More stories

  • in

    Air pollution from gas refinery through contamination with various elements disrupts semiarid Zagros oak (Quercus brantii Lindl.) forests, Iran

    Description of study areasIGR plant (33° 42/N, 46° 13/E) is located along the edge of the mountains of Zagros forests and 25 km from Ilam city. Its main activity, to supply gas to the western provinces of Iran, started in 2007. It converts sour gas to sweet gas and also produces various products such as pastil sulfur, ethane, and liquefied gas. The refinery has two chimneys, which release waste gases into the atmosphere. Oak trees are the main tree species of the Zagros forests around the refinery; these are exposed to various air pollutants and different elements from this source. Based on random analysis of exhaust emissions, sulfur dioxide and sulfide hydrogen are the major pollutants emitted from the flare gases of this refinery plant34. The sampling points have an average altitude of about 1000–1250 m and a slope of less than 20%. The climate of the region is semiarid and influenced by Mediterranean winds. The predominant wind direction was west and southwest. The highest and lowest air temperatures were 41.4 °C and − 11.3 °C, respectively. The average annual rainfall was 71.94 mm (http://www.amarilam.ir).Samples collection and analysesAll methods were carried out in accordance with the relevant institutional, national, and international guidelines and legislation. Besides they were discussed and approved by the Research Ethics Committee of Tarbiat Modares University. The formal identification of the Quercus brantii Lindl. was performed by H. Dadkhah-Aghdash based on colorful Flora of Iran35. The permissions or licenses to collect Brant oak (Quercus brantii Lindl.) trees in Zagros forests were obtained. A voucher specimen of Brant oaks were collected and deposited at the Herbarium of department of Plant Biology of Tarbiat Modares University.We studied different distances (1000, 1500, 2000, 2500, and 10,000 m [control]) in an easterly direction from the gas refinery. The map of study area was drawn by software of ArcGIS version of 10.5, https://desktop.arcgis.com (Fig. 5). At each distance, three soil samples taken from the depth of 0–20 cm with a plastic gardening shovel, 30 healthy and mature leaves were collected from a certain height (nearly the middle of the canopy) and the outer canopy of three Brant oak trees in the late spring, summer, and autumn of 2019. These trees with average height and diameter at breast height of 5.5 m and 45 cm were selected randomly. The leaf and soil samples were put into polyethylene bags and transported to the laboratory for analysis36.Figure 5Locations of collection sites of soil samples and Brant oak leaves at five different distances (1000, 1500, 2000, 2500 and 10,000 m [control]) from the gas refinery (drawn by H. Dadkhah-Aghdash using software of ArcGIS Desktop. version of 10.5. ESRI, California, US. https://desktop.arcgis.com).Full size imageIn the lab, firstly the leaves were categorized into two types: unwashed leaves and leaves washed with ethylenediaminetetraacetic acid (EDTA) solution to remove some atmospheric dusts and particles deposition. The leaf and soil samples were dried for 10 days until they reached a constant weight at lab temperature. The leaves were grinded and homogenized, soils were sieved with ASTM mesh (DAMAVAND, Iran) with a diameter of 2 mm and homogenized.To determine the pH and electrical conductivity (EC) of soils, 2 g of the soil samples were shaken in 10 ml of double-distilled water with a ratio of 1:5; after 1 h, the pH and electrical conductivity (EC) of the solution were measured by a digital pH meter (Fan Azma Gostar Company, Iran) and EC meter (Sartorius, PT-20, USA). The analysis of the particle sizes of the soil was carried out using the hydrometer method and texture class was determined with a soil texture triangle37.According to different U.S.EPA protocols that were modified by following references, the soil and leaf samples were prepared and dissolved. The digestion of soil samples was conducted with a mixture of concentrated HF–HClO4–HNO338. Approximately 0.5 g of dry soil sample was digested with 10 mL of HCl on a hot plate at ~ 180 °C until the solution was reduced to 3 mL. Approximately 5 mL of HF (40%, w/w), 5 mL of HNO3 (63%, w/w), and 3 mL of HClO4 (70%, w/w) were then added and the solution was digested. This process was continued with adding 3 mL of HNO3, 3 mL of HF, and 1 mL of HClO4 until the silicate minerals had fully disappeared. This solution was transferred to a 25 mL volumetric tube, and 1% HNO3 was added to bring the sample up to a constant volume for the element’s determinations. After filtering the digested samples, the concentrations of sulfur (S), arsenic (As), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and nickel (Ni) were measured via inductively coupled plasma mass spectrometry (ICP-MS,7500 CS, Agilent, US). The procedures of quality assurance and quality control (QA/QC) were performed.To quantify element contents from soil samples, external standards with calibration levels were used. The precision and the repeatability of the analysis were tested on the instrument by analyzing three replicate samples.According to Liang et al.39 leaf samples were acid digested and sieved powder samples were placed in the acid-washed tubes and 10 mL of 65% nitric acid was added to it. The solution was placed at room temperature overnight (12 h) after that, it was placed for 4 h at 100 °C and then 4 h at 140 °C until the solution color was clear. After cooling, the solution was diluted by deionized water to 50 mL and then passed through Whatman filter paper until 25 mL of the filtrate volume was provided. Each sample was digested three times and the average of measurements is reported. Total plant elements were measured by using the ICP-MS (7500 CS, Agilent, US). A control sample was also used beside each sample to determine the background pollution during digestion. To confirm the accuracy of the methodology and to ensure the extraction of trace elements from the leaf samples, the standard solution of each studied elements was used.Measuring of pollution levels of different elements in soils and leavesFor assessment of contamination levels (concentration) of different elements in soils and trees, common indices of pollution including geoaccumulation index (Igeo), pollution index (PI), pollution load index (PLI), enrichment factor of plants (EFplant), bioconcentration factor (BCF), air originated metals (AOM ), metal accumulation index (MAI) were used.Igeo was calculated using the following (Eq. 1):$${text{I}}_{{{text{geo}}}} = log_{2} left[ {{text{C}}_{{text{n}}} / 1.5{text{ B}}_{{text{n}}} } right]$$
    (1)
    where Cn is the measured concentration of the element n, Bn is the geoaccumulation background for this element and 1.5 is a constant coefficient used to eliminate potential variations in the baseline data40. The Igeo classifies samples into seven grades:  5 for extremely polluted30.The first PI is expressed as (Eq. 2):$${text{PI }} = {text{ C}}_{{text{i}}} /{text{S}}_{{text{i}}}$$
    (2)
    where Ci is the concentration of element i in the soil (mg kg−1) and Si is the soil quality standard or reference value for element i (mg kg−1). The PLI for different elements is calculated via the (Eq. 3):$${text{PLI}} = left( {{text{PI}}_{{1}} times {text{ PI}}_{{2}} times {text{ PI}}_{{3}} times cdots times {text{PI}}_{{text{n}}} } right)^{{{1}/{text{n}}}}$$
    (3)
    The PLI of soils is classified as follows: PLI  More

