More stories

  • in

    Air temperature drives the evolution of mid-infrared optical properties of butterfly wings

    1.Kinoshita, S., Structural Colors in the Realm of Nature (World Scientific, 2008).2.Sun, J., Bhushan, B. & Tong, J. Structural coloration in nature. RSC Adv. 3, 14862–14889 (2013).CAS 
    ADS 

    Google Scholar 
    3.Whitney, H. M. et al. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323, 130–133 (2009).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Whitney, H. M., Kolle, M., Alvarez-Fernandez, R., Steiner, U. & Glover, B. J. Contributions of iridescence to floral patterning. Commun. Integr. Biol. 2, 230–232 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    5.Moyroud, E. et al. Disorder in convergent floral nanostructures enhances signalling to bees. Nature 550, 469–474 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    6.Mason, C. W. Structural colors in feathers. II. J. Phys. Chem. 27, 401–448 (2005).
    Google Scholar 
    7.Mason, C. W. Structural colors in insects. III. J. Phys. Chem. 31, 1856–1872 (2005).
    Google Scholar 
    8.Roberts, N. W., Marshall, N. J. & Cronin, T. W. High levels of reflectivity and pointillist structural color in fish, cephalopods, and beetles. Proc. Natl. Acad. Sci. 109, E3387–E3387 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    9.Zi, J. et al. Coloration strategies in peacock feathers. Proc. Natl. Acad. Sci. 100, 12576–12578 (2003).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    10.McCoy, D. E., Feo, T., Harvey, T. A. & Prum, R. O. Structural absorption by barbule microstructures of super black bird of paradise feathers. Nat. Commun. 9, 1–8 (2018).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    11.Teyssier, J., Saenko, S. V., Van Der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 1–7 (2015).
    Google Scholar 
    12.Cooper, K. M., Hanlon, R. T. & Budelmann, B. U. Physiological color change in squid iridophores. Cell Tissue Res. 259, 15–24 (1990).CAS 
    PubMed 

    Google Scholar 
    13.Glover, B. J. & Whitney, H. M. Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Ann. Bot. 105, 505–511 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    14.Shi, N. N. et al. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    15.Preciado, J. A. et al. Radiative properties of polar bear hair. Am. Soc. Mech. Eng. Bioeng. Div. 54, 57–58 (2002).
    Google Scholar 
    16.Bosi, S. G., Hayes, J., Large, M. C. J. & Poladian, L. Color, iridescence, and thermoregulation in Lepidoptera. Appl. Opt. 47, 5235–5241 (2008).PubMed 
    ADS 

    Google Scholar 
    17.Kinoshita, S., Yoshioka, S., Fujii, Y. & Okamoto, N. Photophysics of structural color in the Morpho butterflies. Forma-Tokyo 17, 103–121 (2002).
    Google Scholar 
    18.Tabata, H., Kumazawa, K., Funakawa, M., Takimoto, J. I. & Akimoto, M. Microstructures and optical properties of scales of butterfly wings. Opt. Rev. 3, 139–145 (1996).
    Google Scholar 
    19.Krishna, A. et al. Infrared optical and thermal properties of microstructures in butterfly wings. Proc. Natl. Acad. Sci. USA 117, 1566–1572 (2020).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Tsai, C. C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 1–14 (2020).ADS 

    Google Scholar 
    21.Wilts, B. D., Vey, A. J. M., Briscoe, A. D. & Stavenga, D. G. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol. Biol. 17, 1–12 (2017).
    Google Scholar 
    22.Berthier, S. Thermoregulation and spectral selectivity of the tropical butterfly Prepona meander: A remarkable example of temperature auto-regulation. Appl. Phys. A Mater. Sci. Process. 80, 1397–1400 (2005).CAS 
    ADS 

    Google Scholar 
    23.Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    24.Siddique, R. H., Diewald, S., Leuthold, J. & Hölscher, H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies. Opt. Express 21, 14351–14361 (2013).PubMed 
    ADS 

    Google Scholar 
    25.Steindorfer, M. A., Schmidt, V., Belegratis, M., Stadlober, B. & Krenn, J. R. Detailed simulation of structural color generation inspired by the Morpho butterfly. Opt. Express 20, 21485–21494 (2012).PubMed 
    ADS 

    Google Scholar 
    26.Munro, J. T. et al. Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proc. R. Soc. B Biol. Sci. 286, 20190234 (2019).
    Google Scholar 
    27.Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 2006).28.DeWitt, D. P., Incropera, F. P. “Physics of thermal radiation” in Theory and Practice of Radiation Thermometry, (1988), pp. 19–89.29.Howell, J. R., Menguc, M. P., Siegel, R. Thermal Radiation Heat Transfer (CRC Press, 2016).30.Lord, S. D. A new software tool for computing earth’s atmospheric transmission of near- and far-infrared radiation. NASA Tech. Memo. 103957 (1992).31.Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    32.Krishna, A. & Lee, J. Morphology-driven emissivity of microscale tree-like structures for radiative thermal management. Nanoscale Microscale Thermophys. Eng. 22, 124–136 (2018).CAS 
    ADS 

    Google Scholar 
    33.Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    34.Zhang, X. A. et al. Dynamic gating of infrared radiation in a textile. Science 623, 1–15 (2019).
    Google Scholar 
    35.Xu, C., Stiubianu, G. T. & Gorodetsky, A. A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 359, 1495–1500 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    36.Xie, D. et al. Broadband omnidirectional light reflection and radiative heat dissipation in white beetles: Goliathus goliatus. Soft Matter 15, 4294–4300 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    37.Heinrich, B. Thermoregulation in endothermic insects. Science 185, 747–756 (1974).CAS 
    PubMed 
    ADS 

    Google Scholar 
    38.Kingsolver, J. G. Thermoregulation and flight in Colias butterflies: elevational patterns and mechanistic limitations. Ecology 64, 534–545 (1983).
    Google Scholar 
    39.Rawlins, J. E. Thermoregulation by the black swallowtail butterfly, Papilio polyxenes (Lepidoptera: Papilionidae). Ecology 61, 345–357 (1980).
    Google Scholar 
    40.Clench, H. K. Behavioral thermoregulation in butterflies. Ecology 47, 1021–1034 (1966).
    Google Scholar 
    41.Bonebrake, T. C., Boggs, C. L., Stamberger, J. A., Deutsch, C. A. & Ehrlich, P. R. From global change to a butterfly flapping: Biophysics and behaviour affect tropical climate change impacts. Proc. R. Soc. B Biol. Sci. 281, 20141264 (2014).
    Google Scholar 
    42.Nève, G. & Hall, C. Variation of thorax flight temperature among twenty Australian butterflies (Lepidoptera: Papilionidae, Nymphalidae, Pieridae, Hesperiidae, Lycaenidae). Eur. J. Entomol. 113, 571–578 (2016).
    Google Scholar 
    43.MacLean, H. J., Higgins, J. K., Buckley, L. B. & Kingsolver, J. G. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies. Conserv. Physiol. 4, 1 (2016).
    Google Scholar 
    44.Tsai, C. C., et al., Butterflies regulate wing temperatures using radiative cooling in 2017 Conference on Lasers and Electro-Optics (CLEO), (IEEE, 2017), p. 9.45.Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. & Matsui, S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn. J. Appl. Phys. 44, L48–L50 (2005).CAS 
    ADS 

