More stories

  • in

    Biocrusts mediate a new mechanism for land degradation under a changing climate

    1.Science Plan and Implementation Strategy IGBP Report No. 53/IHDP Report No. 19 (Global Land Project, 2005).2.Millennium Ecosystem Assessment—Ecosystems and Human Well-Being: Desertification Synthesis Encyclopedia of the Anthropocene vols 1–5 (MEA, 2017).3.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2015).Article 

    Google Scholar 
    4.Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).Article 

    Google Scholar 
    5.Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article 

    Google Scholar 
    6.Belnap, J. Surface disturbances: their role in acceleration desertification. Environ. Monit. Assess. 37, 38–57 (1995).Article 

    Google Scholar 
    7.Zhao, Y., Jia, R. L. & Wang, J. Towards stopping land degradation in drylands: water-saving techniques for cultivating biocrusts in situ. Land Degrad. Dev. 30, 2336–2346 (2019).Article 

    Google Scholar 
    8.Rodriguez-Caballero, E. et al. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 11, 185–189 (2018).CAS 
    Article 

    Google Scholar 
    9.Coe, K. K. & Sparks, J. P. Physiology-based prognostic modeling of the influence of changes in precipitation on a keystone dryland plant species. Oecologia 176, 933–942 (2014).Article 

    Google Scholar 
    10.Ferrenberg, S., Tucker, C. L. & Reed, S. C. Biological soil crusts: diminutive communities of potential global importance. Front. Ecol. Environ. 15, 160–167 (2017).Article 

    Google Scholar 
    11.Belnap, J. & Gillette, D. A. Soil surface disturbance: impacts on potential wind erodibility of sand desert soils in SE Utah, USA. Land Degrad. Dev. 8, 355–362 (1997).Article 

    Google Scholar 
    12.Rutherford, W. A. et al. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts. Sci. Rep. 7, 44188 (2017).13.Duniway, M. C. et al. Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere 10, e02650 (2019).14.Ferrenberg, S., Faist, A. M., Howell, A. & Reed, S. C. Biocrusts enhance soil fertility and Bromus tectorum growth, and interact with warming to influence germination. Plant Soil 429, 77–90 (2018).CAS 
    Article 

    Google Scholar 
    15.Eldridge, D. J. et al. The pervasive and multifaceted influence of biocrusts on water in the world’s drylands. Glob. Change Biol. 26, 6003–6014 (2020).16.Ferrenberg, S., Reed, S. C. & Belnap, J. Climate change and physical disturbance cause similar community shifts in biological soil crusts. Proc. Natl Acad. Sci. USA 112, 12116–12121 (2015).CAS 
    Article 

    Google Scholar 
    17.Reed, S. C. et al. Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat. Clim. Change 2, 752–755 (2012).CAS 
    Article 

    Google Scholar 
    18.Concostrina-Zubiri, L. et al. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics. Ecol. Appl. 24, 1863–1877 (2014).CAS 
    Article 

    Google Scholar 
    19.Weber, B., Bowker, M., Zhang, Y. & Belnap, J. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 479–498 (Springer, 2016).20.Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).CAS 
    Article 

    Google Scholar 
    21.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    Article 

    Google Scholar 
    22.Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, e03360 (2011).Article 

    Google Scholar 
    23.Bestelmeyer, B. T. et al. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 13, 28–36 (2015).Article 

    Google Scholar 
    24.Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).25.Fukami, T. & Nakajima, M. Community assembly: alternative stable states or alternative transient states? Ecol. Lett. 14, 973–984 (2011).Article 

    Google Scholar 
    26.Belnap, J. & Büdel, B. in Biological Soil Crusts: An Organizing Principle in Drylands (eds Weber, B., Büdel, B. & Belnap, J.) 305–320 (Springer, 2016).27.Belnap, J. & Warren, S. D. Measuring restoration success: a lesson from Patton’s tank tracks. Ecol. Bull. 79, 33 (1998).28.Belnap, J. & Elderidge, D. in Biological Soil Crusts: Structure, Function and Management (eds Belnap, J. & Lange, O. L.) 363–383 (Springer, 2001).29.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).Article 

    Google Scholar 
    30.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).Article 

    Google Scholar 
    31.Sala, O. E. & Lauenroth, W. K. Small rainfall events: an ecological role in semiarid regions. Oecologia 53, 301–304 (1982).32.Cayan, D. R. et al. Future dryness in the Southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. USA 107, 21271–21276 (2010).CAS 
    Article 

    Google Scholar 
    33.Christensen, N. S., Wood, A. W., Nathalie, V., Lettenmaier, D. P. & Palmer, R. N. The effects of climate change on the hydrology and water resources of the Colorado river basin. Clim. Change 62, 337 (2004).Article 

    Google Scholar 
    34.Herrick, J. et al. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 44, 27–35 (2001).Article 

    Google Scholar 
    35.Escolar, C., Martínez, I., Bowker, M. A. & Maestre, F. T. Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment: implications for ecosystem structure and functioning. Phil. Trans. R. Soc. B 367, 3087–3099 (2012).Article 

    Google Scholar 
    36.Scheffer, M. et al. Creating a safe operating space for iconic ecosystems: manage local stressors to promote resilience to global change. Science 347, 1317–1319 (2015).CAS 
    Article 

    Google Scholar 
    37.Collins, S. L., Micheli, F. & Hartt, L. A method to determine rates and patterns of variability in ecological communities. Oikos 91, 285–293 (2000).Article 

    Google Scholar 
    38.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).CAS 
    Article 

    Google Scholar 
    39.IPCC. Climate Change 2014: Impacts, Adaptations, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).40.Mirzabaev, A. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).41.Torres-Cruz, T. J. et al. Species-specific nitrogenase activity in lichen-dominated biological soil crusts from the Colorado Plateau, USA. Plant Soil 429, 113–125 (2018).CAS 
    Article 

    Google Scholar 
    42.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).Article 

    Google Scholar 
    43.Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6, 886–897 (2011).Article 

    Google Scholar 
    44.Tucker, C. L., Ferrenberg, S. & Reed, S. C. Climatic sensitivity of dryland soil CO2 fluxes differs dramatically with biological soil crust successional state. Ecosystems 22, 15–32 (2018). https://doi.org/10.1007/s10021-018-0250-445.Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141, 317–324 (2004).Article 

    Google Scholar 
    46.Karl, T. R., Knight, R. W. & Plummer, N. Trends in high-frequency climate variability in the twentieth century. Nature 377, 217–220 (1995).CAS 
    Article 

    Google Scholar 
    47.Kunkel, K. E., Easterling, D. R., Redmond, K. & Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 30, 1895–2000 (2003).Article 

    Google Scholar 
    48.Kim, J. A projection of the effects of the climate change induced by increased CO2 on extreme hydrologic events in the Western US. Clim. Change 68, 153–168 (2005).CAS 
    Article 

    Google Scholar 
    49.Smith, S. J. et al. Climate change impacts for the conterminous USA: an integrated assessment part 1. Scenarios and context. Clim. Change 69, 7–25 (2005). https://doi.org/10.1007/1-4020-3876-3_250.Schwinning, S., Belnap, J., Bowling, D. R. & Ehleringer, J. R. Sensitivity of the Colorado Plateau to change: climate, ecosystems, and society. Ecol. Soc. 13, 28 (2008).51.Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).Article 

    Google Scholar 
    52.Jonasson, S. The point intercept method for non-destructive estimation of biomass. Phytocoenologia 11, 385–388 (1983).Article 

    Google Scholar 
    53.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).54.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).55.Oksanen, A. J. et al. Vegan: Community Ecology Package. Rpackage version 2.5-7 https://CRAN.R-project.org/package=vegan (2020).56.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2008).Article 

    Google Scholar 
    57.Venables, W. & Ripley, B. Modern Applied Statistics with S. (Springer, 2002).58.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package ‘emmeans’ https://github.com/rvlenth/emmeans (2018).59.Signorell, A. DescTools: Tools for Descriptive Statistics (2021).60.Hallett, L. M. et al. codyn: an R package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).61.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn 1–476 (CRC/Taylor & Francis, 2017).62.Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).63.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 547–511 (1992).
    Google Scholar 
    64.Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    65.Modrák, M., Barrett, M., Weber, F. & Coronado, E. bayesplot: Plotting for Bayesian Models. R package version 1.8.0 https://mc-stan.org/bayesplot/ (2021).66.Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 

    Google Scholar 
    67.Phillips, M. L., Howell, A., Lauria, C. M., Belnap, J. & Reed, S. C. Data and software code from two long-term experiments (1996–2011 and 2005–2018) at three sites on the Colorado Plateau of North America (US Geological Survey, 2021); https://doi.org/10.5066/P9RUN1TP More

  • in

    The discrepancy between fire ant recruitment to and performance on rodent carrion

    1.Carter, D. O., Yellowlees, D. & Tibbett, M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1), 12–24 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Weathers, K. C., Strayer, D. L. & Likens, G. E. Fundamentals of Ecosystem Science (Academic Press, 2012).
    Google Scholar 
    3.Payne, J. A. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology 46(5), 592–602 (1965).
    Google Scholar 
    4.Anderson, G. S., Cervenka, V. J., Haglund, W. & Sorg, M. Insects associated with the body: Their use and analyses. Adv. Forens. Taphonomy 2, 1 (2002).
    Google Scholar 
    5.Smith, K. G. A manual of forensic entomology. (1986).6.Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).PubMed 

    Google Scholar 
    7.Benbow, M. E., Tomberlin, J. K. & Tarone, A. M. Carrion Ecology, Evolution, and Their Applications (CRC Press, 2015).
    Google Scholar 
    8.Wilson, E. E., Mullen, L. M. & Holway, D. A. Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci. 106(31), 12809–12813 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Pechal, J. L. et al. Field documentation of unusual post-mortem arthropod activity on human remains. J. Med. Entomol. 52(1), 105–108 (2015).PubMed 

