More stories

  • in

    Ecological niche divergence between extant and glacial land snail populations explained

    1.Nehring, A. Über Tundren und Steppen der Jetzt- und Vorzeit, mit besonderer Berücksichtigung ihrer Fauna (F. Dummler, 1890).2.Chytrý, M. et al. A modern analogue of the Pleistocene steppe-tundra in southern Siberia. Boreas 48, 36–56 (2019).Article 

    Google Scholar 
    3.Graham, R. Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology 2, 343–350 (1976).Article 

    Google Scholar 
    4.Webb, T. I. I. I. The appearance and disappearance of major vegetational assemblages: Long-term vegetational dynamics in eastern North America. Vegetatio 69, 177–187 (1987).Article 

    Google Scholar 
    5.Frest, T. J. & Dickson, J. R. Land snails (Pleistocene-recent) of the Loess Hills: A preliminary survey. Proc. Iowa Acad. Sci. 93, 130–157 (1986).
    Google Scholar 
    6.Nekola, J. C. Paleorefugia and neorefugia: The influence of colonization history on community pattern and process. Ecology 80, 2459–2473 (1999).Article 

    Google Scholar 
    7.Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 17, 199–221 (2006).Article 

    Google Scholar 
    8.Soltis, D. E., Morris, A. B., McLachlan, J. S., Manos, P. S. & Soltis, P. S. Comparative phylogeography of unglaciated eastern North America. Mol. Ecol. 15, 4261–4293 (2006).Article 

    Google Scholar 
    9.Graham, R. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. Paleontol. Soc. Papers 11, 141–158 (2005).Article 

    Google Scholar 
    10.Davis, M. B. Climatic instability, time lags, and community disequilibrium. In Community Ecology (eds Diamond, J. & Case, T. J.) 269–284 (Harper & Row, 1984).11.Baker, R. G. et al. A full-glacial biota from southeastern Iowa USA. J. Quat. Sci. 1, 91–107 (1986).Article 

    Google Scholar 
    12.Baker, R. G., Sullivan, A. E., Hallberg, G. R. & Horton, D. G. Vegetational changes in western Illinois during the onset of late Wisconsinan glaciation. Ecology 70, 1363–1376 (1989).Article 

    Google Scholar 
    13.Baker, R. G. et al. Mid-Wisconsinan environments on the eastern Great Plains. Quat. Sci. Rev. 28, 873–889 (2009).ADS 
    Article 

    Google Scholar 
    14.Scott, G. H. Uniformitarianism, the uniformity of nature, and paleoecology. N. Zeal. J. Geol. Geophys. 6, 510–527 (1963).Article 

    Google Scholar 
    15.Horsák, M. et al. Snail faunas in the Southern Ural forests and their relations to vegetation: An analogue of the Early Holocene assemblages of Central Europe? J. Molluscan Stud. 76, 1–10 (2010).Article 

    Google Scholar 
    16.Ložek, V. Quartärmollusken der Tschechoslowakei (Nakladatelství Československé akademie věd, 1964).17.Horsák, M. et al. European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas 44, 638–657 (2015).Article 

    Google Scholar 
    18.Moine, O. Weichselian Upper Pleniglacial environmental variability in north-western Europe reconstructed from terrestrial mollusc faunas and its relationship with the presence/absence of human settlements. Quat. Int. 337, 90–113 (2014).Article 

    Google Scholar 
    19.Hošek, J. et al. Middle Pleniglacial pedogenesis on the northwestern edge of the Carpathian Basin: A multidisciplinary investigation of the Bíňa pedo-sedimentary section SW Slovakia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 321–339 (2017).Article 

    Google Scholar 
    20.Horsák, M., Škodová, J. & Cernohorsky, N. H. Ecological and historical determinants of Western Carpathian populations of Pupilla alpicola (Charpentier, 1837) in relation to its present range and conservation. J. Molluscan Stud. 77, 248–254 (2011).Article 

    Google Scholar 
    21.Nekola, J. C., Coles, F. B. & Horsák, M. Species assignment in Pupilla (Gastropoda: Pulmonata: Pupillidae): Integration of DNA-sequence data and conchology. J. Molluscan Stud. 81, 196–216 (2015).Article 

    Google Scholar 
    22.Horsák, M., Juřičková, L. & Picka, J. Měkkýši České a Slovenské republiky. Molluscs of the Czech and Slovak Republics (Kabourek, 2013).23.Welter-Schultes, F. W. European non-marine molluscs, a guide for species identification (Planet Poster Editions, 2012).24.von Proschwitz, T. Three land-snail species new to the Norwegian fauna: Pupilla pratensis (Clessin, 1871), Vertigo ultimathule von Proschwitz, 2007 and Balea sarsii Philippi, 1847 [= B. heydeni von Maltzan, 1881]. Fauna Norv. 30, 13–19 (2010).25.Kerney, M. P., Cameron, R. A. D. & Jungbluth, J. H. Die Landschnecken Nord- und Mitteleuropas (Parey Verlag, 1983).26.Horsáková, V., Nekola, J. C. & Horsák, M. When is a “cryptic” species not a cryptic species: A consideration from the Holarctic micro-landsnail genus Euconulus (Gastropoda: Stylommatophora). Mol. Phylogenet. Evol. 132, 307–320 (2019).Article 

    Google Scholar 
    27.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    28.Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    29.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    30.Haase, M., Meng, S. & Horsák, M. Tracking parallel adaptation of shell morphology through geological times in the land snail genus Pupilla (Gastropoda: Stylommatophora: Pupillidae). Zool. J. Linnean. Soc. 191, 720–747 (2021).Article 

    Google Scholar 
    31.Ložek, V. Molluscan fauna from the loess series of Bohemia and Moravia. Quat. Int. 76–77, 141–156 (2001).Article 

    Google Scholar 
    32.Fordham, D. A. et al. PaleoView: A tool for generating continuous climate projections spanning the last 21 000 years at regional and global scales. Ecography 40, 1348–1358 (2017).Article 

    Google Scholar 
    33.Mysterud, A. The concept of overgrazing and its role in management of large herbivores. Wildlife Biol. 12, 129–141 (2006).Article 

    Google Scholar 
    34.Arnalds, Ó. The soils of Iceland. World Soils Book Series (Springer, 2015).35.Horsák, M. et al. Spring water table depth mediates within-site variation of soil temperature in groundwater-fed mires. Hydrol. Process. 35, e14293 (2021).36.Ložek, V. Zrcadlo minulosti. Česká a slovenská krajina v kvartéru (Dokořán, 2007).37.Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds. Quaternary Glaciations—Extent and Chronology, Volume 15 (Elsevier, 2011). More

  • in

    Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism

    1.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 

    Google Scholar 
    2.IPCC. AR5 Climate Change 2013: The Physical Science Basis (Intergovernmental Panel on Climate Change, 2013).
    Google Scholar 
    3.IPCC. AR5 Synthesis Report: Climate Change 2014 (Intergovernmental Panel on Climate Change, 2014).
    Google Scholar 
    4.Caldeira, K. & Wickett, M. E. Antropogenic carbon and ocean pH: The coming centuries may see more ocean acidification than the past 300 million years. Nature 425, 365 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: The other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 

    Google Scholar 
    6.Lowe, A. T., Bos, J. & Ruesink, J. Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep. 9, 963. https://doi.org/10.1038/s41598-018-37764-4 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    7.Justić, D., Rabalais, N. N. & Turner, R. E. Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico. Limnol. Oceanogr. 41, 992–1003 (1996).ADS 

    Google Scholar 
    8.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).PubMed 
    ADS 

    Google Scholar 
    10.Vaquer-Sunyer, R. & Duarte, C. M. Experimental evaluation of the response of coastal Mediterranean planktonic and benthic metabolism to warming. Estuaries Coast. 36, 697–707 (2013).CAS 

