More stories

  • in

    Short-term changes related to autotetraploidy in essential oil composition of Eucalyptus benthamii Maiden & Cambage and its applications in different bioassays

    1.Ladiges, P. Y., Udovicic, F. & Nelson, G. Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J. Biogeogr. 30, 989–998 (2003).
    Google Scholar 
    2.Goodger, J. Q. D., Senaratne, S. L., Nicolle, D. & Di Woodrow, I. E. ff erential metabolic specialization of foliar oil glands in Eucalyptus brevistylis Brooker (Myrtaceae ). Tree Physiol. 00, 1–10 (2018).
    Google Scholar 
    3.Doran, J. C. & Brophy, J. J. Importance of the tropical red gums. New For. 4, 157–178 (1990).
    Google Scholar 
    4.Doughty, R. W. The Eucalyptus. A Natural and Commercial History of the Gum Tree. (The John Hopkins University Press, 2000).5.Silva, P. H. M. da, Brito, J. O. & Junior, F. G. da S. Potential of eleven Eucalyptus species for the production of essential oils. Sci. Agric. 63, 85–89 (2006).6.Coppen, J. J. W. Eucalyptus: the genus Eucalyptus. (Taylor & Francis, 2002).7.Barbosa, L. C. A., Filomeno, C. A. & Teixeira, R. R. Chemical variability and biological activities of Eucalyptus spp. Essential oils. Molecules 21, 1–33 (2016).
    Google Scholar 
    8.Lucia, A., Licastro, S., Zerba, E., Gonzalez, P. & Masuh, H. Bioresource technology sensitivity of Aedes aegypti adults (Diptera : Culicidae ) to the vapors of Eucalyptus essential oils. Bioresour. Technol. 100, 6083–6087 (2009).CAS 
    PubMed 

    Google Scholar 
    9.Batista-Pereira, L. G. et al. Electrophysiological Responses of Atta sexdens rubropilosa workers. Z. Naturforsch. 61c, 749–755 (2006).
    Google Scholar 
    10.Döll-Boscardin, P. M. et al. In vitro cytotoxic potential of essential oils of Eucalyptus benthamii and its related terpenes on tumor cell lines. Evidence-based Complement. Altern. Med. 2012, 1–8 (2012).
    Google Scholar 
    11.Lin, H. et al. Production of polyploids from cultured shoot tips of Eucalyptus globulus Labill by treatment with colchicine. Afr. J. Biotechnol. 9, 2252–2255 (2010).CAS 

    Google Scholar 
    12.Silva, A. J., Carvalho, C. R. & Clarindo, W. R. Chromosome set doubling and ploidy stability in synthetic auto- and allotetraploid of Eucalyptus: from in vitro condition to the field. Plant Cell. Tissue Organ Cult. 138, 387–394 (2019).
    Google Scholar 
    13.Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 66, 212–229 (2011).CAS 
    PubMed 

    Google Scholar 
    14.Bhuvaneswari, G., Thirugnanasampandan, R. & Gogulramnath, M. Effect of colchicine induced tetraploidy on morphology, cytology, essential oil composition, gene expression and antioxidant activity of Citrus limon (L.) Osbeck. Physiol. Mol. Biol. Plants 26, 271–279 (2020).CAS 
    PubMed 

    Google Scholar 
    15.Lavania, U. C. et al. Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 71, 539–549 (2012).CAS 
    PubMed 

    Google Scholar 
    16.Ramsey, J. & Schemske, D. W. Neopolyploidy in flowering plants. Annu. Rev. Ecol. Syst. 33, 589–639 (2002).
    Google Scholar 
    17.Marfil, C. F., Duarte, P. F. & Masuelli, R. W. Phenotypic and epigenetic variation induced in newly synthesized allopolyploids and autopolyploids of potato. Sci. Hortic. (Amsterdam) 234, 101–109 (2018).
    Google Scholar 
    18.Fernando, S. C., Goodger, J. Q. D., Chew, B. L., Cohen, T. J. & Woodrow, I. E. Induction and characterisation of tetraploidy in Eucalyptus polybractea R.T. Baker. Ind. Crops Prod. 140, 111633 (2019).CAS 

    Google Scholar 
    19.da Silva Souza, T. et al. Polyploidy as a strategy to improve the industrial quality of eucalypt wood. Wood Sci. Technol. 55, 181 (2020).
    Google Scholar 
    20.Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).CAS 
    PubMed 

    Google Scholar 
    21.Naidoo, S. et al. Uncovering the defence responses of eucalyptus to pests and pathogens in the genomics age. Tree Physiol. 34, 931–943 (2014).CAS 
    PubMed 

    Google Scholar 
    22.Rasmussen, J. J. et al. Pesticide impacts on predator-prey interactions across two levels of organisation. Aquat. Toxicol. 140–141, 340–345 (2013).PubMed 

    Google Scholar 
    23.Estep, A. S., Sanscrainte, N. D., Waits, C. M., Louton, J. E. & Becnel, J. J. Resistance status and resistance mechanisms in a strain of Aedes aegypti (Diptera: Culicidae) from Puerto Rico. J. Med. Entomol. 54, 1643–1648 (2017).CAS 
    PubMed 

    Google Scholar 
    24.Braga, I. A., Lima, J. B. P., Da Silva Soares, S. & Valle, D. Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe, and Alagoas. Brazil. Mem. Inst. Oswaldo Cruz 99, 199–203 (2004).PubMed 

    Google Scholar 
    25.Mendes, L. A. et al. Larvicidal effect of essential oils from Brazilian cultivars of guava on Aedes aegypti L. Ind. Crops Prod. 108, 684–689 (2017).CAS 

    Google Scholar 
    26.Dutra, Q. P. et al. Phytocytotoxicity of volatile constituents of essential oils from Sparattanthelium Mart. species (Hernandiaceae). Sci. Rep. 10, 12213 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    27.Mendes, L. A. et al. Spring alterations in the chromatographic profile of leaf essential oils of improved guava genotypes in Brazil. Sci. Hortic. (Amsterdam) 238, 295–302 (2018).CAS 

    Google Scholar 
    28.Filomeno, C. A. et al. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind. Crop. Prod. 109, 374–383 (2017).CAS 

    Google Scholar 
    29.de Souza, S. et al. Essential oil of Psidium guajava : Influence of genotypes and environment. Sci. Hortic. (Amsterdam) 216, 38–44 (2017).
    Google Scholar 
    30.Adams, R. P. Identification of Essential Oil Components by Gas Chromatograpy/Mass Spectrometry (Allured Publishing Corporation, 2007).31.Fox, J. et al. Package ‘effects’: Effect displays for linear, generalised linear, and other models. Version 4(2–0), 1–35 (2020).
    Google Scholar 
    32.R Core Team. R: a language and environment for statistical computing. https://www.r-project.org/ (2020).33.Aragão, F. B. et al. Phytotoxic and cytotoxic effects of eucalyptus essential oil on lettuce (Lactuca sativa L.). Allelopath. J. 35, 259–272 (2015).
    Google Scholar 
    34.de Assis Alves, T. et al. Toxicity of thymol, carvacrol and their respective phenoxyacetic acids in Lactuca sativa and Sorghum bicolor. Ind. Crops Prod. 114, 59–67 (2018).35.Silva, T. C. R., Abreu, I. S. & Carvalho, C. R. Improved and reproducible flow cytometry methodology for nuclei isolation from single root meristem. J. Bot. 2010, 1–7 (2010).
    Google Scholar 
    36.Otto, F. DAPI staining of fixed cells for high-resolution flow cytometly of nuclear DNA. Methods Cell Biol. 33, 105–110 (1990).CAS 
    PubMed 

    Google Scholar 
    37.Noori, S. A. S., Norouzi, M., Karimzadeh, G., Shirkool, K. & Niazian, M. Effect of colchicine-induced polyploidy on morphological characteristics and essential oil composition of ajowan (Trachyspermum ammi L.). Plant Cell Tissue Organ Cult. 130, 543–551 (2017).
    Google Scholar 
    38.Iannicelli, J. et al. The “polyploid effect” in the breeding of aromatic and medicinal species. Sci. Hortic. (Amsterdam). 260, 108854 (2020).39.Dhooghe, E., Laere, K. V., Eeckhaut, T., Leus, L. & Huylenbroeck, J. V. Mitotic chromosome doubling of plant tissues in vitro. 104, 359–373 (2011).
    Google Scholar 
    40.Aharoni, A., Jongsma, M. A. & Bouwmeester, H. J. Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602 (2005).CAS 
    PubMed 

    Google Scholar 
    41.Bouvier, F. et al. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. 24, 241–252 (2000).CAS 

    Google Scholar 
    42.Külheim, C. et al. The molecular basis of quantitative variation in foliar secondary metabolites in Eucalyptus globulus. New Phytol. 191, 1041–1053 (2011).PubMed 

    Google Scholar 
    43.Mossi, A. J. et al. Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). 91, 273–277 (2011).44.Henery, M. L., Moran, G. F., Wallis, I. R., Foley, W. J. & Henery, M. L. Identification of quantitative trait loci influencing foliar concentrations of terpenes and formylated phloroglucinol compounds in Eucalyptus nitens. 176, 82–95 (2007).45.Kainer, D., Lanfear, R., Foley, W. J. & Külheim, C. Genomic approaches to selection in outcrossing perennials : focus on essential oil crops. Theor. Appl. Genet. 128, 2351–2365 (2015).PubMed 

    Google Scholar 
    46.Lucia, A., Licastro, S., Zerba, E. & Masuh, H. Yield, chemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. 129, 107–114 (2008).47.Hantao, L. W. et al. Comprehensive two-dimensional gas chromatography combined to multivariate data analysis for detection of disease-resistant clones of Eucalyptus. Talanta 116, 1079–1084 (2013).CAS 
    PubMed 

    Google Scholar 
    48.Batish, D. R., Singh, H. P., Setia, N., Kaur, S. & Kohli, R. K. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. – Sect. Biosci. 61, 465–471 (2006).CAS 

    Google Scholar 
    49.Arminante, F. et al. Allelopathic activity of essential oils from mediterranean labiatae. Acta Hort. 723, 347–352 (2006).CAS 

    Google Scholar 
    50.Batish, D. R. et al. Alternative control of littleseed canary grass using eucalypt oil. Agron. Sustain. Dev. 27, 171–177 (2007).CAS 

    Google Scholar 
    51.Vasconcelos, L. C. et al. Phytochemical analysis and effect of the essential oil of Psidium L . species on the initial development and mitotic activity of plants. Env. Sci. Poll. Res. 26, 26216–26228 (2019).52.Prates, H. T., Paes, J. M. V., Pires, N. de M., Filho, I. A. P. & Magalhães, P. C. Efeito do extrato aquoso de leucena na germinação e no desenvolvimento do milho. Pesq. Agropec. Bras. 1, 909–914 (2000).53.Fernandes, T. C. C., Mazzeo, D. E. C. & Marin-morales, M. A. Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to tri-X-uralin herbicide. Pest. Bioch. Phys. 88, 252–259 (2007).CAS 

    Google Scholar 
    54.Andrade, L. F., Davide, L. C. & Gedraite, L. S. The effect of cyanide compounds, fluorides, aluminum, and inorganic oxides present in spent pot liner on germination and root tip cells of Lactuca sativa. Ecotoxicol. Environ. Saf. 73, 626–631 (2010).CAS 
    PubMed 

    Google Scholar  More

  • in

    Antigenic escape selects for the evolution of higher pathogen transmission and virulence

