More stories

  • in

    Utilizing DeepSqueak for automatic detection and classification of mammalian vocalizations: a case study on primate vocalizations

    1.Priyadarshani, N., Marsland, S. & Castro, I. Automated birdsong recognition in complex acoustic environments: A review. J. Avian Biol. 49, e01447. https://doi.org/10.1111/jav.01447 (2018).Article 

    Google Scholar 
    2.Barker, D. J. & Johnson, A. M. Automated acoustic analysis of 50-kHz ultrasonic vocalizations using template matching and contour analysis. J. Acoust. Soc. Am. 141, EL281–EL286. https://doi.org/10.1121/1.4977990 (2017).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    3.Oswald, J. N., Rankin, S., Barlow, J. & Lammers, M. O. A tool for real-time acoustic species identification of delphinid whistles. J. Acoust. Soc. Am. 122, 587–595. https://doi.org/10.1121/1.2743157 (2007).Article 
    PubMed 
    ADS 

    Google Scholar 
    4.Van Segbroeck, M., Knoll, A. T., Levitt, P. & Narayanan, S. MUPET—Mouse Ultrasonic Profile ExTraction: A signal processing tool for rapid and unsupervised analysis of ultrasonic vocalizations. Neuron 94, 465-485.e465. https://doi.org/10.1016/j.neuron.2017.04.005 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Binder, M. S., Hernandez-Zegada, C. J., Potter, C. T., Nolan, S. O. & Lugo, J. N. A comparison of the Avisoft (5.2) and Ultravox (2.0) recording systems: Implications for early-life communication and vocalization research. J. Neurosci. Methods 309, 6–12. https://doi.org/10.1016/j.jneumeth.2018.08.015 (2018).Article 
    PubMed 

    Google Scholar 
    6.Mcloughlin, M. P., Stewart, R. & McElligott, A. G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface 16, 20190225. https://doi.org/10.1098/rsif.2019.0225 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Castellote, M. & Fossa, F. Measuring acoustic activity as a method to evaluate welfare in captive beluga whales (Delphinapterus leucas). Aquat. Mamm. 32, 325–333. https://doi.org/10.1578/AM.32.3.2006.325 (2006).Article 

    Google Scholar 
    8.Clapham, W. M., Fedders, J. M., Beeman, K. & Neel, J. P. S. Acoustic monitoring system to quantify ingestive behavior of free-grazing cattle. Comput. Electron. Agric. 76, 96–104. https://doi.org/10.1016/j.compag.2011.01.009 (2011).Article 

    Google Scholar 
    9.Schön, P. C. et al. Altered vocalization rate during the estrous cycle in dairy cattle. J. Dairy Sci. 90, 202–206. https://doi.org/10.3168/jds.S0022-0302(07)72621-8 (2007).Article 
    PubMed 

    Google Scholar 
    10.Cascão, I., Lammers, M. O., Prieto, R., Santos, R. S. & Silva, M. A. Temporal patterns in acoustic presence and foraging activity of oceanic dolphins at seamounts in the Azores. Sci. Rep. 10, 3610. https://doi.org/10.1038/s41598-020-60441-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    11.Manteuffel, G. R. & Schön, P. C. STREMODO, an innovative technique for continuous stress assessment of pigs in housing and transport. Arch. Tierzucht. 47, 173–181 (2004).
    Google Scholar 
    12.Chedad, A. et al. Recognition system for pig cough based on probabilistic neural networks. J. Agric. Eng. Res. 79, 449–457. https://doi.org/10.1006/jaer.2001.0719 (2001).Article 

    Google Scholar 
    13.Bardeli, R. et al. Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn. Lett. 31, 1524–1534. https://doi.org/10.1016/j.patrec.2009.09.014 (2010).Article 
    ADS 

    Google Scholar 
    14.Jones, K. E. et al. In Biodiversity Monitoring and Conservation: Bridging the Gap Between Global Commitment and Local Action (eds Collen, B., et al.) Ch. 10, (Taylor & Francis, 2013).15.Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309. https://doi.org/10.1111/brv.12001 (2013).Article 
    PubMed 

    Google Scholar 
    16.Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48. https://doi.org/10.1111/2041-210x.12291 (2015).Article 

    Google Scholar 
    17.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301. https://doi.org/10.1111/2041-210x.12730 (2017).Article 

    Google Scholar 
    18.Haver, S. M. et al. Comparing the underwater soundscapes of four U.S. national parks and marine sanctuaries. Front. Mar. Sci. 6, 500. https://doi.org/10.3389/fmars.2019.00500 (2019).Article 

    Google Scholar 
    19.Beason, R. D., Riesch, R. & Koricheva, J. AURITA: An affordable, autonomous recording device for acoustic monitoring of audible and ultrasonic frequencies. Bioacoustics 28, 381–396. https://doi.org/10.1080/09524622.2018.1463293 (2019).Article 

    Google Scholar 
    20.Beeman, K. H., Hopp, S. L., Owren, M. J. & Evans, C. S. E. Animal Acoustic Communication: Sound Analysis and Research Methods (Springer, 1998).
    Google Scholar 
    21.Janik, V. M. Pitfalls in the categorization of behaviour: A comparison of dolphin whistle classification methods. Anim. Behav. 57, 133–143. https://doi.org/10.1006/anbe.1998.0923 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547. https://doi.org/10.1121/1.4808713 (2009).Article 
    ADS 

    Google Scholar 
    23.Kaleidoscope Pro Analysis Software [Software]. (Wildlife Acoustics, Inc. https://www.wildlifeacoustics.com (2020).24.Ruff, Z. J., Lesmeister, D. B., Duchac, L. S., Padmaraju, B. K. & Sullivan, C. M. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 6, 79–92. https://doi.org/10.1002/rse2.125 (2020).Article 

    Google Scholar 
    25.Coffey, K. R., Marx, R. G. & Neumaier, J. F. DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 44, 859–868. https://doi.org/10.1038/s41386-018-0303-6 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Oikarinen, T. et al. Deep convolutional network for animal sound classification and source attribution using dual audio recordings. J. Acoust. Soc. Am. 145, 654–662. https://doi.org/10.1121/1.5087827 (2019).Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Pozzi, L., Gamba, M. & Giacoma, C. The use of artificial neural networks to classify primate vocalizations: A pilot study on black lemurs. Am. J. Primatol. 72, 337–348. https://doi.org/10.1002/ajp.20786 (2010).Article 
    PubMed 

    Google Scholar 
    28.Gamba, M. et al. Comparative analysis of the vocal repertoire of Eulemur: A dynamic time warping approach. Int. J. Primatol. 36, 894–910. https://doi.org/10.1007/s10764-015-9861-1 (2015).Article 

    Google Scholar 
    29.Pozzi, L., Gamba, M. & Giacoma, C. In Leaping Ahead: Advances in Prosimian Biology. (ed Masters, J.) Ch. 34, 305–313 (Springer, 2013).30.Heinicke, S. et al. Assessing the performance of a semi-automated acoustic monitoring system for primates. Methods Ecol. Evol. 6, 753–763. https://doi.org/10.1111/2041-210x.12384 (2015).Article 

    Google Scholar 
    31.Turesson, H. K., Ribeiro, S., Pereira, D. R., Papa, J. P. & de Albuquerque, V. H. C. Machine learning algorithms for automatic classification of marmoset vocalizations. PLoS One 11, e0163041. https://doi.org/10.1371/journal.pone.0163041 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bergler, C. et al. ORCA-SPOT: An automatic killer whale sound detection toolkit using deep learning. Sci. Rep. 9, 10997. https://doi.org/10.1038/s41598-019-47335-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Shiu, Y. et al. Deep neural networks for automated detection of marine mammal species. Sci. Rep. 10, 607. https://doi.org/10.1038/s41598-020-57549-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    34.Zeppelzauer, M., Hensman, S. & Stoeger, A. S. Towards an automated acoustic detection system for free-ranging elephants. Bioacoustics 24, 13–29. https://doi.org/10.1080/09524622.2014.906321 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Venter, P. J. & Hanekom, J. J. Automatic detection of African elephant (Loxodonta africana) infrasonic vocalisations from recordings. Biosyst. Eng. 106, 286–294. https://doi.org/10.1016/j.biosystemseng.2010.04.001 (2010).Article 

    Google Scholar 
    36.Mac Aodha, O. et al. Bat detective-Deep learning tools for bat acoustic signal detection. PLoS Comput. Biol. 14, e1005995. https://doi.org/10.1371/journal.pcbi.1005995 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Henriquez, A. et al. An automatic acoustic bat identification system based on the audible spectrum. Expert Syst. Appl. 41, 5451–5465. https://doi.org/10.1016/j.eswa.2014.02.021 (2014).Article 

    Google Scholar 
    38.Hoy, M. B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Med. Ref. Serv. Q. 37, 81–88. https://doi.org/10.1080/02763869.2018.1404391 (2018).Article 
    PubMed 

    Google Scholar 
    39.López, G., Quesada, L. & Guerrero, L. A. In Advances in Human Factors and Systems Interaction. AHFE 2017. Advances in Intelligent Systems and Computing Vol. 592 (ed. Nunes, I.) (Springer, 2018).40.Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 (2017).Article 
    PubMed 

    Google Scholar 
    41.Barker, D. J., Herrera, C. & West, M. O. Automated detection of 50-kHz ultrasonic vocalizations using template matching in XBAT. J. Neurosci. Methods 236, 68–75. https://doi.org/10.1016/j.jneumeth.2014.08.007 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Zimmermann, E. In Leaping Ahead: Advances in Prosimian Biology (eds. Masters, J., Gamba, M., & Génin, F.) Ch. 32, 287–295 (Springer, 2013).43.Schopf, C., Schmidt, S. & Zimmermann, E. Moderate evidence for a Lombard effect in a phylogenetically basal primate. PeerJ 4, e2328. https://doi.org/10.7717/peerj.2328 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Niaussat, M. M. & Petter, J. J. Etude de la sensibilité auditive d’un lémurien malgache: Microcebus murinus (J.-F. Miller, 1777). Mammalia 44, 553–558. https://doi.org/10.1515/mamm.1980.44.4.553 (1980).Article 

    Google Scholar 
    45.Hasiniaina, A. F. et al. Evolutionary significance of the variation in acoustic communication of a cryptic nocturnal primate radiation (Microcebus spp.). Ecol. Evol. 10, 3784–3797. https://doi.org/10.1002/ece3.6177 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Braune, P., Schmidt, S. & Zimmermann, E. Acoustic divergence in the communication of cryptic species of nocturnal primates (Microcebus ssp.). BMC Biol. 6, 19. https://doi.org/10.1186/1741-7007-6-19 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Leliveld, L. M. C., Scheumann, M. & Zimmermann, E. Acoustic correlates of individuality in the vocal repertoire of a nocturnal primate (Microcebus murinus). J. Acoust. Soc. Am. 129, 2278–2288. https://doi.org/10.1121/1.3559680 (2011).Article 
    PubMed 
    ADS 