    Google Scholar 
    46.Wilts, B. D., Giraldo, M. A. & Stavenga, D. G. Unique wing scale photonics of male Rajah Brooke’s birdwing butterflies. Front. Zool. 13, 1–12 (2016).
    Google Scholar 
    47.De Keyser, R., Breuker, C. J., Hails, R. S., Dennis, R. L. H. & Shreeve, T. G. Why small is beautiful: Wing colour is free from thermoregulatory constraint in the small lycaenid butterfly, Polyommatus icarus. PLoS One 10, e0122663 (2015).
    Google Scholar 
    48.Biró, L. P. et al., Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair. Phys. Rev. E Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 67, 7 (2003).49.Sala-Casanovas, M., Krishna, A., Yu, Z. & Lee, J. Bio-inspired stretchable selective emitters based on corrugated nickel for personal thermal management. Nanoscale Microscale Thermophys. Eng. 23, 173–187 (2019).CAS 
    ADS 

    Google Scholar 
    50.Phan, L. et al. Reconfigurable infrared camouflage coatings from a cephalopod protein. Adv. Mater. 25, 5621–5625 (2013).CAS 
    PubMed 

    Google Scholar 
    51.Pris, A. D. et al. Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures. Nat. Photonics 6, 564–564 (2012).CAS 
    ADS 

    Google Scholar 
    52.Krishna, A. et al. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 5086–5092 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    53.Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Opt. Soc. Am. 71, 811 (1981).ADS 

    Google Scholar 
    54.Moharam, M. G. Coupled-wave analysis of two-dimensional dielectric gratings in Holographic Optics: Design and Applications, (1988), p. 8.55.Peng, S. & Morris, G. M. Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings. J. Opt. Soc. Am. A 12, 1087 (1995).ADS 

    Google Scholar 
    56.Moharam, M. G., Gaylord, T. K., Grann, E. B. & Pommet, D. A. Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. Opt. Soc. Am. A 12, 1068 (1995).ADS 

    Google Scholar 
    57.Taflove, A., Hagness, S. C. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).58.Fang, J. et al. Enhanced photocatalytic hydrogen production on three-dimensional gold butterfly wing scales/CdS nanoparticles. Appl. Surf. Sci. 427, 807–812 (2018).CAS 
    ADS 

    Google Scholar 
    59.Wilts, B. D., Leertouwer, H. L. & Stavenga, D. G. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. J. R. Soc. Interface 6, S185–S192 (2009).PubMed 

    Google Scholar 
    60.Aideo, S. N., Mohanta, D. Investigation of manifestation of optical properties of butterfly wings with nanoscale zinc oxide incorporation. J. Phys: Confer. Ser. 765, 012019 (2016).61.Guan, Y. et al. Ordering of hollow Ag-Au nanospheres with butterfly wings as a biotemplate. Sci. Rep. 8, 1–7 (2018).
    Google Scholar 
    62.Simonsen, T. J. et al. Phylogenetics and divergence times of Papilioninae (Lepidoptera) with special reference to the enigmatic genera Teinopalpus and Meandrusa. Cladistics 27, 113–137 (2011).PubMed 

    Google Scholar 
    63.Wilts, B. D., Pirih, P., Arikawa, K. & Stavenga, D. G. Shiny wing scales cause spec(tac)ular camouflage of the angled sunbeam butterfly, Curetis acuta. Biol. J. Linn. Soc. 109, 279–289 (2013).
    Google Scholar 
    64.Wu, L., Han, Z., Qiu, Z., Guan, H. & Ren, L. The microstructures of butterfly wing scales in northeast of China. J. Bionic Eng. 4, 47–52 (2007).CAS 

    Google Scholar 
    65.Azofeifa, D. E., Arguedas, H. J. & Vargas, W. E. Optical properties of chitin and chitosan biopolymers with application to structural color analysis. Opt. Mater. (Amst) 35, 175–183 (2012).CAS 
    ADS 

    Google Scholar 
    66.Vargas, W. E., Azofeifa, D. E. & Arguedas, H. J. Índices de refracción de la quitina, el quitosano y el ácido úrico con aplicación en análisis de color estructural. Opt. Pura y Apl. 46, 55–72 (2013).
    Google Scholar 
    67.Herman, A., Vandenbem, C., Deparis, O., Simonis, P. & Vigneron, J. P. Nanoarchitecture in the black wings of Troides magellanus : A natural case of absorption enhancement in photonic materials. Nanophotonic Mater. VIII 8094, 80940H (2011).
    Google Scholar 
    68.Yoshioka, S. & Kinoshita, S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. Biol. Sci. 271, 581–587 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    69.Catalanotti, S. et al. The radiative cooling of selective surfaces. Sol. Energy 17, 83–89 (1975).ADS 

    Google Scholar 
    70.Long Kou, J., Jurado, Z., Chen, Z., Fan, S. & Minnich, A. J. Daytime radiative cooling using near-black infrared emitters. ACS Photonics 4, 626–630 (2017).
    Google Scholar 
    71.Wasserthal, L. T. The role of butterfly wings in regulation of body temperature. J. Insect Physiol. 21, 1921–1930 (1975).
    Google Scholar 
    72.Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).ADS 

    Google Scholar 
    73.New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).
    Google Scholar 
    74.Weather Spark Weather Data. https://weatherspark.com (July 10, 2019).75.Weather Underground Historical Weather. https://www.wunderground.com/history/ (August 2, 2018).76.Liu, F. et al. Replication of homologous optical and hydrophobic features by templating wings of butterflies Morpho menelaus. Opt. Commun. 284, 2376–2381 (2011).CAS 
    ADS 

    Google Scholar 
    77.Chen, T., Cong, Q., Qi, Y., Jin, J. & Choy, K. L. Hydrophobic durability characteristics of butterfly wing surface after freezing cycles towards the design of nature inspired anti-icing surfaces. PLoS ONE 13, e0188775 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    78.Fang, Y., Sun, G., Wang, T. Q., Cong, Q. & Ren, L. Q. Hydrophobicity mechanism of non-smooth pattern on surface of butterfly wing. Chin. Sci. Bull. 52, 711–716 (2007).
    Google Scholar 
    79.Garland, T., Harvey, P. H. & Ives, A. R. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32 (1992).
    Google Scholar 
    80.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).
    Google Scholar 
    81.Felsenstein, J. Phylogenies and quantitative characters. Annu. Rev. Ecol. Syst. 19, 445–471 (1988).
    Google Scholar 
    82.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778.e5 (2018).CAS 
    PubMed 

    Google Scholar 
    83.Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. 2010. Version 2, 73 (2008).
    Google Scholar 
    84.Cai, W., Shalaev, V. M. Optical Metamaterials, 10th Ed. (Springer, 2010).85.Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    86.Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day-night cycle. Nat. Commun. 7, 1–5 (2016).
    Google Scholar 
    87.Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    88.Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    89.Quintiere, J. Radiative characteristics of fire fighters’ coat fabrics. Fire Technol. 10, 153–161 (1974).CAS 

    Google Scholar 
    90.Energy Sector Management Assistance Program (ESMAP). Global Solar Atlas 2.1: Technical Report. https://globalsolaratlas.info (World Bank, December 2019).91.Yoshioka, S. & Kinoshita, S. Direct determination of the refractive index of natural multilayer systems. Phys. Rev. E 83, 051917 (2011).ADS 

    Google Scholar 
    92.Leertouwer, H. L., Wilts, B. D. & Stavenga, D. G. Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy. Opt. Express 19, 24061–24066 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    Longitudinal monitoring in Cambodia suggests higher circulation of alpha and betacoronaviruses in juvenile and immature bats of three species

    1.Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).CAS 

    Google Scholar 
    3.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Woo, P. C. Y. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Wong, A. C. P., Li, X., Lau, S. K. P. & Woo, P. C. Y. Global epidemiology of bat coronaviruses. Viruses 11, 174 (2019).CAS 
    PubMed Central 

    Google Scholar 
    6.Lacroix, A. et al. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infect. Genet. Evol. 48, 10–18 (2017).CAS 
    PubMed 