    Oligomorphic dynamics (OMD) of antigenic escapeWe considered a model of the antigenic escape of a pathogen from host herd immunity on a one-dimensional antigenicity space (x). We tracked the changes in the density (S(t,x)) of hosts that are susceptible to antigenicity variant x of pathogen at time t, and the density (I(t,x)) of hosts that are currently infected and infectious with antigenicity variant x of pathogen at time t:$$frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{ – infty }^infty beta sigma left( {x – y} right)Ileft( {t,y} right)dy,$$
    (5)
    $$frac{{partial Ileft( {t,x} right)}}{{partial t}} = beta Sleft( {t,x} right)Ileft( {t,x} right) – left( {gamma + alpha } right)Ileft( {t,x} right) + Dfrac{{partial ^2Ileft( {t,x} right)}}{{partial x^2}},$$
    (6)
    where β, α and γ are the transmission rate, virulence (additional mortality due to infection) and recovery rate of pathogens, which are independent of antigenicity. The function σ(x−y) denotes the degree of cross immunity: a host infected by pathogen variant y acquires perfect cross immunity with probability σ(x−y), but fails to acquire any cross immunity with probability 1−σ(x−y) (this is called polarized cross immunity by Gog and Grenfell25). The degree σ(x−y) of cross immunity is assumed to be a decreasing function of the distance |x−y| between variants x and y. When a new variant with antigenicity x = 0 is introduced at time t = 0, the initial host population is assumed to be susceptible to any antigenicity variant of pathogen: S(0,x) = 1. In equation (6), (D = mu sigma _mathrm{m}^2/2) is one half of the mutation variance for the change in antigenicity, representing random mutation in the continuous antigenic space.Susceptibility profile moulded by the primary outbreakWe first analysed the dynamics of the primary outbreak of a pathogen and derived the resulting susceptibility profile, which can be viewed as the fitness landscape subsequently experienced by the pathogen. For simplicity, we assumed that mutation can be ignored during the first epidemic initiated with antigenicity strain x = 0. The density ({{{S}}}_0left( {{{t}}} right) = {{{S}}}({{{t}}},0)) of hosts that are susceptible to the currently prevailing antigenicity variant x = 0, as well as the density ({{{I}}}_0left( {{{t}}} right) = {{{I}}}({{{t}}},0)) of hosts that are currently infected by the focal variant change with time as$$frac{{dS_0}}{{dt}} = – S_0beta I_0,$$
    (7)
    $$frac{{dI_0}}{{dt}} = S_0beta I_0 – left( {gamma + alpha } right)I_0,$$
    (8)
    $$frac{{dR_0}}{{dt}} = gamma I_0,$$
    (9)
    with (S_0left( 0 right) = 1), (I_0left( 0 right) approx 0) and (R_0left( 0 right) = 0). The final size of the primary outbreak,$$psi _0 = R_0left( infty right) = 1 – S_0left( infty right) = exp left[ { – beta mathop {int}limits_0^infty {I_0} left( t right)dt} right],$$is determined as the unique positive root of$$begin{array}{*{20}{c}} {psi _0 = 1 – e^{ – rho _0psi _0},} end{array}$$
    (10)
    where (rho _0 = beta /left( {gamma + alpha } right) > 1) is the basic reproductive number6. Associated with this epidemiological change, the susceptibility profile (S_xleft( t right) = S(t,x)) against antigenicity x ((x ne 0)) other than the currently circulating variant (x = 0) changes by cross immunity as$$begin{array}{*{20}{c}} {frac{{dS_x}}{{dt}} = – S_xbeta sigma left( x right)I_0,quad left( {x ne 0} right).} end{array}$$
    (11)
    Integrating both sides of equation (11) from t = 0 to (t = infty), we see that the susceptibility profile (sleft( x right) = S_x(infty )) after the primary outbreak at x = 0 is$$begin{array}{*{20}{c}} {sleft( x right) = exp left[ { – beta sigma left( x right)mathop {int}limits_0^infty {I_0} left( t right)dt} right] = left( {1 – psi _0} right)^{sigma left( x right)} = e^{ – rho _0sigma left( x right)psi _0},} end{array}$$
    (12)
    where the last equality follows from equation (10). The susceptibility can be effectively reduced by cross immunity when the primary variant has a large impact (that is, when the fraction of hosts remaining uninfected, 1−ψ0, is small) and when the degree of cross immunity is strong (that is, when σ(x) is close to 1). With a variant antigenically very close to the primary variant (x ≈ 0), the cross immunity is very strong ((sigma left( x right) approx 1)) so that the susceptibility against variant x is nearly maximally reduced: (s(x) approx 1 – psi _0). With a variant antigenically distant from the primary variant, σ(x) becomes substantially smaller than 1, making the host more susceptible to the variant. For example, if the cross immunity is halved ((sigma left( x right) = 0.5)) from its maximum value 1, then the susceptibility to that variant is as large as (left( {1 – psi _0} right)^{0.5}). If a variant is antigenically very distant from the primary variant, then (sigma left( x right) approx 0), and the host is nearly fully susceptible to the variant ((sleft( x right) approx 1)).Threshold antigenic distance for escaping immunity raised by primary outbreakOf particular interest is the threshold antigenicity distance xc that allows for antigenic escape, that is, any antigenicity variant more distant than this threshold from the primary variant (x > xc) can increase when introduced after the primary outbreak. Such a threshold is determined from$$frac{{beta sleft( {x_c} right)}}{{gamma + alpha }} = rho _0sleft( {x_c} right) = 1$$or$$begin{array}{*{20}{c}} {sleft( {x_c} right) = left( {1 – psi _0} right)^{sigma left( {x_c} right)} = e^{ – rho _0sigma left( {x_c} right)psi _0} = frac{1}{{rho _0}},} end{array}$$
    (13)
    where we used equation (12). With a specific choice of cross-immunity profile,$$begin{array}{*{20}{c}} {sigma left( x right) = exp left[ { – frac{{x^2}}{{2omega ^2}}} right],} end{array}$$
    (14)
    the threshold antigenicity beyond which the virus can increase in the susceptibility profile s(x) after the primary outbreak is obtained, by substituting equation (14) into equation (13)$$exp left[ { – rho _0psi _0exp left[ { – frac{{x_c^2}}{{2omega ^2}}} right]} right] = frac{1}{{rho _0}},$$and taking the logarithm of both sides twice:$$begin{array}{*{20}{c}} {x_c = omega sqrt {2log frac{{rho _0psi _0}}{{log rho _0}}} .} end{array}$$
    (15)
    OMDIntegrating both sides of equation (6) over the whole space, we obtained the dynamics for the total density of infected hosts, ({{{bar{ I}}}}left( {{{t}}} right) = {int}_{ – infty }^infty {{{{I}}}left( {{{{t}}},{{{x}}}} right){{{dx}}}}):$$begin{array}{*{20}{c}} {frac{{dbar I}}{{dt}} = left[ {beta mathop {smallint }limits_{ – infty }^infty Sleft( {t,x} right)phi left( {t,x} right)dx – left( {gamma + alpha } right)} right]bar Ileft( t right) = left[ {beta bar Sleft( t right) – left( {gamma + alpha } right)} right]bar Ileft( t right)} end{array},$$
    (16)
    where$$phi left( {t,x} right) = Ileft( {t,x} right)/bar Ileft( t right)$$is the relative frequency of antigenicity variant x in the pathogen population circulating at time t, and$$begin{array}{*{20}{c}} {bar Sleft( t right) = mathop {int}limits_{ – infty }^infty S left( {t,x} right)phi left( {t,x} right)dx} end{array}$$
    (17)
    is the mean susceptibility experienced by currently circulating pathogens. The dynamics for the relative frequency (phi left( {t,x} right)) of pathogen antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S(t)} right}phi left( {t,x} right) + Dfrac{{partial ^2phi }}{{partial x^2}}.} end{array}$$
    (18)
    As in Sasaki and Dieckmann27, we decomposed the frequency distribution to the sum of several morph distributions (oligomorphic decomposition) as$$begin{array}{*{20}{c}} {phi left( {t,x} right) = mathop {sum }limits_i p_iphi _ileft( {t,x} right)} end{array},$$
    (19)
    where pi(t) is the frequency of morph i and (phi _i(t,x)) is the within-morph distribution of antigenicity. By definition, and ({int}_{ – infty }^infty {phi _i} (t,x)dx = 1). Let$$begin{array}{*{20}{c}} {bar x_i = mathop {int}limits_{ – infty }^infty {xphi _ileft( {t,x} right)dx} } end{array}$$
    (20)
    be the mean antigenicity of a morph and$$begin{array}{*{20}{c}} {V_i = mathop {smallint }limits_{ – infty }^infty left( {x – bar x_i} right)^2phi _ileft( {t,x} right)dx = Oleft( {{it{epsilon }}^2} right)} end{array}$$
    (21)
    where O is order be the within-morph variance of each morph, which is assumed to be small, of the order of ({it{epsilon }}^2). We denoted the mean susceptibility of host population for viral morph (i) by (bar S_i = {int}_{ – infty }^infty {Sleft( {t,x} right)phi _i(t,x)dx}). As shown in Sasaki and Dieckmann27, the dynamics for viral morph frequency is expressed as$$begin{array}{*{20}{c}} {frac{{dp_i}}{{dt}} = beta left( {bar S_i – bar S} right)p_i + Oleft( {it{epsilon }} right),} end{array}$$
    (22)
    while the dynamics for the within-morph distribution of antigenicity is$$begin{array}{*{20}{c}} {frac{{partial phi _i}}{{partial t}} = beta left{ {Sleft( {t,x} right) – bar S_i} right}phi _ileft( {t,x} right) + Dfrac{{partial ^2phi _i}}{{partial x^2}}.} end{array}$$
    (23)
    From this, the dynamics for the mean antigenicity of a morph,$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = V_ibeta left. {frac{{partial S}}{{partial x}}} right|_{x = bar x_i} + Oleft( {{it{epsilon }}^3} right)} end{array}$$
    (24)
    and the dynamics for the within-morph variance of a morph$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = frac{1}{2}beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}left{ {Eleft[ {xi _i^4} right] – V_i^2} right} + 2D + Oleft( {{it{epsilon }}^5} right)} end{array}$$
    (25)
    are derived, where (xi _i = x – bar x_i) and (Eleft[ {xi _i^4} right] = {int}_{ – infty }^infty {left( {x – bar x_i} right)^4phi _ileft( {t,x} right)dx}) are the fourth central moments of antigenicity around the morph mean. Assuming that the within-morph distribution is normal (Gaussian closure), (Eleft[ {xi _i^4} right] = 3V_i^2), and hence equation (25) becomes$$begin{array}{*{20}{c}} {frac{{dV_i}}{{dt}} = beta left. {frac{{partial ^2S}}{{partial x^2}}} right|_{x = bar x_i}V_i^2 + 2D + Oleft( {{it{epsilon }}^5} right).} end{array}$$
    (26)
    Second outbreak predicted by OMDEquations (22), (24) and (26) are general, but they rely on a full knowledge of the dynamics of the susceptibility profile S(t,x). To make further progress, we used an additional approximation by substituting equation (13), the susceptibility profile, over viral antigenicity space after the primary outbreak at x = 0 and before the onset of the second outbreak at a distant position. We kept track of two morphs at positions x0(t) and x1(t), where the first morph is that caused by the primary outbreak at x = 0, and the second morph is that emerged in the range x > xc beyond the threshold antigenicity xc defined in equation (13) (and equation (15) for a specific form of σ(x)) as the source of the next outbreak.As (sleft( x right) = left( {1 – psi _0} right)^{sigma (x)} = exp [sigma left( x right)log (1 – psi _0)]), we have$$frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right]sleft( {bar x_i} right),$$and$$frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right) = left[ {frac{{{{{mathrm{d}}}}^2sigma }}{{{{{mathrm{d}}}}x^2}}left( {bar x_i} right)log left( {1 – psi _0} right) + left{ {frac{{{{{mathrm{d}}}}sigma }}{{{{{mathrm{d}}}}x}}left( {bar x_i} right)log left( {1 – psi _0} right)} right}^2} right]sleft( {bar x_i} right).$$Therefore, the frequency, mean antigenicity and variance of antigenicity of an emerging morph (i = 1) change respectively as$$begin{array}{*{20}{l}} {frac{{dp_1}}{{dt}} = beta left[ {sleft( {bar x_1} right) – sleft( {bar x_0} right)} right]p_1left( {1 – p_1} right),} hfill \ {frac{{dbar x_1}}{{dt}} = V_1beta frac{{{{{mathrm{d}}}}s}}{{{{{mathrm{d}}}}x}}left( {bar x_1} right),} hfill \ {frac{{dV_1}}{{dt}} = beta frac{{{{{mathrm{d}}}}^2s}}{{{{{mathrm{d}}}}x^2}}left( {bar x_1} right)V_1^2 + 2D}. hfill end{array}$$
    (27)
    The predicted change in the mean antigenicity was plotted by integrating equation (27). As initial condition, we chose the time when a seed of second peak in the range x > xc first appeared, and then computed the mean trait as$$begin{array}{*{20}{c}} {bar xleft( t right) = x_0left( {1 – p_1left( t right)} right) + bar x_1p_1left( t right).} end{array}$$
    (28)
    In the case of Fig. 2, where β = 2, γ + α = 0.6, D = 0.001 and ω = 2, the final size of epidemic for the primary outbreak, defined as equation (7), was ψ = 0.959, and the critical antigenic distance for the increase of pathogen variant obtained from equation (26) was xc = 2.795. The initial conditions for the oligomorphic dynamics (equation 27) for the second morph were then (p_1left( {t_0} right) = 1.6 times 10^{ – 8}), (bar x_1left( {t_0} right) = 3.239), (V_1left( {t_0} right) = 0.2675) at t0 = 41. In Fig. 2, the predicted trajectory for the mean antigenicity (equation 28) is plotted as a red curve, together with the mean antigenicity change observed in simulation (blue curve).Accuracy of predicting the antigenicity with OMD and the timing of the second outbreakHere we describe how we defined the initial conditions for oligomorphic dynamics, that is, the frequency, the mean antigenicity and the variance in antigenicity of the morph that caused the primary outbreak and the morph that may cause the second outbreak. We then show how the accuracy in prediction of the second outbreak depends on the timing of the prediction.We divided the antigenicity space into two at x = xc, above which the pathogen can increase under the given susceptibility profile after the primary outbreak, but below which the pathogen cannot increase. We then took the relative frequencies of pathogens above xc and below xc, and the conditional mean and variance in these separated regions to set the initial frequencies, means and variances of the morphs at time t0 when we started integrating the oligomorphic dynamics to predict the second outbreak:$$begin{array}{*{20}{c}} {begin{array}{*{20}{l}} {p_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill & {p_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^infty Ileft( {t_0,x} right)dx}},} hfill \ {bar x_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {bar x_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty xIleft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}},} hfill \ {V_0left( {t_0} right) = frac{{mathop {smallint }nolimits_0^{x_c} left( {x – bar x_0left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_0^{x_c} Ileft( {t_0,x} right)dx}},} hfill & {V_1left( {t_0} right) = frac{{mathop {smallint }nolimits_{x_c}^infty left( {x – bar x_1left( {t_0} right)} right)^2Ileft( {t_0,x} right)dx}}{{mathop {smallint }nolimits_{x_c}^infty Ileft( {t_0,x} right)dx}}.} hfill end{array}} end{array}$$
    (29)
    We then compared the trajectory for mean antigenicity change observed in simulation (blue curve in Fig. 2) and the predicted trajectory (red curve in Fig. 2) for mean antigenicity (equation 28) by integrating oligomorphic dynamics (equation 27) with the initial condition (equation 29) at time t = t0. Extended Data Fig. 2 shows how the accuracy of prediction, measured by the Kullback–Leibler divergence between these two trajectories, depends on the timing t0 chosen for the prediction. The second outbreak occurs around t = 54.6, where mean antigenicity jumps from around 0 to around 5. The prediction with OMD is accurate if it is made for t0 > 40. Figure 2 is drawn for t0 = 41 where the second peak is about to emerge (see Extended Data Fig. 2). Even for the latest prediction for t0 = 51 in Extended Data Fig. 2, the morph frequency of the emerging second morph was only 0.3% off, so the prediction is still worthwhile to make.Extended Data Fig. 2 shows that the prediction power is roughly constant (albeit with a wiggle) for (5 < t_0 < 30) (the predicted timings are 10–15% longer than actual timing for (5 < t_0 < 30)), and steadily improved for t0 > 30. When the prediction was made very early (t0 < 5), the deviations were larger.OMD for the joint evolution of antigenicity and virulenceLet s(x) be the susceptibility of the host population against antigenicity x. A specific susceptibility profile is given by equation (12), with cross-immunity function σ(x) and the final size ψ0 of epidemic of the primary outbreak. Note that, as above, the susceptibility profile is, in general, a function of time. The density (I(x,alpha )) of hosts infected by a pathogen of antigenicity x and virulence α changes with time, when rare, as$$begin{array}{*{20}{c}} {frac{{partial Ileft( {x,alpha } right)}}{{partial t}} = beta sleft( x right)Ileft( {x,alpha } right) - left( {gamma + alpha } right)Ileft( {x,alpha } right) + D_xfrac{{partial ^2I}}{{partial x^2}} + D_alpha frac{{partial ^2I}}{{partial alpha ^2}}.} end{array}$$ (30) The change in the frequency (phi left( {x,alpha } right) = Ileft( {x,alpha } right)/{int!!!!!int} I left( {x,alpha } right)dxdalpha) of a pathogen with antigenicity x and virulence α follows$$begin{array}{*{20}{c}} {frac{{partial phi }}{{partial t}} = left{ {wleft( {x,alpha } right) - bar w} right}phi + D_xfrac{{partial ^2phi }}{{partial x^2}} + D_alpha frac{{partial ^2phi }}{{partial alpha ^2}},} end{array}$$ (31) where$$begin{array}{*{20}{c}} {wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - alpha } end{array}$$ (32) is the fitness of a pathogen with antigenicity x and virulence α and (bar w = {int!!!!!int} w left( {x,alpha } right)dxdalpha) is the mean fitness.We decomposed the joint frequency distribution ϕ(x, α) of the viral quasi-species as (oligomorphic decomposition):$$begin{array}{*{20}{c}} {phi left( {x,alpha } right) = mathop {sum }limits_i phi _ileft( {x,alpha } right)p_i,} end{array}$$ (33) where ϕi(x, α) is the joint frequency distribution of antigenicity x and virulence α in morph i (({int!!!!!int} {phi _idxdalpha = 1})) and pi is the relative frequency of morph i ((mathop {sum}nolimits_i {p_i = 1})). The frequency of morph i then changes as$$begin{array}{l}frac{{dp_i}}{{dt}} = left( {bar w_i - mathop {sum }limits_j bar w_jp_j} right)p_i,\ frac{{partial phi _i}}{{partial t}} = left( {wleft( {x,alpha } right) - bar w_i} right)phi _ileft( {x,alpha } right) + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}},end{array}$$ (34) where (bar w_i = {int!!!!!int} w left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) is the mean fitness of morph i.Assuming that the traits are distributed narrowly around the morph means (bar x_i = {int!!!!!int} x phi _ileft( {x,alpha } right)dxdalpha) and (bar alpha _i = {int!!!!!int} alpha phi _i(x,alpha )dxdalpha), so that (xi _i = x - bar x_i = O({it{epsilon }})) and (zeta _i = alpha - bar alpha _i = O({it{epsilon }})) where ({it{epsilon }}) is a small constant, we expanded the fitness w(x, α) around the means (bar x_i) and (bar alpha _i) of morph i,$$begin{array}{*{20}{l}} {wleft( {x,alpha } right)} hfill & = hfill & {wleft( {bar x_i,bar alpha _i} right) + left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ixi _i^2 + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ixi _izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_izeta _i^2 + Oleft( {{it{epsilon }}^3} right).} hfill end{array}$$Substituting this and$$bar w_i = wleft( {bar x_i,bar alpha _i} right) + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^{xx} + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^{xalpha } + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iV_i^{alpha alpha } + Oleft( {{it{epsilon }}^3} right)$$into equation (34), we obtained$$frac{{dp_i}}{{dt}} = left[ {w_i - mathop {sum }limits_j w_jp_j} right]p_i + Oleft( {it{epsilon }} right),$$ (35) $$begin{array}{*{20}{l}} {frac{{partial phi _i}}{{partial t}}} hfill & = hfill & {left[ {left( {frac{{partial w}}{{partial x}}} right)_ixi _i + left( {frac{{partial w}}{{partial alpha }}} right)_izeta _i + frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {xi _i^2 - V_i^x} right) + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft( {xi _izeta _i - C_i} right)} right.