    Google Scholar 
    48.Scheumann, M., Zimmermann, E. & Deichsel, G. Context-specific calls signal infants’ needs in a strepsirrhine primate, the gray mouse lemur (Microcebus murinus). Dev. Psychobiol. 49, 708–718. https://doi.org/10.1002/dev.20234 (2007).Article 
    PubMed 

    Google Scholar 
    49.Zimmermann, E. In Handbook of Mammalian Vocalization: An Integrative Neuroscience Approach. (ed. Brudzynski, S. M.) 215–225 (Academic Press, 2010).50.Zimmermann, E. In Handbook of Ultrasonic Vocalization: A Window into the Emotional Brain vol. 25 (ed. Brudzynski, S. M.) 521–533 (Academic Press, 2018).51.Buesching, C. D., Heistermann, M., Hodges, J. K. & Zimmermann, E. Multimodal oestrus advertisement in a small nocturnal prosimian, Microcebus murinus. Folia Primatol. 69(1), 295–308. https://doi.org/10.1159/000052718 (1998).Article 

    Google Scholar 
    52.Scheumann, M., Linn, S. & Zimmermann, E. Vocal greeting during mother–infant reunions in a nocturnal primate, the gray mouse lemur (Microcebus murinus). Sci. Rep. 7, 10321. https://doi.org/10.1038/s41598-017-10417-8 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    53.Braune, P., Schmidt, S. & Zimmermann, E. Spacing and group coordination in a nocturnal primate, the golden brown mouse lemur (Microcebus ravelobensis): The role of olfactory and acoustic signals. Behav. Ecol. Sociobiol. 58, 587–596. https://doi.org/10.1007/s00265-005-0944-4 (2005).Article 

    Google Scholar 
    54.Kessler, S. E., Scheumann, M., Nash, L. T. & Zimmermann, E. Paternal kin recognition in the high frequency/ultrasonic range in a solitary foraging mammal. BMC Ecol. 12, 26. https://doi.org/10.1186/1472-6785-12-26 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Zimmermann, E. & Hafen, T. G. Colony specificity in a social call of mouse lemurs (Microcebus ssp.). Am. J. Primatol. 54, 129–141. https://doi.org/10.1002/ajp.1018 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Hafen, T., Neveu, H., Rumpler, Y., Wilden, I. & Zimmermann, E. Acoustically dimorphic advertisement calls separate morphologically and genetically homogenous populations of the grey mouse lemur (Microcebus murinus). Folia Primatol. 69, 342–356. https://doi.org/10.1159/000052723 (1998).Article 

    Google Scholar 
    57.Zimmermann, E. & Lerch, C. The complex acoustic design of an advertisement call in male mouse lemurs (Microcebus murinus, Prosimii, Primates) and sources of its variation. Ethology 93, 211–224. https://doi.org/10.1111/j.1439-0310.1993.tb00990.x (1993).Article 

    Google Scholar 
    58.Zimmermann, E. Castration affects the emission of an ultrasonic vocalization in a nocturnal primate, the grey mouse lemur (Microcebus murinus). Physiol. Behav. 60, 693–697. https://doi.org/10.1016/0031-9384(96)81674-X (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Keenan, S., Lemasson, A. & Zuberbühler, K. Graded or discrete? A quantitative analysis of Campbell’s monkey alarm calls. Anim. Behav. 85, 109–118. https://doi.org/10.1016/j.anbehav.2012.10.014 (2013).Article 

    Google Scholar 
    60.Tallet, C. et al. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS One 8, e71841. https://doi.org/10.1371/journal.pone.0071841 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    61.Hasiniaina, A. F. et al. High frequency/ultrasonic communication in a critically endangered nocturnal primate, Claire’s mouse lemur (Microcebus mamiratra). Am. J. Primatol. https://doi.org/10.1002/ajp.22866 (2018).Article 
    PubMed 

    Google Scholar 
    62.Boersma, P. Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001).
    Google Scholar 
    63.Owren, M. J. GSU Praat Tools: Scripts for modifying and analyzing sounds using Praat acoustics software. Behav. Res. Methods 40, 822–829. https://doi.org/10.3758/Brm.40.3.822 (2008).Article 
    PubMed 

    Google Scholar 
    64.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).65.Fränti, P. & Sieranoja, S. How much can k-means be improved by using better initialization and repeats?. Pattern Recogn. 93, 95–112. https://doi.org/10.1016/j.patcog.2019.04.014 (2019).Article 
    ADS 

    Google Scholar 
    66.Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach. (O’Reilly Media, Inc., 2017).67.Field, A. Discovering Statistics Using IBM SPSS Statistics (Englisch). 3rd ed. (Sage Publication, 2009).68.Clink, D. J., Tasirin, J. S. & Klinck, H. Vocal individuality and rhythm in male and female duet contributions of a nonhuman primate. Curr. Zool. 66, 173–186. https://doi.org/10.1093/cz/zoz035 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Romero-Mujalli, D., Tárano, Z., Cobarrubia, S. & Barreto, G. Caracterización de silbidos de Tursiops truncatus (Cetacea: Delphinidae) y su asociación con el comportamiento en superficie. Revista Argentina de Ciencias del Comportamiento 6, 15–29. https://doi.org/10.32348/1852.4206.v6.n1.6362 (2014).Article 

    Google Scholar 
    70.Papale, E., Gamba, M., Perez-Gil, M., Martin, V. M. & Giacoma, C. Dolphins adjust species-specific frequency parameters to compensate for increasing background noise. PLoS One 10, e0121711. https://doi.org/10.1371/journal.pone.0121711 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.García, N. C., Barreira, A. S., Kopuchian, C. & Tubaro, P. L. Intraspecific and interspecific vocal variation in three Neotropical cardinalids (Passeriformes: Fringillidae) and its relationship with body mass. Emu 114, 129–136. https://doi.org/10.1071/MU13010 (2014).Article 

    Google Scholar 
    72.Lostanlen, V., Salamon, J., Farnsworth, A., Kelling, S. & Bello, J. P. Robust sound event detection in bioacoustic sensor networks. PLoS One 14, e0214168. https://doi.org/10.1371/journal.pone.0214168 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Albin, A. PraatR: An architecture for controlling the phonetics software “Praat” with the R programming language. J. Acoust. Soc. Am. 135, 2198. https://doi.org/10.1121/1.4877175 (2014).Article 
    ADS 

    Google Scholar  More

  • in

    Correction to: Unexpected myriad of co-occurring viral strains and species in one of the most abundant and microdiverse viruses on Earth

    AffiliationsDepartment of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, SpainFrancisco Martinez-Hernandez, Inmaculada Garcia-Heredia & Manuel Martinez-GarciaDepartment of Biology, University of North Carolina at Greensboro, Greensboro, NC, USAAwa Diop & Louis-Marie BobayAuthorsFrancisco Martinez-HernandezAwa DiopInmaculada Garcia-HerediaLouis-Marie BobayManuel Martinez-GarciaCorresponding authorCorrespondence to
    Manuel Martinez-Garcia. More

  • in

    Allergenicity to worldwide invasive grass Cortaderia selloana as environmental risk to public health

    SettingThis study was conducted in Cantabria, a region of the North coast of Spain.Design and patientsA cross-sectional study with prospective data collection was performed at the Allergy Services of the Marqués de Valdecilla University Hospital in Santander and the Sierrallana Hospital in Torrelavega (Cantabria, Spain).98 patients diagnosed of rhinoconjunctivitis, asthma or both, caused by sensitization to grass pollen, were included in a sequential way from October 2015 to March 2016.Written informed consent was obtained from all patients before entering the study. The study met the principles of the 1975 Helsinki declaration and was reviewed and approved by the local Research Committee of Cantabria (CEIC reference number 2015.207).A serum sample was obtained from each patient and stored at – 20 °C until used.Pollen extract preparationAll methods were performed in accordance with the relevant guidelines and regulations.Cortaderia selloana (CS) pollen was obtained commercially (Iber-Polen, Jaén, Spain) and then extracted at a 1:10 (w/v) ratio in PBS pH 6.5 with magnetic stirring for 90 min. at 5 °C. The soluble fraction was separated by centrifugation. After dialysis against PBS, the extract was filtered through 0, 22 µm filters. Protein content was determined by Bradford method (BioRad, Hercules, CA, USA). Two different batches were obtained (07 and 09) with consistent results.Part of the extract was adjusted to 0.25 mg protein/ml and formulated in PBS with 50% glycerol, phenol 0.51% (SPT buffer). The remaining extract was stored in aliquots at − 20 °C.Phleum pratense (Phl) pollen extract was made as described for CS. The origin of the pollen in this case was ALK Source Materials, Post Falls, Idaho, USA.The protein profiles of the CS or the Phl extracts were determined by polyacrylamide electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE) under reducing conditions (Invitrogen-Novex tricine gels 10–20% acrylamide, Fisher Scientific, SL, Madrid Spain).Skin prick testPatients were skin prick tested (SPT) with a commercial extract (ALK-Abelló, S.A. Madrid, Spain) of Phl and the CS extract. Histamine dihydrochloride solution (10 mg/ml) and SPT buffer were used as positive and negative control (no reaction), respectively.The SPT wheal areas were measured by planimetry. A cut-off area of 7 mm2 (about 3 mm average diameter) or higher was considered a positive test result (histamine).The CS extract was tested in 10 control subjects, that were not sensitised to grass pollen, with negative result (no reaction).IgE assaysSerum samples were tested for IgE antibodies against Phleum pratense (Phl) pollen extract and the allergens Phl p 1, Phl p 5, Phl p 7 (polcalcin) and Phl p 12 (profilin) (ImmunoCap FEIA, Thermo Fisher Scientific, Barcelona, Spain).In addition, specific IgE against Phl and CS pollen extracts was determined by RAST (Radio Allergo Sorbent Test). Paper discs were activated with CNBr and sensitised with the pollen extracts as described by Ceska et al.21. Phl and CS discs were incubated overnight with 50 µL of the patient’s serum and after washing (0.1% Tween-20 in PBS), with approximately 100,000 cpm of the iodine 125–labeled anti-IgE mAb HE-2 for 3 h as described22. Finally, the discs were washed, and their radioactivity was determined in a gamma counter. sIgE values in kilounits per litre were determined by interpolating in a standard curve built up with Lolium perenne—sensitised discs and 4 dilutions of a serum pool from patients with grass allergy, which was previously calibrated in arbitrary kU/l.A cut-off value of 0.35 kU/l was considered positive for both ImmunoCap and RAST. There was a very significant correlation between the sIgE against Phl determined by both methods (r Spearman = 0.8874, p  More

  • in

    Forecasting water quality parameters using artificial neural network for irrigation purposes