    Google Scholar 
    11.Fu, W., Randerson, J. T. & Moore, J. K. Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models. Biogeosciences 13, 5151–5170 (2016).ADS 

    Google Scholar 
    12.Gaarder, T. & Gran, H. H. Investigations of the production of plankton in the Oslo Fjord. Rapports Procès-Verbaux Réunions 42, 3–48 (1927).
    Google Scholar 
    13.Bender, M. et al. A comparison of four methods for determining planktonic community production. Limnol. Oceanogr. 32, 1085–1098 (1987).ADS 

    Google Scholar 
    14.Marra, J. Net and gross productivity: Weighing in with 14C. Aquat. Microb. Ecol. 56, 123–131 (2009).
    Google Scholar 
    15.Hitchcock, G. L., Kirkpatrick, G., Minnett, P. & Palubok, V. Net community production and dark community respiration in a Karenia brevis (Davis) bloom in West Florida coastal waters, USA. Harmful Algae 9, 351–358 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Stephenson, T. A., Zoond, A. & Eyre, J. The liberation and utilisation of oxygen by the population of rock-pools. J. Exp. Biol. 11, 162–172 (1934).
    Google Scholar 
    17.Beyers, R. J. Relationship between temperature and the metabolism of experimental ecosystems. Science 136, 980–982 (1962).CAS 
    PubMed 
    ADS 

    Google Scholar 
    18.Duarte, C. M. & Regaudie-de-Gioux, A. Thresholds of gross primary production for the metabolic balance of marine planktonic communities. Limnol. Oceanogr. 54, 1015–1022 (2009).CAS 
    ADS 

    Google Scholar 
    19.Noël, L.M.-L. et al. Assessment of a field incubation method estimating primary productivity in rockpool communities. Estuar. Coast. Shelf Sci. 88, 153–159 (2010).ADS 

    Google Scholar 
    20.Hall, C. A. S. & Moll, R. Methods of assessing aquatic primary productivity. In Primary Productivity of the Biosphere (eds Lieth, H. & Whittaker, R. H.) 19–53 (Springer, 1975).
    Google Scholar 
    21.Platt, T. et al. Biological production of the oceans: The case for a consensus. Mar. Ecol. Prog. Ser. 52, 77–88 (1989).ADS 

    Google Scholar 
    22.Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1956).ADS 

    Google Scholar 
    23.Odum, H. T. & Hoskin, C. M. Comparative studies on the metabolism of marine waters. Publ. Inst. Mar. Sci. 5, 16–46 (1958).
    Google Scholar 
    24.Johnson, K. M., Burney, C. M. & Sieburth, J. M. Enigmatic marine ecosystem metabolism measured by direct diel ΣCO2 and O2 flux in conjunction with DOC release and uptake. Mar. Biol. 65, 49–60 (1981).CAS 

    Google Scholar 
    25.Volaric, M. P., Berg, P. & Reidenbach, M. A. Drivers of oyster reef ecosystem metabolism measured across multiple timescales. Estuaries Coast. 43, 2034–2045 (2020).CAS 

    Google Scholar 
    26.Collins, J. R. et al. An autonomous, in situ light-dark bottle device for determining community respiration and net community production. Limnol. Oceanogr. Method. 16, 323–338 (2018).
    Google Scholar 
    27.Steemann Nielsen, E. The use of radio-active carbon (C14) for measuring organic production in the sea. ICES J. Mar. Sci. 18, 117–140 (1952).
    Google Scholar 
    28.Peterson, B. J. Aquatic primary productivity and the 14C-CO2 method: A history of the productivity problem. Ann. Rev. Ecol. Syst. 11, 359–385 (1980).
    Google Scholar 
    29.Jackson, D. F. & McFadden, J. Phytoplankton photosynthesis in Sanctuary Lake, Pymatuning Reservoir. Ecology 35, 2–4 (1954).
    Google Scholar 
    30.Van de Bogert, M. C., Carpenter, S. R. & Pace, M. L. Assessing pelagic and benthic metabolism using free water measurements. Limnol. Oceanogr. Methods 5, 145–155 (2007).
    Google Scholar 
    31.Barone, B., Nicholson, D., Ferrón, S., Firing, E. & Karl, D. The estimation of gross oxygen production and community respiration from autonomous time-series measurements in the oligotrophic ocean. Limnol. Oceanogr. Methods 17, 650–664 (2019).CAS 

    Google Scholar 
    32.Staehr, P. A. et al. Lake metabolism and the diel oxygen technique: State of the science. Limnol. Oceanogr. Methods 8, 628–644 (2010).CAS 

    Google Scholar 
    33.Nicholson, D. P., Wilson, S. T., Doney, S. C. & Karl, D. M. Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophys. Res. Lett. 42, 4032–4039 (2015).CAS 
    ADS 

    Google Scholar 
    34.Mantikci, M., Hansen, J. L. S. & Markager, S. Photosynthesis enhanced dark respiration in three marine phytoplankton species. J. Exp. Mar. Biol. Ecol. 497, 188–196 (2017).CAS 

    Google Scholar 
    35.Truchot, J.-P. & Duhamel-Jouve, A. Oxygen and carbon dioxide in the marine intertidal environment: Diurnal and tidal changes in rockpools. Resp. Physiol. 39, 241–254 (1980).CAS 

    Google Scholar 
    36.Delille, B., Borges, A. V. & Delille, D. Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar. Coast. Shelf Sci. 81, 114–122 (2009).ADS 

    Google Scholar 
    37.Woolway, R. I. et al. Diel surface temperature range scales with lake size. PLoS ONE 11, e0152466. https://doi.org/10.1371/journal.pone.0152466 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Andersen, M. R., Kragh, T. & Sand-Jensen, K. Extreme diel dissolved oxygen and carbon cycles in shallow vegetated lakes. Proc. R. Soc. B 284, 20171427. https://doi.org/10.1098/rspb.2017.1427 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Nielsen, K. J. Bottom-up and top-down forces in tide pools: Test of a food chain model in an intertidal community. Ecol. Monogr. 71, 187–217 (2001).
    Google Scholar 
    40.Altieri, A. H., Trussell, G. C., Ewanchuk, P. J., Bernatchez, G. & Bracken, M. E. S. Consumers control diversity and functioning of a natural marine ecosystem. PLoS ONE 4, e5291. https://doi.org/10.1371/journal.pone.0005291 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    41.O’Connor, N. E., Bracken, M. E. S., Crowe, T. P. & Donohue, I. Nutrient enrichment alters the consequences of species loss. J. Ecol. 103, 862–870 (2015).
    Google Scholar 
    42.Rheuban, J. E., Berg, P. & McGlathery, K. J. Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar. Ecol. Prog. Ser. 507, 1–13 (2014).ADS 

    Google Scholar 
    43.Barrón, C. et al. High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems 6, 144–153. https://doi.org/10.1007/s10021-002-0402-3 (2003).CAS 
    Article 

    Google Scholar 
    44.Kraufvelin, P., Lindholm, A., Pedersen, M. F., Kirkerud, L. A. & Bonsdorff, E. Biomass, diversity and production of rocky shore macroalgae at two nutrient enrichment and wave action levels. Mar. Biol. 157, 29–47 (2010).
    Google Scholar 
    45.Epping, E. H. G. & Jørgensen, B. B. Light-enhanced oxygen respiration in benthic phototrophic communities. Mar. Ecol. Prog. Ser. 139, 193–203 (1996).ADS 

    Google Scholar 
    46.Graham, J. M., Kranzfelder, J. A. & Auer, M. T. Light and temperature as factors regulating seasonal growth and distribution of Ulothrix zonata (Ulvophyceae). J. Phycol. 21, 228–234. https://doi.org/10.1111/j.0022-3646.1985.00228.x (1985).Article 