  • in

    Whales in the way

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    From under the ice

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Resilience of countries to COVID-19 correlated with trust

    Up to 1 December 2020, 156 countries had exhibited at least one peak and then decay of cases/capita (of which 36 had experienced a second peak and decay), 151 countries had exhibited at least one peak and then decay of deaths/capita (of which 32 had experienced a second peak and decay), and 93 countries had sufficient testing data to determine at least one peak and then decay of cases/tests (of which 23 had experienced a second peak and decay). Time-series for all countries and the three metrics are shown in Supplementary Fig. 1. For resilience, having filtered cases of reasonably exponential decay for further analysis (r2 ≥ 0.8) and included multiple instances of well-fitted recovery occurring in one country in the dataset, we obtain n = 177 decays for cases/capita, n = 159 for deaths/capita, n = 105 for cases/tests. In a few countries a minimum had not yet been reached by 1 December 2020, so the reduction dataset is smaller (cases/capita n = 165, deaths/capita n = 150, cases/tests n = 101).Comparable resilience and reduction of cases and deathsThe relative measures of resilience (rate of decay) and (proportional) reduction of cases should be more reliably estimated than absolute case numbers but could still be biased by variations in testing intensity across time and space. Encouragingly, we find across countries and waves, resilience of cases/capita and cases/tests are strongly positively rank correlated (n = 100, (rho) =0.86, p  More

  • in

    Network traits predict ecological strategies in fungi

    1.Fischer MS, Glass NL. Communicate and fuse: How filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619.2.Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:335–67.3.Heaton LLM, Jones NS, Fricker MD. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun. 2020;11:2594.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Kiss E, Hegedus B, Viragh M, Varga T, Merenyi Z, Koszo T, et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun. 2019;10:4080.PubMed 
    PubMed Central 

    Google Scholar 
    5.Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biol Rev. 2020;34:151–69.
    Google Scholar 
    6.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed 
    PubMed Central 

