stress as well as other 3- and 4-dimensional variables. The system uses the Navy Coupled Ocean Data Assimilation (NCODA) system19 for data assimilation. NCODA uses the model forecast as a first guess in a multivariate optimal interpolation (MVOI) scheme and assimilates available satellite altimeter observations (along track obtained via the Naval Oceanographic Office Altimeter Data Fusion Center satellite) and in situ sea surface temperature as well as available in situ vertical temperature and salinity profiles from expendable bathythermographs, Argo floats, and moored buoys20. Seven HYCOM models (HYCOM + NCODA Global 1/12° Reanalysis GLBu0.08 Expts 19.0, 19.1, 90.9, 91.0, 91.1, 91.2) were temporally concatenated to create a continuous dataset of BT and salinity, ranging from 1992 to 2017. These model runs differed slightly in their configurations (time steps, advection scheme, mixing, vertical structure, slight change in NCODA, and MVOI transition to 3-dimensional analysis in 2013), but the differences are not expected to influence the applicability of the output21. The numbers of filled in missing values were 787 (7.0%) surface salinity (SSAL), 735 (6.5%) surface temperature (SST), 809 (7.2%) bottom temperature (BT), and 850 (7.6%) bottom salinity (BSAL). Chla was obtained from the MODIS satellite (monthly rasters from 2003 to 2019) on a monthly time step22, with missing values filled using the SeaWIFS satellite23 (1998 to 2009). Temperature, salinity and Chla data that were not collected in situ were downloaded using Google Earth Engine (HYCOM and MODIS)24. Benthic substrate (grain size in mm, referred to as SEDSIZE), subregion (Gulf of Maine or Southern New England), benthic land position (high, low, mid), and seabed form data (depression, high flat, high slope, low slope, mid flat, side slope, steep) were obtained from the Nature Conservancy’s Northwest Atlantic Marine Ecoregional Assessment25 (Supplemental Fig. S1).GJAMTo study the influence of the environmental covariates on the joint distribution of marine fish and invertebrate species we use the generalized joint attribute model (GJAM)12 and the corresponding R package (Version 2.5)26. Briefly, this multivariate Bayesian model allows us to jointly model the marine fish community and accounts for responses to the environment that can include combinations of continuous and discrete responses (e.g., CPUE and zeros) and the dependence between species. GJAM returns all parameters on the observation scale, in this case, CPUE and presence-absence. Products of model fitting include a species‐by‐species covariance matrix (Σ), species responses to predictor variables (B), and predicted responses. The species‐by‐species covariance matrix Σ captures residual codependence between species after removing the main structure explained by the model (also referred to as the residual correlation matrix). As a result, Σ allows for conditional prediction of some species under different scenarios for the abundances of others27.CPUE is termed continuous abundance (CA) data in GJAM, meaning that observations are continuous with discrete zeros. Let yis be the CPUE for species s at location i. For CA data GJAM expands the tobit model for (univariate) regression to the multivariate setting, where a latent variable wis is equal to yis when yis is positive and zero otherwise,$$y_{i,s}^{0} = left{ {begin{array}{*{20}l} {w_{is} ,} hfill & {w_{is} > 0quad {text{continuous}}} hfill \ {0,} hfill & {w_{is} le 0quad {text{discrete zero}}} hfill \ end{array} } right.$$
    (1)
    The length-S vector of all species responses wi is continuous on the real line, and thus can be modeled with a multivariate normal. The model for wi is$$begin{aligned} left. {{mathbf{w}}_{i} } right|{mathbf{x}}_{i, } {mathbf{y}}_{i} & sim ,MVNleft( {{varvec{mu}}_{i} ,{Sigma }} right) times mathop prod limits_{s = 1}^{S} {mathcal{I}}_{is} \ u_{{varvec{i}}} & = {mathbf{B}}^{prime } {mathbf{x}}_{{varvec{i}}} \ {mathcal{I}}_{is} & = mathop prod limits_{k in C} I_{is,k}^{{Ileft( {y_{is} = k} right)}} left( {1 – I_{is,k} } right)^{{Ileft( {y_{is} ne k} right)}} \ end{aligned}$$
    (2)
    $$begin{aligned} {mathcal{I}}_{is} & = I(w_{is} le 0)^{{Ileft( {y_{is} = 0} right)}} left[ {1 – Ileft( {w_{is} le 0} right)} right]^{{Ileft( {y_{is} > 0} right)}} \ & quad I(w_{is} > 0)^{{Ileft( {y_{is} > 0} right)}} left[ {(1 – I(w_{is} > 0)} right]^{{Ileft( {y_{is} = 0} right)}} \ end{aligned}$$where the indicator function (I(cdot )) is equal to 1 when its argument is true and 0 otherwise. For presence-absence data, ({mathbf{p}}_{{varvec{i}}{varvec{s}}}boldsymbol{ }=boldsymbol{ }left(-boldsymbol{infty },boldsymbol{ }0,boldsymbol{ }boldsymbol{infty }right).) This is equivalent to Chib and Greenberg’s28 probit model which can be written as ({mathcal{I}}_{is}=I({w}_{is} >{0)}^{Ileft({y}_{is} >0right)}I({w}_{is}le {0)}^{1-{y}_{is}}).The mean vector ({varvec{mu}}_{i} = {mathbf{B}}^{prime } {mathbf{x}}_{{varvec{i}}}) contains the Q × S matrix of coefficients B and the length-Q design vector xi. Σ is a S × S covariance matrix. There is a correlation matrix associated with Σ,$${mathbf{R}}_{{S,S^{prime } }} = frac{{{{varvec{Sigma}}}_{{S,S^{prime } }} }}{{sqrt {{{varvec{Sigma}}}_{S,S} {{varvec{Sigma}}}_{{S^{prime } ,S^{prime } }} } }}$$
    (3)
    The predictive distribution is obtained as$$left[tilde{Y }left| tilde{X }right.right]=int left[ tilde{Y }left| tilde{X }right.,widehat{theta }right]left[widehat{theta } left|X, Yright.right]$$
    (4)
    The integrand contains the likelihood (Eq. (2)) followed by the posterior distribution for parameters, (widehat{theta }= left{widehat{mathbf{B}},boldsymbol{ }widehat{{varvec{Sigma}}}right}). Input (tilde{X }) can equal X (in-sample prediction) or not (out-of-sample prediction). We fitted both CPUE (continuous abundance) and presence-absence versions of the model. As a Bayesian method, GJAM provides probabilistic estimates of parameters with full dependence in data, including jointly distributed species. Model fitting is performed using Gibbs sampling, which is a Markov chain Monte Carlo (MCMC) technique.The sensitivity of an individual response variable s to an individual predictor q is given by the coefficient βqs (individual coefficients from the B matrix). The sensitivity that applies to the full response matrix is given by$${mathbf{f}} = diagleft( {{mathbf{B}}{Sigma }^{ – 1} {mathbf{B}}^{prime } } right)$$
    (5)
    The Q × S matrix B contains relationships of each species to the environment, the “signal”, but not to each another. Matrix E summarizes species similarities in terms of their response to an environment (stackrel{sim }{mathbf{x}}) and is given by$${mathbf{E}=mathbf{B}}^{boldsymbol{^{prime}}}mathbf{V}mathbf{B}$$
    (6)
    where V is a covariance matrix for (stackrel{sim }{mathbf{x}})(a vector of predictors) and contributes the environmental component of variation in (stackrel{sim }{mathbf{y}}). Similar species in E have similar columns in B. Those similarities and differences are amplified for predictors (stackrel{sim }{mathbf{x}}) with large variance. Conversely, species differences in B do not matter for variables in X that do not vary. The covariance in predictors could come from observed data, i.e., the variance of X (see12 for more details).Prior distributions for this study are non-informative. This is particularly helpful for the covariance, lending stability to Gibbs sampling and avoiding dominance by a prior. In cases this particular case, the direction of the prior effect may be known, but the magnitude is not.Variable selectionUnlike the familiar univariate setting, variable selection has to consider which species are included in the model. In a univariate model, there is one response and perhaps a number of potential predictor variables from which to choose. As in a univariate model, variable selection focuses on predictors held in the n by p design matrix X. Rather than a response vector, the multivariate model includes the n by S response matrix Y. Unlike the univariate model, the overall fit and predictive capacity depends not only on what is in X, but also on the species that are included in Y, each of which would be best explained by a different combination of variables. Rare species having no signal will not provide cross-correlations and thus can offer little learning from an analysis. For this reason, there may be no reason to include them in model fitting. Given that many species may be rare, and rare types will not be explained by the model, there will be decisions about what variables to include on both sides of the likelihood (i.e., predictors and responses).These considerations mean that simple rules for variable selection, such as the combination yielding the lowest DIC, may not be sensible. The combination of variables that yields the lowest DIC could miss variables that are important for subsets of species. In principle, one poorly-fitted species could dominate variable selection. The best model for responses ranging from rare to abundant will depend on precisely which species are included, both rare and abundant. Thus, in