    Google Scholar 
    10.Campobasso, C. P., Marchetti, D., Introna, F. & Colonna, M. F. Postmortem artifacts made by ants and the effect of ant activity on decompositional rates. Am. J. Forens. Med. Pathol. 30(1), 84–87 (2009).
    Google Scholar 
    11.Eubanks, M. D., Lin, C. & Tarone, A. M. The role of ants in vertebrate carrion decomposition. Food Webs 18, e00109 (2019).
    Google Scholar 
    12.Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 2, 51–63 (1974).
    Google Scholar 
    13.Andrade-Silva, J., Pereira, E. K. C., Silva, O., Delabie, J. H. C. & Rebelo, J. M. M. Ants (Hymenoptera: Formicidae) associated with pig carcasses in an urban area. Sociobiology 62(4), 527–532 (2015).
    Google Scholar 
    14.Chin, H. C. et al. Ants (Hymenoptera: Formicidae) associated with pig carcasses in Malaysia. Trop. Biomed. 26(1), 106–109 (2009).
    Google Scholar 
    15.Prado Castro, C., García, M. D., Palma, C. & Martínez-Ibáñez, M. D. First report on sarcosaprophagous Formicidae from Portugal (Insecta: Hymenoptera). Annales de la Société entomologique de France 50(1), 51–58 (2014).
    Google Scholar 
    16.Neto-Silva, A., Dinis-Oliveira, R. J. & Prado e Castro, C.,. Diversity of the Formicidae (Hymenoptera) carrion communities in Lisbon (Portugal): Preliminary approach as seasonal and geographic indicators. Forens. Sci. Res. 3(1), 65–73 (2018).
    Google Scholar 
    17.Payne, J. A., King, E. W. & Beinhart, G. Arthropod succession and decomposition of buried pigs. Nature 219(5159), 1180–1181 (1968).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Meyer, F., Monroe, M. D., Williams, H. N. & Goddard, J. Solenopsis invicta x richteri (Hymenoptera: Formicidae) necrophagous behavior causes post-mortem lesions in pigs which serve as oviposition sites for Diptera. Forens. Sci. Int. Rep. 2, 100067 (2020).
    Google Scholar 
    19.De Jong, G. D., Meyer, F. & Goddard, J. Relative roles of blow flies (Diptera: Calliphoridae) and invasive fire ants (Hymenoptera: Formicidae: Solenopsis spp.) in carrion decomposition. J. Med. Entomol. 58(3), 1074–1082 (2021).PubMed 

    Google Scholar 
    20.Early, M. & Goff, M. L. Arthropod succession patterns in exposed carrion on the island of O’ahu, Hawaiian Islands, USA. J. Med. Entomol. 23(5), 520–531 (1986).CAS 
    PubMed 

    Google Scholar 
    21.Stoker, R. L., Grant, W. E. & Bradleigh Vinson, S. Solenopsis invicta (Hymenoptera: Formicidae) effect on invertebrate decomposers of carrion in central Texas. Environ. Entomol. 24(4), 817–822 (1995).
    Google Scholar 
    22.Ekanem, M. S. & Dike, M. C. Arthropod succession on pig carcasses in southeastern Nigeria. Papeis Avulsos de Zoologia 50, 561–570 (2010).
    Google Scholar 
    23.Lindgren, N. K., Bucheli, S. R., Archambeault, A. D. & Bytheway, J. A. Exclusion of forensically important flies due to burying behavior by the red imported fire ant (Solenopsis invicta) in southeast Texas. Forensic Sci. Int. 204(1–3), e1–e3 (2011).PubMed 

    Google Scholar 
    24.Pereira, E. K. C. et al. Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) activity delays vertebrate carcass decomposition. Sociobiology 64(3), 369–372 (2017).
    Google Scholar 
    25.Dussutour, A. & Simpson, S. J. Description of a simple synthetic diet for studying nutritional responses in ants. Insectes Soc. 55(3), 329–333 (2008).
    Google Scholar 
    26.Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
    Google Scholar 
    27.Tschinkel, W. R. The Fire Ants (Belknap Press, 2013).
    Google Scholar 
    28.Paula, M. C. et al. Action of ants on vertebrate carcasses and blow flies (Calliphoridae). J. Med. Entomol. 53(6), 1283–1291 (2016).PubMed 

    Google Scholar 
    29.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).
    Google Scholar 
    30.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.2 4, (2019).31.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage publications, 2018).
    Google Scholar 
    32.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometr. J. 50(3), 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar 
    33.Porter, S. D., Bhatkar, A., Mulder, R., Vinson, B. S. & Clair, D. J. Distribution and density of polygyne fire ants (Hymenoptera: Formicidae) in Texas. J. Econ. Entomol. 84(3), 866–874 (1991).CAS 
    PubMed 

    Google Scholar 
    34.Cook, S. C., Eubanks, M. D., Gold, R. E. & Behmer, S. T. Colony-level macronutrient regulation in ants: mechanisms, hoarding and associated costs. Anim. Behav. 79(2), 429–437 (2010).
    Google Scholar 
    35.Smith, C. R. & Tschinkel, W. R. Ant fat extraction with a Soxhlet extractor. Cold Spring Harbor Protocols 7, 5243 (2009).
    Google Scholar 
    36.Wills, B. D. et al. Effect of carbohydrate supplementation on investment into offspring number, size, and condition in a social insect. PLoS ONE 10(7), e0132440 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    37.Bockoven, A. A., Wilder, S. M. & Eubanks, M. D. Intraspecific variation among social insect colonies: persistent regional and colony-level differences in fire ant foraging behavior. PLoS ONE 10(7), e0133868 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67(1), 1–48 (2015).
    Google Scholar 
    39.Gavilanez-Slone, J. & Porter, S. D. Colony growth of two species of Solenopsis fire ants (Hymenoptera: Formicidae) reared with crickets and beef liver. Florida Entomol. 96(4), 1482–1488 (2013).
    Google Scholar 
    40.Sorensen, A. A., Busch, T. M. & Vinson, S. B. Factors affecting brood cannibalism in laboratory colonies of the imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 140–150 (1983).
    Google Scholar 
    41.Williams, D. F., Vander Meer, R. K. & Lofgren, C. S. Diet-induced nonmelanized cuticle in workers of the imported fire ant Solenopsis invicta Buren. Arch. Insect Biochem. Physiol. 4(4), 251–259 (1987).CAS 

    Google Scholar 
    42.Porter, S. D. Effects of diet on the growth of laboratory fire ant colonies (Hymenoptera: Formicidae). J. Kansas Entomol. Soc. 2, 288–291 (1989).
    Google Scholar 
    43.Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Florida Entomol. 2, 229–232 (1970).
    Google Scholar 
    44.Porter, S. D., Valles, S. M. & Gavilanez-Slone, J. M. Long-term efficacy of two cricket and two liver diets for rearing laboratory fire ant colonies (Hymenoptera: Formicidae: Solenopsis invicta). Florida Entomol. 98(3), 991–993 (2015).
    Google Scholar 
    45.Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B Biol. Sci. 284(1846), 20162052 (2017).
    Google Scholar 
    46.Tschinkel, W. R. Sociometry and sociogenesis of colonies of the fire ant Solenopsis Invicta during one annual cycle. Ecol. Monogr. 63(4), 425–457 (1993).
    Google Scholar 
    47.Deslippe, R. J. & Savolainen, R. Sex investment in a social insect: The proximate role of food. Ecology 76(2), 375–382 (1995).
    Google Scholar 
    48.Rosenfeld, C. S. & Roberts, R. M. Maternal diet and other factors affecting offspring sex ratio: A review. Biol. Reprod. 71(4), 1063–1070 (2004).CAS 
    PubMed 

    Google Scholar 
    49.Hasegawa, E. Sex allocation in the ant Camponotus (Colobopsis) nipponicus (Wheeler): II. The effect of resource availability on sex-ratio variability. Insectes Soc. 60(3), 329–335 (2013).
    Google Scholar 
    50.Knaden, M. & Graham, P. The sensory ecology of ant navigation: from natural environments to neural mechanisms. Annu. Rev. Entomol. 61, 63–76 (2016).CAS 
    PubMed 

    Google Scholar 
    51.Liu, W., Longnecker, M., Tarone, A. M. & Tomberlin, J. K. Responses of Lucilia sericata (Diptera: Calliphoridae) to compounds from microbial decomposition of larval resources. Anim. Behav. 115, 217–225 (2016).
    Google Scholar 
    52.Tomberlin, J. K. et al. Indole: An evolutionarily conserved influencer of behavior across kingdoms. BioEssays 39(2), 1600203 (2017).
    Google Scholar 
    53.Frederickx, C. et al. Volatile organic compounds released by blowfly larvae and pupae: New perspectives in forensic entomology. Forensic Sci. Int. 219(1–3), 215–220 (2012).CAS 
    PubMed 

    Google Scholar 
    54.Frederickx, C., Dekeirsschieter, J., Verheggen, F. J. & Haubruge, E. Host-habitat location by the parasitoid, Nasonia vitripennis Walker (Hymenoptera: Pteromalidae). J. Forensic Sci. 59(1), 242–249 (2014).CAS 
    PubMed 

    Google Scholar 
    55.Schettino, M. et al. Response of a predatory ant to volatiles emitted by aphid-and caterpillar-infested cucumber and potato plants. J. Chem. Ecol. 43(10), 1007–1022 (2017).CAS 
    PubMed 

    Google Scholar 
    56.Sawyer, S. J., Rusch, T. W., Tarone, A. M. & Tomberlin, J. K. Wing buzzing as a potential antipredator defense against an invasive predator. Food Webs 27, e00192 (2021).
    Google Scholar 
    57.Wells, J. D. & Greenberg, B. Effect of the red imported fire ant (Hymenoptera: Formicidae) and carcass type on the daily occurrence of postfeeding carrion-fly larvae (Diptera: Calliphoridae, Sarcophagidae). J. Med. Entomol. 31(1), 171–174 (1994).CAS 
    PubMed 

    Google Scholar  More

  • in

    Phenotypic variation of fruit and ecophysiological traits among maqui (Aristotelia chilensis [Molina] Stuntz) provenances established in a common garden

    1.FAO. Superfruits: Myth or truth? in Proceedings International Symposium, Ho Chi Minh, Vietnam, 140 (2013).
    2.Chamberlain, J., Darr, D. & Meinhold, K. Rediscovering the contributions of forest and trees to transition global food system. Forests 11, 1098. https://doi.org/10.3390/f11101098 (2020).Article 

    Google Scholar 
    3.Vanzani, P. et al. Wild mediterranean plants as traditional food: A valuable source of antioxidants. J. Food Sci. 76, 46–51 (2011).Article 

    Google Scholar 
    4.Genskowsky, E. et al. Determination of polyphenolic profile, antioxidant activity and antibacterial properties of maqui [Aristotelia chilensis (Molina) Stuntz] a Chilean blackberry. J. Sci. Food Agric. 96, 4235–4242 (2016).CAS 
    Article 