} hfill \ {} hfill & {} hfill & {left. { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {zeta _i^2 - V_i^alpha } right)} right]phi _i + D_xfrac{{partial ^2phi _i}}{{partial x^2}} + D_alpha frac{{partial ^2phi _i}}{{partial alpha ^2}} + Oleft( {{it{epsilon }}^3} right),} hfill end{array}$$ (36) where (w_i = wleft( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial x}}} right)_i = frac{{partial w}}{{partial x}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = frac{{partial w}}{{partial alpha }}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = frac{{partial ^2w}}{{partial x^2}}left( {bar x_i,bar alpha _i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = frac{{partial ^2w}}{{partial xpartial alpha }}left( {bar x_i,bar alpha _i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = frac{{partial ^2w}}{{partial alpha ^2}}left( {bar x_i,bar alpha _i} right)) are fitness and its first and second derivatives evaluated at the mean traits of morph i, and$$begin{array}{l}V_i^x = E_ileft[ {left( {x - bar x_i} right)^2} right],\ C_i = E_ileft[ {left( {x - bar x_i} right)left( {alpha - bar alpha _i} right)} right], \ V_i^alpha = E_ileft[ {left( {alpha - bar alpha _i} right)^2} right]end{array}$$ (37) are within-morph variances and covariance of the traits of morph i. Here (E_ileft[ {fleft( {x,alpha } right)} right] = {int!!!!!int} f left( {x,alpha } right)phi _ileft( {x,alpha } right)dxdalpha) denotes taking expectation of a function f with respect to the joint trait distribution (phi _i(x,alpha )) of morph i.Substituting equation (36) into the change in the mean antigenicity of morph i$$frac{{dbar x_i}}{{dt}} = frac{d}{{dt}}{int!!!!!int} x phi _i(x,alpha )dxdalpha = {int!!!!!int} x frac{{partial phi _i}}{{partial t}}dxdalpha = {int!!!!!int} {(bar x_i + xi _i)} frac{{partial phi _i}}{{partial t}}dxi _idzeta _i,$$we obtained$$begin{array}{*{20}{c}} {frac{{dbar x_i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iV_i^x + left( {frac{{partial w}}{{partial alpha }}} right)_iC_i + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (38) Similarly, the change in the mean virulence of morph i was expressed as$$begin{array}{*{20}{c}} {frac{{dbar alpha _i}}{{dt}} = left( {frac{{partial w}}{{partial x}}} right)_iC_i + left( {frac{{partial w}}{{partial alpha }}} right)_iV_i^alpha + Oleft( {{it{epsilon }}^3} right).} end{array}$$ (39) Equations (38) and (39) from the mean trait change was summarized in a matrix form as$$begin{array}{*{20}{c}} {frac{d}{{dt}}left( {begin{array}{*{20}{c}} {bar x_i} \ {bar alpha _i} end{array}} right) = {{{boldsymbol{G}}}}_{{{boldsymbol{i}}}}left( {begin{array}{*{20}{c}} {left( {frac{{partial w}}{{partial x}}} right)_i} \ {left( {frac{{partial w}}{{partial alpha }}} right)_i} end{array}} right) + O({it{epsilon }}^3),} end{array}$$ (40) where$$begin{array}{*{20}{c}} {{{{boldsymbol{G}}}}_{{{boldsymbol{i}}}} = left( {begin{array}{*{20}{c}} {V_i^x} & {C_i} \ {C_i} & {V_i^alpha } end{array}} right)} end{array}$$ (41) is the variance-covariance matrix of the morph i.Substituting equation (36) into the right-hand side of the change in variance of antigenicity of morph i,$$frac{{dV_i^x}}{{dt}} = frac{d}{{dt}}{int!!!!!int} {xi _i^2phi _idxi _idzeta _i} = {int!!!!!int} {xi _i^2frac{{partial phi _i}}{{partial t}}dxi _idzeta _i}$$and those in the change in the other variance and covariance, we obtained$$begin{array}{*{20}{l}} {frac{{dV_i^x}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^4} right) - left( {V_i^x} right)^2} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + 2D_x + O({it{epsilon }}^5),} hfill \ {frac{{dC_i}}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^3zeta _i} right) - V_i^xC_i} right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - C_i^2} right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right] + O({it{epsilon }}^5),} hfill \ {frac{{dV_i^alpha }}{{dt}}} hfill & = hfill & {frac{1}{2}left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft[ {E_ileft( {xi _i^2zeta _i^2} right) - V_i^xV_i^alpha } right] + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft[ {E_ileft( {xi _izeta _i^3} right) - C_iV_i^alpha } right]} hfill \ {} hfill & {} hfill & { + frac{1}{2}left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft[ {E_ileft( {zeta _i^4} right) - left( {V_i^alpha } right)^2} right] + 2D_alpha + O({it{epsilon }}^5).} hfill end{array}$$ (42) If we assume that antigenicity and virulence within a morph follow a 2D Gaussian distribution for given means, variances and covariance, we should have (E_i(xi _i^4) = 3left( {V_i^x} right)^2,E_i(xi _i^3zeta _i) = 3V_i^xC_i), (E_i(xi _i^2zeta _i^2) = V_i^xV_i^alpha + 2C_i^2), (E_i(xi _izeta _i^3) = 3V_i^alpha C_i) and (E_i(zeta _i^4) = 3left( {V_i^alpha } right)^2), and hence$$frac{{dV_i^x}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_ileft( {V_i^x} right)^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_i^2 + 2D_x + O({it{epsilon }}^5),$$ (43) $$frac{{dC_i}}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iV_i^xC_i + left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_ileft{ {V_i^xV_i^alpha - C_i^2} right} + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_iC_iV_i^alpha + O({it{epsilon }}^5),$$ (44) $$frac{{dV_i^alpha }}{{dt}} = left( {frac{{partial ^2w}}{{partial x^2}}} right)_iC_i^2 + 2left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^alpha C_i + left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_ileft( {V_i^alpha } right)^2 + 2D_alpha + O({it{epsilon }}^5).$$ (45) Equations (43) and (44) were rewritten in a matrix form as$$begin{array}{*{20}{c}} {frac{{dG_i}}{{dt}} = G_iH_iG_i + left( {begin{array}{*{20}{c}} {2D_xV_i^x} & 0 \ 0 & {2D_alpha V_i^alpha } end{array}} right) + O({it{epsilon }}^5),} end{array}$$ (46) where$$begin{array}{*{20}{c}} {H_i = left( {begin{array}{*{20}{c}} {left( {frac{{partial ^2w}}{{partial x^2}}} right)_i} & {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} \ {left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i} & {left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i} end{array}} right),} end{array}$$ (47) is the Hessian of the fitness function of morph i.In our equation (30) of the joint evolution of antigenicity and virulence of a pathogen after its primary outbreak, the fitness function is given by (w(x,alpha ) = beta (alpha )s(x) - alpha ,) and hence (w_i = beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i), (left( {frac{{partial w}}{{partial x}}} right)_i = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial w}}{{partial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1), (left( {frac{{partial ^2w}}{{partial x^2}}} right)_i = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)), (left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_i = beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)) and (left( {frac{{partial ^2w}}{{partial alpha ^2}}} right)_i = beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)), where a prime on β(α) and s(x) denotes differentiation by α and x, respectively. Substituting these into the dynamics for morph frequencies (equation 35), for morph means (equations 38 and 39), and for within-morph variance and covariance (equations 43–45), we obtained$$frac{{dp_i}}{{dt}} = left[ {beta left( {bar alpha _i} right)sleft( {bar x_i} right) - bar alpha _i - mathop {sum }limits_j left( {beta left( {bar alpha _j} right)sleft( {bar x_j} right) - bar alpha _j} right)p_j} right]p_i,$$ (48) $$frac{{dbar x_i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^x + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}C_i,$$ (49) $$frac{{dbar alpha _i}}{{dt}} = beta left( {bar alpha _i} right)sprime left( {bar x_i} right)C_i + left{ {beta prime left( {bar alpha _i} right)sleft( {bar x_i} right) - 1} right}V_i^alpha ,$$ (50) $$frac{{dV_i^x}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)left( {V_i^x} right)^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^xC_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_i^2 + 2D_x,$$ (51) $$frac{{dC_i}}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)V_i^xC_i + beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)left{ {V_i^xV_i^alpha - C_i^2} right} + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)C_iV_i^alpha ,$$ (52) $$frac{{dV_i^alpha }}{{dt}} = beta left( {bar alpha _i} right)sprimeprime left( {bar x_i} right)C_i^2 + 2beta prime left( {bar alpha _i} right)sprime left( {bar x_i} right)V_i^alpha C_i + beta primeprime left( {bar alpha _i} right)sleft( {bar x_i} right)left( {V_i^alpha } right)^2 + 2D_alpha .$$ (53) Equations (48)–(53) describe the oligomorphic dynamics of the joint evolution of antigenicity and virulence of a pathogen for a given host susceptibility profile s(x) over pathogen antigenicity.Of particular interest is whether antigenicity or virulence evolve faster when they jointly evolve than when they evolve alone. After the primary outbreak at a given antigenicity, for example x = 0, the susceptibility s(x) of the host population increases due to cross immunity as the distance x > 0 from the antigenicity at the primary outbreak increases. Hence, (sprime left( {bar x_i} right) > 0.) Combining this with the positive trade-off between transmission rate and virulence, we see that (left( {partial ^2w/partial xpartial alpha } right)_i = beta prime (bar alpha _i)sprime (bar x_i) > 0), and then from equation (52), we see that the within-morph covariance between antigenicity and virulence becomes positive starting from a zero initial value:$$begin{array}{*{20}{c}} {left. {frac{{dC_i}}{{dt}}} right|_{C_i = 0} = left( {frac{{partial ^2w}}{{partial xpartial alpha }}} right)_iV_i^xV_i^alpha > 0.} end{array}$$
    (54)
    If all second moments are initially sufficiently small for an emerging morph, a quick look at the linearization of equations (51)–(53) around ((V_i^x,C_i,V_i^alpha ) = (0,0,0)) indicates that both (V_i^x) and (V_i^alpha) become positive due to the random generation of variance by mutation, Dx > 0 and Dα > 0, while the covariance stays close to zero. Then, equation (54) guarantees that the first move of the covariance is from zero to positive, which then guarantees that Ci > 0 for all t. Therefore, the second term in equation (38) is positive until the mean virulence reaches its optimum ((beta prime (alpha )s(x) = 1)). This means that joint evolution with virulence accelerates the evolution of antigenicity. The same is true for virulence evolution: the first term in equation (39) (which denotes the associated change in virulence due to the selection in antigenicity through genetic covariance between them) is positive, indicating that joint evolution with antigenicity accelerates virulence evolution.Numerical exampleFigure 5 shows the oligomorphic dynamics prediction of the emergence of the next variant in antigenicity–virulence coevolution. To make progress numerically, we assumed s(x) to be constant in the following analysis because we are interested in the process between the end of the primary outbreak and the emergence of the next antigenicity–virulence morph. The partial differential equations for the density of host S(t,x) susceptible to the antigenicity variant x at time t, and the density of hosts infected by the pathogen variant with antigenicity x and virulence α are$$begin{array}{l}frac{{partial Sleft( {t,x} right)}}{{partial t}} = – Sleft( {t,x} right)mathop {smallint }limits_{alpha _{{{{mathrm{min}}}}}}^{alpha _{{{{mathrm{max}}}}}} mathop {smallint }limits_0^{x_{{{{mathrm{max}}}}}} beta left( alpha right)sigma left( {x – y} right)Ileft( {t,y,alpha } right)dydalpha ,\ frac{{partial Ileft( {t,x,alpha } right)}}{{partial t}} = left[ {beta left( alpha right)Sleft( {t,x} right) – left( {gamma + alpha } right)} right]Ileft( {t,x,alpha } right) + left( {D_xfrac{{partial ^2}}{{partial x^2}} + D_alpha frac{{partial ^2}}{{partial alpha ^2}}} right)Ileft( {t,x,alpha } right),end{array}$$
    (55)
    with the boundary conditions (left( {partial S/partial x} right)left( {t,0} right) = left( {partial S/partial x} right)left( {t,x_{{{{mathrm{max}}}}}} right) = 0), (left( {partial I/partial x} right)left( {t,0,alpha } right) = left( {partial I/partial x} right)left( {t,x_{{{{mathrm{max}}}}},0} right) = 0), (left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{min}}}}}} right) = left( {partial I/partial x} right)left( {t,x,alpha _{{{{mathrm{max}}}}}} right) = 0), and the initial conditions (Sleft( {0,x} right) = 1) and (Ileft( {0,x,alpha } right) = {it{epsilon }}delta left( x right)delta left( alpha right)), where (delta ( cdot )) is the delta function and ({it{epsilon }} = 0.01). The trait space is restricted in a rectangular region: (0 < x < x_{{{{mathrm{max}}}}} = 300) and (alpha _{{{{mathrm{min}}}}} = 0.025 < alpha < 10 = alpha _{{{{mathrm{max}}}}}). Oligomorphic dynamics prediction for the joint evolution of antigenicity and virulence was applied for the next outbreak after the outbreak with the mean antigenicity around x = 108 at time t = 102. The susceptibility of the host to antigenicity variant x at t0 = 104.8 after the previous outbreak peaked around time t = 102 came to an end is$$sleft( x right) = Sleft( {t_0,x} right).$$This susceptibility profile remained unchanged until the next outbreak started, and hence the fitness of a pathogen variant with antigenicity x and virulence α is given by$$wleft( {x,alpha } right) = beta left( alpha right)sleft( x right) - (gamma + alpha ).$$We bundled the pathogen variants into two morphs at time t0 at the threshold antigenicity xc, above which the net growth rate of the pathogen variant under the given susceptibility profile s(x) and the mean antigenicity become positive:$$wleft( {x_c,bar alpha left( {t_0} right)} right) = beta left( {bar alpha (t_0)} right)sleft( {x_c} right) - left( {gamma + bar alpha left( {t_0} right)} right) = 0.$$The initial frequency and the moments of the two morphs, the variant 0 with (x < x_c) and the variant 1 with (x > x_c) were then calculated respectively from the joint distribution (I(t_0,x,alpha )) in the restricted region (left{ {left( {x,alpha } right);0 < x < x_c,alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}) and that in the restricted region (left{ {left( {x,alpha } right);x_c < x < x_{{{{mathrm{max}}}}},alpha _{{{{mathrm{min}}}}} < alpha < alpha _{{{{mathrm{max}}}}}} right}). The frequency p1 of morph 1 (the frequency of morph 0 is given by (p_0 = 1 - p_1)), the mean antigenicity (bar x_i) and mean virulence (bar alpha _i) of morph i, and the variances and covariance, (V_i^x), and (V_i^alpha) Ci of morph i (i = 0,1) follow equations (48)–(53), where the dynamics for the morph frequency (equation 48) is simplified in this two-morph situation as$$frac{{dp_1}}{{dt}} = left[ {beta left( {bar alpha _1} right)sleft( {bar x_1} right) - beta left( {bar alpha _0} right)sleft( {bar x_0} right) - left( {bar alpha _1 - bar alpha _0} right)} right]p_1left( {1 - p_1} right),$$with (p_0left( t right) = 1 - p_1(t)). This is iterated from (t = t_0 = 104.8) to (t_e = 107). The frequency p1 of the new morph, the population mean antigenicity (bar x = p_0bar x_0 + p_1bar x_1), virulence (bar alpha = p_0bar alpha _0 + p_1bar alpha _1), variance in antigenicity (V_x = p_0V_0^x + p_1V_1^x), covariance between antigenicity and virulence (C = p_0C_0 + p_1C_1), and variance in virulence (V_alpha = p_0V_0^alpha + p_1V_1^alpha) are overlayed by red thick curves on the trajectories of moments observed in the full dynamics (equation 55).In Fig. 5a, the dashed vertical line represents the threshold antigenicity xc, above which (R_0 = beta s(x)/(gamma + bar alpha ) > 1) at (t = t_s = 104.8), where oligomorphic dynamics prediction was attempted. Two morphs were then defined according to whether or not the antigenicity exceeded a threshold x = xc: the resident morph (morph 1) is represented as the dense cloud to the left of x = xc and the second morph (morph 2) consisting of all the genotypes to the right of x = xc with their R0 greater than one. The within-morph means and variances were then calculated in each region. The relative total densities of infected hosts in the left and right regions defined the initial frequency of two morphs in OMD. A 2D Gaussian distribution was assumed for within-morph trait distributions to have the closed moment equations as previously explained. Using these as the initial means, variances, covariances of the two morphs at t = ts, the oligomorphic dynamics for 11 variables (relative frequency of morph 1, mean antigenicity, mean virulence, variances in antigenicity and virulence and their covariance in morphs 0 and 1) was integrated up to t = te. The results are shown as red curves in Fig. 5c–h, which are compared with the simulation results (blue curves).Fig. 5c–e respectively show the change in total infected density, mean antigenicity and mean virulence. Red curves show the predictions by oligomorphic dynamics from the initial moments of each morph at t = ts to the susceptibility distribution (s(x) = S(t_s,x)), which are compared with the simulation results (blue curves). The OMD-predicted mean antigenicity, for example, is defined as$$bar xleft( t right) = left( {1 – p_1left( t right)} right)bar x_0left( t right) + p_1left( t right)bar x_1left( t right),$$where p1(t) is the frequency of morph 1, (bar x_0) and (bar x_1) are the mean antigenicities of morphs 0 and 1.The red curves in Fig. 5f–h show the OMD-predicted changes in the variance in antigenicity, variance in virulence and covariance between antigenicity and virulence, which are compared with the simulation results (blue curves). The OMD-predicted covariance, for example, is defined as$$begin{array}{rcl}Cleft( t right) & = & left( {1 – p_1(t)} right)C_0left( t right) + p_1left( t right)C_1left( t right) + p_1left( t right)left( {1 – p_1left( t right)} right)\ && left( {bar x_0left( t right) – bar x_1left( t right)} right)left( {bar alpha _0left( t right) – bar alpha _1left( t right)} right),end{array}$$where (C_0(t)) and (C_1(t)) are the antigenicity–virulence covariances in morphs 0 and 1, and (bar alpha _0(t)) and (bar alpha _1(t)) are the mean virulence of morphs 0 and 1.Selection for maximum growth rateWe next show that a pathogen that has the strategy of maximizing growth rate in a fully susceptible population is evolutionarily stable in the presence of antigenic escape.At stationarity, the travelling wave profiles of (hat I(z)) and (hat S(z)) along the moving coordinate, (z = x – vt), that drifts constantly to the right with the speed v are defined as$$begin{array}{l}0 = Dfrac{{d^2hat Ileft( z right)}}{{dz^2}} + vfrac{{dhat Ileft( z right)}}{{dz}} + beta hat Sleft( z right)hat Ileft( z right) – left( {gamma + alpha } right)hat Ileft( z right),\ 0 = vfrac{{dhat Sleft( z right)}}{{dz}} – beta hat Sleft( z right)mathop {smallint }limits_{ – infty }^infty sigma left( {z – xi } right)hat Ileft( xi right)dxi ,end{array}$$
    (56)
    with (hat Ileft( { – infty } right) = hat Ileft( infty right) = 0), (hat Sleft( infty right) = 1).Let j(t,x) be the density of a mutant pathogen variant, with virulence α′ and transmission rate β′, that is introduced in the host population where the resident variant is already established (equation 50). For the initial transient phase in which the density of mutants is sufficiently small, we have an equation for the change in (Jleft( {t,z} right) = j(t,x)):$$begin{array}{*{20}{c}} {frac{partial }{{partial t}}Jleft( {t,z} right) = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime hat Sleft( z right) – left( {gamma + alpha prime } right)} right}Jleft( {t,z} right),} end{array}$$
    (57)
    with the initial condition (Jleft( {0,z} right) = {it{epsilon }}delta (z)), where ({it{epsilon }}) is a small constant and (delta ( cdot )) is Dirac’s function.Consider a system$$begin{array}{*{20}{c}} {frac{{partial w}}{{partial t}} = left{ {Dfrac{{partial ^2}}{{partial z^2}} + vfrac{partial }{{partial z}} + beta prime – left( {gamma + alpha prime } right)} right}w,} end{array}$$
    (58)
    with (wleft( {0,z} right) = Jleft( {0,z} right) = {it{epsilon }}delta (z)). Noting that (hat Sleft( z right) < 1), we have (Jleft( {t,z} right) le w(t,z)) for any (t > 0) and (z in {Bbb R}) from the comparison theorem. The solution to equation (52) is$$begin{array}{*{20}{c}} {wleft( {t,z} right) = frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {rprime t – frac{{left( {z + vt} right)^2}}{{4Dt}}} right]} end{array},$$
    (59)
    where (rprime = beta prime – left( {gamma + alpha prime } right)). This follows by noting that (wleft( {t,x} right)e^{ – rprime t}) follows a simple diffusion equation (partial w/partial t = Dpartial ^2w/partial x^2). By rearranging the exponents of equation (53),$$begin{array}{*{20}{l}} {wleft( {t,z} right)} hfill & = hfill & {exp left[ {at – kz} right]frac{{it{epsilon }}}{{sqrt {4pi Dt} }}e^{ – z^2/4Dt}} hfill \ {} hfill & {} hfill & { < frac{{it{epsilon }}}{{sqrt {4pi Dt} }}exp left[ {at - kz} right],} hfill end{array}$$ (60) where$$a = frac{{v^{prime 2} - v^2}}{{4D}},$$ (61) $$k = frac{v}{{2D}}.$$ (62) Here (vprime = 2sqrt {rprime D}) is the asymptotic wave speed if the mutant variant monopolizes the host population. Therefore, if (vprime < v), then (a < 0), and hence (w(t,z)) for a fixed z converges to zero as t goes to infinity; this, in turn, implies that (J(t,z)) converges to zero because (Jleft( {t,z} right) le wleft( {t,z} right)) for all t and z. Therefore, we conclude that any mutant that has a slower wave speed than the resident can never invade the population, implying that a variant that has the maximum wave speed (v = 2sqrt {rD}) is locally evolutionarily stable.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    1.Westoby, M. A leaf–height–seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS 