    The result of this study is presented in three categories, namely; the descriptive statistics, the water quality test result and the ANN model and the model evaluation performance, respectively.The descriptive statistics result is presented in Tables 1, 2, 3, 4. This describes the basic features of the data in this study. They provide simple summaries about the sample and the measures such as the mean, median, maximum, minimum and standard deviation, respectively.Table 1 Descriptive statistics of the analyzed water quality at point 1.Full size tableTable 2 Descriptive statistics of the analyzed water quality at point 2.Full size tableTable 3 Descriptive statistics of the analyzed water quality at point 3.Full size tableTable 4 Descriptive statistics of the analyzed water quality at point 4.Full size tableThe descriptive statistics in Tables 1,2, 3, 4 shows that the mean values of the data set ranges from 6.29 to 6.34, 1956.21 to 2458.19, 3.35 to 7.39 and 39.13 to 51.06 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The median values of the data set ranges from 6.31 to 6.39, 2010.00 to 2439.50, 3.14 to 4.24 and 39.13 to 51.06 for pH, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The Maximum values data set ranges from 6.48 to 6.64, 2286.00 to 2742.00, 2.21 to 5.82, and 64.50 to 88.45 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The minimum values dataset ranges from 6.00 to 6.09, 1367.00 to 2199.00, 2.01 to 3.18, and 21.21 to 40.24 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The standard deviation values ranges from 0.08 to 0.16, 114.47 to 213.04, 0.23 to 31.49 and 14.06 to 8.16 for Ph, TDS (mg/l), EC (dS/m) and Na (mg/l), respectively. The low values of standard deviation recorded in this study shows that data set were very close to the mean of the dataset.The water quality analysis test result indicates the level of concentrations of the TDS (mg/l), EC (dS/m) and Na (mg/l) in the Ele river in Nnewi, Anambra State Nigeria. The FAO standard for irrigation water quality for TDS, EC and Na are 0–2000, 0–3 and 0–40, respectively. The water quality results show that the pH values which ranges from 6.01 to 6.87 were within the FAO standard in all the points for both rainy and dry seasons, whereas the TDS (mg/l), EC (dS/m) and Na (mg/l) parametric values range from 2001 to 2506, 3.01 to 5.76, and 40.42 to 73.45 respectively, were above the FAO standard from point 1 to point 3 and falls within the FAO standard at point 4 with values ranging from 1003 to 1994, 2.01 to 2.78 and 31.24 to 39.44, respectively. However, during the dry season, the TDS, EC, and Na values range from 2002 to 2742, 3.04 to 5.82 and 40.14 to 88.45 respectively, were all above the FAO standard. Anthropogenic pollution emitted into water bodies has recently been identified as a significant source of pollutants that need immediate action in order to avoid serious environmental effects11.The results equally revealed that the concentrations decrease along the sampling points going downstream. It is noteworthy that irrigation water with a pH outside the normal range may cause a nutritional imbalance or may contain a toxic ion which is harmful to crops19. The high concentrations of TDS as observed in this study are likely to increase the salinity of the river water, change the taste of the water, and as well decrease the dissolved oxygen level of the surface water making it difficult for the survival of plants and aquatic organisms7.Moreover, these anions and cations which increase the electric conductivity in water affect irrigation adversely since salts settle at crop root zones making it difficult for infiltration, absorption of moisture and nutrients necessary for crop production.The ANN model and forecast for the water quality parameters are shown from Figs. 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19. Considering the water quality permissible range, River quality modeling and forecast shows different variations seasonally such that the pollution level during dry season was higher than the rainy season.Figure 4(A and B): pH model and forecast graph at point 1.Full size imageFigure 5(A and B): TDS model and forecast graph at point 1.Full size imageFigure 6(A and B): EC model and forecast graph at point 1.Full size imageFigure 7(A and B): Na model and Forecast graph at point 1.Full size imageFigure 8(A and B): Ph model and Forecast graph at point 2.Full size imageFigure 9(A and B): TDS model and Forecast graph at point 2.Full size imageFigure 10(A and B): EC model and Forecast graph at point 2.Full size imageFigure 11(A and B): Na model and Forecast graph at point 2.Full size imageFigure 12(A and B): Ph model and Forecast graph at point 3.Full size imageFigure 13(A and B): TDS model and Forecast graph at point 3.Full size imageFigure 14(A and B): EC model and Forecast graph at point 3.Full size imageFigure 15(A and B): Na model and Forecast graph at point 3.Full size imageFigure 16(A and B): pH model and Forecast graph at point 4.Full size imageFigure 17(A and B): TDS model and Forecast graph at point.Full size imageFigure 18(A and B): EC model and Forecast graph at point 4.Full size imageFigure 19(A and B): Na model and Forecast graph at point 4.Full size imageGenerally, the artificial neural network model the actual data set very well. At various sampling points, the developed ANN models descriptively show insignificant values in deviation for the actual data set. There were continues variations in the developed models and forecasts over time. The feed-forward Multilayer Neural Network (FFMNN) Model Performance Evaluation Results are shown in Table 5. The model performance evaluation was carried out based on the developed ANN model training, Testing and forecast, respectively. The model performance evaluation was carried out using the coefficient of multiple determination R2 and Root Mean Squared Error (RMSE).Table 5 Statistical measurement of the trained, test and forecast model.Full size tableThe R2 values were generally observed to have varied in the second decimal place for the training, testing and forecast model, respectively.The training performance evaluation shows that R2 values ranges from 0.981 to 0.990, 0.981 to 0.988, 0.981 to 0.989 and 0981 to 0.989, for pH, TDS, EC, and Na, respectively. The training results shows that the pH model have the best performance followed by EC, and Na.Also, the testing performance shows that the R2 value ranges from 0.952 to 0.967, 0.953 to 0.970, 0.951 to 0.967 and 0.953 to 0.968, for pH, TDS, EC and Na, respectively. However, the testing performance evaluation shows that TDS had the best performance. The forecast performance evaluation shows that the R2 values ranges from 0.945 to 0.968, 0.946 to 0.968, 0.944 to 0.967 and 0.949 to 0.965 for pH, TDS, EC and Na respectively. It was however discovered that the TDS made best forecast followed by the pH. The water quality forecast performance was further evaluated using the Root Mean Squared Error (RMSE) which ranges from 0.022 to 0.088, 0.012 to 0.087, 0.015 to 0.085and 0.014 to 0.084 for pH, TDS, EC and Na, respectively. The ANN model performed very well as their coefficient of multiple determinations R2 were very close 1, which is in agreement with the study of Awu et al. (2017) and Abrahart et al., (2005). On comparing the performance of the training model to the testing model and forecast, it shows that the training set performed better than the testing set followed by the forecast as its coefficient of multiple determinations, R2, was much closer to 1. More

  • in

    Short-term changes related to autotetraploidy in essential oil composition of Eucalyptus benthamii Maiden & Cambage and its applications in different bioassays

    1.Ladiges, P. Y., Udovicic, F. & Nelson, G. Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J. Biogeogr. 30, 989–998 (2003).
    Google Scholar 
    2.Goodger, J. Q. D., Senaratne, S. L., Nicolle, D. & Di Woodrow, I. E. ff erential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae ). Tree Physiol. 00, 1–10 (2018).
    Google Scholar 
    3.Doran, J. C. & Brophy, J. J. Importance of the tropical red gums. New For. 4, 157–178 (1990).
    Google Scholar 
    4.Doughty, R. W. The Eucalyptus. A Natural and Commercial History of the Gum Tree. (The John Hopkins University Press, 2000).5.Silva, P. H. M. da, Brito, J. O. & Junior, F. G. da S. Potential of eleven Eucalyptus species for the production of essential oils. Sci. Agric. 63, 85–89 (2006).6.Coppen, J. J. W. Eucalyptus: the genus Eucalyptus. (Taylor & Francis, 2002).7.Barbosa, L. C. A., Filomeno, C. A. & Teixeira, R. R. Chemical variability and biological activities of Eucalyptus spp. Essential oils. Molecules 21, 1–33 (2016).
    Google Scholar 
    8.Lucia, A., Licastro, S., Zerba, E., Gonzalez, P. & Masuh, H. Bioresource technology sensitivity of Aedes aegypti adults (Diptera : Culicidae ) to the vapors of Eucalyptus essential oils. Bioresour. Technol. 100, 6083–6087 (2009).CAS 
    PubMed 

    Google Scholar 
    9.Batista-Pereira, L. G. et al. Electrophysiological Responses of Atta sexdens rubropilosa workers. Z. Naturforsch. 61c, 749–755 (2006).
    Google Scholar 
    10.Döll-Boscardin, P. M. et al. In vitro cytotoxic potential of essential oils of Eucalyptus benthamii and its related terpenes on tumor cell lines. Evidence-based Complement. Altern. Med. 2012, 1–8 (2012).
    Google Scholar 
    11.Lin, H. et al. Production of polyploids from cultured shoot tips of Eucalyptus globulus Labill by treatment with colchicine. Afr. J. Biotechnol. 9, 2252–2255 (2010).CAS 

    Google Scholar 
    12.Silva, A. J., Carvalho, C. R. & Clarindo, W. R. Chromosome set doubling and ploidy stability in synthetic auto- and allotetraploid of Eucalyptus: from in vitro condition to the field. Plant Cell. Tissue Organ Cult. 138, 387–394 (2019).
    Google Scholar 
    13.Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66, 212–229 (2011).CAS 
    PubMed 

    Google Scholar 
    14.Bhuvaneswari, G., Thirugnanasampandan, R. & Gogulramnath, M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants 26, 271–279 (2020).CAS 
    PubMed 

    Google Scholar 
    15.Lavania, U. C. et al. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 71, 539–549 (2012).CAS 
    PubMed 

    Google Scholar 
    16.Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002).
    Google Scholar 
    17.Marfil, C. F., Duarte, P. F. & Masuelli, R. W. Phenotypic and epigenetic variation induced in newly synthesized allopolyploids and autopolyploids of potato. Sci. Hortic. (Amsterdam) 234, 101–109 (2018).
    Google Scholar 
    18.Fernando, S. C., Goodger, J. Q. D., Chew, B. L., Cohen, T. J. & Woodrow, I. E. Induction and characterisation of tetraploidy in Eucalyptus polybractea R.T. Baker. Ind. Crops Prod. 140, 111633 (2019).CAS 

    Google Scholar 
    19.da Silva Souza, T. et al. Polyploidy as a strategy to improve the industrial quality of eucalypt wood. Wood Sci. Technol. 55, 181 (2020).
    Google Scholar 
    20.Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).CAS 
    PubMed 

    Google Scholar 
    21.Naidoo, S. et al. Uncovering the defence responses of eucalyptus to pests and pathogens in the genomics age. Tree Physiol. 34, 931–943 (2014).CAS 
    PubMed 

    Google Scholar 
    22.Rasmussen, J. J. et al. Pesticide impacts on predator-prey interactions across two levels of organisation. Aquat. Toxicol. 140–141, 340–345 (2013).PubMed 