    Google Scholar 
    7.Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, et al. The fungi. Curr Biol. 2009;19:R840–845.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad Sci USA. 2014;111:740–5.CAS 
    PubMed 

    Google Scholar 
    10.Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167.
    Google Scholar 
    11.Dawson SK, Boddy L, Halbwachs H, Bässler C, Andrew C, Crowther TW, et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct Ecol. 2018;33:372–87.
    Google Scholar 
    12.Aguilar-Trigueros CA, Hempel S, Powell JR, Anderson IC, Antonovics J, Bergmann J, et al. Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biol Rev. 2015;29:34–41.
    Google Scholar 
    13.Pringle A, Taylor JW. The fitness of filamentous fungi. Trends Microbiol. 2002;10:474–81.CAS 
    PubMed 

    Google Scholar 
    14.Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol Rev. 2020;95:409–33.PubMed 

    Google Scholar 
    15.Boddy L. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13–32.
    Google Scholar 
    16.Boddy L, Donnelly DP. Fractal geometry and microorganisms in the environment. Biophys Chem Fractal Struct Processes Environ Syst. 2008;11:239–72.17.Lehmann A, Zheng W, Soutschek K, Roy J, Yurkov AM, Rillig MC. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Sci Rep. 2019;9:14152.PubMed 
    PubMed Central 

    Google Scholar 
    18.Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and dikaryons of the arbuscular mycorrhizal fungus rhizophagus irregularis differ in life history strategy. Front Plant Sci. 2021;12:1544.
    Google Scholar 
    19.Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.PubMed 

    Google Scholar 
    20.Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 2021;15:1782–1793.21.De Ligne L, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Van Acker J, De Baets B. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions. IMA Fungus. 2019;10:7.PubMed 
    PubMed Central 

    Google Scholar 
    22.Dikec J, Olivier A, Bobee C, D’Angelo Y, Catellier R, David P, et al. Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina. Sci Rep. 2020;10:3131.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Du H, Lv P, Ayouz M, Besserer A, Perré P. Morphological characterization and quantification of the mycelial growth of the Brown-Rot fungus Postia placenta for modeling purposes. PLoS One. 2016;11:e0162469.PubMed 
    PubMed Central 

    Google Scholar 
    24.Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Lopez-Molina C, De Windt I, De Baets B. Automated image-based analysis of spatio-temporal fungal dynamics. Fungal Genet Biol. 2015;84:12–25.CAS 
    PubMed 

    Google Scholar 
    25.Boddy L, Wood J, Redman E, Hynes J, Fricker MD. Fungal network responses to grazing. Fungal Genet Biol. 2010;47:522–30.PubMed 

    Google Scholar 
    26.Rotheray TD, Jones TH, Fricker MD, Boddy L. Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecol. 2008;1:124–32.
    Google Scholar 
    27.Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD. Biological solutions to transport network design. Proc Biol Sci/R Soc. 2007;274:2307–15.
    Google Scholar 
    28.Fricker MD, Akita D, Heaton LLM, Jones N, Obara B, Nakagaki T. Automated analysis of Physarumnetwork structure and dynamics. J Phys D: Appl Phys. 2017;50:254005.
    Google Scholar 
    29.Lee SH, Fricker MD, Porter MA. Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits. J Complex Netw. 2017;5:145–59.
    Google Scholar 
    30.Obara B, Grau V, Fricker MD. A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics. 2012;28:2374–81.CAS 
    PubMed 

    Google Scholar 
    31.Bebber DP, Tlalka M, Hynes J, Darrah PR, Ashford A, Watkinson SC et al. Fungi and the environment. Cambridge: Cambridge University Press; 2007. p. 1−21.32.Fricker MD, Lee JA, Bebber DP, Tlalka M, Hynes J, Darrah PR, et al. Imaging complex nutrient dynamics in mycelial networks. J. Microsc. 2008;231:317–31.CAS 
    PubMed 

    Google Scholar 
    33.Vidal-Diez de Ulzurrun G, Huang T-Y, Chang C-W, Lin H-C, Hsueh Y-P. Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Comp Biol. 2019;15:e1007428.CAS 