order to select variables, we utilize inverse prediction—predicting the environment from species – and the overall community sensitivity12.Inverse prediction provides a comprehensive estimate of the environmental importance for the entire community, because it determines the capacity of the community to predict (through the fitted model) the environment; it inverts the model12. A variable predicted by the community explains important variation in one to many species. A variable that is not predicted by the community does not explain important variation in any of them. To look at the importance of environmental variables for the entire community, we started with the saturated model that included the predictors BT, SST, depth, BSAL, SSAL, Chla, SEDSIZE, subregion, benthic position and an interaction between depth and BT, BSAL, SST and SSAL (Fig. 1a). Sensitivity was highest for the interaction between BT and depth and lowest for Chla and sediment size (see right subpanel on Fig. 1a for sensitivity). Inverse prediction confirmed that sediment size and Chla contribute little to community biomass, because the community cannot “predict” them (see left and middle subpanels on Fig. 1a for sensitivity). Inverse prediction results from a second model (Fig. 1b) showed that SSAL and the third model for benthic position also (Fig. 1c) contribute little to the community response. Using the combination of sensitivity and inverse prediction we obtained the final model that includes BT, depth, BSAL, SST, subregion and an interaction between depth and BT, BSAL and SST (Fig. 1d). Inverse prediction indicates that the CPUE predicts the environment well. In the final model, sensitivity is highest for depth. Subregion remains as a two-level factor and there is strong inverse prediction for that variable as well (Fig. 1d). In the variable-selection stage, each model was run on the entire fall dataset for 5000 iterations and a burn-in of 800. Inverse prediction results from the spring model indicated similar patterns; thus, the same variables were used for the spring and fall.Figure 1Inverse prediction and sensitivity for combinations of environmental parameters in GJAM. Starting with the most complicated model (a), sensitivity was highest for the interaction between BT and depth and lowest for Chla and sediment size (a). Inverse prediction confirms that sediment size and Chla contribute little to community biomass (a) and those are removed in the second model (b). SSAL contributes little to community response and are removed in the third model (c), The final model (d) includes terms that have strong inverse prediction and overall sensitivity. Inverse prediction for continuous and factor variables is on the left and center of each box, and overall sensitivity is on the right.Full size imageWe compare the model selected above using inverse prediction to a model selected using the more traditional method of out-of-sample prediction. For out-of-sample prediction, we fitted all combinations of 11 environmental variables (BT, BSAL, SST, SSAL, Chla, depth, sediment size, subregion, position, seabed form) plus interaction terms between depth and SEDSIZE, BT, BSAL, SST, SSAL and chlorophyll. These models were run with 1000 iterations and a burn-in of 400. All models included BT, BSAL, SST, SSAL, chlorophyll A and depth, as these variables have been shown to be important for these species. In total, 1,024 possible models were evaluated by training each potential model on 70% of the data (n = 3652 in the fall, n = 4155 in the spring), evaluating in-sample performance with DIC, and then testing out-of-sample performance on the remaining 30% (n = 1565 in the fall, n = 1780 in the spring). The 10 models with the lowest DIC in-sample were selected, and the final model was selected out of those 10 with the lowest out-of-sample R2. The selected model for fall CPUE had the following terms: ~ BT + depth + BSAL + SST + SSAL + chla + depth*BT + depth*SEDSIZE + depth*SSAL + depth*chla + SEDSIZE + Benthic position. Recall that inverse prediction selected a simpler model including the following terms: BT + depth + BSAL + SST + Subregion + depth*BT + depth*BSAL + depth*SST. The inclusion of SEDSIZE and benthic position in the model selected via out-of-sample prediction is probably a result of these predictor variables being important for a subset of species (i.e. benthic species29), but not the community as a whole. When we have a large number of response variables, as in this study, we need to consider the variables that are more important on a community level, rather than just for a few species. Thus, we use the model selected via inverse prediction for the remainder of the study.We fitted the selected model with 70% of the data for 20,000 iterations with a burn-in of 8,000 iterations (n = 3652 in the fall, n = 4155 in the spring). Out-of-sample prediction was performed on the remaining 30% (n = 1565 in the fall, n = 1780 in the spring) of the dataset and predicted versus observed values were evaluated (Supplemental Figs. S2 and S3) as well as residual versus fitted values (Supplemental Figs. S4 and S5). As has been shown in other research30,31, aggregating noisy predictions based on similar environmental preferences can improve performance, especially for larger datasets. Thus, we generated an aggregated data set that uses a k-means clustering of predictors (Supplemental Figs. S8 and S9). We performed the same analysis for the spring and the fall as well as with the presence absence data and recorded AUC as well as precision for each species (Supplemental Figs. S6 and S7). Precision is defined as the arithmetic mean of precision (proportion of predicted presences actually observed as presences) across all threshold values (at an interval of 0.01).Final modelWe ran the final model on 100% of the data with 20,000 iterations and a burn-in of 8000 iterations for the spring and fall for CPUE as well as presence absence for a total of 4 models. From the final model we obtained coefficients for the species-environment responses, β, covariance between species in how they respond to the environment E, and the residual correlation from the fitted model, R. We subtracted the absolute values from the presence/absence residual correlation matrix from the absolute values of the CPUE residual correlation matrix to observe where these results diverged. For MCMC chains and convergence of the final model as well as example models from both methods of variable selection see Supplemental Figs. S10–S12).Comparison to SSDMsWe built single species distribution models for each species in the form of GAMs using the mgcv package in R32. GAMs are a semiparametric extension of the generalized linear model and are a common modeling technique for species distribution modeling in this ecosystem33. For each species, we ran one GAM with CPUE as the response variable with a log-linked tweedie distribution that had penalized regression splines, a REML smoothing parameter with an outer Newton optimizer, 10 knots, and omitted NAs. We also ran GAMs for each species with a binary response variable indicating species presence with a binomial error distribution and a logit link function, penalized regression splines, a REML smoothing parameter with an outer Newton optimizer, 10 knots, and omitted NAs. We compared the out of sample observed versus predicted values for GAMs versus GJAM using RMSPE, R2, AUC, and precision. Root Mean Squared Prediction Error (RMSPE) is a measure of the average squared difference between the observed and predicted values, measured in the same units as the input data (kg/tow). R2 is a measure of the average squared difference between the observed and predicted values and is unitless. R2 is calculated as (1 − sum((predicted − observed)2)/sum((observed − mean(observed))2)) The ROC curve is a measure of model performance which plots true positive rate versus false positive rate, and the area under the ROC curve (AUC) provides a single measure of accuracy. A pairwise Wilcoxon test was used to compare means. We also compare the significance of predictors in both the GJAM model and GAM models. In this example, significance is defined for GJAM as a credible interval of the beta estimation that does not cross zero, and for the GAM as a p-value less than 0.0534.Spatial and temporal autocorrelationExamining the spatial and temporal autocorrelation of the modeled residuals can help specify missing endogenous (habitat selection or density dependence) and exogenous (covariate) effects that may be missing from the model. Thus, for each species modeled, we plot the spatial autocorrelation of residuals using a semi-variogram for the year 2015 and the temporal autocorrelation of the residuals using a partial autocorrelation function (PACF). We present the results for each species in the fall in the Supplemental materials (Supplemental Figs. S27–S57).All analysis and figure creation was performed in R version 3.6.235. Figures were created using the following R packages: ggplot236, ggpubr37, corrplot38, gridExtra39, cowplot40, lessR41, and ggcorrplot42. More

