Ecological network complexity scales with area
1.Arrhenius, O. Species and area. J. Ecol. 9, 95–99 (1921).
Google Scholar
2.MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967).3.Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).4.Smith, A. B., Sandel, B., Kraft, N. J. B. & Carey, S. Characterizing scale‐dependent community assembly using the functional‐diversity–area relationship. Ecology 94, 2392–2402 (2013).PubMed
Google Scholar
5.Mazel, F. et al. Multifaceted diversity–area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 23, 836–847 (2014).PubMed
PubMed Central
Google Scholar
6.Dias, R. A. et al. Species richness and patterns of overdispersion, clustering and randomness shape phylogenetic and functional diversity–area relationships in habitat islands. J. Biogeogr. 47, 1638–1648 (2020).
Google Scholar
7.Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).CAS
PubMed
Google Scholar
8.Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).CAS
PubMed
Google Scholar
9.Simberloff, D. in Tropical Deforestation and Species Extinction (eds Whitmore, T. C. & Sayer, J. A.) 75–89 (Chapman & Hall, 1992).10.Jordano, P. Chasing ecological interactions. PLoS Biol. 14, e1002559 (2016).PubMed
PubMed Central
Google Scholar
11.Montoya, J. M., Woodward, G., Emmerson, M. C. & Solé, R. V. Press perturbations and indirect effects in real food webs. Ecology 90, 2426–2433 (2009).PubMed
Google Scholar
12.Lurgi, M., López, B. C., Montoya, J. M. & Lopez, B. C. Novel communities from climate change. Philos. Trans. R. Soc. Lond. B 367, 2913–2922 (2012).
Google Scholar
13.Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).CAS
PubMed
Google Scholar
14.Montoya, J. M., Rodriguez, M. Á. & Hawkins, B. A. Food web complexity and higher-level ecosystem services. Ecol. Lett. 6, 587–593 (2003).
Google Scholar
15.Reiss, J., Bridle, J. R., Montoya, J. M. & Woodward, G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol. Evol. 24, 505–514 (2009).PubMed
Google Scholar
16.Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed
Google Scholar
17.Cohen, J. E. & Newman, C. M. Community area and food-chain length: theoretical predictions. Am. Nat. 138, 1542–1554 (1991).
Google Scholar
18.Schoener, T. W. Food webs from the small to the large: the Robert H. MacArthur Award lecture. Ecology 70, 1559–1589 (1989).
Google Scholar
19.Post, D. M., Pace, M. L. & Hairston, N. G. Ecosystem size determines food-chain length in lakes. Nature 405, 1047–1049 (2000).CAS
PubMed
Google Scholar
20.Brose, U., Ostling, A., Harrison, K. & Martinez, N. D. Unified spatial scaling of species and their trophic interactions. Nature 428, 167–171 (2004).CAS
PubMed
Google Scholar
21.Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).PubMed
Google Scholar
22.Wood, S. A., Russell, R., Hanson, D., Williams, R. J. & Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769–3782 (2015).PubMed
PubMed Central
Google Scholar
23.Pimm, S. L. et al. Food web patterns and their consequences. Nature 350, 669–674 (1991).
Google Scholar
24.Martinez, N. D. Constant connectance in community food webs. Am. Nat. 139, 1208–1218 (1992).
Google Scholar
25.Ings, T. C. et al. Ecological networks–beyond food webs. J. Anim. Ecol. 78, 253–69 (2009).PubMed
Google Scholar
26.Montoya, J. M. & Solé, R. V. Topological properties of food webs: from real data to community assembly models. Oikos 102, 614–622 (2003).
Google Scholar
27.Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).PubMed
Google Scholar
28.Preston, F. W. Time and space and the variation of species. Ecology 41, 611–627 (1960).
Google Scholar
29.Turner, W. R. & Tjørve, E. Scale-dependence in species–area relationships. Ecography 6, 721–730 (2005).
Google Scholar
30.Bengtsson, J. Confounding variables and independent observations in comparative analyses of food webs. Ecology 75, 1282–1288 (1994).
Google Scholar
31.Vermaat, J. E., Dunne, J. A. & Gilbert, A. J. Major dimensions in food-web structure properties. Ecology 90, 278–282 (2009).PubMed
Google Scholar
32.Dunne, J. A. et al. Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol. 11, e1001579 (2013).CAS
PubMed
PubMed Central
Google Scholar
33.Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251 (2014).PubMed
PubMed Central
Google Scholar
34.Cohen, J. E. & Briand, Fredeiri Trophic links of community food webs. Proc. Natl Acad. Sci. USA 81, 4105–4109 (1984).CAS
PubMed
PubMed Central
Google Scholar
35.Roslin, T., Várkonyi, G., Koponen, M., Vikberg, V. & Nieminen, M. Species–area relationships across four trophic levels—decreasing island size truncates food chains. Ecography 37, 443–453 (2014).