    Google Scholar 
    5.Benedetti, S. Monografía de maqui, Aristotelia chilensis (Mol.) Stuntz 60 (Instituto Forestal, 2012).
    Google Scholar 
    6.Vogel, H., Razmilic, H., San Martin, I., Doll, U. & González, B. Plantas Medicinales Chilena. Experiencias de domesticación y cultivo de Boldo, Matico, Bailahuén, Canelo, Peumo y maqui. Editorial Universitaria de Talca, 192 (2005).7.Gironés-Vilaplana, A., Mena, P., García-Viguera, C. & Moreno, D. A novel beverage rich in antioxidant phenolics: Maqui berry (Aristotelia chilensis) and lemon juice. Food Sci. Tech. 47, 279–286 (2012).
    Google Scholar 
    8.Quispe-Fuentes, I., Vega-Gálvez, A., Vásquez, V., Uribe, E. & Astudillo, S. Mathematical modeling and quality properties of a dehydrated native Chilean berry. J. Food Process Eng. 40, 124–132 (2017).Article 

    Google Scholar 
    9.Fredes, C., Montenegro, G., Zoffoli, J., Gómez, M. & Robert, P. Polyphenol content and antioxidant activity of maqui during fruit development and maturation in central Chile. Chilean J. Agric. Res. 72, 582–589 (2012).Article 

    Google Scholar 
    10.Céspedes, C., El-Hafidi, M., Pavon, N. & Alarcon, J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chem. 107, 820–829 (2008).Article 

    Google Scholar 
    11.Céspedes, C., Alarcon, J., Avila, J. & Nieto, A. Anti-inflammatory activity of Aristotelia chilensis (stuntz) (Elaeocarpaceae). Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 9, 91–99 (2010).
    Google Scholar 
    12.Céspedes, C. et al. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders. Food Chem. Toxicol. 108, 438–450 (2017).
    13.Muñoz, O. et al. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. J. Pharm. Pharmacol. 63, 849–859 (2011).Article 

    Google Scholar 
    14.Rojo, L. et al. In vitro and in vivo anti-diabetic effects of anthocyanins from maqui berry (Aristotelia chilensis). Food Chem. 131, 387–396 (2012).CAS 
    Article 

    Google Scholar 
    15.Zúñiga, G., Tapia, A., Arenas, A., Contreras, R. & Zuñiga-Libano, G. Phytochemistry and biological properties of Aristotelia chilensis a Chilean blackberry: A review. Phytochem. Rev. 16, 1081–1094. https://doi.org/10.1007/s11101-017-9533-1 (2017).CAS 
    Article 

    Google Scholar 
    16.Vogel, H. et al. Maqui (Aristotelia chilensis): Morpho-phenological characterization to design high-yielding cultivation techniques. J. Appl. Res. Med. Aromat. Plants. 1, 123–133 (2014).
    Google Scholar 
    17.Liu, Y. & El-Kassaby, Y. Phenotypic plasticity of natural Populus trichocarpa populations in response to temporally environmental change in a common garden. BMC Evol. Biol. 19, 231. https://doi.org/10.1186/s12862-019-1553-6 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Villemereuil, P., Gaggiotti, O., Mouterde, M. & Till-Bottraud, I. Common garden experiment in the genomic era: New perspectives and opportunities. Heredity 116, 249–254 (2016).Article 

    Google Scholar 
    19.Torres-Ruiz, J. et al. Genetic differentiation in functional traits among European sessile oak populations. Tree Physiol. 39, 1736–1749. https://doi.org/10.1093/treephys/tpz090 (2019).Article 
    PubMed 

    Google Scholar 
    20.Sáenz-Romero, C., Kremer, A., Nagy, L., Kehlet, J. & Mátyás, C. Common garden comparison confirm inherited differences in sensitivity to climate change between forest tree species. PerrJ. 7, 6213. https://doi.org/10.7717/peerj.6213 (2019).Article 

    Google Scholar 
    21.Aspinwall, M. et al. Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiol. 8, 1095–1112. https://doi.org/10.1093/treephys/tpx047 (2017).CAS 
    Article 

    Google Scholar 
    22.Knutzen, F., Meier, I. & Leuschner, C. Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 35, 949–963. https://doi.org/10.1093/treephys/tpv057 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Mkwezalamba, I., Munthali, C. & Missanjo, E. Phenotypic variation in fruit morphology among provenances of Sclerocarya birrea (A. Rich.) Hochst. Int. J. Forestry Res. 1, 1–8. https://doi.org/10.1155/2015/735418 (2015).Article 

    Google Scholar 
    24.Sudrajat, D. Genetic variation of fruit, seed, and seedling characteristics among 11 populations of white Jabon in Indonesia. For. Sci. Tech. 12(1), 9–15. https://doi.org/10.1080/21580103.2015.1007896 (2016).Article 

    Google Scholar 
    25.Teklehaimanot, Z., Lanek, J. & Tomlinson, H. Provenance variation in morphology and leaflet anatomy of Parkia biglobosa and its relation to drought tolerance. Trees 13, 96–102. https://doi.org/10.1007/pl00009742 (1998).Article 

    Google Scholar 
    26.Åkerström, A., Jaakola, L., Bång, U. & Jäderlund, A. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (Bilberries). J. Agric. Food Chem. 58, 11939–11945. https://doi.org/10.1021/jf102407n (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Lätti, A., Riihinen, K. & Kainulainen, P. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56, 190–196. https://doi.org/10.1021/jf072857m (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Uleberg, E. et al. Effects of temperature and photoperiod on yield and chemical composition of Northern and Southern Clones of Bilberry (Vaccinium myrtillus L.). J. Agric. Food Chem. 60, 10406–10414. https://doi.org/10.1021/jf302924m (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Moya, M., González, B., Doll, U., Yuri, J. A. & Vogel, H. Different covers affect growth and development of three maqui clones (Aristotelia chilensis [Molina] Stuntz). J. Berry Res. 1, 1–10. https://doi.org/10.3233/jbr-180377 (2019).Article 

    Google Scholar 
    30.Cona, M. et al. New polymorphic nuclear microsatellites from Aristotelia chilensis (Mol.) Stuntz (Elaeocarpaceae). Chilean J. Agri. Res. 80, 153–160. https://doi.org/10.4067/S0718-58392020000200153 (2020).Article 

    Google Scholar 
    31.Hamrick, J. Response of forest trees to global environmental changes. For. Ecol. Manag. 197, 323–335. https://doi.org/10.1016/j.foreco.2004.05.023 (2004).Article 

    Google Scholar 
    32.Salgado, P., Prinz, K., Finkeldey, R., Ramírez, C. & Vogel, H. Genetic variability of Aristotelia chilensis (“maqui”) based on AFLP and chloroplast microsatellite markers. Gen. Resour. Crop Evol. 64, 2083–2091 (2017).CAS 
    Article 

    Google Scholar 
    33.Holderegger, R., Kamm, U. & Gugerli, F. Adaptive vs. neutral genetic diversity: Implications for landscape genetics. Landsc. Ecol. 21, 797–807. https://doi.org/10.1007/s10980-005-5245-9 (2006).Article 

    Google Scholar 
    34.O’Brien, E., Mazanex, R. & Krauss, S. Provenance variation of ecologically important traits of forest trees: implications for restoration. J. Appl. Ecol. 44, 583–593. https://doi.org/10.1111/j.1365-2664.2007.01313.x (2007).Article 

    Google Scholar 
    35.Singleton, V. & Rossi, J. Colorimetry of total phenolics withphosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).CAS 

    Google Scholar 
    36.Giusti, M. & Wrolstad, R. Current protocols in food analytical chemistry. In Current Protocols in Food Analytical Chemistry (eds Wrolstad, R. et al.) F1.2.1-F1.2.13 (Wiley, 2001).
    Google Scholar 
    37.González, B., Vogel, H., Razmilic, I. & Wolfram, E. Polyphenol, anthocyanin and antioxidant content in different parts of maqui fruits (Aristotelia chilensis) during ripening and conservation treatments after harvest. Ind. Crops Prod. 76, 158–165. https://doi.org/10.1016/j.indcrop.2015.06.038 (2015).CAS 
    Article 

    Google Scholar 
    38.Winn, M., Araman, P. & Lee, S-M. UrbanCrowns: An assessment and monitoring tool for urban trees. Gen. Tech. Rep. SRS-135. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 10 (2011).39.Welham, S., Cullis, B., Gogel, B., Gilmour, A. & Thompson, R. Prediction in linear mixed models. Aust. N. Z. J. Stat. 46, 325–347 (2004).MathSciNet 
    Article 

    Google Scholar 
    40.Bastías, A. et al. Identification and characterization of microsatellite loci in Maqui (Aristotelia chilensis (Molina) Stuntz) using next-generation sequencing (NGS). PLoS ONE 11, e0159825. https://doi.org/10.1371/journal.pone.0159825 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Espinoza, S. et al. Influence of provenance origin on the early performance of two sclerophyllous Mediterranean species established in burned drylands. Sci. Rep. 11, 6212. https://doi.org/10.1038/s41598-021-85599-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vander Mijnsbrugge, K., Bischoff, A. & Smith, B. A question of origin: Where and how to collect seed for ecological restoration. Basic Appl. Ecol. 11, 300–311. https://doi.org/10.1016/j.baae.2009.09.002 (2010).Article 

    Google Scholar 
    43.Gao, S. B. et al. Phenotypic plasticity vs. local adaptation in quantitative traits differences of Stipa grandis in semi-arid steppe, China. Sci. Rep. 8, 3148. https://doi.org/10.1038/s41598-018-21557-w (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Lusk, C. & Del Pozo, A. Survival and growth of seedlings of 12 Chilean rainforest trees in two light environments: Gas exchange and biomass distribution correlates. Aust. Ecol. 27, 173–182. https://doi.org/10.1046/j.1442-9993.2002.01168.x (2002).Article 

    Google Scholar 
    45.Brito, C., Bown, H., Fuentes, J., Franck, N. & Perez-Quezada, J. Mesophyll conductance constrains photosynthesis in three common sclerophyllous species in Central Chile. Rev. Chilena de Historia Natural. https://doi.org/10.1186/s40693-014-0008-0 (2014).Article 

    Google Scholar 
    46.Prado, C. & Damascos, M. Gas exchange and leaf specific mass of different foliar cohorts of the wintergreen shrub Aristotelia chilensis (Mol.) Stuntz (Eleocarpaceae) fifteen days before the flowering and the fall of the old cohort. Braz. Arch. Biol. Tech. 44, 277–282 (2001).Article 

