Soil δ13C and δ15N baselines clarify biogeographic heterogeneity in isotopic discrimination of European badgers (Meles meles)
1.Kelly, J. F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool. 78(1), 1–27 (2000).Article
Google Scholar
2.Barnes, C., Sweeting, C. J., Jennings, S., Barry, J. & TandPolunin, N. V. Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Funct. Ecol. 21(2), 356–362. https://doi.org/10.1111/j.1365-2435.2006.01224.x (2007).Article
Google Scholar
3.Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216(4550), 1131–1132. https://doi.org/10.1126/science.216.4550.1131 (1982).CAS
Article
PubMed
ADS
Google Scholar
4.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).CAS
Article
Google Scholar
5.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506. https://doi.org/10.1016/0016-7037(78)90199-0 (1978).CAS
Article
ADS
Google Scholar
6.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351. https://doi.org/10.1016/0016-7037(81)90244-1 (1981).CAS
Article
ADS
Google Scholar
7.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article
Google Scholar
8.McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2), 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).CAS
Article
Google Scholar
9.Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ 13 C analysis of diet. Oecologia 57(1–2), 32–37. https://doi.org/10.1007/BF00379558 (1983).CAS
Article
PubMed
ADS
Google Scholar
10.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106(1–2), 131–148. https://doi.org/10.1016/j.earscirev.2011.02.001 (2011).CAS
Article
ADS
Google Scholar
11.West, J. B. et al. (eds) Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (Springer, 2009).
Google Scholar
12.Cheeseman, A. W. & Cernusak, L. A. Isoscapes: A new dimension in community ecology. Tree Physiol. 36(12), 1456–1459. https://doi.org/10.1093/treephys/tpw099 (2016).Article
Google Scholar
13.Hellmann, C., Rascher, K. G., Oldeland, J. & Werner, C. Isoscapes resolve species-specific spatial patterns in plant–plant interactions in an invaded Mediterranean dune ecosystem. Tree Physiol. 36(12), 1460–1470. https://doi.org/10.1093/treephys/tpw075 (2016).CAS
Article
PubMed
Google Scholar
14.Chiocchini, F., Portarena, S., Ciolfi, M., Brugnoli, E. & Lauteri, M. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils. Food Chem. 202, 291–301. https://doi.org/10.1016/j.foodchem.2016.01.146 (2016).CAS
Article
PubMed
Google Scholar
15.Newton, J. An insect isoscape of UK and Ireland. Rapid Commu. Mass Spectrom. 1, e9126 (2021).
Google Scholar
16.Veen, T. et al. Identifying the African wintering grounds of hybrid flycatchers using a multi–isotope (δ 2 H, δ 13 C, δ 15 N) assignment approach. PLoS ONE 9(5), e98075 (2014).Article
ADS
Google Scholar
17.Schneider, K. et al. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biol. Biochem. 36(11), 1769–1774. https://doi.org/10.1016/j.soilbio.2004.04.033 (2004).CAS
Article
Google Scholar
18.Menichetti, L. et al. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: Results from five long-term bare fallow experiments. Oecologia 177(3), 811–821. https://doi.org/10.1007/s00442-014-3114-4 (2015).Article
PubMed
ADS
Google Scholar
19.Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002GB001903 (2003).Article
Google Scholar
20.Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396(1–2), 1–26. https://doi.org/10.1007/s11104-015-2542-1 (2015).CAS
Article
Google Scholar
21.Ben-David, M. & Flaherty, E. A. Stable isotopes in mammalian research: A beginner’s guide. J. Mammal. 93(2), 312–328. https://doi.org/10.1644/11-MAMM-S-166.1 (2012).Article
Google Scholar
22.del Rio, C. M. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93(2), 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).Article
Google Scholar
23.Clementz, M. T. New insight from old bones: Stable isotope analysis of fossil mammals. J. Mammal. 93(2), 368–380. https://doi.org/10.1644/11-MAMM-S-179.1 (2012).Article
Google Scholar
24.Inger, R. et al. Temporal and intrapopulation variation in prey choice of wintering geese determined by stable isotope analysis. J. Anim. Ecol. 75(5), 1190–1200. https://doi.org/10.1111/j.1365-2656.2006.01142.x (2006).Article
PubMed
Google Scholar
25.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article