Google Scholar
36.Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. Trophic rank and the species–area relationship. Ecology 80, 1495–1504 (1999).
Google Scholar
37.Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).CAS
PubMed
PubMed Central
Google Scholar
38.Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).CAS
PubMed
Google Scholar
39.James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).CAS
PubMed
Google Scholar
40.Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).PubMed
Google Scholar
41.Valiente-Banuet, A. et al. Beyond species loss: the extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).
Google Scholar
42.Janzen, D. H. The deflowering of central America. Nat. Hist. 83, 49–53 (1974).43.Mendoza, M. & Araújo, M. B. Climate shapes mammal community trophic structures and humans simplify them. Nat. Commun. 10, 5197 (2019).PubMed
PubMed Central
Google Scholar
44.Emer, C. et al. Seed dispersal networks in tropical forest fragments: area effects, remnant species, and interaction diversity. Biotropica 52, 81–89 (2020).
Google Scholar
45.McWilliams, C., Lurgi, M., Montoya, J. M., Sauve, A. & Montoya, D. The stability of multitrophic communities under habitat loss. Nat. Commun. 10, 2322 (2019).PubMed
PubMed Central
Google Scholar
46.McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).CAS
PubMed
Google Scholar
47.Fig, T., Mccann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).
Google Scholar
48.Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).
Google Scholar
49.Macfadyen, S., Gibson, R. H., Symondson, W. O. C. & Memmott, J. Landscape structure influences modularity patterns in farm food webs: consequences for pest control. Ecol. Appl. 21, 516–524 (2011).PubMed
PubMed Central
Google Scholar
50.Reverté, S. et al. Spatial variability in a plant–pollinator community across a continuous habitat: high heterogeneity in the face of apparent uniformity. Ecography 42, 1558–1568 (2019).
Google Scholar
51.Torné‐Noguera, A., Arnan, X., Rodrigo, A. & Bosch, J. Spatial variability of hosts, parasitoids and their interactions across a homogeneous landscape. Ecol. Evol. 10, 3696–3705 (2020).PubMed
PubMed Central
Google Scholar
52.Hernández‐Castellano, C. et al. A new native plant in the neighborhood: effects on plant–pollinator networks, pollination, and plant reproductive success. Ecology 101, e03046 (2020).PubMed
Google Scholar
53.Osorio, S., Arnan, X., Bassols, E., Vicens, N. & Bosch, J. Local and landscape effects in a host–parasitoid interaction network along a forest–cropland gradient. Ecol. Appl. 25, 1869–1879 (2015).PubMed
Google Scholar
54.Kaartinen, R. & Roslin, T. Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. J. Anim. Ecol. 80, 622–631 (2011).PubMed
Google Scholar
55.Vázquez, D. P. & Simberloff, D. Changes in interaction biodiversity induced by an introduced ungulate. Ecol. Lett. 6, 1077–1083 (2003).
Google Scholar
56.Mulder, C., Den Hollander, H. A. & Hendriks, A. J. Aboveground herbivory shapes the biomass distribution and flux of soil invertebrates. PLoS ONE 3, e3573 (2008).PubMed
PubMed Central
Google Scholar
57.Montoya, D., Yallop, M. L. & Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 7379 (2015).CAS
PubMed
Google Scholar
58.Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0631-2 (2018).59.Cagnolo, L., Salvo, A. & Valladares, G. Network topology: patterns and mechanisms in plant–herbivore and host–parasitoid food webs. J. Anim. Ecol. 80, 342–351 (2011).PubMed
Google Scholar
60.Maiorano, L., Montemaggiori, A., Ficetola, G. F., O’Connor, L. & Thuiller, W. TETRA‐EU 1.0: a species‐level trophic metaweb of European tetrapods. Glob. Ecol. Biogeogr. 29, 1452–1457 (2020).61.Kopelke, J. et al. Food‐web structure of willow‐galling sawflies and their natural enemies across Europe. Ecology 98, 1730 (2017).PubMed
Google Scholar
62.Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001).CAS
Google Scholar
63.Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).PubMed
PubMed Central
Google Scholar
64.Guilhaumon, F., Mouillot, D. & Gimenez, O. mmSAR: an R-package for multimodel species–area relationship inference. Ecography 33, 420–424 (2010).
Google Scholar
65.Matthews, T. J., Triantis, K. A., Whittaker, R. J. & Guilhaumon, F. sars: an R package for fitting, evaluating and comparing species–area relationship models. Ecography https://doi.org/10.1111/ecog.04271 (2019).66.Galiana, N. Ecological network complexity scales with area. Dryad https://doi.org/10.5061/dryad.zcrjdfndg (2021). More