    Google Scholar 
    23.Estep, A. S., Sanscrainte, N. D., Waits, C. M., Louton, J. E. & Becnel, J. J. Resistance status and resistance mechanisms in a strain of Aedes aegypti (Diptera: Culicidae) from Puerto Rico. J. Med. Entomol. 54, 1643–1648 (2017).CAS 
    PubMed 

    Google Scholar 
    24.Braga, I. A., Lima, J. B. P., Da Silva Soares, S. & Valle, D. Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe, and Alagoas. Brazil. Mem. Inst. Oswaldo Cruz 99, 199–203 (2004).PubMed 

    Google Scholar 
    25.Mendes, L. A. et al. Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Ind. Crops Prod. 108, 684–689 (2017).CAS 

    Google Scholar 
    26.Dutra, Q. P. et al. Phytocytotoxicity of volatile constituents of essential oils from Sparattanthelium Mart. species (Hernandiaceae). Sci. Rep. 10, 12213 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Mendes, L. A. et al. Spring alterations in the chromatographic profile of leaf essential oils of improved guava genotypes in Brazil. Sci. Hortic. (Amsterdam) 238, 295–302 (2018).CAS 

    Google Scholar 
    28.Filomeno, C. A. et al. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind. Crop. Prod. 109, 374–383 (2017).CAS 

    Google Scholar 
    29.de Souza, S. et al. Essential oil of Psidium guajava : Influence of genotypes and environment. Sci. Hortic. (Amsterdam) 216, 38–44 (2017).
    Google Scholar 
    30.Adams, R. P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry (Allured Publishing Corporation, 2007).31.Fox, J. et al. Package ‘effects’: Effect displays for linear, generalised linear, and other models. Version 4(2–0), 1–35 (2020).
    Google Scholar 
    32.R Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2020).33.Aragão, F. B. et al. Phytotoxic and cytotoxic effects of eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopath. J. 35, 259–272 (2015).
    Google Scholar 
    34.de Assis Alves, T. et al. Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind. Crops Prod. 114, 59–67 (2018).35.Silva, T. C. R., Abreu, I. S. & Carvalho, C. R. Improved and reproducible flow cytometry methodology for nuclei isolation from single root meristem. J. Bot. 2010, 1–7 (2010).
    Google Scholar 
    36.Otto, F. DAPI staining of fixed cells for high-resolution flow cytometly of nuclear DNA. Methods Cell Biol. 33, 105–110 (1990).CAS 
    PubMed 

    Google Scholar 
    37.Noori, S. A. S., Norouzi, M., Karimzadeh, G., Shirkool, K. & Niazian, M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. 130, 543–551 (2017).
    Google Scholar 
    38.Iannicelli, J. et al. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. (Amsterdam). 260, 108854 (2020).39.Dhooghe, E., Laere, K. V., Eeckhaut, T., Leus, L. & Huylenbroeck, J. V. Mitotic chromosome doubling of plant tissues in vitro. 104, 359–373 (2011).
    Google Scholar 
    40.Aharoni, A., Jongsma, M. A. & Bouwmeester, H. J. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602 (2005).CAS 
    PubMed 

    Google Scholar 
    41.Bouvier, F. et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. 24, 241–252 (2000).CAS 

    Google Scholar 
    42.Külheim, C. et al. The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol. 191, 1041–1053 (2011).PubMed 

    Google Scholar 
    43.Mossi, A. J. et al. Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). 91, 273–277 (2011).44.Henery, M. L., Moran, G. F., Wallis, I. R., Foley, W. J. & Henery, M. L. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. 176, 82–95 (2007).45.Kainer, D., Lanfear, R., Foley, W. J. & Külheim, C. Genomic approaches to selection in outcrossing perennials : focus on essential oil crops. Theor. Appl. Genet. 128, 2351–2365 (2015).PubMed 

    Google Scholar 
    46.Lucia, A., Licastro, S., Zerba, E. & Masuh, H. Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. 129, 107–114 (2008).47.Hantao, L. W. et al. Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta 116, 1079–1084 (2013).CAS 
    PubMed 

    Google Scholar 
    48.Batish, D. R., Singh, H. P., Setia, N., Kaur, S. & Kohli, R. K. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. – Sect. Biosci. 61, 465–471 (2006).CAS 

    Google Scholar 
    49.Arminante, F. et al. Allelopathic activity of essential oils from mediterranean labiatae. Acta Hort. 723, 347–352 (2006).CAS 

    Google Scholar 
    50.Batish, D. R. et al. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 27, 171–177 (2007).CAS 

    Google Scholar 
    51.Vasconcelos, L. C. et al. Phytochemical analysis and effect of the essential oil of Psidium L . species on the initial development and mitotic activity of plants. Env. Sci. Poll. Res. 26, 26216–26228 (2019).52.Prates, H. T., Paes, J. M. V., Pires, N. de M., Filho, I. A. P. & Magalhães, P. C. Efeito do extrato aquoso de leucena na germinação e no desenvolvimento do milho. Pesq. Agropec. Bras. 1, 909–914 (2000).53.Fernandes, T. C. C., Mazzeo, D. E. C. & Marin-morales, M. A. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to tri-X-uralin herbicide. Pest. Bioch. Phys. 88, 252–259 (2007).CAS 

    Google Scholar 
    54.Andrade, L. F., Davide, L. C. & Gedraite, L. S. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol. Environ. Saf. 73, 626–631 (2010).CAS 
    PubMed 

    Google Scholar  More

  • in

    Antigenic escape selects for the evolution of higher pathogen transmission and virulence