    Google Scholar 
    47.Hotchkiss, E. R. & Hall, R. O. Jr. High rates of daytime respiration in three streams: Use of δ18OO2 and O2 to model diel ecosystem metabolism. Limnol. Oceanogr. 59, 798–810. https://doi.org/10.4319/lo.2014.59.3.0798 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    48.Song, C. et al. Continental-scale decrease in net primary productivity in streams due to climate warming. Nat. Geosci. 11, 415–420 (2018).CAS 
    ADS 

    Google Scholar 
    49.Conley, D. J., Carstensen, J., Vaquer-Sunyer, R. & Duarte, C. M. Ecosystem thresholds with hypoxia. Hydrobiologia 629, 21–29 (2009).CAS 

    Google Scholar 
    50.Lefèvre, D., Bentley, T. L., Robinson, C., Blight, S. P. & Williams, P. J. L. The temperature response of gross and net community production and respiration in time-varying assemblages of temperate marine micro-plankton. J. Exp. Mar. Biol. Ecol. 184, 201–215 (1994).
    Google Scholar 
    51.López-Urrutia, Á., SanMartin, E., Harris, R. P. & Irigoien, X. Scaling the metabolic balance of the oceans. Proc. Natl Acad. Sci. USA 103, 8739–8744 (2006).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    52.Grant, J. Sensitivity of benthic community respiration and primary production to changes in temperature and light. Mar. Biol. 90, 299–306 (1986).
    Google Scholar 
    53.Jankowski, K., Schindler, D. E. & Lisi, P. J. Temperature sensitivity of community respiration rates in streams is associated with watershed geomorphic features. Ecology 95, 2707–2714 (2014).
    Google Scholar 
    54.Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B. 365, 2117–2126 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    55.Helmuth, B. et al. Climate change and latitudinal patterns of intertidal thermal stress. Science 298, 1015–1017 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    56.Tyler, R. M., Brady, D. C. & Targett, T. E. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries. Estuaries Coast. 32, 123–145 (2009).CAS 

    Google Scholar 
    57.Howard, E. M. et al. Oxygen and triple oxygen isotope measurements provide different insights into gross oxygen production in a shallow salt marsh pond. Estuaries Coast. 43, 1908–1922 (2020).CAS 

    Google Scholar 
    58.Luz, B. & Barkan, E. Assessment of oceanic productivity with the triple-isotope composition of dissolved oxygen. Science 288, 2028–2031 (2000).CAS 
    PubMed 
    ADS 

    Google Scholar 
    59.Winslow, L. A. et al. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models. Inland Waters 6, 622–636 (2016).CAS 

    Google Scholar 
    60.Sorte, C. J. B. & Bracken, M. E. S. Warming and elevated CO2 interact to drive rapid shifts in marine community production. PLoS ONE 10, e0145191. https://doi.org/10.1371/journal.pone.0145191 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Hinode, K. et al. The phenology of gross ecosystem production in a macroalga and seagrass canopy is driven by seasonal temperature. Phycol. Res. 68, 298–312 (2020).CAS 

    Google Scholar 
    62.Bracken, M., Miller, L., Mastroni, S., Lira, S. & Sorte, C. Data from: Accounting for variation in temperature and oxygen availability when quantifying marine ecosystem metabolism. Dryad Dataset https://doi.org/10.7280/D1M39B (2021).Article 

    Google Scholar 
    63.Reiskind, J. B., Seamon, P. T. & Bowes, G. Alternative methods of photosynthetic carbon assimilation in marine macroalgae. Plant Physiol. 87, 686–692 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Invasion front dynamics of interactive populations in environments with barriers

    1.Williamson, M. & Griffiths, B. Biological invasions (Springer, New York, 1996).
    Google Scholar 
    2.Ricciardi, A. et al. Invasion science: a horizon scan of emerging challenges and opportunities. Trends Ecol. Evolut. 32, 464–474 (2017).
    Google Scholar 
    3.Van Saarloos, W. Front propagation into unstable states. Phys. Rep. 386, 29–222 (2003).MATH 
    ADS 

    Google Scholar 
    4.OMalley, L., Korniss, G. & Caraco, T. Ecological invasion, roughened fronts, and a competitors extreme advance: integrating stochastic spatial-growth models. Bull. Math. Biol. 71, 1160–1188 (2009).MathSciNet 
    MATH 

    Google Scholar 
    5.Lewis, M. A., Petrovskii, S. V. & Potts, J. R. The mathematics behind biological invasions Vol. 44 (Springer, New York, 2016).MATH 

    Google Scholar 
    6.Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugenics 7, 355–369 (1937).MATH 

    Google Scholar 
    7.Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. 104, 3883–3888 (2007).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    8.Korolev, K. S., Xavier, J. B. & Gore, J. Turning ecology and evolution against cancer. Nat. Rev. Cancer 14, 371–380 (2014).CAS 
    PubMed 

    Google Scholar 
    9.Wolf, K. et al. Physical limits of cell migration: control by ecm space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harbor Persp. Biol. 3, a005058 (2011).
    Google Scholar 
    11.Wirtz, D., Konstantopoulos, K. & Searson, P. C. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat. Rev. Cancer 11, 512–522 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Spill, F., Reynolds, D. S., Kamm, R. D. & Zaman, M. H. Impact of the physical microenvironment on tumor progression and metastasis. Curr. Opin. Biotechnol. 40, 41–48 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).CAS 
    PubMed 

    Google Scholar 
    14.Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).CAS 

    Google Scholar 
    15.Azimzade, Y. & Saberi, A. A. Short-range migration can alter evolutionary dynamics in solid tumors. J. Stat. Mech. Theory Exp. 2019, 103502 (2019).MathSciNet 
    MATH 

    Google Scholar 
    16.West, J., Schenck, R., Gatenbee, C., Robertson-Tessi, M. & Anderson, A. R. Tissue structure accelerates evolution: premalignant sweeps precede neutral expansion. bioRxiv 542019 (2019).17.Maley, C. C. et al. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17, 605–619 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Cleary, A. S., Leonard, T. L., Gestl, S. A. & Gunther, E. J. Tumour cell heterogeneity maintained by cooperating subclones in wnt-driven mammary cancers. Nature 508, 113–117 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    19.Shahriari, K. et al. Cooperation among heterogeneous prostate cancer cells in the bone metastatic niche. Oncogene (2016).20.Calbo, J. et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 19, 244–256 (2011).CAS 
    PubMed 

    Google Scholar 
    21.Martín-Pardillos, A. et al. The role of clonal communication and heterogeneity in breast cancer. BMC Cancer 19, 1–26 (2019).
    Google Scholar 
    22.Kim, T.-M. et al. Subclonal genomic architectures of primary and metastatic colorectal cancer based on intratumoral genetic heterogeneity. Clin. Cancer Res. 21, 4461–4472 (2015).CAS 
    PubMed 

    Google Scholar 
    23.Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    24.Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Capp, J.-P. et al. Group phenotypic composition in cancer. Elife 10, e63518 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Murray, J. D. Mathematical biology I: an introduction (2003).27.Mikhailov, A., Schimansky-Geier, L. & Ebeling, W. Stochastic motion of the propagating front in bistable media. Phys. Lett. A 96, 453–456 (1983).MathSciNet 
    ADS 

    Google Scholar 
    28.Hatzikirou, H., Brusch, L., Schaller, C., Simon, M. & Deutsch, A. Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl. 59, 2326–2339 (2010).MathSciNet 
    MATH 

    Google Scholar 
    29.Azimzade, Y., Sasar, M. & Maleki, I. Invasion front dynamics in disordered environments. Sci. Rep. 10, 1–10 (2020).
    Google Scholar 
    30.Azimzade, Y., Saberi, A. A. & Sahimi, M. Effect of heterogeneity and spatial correlations on the structure of a tumor invasion front in cellular environments. Phys. Rev. E 100, 062409 (2019).PubMed 
    ADS 

    Google Scholar 
    31.Rapin, G. et al. Roughness and dynamics of proliferating cell fronts as a probe of cell-cell interactions. Sci. Rep. 11, 1–9 (2021).ADS 