    Google Scholar 
    7.Tsuda, S. et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch. Virol. 157, 2349–2355 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Han, Y. et al. Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Front. Microbiol. 10, 20 (2019).
    Google Scholar 
    9.Xu, L. et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Chen, Y.-N. et al. Detection of the severe acute respiratory syndrome-related coronavirus and alphacoronavirus in the bat population of Taiwan. Zoonoses Public Health 63, 608–615 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Wacharapluesadee, S. et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1351 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Drexler, J. F. et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Amman, B. R. et al. Seasonal pulses of marburg virus circulation in Juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 8, 25 (2012).
    Google Scholar 
    15.Peel, A. J. et al. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proc. R. Soc. Lond. B Biol. Sci. 281, 20132962 (2014).
    Google Scholar 
    16.Hayman, D. T. S. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142591 (2015).
    Google Scholar 
    17.Gloza-Rausch, F. et al. Detection and prevalence patterns of Group I Coronaviruses in Bats, Northern Germany. Emerg. Infect. Dis. 14, 626–631 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    18.Annan, A. et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    19.Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, 25 (2017).
    Google Scholar 
    20.Montecino-Latorre, D. et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Health Outlook 2, 2 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    21.Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    23.Wacharapluesadee, S. et al. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: Evidence for seasonal preference in disease transmission. Vector-Borne Zoonot. Dis. 10, 183–190 (2010).
    Google Scholar 
    24.Cappelle, J. et al. Nipah virus circulation at human-bat interfaces, Cambodia. Bull. World Health Organ. 98, 539–547 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Thavry, H., Cappelle, J., Bumrungsri, S., Thona, L. & Furey, N. M. The diet of the cave nectar bat (#Eonycteris spelaea# Dobson) suggests it pollinates economically and ecologically significant plants in Southern Cambodia. Zool. Stud. 56, 25 (2017).
    Google Scholar 
    26.Lim, T., Cappelle, J., Hoem, T. & Furey, N. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?. PLoS One 13, e0196554 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Sikes, R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    28.Anthony, E. L. P. Age determination in bats. In Ecological and Behavioral Methods for the Study of Bats 47–58 (Smithsonian Press, 1988).
    Google Scholar 
    29.Racey, P. A. Reproductive assessment. In Behavioural and Ecological Methods for the Study of Bats 249–264 (Johns Hopkins University Press, 2009).
    Google Scholar 
    30.Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Quan, P.-L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 1, 25 (2010).
    Google Scholar 
    32.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    34.Burgin, C. Family Rhinolophidae, horseshoe bats. In Handbook of the Mammals of the World Vol. 9 260–332 (Lynx Edicions, 2019).
    Google Scholar 
    35.Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177 (2018).
    Google Scholar 
    36.Racey, P. A. & Entwistle, E. Life history and reproductive strategies of bats. Reprod. Biol. Bats 20, 363–468 (2000).
    Google Scholar 
    37.Furey, N. M., Mackie, I. J. & Racey, P. A. Reproductive phenology of bat assemblages in Vietnamese karst and its conservation implications. Acta Chiropterol. 13, 341–354 (2011).
    Google Scholar 
    38.Sterling, E. J., Hurley, M. M. & Le, D. M. Vietnam: A Natural History (Yale University Press, 2006).
    Google Scholar 
    39.Van, N. K., Hzien, N. T., Loc, P. K. & Hiep, N. T. Bioclimatic Diagrams of Vietnam (Vietnam National University Publishing House, 2000).
    Google Scholar 
    40.Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 10, 0004796 (2016).
    Google Scholar 
    41.Peel, A. J. et al. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci. Rep. 8, 3859 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T. & Klein, A.-M. Bat pest control contributes to food security in Thailand. Biol. Conserv. 171, 220–223 (2014).
    Google Scholar 
    43.Furey, N. M., Racey, P. A., Ith, S., Touch, V. & Cappelle, J. Reproductive ecology of wrinkle-lipped free-tailed bats Chaerephon plicatus (Buchannan, 1800) in relation to Guano production in Cambodia. Diversity 10, 91 (2018).
    Google Scholar 
    44.Ades, G. W. J. & Dudgeon, D. Insect seasonality in Hong Kong: A monsoonal environment in the northern tropics (1999).45.Kai, K. H. & Corlett, R. T. Seasonality of forest invertebrates in Hong Kong, South China. J. Trop. Ecol. 18, 637–644 (2002).
    Google Scholar 
    46.Kingston, T., Lim, B. L. & Zubaid, A. Bats of Krau Wildlife Reserve (Universiti Kebangsaan Malaysia, 2006).
    Google Scholar 
    47.Nurul-Ain, E., Rosli, H. & Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 49, 382–394 (2017).
    Google Scholar 
    48.Fleming, T. H., Hooper, E. T. & Wilson, D. E. Three Central American Bat Communities: Structure, reproductive cycles, and movement patterns. Ecology 53, 555–569 (1972).
    Google Scholar 
    49.Bernard, R. T. & Cumming, G. S. African bats: Evolution of reproductive patterns and delays. Q. Rev. Biol. 72, 253–274 (1997).CAS 
    PubMed 

    Google Scholar 
    50.Nguyen, S. T. et al. Bats (Chiroptera) of Bidoup Nui Ba National Park, Dalat Plateau, Vietnam. Mammal Stud. 46, 53–68 (2021).
    Google Scholar 
    51.Plowright, R. K. et al. Urban habituation, ecological connectivity and epidemic dampening: The emergence of Hendra virus from flying foxes (Pteropus spp.). Proc. R. Soc. B Biol. Sci. 278, 3703–3712 (2011).
    Google Scholar 
    52.Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Conserving evolutionarily distinct species is critical to safeguard human well-being

    Dataset of beneficial plantsI collated a species-level dataset of plant benefits (presence/absence data) starting from the information gathered by Kleunen et al.32. These authors extracted data from the WEP database (National Plant Germplasm System GRIN-GLOBAL; https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearcheco.aspx, Accessed 7 Jan 2016), which is based on the book by Wiersema and León20. Their dataset included 84 categories and subcategories of plant benefits pertaining human and animal nutrition, materials, fuels, medicine, useful poisons, social and environmental benefits. Subcategories of benefits, which often included very few records, were merged here into 25 standard and major categories following the guidelines in the Economic Botany Data Collection Standard33 as in Molina-Venegas et al.13, namely ornamental plants, soil improvers, hedging/shelter, human food, human-food additives, vertebrate food, invertebrate food, fuelwood, charcoal, other biofuels, timber, cane/stems, fibres, tannins/dyestuffs, beads, gums/resins, lipids, waxes, essential oils/scents, latex/rubber, medicines, invertebrate poison, vertebrate poison, smoking materials/drugs and symbolic/inspirational plants (Fig. 1). A few records (n = 93) that could not be assigned to any of the above categories were disregarded, and so was the category ‘gene source’ because unlike other benefits, any species is intrinsically a potential gene donor and hence there is not a clear link between the benefit and species features. Note that this is not to say that preserving genetic diversity, which indeed is the underlying message of this research, is a meaningless goal. Infraspecific taxa were collapsed at the species level, and the very few fern taxa in the original database32 were excluded. In total, I gathered 15,834 plant-benefit records sorted in a matrix of 25 types of benefits and 9521 species of seed plants. Most species (83.74%) provided only one or two benefits representing 62.83% of the records in the dataset, and the maximum number of benefits per species was 10 (only three species). Although the WEP database is the largest species-level database on plant benefits32, it does not claim to be comprehensive20. Yet, the size of the dataset I gathered here represented 76.19% of the total seed-plant genus-level records collated for the same types of benefits in a more comprehensive survey by Molina-Venegas et al.13 that based on Mabberley’s Plant-book34. Moreover, the total number of records per category (at the genus-level) strongly correlated between the datasets (Pearson r = 0.94, p  More