    Google Scholar 
    2.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    3.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    Google Scholar 
    4.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    5.Musavi, T. et al. Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits. Ecol. Evol. 6, 7352–7366 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    6.Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
    Google Scholar 
    7.Van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    8.Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
    Google Scholar 
    9.Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    Google Scholar 
    10.Díaz, S. et al. The global spectrum of plant form and function. Nature 529,167–171 (2015).
    Google Scholar 
    11.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Thomas, H. J. et al. Global plant trait relationships extend to the climatic extremes of the tundra biome. Nat. Commun. 11, 1351 (2020).14.Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 10, 2203 (2019).15.Schimper, A. Plant-Geography Upon A Physiological Basis (Clarendon Press, 1903).16.Warming, E. Oecology Of Plants (Oxford, 1909).17.Raunkiær, C. in Life Forms of Plants and Statistical Plant Geography, 4-16 (Clarendon Press, 1934).18.Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).
    Google Scholar 
    19.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Google Scholar 
    22.Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
    Google Scholar 
    23.Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil–climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).
    Google Scholar 
    24.Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).CAS 

    Google Scholar 
    25.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS 

    Google Scholar 
    26.Asner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E. & Vaughn, N. Large-scale climatic and geophysical controls on the leaf economics spectrum. Proc. Natl Acad. Sci. USA 113, E4043–E4051 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).
    Google Scholar 
    28.Blume, H.-P. et al. Soil Science 1st edn.(Springer, Berlin-Heidelberg, 2016).29.Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).CAS 

    Google Scholar 
    30.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    31.Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2008).32.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    33.Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11006 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Corner, E. J. H. The Durian theory or the origin of the modern tree. Ann. Bot. XIII, 367–414 (1949).
    Google Scholar 
    35.Pietsch, K. A. et al. Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 23, 1046–1057 (2014).
    Google Scholar 
    36.FloresâMoreno, H. et al. Robustness of trait connections across environmental gradients and growth forms. Glob. Ecol. Biogeogr. 28, 1806–1826 (2019).
    Google Scholar 
    37.Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980).CAS 

    Google Scholar 
    38.Vitousek, P. Nutrient Cycling and Limitation: Hawai’i as a Model System (Princeton Univ. Press, 2004).39.Shipley, B., Vile, D., Garnier, E., Wright, I. J. & Poorter, H. Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Funct. Ecol. 19, 602–615 (2005).
    Google Scholar 
    40.He, T., Belcher, C. M., Lamont, B. B. & Lim, S. L. A 350-million-year legacy of fire adaptation among conifers. J. Ecol. 104, 352–363 (2016).
    Google Scholar 
    41.Bergmann, J., Ryo, M., Prati, D., Hempel, S. & Rillig, M. C. Root traits are more than analogues of leaf traits: the case for diaspore mass. New Phytol. 216, 1130–1139 (2017).
    Google Scholar 
    42.Aerts, R. The advantages of being evergreen. Trends Ecol. Evol. 10, 402–407 (1995).CAS 

    Google Scholar 
    43.Zanne, A. E. et al. Functional biogeography of angiosperms: life at the extremes. New Phytol. 218, 1697–1709 (2018).
    Google Scholar 
    44.Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).
    Google Scholar 
    45.Legay, N. et al. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities. Ann. Bot 114, 1011–1021 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974).
    Google Scholar 
    47.Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).CAS 

    Google Scholar 
    48.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 43, 313–343 (2012).
    Google Scholar 
    50.de Vries, F. T. et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities. Ecol. Lett. 15, 1230–1239 (2012).
    Google Scholar 
    51.Zech, W., Schad, P. & Hintermaier-Erhard, G. Böden der Welt—Ein Bildatlas (Springer Spectrum, 2014).52.Rosenberg, E. et al. (eds) The Prokaryotes: Prokaryotic Communities and Ecophysiology 4th edn. (Springer-Verlag, 2013).53.Niinemets, Ã. Leaf age dependent changes in within-canopy variation in leaf functional traits: a meta-analysis. J. Plant Res. 129, 313–338 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Freschet, G. T. et al. Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. Global Ecol. Biogeogr. 20, 755–765 (2011).
    Google Scholar 
    56.Yemefack, M., Rossiter, D. G. & Njomgang, R. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma 125, 117–143 (2005).
    Google Scholar 
    57.Oldeman, L., Hakkeling, R. & Sombroek, W. Global Assessment of Soil Degradation (GLASOD): World Map of the Status of Human-induced Soil Degradation (United Nations Environment Programme, 1991).58.Ackerly, D. D. & Cornwell, W. K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecol. Lett. 10, 135–145 (2007).CAS 

    Google Scholar 
    59.Adler, P. B. A Comparison of Livestock Grazing Effects on Sagebrush Steppe, USA, and Patagonian Steppe, Argentina. PhD thesis (Colorado State University, 2003).60.Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004).
    Google Scholar 
    61.Adriaenssens, S. Dry deposition and canopy exchange for temperate tree species under high nitrogen deposition. PhD thesis, Ghent Univ. (2012).62.Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554 (1999).
    Google Scholar 
    63.Atkin, O. K., Westbeek, M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf respiration in light and darkness (a comparison of slow- and fast-growing Poa species). Plant Physiol. 113, 961–965 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Auger, S. L’Importance de la Variabilité Interspécifique des Traits Fonctionnels par Rapport à la Variabilité Intraspécifique Chez les Jeunes Arbres en Forêt Mature. MSc thesis (Université de Sherbrooke, 2012).65.Bahn, M. et al. in Land-Use Changes in European Mountain Ecosystems. ECOMONT—Concept and Results (eds Cernusca, A. et al.) 247–255 (Blackwell Wissenschaft, 1999).66.Baker, T. R. et al. Do species traits determine patterns of wood production in Amazonian forests? Biogeosciences 6, 297–307 (2009).CAS 

    Google Scholar 
    67.Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water table and nutrient management in calcareous dune slacks. Plant Ecol. 185, 19–28 (2006).
    Google Scholar 
    68.Bakker, C., Rodenburg, J. & van Bodegom, P. M. Effects of Ca- and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275, 111–122 (2005).CAS 

    Google Scholar 
    69.Baraloto, C. et al. Decoupled leaf and stem economics in rainforest trees. Ecol. Lett. 13, 1338–1347 (2010).
    Google Scholar 
    70.Baraloto, C. et al. Functional trait variation and sampling strategies in species-rich plant communities. Funct. Ecol. 24, 208–216 (2010).
    Google Scholar 
    71.Beckmann, M., Hock, M., Bruelheide, H. & Erfmeier, A. The role of UV-B radiation in the invasion of Hieracium pilosella—a comparison of German and New Zealand plants. Environ. Exp. Bot. 75, 173–180 (2012).
    Google Scholar 
    72.Blanco, C. C., Sosinski, E. E., dos Santos, B. R. C., da Silva, M. A. & Pillar, V. D. On the overlap between effect and response plant functional types linked to grazing. Community Ecol. 8, 57–65 (2007).
    Google Scholar 
    73.Blonder, B. et al. The shrinkage effect biases estimates of paleoclimate. Am. J. Bot. 99, 1756–1763 (2012).
    Google Scholar 
    74.Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J. Ecol. 101, 981–989 (2013).
    Google Scholar 
    75.Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    76.Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011).
    Google Scholar 
    77.Bocanegra-González K.T., Fernández-Méndez, F. & David Galvis-Jiménez, J. Funtional groups of tres in secondary forests of the bajo calima region (Buenaventura, Colombia) Boletín CientífiCo Centro de Museos Museo de Historia natura 19, (2015).78.Bodegom, P. M. V., Kanter, M. D. & Aerts, C. B. R. Radial oxygen loss, a plastic property of dune slack plant species. Plant Soil 271, 351–364 (2005).
    Google Scholar 
    79.Bond-Lamberty, C. W. B. & Gower, S. T. Above- and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450 (2002).
    Google Scholar 
    80.Bond-Lamberty, C. W. B. & Gower, S. T. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiol. 22, 993–1001 (2002).
    Google Scholar 
    81.Bond-Lamberty, C. W. B. & Gower, S. T. The use of multiple measurement techniques to refine estimates of conifer needle geometry. Can. J. For. Res. 33, 101–105 (2003).
    Google Scholar 
    82.Bond-Lamberty, C. W. B. & Gower, S. Net primary production and net ecosystem production of a boreal black spruce fire chronosequence. Glob. Change Biol. 10, 473–487 (2004).
    Google Scholar 
    83.Bragazza, L. Conservation priority of Italian alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers. Conserv. 18, 2823–2835 (2009).
    Google Scholar 
    84.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 