    Oligomorphic dynamics (OMD) of antigenic escapeWe considered a model of the antigenic escape of a pathogen from host herd immunity on a one-dimensional antigenicity space (x). We tracked the changes in the density (S(t,x)) of hosts that are susceptible to antigenicity variant x of pathogen at time t, and the density (I(t,x)) of hosts that are currently infected and infectious with antigenicity variant x of pathogen at time t:$$frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{ – infty }^infty beta sigma left( {x – y} right)Ileft( {t,y} right)dy,$$
    (5)
    $$frac{{partial Ileft( {t,x} right)}}{{partial t}} = beta Sleft( {t,x} right)Ileft( {t,x} right) – left( {gamma + alpha } right)Ileft( {t,x} right) + Dfrac{{partial ^2Ileft( {t,x} right)}}{{partial x^2}},$$
    (6)
    where β, α and γ are the transmission rate, virulence (additional mortality due to infection) and recovery rate of pathogens, which are independent of antigenicity. The function σ(x−y) denotes the degree of cross immunity: a host infected by pathogen variant y acquires perfect cross immunity with probability σ(x−y), but fails to acquire any cross immunity with probability 1−σ(x−y) (this is called polarized cross immunity by Gog and Grenfell25). The degree σ(x−y) of cross immunity is assumed to be a decreasing function of the distance |x−y| between variants x and y. When a new variant with antigenicity x = 0 is introduced at time t = 0, the initial host population is assumed to be susceptible to any antigenicity variant of pathogen: S(0,x) = 1. In equation (6), (D = mu sigma _mathrm{m}^2/2) is one half of the mutation variance for the change in antigenicity, representing random mutation in the continuous antigenic space.Susceptibility profile moulded by the primary outbreakWe first analysed the dynamics of the primary outbreak of a pathogen and derived the resulting susceptibility profile, which can be viewed as the fitness landscape subsequently experienced by the pathogen. For simplicity, we assumed that mutation can be ignored during the first epidemic initiated with antigenicity strain x = 0. The density ({{{S}}}_0left( {{{t}}} right) = {{{S}}}({{{t}}},0)) of hosts that are susceptible to the currently prevailing antigenicity variant x = 0, as well as the density ({{{I}}}_0left( {{{t}}} right) = {{{I}}}({{{t}}},0)) of hosts that are currently infected by the focal variant change with time as$$frac{{dS_0}}{{dt}} = – S_0beta I_0,$$
    (7)
    $$frac{{dI_0}}{{dt}} = S_0beta I_0 – left( {gamma + alpha } right)I_0,$$
    (8)
    $$frac{{dR_0}}{{dt}} = gamma I_0,$$
    (9)
    with (S_0left( 0 right) = 1), (I_0left( 0 right) approx 0) and (R_0left( 0 right) = 0). The final size of the primary outbreak,$$psi _0 = R_0left( infty right) = 1 – S_0left( infty right) = exp left[ { – beta mathop {int}limits_0^infty {I_0} left( t right)dt} right],$$is determined as the unique positive root of$$begin{array}{*{20}{c}} {psi _0 = 1 – e^{ – rho _0psi _0},} end{array}$$
    (10)
    where (rho _0 = beta /left( {gamma + alpha } right) > 1) is the basic reproductive number6. Associated with this epidemiological change, the susceptibility profile (S_xleft( t right) = S(t,x)) against antigenicity x ((x ne 0)) other than the currently circulating variant (x = 0) changes by cross immunity as$$begin{array}{*{20}{c}} {frac{{dS_x}}{{dt}} = – S_xbeta sigma left( x right)I_0,quad left( {x ne 0} right).} end{array}$$
    (11)
    Integrating both sides of equation (11) from t = 0 to (t = infty), we see that the susceptibility profile (sleft( x right) = S_x(infty )) after the primary outbreak at x = 0 is$$begin{array}{*{20}{c}} {sleft( x right) = exp left[ { – beta sigma left( x right)mathop {int}limits_0^infty {I_0} left( t right)dt} right] = left( {1 – psi _0} right)^{sigma left( x right)} = e^{ – rho _0sigma left( x right)psi _0},} end{array}$$
    (12)
    where the last equality follows from equation (10). The susceptibility can be effectively reduced by cross immunity when the primary variant has a large impact (that is, when the fraction of hosts remaining uninfected, 1−ψ0, is small) and when the degree of cross immunity is strong (that is, when σ(x) is close to 1). With a variant antigenically very close to the primary variant (x ≈ 0), the cross immunity is very strong ((sigma left( x right) approx 1)) so that the susceptibility against variant x is nearly maximally reduced: (s(x) approx 1 – psi _0). With a variant antigenically distant from the primary variant, σ(x) becomes substantially smaller than 1, making the host more susceptible to the variant. For example, if the cross immunity is halved ((sigma left( x right) = 0.5)) from its maximum value 1, then the susceptibility to that variant is as large as (left( {1 – psi _0} right)^{0.5}). If a variant is antigenically very distant from the primary variant, then (sigma left( x right) approx 0), and the host is nearly fully susceptible to the variant ((sleft( x right) approx 1)).Threshold antigenic distance for escaping immunity raised by primary outbreakOf particular interest is the threshold antigenicity distance xc that allows for antigenic escape, that is, any antigenicity variant more distant than this threshold from the primary variant (x > xc) can increase when introduced after the primary outbreak. Such a threshold is determined from$$frac{{beta sleft( {x_c} right)}}{{gamma + alpha }} = rho _0sleft( {x_c} right) = 1$$or$$begin{array}{*{20}{c}} {sleft( {x_c} right) = left( {1 – psi _0} right)^{sigma left( {x_c} right)} = e^{ – rho _0sigma left( {x_c} right)psi _0} = frac{1}{{rho _0}},} end{array}$$
    (13)
    where we used equation (12). With a specific choice of cross-immunity profile,$$begin{array}{*{20}{c}} {sigma left( x right) = exp left[ { – frac{{x^2}}{{2omega ^2}}} right],} end{array}$$
    (14)
    the threshold antigenicity beyond which the virus can increase in the susceptibility profile s(x) after the primary outbreak is obtained, by substituting equation (14) into equation (13)$$exp left[ { – rho _0psi _0exp left[ { – frac{{x_c^2}}{{2omega ^2}}} right]} right] = frac{1}{{rho _0}},$$and taking the logarithm of both sides twice:$$begin{array}{*{20}{c}} {x_c = omega sqrt {2log frac{{rho _0psi _0}}{{log rho _0}}} .} end{array}$$
    (15)
    OMDIntegrating both sides of equation (6) over the whole space, we obtained the dynamics for the total density of infected hosts, ({{{bar{ I}}}}left( {{{t}}} right) = {int}_{ – infty }^infty {{{{I}}}left( {{{{t}}},{{{x}}}} right){{{dx}}}}):$$begin{array}{*{20}{c}} {frac{{dbar I}}{{dt}} = left[ {beta mathop {smallint }limits_{ – infty }^infty Sleft( {t,x} right)phi left( {t,x} right)dx – left( {gamma + alpha } right)} right]bar Ileft( t right) = left[ {beta bar Sleft( t right) – left( {gamma + alpha } right)} right]bar Ileft( t right)} end{array},$$
    (16)
    where$$phi left( {t,x} right) = Ileft( {t,x} right)/bar Ileft( t right)$$is the relative frequency of antigenicity variant x in the pathogen population circulating at time t, and$$begin{array}{*{20}{c}} {bar Sleft( t right) = mathop {int}limits_{ – infty }^infty S left( {t,x} right)phi left( {t,x} right)dx} end{array}$$
    (17)
    is the mean susceptibility experienced by currently circulating pathogens. The dynamics for the relative frequency (phi left( {t,x} right)) of pathogen antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S(t)} right}phi left( {t,x} right) + Dfrac{{partial ^2phi }}{{partial x^2}}.} end{array}$$
    (18)
    As in Sasaki and Dieckmann27, we decomposed the frequency distribution to the sum of several morph distributions (oligomorphic decomposition) as$$begin{array}{*{20}{c}} {phi left( {t,x} right) = mathop {sum }limits_i p_iphi _ileft( {t,x} right)} end{array},$$
    (19)
    where pi(t) is the frequency of morph i and (phi _i(t,x)) is the within-morph distribution of antigenicity. By definition, and ({int}_{ – infty }^infty {phi _i} (t,x)dx = 1). Let$$begin{array}{*{20}{c}} {bar x_i = mathop {int}limits_{ – infty }^infty {xphi _ileft( {t,x} right)dx} } end{array}$$
    (20)
    be the mean antigenicity of a morph and$$begin{array}{*{20}{c}} {V_i = mathop {smallint }limits_{ – infty }^infty left( {x – bar x_i} right)^2phi _ileft( {t,x} right)dx = Oleft( {{it{epsilon }}^2} right)} end{array}$$
    (21)
    where O is order be the within-morph variance of each morph, which is assumed to be small, of the order of ({it{epsilon }}^2). We denoted the mean susceptibility of host population for viral morph (i) by (bar S_i = {int}_{ – infty }^infty {Sleft( {t,x} right)phi _i(t,x)dx}). As shown in Sasaki and Dieckmann27, the dynamics for viral morph frequency is expressed as$$begin{array}{*{20}{c}} {frac{{dp_i}}{{dt}} = beta left( {bar S_i – bar S} right)p_i + Oleft( {it{epsilon }} right),} end{array}$$
    (22)
    while the dynamics for the within-morph distribution of antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi _i}}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S_i} right}phi _ileft( {t,x} right) + Dfrac{{partial ^2phi _i}}{{partial x^2}}.} end{array}$$
    (23)
    From this, the dynamics for the mean antigenicity of a morph,$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = V_ibeta left. {frac{{partial S}}{{partial x}}} right|_{x = bar x_i} + Oleft( {{it{epsilon }}^3} right)} end{array}$$
    (24)
    and the dynamics for the within-morph variance of a morph$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = frac{1}{2}beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}left{ {Eleft[ {xi _i^4} right] – V_i^2} right} + 2D + Oleft( {{it{epsilon }}^5} right)} end{array}$$
    (25)
    are derived, where (xi _i = x – bar x_i) and (Eleft[ {xi _i^4} right] = {int}_{ – infty }^infty {left( {x – bar x_i} right)^4phi _ileft( {t,x} right)dx}) are the fourth central moments of antigenicity around the morph mean. Assuming that the within-morph distribution is normal (Gaussian closure), (Eleft[ {xi _i^4} right] = 3V_i^2), and hence equation (25) becomes$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}V_i^2 + 2D + Oleft( {{it{epsilon }}^5} right).} end{array}$$
    (26)
    Second outbreak predicted by OMDEquations (22), (24) and (26) are general, but they rely on a full knowledge of the dynamics of the susceptibility profile S(t,x). To make further progress, we used an additional approximation by substituting equation (13), the susceptibility profile, over viral antigenicity space after the primary outbreak at x = 0 and before the onset of the second outbreak at a distant position. We kept track of two morphs at positions x0(t) and x1(t), where the first morph is that caused by the primary outbreak at x = 0, and the second morph is that emerged in the range x > xc beyond the threshold antigenicity xc defined in equation (13) (and equation (15) for a specific form of σ(x)) as the source of the next outbreak.As (sleft( x right) = left( {1 – psi _0} right)^{sigma (x)} = exp [sigma left( x right)log (1 – psi _0)]), we have$$frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right]sleft( {bar x_i} right),$$and$$frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}^2sigma }}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right)log left( {1 – psi _0} right) + left{ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right}^2} right]sleft( {bar x_i} right).$$Therefore, the frequency, mean antigenicity and variance of antigenicity of an emerging morph (i = 1) change respectively as$$begin{array}{*{20}{l}} {frac{{dp_1}}{{dt}} = beta left[ {sleft( {bar x_1} right) – sleft( {bar x_0} right)} right]p_1left( {1 – p_1} right),} hfill \ {frac{{dbar x_1}}{{dt}} = V_1beta frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_1} right),} hfill \ {frac{{dV_1}}{{dt}} = beta frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_1} right)V_1^2 + 2D}. hfill end{array}$$
    (27)
    The predicted change in the mean antigenicity was plotted by integrating equation (27). As initial condition, we chose the time when a seed of second peak in the range x > xc first appeared, and then computed the mean trait as$$begin{array}{*{20}{c}} {bar xleft( t right) = x_0left( {1 – p_1left( t right)} right) + bar x_1p_1left( t right).} end{array}$$
    (28)
    In the case of Fig. 2, where β = 2, γ + α = 0.6, D = 0.001 and ω = 2, the final size of epidemic for the primary outbreak, defined as equation (7), was ψ = 0.959, and the critical antigenic distance for the increase of pathogen variant obtained from equation (26) was xc = 2.795. The initial conditions for the oligomorphic dynamics (equation 27) for the second morph were then (p_1left( {t_0} right) = 1.6 times 10^{ – 8}), (bar x_1left( {t_0} right) = 3.239), (V_1left( {t_0} right) = 0.2675) at t0 = 41. In Fig. 2, the predicted trajectory for the mean antigenicity (equation 28) is plotted as a red curve, together with the mean antigenicity change observed in simulation (blue curve).Accuracy of predicting the antigenicity with OMD and the timing of the second outbreakHere we describe how we defined the initial conditions for oligomorphic dynamics, that is, the frequency, the mean antigenicity and the variance in antigenicity of the morph that caused the primary outbreak and the morph that may cause the second outbreak. We then show how the accuracy in prediction of the second outbreak depends on the timing of the prediction.We divided the antigenicity space into two at x = xc, above which the pathogen can increase under the given susceptibility profile after the primary outbreak, but below which the pathogen cannot increase. We then took the relative frequencies of pathogens above xc and below xc, and the conditional mean and variance in these separated regions to set the initial frequencies, means and variances of the morphs at time t0 when we started integrating the oligomorphic dynamics to predict the second outbreak:$$begin{array}{*{20}{c}} {begin{array}{*{20}{l}} {p_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill & {p_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill \ {bar x_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {bar x_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}},} hfill \ {V_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} left( {x – bar x_0left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {V_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty left( {x – bar x_1left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}.} hfill end{array}} end{array}$$