    Google Scholar 
    32.Pérez-Beteta, J. et al. Tumor surface regularity at mr imaging predicts survival and response to surgery in patients with glioblastoma. Radiology 171051 (2018).33.Pérez-Beteta, J. et al. Morphological mri-based features provide pretreatment survival prediction in glioblastoma. Eur. Radiol. 1–10 (2018).34.Brú, A. et al. Super-rough dynamics on tumor growth. Phys. Rev. Lett. 81, 4008 (1998).ADS 

    Google Scholar 
    35.Brú, A., Albertos, S., Subiza, J. L., García-Asenjo, J. L. & Brú, I. The universal dynamics of tumor growth. Biophys. J. 85, 2948–2961 (2003).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    36.Huergo, M., Pasquale, M., González, P., Bolzán, A. & Arvia, A. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells. Phys. Rev. E 85, 011918 (2012).CAS 
    ADS 

    Google Scholar 
    37.Munn, L. L. Dynamics of tissue topology during cancer invasion and metastasis. Phys. Biol. 10, 065003 (2013).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    38.Dey, B., Sekhar, G. R. & Mukhopadhyay, S. K. In vivo mimicking model for solid tumor towards hydromechanics of tissue deformation and creation of necrosis. J. Biol. Phys. 1–40 (2018).39.Block, M., Schöll, E. & Drasdo, D. Classifying the expansion kinetics and critical surface dynamics of growing cell populations. Phys. Rev. Lett. 99, 248101 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    40.Moglia, B., Guisoni, N. & Albano, E. V. Interfacial properties in a discrete model for tumor growth. Phys. Rev. E 87, 032713 (2013).ADS 

    Google Scholar 
    41.Moglia, B., Albano, E. V. & Guisoni, N. Pinning-depinning transition in a stochastic growth model for the evolution of cell colony fronts in a disordered medium. Phys. Rev. E 94, 052139 (2016).PubMed 
    ADS 

    Google Scholar 
    42.Scianna, M. & Preziosi, L. A hybrid model describing different morphologies of tumor invasion fronts. Math. Model. Nat. Phenom. 7, 78–104 (2012).MathSciNet 
    MATH 

    Google Scholar 
    43.Azimzade, Y., Saberi, A. A. & Sahimi, M. Role of the interplay between the internal and external conditions in invasive behavior of tumors. Sci. Rep. 8, 5968 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    44.Ben-Jacob, E. et al. Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368, 46 (1994).CAS 
    PubMed 
    ADS 

    Google Scholar 
    45.Family, F. & Vicsek, T. Dynamics of fractal surfaces (World Scientific, Singapore, 1991).MATH 

    Google Scholar 
    46.Vicsek, T. Fractal growth phenomena (World scientific, Singapore, 1992).MATH 

    Google Scholar 
    47.Swanson, K. R., Bridge, C., Murray, J. & Alvord, E. C. Jr. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J. Neurol. Sci. 216, 1–10 (2003).PubMed 

    Google Scholar 
    48.Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inform. 2, 1–13 (2019).
    Google Scholar 
    49.Azimzade, Y., Saberi, A. A. & Gatenby, R. A. Superlinear growth reveals the allee effect in tumors. Phys. Rev. E 103, 042405 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).CAS 
    PubMed 

    Google Scholar  More

  • in

    Obligate mutualistic cooperation limits evolvability

    Experimental designConsortia of auxotrophic E. coli genotypes, which previously evolved an obligate mutualistic cooperation26, were used to determine how this type of interaction affects the ability of the participating individuals to respond to environmental selection pressures. To this end, two main experimental treatment groups were established. First, each of the two cooperative auxotrophs was grown as amino acid-supplemented monoculture (i.e. tyrosine and tryptophan, 100 µM each). Second, both genotypes were cocultivated in the absence of amino acid supplementation. A treatment, in which monocultures were cultivated in the absence of amino acid supplementation was not included, because auxotrophic genotypes would not grow under these conditions. Also, an amino acid-supplemented coculture was not implemented in the experimental design, because competition between both auxotrophs was likely to result in a loss of one of the two genotypes (Supplementary Fig. 1). Moreover, previous experiments showed that amino acid supplementation does not completely abolish the mutualistic interaction. Hence, the experiment compared monocultures with externally provided amino acids (i.e. no mutualism) to cocultures, which could only grow when strains reciprocally exchanged amino acids (i.e. mutualism). Replicate populations of both treatment groups were serially propagated while being subject to a stepwise increasing concentration of one of four different antibiotics (i.e. ampicillin, kanamycin, chloramphenicol, and tetracycline) (Fig. 1). These four antibiotics differed in their mode of action. In this way, not just the effect of a single stressor was probed, but rather the ability of mutualistic consortia to adapt to environmental stress in general.Ancestral consortia differ in their growth levels and susceptibility to environmental stressBefore the actual evolution experiment was performed, both growth levels and susceptibility to environmental stress was determined in the ancestral consortia. Comparing the maximum growth rate and densities populations achieved after 72 h revealed that unsupplemented cocultures grew significantly slower (Benjamini–Hochberg correction: P  More

  • in

    Potentials of straw return and potassium supply on maize (Zea mays L.) photosynthesis, dry matter accumulation and yield