    Google Scholar 
    85.Briemle, G., Nitsche, S. & Nitsche, L. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 203–225 (Bundesamt für Naturschutz, 2002).86.Brown, K. et al. Assessing natural resource use by forest-reliant communities in Madagascar using functional diversity and functional redundancy metrics. PLoS ONE https://doi.org/10.1371/journal.pone.0024107 (2011).87.Burrascano, S. et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Community Ecol. 16, 244–253 (2015).
    Google Scholar 
    88.Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487 (2011).
    Google Scholar 
    89.Byun, C., de Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013).
    Google Scholar 
    90.Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 176, 375–389 (2007).CAS 

    Google Scholar 
    91.Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011).
    Google Scholar 
    92.Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 20, 179–186 (2000).
    Google Scholar 
    93.Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador., P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66 (1998).CAS 

    Google Scholar 
    94.Castro-Diez, P., Puyravaud, J. P. & Cornelissen, J. H. C. Leaf structure and anatomy as related to leaf mass per area variation in seedlings of a wide range of woody plant species and types. Oecologia 124, 476–486 (2000).CAS 

    Google Scholar 
    95.Cavender-Bares, A. K. J. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, 109–122 (2006).
    Google Scholar 
    96.Cavender-Bares, L. S. J. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. 27, 522–620 (2007).
    Google Scholar 
    97.Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 210, 253–261 (2010).
    Google Scholar 
    98.Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
    Google Scholar 
    99.Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2011).
    Google Scholar 
    100.Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).CAS 

    Google Scholar 
    101.Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698 (2007).
    Google Scholar 
    102.Coomes, D. A., Heathcote, S., Godfrey, E. R. & Shepherd, J. J. Scaling of xylem vessels and veins within the leaves of oak species. Biol. Lett. 4, 302–306 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    103.Cornelissen, J., Aerts, R., Cerabolini, B., Werger, M. & van der Heijden, M. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS 

    Google Scholar 
    104.Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582 (1996).
    Google Scholar 
    105.Cornelissen, J. H. C., Diez, P. C. & Hunt., R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996).
    Google Scholar 
    106.Cornelissen, J. H. C., Werger, M. J. A., Castro-Diez, P., van Rheenen, J. W. A., & Rowland, A. P. Foliar nutrients in relation to growth, allocation and leaf traits in seedlings of a wide range of woody plant species and types. Oecologia 111, 460–469 (1997).CAS 

    Google Scholar 
    107.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
    Google Scholar 
    108.Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255 (1999).CAS 

    Google Scholar 
    109.Cornelissen, J. H. C., Aerts, R., Cerabolini, B., Werger, M. J. A. & van der Heijden., M. G. A. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129, 611–619 (2001).CAS 

    Google Scholar 
    110.Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004).
    Google Scholar 
    111.Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? J. Veg. Sci. 14, 311–322 (2003).
    Google Scholar 
    112.Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755 (1996).
    Google Scholar 
    113.Cornelissen, J. H. C. et al. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191–200 (1999).
    Google Scholar 
    114.Schwilk, D. W., Cornwell, W. K. & Ackerly., D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    115.Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
    Google Scholar 
    116.Cornwell, W. K., Bhaskar, R., Sack, L., Cordell, S. & Lunch, C. K. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct. Ecol. 21, 1063–1071 (2007).
    Google Scholar 
    117.Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    118.Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    119.Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005).
    Google Scholar 
    120.Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    121.Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67 (2012).
    Google Scholar 
    122.Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For. Ecol. Manag. 238, 335–346 (2007).
    Google Scholar 
    123.Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. For. Ecol. Manag. 261, 1643–1653 (2011).
    Google Scholar 
    124.Dainese, M. & Bragazza, L. Plant traits across different habitats of the Italian alps: a comparative analysis between native and alien species. Alpine Bot. 122, 11–21 (2012).
    Google Scholar 
    125.de Araujo, A. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil (ORNL DAAC, 2012); http://daac.ornl.gov126.de Vries, F. T. & Bardgett, R. D. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    127.Demey, A. et al. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371, 53–66 (2013).CAS 

    Google Scholar 
    128.Diaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004).
    Google Scholar 
    129.Domingues, T. F., Berry, J. A., Martinelli, L. A., Ometto, J. P. H. B. & Ehleringer, J. R. Parameterization of canopy structure and leaf-level gas exchange for an eastern Amazonian tropical rain forest (Tapajós National Forest, Pará, Brazil). Earth Interact. https://doi.org/10.1175/EI149.1 (2005).130.Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol. 193, 101–112 (2007).
    Google Scholar 
    131.Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Duarte, Ld. S., Carlucci, M. B., Hartz, S. M. & Pillar, V. D. Plant dispersal strategies and the colonization of Araucaria forest patches in a grassland–forest mosaic. J. Veg. Sci. 18, 847–858 (2007).
    Google Scholar 
    133.DunbarâCo, S., Sporck, M. J. & Sack, L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int. J. Plant Sci. 170, 61–75 (2009).
    Google Scholar 
    134.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 75–91 (Bundesamt für Naturschutz, 2002).135.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 57–74 (Bundesamt für Naturschutz, 2002).136.Durka, W. In BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 133–175 (Bundesamt für Naturschutz, 2002).137.Medlyn, B. E. & Jarvis, P. G. Design and use of a database of model parameters from elevated [CO2] experiments. Ecol. Model. 124, 69–83 (1999).CAS 

    Google Scholar 
    138.Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal variation in the capacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems 17, 1095–1108 (2014).CAS 

    Google Scholar 
    139.Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using Bayesian Hierarchical Matrix factorization. In Proc. 13th International Conference on Machine Learning and Applications (eds Ferri, C. et al.) 312–317 (International Conference on Machine Learning and Applications (ICMLA), 2014).140.Fagúndez, J. & Izco, J. Seed morphology of the European species of Erica L. sect. Arsace Salisb. ex Benth. (Ericaceae). Acta Bot. Gall. 157, 45–54 (2010).
    Google Scholar 
    141.Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait-combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000).
    Google Scholar 
    142.Fortunel, C. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    143.Frainer, A. & McKie, B. G. Shifts in the diversity and composition of consumer traits constrain the effects of land use on stream ecosystem functioning. Adv. Ecol. Res. 52, 169–200 (2015).
    Google Scholar 
    144.Frenette-Dussault, C., Shipley, B., Léger, J.-F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C-S-R theory. J. Veg. Sci. 23, 208–222 (2011).
    Google Scholar 
    145.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Evidence of the plant economics spectrum in a subarctic flora. J. Ecol. 98, 362–373 (2010).
    Google Scholar 
    146.Freschet, G. T., Cornelissen, J. H. C., van Logtestijn, R. S. P. & Aerts, R. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol. 186, 879–889 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    147.Fry, E. L., Power, S. A. & Manning, P. Trait-based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. J. Veg. Sci. 25, 248–261 (2013).
    Google Scholar 
    148.Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009).
    Google Scholar 
    149.Gachet, S., Véla, E. & Tatoni, T. BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers. Conserv. 14, 1023–1034 (2005).
    Google Scholar 
    150.Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012).
    Google Scholar 
    151.Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    152.Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91, 228–246 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biol. Lett. 8, 882–886 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    154.Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect. Plant Ecol. Evol. Syst. 14, 243–256 (2012).
    Google Scholar 
    155.Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca sand dunes in well-watered greenhouse trials. Botany 91, 176–181 (2013).
    Google Scholar 
    156.Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21, 376–382 (2011).
    Google Scholar 
    157.Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168, 377–385 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Hao, G.-Y., Sack, L., Wang, A.-Y., Cao, K.-F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non-hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731–740 (2010).
    Google Scholar 
    159.He, J.-S. et al. A test of the generality of leaf trait relationships on the Tibetan plateau. New Phytol. 170, 835–848 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    160.Hickler, T. Plant Functional Types and Community Characteristics along Environmental Gradients on Öland’s Great Alvar (Sweden). Masters thesis (University of Lund, 1999).161.Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting structure and function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at high elevation. Biotropica 40, 113–118 (2008).162.Husson, A. F., Josse, J., Le, S., Mazet, J. & Husson, M. F. Package ‘FactoMineR’ (CRAN, 2017).163.Jacobs, B. et al. Unraveling the Phylogeny of Heptacodium and Zabelia (Caprifoliaceae): An Interdisciplinary Approach. Syst. Bot. 36, 231–252 (2011).
    Google Scholar 
    164.Jansen, S., Decraene, L. P. R. & Smets, E. On the wood and stem anatomy of Monococcus echinophorus (Phytolaccaceae s.l.). Syst. Geogr. Plants 70, 171 (2000).
    Google Scholar 
    165.Jansen, S. et al. Contributions to the wood anatomy of the Rubioideae (Rubiaceae). J. Plant Res. 114, 269–289 (2001).
    Google Scholar 
    166.Jansen, S., Piesschaert, F. & Smets, E. Wood anatomy of Elaeagnaceae, with comments on vestured pits, helical thickenings, and systematic relationships. Am. J. Bot. 87, 20 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    167.Jansen, S., Robbrecht, E., Beeckman, H. & Smets, E. Gaertnera and Pagamea: genera within the Psychotrieae or constituting the tribe Gaertnereae? A wood anatomical and palynological approach. Bot. Acta 109, 466–476 (1996).
    Google Scholar 
    168.S., J., E., R., H., B. & Smets, E. Comparative wood anatomy of African Coffeae (Rubiaceae-Rubioideae). Belg. J. Bot. 130, 47–58 (1997).
    Google Scholar 
    169.Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).
    Google Scholar 
    170.Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct. Ecol. 20, 21–30 (2006).
    Google Scholar 
    171.Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    172.Kew, R. B. G. Seed Information Database—SID (Kew, 2008); http://data.kew.org/sid/173.Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).
    Google Scholar 
    174.Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).
    Google Scholar 
    175.Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a digital African flora. Taxon 54, 457 (2005).
    Google Scholar 
    176.Kleyer, M. et al. The LEDA traitbase: a database of life-history traits of the northwest European flora. J. Ecol. 96, 1266–1274 (2008).
    Google Scholar 
    177.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 119-126 (Bundesamt für Naturschutz, 2002).178.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 241–246 (Bundesamt für Naturschutz,2002).179.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 273–281 (Bundesamt für Naturschutz, 2002).180.Klotz, S. & Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 197–201 (Bundesamt für Naturschutz, 2002).181.Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. J. Veg. Sci. 12, 327–336 (2001).
    Google Scholar 
    182.Kraft, N. J. B. & Ackerly, D. D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol. Monogr. 80, 401–422 (2010).
    Google Scholar 
    183.Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).CAS 

    Google Scholar 
    184.Krumbiegel, A. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 93–118 (Bundesamt für Naturschutz, 2002).185.Kühn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 47–56 (Bundesamt für Naturschutz, 2002).186.Kuhn, I., Durka, W. & Klotz, S. Biolflor—a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004).
    Google Scholar 
    187.Kühn, I. & Klotz, S. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 227–239 (Bundesamt für Naturschutz, 2002).188.Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656 (2008).
    Google Scholar 
    189.Laughlin, D. C., Fulé, P. Z., Huffman, D. W., Crouse, J. & Laliberté, E. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489–1499 (2011).
    Google Scholar 
    190.Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2009).
    Google Scholar 
    191.Lens, F. Comparative wood anatomy of Epacrids (Styphelioideae, Ericaceae s.l.). Ann. Bot. 91, 835–856 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    192.Lens, F., Baas, P., Jansen, S. & Smets, E. A search for phylogenetically informative wood characters within Lecythidaceae s.l. Am. J. Bot. 94, 483–502 (2007).
    Google Scholar 
    193.Lens, F., Dressler, S., Jansen, S., van Evelghem, L. & Smets, E. Relationships within balsaminoid Ericales: a wood anatomical approach. Am. J. Bot. 92, 941–953 (2005).
    Google Scholar 
    194.Lens, F., Eeckhout, S., Zwartjes, R., Smets, E. & Janssens, S. B. The multiple fuzzy origins of woodiness within Balsaminaceae using an integrated approach: where do we draw the line? Ann. Bot. 109, 783–799 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    195.Lens, F., Endress, M. E., Baas, P., Jansen, S. & Smets, E. Vessel grouping patterns in subfamilies Apocynoideae and Periplocoideae confirm phylogenetic value of wood structure within Apocynaceae. Am. J. Bot. 96, 2168–2183 (2009).
    Google Scholar 
    196.Lens, F., Groeninckx, I., Smets, E. & Dessein, S. Woodiness within the Spermacoceae–Knoxieae alliance (Rubiaceae): retention of the basal woody condition in Rubiaceae or recent innovation? Ann. Bot. 103, 1049–1064 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    197.Lens, F., Jansen, S., Caris, P., Serlet, L. & Smets, E. Comparative wood anatomy of the primuloid clade (Ericales s.l.). Syst. Bot. 30, 163–183 (2005).
    Google Scholar 
    198.Lens, F., Jansen, S., Robbrecht, E. & Smets, E. Wood anatomy of the Vangueriaea (Ixoroideae-Rubuaceae), with special emphasis on some geofrutices. IAWA J. 21, 443–455 (2000).
    Google Scholar 
    199.Lens, F. et al. The wood anatomy of the polyphyletic Icacinaceae s.l., and their relationships within asterids. Taxon 57, 525–552 (2008).
    Google Scholar 
    200.Lens, F., Kron, K. A., Luteyn, J. L., Smets, E. & Jansen, S. Comparative wood anatomy of the blueberry tribe (Vaccinieae, Ericaceae s.l). Ann. Missouri Bot. Gard. 91, 566–592 (2004).
    Google Scholar 
    201.Lens, F., Smets, E. & Jansen, S. Comparative wood anatomy of Andromedeae s.s., Gaultherieae, Lyonieae and Oxydendreae (Vaccinioideae, Ericaceae s.l.). Bot. J. Linn. Soc. 144, 161–179 (2004).
    Google Scholar 
    202.Lens, F., Smets, E. & Melzer, S. Stem anatomy supports Arabidopsis thaliana as a model for insular woodiness. New Phytol. 193, 12–17 (2011).
    Google Scholar 
    203.Lens, F. et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytol. 190, 709–723 (2010).
    Google Scholar 
    204.Li, H., Liang, Y., Xu, Q. & Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 648, 77–84 (2009).CAS 

