Air temperature drives the evolution of mid-infrared optical properties of butterfly wings
1.Kinoshita, S., Structural Colors in the Realm of Nature (World Scientific, 2008).2.Sun, J., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Adv. 3, 14862–14889 (2013).CAS
ADS
Google Scholar
3.Whitney, H. M. et al. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323, 130–133 (2009).CAS
PubMed
ADS
Google Scholar
4.Whitney, H. M., Kolle, M., Alvarez-Fernandez, R., Steiner, U. & Glover, B. J. Contributions of iridescence to floral patterning. Commun. Integr. Biol. 2, 230–232 (2009).PubMed
PubMed Central
Google Scholar
5.Moyroud, E. et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550, 469–474 (2017).CAS
PubMed
ADS
Google Scholar
6.Mason, C. W. Structural colors in feathers. II. J. Phys. Chem. 27, 401–448 (2005).
Google Scholar
7.Mason, C. W. Structural colors in insects. III. J. Phys. Chem. 31, 1856–1872 (2005).
Google Scholar
8.Roberts, N. W., Marshall, N. J. & Cronin, T. W. High levels of reflectivity and pointillist structural color in fish, cephalopods, and beetles. Proc. Natl. Acad. Sci. 109, E3387–E3387 (2012).CAS
PubMed
PubMed Central
ADS
Google Scholar
9.Zi, J. et al. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. 100, 12576–12578 (2003).CAS
PubMed
PubMed Central
ADS
Google Scholar
10.McCoy, D. E., Feo, T., Harvey, T. A. & Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1–8 (2018).CAS
PubMed
PubMed Central
ADS
Google Scholar
11.Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 1–7 (2015).
Google Scholar
12.Cooper, K. M., Hanlon, R. T. & Budelmann, B. U. Physiological color change in squid iridophores. Cell Tissue Res. 259, 15–24 (1990).CAS
PubMed
Google Scholar
13.Glover, B. J. & Whitney, H. M. Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Ann. Bot. 105, 505–511 (2010).PubMed
PubMed Central
Google Scholar
14.Shi, N. N. et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).CAS
PubMed
ADS
Google Scholar
15.Preciado, J. A. et al. Radiative properties of polar bear hair. Am. Soc. Mech. Eng. Bioeng. Div. 54, 57–58 (2002).
Google Scholar
16.Bosi, S. G., Hayes, J., Large, M. C. J. & Poladian, L. Color, iridescence, and thermoregulation in Lepidoptera. Appl. Opt. 47, 5235–5241 (2008).PubMed
ADS
Google Scholar
17.Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma-Tokyo 17, 103–121 (2002).
Google Scholar
18.Tabata, H., Kumazawa, K., Funakawa, M., Takimoto, J. I. & Akimoto, M. Microstructures and optical properties of scales of butterfly wings. Opt. Rev. 3, 139–145 (1996).
Google Scholar
19.Krishna, A. et al. Infrared optical and thermal properties of microstructures in butterfly wings. Proc. Natl. Acad. Sci. USA 117, 1566–1572 (2020).CAS
PubMed
PubMed Central
ADS
Google Scholar
20.Tsai, C. C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 1–14 (2020).ADS
Google Scholar
21.Wilts, B. D., Vey, A. J. M., Briscoe, A. D. & Stavenga, D. G. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol. Biol. 17, 1–12 (2017).
Google Scholar
22.Berthier, S. Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: A remarkable example of temperature auto-regulation. Appl. Phys. A Mater. Sci. Process. 80, 1397–1400 (2005).CAS
ADS
Google Scholar
23.Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).CAS
PubMed
ADS
Google Scholar
24.Siddique, R. H., Diewald, S., Leuthold, J. & Hölscher, H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies. Opt. Express 21, 14351–14361 (2013).PubMed
ADS
Google Scholar
25.Steindorfer, M. A., Schmidt, V., Belegratis, M., Stadlober, B. & Krenn, J. R. Detailed simulation of structural color generation inspired by the Morpho butterfly. Opt. Express 20, 21485–21494 (2012).PubMed
ADS
Google Scholar
26.Munro, J. T. et al. Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proc. R. Soc. B Biol. Sci. 286, 20190234 (2019).