    Significance tests of straw return methods, potassium fertilization levels and their interactionsAnalysis of variance (ANOVA) results showed that straw return methods and potassium fertilization levels had significant effects on maize photosynthesis, dry matter and yield from 2018 to 2020 (Table 3). Significant interactions between straw return methods and potassium fertilization levels were only found on Pn of 2018 and 2020, and Tr of 2018–2020. Through the comparison of three-year F-values, it could be found that the effect of potassium fertilization levels on maize photosynthesis, dry matter and yield was greater than that of straw return methods.Table 3 Significance of the effects of straw return methods, potassium fertilization levels and their interactions on maize growth and yield using ANOVA.Full size tableEffects of straw return and potassium fertilizer on photosynthesis of maizeThe straw return methods and potassium fertilization levels significantly influenced (p ≤ 0.05) the maize photosynthesis compared to control (CK), resulting in Pn, Gs and Tr values that were higher than those of CK, and Ci value that was lower than that of CK.Straw return and potassium supply increased Pn, Gs and Tr. From 2018 to 2020, compared with CK, Pn increased by 1.70–4.09 under SFK0, 2.65–5.77 under SFK30, 5.21–8.48 under SFK45, 7.31–11.44 under SFK60, 0.63–3.20 under FGK0, 2.50–5.11 under FGK30, 3.60–5.79 under FGK45, and 3.97–7.47 μmol·m-2·s-1 under FGK60 (Fig. 1a). Gs increased by 0.60–0.90 under SFK0, 0.10–0.13 under SFK30, 0.18,-0.19 under SFK45, 0.20–0.22 under SFK60, 0.02–0.06 under FGK0, 0.08–0.09 under FGK30, 0.13–0.17 under FGK45, and 0.15–0.19 mmol·m-2·s-1 under FGK60 (Fig. 1b). Tr increased by 0.55–0.87 under SFK0, 1.02–1.30 under SFK30, 1.51–1.67 under SFK45, 1.74–1.99 under SFK60, 0.49–0.71 under FGK0, 0.86–1.13 under FGK30, 1.12–1.38 under FGK45, and 1.27–1.47 mmol·m−2·s−1 under FGK60 (Fig. 1c).Figure 1Effects of straw return methods and potassium fertilization levels on maize photosynthesis.Full size imageStraw return and potassium supply decreased Ci. From 2018 to 2020, compared with CK, Ci decreased by 5.43–8.92 under SFK0, 10.59–14.05 under SFK30, 19.04–21.21 under SFK45, 21.77–23.81 under SFK60, 2.26–6.52 under FGK0, 8.59–12.07 under FGK30, 12.93–16.15 under FGK45, and 17.81–19.46 μmol·mol-−1 under FGK60 (Fig. 1d).Comprehensive analysis showed that Pn, Gs, Tr increased and Ci decreased significantly after the treatment of SF under the same potassium supply. Under the same straw return method, Pn, Gs and Tr values increased significantly with the potassium fertilization levels, while Ci decreased. The effects of straw return and potassium fertilizer on maize photosynthesis increased gradually from year to year.Effects of straw return and potassium fertilizer on dry matter of maizeWe can see from Fig. 2, the straw return methods and potassium fertilization levels significantly increased (p ≤ 0.05) the maize dry matter accumulation. Compared with CK, under the treatments of SFK0, SFK30, SFK45, SFK60, FGK0, FGK30, FGK45 and FGK60, the dry matter of R1 and R6 stage increased by 1454.45, 2288.75, 3982.85, 4961.45, 1042.96, 1744.54, 2890.65, 3408.39 and 2152.43, 4433.55, 6726.72, 8051.51, 1195.76, 3337.79, 5121.77, 6247.56 kg/ha in 2018; the dry matter increased by 1812.69, 2959.44, 4370.19, 5615.94, 1545.06, 2238.06, 3421.11, 4028.64 and 2588.52, 5319.60, 7500.74, 8912.64, 1649.67, 3832.46, 6065.90, 6864.33 kg/ha in 2019; the dry matter increased by 2535.39, 3612.35, 5544.00, 6720.12, 2474.18,2827.94, 4749.86, 4769.66 and 3235.18, 5798.75, 8577.48, 10,071.83, 2515.75, 4386.39, 7256.61, 7536.91 kg/ha in 2020.Figure 2Effects of straw return methods and potassium fertilization levels on maize dry matter. Values followed by different letters in the same year indicated indicate statistical significance at α = 0.05 under different treatments. The same below.Full size imageIn short, under the same straw return method, the increase of maize dry matter from R1 to R6 improved significantly with the potassium level, potassium fertilizer could improve the maize dry matter accumulation ability. The maize dry matter of R1 to R6 increased significantly after the treatment of SF compared to FG under the same potassium supply. The promotion effect of straw return and potassium fertilizer on maize dry matter increased from year to year.Effects of straw return and potassium fertilizer on maize yieldThe straw return methods and potassium fertilization levels significantly influenced (p ≤ 0.05) the maize yield compared to CK, resulting in maize yield values that were higher than those of CK. Straw return and potassium supply increased maize yield. From 2018 to 2020, compared with CK, maize yield increased by 9.73–10.32% under SFK0, 15.68–17.47% under SFK30, 24.02–25.58% under SFK45, 24.46–25.76% under SFK60, 5.79–7.83% under FGK0, 13.51–13.72% under FGK30, 18.64–19.01% under FGK45, and 21.19–21.69% under FGK60 (Fig. 3).Figure 3Effects of straw return methods and potassium fertilization levels on maize yield.Full size imageThe maize yield among treatments was as follows: SFK60  > SFK45  > FGK60  > FGK45  > SFK30  > FGK30  > SFK0  > FGK0  > CK. Compared to FG, the effect of SF on maize yield was more obvious. The maize yield increased significantly with the potassium fertilization levels under the potassium fertilization levels of 0–60 kg/ha in this test. The treatment of SFK60 recorded the highest average yield in the three-year test, which was 14,744.39 kg/ha. The maize yield in different planting years showed as follows: 2020  > 2019  > 2018, which indicated that the promotion effect of straw return and potassium fertilizer on maize yield increased from year to year.Correlation analysis of photosynthesis, dry matter accumulation and yield of maizePn, Gs, Tr and Ci were significantly correlated with dry matter accumulation. Pn, Gs and Tr were positively correlated with dry matter, while Ci was negatively correlated with the dry matter (Table 4). The results showed that the increase of Pn, Gs, Tr and the decrease of Ci could significantly improve maize dry matter. Dry matter was positively correlated with maize yield, indicating that the increase of dry matter accumulation could significantly improve maize yield. The increase of Pn, Gs, Tr and dry matter accumulation, as well as the decrease of Ci, could significantly increase maize yield.Table 4 Correlation analysis of photosynthesis, dry matter accumulation and yield of maize under two straw return methods.Full size tableUnder the method of SF, the correlation coefficients of Pn, Gs, Tr, dry matter at R1 stage, dry matter at R6 stage and Ci with yield were 0.862, 0.988, 0.962, 0.948, 0.971 and −0.978; the correlation coefficients were 0.838,0.975,0.970,0.930,0.979 and −0.973 under the method of FG. The results showed that, under the method of SF, the correlation coefficients between dry matter of R1 stage, Pn, Gs, Ci with yield were higher than that under the method of FG, which indicated that SF could promote the correlation between the dry matter of R1 stage, Pn, Gs, Ci with yield. Under the method of FG, the correlation coefficients between the dry matters of R6 stage, Tr with yield were higher than that under the method of SF, which indicated that FG could promote the correlation between the dry matter of R6 stage, Tr with yield.Effects of straw return and potassium fertilizer on the profit of maize plantingGross income is an important economic index that determines the profit or benefit that a farmer can obtain. On the other hand, net return reflects the actual income of the farmer. According to the average selling price of maize (1 yuan/kg) from 2018 to 2020, the net income of maize planting of different treatments was as follows: SFK45  > SFK60  > FGK60  > FGK45  > SFK30  > FGK30  > SFK0  > FGK0  > CK (Table 5). Compared to CK. the average net profit of maize planting in the three-year test increased by 421.26, 1049.07, 2014.82, 1980.44, 313.58, 1035.34, 1587.44, 1828.69 yuan/ha between the treatments of SFK0, SFK30, SFK45, SFK60, FGK0, FGK30, FGK45 and FGK60. Straw return and potassium supply increased the net profit of maize planting. The net profit of maize planting increased significantly after SF compared to FG under the same potassium supply. The treatment of SFK45 reached the maximum profit of maize planting, which was 2014.82 yuan/ha.Table 5 Effects of straw return methods and potassium fertilization levels on the profit of maize planting.Full size table More

  • in

    Biodiversity conservation in Afghanistan under the returned Taliban

    1.Dudley, J. P. et al. Conserv. Biol. 16, 319–329 (2002).Article 

    Google Scholar 
    2.Hanson, T. et al. Conserv. Biol. 23, 578–587 (2009).Article 

    Google Scholar 
    3.Emadi, M. H. Int. J. Environ. Sci. 68, 267–279 (2011).
    Google Scholar 
    4.Dehgan, A. The Snow Leopard Project and Other Adventures in Warzone Conservation (Hachette Book Group, 2019).5.Maheshwari, A. Science 367, 1203 (2020).Article 

    Google Scholar 
    6.Smallwood, P. Bioscience 61, 506–511 (2011).Article 

    Google Scholar 
    7.Udvardy, M. D. F. A Classification of the Biogeographical Provinces of the World IUCN Occasional Paper 18 (IUCN, 1975).8.Polo, M., Marsden, W. & Komroff, M. The Travels of Marco Polo (The Modern library, 1953).9.Reinig, W. F. Z. Morphol. Ökol. Tiere. 17, 68–123 (1930).Article 

    Google Scholar 
    10.Hassinger, J. Fieldiana Zool. 53, 1–81 (1968).
    Google Scholar 
    11.Hassinger, J. Fieldiana Zool. 60, 1–195 (1973).
    Google Scholar 
    12.Afghanistan Post-Conflict Environmental Assessment (UNEP, 2003).13.Biodiversity Profile of Afghanistan (UNEP, 2008).14.Simms, A. et al. Int. J. Environ. Sci. 68, 299–312 (2011).
    Google Scholar 
    15.Moheb, Z. & Bradfield, D. Cat News 61, 15–16 (2014).
    Google Scholar 
    16.Ostrowski, S. et al. Oryx 50, 323–328 (2016).Article 