    (29)
    We then compared the trajectory for mean antigenicity change observed in simulation (blue curve in Fig. 2) and the predicted trajectory (red curve in Fig. 2) for mean antigenicity (equation 28) by integrating oligomorphic dynamics (equation 27) with the initial condition (equation 29) at time t = t0. Extended Data Fig. 2 shows how the accuracy of prediction, measured by the Kullback–Leibler divergence between these two trajectories, depends on the timing t0 chosen for the prediction. The second outbreak occurs around t = 54.6, where mean antigenicity jumps from around 0 to around 5. The prediction with OMD is accurate if it is made for t0 > 40. Figure 2 is drawn for t0 = 41 where the second peak is about to emerge (see Extended Data Fig. 2). Even for the latest prediction for t0 = 51 in Extended Data Fig. 2, the morph frequency of the emerging second morph was only 0.3% off, so the prediction is still worthwhile to make.Extended Data Fig. 2 shows that the prediction power is roughly constant (albeit with a wiggle) for (5 < t_0 < 30) (the predicted timings are 10–15% longer than actual timing for (5 < t_0 < 30)), and steadily improved for t0 > 30. When the prediction was made very early (t0 < 5), the deviations were larger.OMD for the joint evolution of antigenicity and virulenceLet s(x) be the susceptibility of the host population against antigenicity x. A specific susceptibility profile is given by equation (12), with cross-immunity function σ(x) and the final size ψ0 of epidemic of the primary outbreak. Note that, as above, the susceptibility profile is, in general, a function of time. The density (I(x,alpha )) of hosts infected by a pathogen of antigenicity x and virulence α changes with time, when rare, as$$begin{array}{*{20}{c}} {frac{{partial Ileft( {x,alpha } right)}}{{partial t}} = beta sleft( x right)Ileft( {x,alpha } right) - left( {gamma + alpha } right)Ileft( {x,alpha } right) + D_xfrac{{partial ^2I}}{{partial x^2}} + D_alpha frac{{partial ^2I}}{{partial alpha ^2}}.} end{array}$$ (30) The change in the frequency (phi left( {x,alpha } right) = Ileft( {x,alpha } right)/{int!!!!!int} I left( {x,alpha } right)dxdalpha) of a pathogen with antigenicity x and virulence α follows$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = left{ {wleft( {x,alpha } right) - bar w} right}phi + D_xfrac{{partial ^2phi }}{{partial x^2}} + D_alpha frac{{partial ^2phi }}{{partial alpha ^2}},} end{array}$$ (31) where$$begin{array}{*{20}{c}} {wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - alpha } end{array}$$ (32) is the fitness of a pathogen with antigenicity x and virulence α and (bar w = {int!!!!!int} w left( {x,alpha } right)dxdalpha) is the mean fitness.We decomposed the joint frequency distribution ϕ(x, α) of the viral quasi-species as (oligomorphic decomposition):$$begin{array}{*{20}{c}} {phi left( {x,alpha } right) = mathop {sum }limits_i phi _ileft( {x,alpha } right)p_i,} end{array}$$ (33) where ϕi(x, α) is the joint frequency distribution of antigenicity x and virulence α in morph i (({int!!!!!int} {phi _idxdalpha = 1})) and pi is the relative frequency of morph i ((mathop {sum}nolimits_i {p_i = 1})). The frequency of morph i then changes as$$begin{array}{l}frac{{dp_i}}{{dt}} = left( {bar w_i - mathop {sum }limits_j bar w_jp_j} right)p_i,\ frac{{partial phi _i}}{{partial t}} = left( {wleft( {x,alpha } right) - bar w_i} right)phi _ileft( {x,alpha } right) + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}},end{array}$$ (34) where (bar w_i = {int!!!!!int} w left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) is the mean fitness of morph i.Assuming that the traits are distributed narrowly around the morph means (bar x_i = {int!!!!!int} x phi _ileft( {x,alpha } right)dxdalpha) and (bar alpha _i = {int!!!!!int} alpha phi _i(x,alpha )dxdalpha), so that (xi _i = x - bar x_i = O({it{epsilon }})) and (zeta _i = alpha - bar alpha _i = O({it{epsilon }})) where ({it{epsilon }}) is a small constant, we expanded the fitness w(x, α) around the means (bar x_i) and (bar alpha _i) of morph i,$$begin{array}{*{20}{l}} {wleft( {x,alpha } right)} hfill & = hfill & {wleft( {bar x_i,bar alpha _i} right) + left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ixi _i^2 + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ixi _izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_izeta _i^2 + Oleft( {{it{epsilon }}^3} right).} hfill end{array}$$Substituting this and$$bar w_i = wleft( {bar x_i,bar alpha _i} right) + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^{xx} + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^{xalpha } + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iV_i^{alpha alpha } + Oleft( {{it{epsilon }}^3} right)$$into equation (34), we obtained$$frac{{dp_i}}{{dt}} = left[ {w_i - mathop {sum }limits_j w_jp_j} right]p_i + Oleft( {it{epsilon }} right),$$ (35) $$begin{array}{*{20}{l}} {frac{{partial phi _i}}{{partial t}}} hfill & = hfill & {left[ {left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {xi _i^2 - V_i^x} right) + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft( {xi _izeta _i - C_i} right)} right.} hfill \ {} hfill & {} hfill & {left. { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {zeta _i^2 - V_i^alpha } right)} right]phi _i + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}} + Oleft( {{it{epsilon }}^3} right),} hfill end{array}$$ (36) where (w_i = wleft( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial x}}} right)_i = frac{{partial w}}{{partial x}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = frac{{partial w}}{{partial alpha }}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = frac{{partial ^2w}}{{partial x^2}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = frac{{partial ^2w}}{{partial xpartial alpha }}left( {bar x_i,bar alpha _i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = frac{{partial ^2w}}{{partial alpha ^2}}left( {bar x_i,bar alpha _i} right)) are fitness and its first and second derivatives evaluated at the mean traits of morph i, and$$begin{array}{l}V_i^x = E_ileft[ {left( {x - bar x_i} right)^2} right],\ C_i = E_ileft[ {left( {x - bar x_i} right)left( {alpha - bar alpha _i} right)} right], \ V_i^alpha = E_ileft[ {left( {alpha - bar alpha _i} right)^2} right]end{array}$$ (37) are within-morph variances and covariance of the traits of morph i. Here (E_ileft[ {fleft( {x,alpha } right)} right] = {int!!!!!int} f left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) denotes taking expectation of a function f with respect to the joint trait distribution (phi _i(x,alpha )) of morph i.Substituting equation (36) into the change in the mean antigenicity of morph i$$frac{{dbar x_i}}{{dt}} = frac{d}{{dt}}{int!!!!!int} x phi _i(x,alpha )dxdalpha = {int!!!!!int} x frac{{partial phi _i}}{{partial t}}dxdalpha = {int!!!!!int} {(bar x_i + xi _i)} frac{{partial phi _i}}{{partial t}}dxi _idzeta _i,$$we obtained$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iV_i^x + left( {frac{{partial w}}{{partial alpha }}} right)_iC_i + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (38) Similarly, the change in the mean virulence of morph i was expressed as$$begin{array}{*{20}{c}} {frac{{dbar alpha _i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iC_i + left( {frac{{partial w}}{{partial alpha }}} right)_iV_i^alpha + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (39) Equations (38) and (39) from the mean trait change was summarized in a matrix form as$$begin{array}{*{20}{c}} {frac{d}{{dt}}left( {begin{array}{*{20}{c}} {bar x_i} \ {bar alpha _i} end{array}} right) = {{{boldsymbol{G}}}}_{{{boldsymbol{i}}}}left( {begin{array}{*{20}{c}} {left( {frac{{partial w}}{{partial x}}} right)_i} \ {left( {frac{{partial w}}{{partial alpha }}} right)_i} end{array}} right) + O({it{epsilon }}^3),} end{array}$$ (40) where$$begin{array}{*{20}{c}} {{{{boldsymbol{G}}}}_{{{boldsymbol{i}}}} = left( {begin{array}{*{20}{c}} {V_i^x} & {C_i} \ {C_i} & {V_i^alpha } end{array}} right)} end{array}$$ (41) is the variance-covariance matrix of the morph i.Substituting equation (36) into the right-hand side of the change in variance of antigenicity of morph i,$$frac{{dV_i^x}}{{dt}} = frac{d}{{dt}}{int!!!!!int} {xi _i^2phi _idxi _idzeta _i} = {int!!!!!int} {xi _i^2frac{{partial phi _i}}{{partial t}}dxi _idzeta _i}$$and those in the change in the other variance and covariance, we obtained$$begin{array}{*{20}{l}} {frac{{dV_i^x}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^4} right) - left( {V_i^x} right)^2} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + 2D_x + O({it{epsilon }}^5),} hfill \ {frac{{dC_i}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - C_i^2} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right] + O({it{epsilon }}^5),} hfill \ {frac{{dV_i^alpha }}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {zeta _i^4} right) - left( {V_i^alpha } right)^2} right] + 2D_alpha + O({it{epsilon }}^5).} hfill end{array}$$ (42) If we assume that antigenicity and virulence within a morph follow a 2D Gaussian distribution for given means, variances and covariance, we should have (E_i(xi _i^4) = 3left( {V_i^x} right)^2,E_i(xi _i^3zeta _i) = 3V_i^xC_i), (E_i(xi _i^2zeta _i^2) = V_i^xV_i^alpha + 2C_i^2), (E_i(xi _izeta _i^3) = 3V_i^alpha C_i) and (E_i(zeta _i^4) = 3left( {V_i^alpha } right)^2), and hence$$frac{{dV_i^x}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {V_i^x} right)^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_i^2 + 2D_x + O({it{epsilon }}^5),$$ (43) $$frac{{dC_i}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft{ {V_i^xV_i^alpha - C_i^2} right} + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_iV_i^alpha + O({it{epsilon }}^5),$$ (44) $$frac{{dV_i^alpha }}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iC_i^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^alpha C_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {V_i^alpha } right)^2 + 2D_alpha + O({it{epsilon }}^5).$$ (45) Equations (43) and (44) were rewritten in a matrix form as$$begin{array}{*{20}{c}} {frac{{dG_i}}{{dt}} = G_iH_iG_i + left( {begin{array}{*{20}{c}} {2D_xV_i^x} & 0 \ 0 & {2D_alpha V_i^alpha } end{array}} right) + O({it{epsilon }}^5),} end{array}$$ (46) where$$begin{array}{*{20}{c}} {H_i = left( {begin{array}{*{20}{c}} {left( {frac{{partial ^2w}}{{partial x^2}}} right)_i} & {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} \ {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} & {left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i} end{array}} right),} end{array}$$ (47) is the Hessian of the fitness function of morph i.In our equation (30) of the joint evolution of antigenicity and virulence of a pathogen after its primary outbreak, the fitness function is given by (w(x,alpha ) = beta (alpha )s(x) - alpha ,) and hence (w_i = beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i), (left( {frac{{partial w}}{{partial x}}} right)_i = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)), where a prime on β(α) and s(x) denotes differentiation by α and x, respectively. Substituting these into the dynamics for morph frequencies (equation 35), for morph means (equations 38 and 39), and for within-morph variance and covariance (equations 43–45), we obtained$$frac{{dp_i}}{{dt}} = left[ {beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i - mathop {sum }limits_j left( {beta left( {bar alpha _j} right)sleft( {bar x_j} right) - bar alpha _j} right)p_j} right]p_i,$$ (48) $$frac{{dbar x_i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^x + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}C_i,$$ (49) $$frac{{dbar alpha _i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)C_i + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}V_i^alpha ,$$ (50) $$frac{{dV_i^x}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)left( {V_i^x} right)^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^xC_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_i^2 + 2D_x,$$ (51) $$frac{{dC_i}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)V_i^xC_i + beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)left{ {V_i^xV_i^alpha - C_i^2} right} + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_iV_i^alpha ,$$ (52) $$frac{{dV_i^alpha }}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)C_i^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^alpha C_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)left( {V_i^alpha } right)^2 + 2D_alpha .$$ (53) Equations (48)–(53) describe the oligomorphic dynamics of the joint evolution of antigenicity and virulence of a pathogen for a given host susceptibility profile s(x) over pathogen antigenicity.Of particular interest is whether antigenicity or virulence evolve faster when they jointly evolve than when they evolve alone. After the primary outbreak at a given antigenicity, for example x = 0, the susceptibility s(x) of the host population increases due to cross immunity as the distance x > 0 from the antigenicity at the primary outbreak increases. Hence, (sprime left( {bar x_i} right) > 0.) Combining this with the positive trade-off between transmission rate and virulence, we see that (left( {partial ^2w/partial xpartial alpha } right)_i = beta prime (bar alpha _i)sprime (bar x_i) > 0), and then from equation (52), we see that the within-morph covariance between antigenicity and virulence becomes positive starting from a zero initial value:$$begin{array}{*{20}{c}} {left. {frac{{dC_i}}{{dt}}} right|_{C_i = 0} = left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xV_i^alpha > 0.} end{array}$$