    Google Scholar 
    34.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Growth-induced mass flows in fungal networks. Proc R Soc B: Biol Sci. 2010;277:3265–74.
    Google Scholar 
    35.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E. 2012;86:021905.
    Google Scholar 
    36.Fricker MD, Boddy L, Nakagaki T, Bebber DP (2009). Adaptive biological networks. In: Gross T, Sayama H, editors. Adaptive networks: theory, models, and applications. Berlin: Springer; 2009. p. 51−70.37.Boddy L, Jones TH. Mycelial responses in heterogeneous environments: parallels with macroorganisms. Fungi Environ. 2007;25:112–58.
    Google Scholar 
    38.Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Crowther TW, Jones TH, Boddy L. Interactions between saprotrophic basidiomycete mycelia and mycophagous soil fauna. Mycology. 2012;3:77–86.
    Google Scholar 
    40.Tordoff GM, Boddy L, Jones TH. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina, and Resinicium bicolor. Mycol Res. 2006;110:335–45.PubMed 

    Google Scholar 
    41.Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, et al. Analysis of fungal networks. Fungal Biol Rev. 2012;26:12–29.
    Google Scholar 
    42.Barthelemy M. Morphogenesis of spatial networks. Cham, Switzerland: Springer International Publishing; 2018.43.Fricker MD, Bebber D, Boddy L. Chapter 1 Mycelial networks: structure and dynamics. In: Boddy L, Frankland JC, van West P, editors. British mycological society symposia series. London, UK, Academic Press; 2008. p. 3−18.44.Fricker M, Boddy L, Bebber D. Biology of the fungal cell. Berlin Heidelberg: Springer Verlag; 2007. p. 309−30.45.Fricker MD, Lee JA, Boddy L, Bebber DP. The Interplay between structure and function in fungal networks. Topologica 2008;1:004.46.Moore D, Robson GD, Trinci AP. 21st century guidebook to fungi. Cambridge, UK: Cambridge University Press; 2011.47.Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Movement Ecol. 2019;7:36.
    Google Scholar 
    48.Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.CAS 

    Google Scholar 
    49.Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods. 2015;12:233–5.CAS 
    PubMed 

    Google Scholar 
    50.Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336:1157–60.CAS 
    PubMed 

    Google Scholar 
    51.Andrade-Linares DR, Veresoglou SD, Rillig MC. Temperature priming and memory in soil filamentous fungi. Fungal Ecol. 2016;21:10–15.
    Google Scholar 
    52.A’Bear AD, Boddy L, Hefin Jones T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biol. 2012;18:1823–32.
    Google Scholar 
    53.Boddy L, Wells JM, Culshaw C, Donnelly DP. Fractal analysis in studies of mycelium in soil. Geoderma. 1999;88:301–28.
    Google Scholar 
    54.Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun. 2019;10:984.PubMed 
    PubMed Central 

    Google Scholar 
    55.Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol. 2021;229:631–48.PubMed 

    Google Scholar 
    56.Wickham H, Bryan J. Read Excel Files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.57.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ, Complex Syst. 2006;1695:1–9.
    Google Scholar 
    58.R Development Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing; 2017.59.Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community ecology package. 2012. https://CRAN.R-project.org/package=vegan.60.A’Bear AD, Jones TH, Boddy L. Size matters: What have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem. 2014;78:274–83.
    Google Scholar 
    61.Trinci APJ. A kinetic study of the growth of Aspergillus nidulans and other fungi. Microbiology. 1969;57:11–24.CAS 

    Google Scholar 
    62.Morin-Sardin S, Nodet P, Coton E, Jany J-L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev. 2017;31:12–32.
    Google Scholar 
    63.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704.CAS 
    PubMed 

    Google Scholar 
    64.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy, and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94:2101–37.PubMed 
    PubMed Central 

    Google Scholar 
    65.Domsch K, Gams W, Anderson T-H. Compendium of soil fungi. 2nd ed. Eching: IHW-Verlag; 2007.66.Thomma BP. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol. 2003;4:225–36.CAS 
    PubMed 

    Google Scholar 
    67.Bacon C, Yates I. Endophytic root colonization by fusarium species: histology, plant interactions, and toxicity. In: Schulz BE, Boyle CC, Sieber T, editors. Microbial root endophytes. Berlin: Springer; 2006. p. 133−52.68.Nguyen TA, Le S, Lee M, Fan J-S, Yang D, Yan J, et al. Fungal wound healing through instantaneous protoplasmic gelation. Curr Biol. 2021;31:271–82. e275CAS 
    PubMed 

    Google Scholar 
    69.Scheu S, Simmerling F. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin, and mixed diets. Oecologia. 2004;139:347–53.PubMed 

    Google Scholar 
    70.Rayner ADM, Boddy L. Fungal decomposition of wood. Its biology and ecology. Chichester, Sussex: John Wiley & Sons Ltd.; 1988.71.Connolly JH, Shortle WC, Jellison J. Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Botany. 1999;77:179–87.CAS 