    Google Scholar 
    205.Louault, F., Pillar, V. D., Aufrèère, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi-natural grassland. J. Veg. Sci. 16, 151–160 (2005).
    Google Scholar 
    206.Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast- and slow-growing plant species. Glob. Change Biol. 9, 895–910 (2003).
    Google Scholar 
    207.Malhado, A. C. M. et al. Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 44, 728–737 (2012).
    Google Scholar 
    208.Malhado, A. C. M. et al. Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences 6, 1563–1576 (2009).
    Google Scholar 
    209.Malhado, A. C. M. et al. Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences 6, 1577–1590 (2009).
    Google Scholar 
    210.Malhado, A. C. M. et al. Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Glob. Ecol. Biogeogr. 19, 852–862 (2010).
    Google Scholar 
    211.Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic Appl. Ecol. 10, 300–308 (2009).CAS 

    Google Scholar 
    212.Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).
    Google Scholar 
    213.Martin, R. E., Asner, G. P. & Sack, L. Genetic variation in leaf pigment, optical and photosynthetic function among diverse phenotypes of Metrosideros polymorpha grown in a common garden. Oecologia 151, 387–400 (2007).
    Google Scholar 
    214.McDonald, P. G., Fonseca, C. R., Overton, J. M. & Westoby, M. Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct. Ecol. 17, 50–57 (2003).
    Google Scholar 
    215.McKenna, M. F. & Shipley, B. Interacting determinants of interspecific relative growth: empirical patterns and a theoretical explanation. Écoscience 6, 286–296 (1999).
    Google Scholar 
    216.Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant Cell Environ. 22, 1475–1495 (1999).CAS 

    Google Scholar 
    217.Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).CAS 

    Google Scholar 
    218.Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25, 343–357 (2002).
    Google Scholar 
    219.Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).
    Google Scholar 
    220.Mencuccini, M. The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003).
    Google Scholar 
    221.Meng, T.-T. et al. Responses of leaf traits to climatic gradients: Adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).
    Google Scholar 
    222.Messier, J., McGill, B. J., Enquist, B. J. & Lechowicz, M. J. Trait variation and integration across scales: is the leaf economic spectrum present at local scales? Ecography 40, 685–697 (2016).
    Google Scholar 
    223.Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010).
    Google Scholar 
    224.Meziane, D. & Shipley, B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Funct. Ecol. 13, 611–622 (1999).
    Google Scholar 
    225.Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    226.Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evol. Syst. 14, 183–192 (2012).
    Google Scholar 
    227.Minden, V. & Kleyer, M. Testing the effect–response framework: key response and effect traits determining above-ground biomass of salt marshes. J. Veg. Sci. 22, 387–401 (2011).
    Google Scholar 
    228.Mischkolz, J. M. Selecting and Evaluating Native Forage Mixtures for the Mixed Grass Prairie. Msc thesis (University of Saskatchewan, 2013).229.Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309 (2009).
    Google Scholar 
    230.Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant functional types of woody species related to fire disturbance in forest–grassland ecotones. Plant Ecol. 189, 1–14 (2006).
    Google Scholar 
    231.Nakahashi, C. D., Frole, K. & Sack, L. Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity? Plant Biol. 7, 495–500 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    232.Niinemets, U. Components of leaf dry mass per area—thickness and density—alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).
    Google Scholar 
    233.Niinemets, U. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001).
    Google Scholar 
    234.Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–148 (2003).
    Google Scholar 
    235.Ogaya, R. & Penuelas, J. Contrasting foliar responses to drought in Quercus ilex and Phillyrea latifolia. Biol. Plant. 50, 373–382 (2006).
    Google Scholar 
    236.Ogaya, R. & Peñuelas, J. Tree growth, mortality, and above-ground biomass accumulation in a holm oak forest under a five-year experimental field drought. Plant Ecol. 189, 291–299 (2006).
    Google Scholar 
    237.Ogaya, R. & Peñuelas, J. Changes in leaf δ13C and δ15N for three Mediterranean tree species in relation to soil water availability. Acta Oecol. 34, 331–338 (2008).
    Google Scholar 
    238.Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    239.Ordoñez, J. C. et al. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply. Ecology 91, 3218–3228 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    240.Otto, B. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 177–196 (Bundesamt für Naturschutz, 2002).241.Overbeck, G. E., Müller, S. C., Pillar, V. D. & Pfadenhauer, J. Fine-scale post-fire dynamics in southern Brazilian subtropical grassland. J. Veg. Sci. 16, 655–664 (2005).
    Google Scholar 
    242.Overbeck, G. E. & Pfadenhauer, J. Adaptive strategies in burned subtropical grassland in southern Brazil. Flora 202, 27–49 (2007).
    Google Scholar 
    243.Baas, P., Smets, E. & Jansen, S. Vegetative anatomy and effinities of Dirachma socotrana (Dirachmaceae). Syst. Bot. 26, 231–241 (2001).
    Google Scholar 
    244.Pakeman, R. J. et al. Impact of abundance weighting on the response of seed traits to climate and land use. J. Ecol. 96, 355–366 (2008).
    Google Scholar 
    245.Pakeman, R. J., Lep, J., Kleyer, M., Lavorel, S. & Garnie, E. Relative climatic, edaphic and management controls of plant functional trait signatures. J. Veg. Sci. 20, 148–159 (2009).
    Google Scholar 
    246.Papanastasis, M. et al. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90, 598–611 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    247.Patiño, S. et al. Branch xylem density variations across the Amazon basin. Biogeosciences 6, 545–568 (2009).
    Google Scholar 
    248.Paula, S. et al. Fire-related traits for plant species of the Mediterranean basin. Ecology 90, 1420–1420 (2009).
    Google Scholar 
    249.Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. J. Ecol. 96, 543–552 (2008).
    Google Scholar 
    250.Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of Dehesa grasslands. Basic Appl. Ecol. 6, 175–183 (2005).
    Google Scholar 
    251.Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2009).
    Google Scholar 
    252.Peñuelas, J. et al. Higher allocation to low cost chemical defenses in invasive species of Hawaii. J. Chem. Ecol. 36, 1255–1270 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    253.Petter, G. et al. Functional leaf traits of vascular epiphytes: vertical trends within the forest, intra- and interspecific trait variability, and taxonomic signals. Funct. Ecol. 30, 188–198 (2015).
    Google Scholar 
    254.Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    255.Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).
    Google Scholar 
    256.Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosyst. 141, 337–343 (2007).
    Google Scholar 
    257.Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007).
    Google Scholar 
    258.Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323–332 (2003).
    Google Scholar 
    259.Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927–936 (2010).
    Google Scholar 
    260.Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 190, 169–180 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    261.Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170, 807–818 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    262.Price, C. A. & Enquist, B. J. Scaling mass and morphology in leaves: an extention of the WBE model. Ecology 88, 1132–1141 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    263.Price, C. A., Enquist, B. J. & Savage, V. M. A general model for allometric covariation in botanical form and function. Proc. Natl Acad. Sci. USA 104, 13204–13209 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    264.Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol. 143, 131–142 (1999).
    Google Scholar 
    265.Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct. Plant Biol. 35, 725 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    266.Quested, H. M. et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221 (2003).
    Google Scholar 
    267.Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    268.Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    269.Auger, S. & Shipley, B. Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 24, 419–428 (2012).
    Google Scholar 
    270.Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ’hydrology’ of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356 (2003).
    Google Scholar 
    271.Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    272.Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees? Am. J. Bot. 93, 829–839 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    273.Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167, 403–413 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    274.Sanda V., Bita-Nicolae, C. D. & Barabas, N. The Flora of Spontaneous and Cultivated Cormophytes from Romania (in Romanian) (Editura Ion Bacău, 2003).275.Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, art23 (2011).
    Google Scholar 
    276.Sardans, J., Penuelas, J. & Ogaya, R. Drought-induced changes in C and N stoichiometry in a Quercus ilex Mediterranean forest. For. Sci. 54, 513–522 (2008).
    Google Scholar 
    277.Sardans, J., Peñuelas, J., Prieto, P. & Estiarte, M. Changes in Ca, Fe, Mg, Mo, Na, and S content in a Mediterranean shrubland under warming and drought. J. Geophys. Res. https://doi.org/10.1029/2008jg000795 (2008).278.Scherer-Lorenzen, M., Schulze, E., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (biotree). Perspect. Plant Ecol. Evol. Syst. 9, 53–70 (2007).
    Google Scholar 
    279.Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Global Ecol. Biogeogr. 16, 449–459 (2007).
    Google Scholar 
    280.Schwallier, R. et al. Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales. Ann. Bot. 119, 1179–1193 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    281.Schweingruber, F. H., & Poschlod, P. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow Landsc. Res. 79, 195–415 (2005).
    Google Scholar 
    282.Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ. 31, 1803–1812 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    283.Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. J. Trop. Ecol. 24, 121–133 (2008).
    Google Scholar 
    284.Shipley, B. The use of above-ground maximum relative growth rate as an accurate predictor of whole-plant maximum relative growth rate. Funct. Ecol. 3, 771 (1989).
    Google Scholar 
    285.Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct. Ecol. 16, 682–689 (2002).
    Google Scholar 
    286.Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Écoscience 7, 183–194 (2000).
    Google Scholar 
    287.Shipley, B. & Parent, M. Germination responses of 64 wetland species in relation to seed size, minimum time to reproduction and seedling relative growth rate. Funct. Ecol. 5, 111 (1991).
    Google Scholar 
    288.Shipley, B. & Vu, T.-T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364 (2002).
    Google Scholar 
    289.Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).
    Google Scholar 
    290.Swaine, E. K. Ecological and Evolutionary Drivers of Plant Community Assembly in a Bornean Rain Forest. PhD Thesis (University of Aberdeen, 2007).291.Trefflich, A., Klotz, S. & Kuhn, I. in BIOLFLOR—Eine Datenbank mit Biologisch-ökologischen Merkmalen zur Flora von Deutschland (eds Klotz, S. et al.) 127–131 (Bundesamt für Naturschutz, 2002).292.Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48 (2011).
    Google Scholar 
    293.Ciocarlan, V. The Illustrated Flora of Romania. Pteridophyta et Spermatopyta (in Romanian) (Editura Ceres, 2009).294.van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    295.Vergutz, L. et al. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1106296.Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).
    Google Scholar 
    297.Vile, D. Significations Fonctionnelle et Ecologique des Traits des Especes Vegetales: Exemple dans une Succession Post-cultural Méditerranéenne et Generalisations. PhD thesis (University of Montpellier II, 2005).298.Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563 (2004).
    Google Scholar 
    299.Williams, M., Shimabukuro, Y. E. & Rastetter, E.B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil (ORNL DAAC, 2012); https://doi.org/10.3334/ORNLDAAC/1104300.Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565–577 (2010).
    Google Scholar 
    301.Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 20, 565–578 (2000).
    Google Scholar 
    302.Wirth, C. & Lichstein, J. W. in Old-Growth Forests: Function, Fate and Value (eds Wirth, C. et al.) 81–113 (Springer, 2009).303.Wohlfahrt, G. et al. Inter-specific variation of the biochemical limitation to photosynthesis and related leaf traits of 30 species from mountain grassland ecosystems under different land use. Plant Cell Environ. 22, 1281–1296 (1999).
    Google Scholar 
    304.Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007).
    Google Scholar 
    305.Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 26, 1390–1398 (2012).
    Google Scholar 
    306.Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).
    Google Scholar 
    307.Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003).
    Google Scholar 
    308.Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124 (2011).
    Google Scholar 
    309.Zanne, A. E. et al. Global Wood Density Database (EOL, 2009); https://opendata.eol.org/dataset/dde86ffb-7741-44a1-acf2-808b3dd6bc97/resource/d1e2b018-a7ce-444b-ac8a-ac43b2355cc9/download/archive310.Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).
    Google Scholar 
    311.Kattge, V. et al. TRY – a global database of plant traits. Global Change Biol 9, 2905–2935 (2011).
    Google Scholar 
    312.Shan, H. et al. Gap Filling in the Plant Kingdom—Trait Prediction Using Hierarchical Probabilistic Matrix Factorization (ICML, 2012); http://arxiv.org/abs/1206.6439313.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).314.Salakhutdinov, R. & Mnih, A. Probabilistic matrix factorization. In Proc. 20th International Conference on Neural Information Processing Systems (eds Platt, J. C. et al.) 1257–1264 (Curran Associates Inc., 2007).315.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).316.Lê, S., Josse, J. & Husson, F. FactoMineR: a package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008).
    Google Scholar 
    317.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).
    Google Scholar 
    318.Bougeard, S. & Dray, S. Supervised multiblock analysis in R with the ade4 package. J. Stat. Softw. 86, 1–17 (2018).
    Google Scholar 
    319.Chessel, D., Dufour, A.-B. & Thioulouse, J. The ade4 package—I: one-table methods. R News 4, 5–10 (2004).
    Google Scholar 
    320.Dray, S., Dufour, A.-B. & Chessel, D. The ade4 package—II: two-table and K-table methods. R News 7, 47–52 (2007).
    Google Scholar 
    321.Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4 (Springer, 2018).322.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    323.Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Softw. 39, 1–13 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    324.Batjes, N. H., Ribeiro, E. & van Oostrum, A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Syst. Sci. Data 12, 299–320 (2020).
    Google Scholar 
    325.Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    326.Arrouays, D. et al. Soil legacy data rescue via GlobalSoilMap and other international and national initiatives. GeoResJ 14, 1–19 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    327.Richard, P. & Pielou, E. C. Biogeography (John Wiley & Sons, 1979).328.Udvardy, M. D. F. A Classification of the Biogeographical Provinces of the World (International Union for Conservation of Nature and Natural Resources, 1975).329.Dinerstein, E. et al. A Conservation Assessment of the Terrestrial Ecoregions of Latin America and the Caribbean (The World Bank, 1995).330.Ricketts, T. H. et al. Terrestrial Ecoregions of North America: A Conservation Assessment (Island Press, 1999).331.Dasmann, R. F. A System for Defining and Classifying Natural Regions for Purposes of Conservation: A Progress Report (IUCN, 1973). More

  • in

    Environmental drivers of plant form and function

    1.Funk, J. L. et al. Biol. Rev. 92, 1156–1173 (2017).Article 

    Google Scholar 
    2.Hutchinson, G. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    3.Díaz, S. et al. Nature 529, 1–17 (2015).
    Google Scholar 
    4.Westoby, M. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    5.Wright, I. J. et al. Nature 428, 821–827 (2004).CAS 
    Article 

    Google Scholar 
    6.Thomas, H. J. D. et al. Nat. Commun. 11, 1351 (2020).CAS 
    Article 

    Google Scholar 
    7.Bruelheide, H. et al. Nat. Ecol. Evol. 2, 1906–1917 (2018).Article 

    Google Scholar 
    8.Blonder, B. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    9.Bjorkman, A. D. et al. Global Ecol. Biogeogr. 27, 1402–1411 (2018).Article 

    Google Scholar 
    10.Bjorkman, A. D. et al. Nature 562, 57–62 (2018).CAS 
    Article 

    Google Scholar 
    11.Cornwell, W. K. & Ackerly, D. D. Ecol. Monogr. 79, 109–126 (2009).Article 

    Google Scholar 
    12.Dong, N. et al. New Phytol. 228, 82–94 (2020).CAS 
    Article 

    Google Scholar 
    13.Harrison, S., Damschen, E., Fernandez-Going, B., Eskelinen, A. & Copeland, S. Ann. Bot. 116, 1017–1022 (2015).Article 

    Google Scholar 
    14.Yang, J., Cao, M. & Swenson, N. G. Trends Ecol. Evol. 33, 326–336 (2018).Article 