  • in

    High frequency of social polygyny reveals little costs for females in a songbird

    Study area and study populationData come from a long-term study of a pied flycatcher population breeding in nestboxes in central Spain (ca. 41°N, 3°W, 1200–1300 m.a.s.l.). The longitudinal data cover the period 1990–2016 (no data for 2003) and include records for 1436 males (yearly mean and SD: 107.4 and 34.2) and 1641 females (yearly mean and SD: 119.7 and 28.6). The study area consists of two plots in two different montane habitats separated by 1.1 km, including 237 nestboxes with an average occupancy rate around 54% (SD = 0.11). One habitat is an old deciduous oak (Quercus pyrenaica) forest, and the other one is a managed mixed coniferous (mainly Pinus sylvestris) forest. The nestboxes have remained in the same position since 1988 (pinewood) and 1995 (oakwood) (for details, see42,43).Fieldwork and data collectionNestboxes were regularly (every 3rd–4th day) checked during the breeding season (from mid-April to the beginning of July) to determine the date of the first egg laid, clutch size, hatching date, and the number of fledglings. Parents were captured with a nestbox trap while incubating (females) or feeding 8-day-old nestlings (both sexes; for details, see43 and marked with a numbered metal ring (both sexes). We used a unique combination of colour rings (males only) for individual identification before capture. Many breeding birds (53%) hatched in the nestboxes, and, therefore, their exact age was known44. Unringed breeders were aged as first-year or older based on plumage traits following ageing criteria described in44,]45. All nestlings were ringed at 13 days of age.Polygamous males were detected when captured and/or individually identified while repeatedly feeding young in two nests (see24 for details on capture protocol and mating status classification). We distinguished three classes of females according to their male mating status: (i) monogamous female, i.e. mated with a monogamous male; (ii) primary female, the first mated female of a polygynous male; and (iii) secondary female, the second mated female of a polygynous male. However, in some nests, it was not possible to know with certainty the mating status of the female (14.3% of times) or the male (3.7% of times, see below for how we dealt with this source of uncertainty).Ethics declarationThe study was reviewed by the ethical committees at the Doñana Biological Station and the Consejo Superior de Investigaciones Científicas headquarters (Spain) and adhered to Spain standards. All methods were carried out in accordance with relevant guidelines and regulations. Birds were caught and ringed with permission from the Spanish Ministry of Agriculture, Food, Fisheries, and Environment’s Ringing Office. The study complied with (Animal Research: Reporting of In Vivo Experiments) guidelines46.Multi-event capture-recapture modelsWe used multi-event capture-recapture (MECR hereafter) models47 to test, separately for females and males, how the mating status affected the probability of surviving (and not leaving the area permanently) and the probability of changing, or not, from one mating status to another. The MECR models accommodate uncertainty in state assignment by distinguishing between what is observed (the event) and what is inferred (the state). This approach allows estimating the effects of mating status on the parameters (e.g. probabilities of local survival and change in mating status) while accounting for the uncertainty, as outlined above, due to the unknown mating status of some captured individuals.MECR models are defined by three types of parameters: Initial State probabilities, Transition probabilities and Event probabilities (details in Appendices S5). As these parameter types may be broken into steps, we considered two Transition steps, Local survival and Mating Status Change, and two Event steps, Recapture and Mating Status Assignment. Accordingly, we considered the following parameters of the MECR model: (i) Initial State, the probability of being in a specific mating status at the first encounter (in our case the first known breeding event of an individual); (ii) Local survival, the probability of surviving and not emigrating permanently from the study area between year t and year t + 1; (iii) Mating Status Change, the probability that a live bird changes state between year t and t + 1; (iv) Recapture: the probability of recapture of a live and not permanently emigrated individual; (v) Mating Status Assignment: the probability that the mating status of a captured individual is ascertained in the field (assuming no state misclassification). In this study, we will use the term “parameter” to denote any of the probabilities (see i-v above) estimated in the MECR model. Also, note that, as is often the case, we cannot distinguish the probability of site fidelity from that of surviving. For simplicity, we will often use the term “survival” to refer to “local survival”.We used the encounter histories of all identified birds breeding in the study area at least once between 1990 and 2016. We ran separate analyses for each sex, considering four biological states for females: live monogamous breeder (MBF), live primary breeder (PBF), live secondary breeder (SBF) and dead or permanently emigrated (†); and five events, numbered as they appear in the encounter histories: (0) non-captured, (1) captured as a monogamous breeder, (2) captured as a primary breeder, (3) captured as a secondary breeder and (4) captured in an unknown mating status. Females of unknown mating status were those for which we did not know the mate’s identity after repeated identification attempts at the nestbox (see details in24). These females could be of any mating status, and the mate being absent (e.g. dead after pairing) or very sporadically visiting the nest. For males, however, we considered three biological states: live monogamous breeder (MBM), live polygynous breeder (PBM) and dead or permanently emigrated (†), mediated by four events: (0) non-captured, (1) captured as a monogamous breeder, (2) captured as a polygynous breeder, (3) captured in an unknown mating status. Males of unknown mating status were identified by reading their colour-rings combinations near a nestbox and not captured or seen again during the breeding season. For both sexes, we established two age classes: 1-year-old individuals (1-yo hereafter: 41.74% females; 26.46% males) and individuals older than 1 year ( > 1-yo hereafter: 58.26% females; 73.54% males) that we included as a control variable in our capture-recapture models. This classification allowed the inclusion of non-local breeders (immigrants) in our analyses.Models were built and fitted to the data using E-SURGE 2.2.048. As our data were annually collected and we had no data for 2003, we selected the “Unequal Time Intervals” option to account for the 2002–2004 interval. Details on the probabilistic framework and the limitations of the modelling approach are given in Appendix S4.Goodness of fitBefore running the capture-recapture analysis, we preliminary assessed the goodness of fit (GOF) of a general model to the data. Since GOF tests are not available for multi-event models, we tested the GOF of the Cormack-Jolly-Seber (CJS), a model accounting for just two states, alive and dead, and for temporal variation in survival (Transition) and recapture (Event) probabilities, using U-CARE 2.3.249. This approach is conservative because the CJS is coarser than the MECR model. Thus, if the former fits the data well, the latter will fit them. All the GOF tests were run for males and females separately. The global tests were not significant for both males [c2 = 72.57, df = 103, p = 0.99; N(0,1) statistic for transient ( > 0) =  − 0.49, p = 0.69; N(0,1) signed statistic for trap-dependence = − 0.84, p = 0.99] and females [c2 = 76.13, df = 122, p = 0.99; N(0,1) statistic for transient ( > 0) = − 2.51, p = 0.69; N(0,1) signed statistic for trap-dependence = − 1.22, p = 0.22], indicating acceptable fits of the Cormack-Jolly-Seber models to the data. For the complete results of 3.SR (transience) and 2.CT (trap-dependence) tests, see Appendix S5.Model selectionModel selection was based on Akaike Information Criterion corrected for small sample sizes (AICc)50. For each sex, in a preliminary analysis, we built a global model checking that there were no parameter identifiability issues48. The structure of the global model was: Initial State (mating status × time), Local survival (age + (mating status × time)), Mating Status Change (age × mating status), Recapture (mating status × time), Mating status Assignment (mating status × time).Our modelling approach consisted of two steps. In step one, starting from the global model, we followed a backwards model selection procedure to test various combinations of variables potentially influencing each parameter of the MECR model while simplifying the model’s structure. According to the classic approach for which the recapture part of the model is modelled before that of survival51,52, we followed the following order of model selection: Initial State, Mating Status Assignment, Recapture, Mating Status Change, and Local survival. After testing the model structure (set of effects) for a parameter, we set the best structure (lower AICc) for that parameter, and we then tested the models for the following parameter. Thus, at the end of step one, we examined the effect of mating status on the biologically relevant parameters, that is, on Local survival and Mating Status Change. In step two, we used the simplified model resulting from step one (final model 1) to test whether the frequency of the FSP differentially affected the biologically relevant parameters according to the mating status. First, we tested the effects of FSP on Mating Status Change and then on Local survival (by keeping in MSC the same structure of final model 1). In the Results section, we reported parameter’ estimates from a model that combined the best final structure (lowest AICc) found on all the parameters, when not stated otherwise.Linear regression analysis of FSP and fledging success of hatchlingsWe used a GLM model to test whether the FSP depends on the yearly average proportion of hatchlings that fledged. We used the simulateResiduals function of the DHARMa53 package in R54 to confirm the absence of over-dispersion and the good fit of the model. More

  • in

    Qualitative and quantitative methods detection of SDS based on polyelectrolyte microcapsules

    Surface active agents (surfactants) are a group of chemicals that have a polar hydrophilic headgroup and a non-polar lipophilic hydrocarbon tail group1. This structure of surfactants allows them to be used in households and industries to increase the solubility of non-water-soluble substances, such as cleaning agents and emulsifiers. Global production of synthetic surfactants was 7.2 million tons in 20002; since 2006, this value has risen to 12.5 million tons3 and these numbers will grow with the growth of the detergent and cosmetics industry. After use, the residual surfactants are discharged into the sewage system or directly into surface water, resulting in an increase in the level of surfactants in the environment and a significant impact on the ecosystem1.The toxicity of surfactants to organisms is well known4 and depends on the physico-chemical properties of the surfactants themselves. They are generally classified into anionic, cationic, amphoteric and nonionic, depending on the charge of their headgroup. Among the groups listed above, the anionic surfactants are the most common in everyday and industrial uses and are toxic to both humans and the environment. In particular, anionic surfactants can bind to peptides, enzymes and DNA and alter their spatial layout (folding) and surface charge5. Such interactions can change the biological functions of biomolecules. Sodium dodecyl sulfate (SDS) is one of the most commonly used anionic surfactants, producing more than 3.8 million tons globally for industrial applications in cosmetics, clothing, food, fuel, and medicine6. Such mass production and use of SDS results in releases to the environment, with a semi-lethal concentration of not more than 45 μg/ml7 for algae, fish and crustaceans. In addition, it is known that surfactants can accumulate in the human body and cause autoimmune diseases, brain, liver, kidney and lung damage8,9. Besides the permissible limits for surfactants is 1 mg/l in water and at 0.5 mg/l for potable water10. In order to prevent negative environmental and human impacts of anionic surfactants (in particular SDS) in a timely manner, methods are needed to detect this surfactant in both wastewater and surface waters and in the soil11, food9, dust12,13, etc.Spectrophotometric and potentiometric methods are the most common means of determining anionic surfactant, and chromatography is often used to concentrate and separate complex surfactant mixtures14. Most often, the ionometric determination of the surfactant is carried out using ionic electrodes, which makes it possible to determine the concentration of the substance under investigation in a short time (up to 30 min). However, this method has low sensitivity (280–600 μg/ml)15 and low selectivity, which does not allow the determination of surfactants in relatively complex samples. Spectrophotometric methods are also labour-free (10–30 min) and have a high sensitivity of 0.001 μg/ml16,17. The main disadvantage is the low specificity and dilution of the sample to the measuring limit of 0.01 μg/ml, which complicates the measurement procedure. These defects are corrected by chromatography, which allows separating the studied mixture and increasing the concentration of the required substance, but this procedure requires a minimum of several hours15.There is therefore a need to develop a fast, low-cost method for determining anionic surfactant with high selectivity (specificity) that allows measurements to be made at environmentally toxic concentrations (10–50 μg/ml). Therefore, a quick semi-quantitative or qualitative determination of the substance by means of various rapid tests, such as paper tests, is sufficient for a number of practical tasks to determine the surfactants before applying a more precise and labour-intensive method systems, tracer powders, fabrics, polymer films, tablets18,19,20,21. In particular, Dmitrienko’s work with co-authors presents a method based on adsorption of a red-colored polyurethane foam (PUF) complex of an anionic surfactant with cation 1,10-fenantrolinate iron complex(II)22. This method allows the determination of anionic surfactants between 1 and 30 μg/ml. But all these systems have a common disadvantage—the need to use toxic reagents.Thus, we propose a non-toxic diagnostic system based on polyelectrolyte microcapsules for quick, cheap and highly selective qualitative and semi-quantitative determination of SDS in the medium. More