    Google Scholar 
    72.A’Bear AD, Jones TH, Boddy L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014;10:34–43.
    Google Scholar 
    73.Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.PubMed 

    Google Scholar 
    74.Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579. More

  • in

    Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs)

    Divergent CuMMOs identified in MAGs recovered from soil and sediment ecosystemsIn previous work we identified putative divergent amoA/pmoA homologues in 7 Thermoplasmatota genomes recovered from Mediterranean grassland soil [25]. This was intriguing, given that amo/pmo homologues had not been previously observed in archaea outside of the Nitrososphaerales. Here we searched for additional genomes encoding related (divergent) amo/pmo’s using a series of readily available, and custom built, hidden markov models (HMMs) across all archaeal genomes in the Genome Taxonomy Database (GTDB), and in all archaeal MAGs in our unpublished datasets from ongoing studies (Supplementary Fig. 1 and Supplementary Data 1). We found additional amoA/pmoA genes in genomes recovered from soils at the South Meadow and Rivendell sites of the Angelo Coast Range Reserve (CA) [25, 26], the nearby Sagehorn site [26], a hillslope of the East River watershed (CO) [27], and in sediments from the Rifle aquifer (CO) [28] and the deep ocean [29]. In total we identified 201 archaeal MAGs taxonomically placed using phylogenetically informative single copy marker genes outside of Nitrososphaerales containing divergent amo/pmo proteins (Supplementary Table 1 and Supplementary Data 1). Genome de-replication resulted in 34 species-level genome clusters, 20 of which encoded an amo/pmo homologue (Supplementary Table 2). Of these genomes, 11 are species not previously available in public databases. In all cases where assembled sequences were of sufficient length, the amoA/pmoA, B, and C protein coding genes were found co-located with each other and with a hypothetical protein here called amoX/pmoX in the order C-A-X-B (Fig. 1A, Supplementary Table 2, and Supplementary Fig. 2). The mean sequence identity of the novel amoA/pmoA, B, and C proteins to known bacterial sequences were 16.7, 8.0, and 14.2% and 13.8, 9.5, and 20.8% to known archaeal sequences. This level of divergent amino acid identity is typical for CuMMOs, as known bacterial and known archaeal amoA/pmoA, B, and C proteins share mean identities of 16.1, 9.7, and 16.5% respectively. As might be expected considering the large sequence divergence between the recovered sequences and known amo/pmo proteins, we found that no pair of typical primers used for bacterial and archaeal amoA/pmoA environmental surveys [30] matched any novel amoA/pmoA gene with More

  • in

    Emergence of methicillin resistance predates the clinical use of antibiotics

    1.Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.European Centre for Disease Prevention and Control, European Medicines Agencies. The Bacterial Challenge: Time to React. A Call to Narrow the Gap Between Multidrug-Resistant Bacteria in the EU and the Development of New Antibacterial Agents https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0909_TER_The_Bacterial_Challenge_Time_to_React.pdf (2009).3.Jevons, M. P. “Celbenin”—resistant Staphylococci. Br. Med. J. 1, 124–125 (1961).PubMed Central 

    Google Scholar 
    4.Harkins, C. P. et al. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol. 18, 130 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Chambers, H. F. & DeLeo, F. R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 7, 629–641 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Price, L. B. et al. Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. mBio 3, e00305-11 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    7.Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (WHO, 2017).8.Rasmussen, S. L. et al. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PLoS ONE 14, e0222031 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Bengtsson, B. et al. High occurrence of mecC-MRSA in wild hedgehogs (Erinaceus europaeus) in Sweden. Vet. Microbiol. 207, 103–107 (2017).PubMed 

    Google Scholar 
    10.García-Álvarez, L. et al. Methicillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect. Dis. 11, 595–603 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    11.Paterson, G. K., Harrison, E. M. & Holmes, M. A. The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22, 42–47 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Marples, M. J. & Smith, J. M. B. The hedgehog as a source of human ringworm. Nature 188, 867–868 (1960).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.English, M. P., Evans, C. D., Hewitt, M. & Warin, R. P. “Hedgehog ringworm”. Br. Med. J. 1, 149–151 (1962).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Smith, J. M. B. & Marples, M. J. A natural reservoir of penicillin-resistant strains of Staphylococcus aureus. Nature 201, 844 (1964).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Smith, J. M. B. & Marples, M. J. Dermatophyte lesions in the hedgehog as a reservoir of penicillin-resistant staphylococci. J. Hyg. 63, 293–303 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Smith, J. M. B. Staphylococcus aureus strains associated with the hedgehog Erinaceus europaeus. J. Hyg. Camb. 63, 293–303 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Morris, P. & English, M. P. Trichophyton mentagrophytes var. erinacei in British hedgehogs. Sabouraudia 7, 122–128 (1969).CAS 
    PubMed 