    Google Scholar 
    15.Craine, J. M., Wolkovich, E. M., Gene Towne, E. & Kembel, S. W. New Phytol. 193, 673–682 (2012).Article 

    Google Scholar 
    16.Bardgett, R. D., Mommer, L. & De Vries, F. T. Trends Ecol. Evol. 29, 692–699 (2014).Article 

    Google Scholar 
    17.Messier, J., McGill, B. J. & Lechowicz, M. J. Ecol. Lett. 13, 838–848 (2010).Article 

    Google Scholar 
    18.Arrouays, D. et al. Adv. Agron. 125, 93–134 (2014).Article 

    Google Scholar 
    19.Diaz, S. et al. J. Veg. Sci. 15, 295–304 (2004).Article 

    Google Scholar 
    20.Suding, K. N. et al. Global Change Biol. 14, 1125–1140 (2008).Article 

    Google Scholar  More

  • in

    Natural selection for imprecise vertical transmission in host–microbiota systems

    1.Bercik, P. et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141, 599–609 (2011).CAS 
    PubMed 

    Google Scholar 
    2.Johnson, K. V.-A. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).CAS 
    PubMed 

    Google Scholar 
    3.Sherwin, E., Bordenstein, S. R., Quinn, J. L., Dinan, T. G. & Cryan, J. F. Microbiota and the social brain. Science 366, eaar2016 (2019).CAS 
    PubMed 

    Google Scholar 
    4.Charbonneau, M. R. et al. A microbial perspective of human developmental biology. Nature 535, 48–55 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).PubMed 

    Google Scholar 
    6.Matsuoka, K. & Kanai, T. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol. 37, 47–55 (2015).CAS 
    PubMed 

    Google Scholar 
    7.Niu, B., Paulson, J. N., Zheng, X. & Kolter, R. Simplified and representative bacterial community of maize roots. Proc. Natl Acad. Sci. USA 114, E2450–E2459 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Berg, M. & Koskella, B. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen. Curr. Biol. 28, 2487–2492 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Wei, Z. et al. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nat. Commun. 6, 8413 (2015).10.Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B. & William, W. J. Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience 4, 247–259 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Camarinha-Silva, A. et al. Host genome influence on gut microbial composition and microbial prediction of complex traits in pigs. Genetics 206, 1637–1644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Difford, G. F. et al. Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genet. 14, e1007580 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Henry, L. P., Bruijning, M., Forsberg, S. K. G. & Ayroles, J. F. The microbiome extends host evolutionary potential. Nat. Commun. 12, 5141 (2021).15.Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 

    Google Scholar 
    17.Douglas, A. E. Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43, 17–37 (1998).CAS 
    PubMed 

    Google Scholar 
    18.Roughgarden, J., Gilbert, S. F., Rosenberg, E., Zilber-Rosenberg, I. & Lloyd, E. A. Holobionts as units of selection and a model of their population dynamics and evolution. Biol. Theory 13, 44–65 (2018).
    Google Scholar 
    19.Fukatsu, T. & Hosokawa, T. Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl. Environ. Microbiol. 68, 389–396 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Kaiwa, N. et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr. Biol. 24, 2465–2470 (2014).CAS 
    PubMed 

    Google Scholar 
    21.Jahnes, B. C., Herrmann, M. & Sabree, Z. L. Conspecific coprophagy stimulates normal development in a germ-free model invertebrate. PeerJ 7, e6914 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    22.Estes, A. M. et al. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE 8, e79061 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.van Vliet, S. & Doebeli, M. The role of multilevel selection in host microbiome evolution. Proc. Natl Acad. Sci. USA 116, 20591–20597 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    24.Zeng, Q., Wu, S., Sukumaran, J. & Rodrigo, A. Models of microbiome evolution incorporating host and microbial selection. Microbiome 5, 127 (2017).25.Björk, J. R., Diez-Vives, C., Astudillo-Garcia, C., Archie, E. A. & Montoya, J. M. Vertical transmission of sponge microbiota is inconsistent and unfaithful. Nat. Ecol. Evol. 3, 1172–1183 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    26.Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099-15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Hammer, T. J. & Moran, N. A. Links between metamorphosis and symbiosis in holometabolous insects. Phil. Trans. R. Soc. B 374, 20190068 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Metcalf, C. J. E., Henry, L. P., Rebolleda-Gomez, M. & Koskella, B. Why evolve reliance on the microbiome for timing of ontogeny?. mBio 10, e01496-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Bruijning, M., Metcalf, C. J. E., Jongejans, E. & Ayroles, J. F. The evolution of variance control. Trends Ecol. Evol. 35, 22–23 (2020).PubMed 

    Google Scholar 
    30.Bull, J. J. Evolution of phenotypic variance. Evolution 41, 303–315 (1987).CAS 
    PubMed 

    Google Scholar 
    31.Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends Ecol. Evol. 4, 41–44 (1989).CAS 
    PubMed 

    Google Scholar 
    32.Vasseur, D. A. & Yodzis, P. The color of environmental noise. Ecology 85, 1146–1152 (2004).
    Google Scholar 
    33.Halley, J. M. Ecology, evolution and 1f-noise. Trends Ecol. Evol. 11, 33–37 (1996).CAS 
    PubMed 

    Google Scholar 
    34.Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).CAS 
    PubMed 

    Google Scholar 
    35.Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 

    Google Scholar 
    36.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 

    Google Scholar 
    37.Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    38.Burns, A. R. et al. Interhost dispersal alters microbiome assembly and can overwhelm host innate immunity in an experimental zebrafish model. Proc. Natl Acad. Sci. USA 114, 11181–11186 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Moeller, A. H., Suzuki, T. A., Phifer-Rixey, M. & Nachman, M. W. Transmission modes of the mammalian gut microbiota. Science 362, 453–457 (2018).CAS 
    PubMed 

    Google Scholar 
    40.Zapién-Campos, R., Sieber, M. & Traulsen, A. Stochastic colonization of hosts with a finite lifespan can drive individual host microbes out of equilibrium. PLoS Comput. Biol. 16, e1008392 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    41.De Vries, E. J., Jacobs, G., Sabelis, M. W., Menken, S. B. J. & Breeuwer, J. A. J. Diet-dependent effects of gut bacteria on their insect host: the symbiosis of Erwinia sp. and western flower thrips. Proc. R. Soc. Lond. B 271, 2171–2178 (2004).
    Google Scholar 
    42.Johnson, N. C., Graham, J. H. & Smith, F. A. Functioning of mycorrhizal associations along the mutualism–parasitism continuum. N. Phytol. 135, 575–585 (1997).
    Google Scholar 
    43.Cheney, K. L. & Côté, I. M. Mutualism or parasitism? The variable outcome of cleaning symbioses. Biol. Lett. 1, 162–165 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    44.Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    45.Oliver, K. M., Degnan, P. H., Burke, G. R. & Moran, N. A. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu. Rev. Entomol. 55, 247–266 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Oliver, K. M., Campos, J., Moran, N. A. & Hunter, M. S. Population dynamics of defensive symbionts in aphids. Proc. R. Soc. B 275, 293–299 (2008).PubMed 

    Google Scholar 
    48.Ives, A. R. et al. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat. Ecol. Evol. 4, 702–711 (2020).PubMed 

    Google Scholar 
    49.Chen, D.-Q., Montllor, C. B. & Purcell, A. H. Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol. Exp. Appl. 95, 315–323 (2000).
    Google Scholar 
    50.Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    51.Kikuchi, Y. et al. Symbiont-mediated insecticide resistance. Proc. Natl Acad. Sci. USA 109, 8618–8622 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kikuchi, Y. & Yumoto, I. Efficient colonization of the bean bug Riptortus pedestris by an environmentally transmitted Burkholderia symbiont. Appl. Environ. Microbiol. 79, 2088–2091 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).PubMed 

    Google Scholar 
    55.Caswell, H. Matrix Population Models: Construction, Analysis and Interpretation (Sinauer Associates, 2001).56.Asnicar, F. et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2, e00164-16 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    57.Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Nyholm, S. V. & McFall-Ngai, M. The winnowing: establishing the squid-Vibrio symbiosis. Nat. Rev. Microbiol. 2, 632–642 (2004).CAS 
    PubMed 

    Google Scholar 
    60.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect–microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Environ. Microbiol. 73, 4308–4316 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Ibáñez, F., Tonelli, M. L., Muñoz, V., Figueredo, M. S. & Fabra, A. in Endophytes: Biology and Biotechnology (ed. Maheshwari, D.) 25–40 (Springer, 2017).62.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 

    Google Scholar 
    63.Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 

    Google Scholar 
    64.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    65.Chrostek, E. & Teixeira, L. Mutualism breakdown by amplification of Wolbachia genes. PLoS Biol. 13, e1002065 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Ravel, C., Michalakis, Y. & Charmet, G. The effect of imperfect transmission on the frequency of mutualistic seed-borne endophytes in natural populations of grasses. Oikos 80, 18–24 (1997).
    Google Scholar 
    67.Buskirk, S. W., Rokes, A. B. & Lang, G. I. Adaptive evolution of nontransitive fitness in yeast. eLife 9, e62238 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Clune, J. et al. Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Comput. Biol. 4, e1000187 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    69.King, O. D. & Masel, J. The evolution of bet-hedging adaptations to rare scenarios. Theor. Popul. Biol. 72, 560–575 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    70.Liu, X.-D., Lei, H.-X. & Chen, F.-F. Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci. Rep. 9, 4013 (2019).71.Oyserman, B. O. et al. Extracting the GEMs: genotype, environment, and microbiome interactions shaping host phenotypes. Front. Microbiol. 11, 3444 (2021).
    Google Scholar 
    72.Rock, D. I. et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol. Ecol. 27, 2039–2056 (2018).PubMed 

    Google Scholar 
    73.Osaka, R., Nomura, M., Watada, M. & Kageyama, D. Negative effects of low temperatures on the vertical transmission and infection density of a Spiroplasma endosymbiont in Drosophila hydei. Curr. Microbiol. 57, 335–339 (2008).CAS 
    PubMed 

    Google Scholar 
    74.Gundel, P. E. et al. Imperfect vertical transmission of the endophyte Neotyphodium in exotic grasses in grasslands of the Flooding Pampa. Microb. Ecol. 57, 740 (2009).PubMed 

    Google Scholar 
    75.Li, L. & Ma, Z. S. Testing the neutral theory of biodiversity with human microbiome datasets. Sci. Rep. 6, 31448 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).CAS 
    PubMed 

    Google Scholar 
    77.Sprockett, D., Fukami, T. & Relman, D. A. Role of priority effects in the early-life assembly of the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 15, 197–205 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    78.Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    79.Scheuring, I. & Yu, D. W. How to assemble a beneficial microbiome in three easy steps. Ecol. Lett. 15, 1300–1307 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    80.Roughgarden, J. Holobiont evolution: Mathematical model with vertical vs. horizontal microbiome transmission. Phil. Theory Pract. Biol. 12, 002 (2020).81.Theis, K. R. et al. Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1, e00028-16 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    82.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed 

    Google Scholar 
    83.Gillespie, J. Polymorphism in random environments. Theor. Popul. Biol. 4, 193–195 (1973).
    Google Scholar 
    84.Bruijning, M. Code for: Natural selection for imprecise vertical transmission in host-microbiota systems. Zenodo https://doi.org/10.5281/zenodo.5534317 (2021).85.Sauer, C., Dudaczek, D., Hölldobler, B. & Gross, R. Tissue localization of the endosymbiotic bacterium “Candidatus Blochmannia floridanus” in adults and larvae of the carpenter ant Camponotus floridanus. Appl. Environ. Microbiol. 68, 4187–4193 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Koga, R., Meng, X.-Y., Tsuchida, T. & Fukatsu, T. Cellular mechanism for selective vertical transmission of an obligate insect symbiont at the bacteriocyte–embryo interface. Proc. Natl Acad. Sci. USA 109, E1230–E1237 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Brentassi, M. E. et al. Bacteriomes of the corn leafhopper, Dalbulus maidis (DeLong & Wolcott, 1923) (Insecta, Hemiptera, Cicadellidae: Deltocephalinae) harbor Sulcia symbiont: molecular characterization, ultrastructure, and transovarial transmission. Protoplasma 254, 1421–1429 (2017).CAS 
    PubMed 

    Google Scholar 
    88.Picazo, D. R. et al. Horizontally transmitted symbiont populations in deep-sea mussels are genetically isolated. ISME J. 13, 2954–2968 (2019).
    Google Scholar 
    89.Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Korpela, K. et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 28, 561–568 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl Acad. Sci. USA 115, 7368–7373 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    92.Douglas, A. E. Simple animal models for microbiome research. Nat. Rev. Microbiol. 17, 764–775 (2019).CAS 
    PubMed 

    Google Scholar 
    93.Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).CAS 
    PubMed 

    Google Scholar 
    94.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).CAS 
    PubMed 

    Google Scholar  More

  • in

    Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century

    Cropland-mapping extent and time intervalsThe global boundaries for the cropland mapping were informed by the US Geological Survey (USGS) Global Food Security-Support Analysis Data at 30 m (GFSAD)11. The cropland mapping extent was defined using the geographic 1° × 1° grid. We included every 1° × 1° grid cell that contains cropland area according to the GFSAD. Small islands were excluded due to the absence of Landsat geometrically corrected data (Supplementary Fig. 1).The cropland mapping was performed at 4-year intervals (2000–2003, 2004–2007, 2008–2011, 2012–2015 and 2016–2019). Use of a long interval (rather than a single year) increased the number of clear-sky satellite observations in the time-series, which improves representation of land-surface phenology and the accuracy of cropland detection. For each 4-year interval, we mapped an area as cropland if a growing crop was detected during any of these years. In this way, we implemented the criterion of the maximum fallow length: if an area was not used as cropland for >4 years, it was not included in the cropland map for the corresponding time interval.Landsat dataWe employed the global 16-day normalized surface reflectance Landsat Analysis Ready Data (Landsat ARD19) as input data for cropland mapping. The Landsat ARD were generated from the entire Landsat archive from 1997 to 2019. The Landsat top-of-atmosphere reflectance was normalized using globally consistent MODIS surface reflectance as a normalization target. Individual Landsat images were aggregated into 16-day composites by prioritizing clear-sky observations.For each 4-year interval, we created a single annualized gap-free 16-day observation time-series. For each 16-day interval, we selected the observation with the highest near-infrared reflectance value (to prioritize observations with the highest vegetation cover) from 4 years of Landsat data. Observations contaminated by haze, clouds and cloud shadows, as indicated by the Landsat ARD quality layer, were removed from the analysis. If no clear-sky data were available for a 16-day interval, we filled the missing reflectance values using linear interpolation.The annualized, 16-day time-series within each 4-year interval were transformed into a set of multitemporal metrics that provide consistent land-surface phenology inputs for global cropland mapping. Metrics include selected ranks, inter-rank averages and amplitudes of surface reflectance and vegetation index values, and surface reflectance averages for selected land-surface phenology stages defined by vegetation indices (that is, surface reflectance for the maximum and minimum greenness periods). The multitemporal metrics methodology is provided in detail19,38. The Landsat metrics were augmented with elevation data39. In this way, we created spatially consistent inputs for each of the 4-year intervals. The complete list of input metrics is presented in Supplementary Table 1.Global cropland mappingGlobal cropland mapping included three stages that enabled extrapolation of visually delineated cropland training data to a temporally consistent, global cropland map time-series using machine learning. At all three stages, we employed bagged decision tree ensembles40 as a supervised classification algorithm that used class presence and absence data as the dependent variables, and a set of multitemporal metrics as independent variables at a Landsat ARD pixel scale. The bagged decision tree results in a per-pixel cropland probability layer, which has a threshold of 0.5 to obtain a cropland map.The first stage consisted of performing individual cropland classifications for a set of 924 Landsat ARD 1° × 1° tiles for the 2016–2019 interval (Supplementary Fig. 1). The tiles were chosen to represent diverse global agriculture landscapes. Classification training data (cropland class presence and absence) were manually selected through visual interpretation of Landsat metric composites and high-resolution data from Google Earth. An individual supervised classification model (bagged decision trees) was calibrated and applied to each tile.At the second stage, we used the 924 tiles that had been classified as cropland/other land and the 2016–2019 metric set to train a series of regional cropland mapping models. The classification was iterated by adding training tiles and assessing the results until the resulting map was satisfactory. We then applied the regional models to each of the preceding 4-year intervals, thus creating a preliminary time-series of global cropland maps.At the third stage, we used the preliminary global cropland maps as training data to generate temporally consistent global cropland data. As the regional models applied at the second stage were calibrated using 2016–2019 data alone, classification errors may arise due to Landsat data inconsistencies before 2016. The goal of this third stage was to create a robust spatiotemporally consistent set of locally calibrated cropland detection models. For each 1° × 1° Landsat ARD tile (13,451 tiles total), we collected training data for each 4-year interval from the preliminary cropland extent maps within a 3° radius of the target tile, with preference to select stable cropland and non-cropland pixels as training. Training data from all intervals were used to calibrate a single decision tree ensemble for each ARD tile. The per-tile models were then applied to each time interval, and the results were post-processed to remove single cropland class detections and omissions within time-series and eliminate cropland patches More