  • in

    Multiple bacterial partners in symbiosis with the nudibranch mollusk Rostanga alisae

    Symbiont diversity and distributionThe present study provides the first evidence of symbiosis in R. alisae, a species of nudibranchs. This is the most multiple symbiosis that have ever been recorded for marine invertebrates. While many organisms establish an exclusively one-on-one relationship with a single microbial species or microbes belonging to the same functional group5,12, there are also organisms that harbor multiple microbial species, in which symbiont–symbiont and host–symbiont interactions occur. Six phylotypes of chemoautotrophic bacteria were reported for mussel Idas sp. from a cold seep area11 and five extracellular symbionts for the gutless oligochaete worm Olavius algarvensis34. However, in these cases, symbioses involving bacteria and marine invertebrates are either endosymbiotic microbes co-occurring inside the host bacteriocytes5,11 or ectosymbiotic microbes associated with the external surfaces of the animals3,4,9,15,34, with the exception of scaly-foot snail from hydrothermal vents having partnerships simultaneously with epi- and endosymbiontic microbes35.Bacterial symbionts in R. alisae have appeared to be more diverse than was previously known for marine invertebrates. It is evident that the detected symbiont phylotypes differ greatly from all other known symbionts found in marine invertebrates. Labrenzia (Rodobacteriales) and Maritalea (Rhizobiales) have not been recorded as forming symbiotic associations with invertebrates or plants so far, although other members of the families Rodobacteriales and Rhizobiales are well known symbionts14. Strains of Bradyrhizobium, Burkholderia, Achromobacter, and Stenotrophomonas are reported as symbionts of plants, interacting with a vast majority of nodulating legume species and efficient in biological nitrogen fixation36. This may be important when considering the nature of these symbionts in the nudibranch. Symbioses between cyanobacteria and marine organisms are commonly found among marine plants, fungi, sponges, ascidians, corals, and protists37,38. Synechococcus, identified as dominant symbiont clones of R. alisae (Table S2), is a unicellular cyanobacterium common in the marine environment, providing a range of beneficial functions including photosynthesis, nitrogen fixation, UV protection, and production of defensive toxins8,9,37. Symbiotic interactions between actinobacteria and their host have been observed in insects, human, animals, and plants, where the bacteria provide the host with protection against pathogens and produce essential nutrients39. However, none of the members of the clade Actinobacteria recorded in R. alisae are known to live symbiotically.Arrangement of symbiotic associationDespite the high diversity of bacteria, they are well organized in the host. Dense clusters of rod-shaped bacteria, Labrenzia, Maritalea, Bradyrhizobium, Burcholderia, Achromobacter, and Stenotrophomonas, were found within host-derived vacuoles, referred to as bacteriocytes, inside epithelial cells of R. alisae (Fig. 3). Although such arrangement differs from that typical of bacteriocytes, which are usually considered as specialized cells of the hosts for harboring bacteria, it resembles that reported for scaly-food snail from hydrothermal vents, which harbor symbionts in the esophageal gland35. Bacteriocytes in the gastropod Lurifax vitreus found near hydrothermal vents also constitute a portion of the mantle epithelium; they have large vacuoles containing many live and dividing bacteria40. Each bacteriocyte was densely packed with certain symbionts, and the bacteriocytes were randomly distributed within the epithelium cells. A distinctly regular distribution pattern was observed in the gill epithelium of the mussel Bathymodiolus sp.: the thiotrophic symbionts occupy the apical region, and the methanotrophic symbionts are more abundant in the basal region of bacteriocytes4. In the mussel Idas sp., however, there is no spatial pattern of the six distinct bacterial phylotypes, and the symbionts are mixed within bacteriocytes11.Synechococcus dominated the cytoplasm of intestinal epithelium and, more rarely, epidermis cells, mainly as specialized cell type referred to as nitrogen-fixing heterocysts. They are visually similar to cyanobacteria from corals and sponges8,37.The phylogenetic diversity and the spatial organization of the symbiotic community in R. alisae were determined by the 16S rRNA analysis, which was consistent with the results of FISH and TEM. Unlike most symbioses of marine invertebrates when bacteria house specialized host cells5,11 or cover epidermis7,15, symbiotic association of R. alisae exhibited spatial partitioning between symbionts, which were unevenly distributed between the tissues (Table S2). It has been established that different members of the microbial community can complement each other in acquisition of various restrictive nutrients, confirming the importance of the functional diversity of symbionts41. Thus, Stenotrophomonas rhizophila and Bradyrhizobium build a beneficial association in the rhizosphere and can act synergistically on promoting growth and nutrient uptake of soybean36. Cyanobacteria can interact synergistically with beneficial members from the endophytic microbiome of rice seedlings42. The location of bacterium in the organism of R. alisae may, in fact, depend on the specific metabolic and ecological roles that the symbionts play, and also on the interaction with bacterium belonging to different physiological groups.Nature of symbiosisSymbiotic associations between microbes and invertebrates are acquired mainly in a nutrient-depleted environment where symbionts usually provide their hosts with essential nutrients and high-energy compounds1. In contrast to known symbioses between microbes and gutless invertebrates, which obtain nutrients exclusively from the bacteria, R. alisae, like most nudibranch species, is a sponge-eating predator. However, due to the lack of adipose tissue, sponges are distinguished by a low lipid content (0.4 to 1.5% of wet weight)43 and also by specific proteinaceous spongin fibers and chitin, a polysaccharide similar to cellulose that can be indigestible for some predators, which together indicate their low nutritional value. Furthermore, R. alisae feeds exclusively on the sponge O. pennata; therefore, in habitats with low prey availability, this nudibranch has to survive starvation while searching for sponge assemblages. We suppose that symbiotic bacteria of R. alisae contribute to the utilization of low-quality food, similarly to symbiotic bacteria from the genera Rhodobacter, Burkholderia, and Aeromonas associated with the detritivorous isopod Asellus aquaticus44.A fatty acid analysis, as a useful approach to clarifying the nature of symbiosis5,20,32, has confirmed the trophic interaction between symbionts and the nudibranch host (Table S2). Among the fatty acids of symbiotic bacteria in R. alisae, OBFA are a major acyl constituent of membranes in Stenotrophomonas45 and also in Actinobacteria, Arthrobacter, Iamia, Ilumatobacter, and Kocuria46. Cis-vaccenic acid is a major component of Maritalea30. Omega-cyclohexyl tridecanoic acid (cyclo19:0) is specific to Bradyrhizobium47, Burkholderia, and Achromobacter48. Linoleic acid is produced by cyanobacteria including marine species of Synecoccocus33; in nudibranch, it obviously serves as a precursor in the synthesis of arachidonic acid (20:4n-6), thus, providing additional evidence for the transfer of fatty acids from symbionts to the host. Mollusks are capable of converting linoleic acid to arachidonic acid, since they have enzymes required for its synthesis21. The presence of these bacteria-specific markers and the abundance of arachidonic acid confirm the metabolic role of symbionts in the nudibranch host.Among nutrients, biologically available nitrogen can be considered a restrictive nutrient for the sponge-eating R. alisae, which can be acquired with the help of nitrogen-fixing symbionts, also referred to as diazotrophs. R. alisae harbors Bradyrhizobium, Burkholderia, Achromobacter, and Stenotrophomonas that are efficient in biological nitrogen fixation previously found to be associated with nodulating legume species36. Symbiotic nitrogen fixers are known to be associated with a variety of marine invertebrates such as wood-boring bivalves, corals, sponges, sea urchins, tunicates, and polychaetes7,8,37. Moreover, the protection of the enzyme nitrogenase that catalyzes N2 fixation against oxygen is an important physiological requirement in bacteria such as symbiotic Bradyrhizobium, Burkholderia, Achromobacter, and Stenotrophomonas that are located in bacteriocytes and provide this protection. Synechococcus is known as a nitrogen-fixer37,49. It performs N2 fixation in heterocysts where nitrogenase is restricted under oxic conditions. Indeed, heterocysts of Synechococcus are abundant in the intestine cells of R. alisae (Fig. 5B–D).Nitrate assimilation is one of the major processes of nitrogen acquisition by many heterotrophic bacteria and cyanobacteria50,51. Symbionts of R. alisae can play an important role in the process of nitrate utilization through denitrification, dissimilatory nitrate reduction, and assimilatory nitrate reduction as a nitrogen source and synthesize it into organic nitrogen. The nitrate reducers, Labrenzia52, Stenotrophomonas53, Maritalea30, and Rhodobacteraceae29 are widely represented in R. alisae. Synechococcus also utilizes nitrate, nitrite, or ammonium for growth50. Thus, symbiotic bacteria may play a significant role in the N-budget of the nudibranch mollusk.The symbiotic bacteria of R. alisae, including Bradyrhizobium, Maritalea, Labrenzia, Burkholderia, Achromobacter, Stenotrophomonas, Arthrobacter, Iamia, Ilumatobacter, and Kocuria, are known as carboxydotrophic or carbon monoxide (CO) oxidizers54,55. Despite the toxicity of CO for multicellular organisms, numerous aerobic and anaerobic microorganisms can use CO as a source of energy and/or carbon for cell growth56. The marine worm Olavius algarvensis establishes symbiosis with chemosynthetic bacteria using CO, a substrate previously not known to play a role in symbiotic associations with marine invertebrates, as an energy source57. We do not rule out that the R. alisae symbionts also might exploit CO as carbon and energy source. Despite this, assumption may seem impossible taking in account the CO toxicity, but, since many invertebrates (mollusks, tube worm, etc.) use toxic sulfate, thiosulfate, and methane as an energy source1,15, this hypothesis is worth to be addressed.An important component of skeleton in marine sponges of the family Microcionidae, including O. pennata, is the structural polysaccharide chitin58. Some bacteria are capable of hydrolyzing chitin via the activity of chitinolytic enzymes and can utilize chitin as a source of carbon, nitrogen, and/or energy59. Chitinase activity was documented for strains of Labrenzia60, Burkholderia61, Arthrobacter62, Achromobacter63, Stenotrophomonas64, Alcaligenes65, and actinobacteria59 associated with R. alisae. Thus, these bacteria can work synergistically to digest chitin and spongin, contributing to feeding success of the host nudibranch which depends solely on low-quality, nitrogen- and carbon-deficient food available.Furthermore, direct evidence has confirmed that many bioactive compounds from invertebrates are produced by symbiotic microorganisms66,67. Many biologically active compounds including toxic and deterrent secretions have been identified in nudibranchs of the family Discodorididae68. Symbiotic bacteria may exhibit toxic activity to provide the host nudibranch with chemical defense against predators and environment. Bacteria, especially actinobacteria, living in a symbiotic relationship with R. alisae may help the host in defense, since nudibranch lack a shell, and secondary metabolites of bacteria can provide them with chemical defense against predators and environment, as has been reported for some marine invertebrates2,9,10.In complex associations, the integration and coexistence of symbionts depend on supplementary partnerships and mutual contribution to the host’s metabolism41. The most intensively studied cases are highly specialized associations, where both partners can only exist in close relationship with one another. The relatively high diversity of microbes in R. alisae complicates understanding the complex pattern of molecular and cellular interactions between the host and its symbionts. More