Google Scholar
27.Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 2006).28.DeWitt, D. P., Incropera, F. P. “Physics of thermal radiation” in Theory and Practice of Radiation Thermometry, (1988), pp. 19–89.29.Howell, J. R., Menguc, M. P., Siegel, R. Thermal Radiation Heat Transfer (CRC Press, 2016).30.Lord, S. D. A new software tool for computing earth’s atmospheric transmission of near- and far-infrared radiation. NASA Tech. Memo. 103957 (1992).31.Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).CAS
PubMed
ADS
Google Scholar
32.Krishna, A. & Lee, J. Morphology-driven emissivity of microscale tree-like structures for radiative thermal management. Nanoscale Microscale Thermophys. Eng. 22, 124–136 (2018).CAS
ADS
Google Scholar
33.Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).CAS
PubMed
ADS
Google Scholar
34.Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 623, 1–15 (2019).
Google Scholar
35.Xu, C., Stiubianu, G. T. & Gorodetsky, A. A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018).CAS
PubMed
ADS
Google Scholar
36.Xie, D. et al. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles: Goliathus goliatus. Soft Matter 15, 4294–4300 (2019).CAS
PubMed
ADS
Google Scholar
37.Heinrich, B. Thermoregulation in endothermic insects. Science 185, 747–756 (1974).CAS
PubMed
ADS
Google Scholar
38.Kingsolver, J. G. Thermoregulation and flight in Colias butterflies: elevational patterns and mechanistic limitations. Ecology 64, 534–545 (1983).
Google Scholar
39.Rawlins, J. E. Thermoregulation by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). Ecology 61, 345–357 (1980).
Google Scholar
40.Clench, H. K. Behavioral thermoregulation in butterflies. Ecology 47, 1021–1034 (1966).
Google Scholar
41.Bonebrake, T. C., Boggs, C. L., Stamberger, J. A., Deutsch, C. A. & Ehrlich, P. R. From global change to a butterfly flapping: Biophysics and behaviour affect tropical climate change impacts. Proc. R. Soc. B Biol. Sci. 281, 20141264 (2014).
Google Scholar
42.Nève, G. & Hall, C. Variation of thorax flight temperature among twenty Australian butterflies (Lepidoptera: Papilionidae, Nymphalidae, Pieridae, Hesperiidae, Lycaenidae). Eur. J. Entomol. 113, 571–578 (2016).
Google Scholar
43.MacLean, H. J., Higgins, J. K., Buckley, L. B. & Kingsolver, J. G. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies. Conserv. Physiol. 4, 1 (2016).
Google Scholar
44.Tsai, C. C., et al., Butterflies regulate wing temperatures using radiative cooling in 2017 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2017), p. 9.45.Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 44, L48–L50 (2005).CAS
ADS
Google Scholar
46.Wilts, B. D., Giraldo, M. A. & Stavenga, D. G. Unique wing scale photonics of male Rajah Brooke’s birdwing butterflies. Front. Zool. 13, 1–12 (2016).
Google Scholar
47.De Keyser, R., Breuker, C. J., Hails, R. S., Dennis, R. L. H. & Shreeve, T. G. Why small is beautiful: Wing colour is free from thermoregulatory constraint in the small lycaenid butterfly, Polyommatus icarus. PLoS One 10, e0122663 (2015).
Google Scholar
48.Biró, L. P. et al., Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair. Phys. Rev. E Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 67, 7 (2003).49.Sala-Casanovas, M., Krishna, A., Yu, Z. & Lee, J. Bio-inspired stretchable selective emitters based on corrugated nickel for personal thermal management. Nanoscale Microscale Thermophys. Eng. 23, 173–187 (2019).CAS
ADS
Google Scholar
50.Phan, L. et al. Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621–5625 (2013).CAS
PubMed
Google Scholar
51.Pris, A. D. et al. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat. Photonics 6, 564–564 (2012).CAS
ADS
Google Scholar
52.Krishna, A. et al. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 5086–5092 (2019).CAS
PubMed
ADS
Google Scholar
53.Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811 (1981).ADS
Google Scholar
54.Moharam, M. G. Coupled-wave analysis of two-dimensional dielectric gratings in Holographic Optics: Design and Applications, (1988), p. 8.55.Peng, S. & Morris, G. M. Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. J. Opt. Soc. Am. A 12, 1087 (1995).ADS
Google Scholar
56.Moharam, M. G., Gaylord, T. K., Grann, E. B. & Pommet, D. A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068 (1995).ADS
Google Scholar
57.Taflove, A., Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).58.Fang, J. et al. Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles. Appl. Surf. Sci. 427, 807–812 (2018).CAS
ADS
Google Scholar
59.Wilts, B. D., Leertouwer, H. L. & Stavenga, D. G. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J. R. Soc. Interface 6, S185–S192 (2009).PubMed
Google Scholar
60.Aideo, S. N., Mohanta, D. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation. J. Phys: Confer. Ser. 765, 012019 (2016).61.Guan, Y. et al. Ordering of hollow Ag-Au nanospheres with butterfly wings as a biotemplate. Sci. Rep. 8, 1–7 (2018).