    Google Scholar 
    18.Le Barzic, C. et al. Detection and control of dermatophytosis in wild European hedgehogs (Erinaceus europaeus) admitted to a French wildlife rehabilitation centre. J. Fungi 7, 74 (2021).
    Google Scholar 
    19.Dube, F., Söderlund, R., Salomonsson, M. L., Troell, K. & Börjesson, S. Benzylpenicillin-producing Trichophyton erinacei and methicillin resistant Staphylococcus aureus carrying the mecC gene on European hedgehogs: a pilot-study. BMC Microbiol. 21, 212 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    21.Brockie, R. E. Distribution and abundance of the hedgehog (Erinaceus europaeus) L. in New Zealand, 1869–1973. N. Z. J. Zool. 2, 445–462 (1975).
    Google Scholar 
    22.van den Berg, M. A. et al. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat. Biotechnol. 26, 1161–1168 (2008).CAS 
    PubMed 

    Google Scholar 
    23.Ullán, R. V., Campoy, S., Casqueiro, J., Fernández, F. J. & Martín, J. F. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem. Biol. 14, 329–339 (2007).PubMed 

    Google Scholar 
    24.Kitano, K. et al. A novel penicillin produced by strains of the genus Paecilomyces. J. Ferment. Technol. 54, 705–711 (1976).CAS 

    Google Scholar 
    25.Petersen, A. et al. Epidemiology of methicillin-resistant Staphylococcus aureus carrying the novel mecC gene in Denmark corroborates a zoonotic reservoir with transmission to humans. Clin. Microbiol. Infect. 19, E16–E22 (2013).CAS 
    PubMed 

    Google Scholar 
    26.Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Holden, M. T. G. et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 23, 653–664 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Strauß, L. et al. Origin, evolution, and global transmission of community-acquired Staphylococcus aureus ST8. Proc. Natl Acad. Sci. USA 114, E10596–E10604 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Nübel, U. et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc. Natl Acad. Sci. USA 105, 14130–14135 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Rasmussen, S. L., Nielsen, J. L., Jones, O. R., Berg, T. B. & Pertoldi, C. Genetic structure of the European hedgehog (Erinaceus europaeus) in Denmark. PLoS ONE 15, e0227205 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hansen, J. E. et al. LA-MRSA CC398 in dairy cattle and veal calf farms indicates spillover from pig production. Front. Microbiol. 10, 2733 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Eriksson, J. Espinosa-Gongora, C., Stamphøj, I., Larsen, A. R. & Guardabassi, L. Carriage frequency, diversity and methicillin resistance of in Danish small ruminants. Vet. Microbiol. 163, 110–115 (2013).CAS 
    PubMed 

    Google Scholar 
    33.Danish Integrated Antimicrobial Resistance Monitoring and Research Programme. DANMAP 2019: Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria From Food Animals, Food, and Humans in DENMARK https://www.danmap.org/-/media/Sites/danmap/Downloads/Reports/2019/DANMAP_2019.ashx?la=da&hash=AA1939EB449203EF0684440AC1477FFCE2156BA5 (2020).34.Veterinary Medicines Directorate. UK Veterinary Antibiotic Resistance and Sales Surveillance Reporthttps://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/950126/UK-VARSS_2019_Report__2020-TPaccessible.pdf (2020).35.Harrison, E. M. et al. Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC. EMBO Mol. Med. 5, 509–515 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Loncaric, I. et al. Characterization of mecC gene-carrying coagulase-negative Staphylococcus spp. isolated from various animals. Vet. Microbiol. 230, 138–144 (2019).CAS 
    PubMed 

    Google Scholar 
    37.Gómez, P. et al. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 71, 53–57 (2016).PubMed 

    Google Scholar 
    38.Kim, C. et al. Properties of a novel PBP2A protein homolog from Staphylococcus aureus strain LGA251 and its contribution to the β-lactam-resistant phenotype. J. Biol. Chem. 287, 36854–36863 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Tahlan, K. & Jensen, S. E. Origins of the β-lactam rings in natural products. J. Antibiot. 66, 401–419 (2013).CAS 

    Google Scholar 
    40.Pantůček, R. et al. Staphylococcus edaphicus sp. nov. isolated in Antarctica harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environment. Appl. Environ. Microbiol. 84, e01746-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    41.D’Costa, V. M., et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).ADS 
    PubMed 