    (54)
    If all second moments are initially sufficiently small for an emerging morph, a quick look at the linearization of equations (51)–(53) around ((V_i^x,C_i,V_i^alpha ) = (0,0,0)) indicates that both (V_i^x) and (V_i^alpha) become positive due to the random generation of variance by mutation, Dx > 0 and Dα > 0, while the covariance stays close to zero. Then, equation (54) guarantees that the first move of the covariance is from zero to positive, which then guarantees that Ci > 0 for all t. Therefore, the second term in equation (38) is positive until the mean virulence reaches its optimum ((beta prime (alpha )s(x) = 1)). This means that joint evolution with virulence accelerates the evolution of antigenicity. The same is true for virulence evolution: the first term in equation (39) (which denotes the associated change in virulence due to the selection in antigenicity through genetic covariance between them) is positive, indicating that joint evolution with antigenicity accelerates virulence evolution.Numerical exampleFigure 5 shows the oligomorphic dynamics prediction of the emergence of the next variant in antigenicity–virulence coevolution. To make progress numerically, we assumed s(x) to be constant in the following analysis because we are interested in the process between the end of the primary outbreak and the emergence of the next antigenicity–virulence morph. The partial differential equations for the density of host S(t,x) susceptible to the antigenicity variant x at time t, and the density of hosts infected by the pathogen variant with antigenicity x and virulence α are$$begin{array}{l}frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{alpha _{{{{mathrm{min}}}}}}^{alpha _{{{{mathrm{max}}}}}} mathop {smallint }limits_0^{x_{{{{mathrm{max}}}}}} beta left( alpha right)sigma left( {x – y} right)Ileft( {t,y,alpha } right)dydalpha ,\ frac{{partial Ileft( {t,x,alpha } right)}}{{partial t}} = left[ {beta left( alpha right)Sleft( {t,x} right) – left( {gamma + alpha } right)} right]Ileft( {t,x,alpha } right) + left( {D_xfrac{{partial ^2}}{{partial x^2}} + D_alpha frac{{partial ^2}}{{partial alpha ^2}}} right)Ileft( {t,x,alpha } right),end{array}$$
    (55)
    with the boundary conditions (left( {partial S/partial x} right)left( {t,0} right) = left( {partial S/partial x} right)left( {t,x_{{{{mathrm{max}}}}}} right) = 0), (left( {partial I/partial x} right)left( {t,0,alpha } right) = left( {partial I/partial x} right)left( {t,x_{{{{mathrm{max}}}}},0} right) = 0), (left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{min}}}}}} right) = left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{max}}}}}} right) = 0), and the initial conditions (Sleft( {0,x} right) = 1) and (Ileft( {0,x,alpha } right) = {it{epsilon }}delta left( x right)delta left( alpha right)), where (delta ( cdot )) is the delta function and ({it{epsilon }} = 0.01). The trait space is restricted in a rectangular region: (0 < x < x_{{{{mathrm{max}}}}} = 300) and (alpha _{{{{mathrm{min}}}}} = 0.025 < alpha < 10 = alpha _{{{{mathrm{max}}}}}). Oligomorphic dynamics prediction for the joint evolution of antigenicity and virulence was applied for the next outbreak after the outbreak with the mean antigenicity around x = 108 at time t = 102. The susceptibility of the host to antigenicity variant x at t0 = 104.8 after the previous outbreak peaked around time t = 102 came to an end is$$sleft( x right) = Sleft( {t_0,x} right).$$This susceptibility profile remained unchanged until the next outbreak started, and hence the fitness of a pathogen variant with antigenicity x and virulence α is given by$$wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - (gamma + alpha ).$$We bundled the pathogen variants into two morphs at time t0 at the threshold antigenicity xc, above which the net growth rate of the pathogen variant under the given susceptibility profile s(x) and the mean antigenicity become positive:$$wleft( {x_c,bar alpha left( {t_0} right)} right) = beta left( {bar alpha (t_0)} right)sleft( {x_c} right) - left( {gamma + bar alpha left( {t_0} right)} right) = 0.$$The initial frequency and the moments of the two morphs, the variant 0 with (x < x_c) and the variant 1 with (x > x_c) were then calculated respectively from the joint distribution (I(t_0,x,alpha )) in the restricted region (left{ {left( {x,alpha } right);0 < x < x_c,alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}) and that in the restricted region (left{ {left( {x,alpha } right);x_c < x < x_{{{{mathrm{max}}}}},alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}). The frequency p1 of morph 1 (the frequency of morph 0 is given by (p_0 = 1 - p_1)), the mean antigenicity (bar x_i) and mean virulence (bar alpha _i) of morph i, and the variances and covariance, (V_i^x), and (V_i^alpha) Ci of morph i (i = 0,1) follow equations (48)–(53), where the dynamics for the morph frequency (equation 48) is simplified in this two-morph situation as$$frac{{dp_1}}{{dt}} = left[ {beta left( {bar alpha _1} right)sleft( {bar x_1} right) - beta left( {bar alpha _0} right)sleft( {bar x_0} right) - left( {bar alpha _1 - bar alpha _0} right)} right]p_1left( {1 - p_1} right),$$with (p_0left( t right) = 1 - p_1(t)). This is iterated from (t = t_0 = 104.8) to (t_e = 107). The frequency p1 of the new morph, the population mean antigenicity (bar x = p_0bar x_0 + p_1bar x_1), virulence (bar alpha = p_0bar alpha _0 + p_1bar alpha _1), variance in antigenicity (V_x = p_0V_0^x + p_1V_1^x), covariance between antigenicity and virulence (C = p_0C_0 + p_1C_1), and variance in virulence (V_alpha = p_0V_0^alpha + p_1V_1^alpha) are overlayed by red thick curves on the trajectories of moments observed in the full dynamics (equation 55).In Fig. 5a, the dashed vertical line represents the threshold antigenicity xc, above which (R_0 = beta s(x)/(gamma + bar alpha ) > 1) at (t = t_s = 104.8), where oligomorphic dynamics prediction was attempted. Two morphs were then defined according to whether or not the antigenicity exceeded a threshold x = xc: the resident morph (morph 1) is represented as the dense cloud to the left of x = xc and the second morph (morph 2) consisting of all the genotypes to the right of x = xc with their R0 greater than one. The within-morph means and variances were then calculated in each region. The relative total densities of infected hosts in the left and right regions defined the initial frequency of two morphs in OMD. A 2D Gaussian distribution was assumed for within-morph trait distributions to have the closed moment equations as previously explained. Using these as the initial means, variances, covariances of the two morphs at t = ts, the oligomorphic dynamics for 11 variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in antigenicity and virulence and their covariance in morphs 0 and 1) was integrated up to t = te. The results are shown as red curves in Fig. 5c–h, which are compared with the simulation results (blue curves).Fig. 5c–e respectively show the change in total infected density, mean antigenicity and mean virulence. Red curves show the predictions by oligomorphic dynamics from the initial moments of each morph at t = ts to the susceptibility distribution (s(x) = S(t_s,x)), which are compared with the simulation results (blue curves). The OMD-predicted mean antigenicity, for example, is defined as$$bar xleft( t right) = left( {1 – p_1left( t right)} right)bar x_0left( t right) + p_1left( t right)bar x_1left( t right),$$where p1(t) is the frequency of morph 1, (bar x_0) and (bar x_1) are the mean antigenicities of morphs 0 and 1.The red curves in Fig. 5f–h show the OMD-predicted changes in the variance in antigenicity, variance in virulence and covariance between antigenicity and virulence, which are compared with the simulation results (blue curves). The OMD-predicted covariance, for example, is defined as$$begin{array}{rcl}Cleft( t right) & = & left( {1 – p_1(t)} right)C_0left( t right) + p_1left( t right)C_1left( t right) + p_1left( t right)left( {1 – p_1left( t right)} right)\ && left( {bar x_0left( t right) – bar x_1left( t right)} right)left( {bar alpha _0left( t right) – bar alpha _1left( t right)} right),end{array}$$where (C_0(t)) and (C_1(t)) are the antigenicity–virulence covariances in morphs 0 and 1, and (bar alpha _0(t)) and (bar alpha _1(t)) are the mean virulence of morphs 0 and 1.Selection for maximum growth rateWe next show that a pathogen that has the strategy of maximizing growth rate in a fully susceptible population is evolutionarily stable in the presence of antigenic escape.At stationarity, the travelling wave profiles of (hat I(z)) and (hat S(z)) along the moving coordinate, (z = x – vt), that drifts constantly to the right with the speed v are defined as$$begin{array}{l}0 = Dfrac{{d^2hat Ileft( z right)}}{{dz^2}} + vfrac{{dhat Ileft( z right)}}{{dz}} + beta hat Sleft( z right)hat Ileft( z right) – left( {gamma + alpha } right)hat Ileft( z right),\ 0 = vfrac{{dhat Sleft( z right)}}{{dz}} – beta hat Sleft( z right)mathop {smallint }limits_{ – infty }^infty sigma left( {z – xi } right)hat Ileft( xi right)dxi ,end{array}$$
    (56)
    with (hat Ileft( { – infty } right) = hat Ileft( infty right) = 0), (hat Sleft( infty right) = 1).Let j(t,x) be the density of a mutant pathogen variant, with virulence α′ and transmission rate β′, that is introduced in the host population where the resident variant is already established (equation 50). For the initial transient phase in which the density of mutants is sufficiently small, we have an equation for the change in (Jleft( {t,z} right) = j(t,x)):$$begin{array}{*{20}{c}} {frac{partial }{{partial t}}Jleft( {t,z} right) = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime hat Sleft( z right) – left( {gamma + alpha prime } right)} right}Jleft( {t,z} right),} end{array}$$
    (57)
    with the initial condition (Jleft( {0,z} right) = {it{epsilon }}delta (z)), where ({it{epsilon }}) is a small constant and (delta ( cdot )) is Dirac’s function.Consider a system$$begin{array}{*{20}{c}} {frac{{partial w}}{{partial t}} = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime – left( {gamma + alpha prime } right)} right}w,} end{array}$$
    (58)
    with (wleft( {0,z} right) = Jleft( {0,z} right) = {it{epsilon }}delta (z)). Noting that (hat Sleft( z right) < 1), we have (Jleft( {t,z} right) le w(t,z)) for any (t > 0) and (z in {Bbb R}) from the comparison theorem. The solution to equation (52) is$$begin{array}{*{20}{c}} {wleft( {t,z} right) = frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {rprime t – frac{{left( {z + vt} right)^2}}{{4Dt}}} right]} end{array},$$
    (59)
    where (rprime = beta prime – left( {gamma + alpha prime } right)). This follows by noting that (wleft( {t,x} right)e^{ – rprime t}) follows a simple diffusion equation (partial w/partial t = Dpartial ^2w/partial x^2). By rearranging the exponents of equation (53),$$begin{array}{*{20}{l}} {wleft( {t,z} right)} hfill & = hfill & {exp left[ {at – kz} right]frac{{it{epsilon }}}{{sqrt {4pi Dt} }}e^{ – z^2/4Dt}} hfill \ {} hfill & {} hfill & { < frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {at - kz} right],} hfill end{array}$$ (60) where$$a = frac{{v^{prime 2} - v^2}}{{4D}},$$ (61) $$k = frac{v}{{2D}}.$$ (62) Here (vprime = 2sqrt {rprime D}) is the asymptotic wave speed if the mutant variant monopolizes the host population. Therefore, if (vprime < v), then (a < 0), and hence (w(t,z)) for a fixed z converges to zero as t goes to infinity; this, in turn, implies that (J(t,z)) converges to zero because (Jleft( {t,z} right) le wleft( {t,z} right)) for all t and z. Therefore, we conclude that any mutant that has a slower wave speed than the resident can never invade the population, implying that a variant that has the maximum wave speed (v = 2sqrt {rD}) is locally evolutionarily stable.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Environmental drivers of plant form and function