    Google Scholar 
    47.Repetto-Giavalli, F., Cavieres, L. & Simonetti, J. Respuestas foliares de Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) a la fragmentación del bosque maulino. Revista Chilena Hist. Nat. 80, 469–477 (2007).
    Google Scholar 
    48.Bustan, A. et al. Fruit load governs transpiration of olive trees. Tree Physiol. 36, 380–391. https://doi.org/10.1093/treephys/tpv138 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wünsche, J. & Lakso, A. Apple tree physiology—Implications for orchard and tree management. Compact Fruit Tree 33, 82–88 (2000).
    Google Scholar 
    50.Kelc, D., Vindis, P., Lakota, M. Measurements of Photosynthesis and Transpiration on Apple Trees, Chapter 18 in DAAAM International Scientific Book 2015. in (ed. Katalinic, B.), 199–208. (DAAAM International, 2015). https://doi.org/10.2507/daaam.scibook.2015.18. (ISBN 978-3-902734-05-1, ISSN 1726–9687).51.Lortie, C. & Aarssen, L. The specialization hypothesis for phenotypic plasticity in plants. Int. J. Plant Sci. 157, 484–487. https://doi.org/10.1086/297365 (1996).Article 

    Google Scholar 
    52.Nemeskéri, E. & Helyes, L. Physiological responses of selected vegetable crop species to water stress. Agronomy 9, 447. https://doi.org/10.3390/agronomy9080447 (2019).CAS 
    Article 

    Google Scholar 
    53.Tian, M., Yu, G., He, N. & Hou, J. Leaf morphological and anatomical traits from tropical to temperate coniferous forests: Mechanisms and influencing factors. Sci. Rep. https://doi.org/10.1038/srep19703 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 182, 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x (2009).Article 
    PubMed 

    Google Scholar 
    55.Allegro, G., Pastore, C., Valentini, G. & Filippetti, I. The evolution of phenolic compounds in Vitis vinifera L. red berries during ripening: Analysis and role on wine sensory—A review. Agronomy 11, 999. https://doi.org/10.3390/agronomy11050999 (2021).CAS 
    Article 

    Google Scholar 
    56.Chagné, D. et al. Genetic and environmental control of fruit maturation, dry matter and firmness in apple (Malus × domestica Borkh.). Hortic. Res. 1, 14046. https://doi.org/10.1038/hortres.2014.46 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Gashu, K. et al. Temperature shift between vineyards modulates berry phenology and primary metabolism in a varietal collection of wine grapevine. Front. Plant Sci. 11, 588739. https://doi.org/10.3389/fpls.2020.588739 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Suter, B., Destrac Irvine, A., Gowdy, M., Dai, Z. & van Leeuwen, C. Adapting wine grape ripening to global change requires a multi-trait approach. Front. Plant Sci. 12, 624867. https://doi.org/10.3389/fpls.2021.624867 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Nesmith, D. Fruit development period of several Southern Highbush Blueberry Cultivars. Int. J. Fruit Sci. 12, 249–255. https://doi.org/10.1080/15538362.2011.619430 (2012).Article 

    Google Scholar 
    60.Romero-Román, M. et al. Native species facing climate changes: Response of Calafate Berries To Low Temperature and UV radiation. Foods. 10, 196. https://doi.org/10.3390/foods10010196 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. 28, 137–142 (1995).CAS 
    Article 

    Google Scholar 
    62.Ebel, R. C., Proebsting, E. L. & Evans, R. G. Deficit irrigation to control vegetative growth in apple and monitoring fruit growth to schedule irrigation. HortScience 30, 1229–1232. https://doi.org/10.21273/hortsci.30.6.1229 (1995).Article 

    Google Scholar 
    63.Fereres, E. & Soriano, M. A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 58(2), 147–159. https://doi.org/10.1093/jxb/erl165 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Barnuud, N., Zerihun, A., Gibberd, M. & Bates, B. Berry composition and climate: Responses and empirical models. Inter. J. Biometeor. 58, 1207–1223. https://doi.org/10.1007/s00484-013-0715-2 (2014).ADS 
    Article 

    Google Scholar 
    65.Spinardi, A., Cola, G., Gardana, C. & Mignani, I. Variation of anthocyanin content and profile throughout fruit development and ripening of highbush blueberry cultivars grown at two different altitudes. Front. Plant Sci. 10, 1045. https://doi.org/10.3389/fpls.2019.01045 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Stevenson, D. & Scalzo, J. Anthocyanin composition and content of blueberries from around the world. J. Berry Res. 2, 179–189. https://doi.org/10.3233/JBR-2012-038 (2012).CAS 
    Article 

    Google Scholar 
    67.Zarrouk, O. et al. Grape ripening is regulated by deficit irrigation/elevated temperatures according to cluster position in the canopy. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.01640 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Prange, R. K. & DeEll, J. R. Preharvest factors affecting postharvest quality of berry crops. HortScience 32, 824–830. https://doi.org/10.21273/hortsci.32.5.824 (1997).Article 

    Google Scholar 
    69.Mignard, O., Beguería, S., Reig, G. & Fonti, C. Genetic origin and climate determine fruit quality and antioxidant traits on apple (Malus × domestica Borkh). Sci. Hortic. 285, 110142. https://doi.org/10.1016/j.scienta.2021.110142 (2021).CAS 
    Article 

    Google Scholar 
    70.González-Villagra, J., Rodrigues-Salvador, A., Nunes-Nesi, A., Cohen, J. & Reyes-Díaz, M. Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiol. Biochem. 124, 136–145. https://doi.org/10.1016/j.plaphy.2018.01.010 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Calderan, A. et al. Managing moderate water deficit increased anthocyanin concentration and proanthocyanidin galloylation in “Refošk” grapes in Northeast Italy. Agric. Water Manage. 246, 106684. https://doi.org/10.1016/j.agwat.2020.106684 (2021).Article 

    Google Scholar 
    72.Yáñez, M., Seiler, J. & Fox, T. Crown physiological responses of loblolly pine clones and families to silvicultural intensity: Assessing the effect of crown ideotype. For. Ecol. Manage. 398, 25–36. https://doi.org/10.1016/j.foreco.2017.05.002 (2017).Article 

    Google Scholar  More

  • in

    Hydrogen peroxide can be a plausible biomarker in cyanobacterial bloom treatment

    1.Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobcteria and other phytoplankton from waste water. Environ. Sci. Technol. 4(23), 8916–8921 (2008).ADS 

    Google Scholar 
    2.Lurling, M., Meng, D. & Fassen, E. L. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in cyanobacterium, Microcytis aeruginosa. Toxins 6(12), 3260–3281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    3.Ghime, D. & Ghosh, P. Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects (IntechOpen, 2020).4.Rahdar, S., Igwegbe, C. A., Ghasem, M. & Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 6, 492–499 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    5.Derakhshan, Z. et al. Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor. Ecotoxicol. Environ. Saf. 152, 1–7 (2018).PubMed 
    CAS 

    Google Scholar 
    6.Shekoohiyan, S. et al. Performance evaluation of cyanobacteria removal from water reservoirs by biological method. Afr. J. Microbiol. Res. 7(17), 1729–1734 (2013).CAS 

    Google Scholar 
    7.Cooper, W. J., Zika, R., Petasne, R. G. & Plane, J. M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ. Sci. Technol. 22, 1156–1160. https://doi.org/10.1021/es00175a004 (1988).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Cooper, W. J., Lean, D. R. S. & Carey, J. H. Spatial and temporal patterns of hydrogen peroxide in lake waters. Can. J. Fish. Aquat. Sci. 46, 1227–1231. https://doi.org/10.1139/f89-158 (1989).Article 
    CAS 

    Google Scholar 
    9.Cory, R. M. et al. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00054 (2016).Article 

    Google Scholar 
    10.Caverzan, A. et al. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35(4), 1011–1019 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    11.Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012).
    Google Scholar 
    12.Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: A mini review. J. Chem. Ecol. 36(2), 174–193 (2020).CAS 

    Google Scholar 
    13.Rastogi, R. P., Singh, S. P., Häder, D.-P. & Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397(3), 603–607 (2010).PubMed 
    CAS 

    Google Scholar 
    14.Foyer, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    15.Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).PubMed 
    CAS 

    Google Scholar 
    16.Ma, Z. & Gao, K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ. Exp. Bot. 68(2), 208–213 (2010).CAS 

    Google Scholar 
    17.Welkie, D. G. et al. A hard day’s night: Cyanobacteria in diel cycles. Trends Microbiol. 27(3), 231–242 (2019).PubMed 
    CAS 

    Google Scholar 
    18.Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33(2), 258–278 (2009).PubMed 
    CAS 

    Google Scholar 
    19.Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta (BBA) Bioenerg. 1857(3), 247–255 (2016).CAS 

    Google Scholar 
    20.Raja, V., Majeed, U., Kang, H., Andrabi, K. I. & John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157 (2017).CAS 

    Google Scholar 
    21.Asada, S., Fukuda, K., Oh, M., Hamanishi, C. & Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 48(7), 399–403 (1999).PubMed 
    CAS 

    Google Scholar 
    22.Nishiyama, Y. & Murata, N. Revised scheme for the mechanisms of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98(21), 8777–8796 (2014).PubMed 
    CAS 

    Google Scholar 
    23.Mikula, P., Zezulka, S., Jancula, D. & Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa—New findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 47(3), 195–206 (2012).CAS 

    Google Scholar 
    24.Huisman, J. & Hulot, F. D. Population dynamics of harmful cyanobacteria. In Harmful Cyanobacteria, 143–176 (Springer, 2005).25.Bergström, A. K. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat. Sci. 72(3), 277–281 (2010).
    Google Scholar 
    26.Downing, J. A. & McCauley, E. The nitrogen: Phosphorus relationship in lakes. Limnol. Oceanogr. 37(5), 936–945 (1992).ADS 
    CAS 

    Google Scholar 
    27.Horne, A. J. & Goldman, C. R. Limnology Vol. 2 (McGraw-Hill, 1994).
    Google Scholar 
    28.Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002 (2006).Article 
    PubMed 
    CAS 

    Google Scholar 
    29.Saints, M., Diaz, P., Monza, J. & Borsani, O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol. Plant 140(1), 46–56. https://doi.org/10.1111/j.1399-3054.2010.01383.x (2010).Article 
    CAS 

    Google Scholar 
    30.Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203(1), 3–43. https://doi.org/10.1111/nph.12797 (2014).Article 

    Google Scholar 
    31.Asaeda, T. & Barnuevo, A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. For. Ecol. Manag. 432, 73–82 (2019).
    Google Scholar 
    32.Asaeda, T., Senavirathna, M. D. H. J., Vamsi Krishna, L. & Yoshida, N. Impact of regulated water levels on willows (Salix subfragilis) at a flood-control dam, and the use of hydrogen peroxide as an indicator of environmenal stress. Ecol. Eng. 127, 96–102 (2019).
    Google Scholar 
    33.Asaeda, T., Senavirathna, M. D. H. J. & Vamsi Krishna, L. Evaluation of habitat preferance of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Front. Plant Sci. 11, 422. https://doi.org/10.3389/fpls.2020.00422 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Diaz, J. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: Past and future directions. J. Plankton Res. 40(6), 655–666 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    35.Drábková, M., Admiraal, W. & Maršálek, B. Combined exposure to hydrogen peroxide and PAR selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41(1), 309–314 (2007).ADS 
    PubMed 

