Network traits predict ecological strategies in fungi
1.Fischer MS, Glass NL. Communicate and fuse: How filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619.2.Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:335–67.3.Heaton LLM, Jones NS, Fricker MD. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun. 2020;11:2594.CAS
PubMed
PubMed Central
Google Scholar
4.Kiss E, Hegedus B, Viragh M, Varga T, Merenyi Z, Koszo T, et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun. 2019;10:4080.PubMed
PubMed Central
Google Scholar
5.Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biol Rev. 2020;34:151–69.
Google Scholar
6.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed
PubMed Central
Google Scholar
7.Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, et al. The fungi. Curr Biol. 2009;19:R840–845.CAS
PubMed
PubMed Central
Google Scholar
8.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS
PubMed
PubMed Central
Google Scholar
9.Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad Sci USA. 2014;111:740–5.CAS
PubMed
Google Scholar
10.Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167.
Google Scholar
11.Dawson SK, Boddy L, Halbwachs H, Bässler C, Andrew C, Crowther TW, et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct Ecol. 2018;33:372–87.
Google Scholar
12.Aguilar-Trigueros CA, Hempel S, Powell JR, Anderson IC, Antonovics J, Bergmann J, et al. Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biol Rev. 2015;29:34–41.
Google Scholar
13.Pringle A, Taylor JW. The fitness of filamentous fungi. Trends Microbiol. 2002;10:474–81.CAS
PubMed
Google Scholar
14.Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol Rev. 2020;95:409–33.PubMed
Google Scholar
15.Boddy L. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13–32.
Google Scholar
16.Boddy L, Donnelly DP. Fractal geometry and microorganisms in the environment. Biophys Chem Fractal Struct Processes Environ Syst. 2008;11:239–72.17.Lehmann A, Zheng W, Soutschek K, Roy J, Yurkov AM, Rillig MC. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Sci Rep. 2019;9:14152.PubMed
PubMed Central
Google Scholar
18.Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and dikaryons of the arbuscular mycorrhizal fungus rhizophagus irregularis differ in life history strategy. Front Plant Sci. 2021;12:1544.
Google Scholar
19.Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.PubMed
Google Scholar
20.Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 2021;15:1782–1793.21.De Ligne L, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Van Acker J, De Baets B. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions. IMA Fungus. 2019;10:7.PubMed
PubMed Central
Google Scholar
22.Dikec J, Olivier A, Bobee C, D’Angelo Y, Catellier R, David P, et al. Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina. Sci Rep. 2020;10:3131.CAS
PubMed
PubMed Central
Google Scholar
23.Du H, Lv P, Ayouz M, Besserer A, Perré P. Morphological characterization and quantification of the mycelial growth of the Brown-Rot fungus Postia placenta for modeling purposes. PLoS One. 2016;11:e0162469.PubMed
PubMed Central
Google Scholar
24.Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Lopez-Molina C, De Windt I, De Baets B. Automated image-based analysis of spatio-temporal fungal dynamics. Fungal Genet Biol. 2015;84:12–25.CAS
PubMed
Google Scholar
25.Boddy L, Wood J, Redman E, Hynes J, Fricker MD. Fungal network responses to grazing. Fungal Genet Biol. 2010;47:522–30.PubMed
Google Scholar
26.Rotheray TD, Jones TH, Fricker MD, Boddy L. Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecol. 2008;1:124–32.
Google Scholar
27.Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD. Biological solutions to transport network design. Proc Biol Sci/R Soc. 2007;274:2307–15.
Google Scholar
28.Fricker MD, Akita D, Heaton LLM, Jones N, Obara B, Nakagaki T. Automated analysis of Physarumnetwork structure and dynamics. J Phys D: Appl Phys. 2017;50:254005.
Google Scholar
29.Lee SH, Fricker MD, Porter MA. Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits. J Complex Netw. 2017;5:145–59.
Google Scholar
30.Obara B, Grau V, Fricker MD. A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics. 2012;28:2374–81.CAS
PubMed
Google Scholar
31.Bebber DP, Tlalka M, Hynes J, Darrah PR, Ashford A, Watkinson SC et al. Fungi and the environment. Cambridge: Cambridge University Press; 2007. p. 1−21.32.Fricker MD, Lee JA, Bebber DP, Tlalka M, Hynes J, Darrah PR, et al. Imaging complex nutrient dynamics in mycelial networks. J. Microsc. 2008;231:317–31.CAS
PubMed
Google Scholar
33.Vidal-Diez de Ulzurrun G, Huang T-Y, Chang C-W, Lin H-C, Hsueh Y-P. Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Comp Biol. 2019;15:e1007428.CAS
Google Scholar
34.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Growth-induced mass flows in fungal networks. Proc R Soc B: Biol Sci. 2010;277:3265–74.
Google Scholar
35.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E. 2012;86:021905.