    Google Scholar 
    42.Allen, H. K., Moe, L. A., Rodbumrer, J., Gaarder, A. & Handelsman, J. Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J. 3, 243–251 (2009).CAS 

    Google Scholar 
    43.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature 509, 612–616 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Coll, F. et al. Definition of a genetic relatedness cutoff to exclude recent transmission of meticillin-resistant Staphylococcus aureus: a genomic epidemiology analysis. Lancet Microbe 1, e328–e335 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its application to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Van Wamel, W. J., Rooijakkers, S. H., Ruyken, M. van Kessel, K. P. & Strijp, J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 188, 1310–1315 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    49.Viana, D. et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involved SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 77, 1583–1594 (2010).50.Rooijakkers, S. H. M. et al. Staphylococcal complement inhibitor: structure and active sites. J. Immunol. 179, 2989–2998 (2007).CAS 
    PubMed 

    Google Scholar 
    51.Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75, 3491–3500 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Clausen, P. T. L. C., Aarestrup, F. M. & Lund, O. Rapid and precise alignment of raw reads against redundant database with KMA. BMC Bioinform. 19, 397 (2018).
    Google Scholar 
    54.Sahl, J. W. et al. NASP: an accurate, rapid method for the identification of SNPs in WGS datasets that supports flexible input and output formats. Microb. Genom. 2, e000074 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    55.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrow-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation sequencing data. Nat. Genet. 43, 491–498 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 30, 2478–2483 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    59.Kurz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).
    Google Scholar 
    60.Guindon, S. & Gasquel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 

    Google Scholar 
    61.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 

    Google Scholar 
    62.Didelot, X. & Wilson, D. J. ClonalFrameML: efficient inference of recombination in whole bacterial genome. PLoS Comput. Biol. 11, e1004041 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Didelot, X. et al. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    64.Didelot, X., Siveroni, I. & Volz, E. M. Additive uncorrelated relaxed clock models for the dating of genomic epidemiology phylogenies. Mol. Biol. Evol. 38, 307–317 (2021).CAS 
    PubMed 

    Google Scholar 
    65.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2006).
    Google Scholar 
    66.Volz, E. M. & Frost, S. D. Scalable relaxed clock phylogenetic dating. Virus Evol. 3, vex025 (2017).
    Google Scholar 
    67.Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Adusumilli, R. & Mallick, P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339–368 (2017).CAS 
    PubMed 

    Google Scholar  More

  • in

    Linkage disequilibrium under polysomic inheritance

    Brown AHD, Feldman MW, Nevo E (1980) Multilocus structure of natural populations of Hordeum spontaneum. Genetics 96:523–536CAS 
    Article 

    Google Scholar 
    Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823CAS 
    Article 

    Google Scholar 
    Butruille DV, Boiteux LS (2000) Selection–mutation balance in polysomic tetraploids: Impact of double reduction and gametophytic selection on the frequency and subchromosomal localization of deleterious mutations. Proc Natl Acad Sci USA 97:6608–6613CAS 
    Article 

    Google Scholar 
    Cockerham CC, Weir BS (1977) Digenic descent measures for finite populations. Genet Res 30:121–147Article 

    Google Scholar 
    Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–322CAS 
    Article 

    Google Scholar 
    Do C, Waples RS, Peel D, Macbeth G, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CAS 
    Article 

    Google Scholar 
    England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe bias in small samples. Conserv Genet 7:303Article 

    Google Scholar 
    Fisher RA (1947) The theory of linkage in polysomic inheritance. Philos Trans R Soc Lond Ser B Biol Sci 233:55–87
    Google Scholar 
    Gao XY, Starmer J, Martin ER (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet Epidemiol 32:361–369Article 

    Google Scholar 
    Hästbacka J, de la Chapelle A, Kaitila I, Sistonen P, Weaver A, Lander E (1992) Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet 2:204–211Article 

    Google Scholar 
    Hayes BJ, Visscher PM, McPartlan HC, Goddard ME (2003) Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Res 13:635–643CAS 
    Article 

    Google Scholar 
    Hill WG (1974) Disequilibrium among several linked neutral genes in finite population I. Mean changes in disequilibrium. Theor Popul Biol 5:366–392CAS 
    Article 

    Google Scholar 
    Hill WG (1975) Linkage disequilibrium among multiple neutral alleles produced by mutation in finite population. Theor Popul Biol 8:117–126CAS 
    Article 