  • in

    Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions

    1.Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hofmann, G. E. et al. High-frequency dynamics of ocean ph: A multi-ecosystem comparison. PLoS ONE 6(12), e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).PubMed 

    Google Scholar 
    4.Gutiérrez, D. et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 38, L07603. https://doi.org/10.1029/2010GL046324 (2011).ADS 
    Article 

    Google Scholar 
    5.Aiken, C. M., Navarrete, S. A. & Pelegrí, J. L. Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J. Geophys. Res. 116, G04026. https://doi.org/10.1029/2011JG001731 (2011).ADS 
    Article 

    Google Scholar 
    6.Lagos, N. A., Castilla, J. C. & Broitman, B. Spatial Environmental correlates of intertidal recruitment: A test using barnacles in northern Chile. Ecol. Monogr. 78, 245–261 (2008).
    Google Scholar 
    7.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 84. https://doi.org/10.1038/s41559-017-0084 (2017).Article 
    PubMed 

    Google Scholar 
    8.Broitman, B. R. et al. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J. Anim. Ecol. 00, 1–12. https://doi.org/10.1111/1365-2656.13514 (2021).Article 

    Google Scholar 
    9.Ramajo, L. et al. Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci. 76, 1836e1849 (2019).
    Google Scholar 
    10.Saavedra, L. M., Saldías, G., Broitman, B. & Vargas, C. Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: Natural ranges and biological implications. ICES J. Mar. Sci. 78, 323–339 (2021).
    Google Scholar 
    11.Lardies, M. A. et al. Physiological and histopathological impacts of increased carbon dioxide and temperature on the scallops Argopecten purpuratus cultured under upwelling influences in northern Chile. Aquaculture 479, 455–466 (2017).
    Google Scholar 
    12.Ramajo, L. et al. Upwelling intensity modulates the fitness and physiological performance of coastal species: Implications for the aquaculture of the scallop Argopecten purpuratus in the Humboldt Current System. Sci. Total Environ. 745, 140949 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Wang, D. et al. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).ADS 

    Google Scholar 
    16.Ramajo, L. et al. Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Mar. Ecol. Prog. Ser. 553, 93–109 (2016).ADS 

    Google Scholar 
    17.Leung, J. Y., Connell, S. D., Nagelkerken, I. & Russell, B. D. Impacts of near-future ocean acidification and warming on the shell mechanical and geochemical properties of gastropods from intertidal to subtidal zones. Environ. Sci. Technol. 51, 12097–12103 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Findlay, H. et al. Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss. 6, 2267–2284 (2009).ADS 

    Google Scholar 
    19.Waldbusser, G. et al. Saturation-state sensitivity of marine bivalves larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).ADS 
    CAS 

    Google Scholar 
    20.Tunnicliffe, V. et al. Survival of mussels in extremely acidic waters on a submarine volcano. Nat. Geosci. 2, 344–348 (2009).ADS 
    CAS 

    Google Scholar 
    21.Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 

    Google Scholar 
    22.Leung, J. Y., Russell, B. D. & Connell, S. D. Mineralogical plasticity acts as a compensatory mechanism to the impacts of ocean acidification. Environ. Sci. Technol. 51, 2652–2659 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Duarte, C. et al. The energetic physiology of juvenile mussels, Mytilus chilensis (Hupe): The prevalent role of salinity under current and predicted pCO2 scenarios. Environ. Pollut. 242, 156–163 (2018).CAS 
    PubMed 

    Google Scholar 
    24.Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Change. 1, 308–312 (2011).ADS 
    CAS 

    Google Scholar 
    25.Waldbusser, G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).ADS 

    Google Scholar 
    26.Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection?. Ecol. Evol. 5, 4875–4884 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralization. Sci. Rep. 28, 6218 (2014).
    Google Scholar 
    28.Fitzer, S. C., Cusack, M., Phoenix, V. R. & Kamenos, N. A. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188, 39–45 (2014).CAS 
    PubMed 

    Google Scholar 
    29.Fitzer, S. C. et al. Biomineral shell formation under ocean acidification: A shift from order to chaos. Sci. Rep. 6, 21076 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lagos, N. A. et al. Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: Implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact. 8, 357–370 (2016).
    Google Scholar 
    31.Ramajo, L. et al. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Chang. Biol. 22, 2025–2203 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Osores, S. J. et al. Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment. J. Exp. Mar. Biol. Ecol. 490, 1–12 (2017).
    Google Scholar 
    33.Telesca, L. et al. Plasticity and environmental heterogeneity predict geographic resilience patterns of foundation species to future change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14758 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Grenier, C. et al. The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis. Environ. Pollut. 263, 114555 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    36.Mackenzie, C. L. et al. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS ONE 9(1), e86764 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).ADS 

    Google Scholar 
    38.Rodríguez-Navarro, A. B. Rapid quantification of avian eggshell microstructure and crystallographic-texture using two-dimensional X-ray diffraction. Br. Poult. Sci. 48, 133–144 (2007).PubMed 

    Google Scholar 
    39.Rodríguez-Navarro, A. B. XRD2DScan: New software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Cryst. 39, 905–909 (2006).
    Google Scholar 
    40.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol. 218, 3623–3631 (2015).PubMed 

    Google Scholar 
    41.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environ. Sci. Technol. 50, 1157–1165 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gestoso, I., Arenas, F. & Olabarria, C. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. J. Exp. Mar. Biol. 474, 116–125 (2016).
    Google Scholar 
    43.Babarro, J. M., Abad, M. J., Gestoso, I., Silva, E. & Olabarria, C. Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions. Hydrobiologia 807, 247–261 (2018).
    Google Scholar 
    44.Barthelat, F., Rim, J. E. & Espinosa, H. D. A review on the structure and mechanical properties of mollusk shells: Perspectives on synthetic biomimetic materials. In Applied Scanning Probe Methods XIII (eds Bhushan, B. & Fuchs, H.) 17–44 (Springer, 2009).
    Google Scholar 
    45.Leung, J. Y. et al. Calcifiers can adjust shell building at the nanoscale to resist ocean acidification. Small 16, 2003186 (2020).CAS 

    Google Scholar 
    46.Chatzinikolaou, E., Grigoriou, P., Keklikoglou, K., Faulwetter, S. & Papageorgiou, N. The combined effects of reduced pH and elevated temperature on the shell density of two gastropod species measured using micro-CT imaging. ICES J. Mar. Sci. 74, 1135–1149 (2017).
    Google Scholar 
    47.Nienhuis, S., Palmer, R. & Harley, C. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc. R. Soc. Lond. B Biol. Sci. 277, 2553–2558 (2010).CAS 

    Google Scholar 
    48.Bourdeau, P. E. Prioritized phenotypic responses to combined predators in a marine snail. Ecology 90, 1659–1669 (2009).PubMed 

    Google Scholar 
    49.Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Sci. 41, 21–40 (2011).ADS 
    CAS 

    Google Scholar 
    50.Nudelman, F. Nacre biomineralisation: A review on the mechanisms of crystal nucleation (In Seminars in cell & developmental biology), 2–10 (Academic Press, 2015).51.Harper, E. M., Checa, A. G. & Rodríguez-Navarro, A. B. Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicular (Bivalvia: Mollusca). Acta Zool. 90, 132e141 (2009).
    Google Scholar 
    52.Pennington, B. J. & Currey, J. D. A mathematical model for the mechanical properties of scallop shells. J. Zool. 202, 239–263 (1984).
    Google Scholar 
    53.Yevenes, M. A., Lagos, N. A., Farías, L. & Vargas, C. A. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption. Sci. Total Environ. 669, 49–61 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Dickinson, G. H. et al. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol. 215, 29–43 (2012).CAS 
    PubMed 