    Google Scholar 
    17.Moheb, Z., Jahed, N. & Noori, H. DSG Newsletter 28, 5–12 (2016).
    Google Scholar 
    18.Stevens, K. et al. Oryx 45, 265–271 (2011).Article 

    Google Scholar 
    19.Maheshwari, A. & Niraj, S. K. Glob. Ecol. Conserv. 14, 1–6 (2018).
    Google Scholar 
    20.Bhattacharjee, Y. Science 328, 1620–1620 (2010).Article 

    Google Scholar 
    21.Hunter, A., Luk, J. Esmen, Y. Afghanistan’s mighty copper reserves remain out of reach, even for China. Metal Bulletin (24 August 2021).22.Mallapaty, S. Nature 597, 15–16 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Biofilm matrix cloaks bacterial quorum sensing chemoattractants from predator detection

    1.Jessup CM, Forde SE, Bohannan BJM. Microbial experimental systems in ecology. In: Desharnais RA, editor. Advances in ecological research, Vol. 37. Elsevier, USA: Academic Press; 2005. p. 273–307.2.Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel. Nature. 2006;439:462–5.CAS 
    Article 

    Google Scholar 
    3.Chan SY, Liu SY, Seng Z, Chua SL. Biofilm matrix disrupts nematode motility and predatory behavior. ISME J. 2021;15:260–9.CAS 
    Article 

    Google Scholar 
    4.Thutupalli S, Uppaluri S, Constable GWA, Levin SA, Stone HA, Tarnita CE, et al. Farming and public goods production in Caenorhabditis elegans populations. Proc Natl Acad Sci USA. 2017;114:2289–94.CAS 
    Article 

    Google Scholar 
    5.Otto G. Arresting predators. Nat Rev Microbiol. 2020;18:675.PubMed 

    Google Scholar 
    6.Worthy SE, Haynes L, Chambers M, Bethune D, Kan E, Chung K, et al. Identification of attractive odorants released by preferred bacterial food found in the natural habitats of C. elegans. PLoS ONE. 2018;13:e0201158.Article 

    Google Scholar 
    7.Choi JI, Yoon K-H, Subbammal Kalichamy S, Yoon S-S, Il Lee J. A natural odor attraction between lactic acid bacteria and the nematode Caenorhabditis elegans. ISME J. 2016;10:558–67.CAS 
    Article 

    Google Scholar 
    8.Reilly DK, Srinivasan J. Caenorhabditis elegans olfaction. Oxford Research Encyclopedia of Neuroscience: Oxford University Press; 2017.9.Beale E, Li G, Tan M-W, Rumbaugh KP. Caenorhabditis elegans senses bacterial autoinducers. Appl Environ Microbiol. 2006;72:5135–7.CAS 
    Article 

    Google Scholar 
    10.Werner KM, Perez LJ, Ghosh R, Semmelhack MF, Bassler BL. Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron. J Biol Chem. 2014;289:26566–73.CAS 
    Article 

    Google Scholar 
    11.Wei Q, Ma LZ. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci. 2013;14:20983–1005.Article 

    Google Scholar 
    12.Tal R, Wong HC, Calhoon R, Gelfand D, Fear AL, Volman G, et al. Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J Bacteriol. 1998;180:4416–25.CAS 
    Article 

    Google Scholar 
    13.Chua SL, Liu Y, Li Y, Jun Ting H, Kohli GS, Cai Z, et al. Reduced Intracellular c-di-GMP content increases expression of quorum sensing-regulated genes in Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2017;7:451.Article 

    Google Scholar 
    14.Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol. 2009;7:263–73.CAS 
    Article 

    Google Scholar 
    15.Hickman JW, Tifrea DF, Harwood CS. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA. 2005;102:14422–7.CAS 
    Article 

    Google Scholar 
    16.Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA. 2006;103:8487–92.CAS 
    Article 

    Google Scholar 
    17.Chua SL, Ding Y, Liu Y, Cai Z, Zhou J, Swarup S, et al. Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels. Open Biol. 2016;6:160162.Article 

    Google Scholar 
    18.Seviour T, Hansen SH, Yang L, Yau YH, Wang VB, Stenvang MR, et al. Functional amyloids keep quorum-sensing molecules in check. J Biol Chem. 2015;290:6457–69.CAS 
    Article 

    Google Scholar 
    19.Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354.Article 

    Google Scholar 
    20.Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC. Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev. 2001;25:365–404.CAS 
    Article 

    Google Scholar 
    21.Zhang Y, Chou JH, Bradley J, Bargmann CI, Zinn K. The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. Proc Natl Acad Sci USA. 1997;94:12162–7.CAS 
    Article 

    Google Scholar 
    22.Sengupta P, Chou JH, Bargmann CI. odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell. 1996;84:899–909.CAS 
    Article 

    Google Scholar 
    23.Cezairliyan B, Vinayavekhin N, Grenfell-Lee D, Yuen GJ, Saghatelian A, Ausubel FM. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog. 2013;9:e1003101.CAS 
    Article 

    Google Scholar 
    24.Gallagher LA, Manoil C. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol. 2001;183:6207–14.CAS 
    Article 

    Google Scholar 
    25.Lewenza S, Charron-Mazenod L, Giroux L, Zamponi AD. Feeding behaviour of Caenorhabditis elegans is an indicator of Pseudomonas aeruginosa PAO1 virulence. PeerJ. 2014;2:e521–e.Article 

    Google Scholar 
    26.Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proc Natl Acad Sci USA. 1999;96:715–20.CAS 
    Article 

    Google Scholar 
    27.Tehseen M, Liao C, Dacres H, Dumancic M, Trowell S, Anderson A. Oligomerisation of C. elegans olfactory receptors, ODR-10 and STR-112, in yeast. PLoS ONE. 2014;9:e108680.Article 

    Google Scholar 
    28.Sooknanan J, Bhatt B, Comissiong DMG. A modified predator-prey model for the interaction of police and gangs. R Soc Open Sci. 2016;3:160083.CAS 
    Article 

    Google Scholar 
    29.Arciola CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 2018;16:397–409.CAS 
    Article 

    Google Scholar 
    30.Deng Y, Liu SY, Chua SL, Khoo BL. The effects of biofilms on tumor progression in a 3D cancer-biofilm microfluidic model. Biosens Bioelectron. 2021;180:113113.CAS 
    Article 

    Google Scholar 
    31.Kwok T-Y, Ma Y, Chua SL. Biofilm dispersal induced by mechanical cutting leads to heightened foodborne pathogen dissemination. Food Microbiol. 2022;102:103914.Article 

    Google Scholar 
    32.Yu M, Chua SL. Demolishing the great wall of biofilms in gram-negative bacteria: to disrupt or disperse? Medicinal Res Rev. 2020;40:1103–16.CAS 
    Article 

    Google Scholar 
    33.Chua SL, Liu Y, Yam JKH, Chen Y, Vejborg RM, Tan BGC, et al. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles. Nat Commun. 2014;5:4462.CAS 
    Article 

    Google Scholar 
    34.Liu SY, Leung MM-L, Fang JK-H, Chua SL. Engineering a microbial ‘trap and release’ mechanism for microplastics removal. Chem Eng J. 2021;404:127079.CAS 
    Article 

    Google Scholar  More

  • in

    Experience-dependent learning of behavioral laterality in the scale-eating cichlid Perissodus microlepis occurs during the early developmental stage