    1.Funk, J. L. et al. Biol. Rev. 92, 1156–1173 (2017).Article 

    Google Scholar 
    2.Hutchinson, G. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    3.Díaz, S. et al. Nature 529, 1–17 (2015).
    Google Scholar 
    4.Westoby, M. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. Nature 428, 821–827 (2004).CAS 
    Article 

    Google Scholar 
    6.Thomas, H. J. D. et al. Nat. Commun. 11, 1351 (2020).CAS 
    Article 

    Google Scholar 
    7.Bruelheide, H. et al. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 

    Google Scholar 
    8.Blonder, B. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    9.Bjorkman, A. D. et al. Global Ecol. Biogeogr. 27, 1402–1411 (2018).Article 

    Google Scholar 
    10.Bjorkman, A. D. et al. Nature 562, 57–62 (2018).CAS 
    Article 

    Google Scholar 
    11.Cornwell, W. K. & Ackerly, D. D. Ecol. Monogr. 79, 109–126 (2009).Article 

    Google Scholar 
    12.Dong, N. et al. New Phytol. 228, 82–94 (2020).CAS 
    Article 

    Google Scholar 
    13.Harrison, S., Damschen, E., Fernandez-Going, B., Eskelinen, A. & Copeland, S. Ann. Bot. 116, 1017–1022 (2015).Article 

    Google Scholar 
    14.Yang, J., Cao, M. & Swenson, N. G. Trends Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    15.Craine, J. M., Wolkovich, E. M., Gene Towne, E. & Kembel, S. W. New Phytol. 193, 673–682 (2012).Article 

    Google Scholar 
    16.Bardgett, R. D., Mommer, L. & De Vries, F. T. Trends Ecol. Evol. 29, 692–699 (2014).Article 

    Google Scholar 
    17.Messier, J., McGill, B. J. & Lechowicz, M. J. Ecol. Lett. 13, 838–848 (2010).Article 

    Google Scholar 
    18.Arrouays, D. et al. Adv. Agron. 125, 93–134 (2014).Article 

    Google Scholar 
    19.Diaz, S. et al. J. Veg. Sci. 15, 295–304 (2004).Article 

    Google Scholar 
    20.Suding, K. N. et al. Global Change Biol. 14, 1125–1140 (2008).Article 

    Google Scholar  More

  • in

    Natural selection for imprecise vertical transmission in host–microbiota systems

    1.Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).CAS 
    PubMed 

    Google Scholar 
    2.Johnson, K. V.-A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).CAS 
    PubMed 

    Google Scholar 
    4.Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).PubMed 

    Google Scholar 
    6.Matsuoka, K. & Kanai, T. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol. 37, 47–55 (2015).CAS 
    PubMed 

    Google Scholar 
    7.Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Berg, M. & Koskella, B. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28, 2487–2492 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015).10.Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & William, W. J. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Camarinha-Silva, A. et al. Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics 206, 1637–1644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Difford, G. F. et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 14, e1007580 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).15.Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 

    Google Scholar 
    17.Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).CAS 
    PubMed 

    Google Scholar 
    18.Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Holobionts as units of selection and a model of their population dynamics and evolution. Biol. Theory 13, 44–65 (2018).
    Google Scholar 
    19.Fukatsu, T. & Hosokawa, T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol. 68, 389–396 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).CAS 
    PubMed 

    Google Scholar 
    21.Jahnes, B. C., Herrmann, M. & Sabree, Z. L. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 7, e6914 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    22.Estes, A. M. et al. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8, e79061 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.van Vliet, S. & Doebeli, M. The role of multilevel selection in host microbiome evolution. Proc. Natl Acad. Sci. USA 116, 20591–20597 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    24.Zeng, Q., Wu, S., Sukumaran, J. & Rodrigo, A. Models of microbiome evolution incorporating host and microbial selection. Microbiome 5, 127 (2017).25.Björk, J. R., Diez-Vives, C., Astudillo-Garcia, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    26.Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099-15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Hammer, T. J. & Moran, N. A. Links between metamorphosis and symbiosis in holometabolous insects. Phil. Trans. R. Soc. B 374, 20190068 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Metcalf, C. J. E., Henry, L. P., Rebolleda-Gomez, M. & Koskella, B. Why evolve reliance on the microbiome for timing of ontogeny?. mBio 10, e01496-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Bruijning, M., Metcalf, C. J. E., Jongejans, E. & Ayroles, J. F. The evolution of variance control. Trends Ecol. Evol. 35, 22–23 (2020).PubMed 

    Google Scholar 
    30.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315 (1987).CAS 
    PubMed 

    Google Scholar 
    31.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).CAS 
    PubMed 

    Google Scholar 
    32.Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).
    Google Scholar 
    33.Halley, J. M. Ecology, evolution and 1f-noise. Trends Ecol. Evol. 11, 33–37 (1996).CAS 
    PubMed 

    Google Scholar 
    34.Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).CAS 
    PubMed 

    Google Scholar 
    35.Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 

    Google Scholar 
    36.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 

    Google Scholar 
    37.Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    38.Burns, A. R. et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl Acad. Sci. USA 114, 11181–11186 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).CAS 
    PubMed 

    Google Scholar 
    40.Zapién-Campos, R., Sieber, M. & Traulsen, A. Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium. PLoS Comput. Biol. 16, e1008392 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    41.De Vries, E. J., Jacobs, G., Sabelis, M. W., Menken, S. B. J. & Breeuwer, J. A. J. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc. R. Soc. Lond. B 271, 2171–2178 (2004).
    Google Scholar 
    42.Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. N. Phytol. 135, 575–585 (1997).
    Google Scholar 
    43.Cheney, K. L. & Côté, I. M. Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol. Lett. 1, 162–165 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    44.Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    45.Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).PubMed 

    Google Scholar 
    48.Ives, A. R. et al. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat. Ecol. Evol. 4, 702–711 (2020).PubMed 

    Google Scholar 
    49.Chen, D.-Q., Montllor, C. B. & Purcell, A. H. Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol. Exp. Appl. 95, 315–323 (2000).
    Google Scholar 
    50.Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    51.Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).PubMed 

    Google Scholar 
    55.Caswell, H. Matrix Population Models: Construction, Analysis and Interpretation (Sinauer Associates, 2001).56.Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2, e00164-16 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    57.Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS 
    PubMed 

    Google Scholar 
    60.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Ibáñez, F., Tonelli, M. L., Muñoz, V., Figueredo, M. S. & Fabra, A. in Endophytes: Biology and Biotechnology (ed. Maheshwari, D.) 25–40 (Springer, 2017).62.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 

    Google Scholar 
    63.Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 

    Google Scholar 
    64.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    65.Chrostek, E. & Teixeira, L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol. 13, e1002065 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Ravel, C., Michalakis, Y. & Charmet, G. The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos 80, 18–24 (1997).
    Google Scholar 
    67.Buskirk, S. W., Rokes, A. B. & Lang, G. I. Adaptive evolution of nontransitive fitness in yeast. eLife 9, e62238 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Clune, J. et al. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Comput. Biol. 4, e1000187 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    69.King, O. D. & Masel, J. The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72, 560–575 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    70.Liu, X.-D., Lei, H.-X. & Chen, F.-F. Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci. Rep. 9, 4013 (2019).71.Oyserman, B. O. et al. Extracting the GEMs: genotype, environment, and microbiome interactions shaping host phenotypes. Front. Microbiol. 11, 3444 (2021).
    Google Scholar 
    72.Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).PubMed 

    Google Scholar 
    73.Osaka, R., Nomura, M., Watada, M. & Kageyama, D. Negative effects of low temperatures on the vertical transmission and infection density of a Spiroplasma endosymbiont in Drosophila hydei. Curr. Microbiol. 57, 335–339 (2008).CAS 
    PubMed 

    Google Scholar 
    74.Gundel, P. E. et al. Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb. Ecol. 57, 740 (2009).PubMed 

    Google Scholar 
    75.Li, L. & Ma, Z. S. Testing the neutral theory of biodiversity with human microbiome datasets. Sci. Rep. 6, 31448 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).CAS 
    PubMed 

    Google Scholar 
    77.Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    78.Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    79.Scheuring, I. & Yu, D. W. How to assemble a beneficial microbiome in three easy steps. Ecol. Lett. 15, 1300–1307 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    80.Roughgarden, J. Holobiont evolution: Mathematical model with vertical vs. horizontal microbiome transmission. Phil. Theory Pract. Biol. 12, 002 (2020).81.Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    82.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed 

    Google Scholar 
    83.Gillespie, J. Polymorphism in random environments. Theor. Popul. Biol. 4, 193–195 (1973).
    Google Scholar 
    84.Bruijning, M. Code for: Natural selection for imprecise vertical transmission in host-microbiota systems. Zenodo https://doi.org/10.5281/zenodo.5534317 (2021).85.Sauer, C., Dudaczek, D., Hölldobler, B. & Gross, R. Tissue localization of the endosymbiotic bacterium “Candidatus Blochmannia floridanus” in adults and larvae of the carpenter ant Camponotus floridanus. Appl. Environ. Microbiol. 68, 4187–4193 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Brentassi, M. E. et al. Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure, and transovarial transmission. Protoplasma 254, 1421–1429 (2017).CAS 
    PubMed 

    Google Scholar 
    88.Picazo, D. R. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).
    Google Scholar 
    89.Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    92.Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764–775 (2019).CAS 
    PubMed 

    Google Scholar 
    93.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    94.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).CAS 
    PubMed 

    Google Scholar  More