    Google Scholar 
    55.Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).CAS 
    PubMed 

    Google Scholar 
    56.O’Toole-Howes, M. et al. Deconvolution of the elastic properties of bivalve shell nanocomposites from direct measurement and finite element analysis. J. Mater. Res. 34, 2869–2880 (2019).ADS 

    Google Scholar 
    57.Auzoux-Bordenave, S. et al. Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata). Mar. Biol. 167, 11 (2020).CAS 

    Google Scholar 
    58.Torres, R. et al. Evaluation of a semiautomatic system for long-term seawater carbonate chemistry manipulation. Rev. Chil. Hist. Nat. 86, 443–451 (2013).
    Google Scholar 
    59.IPCC. Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou). Cambridge University Press. In Press. (2021).60.DOE. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater; version 2 (eds. Dickson, A.G. & Goyet, C.), (ORNL/CDIAC, 74, 1994).61.Meinshausen, M. et al. The RPC greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change. 109, 213–241 (2011).ADS 
    CAS 

    Google Scholar 
    62.Rahn, D. A., Rosenblüth, B. & Rutllant, J. A. Detecting subtle seasonal transitions of upwelling in North-Central Chile. J. Phys. Oceanogr. 45, 854–867 (2015).ADS 

    Google Scholar 
    63.Meng, Y., Guo, Z., Yao, H., Yeung, K. W. & Thiyagarajan, V. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster. Mar. Pollut. Bull. 139, 141–149 (2019).CAS 
    PubMed 

    Google Scholar 
    64.Rasband, W. S. ImageJ U.S. National Institute of Health, Maryland, USA (1997–2020). More

  • in

    An intergenerational androgenic mechanism of female intrasexual competition in the cooperatively breeding meerkat

    Study populationWe studied wild meerkats at the Kuruman River Reserve (a ~63 km2 area comprising dry riverbeds, herbaceous flats and grassy dunes) in the Kalahari region of South Africa (26°58′S, 21°49′E)28,48. Our study period (Nov 2011–Apr 2015) included an extended drought, during which female reproductive success tracked rainfall22 (Supplementary Fig. 1). The annual mean population size was 270 animals, in 22 established clans of 4–39 animals15,22. Habituated to close observation ( More

  • in

    Direct pesticide exposure of insects in nature conservation areas in Germany

    Pesticide residuesInsects were collected in Malaise traps during two-week intervals, where pesticide residues from insect bodies were dissolved in the ethanol that was used to preserve the collected samples. Additionally, particles of plants, pollen, nectar or honeydew adhering to the insect bodies can be carriers of chemical pollution. Detected pesticide residues can therefore come from the insects and potentially attached particles. Under natural conditions of sunlight and warm temperatures, chemical stability of pesticide residues in the ethanol solution may have been affected by hydrolysis, for example, which could have caused the degradation of residues during the two-week collection intervals. Only flying insects that are alive can get into the Malaise traps, and therefore pesticide residues in the collected samples are assumed to represent sublethal levels to all trapped species. Additionally, insect collection was performed over an entire season and did not consider explicit spraying events. Therefore, the sampling we performed did not necessarily record maximum exposure levels that could represent lethal levels for individual species and substances. Hence, the quantification of pesticide amounts cannot be used for risk calculations. Instead we evaluate the presence of residues of CUPs on insects. Since detection is possible at low concentrations (see SOM Table A2) we obtained information on trace concentrations of the pesticide residues that insects were exposed to. It is safe to assume that the pesticide loads of insects were especially high following spraying events, and for individuals that were affected and consequently unable to fly. These insects were then not sampled in the Malaise traps.Of the 92 target common CUPs, 47 were detected in the insect samples from 21 nature conservation areas from two sampling dates in May and August 2020: 13 herbicides, 28 fungicides and 6 insecticides. Additionally, metabolites of fipronil, an insecticide registered for biocidal use in the EU, were recorded at three locations. At the 21 sites, insects in the conservation areas were exposed to 16.7 pesticides on average, ranging from 7 to 27 substances. More fungicides than herbicides were recorded and, on average, insects were exposed to less than two insecticides (Table 1). This may in part reflect the application in arable crops where more fungicides than herbicides are applied and insecticides are used less frequently. On the other hand, as insecticides affect insects directly due to their high acute toxicity, exposure to insecticides results in mortality or sublethal effects that impair mobility, leading to an underestimation of insecticide residues in our samples.Table 1 Number of CUP residues detected at 21 nature conservation areas across Germany and the resulting minimal, maximal and mean number of pesticide substances.Full size tableInsects at all 21 sites were exposed to residues of the herbicides metolachlor-S, prosulfocarb and terbuthylazine, and the fungicides azoxystrobin and fluopyram (Table 2). The presence of the six frequently detected herbicides can be explained by the high volume sold in 2019 (see SOM Table A3). They are among the 25 highest-ranking pesticides in terms of selling volume in Germany34. The same is true for the fungicide azoxystrobin. All other seven regularly detected fungicides were sold at lower volumes and their presence in the insect samples could be related to the high persistence of these fungicides, with soil half-lives reaching 500 d (bixafen), 484 d (boscalid) and 309 d (fluopyram). Only kresoxim-methyl, present in 10 sites, is not highly persistent in soil but has an affinity for the waxy plant cuticle, where it binds and accumulates35,36.Table 2 CUP residues frequently recorded at the 21 sites. Only substances that were recorded in ≥ 10 sites are listed.Full size tableThe neonicotinoid insecticide thiacloprid was recorded on insects in 16 of the 21 nature conservation areas. Thiacloprid was banned in the EU for use in field applications from August 2020 onwards, however, the end of use (grace period) was set to 3rd February, 202137. The high incidence of thiacloprid in our samples at many sites across Germany may therefore also reflect the last opportunity for farmers to use their remaining stocks. A ban could thus result in a greater impact to the ecosystem if parallel applications take place on a large scale. Hence, for potent pesticides which are banned from the market, it seems advisable to stop granting grace periods and instead destroy remaining stock rather than dispersing them into the environment despite knowledge of their high environmental risks.On average, in spring (May) residues of 9.6 and in summer (August) 9.3 CUPs were recorded in individual ethanol samples of the three trapping locations in the conservation areas. The minimum number of pesticide residues of 3 (May, site Mülhauser Halde) and 2 (August, Mittelberg) and the maximum of 16 (May, Bottendorfer Hügel) and 18 (August, Wisseler Dünen) were all from samples closer to the centre of the nature protection area, furthest away from adjacent agricultural fields.Seasonality of CUP exposureThe total number of CUP residues recorded on insects was similar for the two sampling intervals with 32 substances in May and 35 in August. However, a higher number of herbicide residues was recorded in May (13) compared to August (9), whereas for fungicides the reverse was the case [August (23), May (14)]. The number of detected insecticide residues was similar, with three and five substances recorded in May and August, respectively. This resulted in a different set of pesticide residue mixtures, driven by seasonality (Fig. 1). Mixtures in May, dominated by herbicides, were more similar to each other than the August mixtures, which contained more fungicides. The extreme positions of the NMDS analysis in August with Brauselay and Mittelberg are driven by the number of fungicide residues recorded. Brauselay is the only site where vineyards bordered the study area. Wine growing in Germany requires frequent fungicide applications.Figure 1CUP mixtures in May (green) and August (red) analysed with NMDS. The position of each location was determined by the composition of pesticide residues found in the ethanol samples. The closer data points are located in the ordination space, the more similar are their composition of pesticides. For abbreviations see Table 1.Full size imageOn the substance level, residues of the herbicides prosulfocarb, metolachlor-S, dimethenamid-P were recorded in more than half of the sites at both sampling intervals, whereas terbuthylazine was frequently present in May but not in August, and flufenacet was detected more frequently later in the year. Fungicide residues of fluopyram, azoxystrobin and boscalid were common in both sampling intervals, but pyraclostrobin, bixafen and dimoxystrobin were characteristic for May samples and fluazinam and kresoxim-methyl for the August samples (SOM Table A4). Although more residues of fungicides were recorded in August, this did not result in an increase in the number of fungicides that are found at many sites. Thirteen out of the 23 fungicides that were recorded in August were detected comparatively sporadic in samples from one to three sites. For insecticides, only thiacloprid was frequently noted, and the remaining substances acetamiprid, dimethoate, tebufenozide, and indoxacarb were found in May, whereas chlorantraniliprole and indoxacarb were recorded in August. The observed patterns reflect the agricultural practice of using herbicides in spring and early summer to establish crops such as cereals, oilseed rape and maize, and fungicides later in the year to control fungal diseases that increase with warmer temperatures.In addition to pesticide applications, seasonality has a direct effect on insect communities that change in composition from spring to autumn38,39,40. Because of shifts in insect community composition and pesticide application schemes, the mixture of pesticide residues present in insect samples changes throughout the year. Thus, it is likely that a finer time resolution than the selected two sampling intervals could reveal additional pesticide residues for the exposure of insects in conservation areas in the agricultural landscape.Influence of surrounding agricultural production areaOur data demonstrate that insects collected with Malaise traps in the nature conservation areas are exposed to pesticides applied in the surrounding agricultural landscape, where various crops are grown and are treated with a variety of pesticides. As the flight range of aerial insects fluctuates from less than one hundred meters to kilometres (for examples from the literature see SOM Table A5), it is not only the neighbouring arable field that may act as a source of contamination. A correlation analysis of the area of arable fields in the surrounding landscape (buffered from 500 to 3500 m) and number of pesticide residues recorded in the insect-trapping ethanol revealed a best fit for a radius of 2000 m around the center of the trapping positions in the conservation area (Fig. 2, all 21 sites, Pearson correlation coefficient = 0.48, p = 0.029). The site Brauselay differed from all nature conservation areas as vineyards were bordering the nature conservation area. Wine growing is a permanent crop characterised by high fungicide use on a comparable small area. When removing Brauselay from the analysis significance increased further (Pearson correlation coefficient = 0.60, p = 0.005; for further details, see SOM Fig. A2 and Table A6). Hence, pesticide residues on insects collected in the nature conservation areas are not only a result of applications on crops in the direct vicinity, but also from pesticide use in a larger area within the agricultural landscape around the conservation areas.Figure 2The number of CUP residues per site detected in insect/ethanol samples increased with the area of agriculture in a radius of 2000 m around the trapping positions (Pearson correlation coefficient = 0.48, p = 0.029).Full size imageBased on the correlation between pesticides and surrounding arable land, a generalized linear mixed model (GLMM) was applied to model the number of detected pesticide residues as a function of landscape factors (amount of agricultural production area, amount of nature conservation area and amount of FFH area in a 2000 m radius) and biomass of insects collected by the Malaise traps, with the study sites included as random effects (Table 3). Neither the area of the nature conservation area nor the FFH area nor biomass of collected insects was related to the number of pesticides recorded in ethanol samples. Only the agricultural production area in a 2000 m vicinity had a significant (p  More