  • in

    Hydrogen peroxide can be a plausible biomarker in cyanobacterial bloom treatment

    1.Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobcteria and other phytoplankton from waste water. Environ. Sci. Technol. 4(23), 8916–8921 (2008).ADS 

    Google Scholar 
    2.Lurling, M., Meng, D. & Fassen, E. L. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in cyanobacterium, Microcytis aeruginosa. Toxins 6(12), 3260–3281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    3.Ghime, D. & Ghosh, P. Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects (IntechOpen, 2020).4.Rahdar, S., Igwegbe, C. A., Ghasem, M. & Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 6, 492–499 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    5.Derakhshan, Z. et al. Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor. Ecotoxicol. Environ. Saf. 152, 1–7 (2018).PubMed 
    CAS 

    Google Scholar 
    6.Shekoohiyan, S. et al. Performance evaluation of cyanobacteria removal from water reservoirs by biological method. Afr. J. Microbiol. Res. 7(17), 1729–1734 (2013).CAS 

    Google Scholar 
    7.Cooper, W. J., Zika, R., Petasne, R. G. & Plane, J. M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ. Sci. Technol. 22, 1156–1160. https://doi.org/10.1021/es00175a004 (1988).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Cooper, W. J., Lean, D. R. S. & Carey, J. H. Spatial and temporal patterns of hydrogen peroxide in lake waters. Can. J. Fish. Aquat. Sci. 46, 1227–1231. https://doi.org/10.1139/f89-158 (1989).Article 
    CAS 

    Google Scholar 
    9.Cory, R. M. et al. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00054 (2016).Article 

    Google Scholar 
    10.Caverzan, A. et al. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35(4), 1011–1019 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    11.Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012).
    Google Scholar 
    12.Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: A mini review. J. Chem. Ecol. 36(2), 174–193 (2020).CAS 

    Google Scholar 
    13.Rastogi, R. P., Singh, S. P., Häder, D.-P. & Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397(3), 603–607 (2010).PubMed 
    CAS 

    Google Scholar 
    14.Foyer, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    15.Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).PubMed 
    CAS 

    Google Scholar 
    16.Ma, Z. & Gao, K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ. Exp. Bot. 68(2), 208–213 (2010).CAS 

    Google Scholar 
    17.Welkie, D. G. et al. A hard day’s night: Cyanobacteria in diel cycles. Trends Microbiol. 27(3), 231–242 (2019).PubMed 
    CAS 

    Google Scholar 
    18.Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33(2), 258–278 (2009).PubMed 
    CAS 

    Google Scholar 
    19.Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta (BBA) Bioenerg. 1857(3), 247–255 (2016).CAS 

    Google Scholar 
    20.Raja, V., Majeed, U., Kang, H., Andrabi, K. I. & John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157 (2017).CAS 

    Google Scholar 
    21.Asada, S., Fukuda, K., Oh, M., Hamanishi, C. & Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 48(7), 399–403 (1999).PubMed 
    CAS 

    Google Scholar 
    22.Nishiyama, Y. & Murata, N. Revised scheme for the mechanisms of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98(21), 8777–8796 (2014).PubMed 
    CAS 

    Google Scholar 
    23.Mikula, P., Zezulka, S., Jancula, D. & Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa—New findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 47(3), 195–206 (2012).CAS 

    Google Scholar 
    24.Huisman, J. & Hulot, F. D. Population dynamics of harmful cyanobacteria. In Harmful Cyanobacteria, 143–176 (Springer, 2005).25.Bergström, A. K. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat. Sci. 72(3), 277–281 (2010).
    Google Scholar 
    26.Downing, J. A. & McCauley, E. The nitrogen: Phosphorus relationship in lakes. Limnol. Oceanogr. 37(5), 936–945 (1992).ADS 
    CAS 

    Google Scholar 
    27.Horne, A. J. & Goldman, C. R. Limnology Vol. 2 (McGraw-Hill, 1994).
    Google Scholar 
    28.Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002 (2006).Article 
    PubMed 
    CAS 

    Google Scholar 
    29.Saints, M., Diaz, P., Monza, J. & Borsani, O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol. Plant 140(1), 46–56. https://doi.org/10.1111/j.1399-3054.2010.01383.x (2010).Article 
    CAS 

    Google Scholar 
    30.Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203(1), 3–43. https://doi.org/10.1111/nph.12797 (2014).Article 

    Google Scholar 
    31.Asaeda, T. & Barnuevo, A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. For. Ecol. Manag. 432, 73–82 (2019).
    Google Scholar 
    32.Asaeda, T., Senavirathna, M. D. H. J., Vamsi Krishna, L. & Yoshida, N. Impact of regulated water levels on willows (Salix subfragilis) at a flood-control dam, and the use of hydrogen peroxide as an indicator of environmenal stress. Ecol. Eng. 127, 96–102 (2019).
    Google Scholar 
    33.Asaeda, T., Senavirathna, M. D. H. J. & Vamsi Krishna, L. Evaluation of habitat preferance of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Front. Plant Sci. 11, 422. https://doi.org/10.3389/fpls.2020.00422 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Diaz, J. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: Past and future directions. J. Plankton Res. 40(6), 655–666 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    35.Drábková, M., Admiraal, W. & Maršálek, B. Combined exposure to hydrogen peroxide and PAR selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41(1), 309–314 (2007).ADS 
    PubMed 

    Google Scholar 
    36.Bouchard, J. N. & Purdie, D. A. Effect of elevated temperature, darkness and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol. 47(6), 1316–1325 (2011).PubMed 
    CAS 