PubMed
Google Scholar
26.Jackson, M. C. et al. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE https://doi.org/10.1371/journal.pone.0031757 (2012).Article
PubMed
PubMed Central
Google Scholar
27.Semmens, B. X. et al. Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013). Mar. Ecol. Prog. Ser. 490, 285–289. https://doi.org/10.3354/meps10535 (2013).Article
ADS
Google Scholar
28.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE https://doi.org/10.2307/1310735 (1988).Article
Google Scholar
29.Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92(10), 823–835. https://doi.org/10.1139/cjz-2014-0127 (2010).Article
Google Scholar
30.Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-00378-3 (2017).CAS
Article
Google Scholar
31.Allen, A. et al. Genetic evidence further elucidates the history and extent of badger introductions from Great Britain into Ireland. R. Soc. Open Sci. 7(4), 200–288. https://doi.org/10.1098/rsos.200288 (2020).CAS
Article
Google Scholar
32.Davies, J. M., Lachno, D. R. & Roper, T. J. The anal gland secretion of the European badger (Meles meles) and its role in social communication. J. Zool. 216(3), 455–463. https://doi.org/10.1111/j.1469-7998.1988.tb02441.x (1988).CAS
Article
Google Scholar
33.Lüps, P., Roper, T. J. & Stocker, G. Stomach contents of badgers (Meles meles L.) in central Switzerland. Mammalia 51(4), 559–570. https://doi.org/10.1515/mamm.1987.51.4.559 (1987).Article
Google Scholar
34.Roper, T. J. The European badger Meles meles: Food specialist or generalist?. J. Zool. 234(3), 437–452. https://doi.org/10.1111/j.1469-7998.1994.tb04858.x (1994).Article
Google Scholar
35.Roper, T. J. Badger Meles meles setts–architecture, internal environment and function. Mamm. Rev. 22(1), 43–53. https://doi.org/10.1111/j.1365-2907.1992.tb00118.x (1992).Article
Google Scholar
36.Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549. https://doi.org/10.1111/j.1469-7998.1999.tb01015.x (1999).Article
Google Scholar
37.Robertson, A., McDonald, R. A., Delahay, R. J., Kelly, S. D. & Bearhop, S. Individual foraging specialisation in a social mammal: The European badger (Meles meles). Oecologia 176(2), 409–421. https://doi.org/10.1007/s00442-014-3019-2 (2014).Article
PubMed
ADS
Google Scholar
38.Haussmann, N. S. Soil movement by burrowing mammals: A review comparing excavation size and rate to body mass of excavators. Prog. Phys. Geogr. 41(1), 29–45. https://doi.org/10.1177/0309133316662569 (2017).Article
Google Scholar
39.Cabana, G. & Rasmussen, J. B. Comparison of aquatic food chains using nitrogen isotopes. Proc. Acad. Natl. Sci. 93(20), 10844–10847. https://doi.org/10.1073/pnas.93.20.10844 (1996).CAS
Article
ADS
Google Scholar
40.Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136(2), 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).Article
PubMed
ADS
Google Scholar
41.Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5(1), 1–11. https://doi.org/10.1038/srep13062 (2015).CAS
Article
Google Scholar
42.Britain, G. The strategy for achieving officially bovine tuberculosis free status for England. Department for Environment, Food & Rural Affairs. https://www.gov.uk/government/publications/a-strategy-for-achieving-officially-bovine-tuberculosis-free-status-for-england. (2014).43.Ireland, G. Spending Review 2019 Animal Health: TB Eradication. Economics and Planning Division, Department of Agriculture, Food and the Marine. http://budget.gov.ie/Budgets/2020/Documents/Budget/Animal%20Health%20-%20TB%20Eradication.pdf. (2019).44.Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J. Zool. 184(1), 1–19. https://doi.org/10.1111/j.1469-7998.1978.tb03262.x (1978).Article
Google Scholar
45.Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—Conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildl. Conserv. Farmland 2, 65–95 (2015).
Google Scholar
46.McDonald, J. L., Robertson, A. & Silk, M. J. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112. https://doi.org/10.1111/1365-2656.12743 (2018).Article
PubMed
Google Scholar
47.Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728. https://doi.org/10.1111/j.1469-7998.1997.tb05821.x (1997).Article
Google Scholar
48.Desktop, E. A. Release 10 437–438 (Environmental Systems Research Institute, 2011).