  • in

    Spatial and temporal patterns in the sex ratio of American lobsters (Homarus americanus) in southwestern Nova Scotia, Canada

    1.Hanson, J. M. Predator-prey interactions of American lobster (Homarus americanus) in the southern Gulf of St. Lawrence, Canada. New Zeal. J. Mar. Freshw. Res. 43, 69–88 (2009).
    Google Scholar 
    2.DFO. Canada’s Fisheries Fast Facts 2019. (2020).3.Fisheries and Oceans Canada. Integrated Fishery Management Plan (Summary). Lobster fishing area 27–38. Scotia-Fundy Sector Maritimes Region 2011. DFO Report (2009).4.Howell, W. H., Watson, W. H. & Jury, S. H. Skewed sex ratio in an estuarine lobster (Homarus americanus) population. J. Shellfish Res. 18, 193–201 (1999).
    Google Scholar 
    5.Jury, S. H., Pugh, T. L., Henninger, H., Carloni, J. T. & Watson, W. H. Patterns and possible causes of skewed sex ratios in American lobster (Homarus americanus) populations. Invertebr. Reprod. Dev. https://doi.org/10.1080/07924259.2019.1595184 (2019).Article 

    Google Scholar 
    6.Ogburn, B. M. The effects of sex-biased fisheries on crustacean sex ratios and reproductive output. Invertebr. Reprod. Dev. 63, 200–207 (2019).
    Google Scholar 
    7.Cooper, R., Clifford, R. & Newelll, C. Seasonal abundance of the American lobster, Homarus americanus, in the Boothbay region of Maine. Trans. Am. Fish. Soc. 104, 669–674 (1975).
    Google Scholar 
    8.Pitnick, S. Operational sex ratios and sperm limitation in populations of Drosophila pachea. Behav. Ecol. Sociobiol. 33, 383–391 (1993).
    Google Scholar 
    9.MacDiarmid, A. B. & Butler, M. J. IV. Sperm economy and limitation in spiny lobsters. Behav. Ecol. Sociobiol. 46, 14–24 (1999).
    Google Scholar 
    10.Sato, T. Plausible causes for sperm-store variations in the coconut crab Birgus latro under large male-selective harvesting. Aquat. Biol. 13, 11–19 (2011).
    Google Scholar 
    11.Ogburn, M., Roberts, P., Richie, K., Johnson, E. & Hines, A. Temporal and spatial variation in sperm stores in mature female blue crabs Callinectes sapidus and potential effects on brood production in Chesapeake Bay. Mar. Ecol. Prog. Ser. 507, 249–262 (2014).ADS 

    Google Scholar 
    12.Pardo, L. M., Rosas, Y., Fuentes, J. P., Riveros, M. P. & Chaparro, O. R. Fishery induces sperm depletion and reduction in male reproductive potential for crab species under male-biased harvest strategy. PLoS ONE 10, e0115525 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    13.Pardo, L. M. et al. High fishing intensity reduces females’ sperm reserve and brood fecundity in a eubrachyuran crab subject to sex-and size-biased harvest. ICES J. Mar. Sci. 74, 2459–2469 (2017).
    Google Scholar 
    14.Tremblay, J. M. & Smith, S. J. Lobster (Homarus americanus) catchability in different habitats in late spring and early fall. Mar. Freshw. Res. 52, 1321–1331 (2001).
    Google Scholar 
    15.Karnofsky, E., Atema, J. & RH, E. Field observations of social behavior, shelter use, and foraging in the lobster, Homarus americanus. Biol. Bull. 176, 239–246 (1989).PubMed 

    Google Scholar 
    16.Cowan, D. F., Watson, W., Solow, A. & Mountcastle, A. Thermal histories of brooding lobsters, Homarus americanus, in the Gulf of Maine. Springer 150, 463–470 (2007).
    Google Scholar 
    17.Chang, J., Chen, Y., Holland, D. & Grabowski, J. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Mar. Ecol. Prog. Ser. 420, 145–156 (2010).ADS 

    Google Scholar 
    18.Anderson, J., Olsen, Z., Wagner Glen Sutton, T., Gelpi, C. & Topping, D. Environmental drivers of the spatial and temporal distribution of spawning blue crabs Callinectes sapidus in the Western Gulf of Mexico. N. Am. J. Fish. Manag. 37, 920–934 (2017).
    Google Scholar 
    19.Crossin, G. T., Al-Ayoub, S. A., Jury, S. H., Howell, W. H. & Watson, W. H. Behavioral thermoregulation in the American lobster Homarus americanus. J. Exp. Biol. 201, 365–374 (1998).PubMed 
    CAS 