    Google Scholar 
    37.Leunert, F., Eckert, W., Paul, A., Gerhardt, V. & Grossart, H. P. Phytoplanktonic response to UV-generated hydrogen peroxide from natural organic matter. J. Plankton Res. 36(1), 185–197. https://doi.org/10.1093/plankt/fbt096 (2014).Article 
    CAS 

    Google Scholar 
    38.Wang, B. et al. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes. Chemosphere 228, 503–512 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    39.Foo, S. C., Chapman, I. J., Hartnell, D. M., Turner, A. D. & Franklin, D. J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environ. Sci. Pollut. Res. 27(31), 38916–38927 (2020).CAS 

    Google Scholar 
    40.Barrington, D. J., Reichwaldt, E. S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86–94 (2013).
    Google Scholar 
    41.Drábková, M., Matthijs, H., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363–369 (2007).
    Google Scholar 
    42.Marsac, N. T. D. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130(1), 82–91 (1977).
    Google Scholar 
    43.Garcia, P. E., Queimalinos, C. & Dieguez, M. C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic sysyems: Influence of the dissolved organic matter pool. Chemosphere 217, 550–557 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    44.Herrmann, R. The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environ. Toxicol. Chem. 15(5), 652–662 (1996).CAS 

    Google Scholar 
    45.Spoof, L. et al. Elimination of cyanobacteria and microcystins in irrigation water—Effects of hydrogen peroxide treatment. Environ. Sci. Pollut. Res. 27(8), 8638–8652. https://doi.org/10.1007/s11356-019-07476-x (2020).Article 
    CAS 

    Google Scholar 
    46.Lopez, C. V. G. et al. Protein measuremements of microalgae and cyanobacterial biomass. Bioresour. Technol. 101(19), 7587–7591 (2010).PubMed 

    Google Scholar 
    47.Vesterkvist, P. S. M., Misiorek, J. O., Spoof, L. E. M., Toivola, D. M. & Meriluoto, J. A. O. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4(11), 1008–1023 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    48.Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45 (2017).CAS 

    Google Scholar 
    49.Pham, T.-L. & Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 213, 520–529 (2018).CAS 

    Google Scholar 
    50.Goldman, J. C., McCarthy, J. J. & Peavey, D. G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279(5710), 210–215 (1979).ADS 
    CAS 

    Google Scholar 
    51.Paerl, H. W., Fulton, R. S. 3rd., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World. J. 1, 76–113 (2001).CAS 

    Google Scholar 
    52.Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. The low TN:TP ratio, a case or result of Microcystis blooms?. Water Res. 37(9), 2073–2080 (2003).PubMed 
    CAS 

    Google Scholar 
    53.Asaeda, T., Rashid, M. H. & Schoelynck, J. Tissue hydrogen peroxide concentration can explain the invasiveness of aquatic macrophytes: A modeling perspective. Front. Environ. Sci. 8, 292 (2021).ADS 

    Google Scholar 
    54.Hesse, K., Dittman, E. & Borner, T. Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol. Ecol. 37(1), 39–43 (2001).CAS 

    Google Scholar 
    55.Tilzer, M. M. Light‐dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwater Res. 21(3), 401-412 (1987).Article 
    CAS 

    Google Scholar 
    56.Iwase, S. & Abe, Y. Identification and change in concentration of musty-odor compounds during growth in blue–green algae. J. Mar. Sci. Technol. 8(1), 27–33 (2010).
    Google Scholar 
    57.Abeynayaka, H. D. L., Asaeda, T. & Kaneko, Y. Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicle collapse. Environ. Manag. 60(2), 293–303 (2017).ADS 

    Google Scholar 
    58.Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979).
    Google Scholar 
    59.Jana, S. & Choudhuri, M. A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12, 345–354 (1982).CAS 

    Google Scholar 
    60.Veljovic-Jovanovic, S., Noctor, G. & Foer, C. H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507 (2002).CAS 

    Google Scholar 
    61.Cheeseman, J. M. Hydrogen peroxide concentrations in leaves under natular conditions. J. Exp. Bot. 57(10), 2435–2444 (2006).PubMed 
    CAS 

    Google Scholar 
    62.Queval, G., Hager, J., Gakiere, B. & Noctor, G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot. 59(2), 135–146. https://doi.org/10.1093/jxb/erm193 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    63.Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).PubMed 
    CAS 

    Google Scholar 
    64.Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5), 867–880 (1981).CAS 

    Google Scholar 
    65.Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).PubMed 
    CAS 

    Google Scholar  More

  • in

    Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain

    1.Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 12, 56. https://doi.org/10.1186/1475-2875-12-56 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Mouchet, J. et al. Biodiversité du paludisme dans le monde. (Editions John Libbey Eurotext, 2004).3.Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit Vectors 13, 295. https://doi.org/10.1186/s13071-020-04170-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Antonio-Nkondjio, C. et al. Complexity of the malaria vectorial system in Cameroon: contribution of secondary vectors to malaria transmission. J. Med. Entomol. 43, 1215–1221. https://doi.org/10.1093/jmedent/43.6.1215 (2006).Article 
    PubMed 

    Google Scholar 
    5.Afrane, Y. A., Bonizzoni, M. & Yan, G. in Current Topics in Malaria Ch. 20, (2016).6.Goupeyou-Youmsi, J. et al. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighboring villages of Madagascar. bioRxiv 13, 430, https://doi.org/10.1101/787432 (2019).7.Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196. https://doi.org/10.1016/j.pt.2015.11.010 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Killeen, G. F. Control of malaria vectors and management of insecticide resistance through universal coverage with next-generation insecticide-treated nets. Lancet 395, 1394–1400. https://doi.org/10.1016/s0140-6736(20)30745-5 (2020).Article 
    PubMed 

    Google Scholar 
    9.Kreppel, K. S. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10, 14527. https://doi.org/10.1038/s41598-020-71187-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    10.Chinula, D. et al. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: an observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit Vectors 11, 544, https://doi.org/10.1186/s13071-018-3121-0 (2018).11.Lwetoijera, D. W. et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 13, 331. https://doi.org/10.1186/1475-2875-13-331 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Russell, T. L. et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 9, 187. https://doi.org/10.1186/1475-2875-9-187 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Sougoufara, S., Harry, M., Doucoure, S., Sembene, P. M. & Sokhna, C. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30, 365–368. https://doi.org/10.1111/mve.12171 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Agyekum, T. P. et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: Implications for malaria control in a future warmer climate. Int. J. Environ. Res. Public Health 18, 7255 (2021).CAS 
    Article 

    Google Scholar 
    15.Smith, M. W. et al. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Nat. Commun. 11, 4353. https://doi.org/10.1038/s41467-020-18239-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Chemison, A. et al. Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nat. Commun. 12, 3971. https://doi.org/10.1038/s41467-021-24134-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    17.Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220. https://doi.org/10.1016/j.pt.2004.03.001 (2004).Article 
    PubMed 

    Google Scholar 
    18.Carnevale, P. & Manguin, S. Review of issues on residual malaria transmission. J. Infect. Dis. 223, S61–S80. https://doi.org/10.1093/infdis/jiab084 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Killeen, G. F., Chaki, P. P., Reed, T. E., Moyes, C. L. & Govella, N. J. in Towards Malaria Elimination – A Leap Forward Ch. 17, (2018).20.Killeen, G. F. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 13, 330. https://doi.org/10.1186/1475-2875-13-330 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145, 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. https://doi.org/10.1038/srep17952 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.St Laurent, B. et al. Molecular characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. Am. J. Trop. Med. Hyg. 94, 327–335. https://doi.org/10.4269/ajtmh.15-0562 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Zhong, D. et al. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci. Rep. 10, 16139. https://doi.org/10.1038/s41598-020-73073-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Killeen, G. F. et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob. Health 2, e000211. https://doi.org/10.1136/bmjgh-2016-000211 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar J. 18, 311. https://doi.org/10.1186/s12936-019-2951-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Fillinger, U. & Lindsay, S. W. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop. Med. Int. Health 11, 1629–1642. https://doi.org/10.1111/j.1365-3156.2006.01733.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Hardy, A., Makame, M., Cross, D., Majambere, S. & Msellem, M. Using low-cost drones to map malaria vector habitats. Parasit Vectors 10, 29. https://doi.org/10.1186/s13071-017-1973-3 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Lwetoijera, D. et al. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania. Malar J. 13, 161. https://doi.org/10.1186/1475-2875-13-161 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malaria J. https://doi.org/10.1186/1475-2875-6-76 (2007).Article 

    Google Scholar 
    31.Unlu, I., Faraji, A., Wang, Y., Rochlin, I. & Gaugler, R. Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates. Sci. Rep. 11, 14119. https://doi.org/10.1038/s41598-021-93492-2 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184. https://doi.org/10.4269/ajtmh.2010.09-0373 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Dongus, S. et al. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Int. J. Health Geogr. 6, 37. https://doi.org/10.1186/1476-072X-6-37 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Ferguson, H. M. et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 7, e1000303. https://doi.org/10.1371/journal.pmed.1000303 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Gu, W., Utzinger, J. & Novak, R. J. Habitat-based larval interventions: A new perspective for malaria control. Am. J. Trop. Med. Hyg. 78, 2–6 (2008).Article 