    1.Rogers, L. J. & Andrew, R. J. Comparative Vertebrate Lateralization (Cambridge University Press, 2002).
    Google Scholar 
    2.Bisazza, A. & Brown, C. Lateralization of cognitive functions in fish. In Fish Cognition and Behavior 2nd edn (eds Brown, C. et al.) 298–324 (Wiley-Blackwell, 2011).
    Google Scholar 
    3.Rogers, L. J., Vallortigara, G. & Andrew, R. J. Divided Brains: The Biology and Behaviour of Brain Asymmetries (Cambridge University Press, 2013).
    Google Scholar 
    4.Versace, E. & Vallortigara, G. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization. Front. Psychol. 6, 233 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    5.Vallortigara, G. & Versace, E. Laterality at the neural, cognitive, and behavioral levels. In APA Handbook of Comparative Psychology: Vol. 1. Basic Concepts, Methods, Neural Substrate, and Behavior (eds. Call, J., Burghardt, G.M., Pepperberg, I.M., Snowdon, C.T. & Zentall, T.) 557–577 (2017).6.Frasnellis, E., Vallortigara, G. & Rogers, L. J. Left-right asymmetries of behaviour and nervous system in invertebrates. Neurosci. Biobehav. Rev. 36, 1273–1291 (2012).
    Google Scholar 
    7.Byrne, R. A., Kuba, M. J. & Meisel, D. V. Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 68, 1107–1114 (2004).
    Google Scholar 
    8.Byrne, R. A., Kuba, M. J., Meisel, D. V., Griebel, U. & Mather, J. A. Octopus arm choice is strongly influenced by eye use. Behav. Brain Res. 172, 195–201 (2006).PubMed 

    Google Scholar 
    9.Lucky, N. S., Ihara, R., Yamaoka, K. & Hori, M. Behavioral laterality and morphological asymmetry in the Cuttlefish, Sepia lycidas. Zoolog. Sci. 29, 286–292 (2012).PubMed 

    Google Scholar 
    10.Stancher, G., Sovrano, V. A. & Vallortigara, G. Chapter 2-Motor asymmetries in fishes, amphibians, and reptiles. In Progress in Brain Research (eds Forrester, G. S. et al.) 33–56 (Elsevier, 2018).
    Google Scholar 
    11.Miletto Petrazzini, M. E., Sovrano, V. A., Vallortigara, G. & Messina, A. Brain and behavioral asymmetry: A lesson from fish. Front. Neuroanat. 14, 11 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    12.Roy, E. A., Bryden, P. & Cavill, S. Hand differences in pegboard performance through development. Brain Cogn. 53, 315–317 (2003).PubMed 

    Google Scholar 
    13.Michel, G. F., Tyler, A. N., Ferre, C. & Sheu, C. F. The manifestation of infant hand-use preferences when reaching for objects during the seven- to thirteen-month age period. Dev. Psychobiol. 48, 436–443 (2006).PubMed 

    Google Scholar 
    14.Porac, C. & Searleman, A. The effects of hand preference side and hand preference switch history on measures of psychological and physical well-being and cognitive performance in a sample of older adult right-and left-handers. Neuropsychologia 40, 2074–2083 (2002).PubMed 

    Google Scholar 
    15.Rogers, L. J. Light experience and asymmetry of brain function in chickens. Nature 297, 223–225 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Rogers, L. J. Development and function of lateralization in the avian brain. Brain Res. Bull. 76, 235–244 (2008).ADS 
    PubMed 

    Google Scholar 
    17.Rogers, L. J. Asymmetry of motor behavior and sensory perception: Which comes first?. Symmetry 12, 690 (2020).
    Google Scholar 
    18.Tang, A. C. & Verstynen, T. Early life environment modulates ‘handedness’ in rats. Behav. Brain Res. 131, 1–7 (2002).PubMed 

    Google Scholar 
    19.Bisazza, A., Cantalupo, C. & Vallortigara, G. Lateral asymmetries during escape behavior in a species of teleost fish (Jenynsia lineata). Physiol. Behav. 61, 31–35 (1997).CAS 
    PubMed 

    Google Scholar 
    20.Bisazza, A., Dadda, M. & Cantalupo, C. Further evidence for mirror-reversed laterality in lines of fish selected for leftward or rightward turning when facing a predator model. Behav. Brain Res. 156, 165–171 (2005).PubMed 

    Google Scholar 
    21.Izvekov, E. I. & Nepomnyashchikh, V. A. Laterality of the initial stage of escape response in roach (Rutilus rutilus) upon impact of alternating electric current. Biol. Bull. 35, 30–36 (2008).
    Google Scholar 
    22.Hata, H. & Hori, M. Inheritance patterns of morphological laterality in mouth opening of zebrafish, Danio rerio. Laterality 17, 741–754 (2012).PubMed 

    Google Scholar 
    23.Lee, H. J., Kusche, H. & Meyer, A. Handed foraging behavior in scale-eating Cichlid Fish: Its potential role in shaping morphological asymmetry. PLoS ONE 7, e44670 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Yasugi, M. & Hori, M. Lateralized behavior in the attacks of largemouth bass on Rhinogobius gobies corresponding to their morphological antisymmetry. J. Exp. Biol. 215, 2390–2398 (2012).PubMed 

    Google Scholar 
    25.Matsui, S., Takeuchi, Y. & Hori, M. Relation between morphological antisymmetry and behavioral laterality in a Poeciliid Fish. Zoolog. Sci. 30, 613–618 (2013).PubMed 

    Google Scholar 
    26.Takeuchi, Y. et al. Specialized movement and laterality of fin-biting behaviour in Genyochromis mento in Lake Malawi. J. Exp. Biol. 222, 191676 (2019).
    Google Scholar 
    27.Sorvano, V. A., Rainoldi, C., Bisazza, A. & Vallortigara, G. Roots of brain specializations: Preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav. Brain Res. 106, 175–180 (1999).CAS 
    PubMed 

    Google Scholar 
    28.Sovrano, V. A., Bisazza, A. & Vallortigara, G. Lateralization of response to social stimuli in fishes: A comparison between different methods and species. Physiol. Behav. 74, 237–244 (2001).CAS 
    PubMed 

    Google Scholar 
    29.Raffini, F. & Meyer, A. A comprehensive overview of the developmental basis and adaptive significance of a textbook polymorphism: head asymmetry in the cichlid fish Perissodus microlepis. Hydrobiologia 832, 65–84 (2019).
    Google Scholar 
    30.Berlinghieri, F., Panizzon, P., Penry-Williams, I. L. & Brown, C. Laterality and fish welfare-a review. Appl. Anim. Behav. Sci. 236, 105239 (2021).
    Google Scholar 
    31.Koblmüller, S., Egger, B., Sturmbauer, C. & Sefc, K. M. Evolutionary history of Lake Tanganyika’s scale-eating cichlid fishes. Mol. Phylogenet. Evol. 44, 1295–1305 (2007).PubMed 

    Google Scholar 
    32.Takeuchi, Y., Ochi, H., Kohda, M., Sinyinza, D. & Hori, M. A 20-year census of a rocky littoral fish community in Lake Tanganyika. Ecol. Freshw. Fish 19, 239–248 (2010).
    Google Scholar 
    33.Poll, M. Poissons Cichlidae. Resultats scientifiques, Exploration hydrobiologique du Lac Tanganyika. Inst. R. Sci. Nat. Belg. 3, 1–619 (1956).
    Google Scholar 
    34.Liem, K. & Stewart, D. Evolution of scale-eating cichlid fishes of Lake Tanganyika: a generic revision with a description of a new species. Bull. Mus. Comp. Zool. 147, 319–350 (1976).
    Google Scholar 
    35.Hori, M. Frequency-dependent natural-selection in the handedness of scale-eating cichlid fish. Science 260, 216–219 (1993).ADS 
    CAS 
    PubMed 

    Google Scholar 
    36.Takeuchi, Y., Hori, M. & Oda, Y. Lateralized kinematics of predation behavior in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 7, e29272 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hori, M., Ochi, H. & Kohda, M. Inheritance pattern of lateral dimorphism in two cichlids (a scale eater, Perissodus microlepis, and an herbivore, Neolamprologus moorii) in Lake Tanganyika. Zoolog. Sci. 24, 486–492 (2007).PubMed 

    Google Scholar 
    38.Raffini, F., Fruciano, C., Franchini, P. & Meyer, A. Towards understanding the genetic basis of mouth asymmetry in the scale-eating cichlid Perissodus microlepis. Mol. Ecol. 26, 77–91 (2017).CAS 
    PubMed 