Google Scholar
49.Kostka, B.I., Landscape ecology, diet composition and energetics of the Eurasian badger (Meles meles). Unpublished PhD thesis, Queen’s University Belfast. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579755. (2012).50.Scheppers, T. L. et al. Estimating social group size of Eurasian badgers Meles meles by genotyping remotely plucked single hairs. Wildl. Biol. 13(2), 195–207. https://doi.org/10.2981/0909-6396(2007)13[195:ESGSOE]2.0.CO;2 (2007).Article
Google Scholar
51.Geological Survey Ireland. Tellus Geochemical Survey: Shallow Topsoil Data from the Border and West of Ireland. Department of the Environment, Climate and Communications. https://secure.dccae.gov.ie/GSI_DOWNLOAD/Geochemistry/Reports/Tellus_A_geochemistry_data_report_2020_v1.0.pdf. Accessed 7Jun 2021.52.Smyth, D. Methods used in the Tellus Geochemical Mapping of Northern Ireland. http://nora.nerc.ac.uk/id/eprint/14008. (2007).53.Murray, R, McCann, T. P. & Cooper, A. A land classification and landscape ecological survey of Northern Ireland. Report, University of Ulster, Coleraine (1992).54.Stewart, P. D. & Macdonald, D. W. Age, sex, and condition as predictors of moult and the efficacy of a novel fur-clip technique for individual marking of the European badger (Meles meles). J. Zool. 241(3), 543–550. https://doi.org/10.1111/j.1469-7998.1997.tb04846.x (1997).Article
Google Scholar
55.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021)56.Met Office. UK Daily Temperature Data, Part of the Met Office Integrated Data Archive System (MIDAS). NCAS British Atmospheric Data Centre, (2006). Accessed 2 Sep 2019.57.Mardia, K. V., Kent, J. T. & Bibby, J. M. Multivariate Analysis (Academic Press Inc, 1979).MATH
Google Scholar
58.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Book
Google Scholar
59.Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A. & Legg, T. State of the UK climate 2017. Int. J. Climatol. 38, 1–35. https://doi.org/10.1139/z99-165 (2018).Article
Google Scholar
60.Kassambara, A. & Mundt, F., Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses, 76. https://cran.microsoft.com/snapshot/2016-11-30/web/packages/factoextra/factoextra.pdf. (2017).61.Funck, J., Bataille, C., Rasic, J. & Wooller, M. A bio-available strontium isoscape for eastern Beringia: A tool for tracking landscape use of Pleistocene megafauna. J. Quat. Sci. 36(1), 76–90. https://doi.org/10.1002/jqs.3262 (2021).Article
Google Scholar
62.Reddin, C. J., Bothwell, J. H., O’Connor, N. E. & Harrod, C. The effects of spatial scale and isoscape on consumer isotopic niche width. Funct. Ecol. 32(4), 904–915. https://doi.org/10.1111/1365-2435.13026 (2018).Article
Google Scholar
63.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87(3), 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).Article
PubMed
Google Scholar
64.Fabrizio, M. et al. Habitat suitability vs landscape connectivity determining roadkill risk at a regional scale: A case study on European badger (Meles meles). Eur. J. Wildl. Res. 65(1), 7. https://doi.org/10.1007/s10344-018-1241-7 (2019).Article
Google Scholar
65.Rosalino, L. M. et al. Climate and landscape changes as driving forces for future range shift in southern populations of the European badger. Sci. Rep. 9(1), 1–15. https://doi.org/10.1038/s41598-019-39713-1 (2019).CAS
Article
Google Scholar
66.Potts, J. R., Fagan, W. F. & Mourão, G. Deciding when to intrude on a neighbour: Quantifying behavioural mechanisms for temporary territory expansion. Thyroid Res. 12(3), 307–318. https://doi.org/10.1007/s12080-018-0396-x (2019).Article
Google Scholar
67.Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European Badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45(10), 823–837. https://doi.org/10.1007/s10886-019-01113-0 (2019).CAS
Article
PubMed
Google Scholar
68.Kurek, P. Topsoil mixing or fertilization? Forest flora changes in the vicinity of badgers’ (Meles meles L.) setts and latrines. Plant Soil 437(1–2), 327–340. https://doi.org/10.1007/s11104-019-03984-4 (2019).CAS
Article
Google Scholar
69.Abduriyim, S. et al. Variation in pancreatic amylase gene copy number among Eurasian badgers (Carnivora, Mustelidae, Meles) and its relationship to diet. J. Zool. 308(1), 28–36. https://doi.org/10.1111/jzo.12649 (2019).Article
Google Scholar
70.Balestrieri, A., Remonti, L., Saino, N. & Raubenheimer, D. The ‘omnivorous badger dilemma’: Towards an integration of nutrition with the dietary niche in wild mammals. Mamm. Rev. 49(4), 324–339. https://doi.org/10.1111/mam.12164 (2019).Article
Google Scholar
71.Noonan, M. J. et al. Climate and the individual: Inter-annual variation in the autumnal activity of the European badger (Meles meles). PLoS ONE https://doi.org/10.1371/journal.pone.0083156 (2014).Article
PubMed
PubMed Central
Google Scholar
72.Tsunoda, M., Newman, C., Buesching, C. D., Macdonald, D. W. & Kaneko, Y. Badger setts provide thermal refugia, buffering changeable surface weather conditions. J. Therm. Biol. 74, 226–233. https://doi.org/10.1016/j.jtherbio.2018.04.005 (2018).Article
PubMed
Google Scholar More