    Google Scholar 
    36.Cross, D. E. et al. Geographically extensive larval surveys reveal an unexpected scarcity of primary vector mosquitoes in a region of persistent malaria transmission in western Zambia. Parasit Vectors 14, 91. https://doi.org/10.1186/s13071-020-04540-1 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Orba, Y. et al. First isolation of West Nile virus in Zambia from mosquitoes. Transbound Emerg. Dis. 65, 933–938. https://doi.org/10.1111/tbed.12888 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Wastika, C. E. et al. Discoveries of exoribonuclease-resistant structures of insect-specific flaviviruses isolated in Zambia. Viruses https://doi.org/10.3390/v12091017 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Hulsman, P., Savenije, H. H. G. & Hrachowitz, M. Satellite-based drought analysis in the Zambezi River Basin: Was the 2019 drought the most extreme in several decades as locally perceived?. J. Hydrol. Reg. Stud. https://doi.org/10.1016/j.ejrh.2021.100789 (2021).Article 

    Google Scholar 
    40.Hardy, A. et al. Automatic detection of open and vegetated water bodies using Sentinel 1 to map African malaria vector mosquito breeding habitats. Remote Sensing 11, 593. https://doi.org/10.3390/rs11050593 (2019).Article 
    ADS 

    Google Scholar 
    41.Del Rio, T., Groot, J. C. J., DeClerck, F. & Estrada-Carmona, N. Integrating local knowledge and remote sensing for eco-type classification map in the Barotse Floodplain, Zambia. Data Brief 19, 2297–2304. https://doi.org/10.1016/j.dib.2018.07.009 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Timberlake, J. Biodiversity of the Zambezi Basin wetlands: Review and preliminary assessment of available information. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1997).43.Turpie, J., Smith, B., Emerton, L. & Barnes, J. Economic valuation of the Zambezi basin wetlands. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1999).44.Ciubotariu, I. I. et al. Genetic diversity of Anopheles coustani in high malaria transmission foci in southern and central Africa. J. Med. Entom. 57, 1–11. https://doi.org/10.1093/jme/tjaa132 (2020).CAS 
    Article 

    Google Scholar 
    45.Jones, C. M. Vector biology and genomics of Anopheles in southern and central Africa PhD thesis, John Hopkins Bloomberg School of Public Health, (2019).46.Stephen, A., Nicholas, K., Busula, A. O., Webale, M. K. & Omukunda, E. Detection of Plasmodium sporozoites in Anopheles coustani s.l; a hindrance to malaria control strategies in highlands of western Kenya. bioRxiv, https://doi.org/10.1101/2021.02.10.430589 (2021).47.Tedrow, R. E. et al. Anopheles mosquito surveillance in Madagascar reveals multiple blood feeding behavior and Plasmodium infection. PLoS Negl. Trop. Dis. 13, e0007176. https://doi.org/10.1371/journal.pntd.0007176 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Taye, B., Lelisa, K., Emana, D., Asale, A. & Yewhalaw, D. Seasonal dynamics, longevity, and biting activity of anopheline mosquitoes in southwestern Ethiopia. J. Insect. Sci. https://doi.org/10.1093/jisesa/iev150 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sikaala, C. H. et al. A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J. 13, 225. https://doi.org/10.1186/1475-2875-13-225 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.De Meillon, B. The anophelini of the Ethiopian geographical region. Publ. South Afr. Inst. Med. Res. 49, 1–272 (1947).
    Google Scholar 
    51.Gillies, M. T. & De Meillon, B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ. South Afr. Inst. Med. Res. 54, 1–343 (1968).
    Google Scholar 
    52.Dida, G. O. et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect. Dis. Poverty 7, 2. https://doi.org/10.1186/s40249-017-0385-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Njoroge, M. M. et al. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya. Parasit Vectors 10, 18. https://doi.org/10.1186/s13071-016-1957-8 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Kibret, S. et al. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop. Med. Int. Health 15, 41–50. https://doi.org/10.1111/j.1365-3156.2009.02423.x (2010).Article 
    PubMed 

    Google Scholar 
    55.Coetzee, M. Anopheles crypticus, new species from South Africa is distinguished from Anopheles coustani (Diptera: Culicidae). Mosq. Syst. 26, 125–131 (1994).
    Google Scholar 
    56.Gillies, M. T. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ. South Afr. Inst. Med. Res. 55, 1–143 (1987).
    Google Scholar 
    57.Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 19, 70. https://doi.org/10.1186/s12936-020-3144-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Carter, T. E., Yared, S., Hansel, S., Lopez, K. & Janies, D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 18, 135. https://doi.org/10.1186/s12936-019-2768-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Degefa, T. et al. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J. 16, 443. https://doi.org/10.1186/s12936-017-2098-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Nepomichene, T. N. J. J., Tata, E. & Boyer, S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malaria J. 14, 475. https://doi.org/10.1186/s12936-015-1004-9 (2015).CAS 
    Article 

    Google Scholar 
    61.Finney, M. et al. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J. 20, 25. https://doi.org/10.1186/s12936-020-03539-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Mwangangi, J. M. et al. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit Vectors 6, 114. https://doi.org/10.1186/1756-3305-6-114 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Hoffman, J. E. et al. Phylogenetic complexity of morphologically identified Anopheles squamosus in southern Zambia. Insects 12, 146. https://doi.org/10.3390/insects12020146 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Fornadel, C. M., Norris, L. C., Franco, V. & Norris, D. E. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector Borne Zoonotic Dis. 11, 1173–1179. https://doi.org/10.1089/vbz.2010.0082 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Wilkes, T. J., Matola, Y. G. & Charlwood, J. D. Anopheles rivulorum, a vector of human malaria in Africa. Med. Vet. Entomol. 10, 108–110. https://doi.org/10.1111/j.1365-2915.1996.tb00092.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Majambere, S., Fillinger, U., Sayer, D. R., Green, C. & Lindsay, S. W. Spatial distribution of mosquito larvae and the potential for targeted larval control in The Gambia. Am. J. Trop. Med. Hyg. 79, 19–27 (2008).Article 

    Google Scholar 
    67.Thomas, C. J., Cross, D. E. & Bogh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE https://doi.org/10.1371/journal.pone.0068679 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hardy, A. J. et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS ONE 8, e81931. https://doi.org/10.1371/journal.pone.0081931 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    69.Kent, R. J., Thuma, P. E., Mharakurwa, S. & Norris, D. E. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am. J. Trop. Med. Hyg. 76, 267–274 (2007).Article 

    Google Scholar 
    70.Imbahale, S. S. et al. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 10, 81. https://doi.org/10.1186/1475-2875-10-81 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Bayoh, M. N. et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 9, 62. https://doi.org/10.1186/1475-2875-9-62 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mawejje, H. D. et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 20, 138. https://doi.org/10.1186/s12936-021-03675-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Stevenson, J. C. et al. Spatio-temporal heterogeneity of malaria vectors in northern Zambia: Implications for vector control. Parasit Vectors 9, 510. https://doi.org/10.1186/s13071-016-1786-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Dabire, K. R. et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J. Vector Ecol. 33, 70–75. https://doi.org/10.3376/1081-1710(2008)33[70:ytyasv]2.0.co;2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Tuno, N., Githeko, A., Yan, G. & Takagi, M. Interspecific variation in diving activity among Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles (Diptera: Culicidae) larvae. J. Vector Ecol. 32, 112–117. https://doi.org/10.3376/1081-1710(2007)32[112:ividaa]2.0.co;2 (2007).Article 
    PubMed 

    Google Scholar 
    76.Nambunga, I. H. et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 19, 219. https://doi.org/10.1186/s12936-020-03295-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar J. 8, 123. https://doi.org/10.1186/1475-2875-8-123 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Kweka, E. J. et al. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS ONE 7, e52084. https://doi.org/10.1371/journal.pone.0052084 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    79.Libanda, B. & Ngonga, C. Projection of frequency and intensity of extreme precipitation in Zambia: a CMIP5 study. Climate Res. 76, 59–72. https://doi.org/10.3354/cr01528 (2018).Article 
    ADS 

    Google Scholar 
    80.Zimba, H. et al. Assessment of trends in inundation extent in the Barotse Floodplain, upper Zambezi River Basin: A remote sensing-based approach. J. Hydrol. Reg. Stud. 15, 149–170. https://doi.org/10.1016/j.ejrh.2018.01.002 (2018).Article 

    Google Scholar 
    81.Hamududu, B. H. & Killingtveit, A. Hydropower production in future climate scenarios; the case for the Zambezi River. Energies https://doi.org/10.3390/en9070502 (2016).Article 

    Google Scholar 
    82.IUCN. Barotse Floodplain, Zambia: Local economic dependence on wetland resources. IUCN – The World Conservation Union, Harare, Zimbabwe (2003).83.Moore, A. E., Cotterill, F.P.D., Main, M.P.L., Williams, H.B. in Large Rivers: Geomorphology and Management (ed Avijit Gupta) Ch. 15, (Wiley, 2007).84.Heyden, C. J. V. D. The hydrology and hydrogeology of dambos: a review. Prog. Phys. Geog. 28, 544–564. https://doi.org/10.1191/0309133304pp424oa (2004).Article 