    Google Scholar 
    36.Bouchard, J. N. & Purdie, D. A. Effect of elevated temperature, darkness and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol. 47(6), 1316–1325 (2011).PubMed 
    CAS 

    Google Scholar 
    37.Leunert, F., Eckert, W., Paul, A., Gerhardt, V. & Grossart, H. P. Phytoplanktonic response to UV-generated hydrogen peroxide from natural organic matter. J. Plankton Res. 36(1), 185–197. https://doi.org/10.1093/plankt/fbt096 (2014).Article 
    CAS 

    Google Scholar 
    38.Wang, B. et al. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes. Chemosphere 228, 503–512 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    39.Foo, S. C., Chapman, I. J., Hartnell, D. M., Turner, A. D. & Franklin, D. J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environ. Sci. Pollut. Res. 27(31), 38916–38927 (2020).CAS 

    Google Scholar 
    40.Barrington, D. J., Reichwaldt, E. S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86–94 (2013).
    Google Scholar 
    41.Drábková, M., Matthijs, H., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363–369 (2007).
    Google Scholar 
    42.Marsac, N. T. D. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130(1), 82–91 (1977).
    Google Scholar 
    43.Garcia, P. E., Queimalinos, C. & Dieguez, M. C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic sysyems: Influence of the dissolved organic matter pool. Chemosphere 217, 550–557 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    44.Herrmann, R. The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environ. Toxicol. Chem. 15(5), 652–662 (1996).CAS 

    Google Scholar 
    45.Spoof, L. et al. Elimination of cyanobacteria and microcystins in irrigation water—Effects of hydrogen peroxide treatment. Environ. Sci. Pollut. Res. 27(8), 8638–8652. https://doi.org/10.1007/s11356-019-07476-x (2020).Article 
    CAS 

    Google Scholar 
    46.Lopez, C. V. G. et al. Protein measuremements of microalgae and cyanobacterial biomass. Bioresour. Technol. 101(19), 7587–7591 (2010).PubMed 

    Google Scholar 
    47.Vesterkvist, P. S. M., Misiorek, J. O., Spoof, L. E. M., Toivola, D. M. & Meriluoto, J. A. O. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4(11), 1008–1023 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    48.Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45 (2017).CAS 

    Google Scholar 
    49.Pham, T.-L. & Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 213, 520–529 (2018).CAS 

    Google Scholar 
    50.Goldman, J. C., McCarthy, J. J. & Peavey, D. G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279(5710), 210–215 (1979).ADS 
    CAS 

    Google Scholar 
    51.Paerl, H. W., Fulton, R. S. 3rd., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World. J. 1, 76–113 (2001).CAS 

    Google Scholar 
    52.Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. The low TN:TP ratio, a case or result of Microcystis blooms?. Water Res. 37(9), 2073–2080 (2003).PubMed 
    CAS 

    Google Scholar 
    53.Asaeda, T., Rashid, M. H. & Schoelynck, J. Tissue hydrogen peroxide concentration can explain the invasiveness of aquatic macrophytes: A modeling perspective. Front. Environ. Sci. 8, 292 (2021).ADS 

    Google Scholar 
    54.Hesse, K., Dittman, E. & Borner, T. Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol. Ecol. 37(1), 39–43 (2001).CAS 

    Google Scholar 
    55.Tilzer, M. M. Light‐dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwater Res. 21(3), 401-412 (1987).Article 
    CAS 

    Google Scholar 
    56.Iwase, S. & Abe, Y. Identification and change in concentration of musty-odor compounds during growth in blue–green algae. J. Mar. Sci. Technol. 8(1), 27–33 (2010).
    Google Scholar 
    57.Abeynayaka, H. D. L., Asaeda, T. & Kaneko, Y. Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicle collapse. Environ. Manag. 60(2), 293–303 (2017).ADS 

    Google Scholar 
    58.Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979).
    Google Scholar 
    59.Jana, S. & Choudhuri, M. A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12, 345–354 (1982).CAS 

    Google Scholar 
    60.Veljovic-Jovanovic, S., Noctor, G. & Foer, C. H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507 (2002).CAS 

    Google Scholar 
    61.Cheeseman, J. M. Hydrogen peroxide concentrations in leaves under natular conditions. J. Exp. Bot. 57(10), 2435–2444 (2006).PubMed 
    CAS 

    Google Scholar 
    62.Queval, G., Hager, J., Gakiere, B. & Noctor, G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot. 59(2), 135–146. https://doi.org/10.1093/jxb/erm193 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    63.Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).PubMed 
    CAS 

    Google Scholar 
    64.Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5), 867–880 (1981).CAS 

    Google Scholar 
    65.Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).PubMed 
    CAS 

    Google Scholar  More

  • in

    Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain

    1.Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 12, 56. https://doi.org/10.1186/1475-2875-12-56 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Mouchet, J. et al. Biodiversité du paludisme dans le monde. (Editions John Libbey Eurotext, 2004).3.Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit Vectors 13, 295. https://doi.org/10.1186/s13071-020-04170-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Antonio-Nkondjio, C. et al. Complexity of the malaria vectorial system in Cameroon: contribution of secondary vectors to malaria transmission. J. Med. Entomol. 43, 1215–1221. https://doi.org/10.1093/jmedent/43.6.1215 (2006).Article 
    PubMed 

    Google Scholar 
    5.Afrane, Y. A., Bonizzoni, M. & Yan, G. in Current Topics in Malaria Ch. 20, (2016).6.Goupeyou-Youmsi, J. et al. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighboring villages of Madagascar. bioRxiv 13, 430, https://doi.org/10.1101/787432 (2019).7.Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196. https://doi.org/10.1016/j.pt.2015.11.010 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Killeen, G. F. Control of malaria vectors and management of insecticide resistance through universal coverage with next-generation insecticide-treated nets. Lancet 395, 1394–1400. https://doi.org/10.1016/s0140-6736(20)30745-5 (2020).Article 
    PubMed 

    Google Scholar 
    9.Kreppel, K. S. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10, 14527. https://doi.org/10.1038/s41598-020-71187-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    10.Chinula, D. et al. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: an observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit Vectors 11, 544, https://doi.org/10.1186/s13071-018-3121-0 (2018).11.Lwetoijera, D. W. et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 13, 331. https://doi.org/10.1186/1475-2875-13-331 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Russell, T. L. et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 9, 187. https://doi.org/10.1186/1475-2875-9-187 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Sougoufara, S., Harry, M., Doucoure, S., Sembene, P. M. & Sokhna, C. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30, 365–368. https://doi.org/10.1111/mve.12171 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Agyekum, T. P. et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: Implications for malaria control in a future warmer climate. Int. J. Environ. Res. Public Health 18, 7255 (2021).CAS 
    Article 

    Google Scholar 
    15.Smith, M. W. et al. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Nat. Commun. 11, 4353. https://doi.org/10.1038/s41467-020-18239-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Chemison, A. et al. Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nat. Commun. 12, 3971. https://doi.org/10.1038/s41467-021-24134-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    17.Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220. https://doi.org/10.1016/j.pt.2004.03.001 (2004).Article 
    PubMed 

    Google Scholar 
    18.Carnevale, P. & Manguin, S. Review of issues on residual malaria transmission. J. Infect. Dis. 223, S61–S80. https://doi.org/10.1093/infdis/jiab084 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Killeen, G. F., Chaki, P. P., Reed, T. E., Moyes, C. L. & Govella, N. J. in Towards Malaria Elimination – A Leap Forward Ch. 17, (2018).20.Killeen, G. F. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 13, 330. https://doi.org/10.1186/1475-2875-13-330 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145, 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. https://doi.org/10.1038/srep17952 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.St Laurent, B. et al. Molecular characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. Am. J. Trop. Med. Hyg. 94, 327–335. https://doi.org/10.4269/ajtmh.15-0562 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Zhong, D. et al. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci. Rep. 10, 16139. https://doi.org/10.1038/s41598-020-73073-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Killeen, G. F. et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob. Health 2, e000211. https://doi.org/10.1136/bmjgh-2016-000211 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar J. 18, 311. https://doi.org/10.1186/s12936-019-2951-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Fillinger, U. & Lindsay, S. W. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop. Med. Int. Health 11, 1629–1642. https://doi.org/10.1111/j.1365-3156.2006.01733.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Hardy, A., Makame, M., Cross, D., Majambere, S. & Msellem, M. Using low-cost drones to map malaria vector habitats. Parasit Vectors 10, 29. https://doi.org/10.1186/s13071-017-1973-3 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Lwetoijera, D. et al. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania. Malar J. 13, 161. https://doi.org/10.1186/1475-2875-13-161 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malaria J. https://doi.org/10.1186/1475-2875-6-76 (2007).Article 

    Google Scholar 
    31.Unlu, I., Faraji, A., Wang, Y., Rochlin, I. & Gaugler, R. Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates. Sci. Rep. 11, 14119. https://doi.org/10.1038/s41598-021-93492-2 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184. https://doi.org/10.4269/ajtmh.2010.09-0373 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Dongus, S. et al. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Int. J. Health Geogr. 6, 37. https://doi.org/10.1186/1476-072X-6-37 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Ferguson, H. M. et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 7, e1000303. https://doi.org/10.1371/journal.pmed.1000303 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Gu, W., Utzinger, J. & Novak, R. J. Habitat-based larval interventions: A new perspective for malaria control. Am. J. Trop. Med. Hyg. 78, 2–6 (2008).Article 

    Google Scholar 
    36.Cross, D. E. et al. Geographically extensive larval surveys reveal an unexpected scarcity of primary vector mosquitoes in a region of persistent malaria transmission in western Zambia. Parasit Vectors 14, 91. https://doi.org/10.1186/s13071-020-04540-1 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Orba, Y. et al. First isolation of West Nile virus in Zambia from mosquitoes. Transbound Emerg. Dis. 65, 933–938. https://doi.org/10.1111/tbed.12888 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Wastika, C. E. et al. Discoveries of exoribonuclease-resistant structures of insect-specific flaviviruses isolated in Zambia. Viruses https://doi.org/10.3390/v12091017 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Hulsman, P., Savenije, H. H. G. & Hrachowitz, M. Satellite-based drought analysis in the Zambezi River Basin: Was the 2019 drought the most extreme in several decades as locally perceived?. J. Hydrol. Reg. Stud. https://doi.org/10.1016/j.ejrh.2021.100789 (2021).Article 