    Google Scholar 
    39.Takeuchi, Y., Hori, M., Tada, S. & Oda, Y. Acquisition of lateralized predation behavior associated with development of mouth asymmetry in a Lake Tanganyika scale-eating cichlid fish. PLoS ONE 11, e0147476 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    40.Takeuchi, Y. & Oda, Y. Lateralized scale-eating behaviour of cichlid is acquired by learning to use the naturally stronger side. Sci. Rep. 7, 8984 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Brainard, M. S. & Doupe, A. J. What songbirds teach us about learning. Nature 417, 351–358 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Nelson, D. A., Marler, P. & Palleroni, A. A comparative approach to vocal learning: Intraspecific variation in the learning process. Anim. Behav. 50, 83–97 (1995).
    Google Scholar 
    43.Chaiken, M., Böhner, J. & Marler, P. Song acquisition in European starlings, Sturnus vulgaris: a comparison of the songs of live-tutored, tape-tutored, untutored, and wild-caught males. Anim. Behav. 46, 1079–1090 (1993).
    Google Scholar 
    44.Todt, D. & Böhner, J. Former experience can modify social selectivity during song learning in the nightingale (Luscinia megarhynchos). Ethology 97, 169–176 (1994).
    Google Scholar 
    45.Schneirla, T.C. The concept of development in comparative psychology. Concept Dev. 78–108 (1957).46.Alcock, J. Animal Behavior: An Evolutionary Approach (Sinauer Associates, 2001).
    Google Scholar 
    47.Nshombo, M., Yanagisawa, Y. & Nagoshi, M. Scale-eating in Perissodus microlepis (Cichlidae) and change of its food-habits with growth. Jpn. J. Ichthyol. 32, 66–73 (1985).
    Google Scholar 
    48.Zar, J. H. Biostatistical Analysis (Pearson Education, 1999).
    Google Scholar 
    49.Morishita, H. & Hensch, T. K. Critical period revisited: impact on vision. Curr. Opin. Neurobiol. 18, 101–107 (2008).CAS 
    PubMed 

    Google Scholar 
    50.Hess, E. H. Imprinting: Early Experience and the Developmental Psychobiology of Attachment (Van Norstrand, 1973).
    Google Scholar 
    51.Scott, J. P. Critical periods (Dowden, Hutchinson & Ross, 1978).
    Google Scholar 
    52.Kroodsma, D. Ontogeny of bird song. In Behavioral Development, 518–532 (Cambridge University Press, 1981).53.Rosa-Salva, O. et al. Sensitive periods for social development: Interactions between predisposed and learned mechanisms. Cognition 213, 104552 (2021).PubMed 

    Google Scholar 
    54.Vallortigara, G. Born Knowing: Imprinting and the Origins of Knowledge (MIT Press, 2021).
    Google Scholar 
    55.Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).CAS 
    PubMed 

    Google Scholar 
    56.Penfield, W. & Roberts, L. Speech and Brain Mechanisms (Princeton University Press, 2014).
    Google Scholar 
    57.Rauschecker, J. P. & Singer, W. The effects of early visual experience on the cat’s visual cortex and their possible explanation by Hebb synapses. J. Physiol. 310, 215–239 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Pasternak, T. & Leinen, L. Pattern and motion vision in cats with selective loss of cortical directional selectivity. J. Neurosci. 6, 938–945 (1986).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Rauschecker, J. P. & Schrader, W. Effects of monocular strobe rearing on kitten striate cortex. Exp. Brain Res. 68, 525–532 (1987).CAS 
    PubMed 

    Google Scholar 
    60.Sengpiel, F., Stawinski, P. & Bonhoeffer, T. Influence of experience on orientation maps in cat visual cortex. Nat. Neurosci. 2, 727–732 (1999).CAS 
    PubMed 

    Google Scholar 
    61.Marler, P. R. & Slabbekoorn, H. Nature’s Music: The Science of Birdsong (Elsevier, 2004).
    Google Scholar 
    62.Zann, R. Vocal learning in wild and domesticated zebra finches: signature cues for kin recognition or epiphenomena? In Social Influences on Vocal Development (eds Snowdon, C. T. & Hausberger, M.) 85–97 (Cambridge University Press, 1997).
    Google Scholar 
    63.Curtiss, S. The Case of Genie, A Modern Day ‘Wild Child’ (Academic Press, 1977).
    Google Scholar 
    64.Pinker, S. The Language Instinct: The New Science of Language and Mind Vol. 7529 (Penguin, 1995).
    Google Scholar 
    65.Lenneberg, E. H. The biological foundations of language. Hosp. Pract. 2, 59–67 (1967).
    Google Scholar 
    66.Patkowski, M. S. The sensitive period for the acquisition of syntax in a second language 1. Lang Learn. 30, 449–468 (1980).
    Google Scholar 
    67.Johnson, J. S. & Newport, E. L. Critical period effects in second language learning: The influence of maturational state on the acquisition of English as a second language. Cogn. Psychol. 21, 60–99 (1989).CAS 
    PubMed 

    Google Scholar 
    68.Carroll, S. B., Greinier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Science, 2001).
    Google Scholar 
    69.Evidence from genes to behavior. Wullimann, MF. & Mueller T. Teleostean and mammalian forebrains contrasted. J. Comp. Neurol. 475, 143–162 (2004).
    Google Scholar 
    70.Salas, C. et al. Neuropsychology of learning and memory in teleost fish. Zebrafish 3, 157–171 (2006).PubMed 

    Google Scholar 
    71.Mills, E. L., Widzowski, D. V. & Jones, S. R. Food conditioning and prey selection by young yellow perch (Perca flavescens). Can. J. Fish. Aquat. Sci. 44, 549–555 (1987).
    Google Scholar 
    72.Warburton, K. Learning of foraging skills by fish. Fish Fish. 4, 203–215 (2003).
    Google Scholar 
    73.Lee, H. J. et al. Lateralized feeding behavior is associated with asymmetrical neuroanatomy and lateralized gene expressions in the brain in scale-eating cichlid fish. Genome Biol. Evol. 9, 3122–3136 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Takeuchi, Y., Ishikawa, A., Oda, Y. & Kitano, J. Lateralized expression of left-right axis formation genes is shared by adult brains of lefty and righty scale-eating cichlids. Comp. Biochem. Physiol. D 28, 99–106 (2018).CAS 

    Google Scholar 
    75.Raffini, F., Fruciano, C. & Meyer, A. Morphological and genetic correlates in the left–right asymmetric scale-eating cichlid fish of Lake Tanganyika. Biol. J. Linn. Soc. 124, 67–84 (2018).
    Google Scholar 
    76.Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Cartner, S. C. et al. The Zebrafish in Biomedical Research: Biology, Husbandry, Diseases, and Research Applications (Academic Press, 2020).
    Google Scholar 
    78.Takahashi, R., Moriwaki, T. & Hori, M. Foraging behaviour and functional morphology of two scale-eating cichlids from Lake Tanganyika. J. Fish Biol. 70, 1458–1469 (2007).
    Google Scholar 
    79.Sazima, I. Scale-eating in characoids and other fishes. Environ. Biol. Fish. 9, 87–101 (1983).
    Google Scholar 
    80.Webb, P. W. Acceleration performance of rainbow trout Salmo gairdneri and green sunfish Lepomis cyanellus. J. Exp. Biol. 63, 451–465 (1975).
    Google Scholar 
    81.Wöhl, S. & Schuster, S. The predictive start of hunting archer fish: a flexible and precise motor pattern performed with the kinematics of an escape C-start. J. Exp. Biol. 210, 311–324 (2007).PubMed 

    Google Scholar 
    82.Vallortigara, G. & Rogers, L. J. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization. Behav. Brain Sci. 28, 575–589 (2005) (discussion 589-633).PubMed 

    Google Scholar  More