    Google Scholar 
    20.Powers, J., Lopez, G., Cerrato, R. & Dove, A. Effects of thermal stress on Long Island Sound lobsters, H. americanus. in Long Island Sound Lobster Research Initiative Working Meeting. University of Connecticut at Avery Point, Groton. (2004).21.Comeau, M. & Savoie, F. Maturity and reproductive cycle of the female American lobster, Homarus americanus, in the southern Gulf of St. Lawrence, Canada. J. Crustac. Biol. https://doi.org/10.1163/20021975-99990290 (2002).Article 

    Google Scholar 
    22.Quinn, B. K. Threshold temperatures for performance and survival of American lobster larvae: A review of current knowledge and implications to modeling impacts of climate change. Fish. Res. 186, 383–396 (2017).
    Google Scholar 
    23.Campbell, A. & Stasko, A. Movement of lobsters (Homarus americanus) tagged in the Bay of Fundy, Canada. Mar. Biol. 92, 393–404 (1986).
    Google Scholar 
    24.Campbell, A. Aggregations of berried lobsters (Homarus americanus) in shallow waters off Grand Manan, eastern Canada. Can. J. Fish. Aquat. Sci. 47, 520–523 (1990).
    Google Scholar 
    25.Watson, W. & Jury, S. H. The relationship between American lobster catch, entry rate into traps and density. Taylor Fr. 9, 59–68 (2013).
    Google Scholar 
    26.Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).ADS 
    PubMed 
    CAS 

    Google Scholar 
    27.Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, 10 (2017).
    Google Scholar 
    28.Aiken, D. E. & Waddy, S. L. Environmental influence on recruitment of the American lobster, Homarus americanus: A perspective. Can. J. Fish. Aquat. Sci. 43, 2258–2270 (1986).
    Google Scholar 
    29.Greenan, B. J. W. et al. Climate change vulnerability of American lobster fishing communities in Atlantic Canada. Front. Mar. Sci. 6, 579 (2019).
    Google Scholar 
    30.QGIS Geographic Information System. QGIS Association. http://www.qgis.org/ (2021).31.Tveite, H. NNJoin. http://arken.nmbu.no/~havatv/gis/qgisplugins/NNJoin (2014).32.Hosmer, D. J., Lemeshow, S. & Sturdivant, R. Applied Logistic Regression (John Wiley & Sons, 2013).MATH 

    Google Scholar 
    33.Thakur, K. K. et al. Risk factors associated with soft-shelled lobsters (Homarus americanus) in southwestern Nova Scotia, Canada. FACETS 2, 15–33 (2017).
    Google Scholar 
    34.Dohoo, I., Martin, W. & Stryhn, H. Veterinary Epidemiologic Research (VER Inc., 2009).
    Google Scholar 
    35.Pezzack, D. S. et al. The American lobster Homarus americanus fishery off of south-western Nova Scotia (Lobster Fishing Area 34). Canadian Stock Assessment Secretariat Research Document 99/32 (1999).36.Watson, W. H. & Little, S. A. Differences in the size at maturity of female American lobsters, Homarus americanus, captured throughout the range of the offshore fishery. J. Crustac. Biol. 25, 585–592 (2005).
    Google Scholar 
    37.Pezzack, D., Tremblay, J., Claytor, R., Frail, C. & Smith, S. Stock status and indicators for the lobster fishery in Lobster Fishing Area 34. Canadian Stock Assessment Secretariat Research Document 2006/101 (2006).38.Wu, Y. & Tang, C. Atlas of ocean currents in eastern Canadian waters. Canadian Technical Report of Hydrography and Ocean Sciences. 271 (2011).39.Brickman, D. Could ocean currents be responsible for the west to east spread of aquatic invasive species in Maritime Canadian waters?. Mar. Pollut. Bull. 85, 235–243 (2014).PubMed 
    CAS 

    Google Scholar 
    40.Cowan, D. F., Solow, A. & Beet, A. R. Patterns in abundance and growth of juvenile lobster Homarus americanus. CSIRO https://doi.org/10.1071/MF01191 (2001).Article 

    Google Scholar 
    41.Morse, B. L., Quinn, B. K., Comeau, M. & Rochette, R. Stock structure and connectivity of the American lobster (Homarus americanus) in the southern Gulf of St. Lawrence: Do benthic movements matter?. Can. J. Fish. Aquat. Sci. 75, 2096–2108 (2018).
    Google Scholar 
    42.Staples, K. W., Chen, Y., Townsend, D. W. & Brady, D. C. Spatiotemporal variability in the phenology of the initial intra-annual molt of American lobster (Homarus americanus Milne Edwards, 1837) and its relationship with bottom temperatures in a changing Gulf of Maine. Fish. Oceanogr. 28, 468–485 (2019).
    Google Scholar 
    43.Goñi, R., Quetglas, A. & Reñones, O. Differential catchability of male and female European spiny lobster Palinurus elephas (Fabricius, 1787) in traps and trammelnets. Fish. Res. 65, 295–307 (2003).
    Google Scholar 
    44.Audet, D., Miron, G. & Moriyasu, M. Biological characteristics of a newly established green crab (Carcinus maenas) population in the southern gulf of St. Lawrence, Canada. J. Shellfish Res. 27, 427–441 (2008).
    Google Scholar 
    45.Laurans, M., Fifas, S., Demaneche, S., Brérette, S. & Debec, O. Modelling seasonal and annual variation in size at functional maturity in the European lobster (Homarus gammarus) from self-sampling data. ICES J. Mar. Sci. 66, 1892–1898 (2009).
    Google Scholar 
    46.Cooper, R. & Uzmann, J. Migrations and growth of deep-sea lobsters, Homarus americanus. Science 171, 288–290 (1971).ADS 
    PubMed 
    CAS 

    Google Scholar 
    47.Robichaud, D. A. & Campbell, A. Annual and seasonal size-frequency changes of trap-caught lobsters (Homarus americanus) in the Bay of Fundy. J. Northw. Atl. Fish. Sci 11, 2 (1991).
    Google Scholar 
    48.Waddy, S. L. & Aiken, D. E. Seasonal variation in spawning by preovigerous American lobster (Homarus americanus) in response to temperature and photoperiod manipulation. Can. J. Fish. Aquat. Sci. 49, 1114–1117 (1992).
    Google Scholar 
    49.Campbell, A. & Stasko, A. B. Movements of lobsters (Homarus americanus) tagged in the Bay of Fundy, Canada. Mar. Biol. Int. J. Life Ocean. Coast. Waters 92, 393–404 (1986).
    Google Scholar 
    50.Haakonsen, H. & Anoruo, A. Tagging and migration of the American lobster Homarus americanus. Rev. Fish. Sci. 2, 79–93 (1994).
    Google Scholar 
    51.Lawton, P. & Lavalli, K. Postlarval, juvenile, adolescent and adult ecology. In Biology of the lobster Homarus americanus (ed. Jd, F.) 47–81 (Academic, 1995).
    Google Scholar 
    52.Attard, J. & Hudon, C. Embryonic development and energetic investment in egg production in relation to size of female lobster (Homarus americanus). Can. J. Fish. Aquat. Sci. 44, 1157–1164 (1987).
    Google Scholar 
    53.Krouse, J. Maturity, sex ratio, and size composition of the natural population of American lobster, Homarus americanus, along the Maine coast. Fish. Bull. 71, 165–173 (1973).
    Google Scholar 
    54.Sato, T. Impacts of large male-selective harvesting on reproduction: Illustration with large decapod crustacean resources. Aqua-BioSci. Monogr. 5, 67–102 (2012).CAS 