    Google Scholar 
    40.Hardy, A. et al. Automatic detection of open and vegetated water bodies using Sentinel 1 to map African malaria vector mosquito breeding habitats. Remote Sensing 11, 593. https://doi.org/10.3390/rs11050593 (2019).Article 
    ADS 

    Google Scholar 
    41.Del Rio, T., Groot, J. C. J., DeClerck, F. & Estrada-Carmona, N. Integrating local knowledge and remote sensing for eco-type classification map in the Barotse Floodplain, Zambia. Data Brief 19, 2297–2304. https://doi.org/10.1016/j.dib.2018.07.009 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Timberlake, J. Biodiversity of the Zambezi Basin wetlands: Review and preliminary assessment of available information. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1997).43.Turpie, J., Smith, B., Emerton, L. & Barnes, J. Economic valuation of the Zambezi basin wetlands. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1999).44.Ciubotariu, I. I. et al. Genetic diversity of Anopheles coustani in high malaria transmission foci in southern and central Africa. J. Med. Entom. 57, 1–11. https://doi.org/10.1093/jme/tjaa132 (2020).CAS 
    Article 

    Google Scholar 
    45.Jones, C. M. Vector biology and genomics of Anopheles in southern and central Africa PhD thesis, John Hopkins Bloomberg School of Public Health, (2019).46.Stephen, A., Nicholas, K., Busula, A. O., Webale, M. K. & Omukunda, E. Detection of Plasmodium sporozoites in Anopheles coustani s.l; a hindrance to malaria control strategies in highlands of western Kenya. bioRxiv, https://doi.org/10.1101/2021.02.10.430589 (2021).47.Tedrow, R. E. et al. Anopheles mosquito surveillance in Madagascar reveals multiple blood feeding behavior and Plasmodium infection. PLoS Negl. Trop. Dis. 13, e0007176. https://doi.org/10.1371/journal.pntd.0007176 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Taye, B., Lelisa, K., Emana, D., Asale, A. & Yewhalaw, D. Seasonal dynamics, longevity, and biting activity of anopheline mosquitoes in southwestern Ethiopia. J. Insect. Sci. https://doi.org/10.1093/jisesa/iev150 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sikaala, C. H. et al. A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J. 13, 225. https://doi.org/10.1186/1475-2875-13-225 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.De Meillon, B. The anophelini of the Ethiopian geographical region. Publ. South Afr. Inst. Med. Res. 49, 1–272 (1947).
    Google Scholar 
    51.Gillies, M. T. & De Meillon, B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ. South Afr. Inst. Med. Res. 54, 1–343 (1968).
    Google Scholar 
    52.Dida, G. O. et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect. Dis. Poverty 7, 2. https://doi.org/10.1186/s40249-017-0385-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Njoroge, M. M. et al. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya. Parasit Vectors 10, 18. https://doi.org/10.1186/s13071-016-1957-8 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Kibret, S. et al. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop. Med. Int. Health 15, 41–50. https://doi.org/10.1111/j.1365-3156.2009.02423.x (2010).Article 
    PubMed 

    Google Scholar 
    55.Coetzee, M. Anopheles crypticus, new species from South Africa is distinguished from Anopheles coustani (Diptera: Culicidae). Mosq. Syst. 26, 125–131 (1994).
    Google Scholar 
    56.Gillies, M. T. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ. South Afr. Inst. Med. Res. 55, 1–143 (1987).
    Google Scholar 
    57.Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 19, 70. https://doi.org/10.1186/s12936-020-3144-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Carter, T. E., Yared, S., Hansel, S., Lopez, K. & Janies, D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 18, 135. https://doi.org/10.1186/s12936-019-2768-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Degefa, T. et al. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J. 16, 443. https://doi.org/10.1186/s12936-017-2098-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Nepomichene, T. N. J. J., Tata, E. & Boyer, S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malaria J. 14, 475. https://doi.org/10.1186/s12936-015-1004-9 (2015).CAS 
    Article 

    Google Scholar 
    61.Finney, M. et al. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J. 20, 25. https://doi.org/10.1186/s12936-020-03539-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Mwangangi, J. M. et al. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit Vectors 6, 114. https://doi.org/10.1186/1756-3305-6-114 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Hoffman, J. E. et al. Phylogenetic complexity of morphologically identified Anopheles squamosus in southern Zambia. Insects 12, 146. https://doi.org/10.3390/insects12020146 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Fornadel, C. M., Norris, L. C., Franco, V. & Norris, D. E. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector Borne Zoonotic Dis. 11, 1173–1179. https://doi.org/10.1089/vbz.2010.0082 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Wilkes, T. J., Matola, Y. G. & Charlwood, J. D. Anopheles rivulorum, a vector of human malaria in Africa. Med. Vet. Entomol. 10, 108–110. https://doi.org/10.1111/j.1365-2915.1996.tb00092.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Majambere, S., Fillinger, U., Sayer, D. R., Green, C. & Lindsay, S. W. Spatial distribution of mosquito larvae and the potential for targeted larval control in The Gambia. Am. J. Trop. Med. Hyg. 79, 19–27 (2008).Article 

    Google Scholar 
    67.Thomas, C. J., Cross, D. E. & Bogh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE https://doi.org/10.1371/journal.pone.0068679 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hardy, A. J. et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS ONE 8, e81931. https://doi.org/10.1371/journal.pone.0081931 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    69.Kent, R. J., Thuma, P. E., Mharakurwa, S. & Norris, D. E. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am. J. Trop. Med. Hyg. 76, 267–274 (2007).Article 

    Google Scholar 
    70.Imbahale, S. S. et al. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 10, 81. https://doi.org/10.1186/1475-2875-10-81 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Bayoh, M. N. et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 9, 62. https://doi.org/10.1186/1475-2875-9-62 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mawejje, H. D. et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 20, 138. https://doi.org/10.1186/s12936-021-03675-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Stevenson, J. C. et al. Spatio-temporal heterogeneity of malaria vectors in northern Zambia: Implications for vector control. Parasit Vectors 9, 510. https://doi.org/10.1186/s13071-016-1786-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Dabire, K. R. et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J. Vector Ecol. 33, 70–75. https://doi.org/10.3376/1081-1710(2008)33[70:ytyasv]2.0.co;2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Tuno, N., Githeko, A., Yan, G. & Takagi, M. Interspecific variation in diving activity among Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles (Diptera: Culicidae) larvae. J. Vector Ecol. 32, 112–117. https://doi.org/10.3376/1081-1710(2007)32[112:ividaa]2.0.co;2 (2007).Article 
    PubMed 

    Google Scholar 
    76.Nambunga, I. H. et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 19, 219. https://doi.org/10.1186/s12936-020-03295-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar J. 8, 123. https://doi.org/10.1186/1475-2875-8-123 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Kweka, E. J. et al. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS ONE 7, e52084. https://doi.org/10.1371/journal.pone.0052084 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    79.Libanda, B. & Ngonga, C. Projection of frequency and intensity of extreme precipitation in Zambia: a CMIP5 study. Climate Res. 76, 59–72. https://doi.org/10.3354/cr01528 (2018).Article 
    ADS 

    Google Scholar 
    80.Zimba, H. et al. Assessment of trends in inundation extent in the Barotse Floodplain, upper Zambezi River Basin: A remote sensing-based approach. J. Hydrol. Reg. Stud. 15, 149–170. https://doi.org/10.1016/j.ejrh.2018.01.002 (2018).Article 

    Google Scholar 
    81.Hamududu, B. H. & Killingtveit, A. Hydropower production in future climate scenarios; the case for the Zambezi River. Energies https://doi.org/10.3390/en9070502 (2016).Article 

    Google Scholar 
    82.IUCN. Barotse Floodplain, Zambia: Local economic dependence on wetland resources. IUCN – The World Conservation Union, Harare, Zimbabwe (2003).83.Moore, A. E., Cotterill, F.P.D., Main, M.P.L., Williams, H.B. in Large Rivers: Geomorphology and Management (ed Avijit Gupta) Ch. 15, (Wiley, 2007).84.Heyden, C. J. V. D. The hydrology and hydrogeology of dambos: a review. Prog. Phys. Geog. 28, 544–564. https://doi.org/10.1191/0309133304pp424oa (2004).Article 

    Google Scholar 
    85.Derua, Y. A. et al. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malaria J. https://doi.org/10.1186/1475-2875-11-188 (2012).Article 

    Google Scholar 
    86.Kröckel, U., Rose, A., Eiras, Á. E. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238. https://doi.org/10.2987/8756-971x(2006)22[229:Ntfsoa]2.0.Co;2 (2006).Article 
    PubMed 

    Google Scholar 
    87.Gama, R. A., Silva, I. M., Geier, M. & Eiras, A. E. Development of the BG-Malaria trap as an alternative to human-landing catches for the capture of Anopheles darlingi. Mem. Inst. Oswaldo Cruz 108, 763–771. https://doi.org/10.1590/0074-0276108062013013 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Ribeiro, J. M., Seulu, F., Abose, T., Kidane, G. & Teklehaimanot, A. Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bull. World Health Organ. 74, 299–305 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Russell, T. L. et al. Geographic coincidence of increased malaria transmission hazard and vulnerability occurring at the periphery of two Tanzanian villages. Malar J. 12, 24. https://doi.org/10.1186/1475-2875-12-24 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Smith, D. L., Dushoff, J. & McKenzie, F. E. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2, e368. https://doi.org/10.1371/journal.pbio.0020368 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Midega, J. T. et al. Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat. Commun. 3, 674. https://doi.org/10.1038/ncomms1672 (2012).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    92.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Singh, B. et al. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am. J. Trop. Med. Hyg. 60, 687–692. https://doi.org/10.4269/ajtmh.1999.60.687 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2021).95.Postma, M. & Goedhart, J. PlotsOfData – A web app for visualizing data together with their summaries. PLoS Biol 17, e3000202. https://doi.org/10.1371/journal.pbio.3000202 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.IBM SPSS Statistics for Windows, Version 25.0 (Armonk, NY, 2017).97.Rita, H. & Komonen, A. Odds ratio: an ecologically sound tool to compare proportions. Ann. Zool. Fenn. 45, 66–72. https://doi.org/10.5735/086.045.0106 (2008).Article 

    Google Scholar  More

  • in

    Soil δ13C and δ15N baselines clarify biogeographic heterogeneity in isotopic discrimination of European badgers (Meles meles)

    1.Kelly, J. F. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can. J. Zool. 78(1), 1–27 (2000).Article 