    Google Scholar 
    85.Derua, Y. A. et al. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malaria J. https://doi.org/10.1186/1475-2875-11-188 (2012).Article 

    Google Scholar 
    86.Kröckel, U., Rose, A., Eiras, Á. E. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238. https://doi.org/10.2987/8756-971x(2006)22[229:Ntfsoa]2.0.Co;2 (2006).Article 
    PubMed 

    Google Scholar 
    87.Gama, R. A., Silva, I. M., Geier, M. & Eiras, A. E. Development of the BG-Malaria trap as an alternative to human-landing catches for the capture of Anopheles darlingi. Mem. Inst. Oswaldo Cruz 108, 763–771. https://doi.org/10.1590/0074-0276108062013013 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Ribeiro, J. M., Seulu, F., Abose, T., Kidane, G. & Teklehaimanot, A. Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bull. World Health Organ. 74, 299–305 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Russell, T. L. et al. Geographic coincidence of increased malaria transmission hazard and vulnerability occurring at the periphery of two Tanzanian villages. Malar J. 12, 24. https://doi.org/10.1186/1475-2875-12-24 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Smith, D. L., Dushoff, J. & McKenzie, F. E. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2, e368. https://doi.org/10.1371/journal.pbio.0020368 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Midega, J. T. et al. Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat. Commun. 3, 674. https://doi.org/10.1038/ncomms1672 (2012).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    92.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Singh, B. et al. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am. J. Trop. Med. Hyg. 60, 687–692. https://doi.org/10.4269/ajtmh.1999.60.687 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2021).95.Postma, M. & Goedhart, J. PlotsOfData – A web app for visualizing data together with their summaries. PLoS Biol 17, e3000202. https://doi.org/10.1371/journal.pbio.3000202 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.IBM SPSS Statistics for Windows, Version 25.0 (Armonk, NY, 2017).97.Rita, H. & Komonen, A. Odds ratio: an ecologically sound tool to compare proportions. Ann. Zool. Fenn. 45, 66–72. https://doi.org/10.5735/086.045.0106 (2008).Article 

    Google Scholar  More

  • in

    Air pollution from gas refinery through contamination with various elements disrupts semiarid Zagros oak (Quercus brantii Lindl.) forests, Iran

    Description of study areasIGR plant (33° 42/N, 46° 13/E) is located along the edge of the mountains of Zagros forests and 25 km from Ilam city. Its main activity, to supply gas to the western provinces of Iran, started in 2007. It converts sour gas to sweet gas and also produces various products such as pastil sulfur, ethane, and liquefied gas. The refinery has two chimneys, which release waste gases into the atmosphere. Oak trees are the main tree species of the Zagros forests around the refinery; these are exposed to various air pollutants and different elements from this source. Based on random analysis of exhaust emissions, sulfur dioxide and sulfide hydrogen are the major pollutants emitted from the flare gases of this refinery plant34. The sampling points have an average altitude of about 1000–1250 m and a slope of less than 20%. The climate of the region is semiarid and influenced by Mediterranean winds. The predominant wind direction was west and southwest. The highest and lowest air temperatures were 41.4 °C and − 11.3 °C, respectively. The average annual rainfall was 71.94 mm (http://www.amarilam.ir).Samples collection and analysesAll methods were carried out in accordance with the relevant institutional, national, and international guidelines and legislation. Besides they were discussed and approved by the Research Ethics Committee of Tarbiat Modares University. The formal identification of the Quercus brantii Lindl. was performed by H. Dadkhah-Aghdash based on colorful Flora of Iran35. The permissions or licenses to collect Brant oak (Quercus brantii Lindl.) trees in Zagros forests were obtained. A voucher specimen of Brant oaks were collected and deposited at the Herbarium of department of Plant Biology of Tarbiat Modares University.We studied different distances (1000, 1500, 2000, 2500, and 10,000 m [control]) in an easterly direction from the gas refinery. The map of study area was drawn by software of ArcGIS version of 10.5, https://desktop.arcgis.com (Fig. 5). At each distance, three soil samples taken from the depth of 0–20 cm with a plastic gardening shovel, 30 healthy and mature leaves were collected from a certain height (nearly the middle of the canopy) and the outer canopy of three Brant oak trees in the late spring, summer, and autumn of 2019. These trees with average height and diameter at breast height of 5.5 m and 45 cm were selected randomly. The leaf and soil samples were put into polyethylene bags and transported to the laboratory for analysis36.Figure 5Locations of collection sites of soil samples and Brant oak leaves at five different distances (1000, 1500, 2000, 2500 and 10,000 m [control]) from the gas refinery (drawn by H. Dadkhah-Aghdash using software of ArcGIS Desktop. version of 10.5. ESRI, California, US. https://desktop.arcgis.com).Full size imageIn the lab, firstly the leaves were categorized into two types: unwashed leaves and leaves washed with ethylenediaminetetraacetic acid (EDTA) solution to remove some atmospheric dusts and particles deposition. The leaf and soil samples were dried for 10 days until they reached a constant weight at lab temperature. The leaves were grinded and homogenized, soils were sieved with ASTM mesh (DAMAVAND, Iran) with a diameter of 2 mm and homogenized.To determine the pH and electrical conductivity (EC) of soils, 2 g of the soil samples were shaken in 10 ml of double-distilled water with a ratio of 1:5; after 1 h, the pH and electrical conductivity (EC) of the solution were measured by a digital pH meter (Fan Azma Gostar Company, Iran) and EC meter (Sartorius, PT-20, USA). The analysis of the particle sizes of the soil was carried out using the hydrometer method and texture class was determined with a soil texture triangle37.According to different U.S.EPA protocols that were modified by following references, the soil and leaf samples were prepared and dissolved. The digestion of soil samples was conducted with a mixture of concentrated HF–HClO4–HNO338. Approximately 0.5 g of dry soil sample was digested with 10 mL of HCl on a hot plate at ~ 180 °C until the solution was reduced to 3 mL. Approximately 5 mL of HF (40%, w/w), 5 mL of HNO3 (63%, w/w), and 3 mL of HClO4 (70%, w/w) were then added and the solution was digested. This process was continued with adding 3 mL of HNO3, 3 mL of HF, and 1 mL of HClO4 until the silicate minerals had fully disappeared. This solution was transferred to a 25 mL volumetric tube, and 1% HNO3 was added to bring the sample up to a constant volume for the element’s determinations. After filtering the digested samples, the concentrations of sulfur (S), arsenic (As), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and nickel (Ni) were measured via inductively coupled plasma mass spectrometry (ICP-MS,7500 CS, Agilent, US). The procedures of quality assurance and quality control (QA/QC) were performed.To quantify element contents from soil samples, external standards with calibration levels were used. The precision and the repeatability of the analysis were tested on the instrument by analyzing three replicate samples.According to Liang et al.39 leaf samples were acid digested and sieved powder samples were placed in the acid-washed tubes and 10 mL of 65% nitric acid was added to it. The solution was placed at room temperature overnight (12 h) after that, it was placed for 4 h at 100 °C and then 4 h at 140 °C until the solution color was clear. After cooling, the solution was diluted by deionized water to 50 mL and then passed through Whatman filter paper until 25 mL of the filtrate volume was provided. Each sample was digested three times and the average of measurements is reported. Total plant elements were measured by using the ICP-MS (7500 CS, Agilent, US). A control sample was also used beside each sample to determine the background pollution during digestion. To confirm the accuracy of the methodology and to ensure the extraction of trace elements from the leaf samples, the standard solution of each studied elements was used.Measuring of pollution levels of different elements in soils and leavesFor assessment of contamination levels (concentration) of different elements in soils and trees, common indices of pollution including geoaccumulation index (Igeo), pollution index (PI), pollution load index (PLI), enrichment factor of plants (EFplant), bioconcentration factor (BCF), air originated metals (AOM ), metal accumulation index (MAI) were used.Igeo was calculated using the following (Eq. 1):$${text{I}}_{{{text{geo}}}} = log_{2} left[ {{text{C}}_{{text{n}}} / 1.5{text{ B}}_{{text{n}}} } right]$$
    (1)
    where Cn is the measured concentration of the element n, Bn is the geoaccumulation background for this element and 1.5 is a constant coefficient used to eliminate potential variations in the baseline data40. The Igeo classifies samples into seven grades:  5 for extremely polluted30.The first PI is expressed as (Eq. 2):$${text{PI }} = {text{ C}}_{{text{i}}} /{text{S}}_{{text{i}}}$$
    (2)
    where Ci is the concentration of element i in the soil (mg kg−1) and Si is the soil quality standard or reference value for element i (mg kg−1). The PLI for different elements is calculated via the (Eq. 3):$${text{PLI}} = left( {{text{PI}}_{{1}} times {text{ PI}}_{{2}} times {text{ PI}}_{{3}} times cdots times {text{PI}}_{{text{n}}} } right)^{{{1}/{text{n}}}}$$
    (3)
    The PLI of soils is classified as follows: PLI  More

  • in

    Whales in the way

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More