Google Scholar
62.Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).PubMed
Google Scholar
63.Wilts, B. D., Pirih, P., Arikawa, K. & Stavenga, D. G. Shiny wing scales cause spec(tac)ular camouflage of the angled sunbeam butterfly, Curetis acuta. Biol. J. Linn. Soc. 109, 279–289 (2013).
Google Scholar
64.Wu, L., Han, Z., Qiu, Z., Guan, H. & Ren, L. The microstructures of butterfly wing scales in northeast of China. J. Bionic Eng. 4, 47–52 (2007).CAS
Google Scholar
65.Azofeifa, D. E., Arguedas, H. J. & Vargas, W. E. Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Opt. Mater. (Amst) 35, 175–183 (2012).CAS
ADS
Google Scholar
66.Vargas, W. E., Azofeifa, D. E. & Arguedas, H. J. Índices de refracción de la quitina, el quitosano y el ácido úrico con aplicación en análisis de color estructural. Opt. Pura y Apl. 46, 55–72 (2013).
Google Scholar
67.Herman, A., Vandenbem, C., Deparis, O., Simonis, P. & Vigneron, J. P. Nanoarchitecture in the black wings of Troides magellanus : A natural case of absorption enhancement in photonic materials. Nanophotonic Mater. VIII 8094, 80940H (2011).
Google Scholar
68.Yoshioka, S. & Kinoshita, S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. Biol. Sci. 271, 581–587 (2004).PubMed
PubMed Central
Google Scholar
69.Catalanotti, S. et al. The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975).ADS
Google Scholar
70.Long Kou, J., Jurado, Z., Chen, Z., Fan, S. & Minnich, A. J. Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4, 626–630 (2017).
Google Scholar
71.Wasserthal, L. T. The role of butterfly wings in regulation of body temperature. J. Insect Physiol. 21, 1921–1930 (1975).
Google Scholar
72.Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ADS
Google Scholar
73.New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).
Google Scholar
74.Weather Spark Weather Data. https://weatherspark.com (July 10, 2019).75.Weather Underground Historical Weather. https://www.wunderground.com/history/ (August 2, 2018).76.Liu, F. et al. Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus. Opt. Commun. 284, 2376–2381 (2011).CAS
ADS
Google Scholar
77.Chen, T., Cong, Q., Qi, Y., Jin, J. & Choy, K. L. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces. PLoS ONE 13, e0188775 (2018).PubMed
PubMed Central
Google Scholar
78.Fang, Y., Sun, G., Wang, T. Q., Cong, Q. & Ren, L. Q. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing. Chin. Sci. Bull. 52, 711–716 (2007).
Google Scholar
79.Garland, T., Harvey, P. H. & Ives, A. R. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32 (1992).
Google Scholar
80.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
Google Scholar
81.Felsenstein, J. Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst. 19, 445–471 (1988).
Google Scholar
82.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778.e5 (2018).CAS
PubMed
Google Scholar
83.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. 2010. Version 2, 73 (2008).
Google Scholar
84.Cai, W., Shalaev, V. M. Optical Metamaterials, 10th Ed. (Springer, 2010).85.Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).CAS
PubMed
ADS
Google Scholar
86.Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 1–5 (2016).
Google Scholar
87.Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).CAS
PubMed
ADS
Google Scholar
88.Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014).CAS
PubMed
ADS
Google Scholar
89.Quintiere, J. Radiative characteristics of fire fighters’ coat fabrics. Fire Technol. 10, 153–161 (1974).CAS
Google Scholar
90.Energy Sector Management Assistance Program (ESMAP). Global Solar Atlas 2.1: Technical Report. https://globalsolaratlas.info (World Bank, December 2019).91.Yoshioka, S. & Kinoshita, S. Direct determination of the refractive index of natural multilayer systems. Phys. Rev. E 83, 051917 (2011).ADS
Google Scholar
92.Leertouwer, H. L., Wilts, B. D. & Stavenga, D. G. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Opt. Express 19, 24061–24066 (2011).CAS
PubMed
ADS
Google Scholar More