    Google Scholar 
    2.Barnes, C., Sweeting, C. J., Jennings, S., Barry, J. & TandPolunin, N. V. Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Funct. Ecol. 21(2), 356–362. https://doi.org/10.1111/j.1365-2435.2006.01224.x (2007).Article 

    Google Scholar 
    3.Chisholm, B. S., Nelson, D. E. & Schwarcz, H. P. Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216(4550), 1131–1132. https://doi.org/10.1126/science.216.4550.1131 (1982).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    4.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38(5), 328–336. https://doi.org/10.2307/1310735 (1988).CAS 
    Article 

    Google Scholar 
    5.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42(5), 495–506. https://doi.org/10.1016/0016-7037(78)90199-0 (1978).CAS 
    Article 
    ADS 

    Google Scholar 
    6.DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45(3), 341–351. https://doi.org/10.1016/0016-7037(81)90244-1 (1981).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83(3), 703–718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2 (2002).Article 

    Google Scholar 
    8.McCutchan, J. H. Jr., Lewis, W. M. Jr., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102(2), 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x (2003).CAS 
    Article 

    Google Scholar 
    9.Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ 13 C analysis of diet. Oecologia 57(1–2), 32–37. https://doi.org/10.1007/BF00379558 (1983).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    10.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth Sci. Rev. 106(1–2), 131–148. https://doi.org/10.1016/j.earscirev.2011.02.001 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    11.West, J. B. et al. (eds) Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping (Springer, 2009).
    Google Scholar 
    12.Cheeseman, A. W. & Cernusak, L. A. Isoscapes: A new dimension in community ecology. Tree Physiol. 36(12), 1456–1459. https://doi.org/10.1093/treephys/tpw099 (2016).Article 

    Google Scholar 
    13.Hellmann, C., Rascher, K. G., Oldeland, J. & Werner, C. Isoscapes resolve species-specific spatial patterns in plant–plant interactions in an invaded Mediterranean dune ecosystem. Tree Physiol. 36(12), 1460–1470. https://doi.org/10.1093/treephys/tpw075 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Chiocchini, F., Portarena, S., Ciolfi, M., Brugnoli, E. & Lauteri, M. Isoscapes of carbon and oxygen stable isotope compositions in tracing authenticity and geographical origin of Italian extra-virgin olive oils. Food Chem. 202, 291–301. https://doi.org/10.1016/j.foodchem.2016.01.146 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Newton, J. An insect isoscape of UK and Ireland. Rapid Commu. Mass Spectrom. 1, e9126 (2021).
    Google Scholar 
    16.Veen, T. et al. Identifying the African wintering grounds of hybrid flycatchers using a multi–isotope (δ 2 H, δ 13 C, δ 15 N) assignment approach. PLoS ONE 9(5), e98075 (2014).Article 
    ADS 

    Google Scholar 
    17.Schneider, K. et al. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biol. Biochem. 36(11), 1769–1774. https://doi.org/10.1016/j.soilbio.2004.04.033 (2004).CAS 
    Article 

    Google Scholar 
    18.Menichetti, L. et al. Increase in soil stable carbon isotope ratio relates to loss of organic carbon: Results from five long-term bare fallow experiments. Oecologia 177(3), 811–821. https://doi.org/10.1007/s00442-014-3114-4 (2015).Article 
    PubMed 
    ADS 

    Google Scholar 
    19.Amundson, R. et al. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002GB001903 (2003).Article 

    Google Scholar 
    20.Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396(1–2), 1–26. https://doi.org/10.1007/s11104-015-2542-1 (2015).CAS 
    Article 

    Google Scholar 
    21.Ben-David, M. & Flaherty, E. A. Stable isotopes in mammalian research: A beginner’s guide. J. Mammal. 93(2), 312–328. https://doi.org/10.1644/11-MAMM-S-166.1 (2012).Article 

    Google Scholar 
    22.del Rio, C. M. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93(2), 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).Article 

    Google Scholar 
    23.Clementz, M. T. New insight from old bones: Stable isotope analysis of fossil mammals. J. Mammal. 93(2), 368–380. https://doi.org/10.1644/11-MAMM-S-179.1 (2012).Article 

    Google Scholar 
    24.Inger, R. et al. Temporal and intrapopulation variation in prey choice of wintering geese determined by stable isotope analysis. J. Anim. Ecol. 75(5), 1190–1200. https://doi.org/10.1111/j.1365-2656.2006.01142.x (2006).Article 
    PubMed 

    Google Scholar 
    25.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80(3), 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    26.Jackson, M. C. et al. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS ONE https://doi.org/10.1371/journal.pone.0031757 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Semmens, B. X. et al. Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013). Mar. Ecol. Prog. Ser. 490, 285–289. https://doi.org/10.3354/meps10535 (2013).Article 
    ADS 

    Google Scholar 
    28.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE https://doi.org/10.2307/1310735 (1988).Article 

    Google Scholar 
    29.Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92(10), 823–835. https://doi.org/10.1139/cjz-2014-0127 (2010).Article 

    Google Scholar 
    30.Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8. https://doi.org/10.1038/s41598-017-00378-3 (2017).CAS 
    Article 

    Google Scholar 
    31.Allen, A. et al. Genetic evidence further elucidates the history and extent of badger introductions from Great Britain into Ireland. R. Soc. Open Sci. 7(4), 200–288. https://doi.org/10.1098/rsos.200288 (2020).CAS 
    Article 

    Google Scholar 
    32.Davies, J. M., Lachno, D. R. & Roper, T. J. The anal gland secretion of the European badger (Meles meles) and its role in social communication. J. Zool. 216(3), 455–463. https://doi.org/10.1111/j.1469-7998.1988.tb02441.x (1988).CAS 
    Article 

    Google Scholar 
    33.Lüps, P., Roper, T. J. & Stocker, G. Stomach contents of badgers (Meles meles L.) in central Switzerland. Mammalia 51(4), 559–570. https://doi.org/10.1515/mamm.1987.51.4.559 (1987).Article 

    Google Scholar 
    34.Roper, T. J. The European badger Meles meles: Food specialist or generalist?. J. Zool. 234(3), 437–452. https://doi.org/10.1111/j.1469-7998.1994.tb04858.x (1994).Article 

    Google Scholar 
    35.Roper, T. J. Badger Meles meles setts–architecture, internal environment and function. Mamm. Rev. 22(1), 43–53. https://doi.org/10.1111/j.1365-2907.1992.tb00118.x (1992).Article 

    Google Scholar 
    36.Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549. https://doi.org/10.1111/j.1469-7998.1999.tb01015.x (1999).Article 

    Google Scholar 
    37.Robertson, A., McDonald, R. A., Delahay, R. J., Kelly, S. D. & Bearhop, S. Individual foraging specialisation in a social mammal: The European badger (Meles meles). Oecologia 176(2), 409–421. https://doi.org/10.1007/s00442-014-3019-2 (2014).Article 
    PubMed 
    ADS 

    Google Scholar 
    38.Haussmann, N. S. Soil movement by burrowing mammals: A review comparing excavation size and rate to body mass of excavators. Prog. Phys. Geogr. 41(1), 29–45. https://doi.org/10.1177/0309133316662569 (2017).Article 

    Google Scholar 
    39.Cabana, G. & Rasmussen, J. B. Comparison of aquatic food chains using nitrogen isotopes. Proc. Acad. Natl. Sci. 93(20), 10844–10847. https://doi.org/10.1073/pnas.93.20.10844 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    40.Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136(2), 261–269. https://doi.org/10.1007/s00442-003-1218-3 (2003).Article 
    PubMed 
    ADS 

    Google Scholar 
    41.Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5(1), 1–11. https://doi.org/10.1038/srep13062 (2015).CAS 
    Article 

    Google Scholar 
    42.Britain, G. The strategy for achieving officially bovine tuberculosis free status for England. Department for Environment, Food & Rural Affairs. https://www.gov.uk/government/publications/a-strategy-for-achieving-officially-bovine-tuberculosis-free-status-for-england. (2014).43.Ireland, G. Spending Review 2019 Animal Health: TB Eradication. Economics and Planning Division, Department of Agriculture, Food and the Marine. http://budget.gov.ie/Budgets/2020/Documents/Budget/Animal%20Health%20-%20TB%20Eradication.pdf. (2019).44.Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J. Zool. 184(1), 1–19. https://doi.org/10.1111/j.1469-7998.1978.tb03262.x (1978).Article 

    Google Scholar 
    45.Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—Conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildl. Conserv. Farmland 2, 65–95 (2015).
    Google Scholar 
    46.McDonald, J. L., Robertson, A. & Silk, M. J. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112. https://doi.org/10.1111/1365-2656.12743 (2018).Article 
    PubMed 

    Google Scholar 
    47.Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728. https://doi.org/10.1111/j.1469-7998.1997.tb05821.x (1997).Article 

    Google Scholar 
    48.Desktop, E. A. Release 10 437–438 (Environmental Systems Research Institute, 2011).
    Google Scholar 
    49.Kostka, B.I., Landscape ecology, diet composition and energetics of the Eurasian badger (Meles meles). Unpublished PhD thesis, Queen’s University Belfast. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579755. (2012).50.Scheppers, T. L. et al. Estimating social group size of Eurasian badgers Meles meles by genotyping remotely plucked single hairs. Wildl. Biol. 13(2), 195–207. https://doi.org/10.2981/0909-6396(2007)13[195:ESGSOE]2.0.CO;2 (2007).Article 

    Google Scholar 
    51.Geological Survey Ireland. Tellus Geochemical Survey: Shallow Topsoil Data from the Border and West of Ireland. Department of the Environment, Climate and Communications. https://secure.dccae.gov.ie/GSI_DOWNLOAD/Geochemistry/Reports/Tellus_A_geochemistry_data_report_2020_v1.0.pdf. Accessed 7Jun 2021.52.Smyth, D. Methods used in the Tellus Geochemical Mapping of Northern Ireland. http://nora.nerc.ac.uk/id/eprint/14008. (2007).53.Murray, R, McCann, T. P. & Cooper, A. A land classification and landscape ecological survey of Northern Ireland. Report, University of Ulster, Coleraine (1992).54.Stewart, P. D. & Macdonald, D. W. Age, sex, and condition as predictors of moult and the efficacy of a novel fur-clip technique for individual marking of the European badger (Meles meles). J. Zool. 241(3), 543–550. https://doi.org/10.1111/j.1469-7998.1997.tb04846.x (1997).Article 

    Google Scholar 
    55.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021)56.Met Office. UK Daily Temperature Data, Part of the Met Office Integrated Data Archive System (MIDAS). NCAS British Atmospheric Data Centre, (2006). Accessed 2 Sep 2019.57.Mardia, K. V., Kent, J. T. & Bibby, J. M. Multivariate Analysis (Academic Press Inc, 1979).MATH 