Google Scholar
36.Fricker MD, Boddy L, Nakagaki T, Bebber DP (2009). Adaptive biological networks. In: Gross T, Sayama H, editors. Adaptive networks: theory, models, and applications. Berlin: Springer; 2009. p. 51−70.37.Boddy L, Jones TH. Mycelial responses in heterogeneous environments: parallels with macroorganisms. Fungi Environ. 2007;25:112–58.
Google Scholar
38.Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001.CAS
PubMed
PubMed Central
Google Scholar
39.Crowther TW, Jones TH, Boddy L. Interactions between saprotrophic basidiomycete mycelia and mycophagous soil fauna. Mycology. 2012;3:77–86.
Google Scholar
40.Tordoff GM, Boddy L, Jones TH. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina, and Resinicium bicolor. Mycol Res. 2006;110:335–45.PubMed
Google Scholar
41.Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, et al. Analysis of fungal networks. Fungal Biol Rev. 2012;26:12–29.
Google Scholar
42.Barthelemy M. Morphogenesis of spatial networks. Cham, Switzerland: Springer International Publishing; 2018.43.Fricker MD, Bebber D, Boddy L. Chapter 1 Mycelial networks: structure and dynamics. In: Boddy L, Frankland JC, van West P, editors. British mycological society symposia series. London, UK, Academic Press; 2008. p. 3−18.44.Fricker M, Boddy L, Bebber D. Biology of the fungal cell. Berlin Heidelberg: Springer Verlag; 2007. p. 309−30.45.Fricker MD, Lee JA, Boddy L, Bebber DP. The Interplay between structure and function in fungal networks. Topologica 2008;1:004.46.Moore D, Robson GD, Trinci AP. 21st century guidebook to fungi. Cambridge, UK: Cambridge University Press; 2011.47.Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Movement Ecol. 2019;7:36.
Google Scholar
48.Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.CAS
Google Scholar
49.Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods. 2015;12:233–5.CAS
PubMed
Google Scholar
50.Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336:1157–60.CAS
PubMed
Google Scholar
51.Andrade-Linares DR, Veresoglou SD, Rillig MC. Temperature priming and memory in soil filamentous fungi. Fungal Ecol. 2016;21:10–15.
Google Scholar
52.A’Bear AD, Boddy L, Hefin Jones T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biol. 2012;18:1823–32.
Google Scholar
53.Boddy L, Wells JM, Culshaw C, Donnelly DP. Fractal analysis in studies of mycelium in soil. Geoderma. 1999;88:301–28.
Google Scholar
54.Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun. 2019;10:984.PubMed
PubMed Central
Google Scholar
55.Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol. 2021;229:631–48.PubMed
Google Scholar
56.Wickham H, Bryan J. Read Excel Files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.57.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ, Complex Syst. 2006;1695:1–9.
Google Scholar
58.R Development Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing; 2017.59.Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community ecology package. 2012. https://CRAN.R-project.org/package=vegan.60.A’Bear AD, Jones TH, Boddy L. Size matters: What have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem. 2014;78:274–83.
Google Scholar
61.Trinci APJ. A kinetic study of the growth of Aspergillus nidulans and other fungi. Microbiology. 1969;57:11–24.CAS
Google Scholar
62.Morin-Sardin S, Nodet P, Coton E, Jany J-L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev. 2017;31:12–32.
Google Scholar
63.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704.CAS
PubMed
Google Scholar
64.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy, and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94:2101–37.PubMed
PubMed Central
Google Scholar
65.Domsch K, Gams W, Anderson T-H. Compendium of soil fungi. 2nd ed. Eching: IHW-Verlag; 2007.66.Thomma BP. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol. 2003;4:225–36.CAS
PubMed
Google Scholar
67.Bacon C, Yates I. Endophytic root colonization by fusarium species: histology, plant interactions, and toxicity. In: Schulz BE, Boyle CC, Sieber T, editors. Microbial root endophytes. Berlin: Springer; 2006. p. 133−52.68.Nguyen TA, Le S, Lee M, Fan J-S, Yang D, Yan J, et al. Fungal wound healing through instantaneous protoplasmic gelation. Curr Biol. 2021;31:271–82. e275CAS
PubMed
Google Scholar
69.Scheu S, Simmerling F. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin, and mixed diets. Oecologia. 2004;139:347–53.PubMed
Google Scholar
70.Rayner ADM, Boddy L. Fungal decomposition of wood. Its biology and ecology. Chichester, Sussex: John Wiley & Sons Ltd.; 1988.71.Connolly JH, Shortle WC, Jellison J. Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Botany. 1999;77:179–87.CAS
Google Scholar
72.A’Bear AD, Jones TH, Boddy L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014;10:34–43.
Google Scholar
73.Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.PubMed
Google Scholar
74.Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579. More