  • in

    Fire effects on the persistence of soil organic matter and long-term carbon storage

    1.Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
    Google Scholar 
    2.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).
    Google Scholar 
    3.Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. CRC Crit. Rev. Plant Sci. 22, 151–184 (2003).
    Google Scholar 
    4.Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Chang. Biol. 4, 229–233 (1998).
    Google Scholar 
    5.Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
    Google Scholar 
    6.Grace, J. et al. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
    Google Scholar 
    7.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
    Google Scholar 
    8.Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).
    Google Scholar 
    9.Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).
    Google Scholar 
    10.Certini, G., Nocentini, C., Knicker, H., Arfaioli, P. & Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 167–168, 148–155 (2011).
    Google Scholar 
    11.Jiménez-Morillo, N. T. et al. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 145, 266–273 (2016).
    Google Scholar 
    12.Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).
    Google Scholar 
    13.Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).
    Google Scholar 
    14.Santin, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 22, 76–91 (2016).
    Google Scholar 
    15.Czimczik, C. I. & Masiello, C. A. Controls on black carbon storage in soils. Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002798 (2007).16.Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).
    Google Scholar 
    17.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2012JG002128 (2012).18.Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
    Google Scholar 
    19.Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).
    Google Scholar 
    20.Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).
    Google Scholar 
    21.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).
    Google Scholar 
    22.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
    Google Scholar 
    23.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    24.Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 21, 1189–1201 (2011).
    Google Scholar 
    25.McKee, W. H. Changes in Soil Fertility Following Prescribed Burning on Coastal Plain Pine Sites Research Paper-RE-234 (US Department of Agriculture, 1982).26.Fynn, R. W. S., Haynes, R. J. & O’Connor, T. G. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biol. Biochem. 35, 677–687 (2003).
    Google Scholar 
    27.Roscoe, R., Buurman, P., Velthorst, E. J. & Pereira, J. A. A. Effects of fire on soil organic matter in a “cerrado sensu-stricto” from southeast Brazil as revealed by changes in δ13C. Geoderma 95, 141–160 (2000).
    Google Scholar 
    28.Phillips, D. H., Foss, J. E., Buckner, E. R., Evans, R. M. & FitzPatrick, E. A. Response of surface horizons in an oak forest to prescribed burning. Soil Sci. Soc. Am. J. 64, 754–760 (2000).
    Google Scholar 
    29.Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Chang. 10, 1130–1136 (2020).
    Google Scholar 
    30.Hartford, R. & Frandsen, W. When it’s hot, it’s hot… or maybe it’s not! (Surface flaming may not portend extensive soil heating). Int. J. Wildland Fire 2, 139–144 (1992).
    Google Scholar 
    31.Pellegrini, A. F. A. et al. Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. J. Ecol. 108, 1426–1441 (2020).
    Google Scholar 
    32.Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M. & Coomes, D. A. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300, 972–975 (2003).
    Google Scholar 
    33.Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).
    Google Scholar 
    34.Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).
    Google Scholar 
    35.Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. For. Ecol. Manage. 140, 227–238 (2001).
    Google Scholar 
    36.González-Pérez, J. A., González-Vila, F. J., Almendros, G. & Knicker, H. The effect of fire on soil organic matter—a review. Environ. Int. 30, 855–870 (2004).
    Google Scholar 
    37.Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).
    Google Scholar 
    38.Boyer, W. D. & Miller, J. H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. For. Ecol. Manage. 70, 311–318 (1994).
    Google Scholar 
    39.Martin, A., Mariotti, A., balesdent, J., Lavelle, P. & Vuattoux, R. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol. Biochem. 22, 517–523 (1990).
    Google Scholar 
    40.McKee, W. H. & Lewis, C. E. Influence of burning and grazing on soil nutrient properties and tree growth on a Georgia coastal plain site after 40 years. In Proc. Second Biennial Southern Silvicultural Research Station Conference (Ed. Jones, E. P. J.) 79–86 (US Department of Agriculture, 1983).41.Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manage. 250, 234–243 (2007).
    Google Scholar 
    42.Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of Eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
    Google Scholar 
    43.Guinto, D. F., Xu, Z. H., House, A. P. N. & Saffigna, P. G. Soil chemical properties and forest floor nutrients under repeated prescribed-burning in eucalypt forests of south-east Queensland, Australia. N. Z. J. For. Sci. 31, 170–187 (2001).
    Google Scholar 
    44.Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82 (2014).
    Google Scholar 
    45.O’Donnell, J. A. et al. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob. Chang. Biol. 17, 1461–1474 (2011).
    Google Scholar 
    46.Butnor, J. R. et al. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. For. Ecol. Manage. 390, 15–26 (2017).
    Google Scholar 
    47.Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65–105 (1996).
    Google Scholar 
    48.Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).
    Google Scholar 
    49.Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
    Google Scholar 
    50.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
    Google Scholar 
    51.Lutzow, M. V. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 57, 426–445 (2006).
    Google Scholar 
    52.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).
    Google Scholar 
    53.Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
    Google Scholar 
    54.Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A. & Zavala, L. M. Fire effects on soil aggregation: a review. Earth Sci. Rev. 109, 44–60 (2011).
    Google Scholar 
    55.Chen, H. Y. H. & Shrestha, B. M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 50, 149–157 (2012).
    Google Scholar 
    56.Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).
    Google Scholar 
    57.Jian, M., Berhe, A. A., Berli, M. & Ghezzehei, T. A. Vulnerability of physically protected soil organic carbon to loss under low severity fires. Front. Environ. Sci. 6, 66 (2018).
    Google Scholar 
    58.Debano, L. F. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231, 195–206 (2000).
    Google Scholar 
    59.Hallett, P. D. et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314, 183–196 (2009).
    Google Scholar 
    60.Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
    Google Scholar 
    61.Hartnett, D. C., Potgieter, A. F. & Wilson, G. W. T. Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr. J. Ecol. 42, 328–337 (2004).
    Google Scholar 
    62.Eom, A.-H., Hartnett, D. C., Wilson, G. W. T. & Figge, D. A. H. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am. Midl. Nat. 142, 55–70 (1999).
    Google Scholar 
    63.Sankey, J. B. et al. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds. Geophys. Res. Lett. 44, 8884–8892 (2017).
    Google Scholar 
    64.Van Oost, K. et al. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).
    Google Scholar 
    65.Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy 130, 1–140 (2015).
    Google Scholar 
    66.Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).
    Google Scholar 
    67.Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697–710 (2000).
    Google Scholar 
    68.Kaiser, K. & Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 54, 219–236 (2003).
    Google Scholar 
    69.Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118 (2007).
    Google Scholar 
    70.Ketterings, Q. M., Bigham, J. M. & Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117 (2000).
    Google Scholar 
    71.Ulery, A. L., Graham, R. C. & Bowen, L. H. Forest fire effects on soil phyllosilicates in California. Soil Sci. Soc. Am. J. 60, 309–315 (1996).
    Google Scholar 
    72.Fernández, I., Cabaneiro, A. & Carballas, T. Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 29, 1–11 (1997).
    Google Scholar 
    73.Heckman, K., Campbell, J., Powers, H., Law, B. & Swanston, C. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA. Fire Ecol. 9, 40–56 (2013).
    Google Scholar 
    74.Knicker, H., González-Vila, F. J. & González-Vázquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 56, 31–39 (2013).
    Google Scholar 
    75.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).
    Google Scholar 
    76.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
    Google Scholar 
    77.Neff, J., Harden, J. & Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. For. 35, 2178–2187 (2005).
    Google Scholar 
    78.Harden, J. W. et al. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002194 (2004).79.DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).
    Google Scholar 
    80.Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties. Biogeosci. Discuss. 3, 211–271 (2006).
    Google Scholar 
    81.Krishnaraj, S. J., Baker, T. G., Polglase, P. J., Volkova, L. & Weston, C. J. Prescribed fire increases pyrogenic carbon in litter and surface soil in lowland Eucalyptus forests of south-eastern Australia. For. Ecol. Manage. 366, 98–105 (2016).
    Google Scholar 
    82.Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).
    Google Scholar 
    83.Knicker, H., Almendros, G., González-Vila, F. J., Martin, F. & Lüdemann, H. D. 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol. Biochem. 28, 1053–1060 (1996).
    Google Scholar 
    84.Waldrop, M. P. & Harden, J. W. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob. Chang. Biol. 14, 2591–2602 (2008).
    Google Scholar 
    85.Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).
    Google Scholar 
    86.Wang, Q., Zhong, M. & Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manage. 271, 91–97 (2012).
    Google Scholar 
    87.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).
    Google Scholar 
    88.Beringer, J. et al. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 12, 333–340 (2003).
    Google Scholar 
    89.Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).
    Google Scholar 
    90.Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).
    Google Scholar 
    91.Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46 (2013).
    Google Scholar 
    92.Gongalsky, K. B. et al. Forest fire induces short-term shifts in soil food webs with consequences for carbon cycling. Ecol. Lett. 24, 438–450 (2021).
    Google Scholar 
    93.Wardle, D. A., Nilsson, M.-C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320, 629 (2008).
    Google Scholar 
    94.Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).
    Google Scholar 
    95.Harden, J. W. et al. The role of fire in the boreal carbon budget. Glob. Chang. Biol. 6, 174–184 (2000).
    Google Scholar 
    96.Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).
    Google Scholar 
    97.Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).
    Google Scholar 
    98.Pellegrini, A. F. A. et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob. Chang. Biol. 27, 3810–3823 (2021).
    Google Scholar 
    99.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
    Google Scholar 
    100.Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
    Google Scholar 
    101.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 6497 (2020).
    Google Scholar 
    102.Walker, R. B., Coop, J. D., Parks, S. A. & Trader, L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9, e02182 (2018).
    Google Scholar 
    103.Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2 (Oak Ridge National Laboratory, 2014); https://doi.org/10.3334/ORNLDAAC/1247104.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
    Google Scholar 
    105.Oliveras, I. et al. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int. J. Wildland Fire 22, 368–380 (2013).
    Google Scholar 
    106.Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. For. Res. 30, 274–282 (2000).
    Google Scholar 
    107.Bormann, B. T., Homann, P. S., Darbyshire, R. L. & Morrissette, B. A. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can. J. For. Res. 38, 2771–2783 (2008).
    Google Scholar 
    108.Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82, 1703–1719 (2001).
    Google Scholar 
    109.O’Neill, K. P., Richter, D. D. & Kasischke, E. S. Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry 80, 1–20 (2006).
    Google Scholar 
    110.Köster, E. et al. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J. Environ. Manage. 228, 405–415 (2018).
    Google Scholar 
    111.Zhao, H., Tong, D. Q., Lin, Q., Lu, X. & Wang, G. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189–190, 532–539 (2012).
    Google Scholar 
    112.Kuzyakov, Y., Friedel, J. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).
    Google Scholar 
    113.Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 8, 512–523 (2016).
    Google Scholar 
    114.Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol. 5, 504–512 (2021).
    Google Scholar 
    115.Peterson, D. W., Reich, P. B., Wrage, K. J. & Franklin, J. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. J. Veg. Sci. 18, 3–12 (2007).
    Google Scholar 
    116.Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4, 80 (2016).
    Google Scholar 
    117.Loades, K. W., Bengough, A. G., Bransby, M. F. & Hallett, P. D. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng. 36, 276–284 (2010).
    Google Scholar 
    118.Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J. Geophys. Res. 112, G02029 (2007).
    Google Scholar 
    119.Aaltonen, H. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 143, 257–274 (2019).
    Google Scholar 
    120.Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Appl. 14, 1826–1838 (2004).
    Google Scholar 
    121.Kelly, J. et al. Boreal forest soil carbon fluxes one year after a wildfire: effects of burn severity and management. Glob. Chang. Biol. 27, 4181–4195 (2021).
    Google Scholar 
    122.Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644 (2019).
    Google Scholar  More

  • in

    Was the kateretid beetle Pelretes really a Cretaceous angiosperm pollinator?

    1.Tihelka et al. Angiosperm pollinivory in a Cretaceous beetle. Nat. Plants. 7, 445–451 (2021).Article 

    Google Scholar 
    2.Halbritter et al. Illustrated Pollen Terminology (Springer, 2018).3.Friis, E. M., Pedersen, K. R. & Crane, P. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).4.Seyfullah et al. Revealing the diversity of amber source plants from the Early Cretaceous Crato Formation, Brazil. BMC Evol. Biol. 20, 107 (2020).Article 

    Google Scholar 
    5.Nation, L. Insect Physiology and Biochemistry (CRC Press, 2002).6.Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, USA. Int. J. Plant Sci. 163, 675–686 (2002).Article 

    Google Scholar 
    7.Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).Article 

    Google Scholar 
    8.Shanker, C., Mohan, M., Sampathkumar, M., Lydia, C. & Katti, G. Functional significance of Micraspis discolor (F.) (Coccinellidae: Coleoptera) in the rice ecosystem. J. Appl. Entomol. 137, 601–609 (2013).Article 

    Google Scholar 
    9.Lehane, M. J. Peritrophic matrix structure and function. Annu. Rev. Entomol. 42, 525–550 (1997).CAS 
    Article 

    Google Scholar 
    10.Hegedus, D., Erlandson, M., Gillott, C. & Toprak, U. New insights into peritrophic matrix synthesis, architecture, and function. Annu. Rev. Entomol. 54, 285–302 (2009).CAS 
    Article 

    Google Scholar 
    11.Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).
    Google Scholar 
    12.Friis, E. M., Pedersen, K. R. & Crane, P. R. Early angiosperm diversification: the diversity of pollen associated with angiosperm reproductive structures in Early Cretaceous floras from Portugal. Ann. Missouri Bot. Garden 86, 259–296 (1999).Article 

    Google Scholar 
    13.Brenner, G. J. The Spores and Pollen of the Potomac Group of Maryland (Waverly Press, 1963).14.Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).Article 

    Google Scholar 
    15.Peris et al. False Blister Beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).CAS 
    Article 

    Google Scholar  More