    Google Scholar 
    58.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Book 

    Google Scholar 
    59.Kendon, M., McCarthy, M., Jevrejeva, S., Matthews, A. & Legg, T. State of the UK climate 2017. Int. J. Climatol. 38, 1–35. https://doi.org/10.1139/z99-165 (2018).Article 

    Google Scholar 
    60.Kassambara, A. & Mundt, F., Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses, 76. https://cran.microsoft.com/snapshot/2016-11-30/web/packages/factoextra/factoextra.pdf. (2017).61.Funck, J., Bataille, C., Rasic, J. & Wooller, M. A bio-available strontium isoscape for eastern Beringia: A tool for tracking landscape use of Pleistocene megafauna. J. Quat. Sci. 36(1), 76–90. https://doi.org/10.1002/jqs.3262 (2021).Article 

    Google Scholar 
    62.Reddin, C. J., Bothwell, J. H., O’Connor, N. E. & Harrod, C. The effects of spatial scale and isoscape on consumer isotopic niche width. Funct. Ecol. 32(4), 904–915. https://doi.org/10.1111/1365-2435.13026 (2018).Article 

    Google Scholar 
    63.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87(3), 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).Article 
    PubMed 

    Google Scholar 
    64.Fabrizio, M. et al. Habitat suitability vs landscape connectivity determining roadkill risk at a regional scale: A case study on European badger (Meles meles). Eur. J. Wildl. Res. 65(1), 7. https://doi.org/10.1007/s10344-018-1241-7 (2019).Article 

    Google Scholar 
    65.Rosalino, L. M. et al. Climate and landscape changes as driving forces for future range shift in southern populations of the European badger. Sci. Rep. 9(1), 1–15. https://doi.org/10.1038/s41598-019-39713-1 (2019).CAS 
    Article 

    Google Scholar 
    66.Potts, J. R., Fagan, W. F. & Mourão, G. Deciding when to intrude on a neighbour: Quantifying behavioural mechanisms for temporary territory expansion. Thyroid Res. 12(3), 307–318. https://doi.org/10.1007/s12080-018-0396-x (2019).Article 

    Google Scholar 
    67.Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European Badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45(10), 823–837. https://doi.org/10.1007/s10886-019-01113-0 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Kurek, P. Topsoil mixing or fertilization? Forest flora changes in the vicinity of badgers’ (Meles meles L.) setts and latrines. Plant Soil 437(1–2), 327–340. https://doi.org/10.1007/s11104-019-03984-4 (2019).CAS 
    Article 

    Google Scholar 
    69.Abduriyim, S. et al. Variation in pancreatic amylase gene copy number among Eurasian badgers (Carnivora, Mustelidae, Meles) and its relationship to diet. J. Zool. 308(1), 28–36. https://doi.org/10.1111/jzo.12649 (2019).Article 

    Google Scholar 
    70.Balestrieri, A., Remonti, L., Saino, N. & Raubenheimer, D. The ‘omnivorous badger dilemma’: Towards an integration of nutrition with the dietary niche in wild mammals. Mamm. Rev. 49(4), 324–339. https://doi.org/10.1111/mam.12164 (2019).Article 

    Google Scholar 
    71.Noonan, M. J. et al. Climate and the individual: Inter-annual variation in the autumnal activity of the European badger (Meles meles). PLoS ONE https://doi.org/10.1371/journal.pone.0083156 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Tsunoda, M., Newman, C., Buesching, C. D., Macdonald, D. W. & Kaneko, Y. Badger setts provide thermal refugia, buffering changeable surface weather conditions. J. Therm. Biol. 74, 226–233. https://doi.org/10.1016/j.jtherbio.2018.04.005 (2018).Article 
    PubMed 

    Google Scholar  More

  • in

    Air pollution from gas refinery through contamination with various elements disrupts semiarid Zagros oak (Quercus brantii Lindl.) forests, Iran

    Description of study areasIGR plant (33° 42/N, 46° 13/E) is located along the edge of the mountains of Zagros forests and 25 km from Ilam city. Its main activity, to supply gas to the western provinces of Iran, started in 2007. It converts sour gas to sweet gas and also produces various products such as pastil sulfur, ethane, and liquefied gas. The refinery has two chimneys, which release waste gases into the atmosphere. Oak trees are the main tree species of the Zagros forests around the refinery; these are exposed to various air pollutants and different elements from this source. Based on random analysis of exhaust emissions, sulfur dioxide and sulfide hydrogen are the major pollutants emitted from the flare gases of this refinery plant34. The sampling points have an average altitude of about 1000–1250 m and a slope of less than 20%. The climate of the region is semiarid and influenced by Mediterranean winds. The predominant wind direction was west and southwest. The highest and lowest air temperatures were 41.4 °C and − 11.3 °C, respectively. The average annual rainfall was 71.94 mm (http://www.amarilam.ir).Samples collection and analysesAll methods were carried out in accordance with the relevant institutional, national, and international guidelines and legislation. Besides they were discussed and approved by the Research Ethics Committee of Tarbiat Modares University. The formal identification of the Quercus brantii Lindl. was performed by H. Dadkhah-Aghdash based on colorful Flora of Iran35. The permissions or licenses to collect Brant oak (Quercus brantii Lindl.) trees in Zagros forests were obtained. A voucher specimen of Brant oaks were collected and deposited at the Herbarium of department of Plant Biology of Tarbiat Modares University.We studied different distances (1000, 1500, 2000, 2500, and 10,000 m [control]) in an easterly direction from the gas refinery. The map of study area was drawn by software of ArcGIS version of 10.5, https://desktop.arcgis.com (Fig. 5). At each distance, three soil samples taken from the depth of 0–20 cm with a plastic gardening shovel, 30 healthy and mature leaves were collected from a certain height (nearly the middle of the canopy) and the outer canopy of three Brant oak trees in the late spring, summer, and autumn of 2019. These trees with average height and diameter at breast height of 5.5 m and 45 cm were selected randomly. The leaf and soil samples were put into polyethylene bags and transported to the laboratory for analysis36.Figure 5Locations of collection sites of soil samples and Brant oak leaves at five different distances (1000, 1500, 2000, 2500 and 10,000 m [control]) from the gas refinery (drawn by H. Dadkhah-Aghdash using software of ArcGIS Desktop. version of 10.5. ESRI, California, US. https://desktop.arcgis.com).Full size imageIn the lab, firstly the leaves were categorized into two types: unwashed leaves and leaves washed with ethylenediaminetetraacetic acid (EDTA) solution to remove some atmospheric dusts and particles deposition. The leaf and soil samples were dried for 10 days until they reached a constant weight at lab temperature. The leaves were grinded and homogenized, soils were sieved with ASTM mesh (DAMAVAND, Iran) with a diameter of 2 mm and homogenized.To determine the pH and electrical conductivity (EC) of soils, 2 g of the soil samples were shaken in 10 ml of double-distilled water with a ratio of 1:5; after 1 h, the pH and electrical conductivity (EC) of the solution were measured by a digital pH meter (Fan Azma Gostar Company, Iran) and EC meter (Sartorius, PT-20, USA). The analysis of the particle sizes of the soil was carried out using the hydrometer method and texture class was determined with a soil texture triangle37.According to different U.S.EPA protocols that were modified by following references, the soil and leaf samples were prepared and dissolved. The digestion of soil samples was conducted with a mixture of concentrated HF–HClO4–HNO338. Approximately 0.5 g of dry soil sample was digested with 10 mL of HCl on a hot plate at ~ 180 °C until the solution was reduced to 3 mL. Approximately 5 mL of HF (40%, w/w), 5 mL of HNO3 (63%, w/w), and 3 mL of HClO4 (70%, w/w) were then added and the solution was digested. This process was continued with adding 3 mL of HNO3, 3 mL of HF, and 1 mL of HClO4 until the silicate minerals had fully disappeared. This solution was transferred to a 25 mL volumetric tube, and 1% HNO3 was added to bring the sample up to a constant volume for the element’s determinations. After filtering the digested samples, the concentrations of sulfur (S), arsenic (As), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and nickel (Ni) were measured via inductively coupled plasma mass spectrometry (ICP-MS,7500 CS, Agilent, US). The procedures of quality assurance and quality control (QA/QC) were performed.To quantify element contents from soil samples, external standards with calibration levels were used. The precision and the repeatability of the analysis were tested on the instrument by analyzing three replicate samples.According to Liang et al.39 leaf samples were acid digested and sieved powder samples were placed in the acid-washed tubes and 10 mL of 65% nitric acid was added to it. The solution was placed at room temperature overnight (12 h) after that, it was placed for 4 h at 100 °C and then 4 h at 140 °C until the solution color was clear. After cooling, the solution was diluted by deionized water to 50 mL and then passed through Whatman filter paper until 25 mL of the filtrate volume was provided. Each sample was digested three times and the average of measurements is reported. Total plant elements were measured by using the ICP-MS (7500 CS, Agilent, US). A control sample was also used beside each sample to determine the background pollution during digestion. To confirm the accuracy of the methodology and to ensure the extraction of trace elements from the leaf samples, the standard solution of each studied elements was used.Measuring of pollution levels of different elements in soils and leavesFor assessment of contamination levels (concentration) of different elements in soils and trees, common indices of pollution including geoaccumulation index (Igeo), pollution index (PI), pollution load index (PLI), enrichment factor of plants (EFplant), bioconcentration factor (BCF), air originated metals (AOM ), metal accumulation index (MAI) were used.Igeo was calculated using the following (Eq. 1):$${text{I}}_{{{text{geo}}}} = log_{2} left[ {{text{C}}_{{text{n}}} / 1.5{text{ B}}_{{text{n}}} } right]$$
    (1)
    where Cn is the measured concentration of the element n, Bn is the geoaccumulation background for this element and 1.5 is a constant coefficient used to eliminate potential variations in the baseline data40. The Igeo classifies samples into seven grades:  5 for extremely polluted30.The first PI is expressed as (Eq. 2):$${text{PI }} = {text{ C}}_{{text{i}}} /{text{S}}_{{text{i}}}$$
    (2)
    where Ci is the concentration of element i in the soil (mg kg−1) and Si is the soil quality standard or reference value for element i (mg kg−1). The PLI for different elements is calculated via the (Eq. 3):$${text{PLI}} = left( {{text{PI}}_{{1}} times {text{ PI}}_{{2}} times {text{ PI}}_{{3}} times cdots times {text{PI}}_{{text{n}}} } right)^{{{1}/{text{n}}}}$$
    (3)
    The PLI of soils is classified as follows: PLI  More

  • in

    Whales in the way

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More