    Google Scholar 
    Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216Article 

    Google Scholar 
    Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231CAS 
    Article 

    Google Scholar 
    Hill WG, Weir BS (1994) Maximum-likelihood estimation of gene location by linkage disequilibrium. Am J Hum Genet 54:705CAS 

    Google Scholar 
    Hollenbeck C, Portnoy D, Gold J (2016) A method for detecting recent changes in contemporary effective population size from linkage disequilibrium at linked and unlinked loci. Heredity 117:207–216CAS 
    Article 

    Google Scholar 
    Hosking LK, Boyd PR, Xu CF, Nissum M, Cantone K, Purvis IJ, Khakhar R, Barnes MR, Liberwirth U, Hagen-Mann K (2002) Linkage disequilibrium mapping identifies a 390 kb region associated with CYP2D6 poor drug metabolising activity. Pharmacogenomics J 2:165CAS 
    Article 

    Google Scholar 
    Huang K, Dunn DW, Ritland K, Li BG (2020) polygene: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods Ecol Evol 11:448–456Article 

    Google Scholar 
    Jorde LB (1995) Linkage disequilibrium as a gene-mapping tool. Am J Hum Genet 56:11CAS 

    Google Scholar 
    Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49CAS 
    Article 

    Google Scholar 
    Maruyama T (1982) Stochastic integrals and their application to population genetics. In: Kimura M (ed) Molecular evolution, protein polymorphism and the neutral theory. Japan Scientific Societies Press, Tokyo, p 151–166
    Google Scholar 
    Nei M (1987) Molecular evolutionary genetics. Columbia university press, New YorkOhta T (1980) Linkage disequilibrium between amino acid sites in immunoglobulin genes and other multigene families. Genet Res 36:181–197CAS 
    Article 

    Google Scholar 
    Ohta T, Kimura M (1969) Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics 63:229CAS 
    Article 

    Google Scholar 
    Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462CAS 
    Article 

    Google Scholar 
    Rieger R, Michaelis A, Green MM (1968) A glossary of genetics and cytogenetics: classical and molecular. Springer-Verlag, New York, NYBook 

    Google Scholar 
    Robert C (1991) Generalized inverse normal distributions. Stat Probabil Lett 11:37–41Article 

    Google Scholar 
    Santiago E, Novo I, Pardiñas AF, Saura M, Wang J, Caballero A (2020) Recent demographic history inferred by high-resolution analysis of linkage disequilibrium. Mol Biol Evol 37:3642–3653CAS 
    Article 

    Google Scholar 
    Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296CAS 
    Article 

    Google Scholar 
    Slatkin M (2008) Linkage disequilibrium—understanding the evolutionary past and mapping the medical future. Nat Rev Genet 9:477CAS 
    Article 

    Google Scholar 
    Stift M, Berenos C, Kuperus P, van Tienderen PH (2008) Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: a general procedure applied to Rorippa (yellow cress) microsatellite data. Genetics 179:2113–2123Article 

    Google Scholar 
    Sved JA (1964) The relationship between diploid and tetraploid recombination frequencies. Heredity 19:585–596CAS 
    Article 

    Google Scholar 
    Sved JA, Cameron EC, Gilchrist AS (2013) Estimating effective population size from linkage disequilibrium between unlinked loci: theory and application to fruit fly outbreak populations. PLoS ONE 8:e69078CAS 
    Article 

    Google Scholar 
    Sved JA, Feldman MW (1973) Correlation and probability methods for one and two loci. Theor Popul Biol 4:129–132CAS 
    Article 

    Google Scholar 
    Tenesa A, Navarro P, Hayes BJ, Duffy DL, Clarke GM, Goddard ME, Visscher PM (2007) Recent human effective population size estimated from linkage disequilibrium. Genome Res 17:520–526CAS 
    Article 

    Google Scholar 
    Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S-3–S-14Article 

    Google Scholar 
    Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. https://doi.org/10.1007/s10592-005-9100-yArticle 

    Google Scholar 
    Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780Article 

    Google Scholar 
    Waples RK, Larson WA, Waples RS (2016) Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity 117:233–240. https://doi.org/10.1038/hdy.2016.60CAS 
    Article 

    Google Scholar 
    Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254Weir BS, Cockerham CC (1979) Estimation of linkage disequilibrium in randomly mating populations. Heredity 42:105Article 

    Google Scholar 
    Weir BS, Hill WG (1980) Effect of mating structure on variation in linkage disequilibrium. Genetics 95:477–488CAS 
    Article 

    Google Scholar  More