    Google Scholar 
    55.Raymond, S. M. C. & Todd, C. R. Assessing risks to threatened crayfish populations from sex-based harvesting and differential encounter rates: A new indicator for reproductive state. Ecol. Indic. 118, 106661 (2020).
    Google Scholar 
    56.Estrella, B. & McKiernan, D. Catch-Per-Unit-Effort and Biological Parameters from the Massachusetts Coastal Lobster (Homarus americanus) Resource: Description and Trends (NOAA Technical Report, 1989).
    Google Scholar 
    57.Smolowitz, R., Chistoserdov, A. Y. & Hsu, A. A description of the pathology epizootic shell disease in the American lobster (Homarus americanus) H. Milne Edwards 1837. J. Shellfish Res. 24, 749–756 (2005).
    Google Scholar 
    58.Glenn, R. & Pugh, T. Epizootic shell disease in American lobster (Homarus americanus) in Massachusetts coastal waters: Interactions of temperature, maturity, and intermolt duration. J. Crustac. Biol. 26, 639–645 (2006).
    Google Scholar 
    59.Chistoserdov, A., Quinn, R., Gubbala, S. & Smolowitz, R. Bacterial communities associated with lesions of shell disease in the American lobster Homarus americanus. J. Shellfish Res. 31, 449–462 (2012).
    Google Scholar 
    60.Meres, N. et al. Dysbiosis in epizootic shell disease of the American lobster (Homarus americanus). J. Shellfish Res. 31, 463–472 (2012).
    Google Scholar 
    61.Shields, J. D., Wheeler, K. N. & Moss, J. A. Histological assessment of the lobster (Homarus americanus) in the ‘100 Lobsters’ project. J. Shellfish Res. 31, 439–447 (2012).
    Google Scholar 
    62.Hoenig, J. M. et al. Impact of disease on the survival of three commercially fished species. Ecol. Appl. 27, 2116–2127 (2017).PubMed 

    Google Scholar 
    63.Stevens, B. Effects of epizootic shell disease in American lobster Homarus americanus determined using a quantitative disease index. Dis. Aquat. Organ. 88, 25–34 (2009).PubMed 

    Google Scholar 
    64.Clark, A. S., Jury, S. H., Goldstein, J. S., Langley, T. G. & Watson, W. H. A comparison of American lobster size structure and abundance using standard and ventless traps. Fish. Res. 167, 243–251 (2015).
    Google Scholar 
    65.Jury, S., Kinnison, M., Howell, W., Winsor, H. & Watson, I. The behavior of lobsters in response to reduced salinity. J. Exp. Mar. Biol. Ecol. 180, 23–37 (1994).
    Google Scholar  More

  • in

    Traits of a mussel transmissible cancer are reminiscent of a parasitic life style

    1.Aktipis, A. The Cheating Cell: How Evolution Helps Us Understand and Treat Cancer (Princeton University Press, 2020).Book 

    Google Scholar 
    2.Martinez-Outschoorn, U. E. et al. Stromal–epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell. B. 43(7), 1045–1051. https://doi.org/10.1016/j.biocel.2011.01.023 (2011).CAS 
    Article 

    Google Scholar 
    3.Ujvari, B. et al. Cancer and life-history traits: lessons from host-parasite interactions. Parasitology 143, 533–541. https://doi.org/10.1017/S0031182016000147 (2016).Article 
    PubMed 

    Google Scholar 
    4.Overstreet, R. M. & Lotz, J. M. Host-symbiont relationships: understanding the change from guest to pest. In The Rasputin Effect: Why Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology (ed. Hurst, C.) (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28170-4_2.Chapter 

    Google Scholar 
    5.Combes, C. Parasitism: The Ecology and Evolution of Intimate Inter-actions (University of Chicago Press, 2001).
    Google Scholar 
    6.Dujon, A. M. et al. Transmissible cancers in an evolutionary Perspective. iScience 23(7), 101269. https://doi.org/10.1016/j.isci.2020.101269 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126(3), 477–487. https://doi.org/10.1016/j.cell.2006.05.051 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Rebbeck, C. A., Thomas, R., Breen, M., Leroi, A. M. & Burt, A. Origins and evolution of a transmissible cancer. Evolution 63(9), 2340–2349. https://doi.org/10.1111/j.1558-5646.2009.00724.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Pearse, A. M. & Swift, K. Allograft theory: transmission of devil facial-tumor disease. Nature 439(7076), 549. https://doi.org/10.1038/439549a (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113(2), 374–379. https://doi.org/10.1073/pnas.1519691113 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161(2), 255–263. https://doi.org/10.1016/j.cell.2015.02.042 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534(7609), 705–709. https://doi.org/10.1038/nature18599 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. ELife 8, 1029. https://doi.org/10.7554/eLife.47788 (2019).Article 

    Google Scholar 
    14.Garcia-Souto, D. et al. Mitochondrial genome sequencing of marine leukemias reveals cancer contagion between clam species in the Seas of Southern Europe. BioRxiv https://doi.org/10.1101/2021.03.10.434714 (2021).Article 

    Google Scholar 
    15.Hammel, M. et al. Prevalence and polymorphism of a mussel transmissible cancer in Europe. Mol. Ecol. 2, 1–16. https://doi.org/10.1111/mec.16052 (2021).CAS 
    Article 

    Google Scholar 
    16.Skazina, M. et al. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci. Rep. 11(5809), 56930 (2021).
    Google Scholar 
    17.Burioli, E. A. V. et al. Implementation of various approaches to study the prevalence, incidence and progression of disseminated neoplasia in mussel stocks. J. Invertebr. Patho. 168, 107271. https://doi.org/10.1016/j.jip.2019.107271 (2019).CAS 
    Article 

    Google Scholar 
    18.Murray, M., James, Z. H. & Martin, W. B. A study of the cytology and karyotype of the canine transmissible venereal tumour. Res. Vet. Sci. 10(6), 565–572. https://doi.org/10.1016/50034-5288(18)34394-7 (1969).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hamede, R. K., McCallum, H. & Jones, M. Biting injuries and transmission of Tasmanian devil facial tumour disease. J. Anim. Ecol. 82(1), 182–190 (2013).Article 

    Google Scholar 
    20.Sunila, I. & Farley, C. Environmental limits for survival of sarcoma cells from the soft-shell clam Mya arenaria. Dis. Aquat. Organ. 7, 111–115. https://doi.org/10.3354/dao007111 (1989).Article 

    Google Scholar 
    21.Carballal, M. J., Barber, B. J., Iglesias, D. & Villalba, A. Neoplastic diseases of marine bivalves. J. Invertebr. Pathol. 131, 83–106. https://doi.org/10.1016/J.JIP.2015.06.004 (2015).Article 
    PubMed 

    Google Scholar 
    22.Carella, F., Figueras, A., Novoa, B. & De Vico, G. Cytomorphology and PCNA expression pattern in bivalves Mytilus galloprovincialis and Cerastoderma edule with haemic neoplasia. Dis. Aquat. Org. 105, 81–87. https://doi.org/10.3354/dao02612 (2013).Article 

    Google Scholar 
    23.Baudoin, M. Host castration as a parasitic strategy. Evolution 29, 335–352. https://doi.org/10.1111/j.1558-5646.1975.tb00213.x (1975).Article 
    PubMed 

    Google Scholar 
    24.Alderman, D. J., Van Banning, P. & Perez-Colomer, A. Two abnormal European oyster (Ostrea edulis) mortalities associated with an abnormal haemocytic condition. Aquaculture 10(4), 335–340. https://doi.org/10.1016/0044-8486(77)90124-7 (1977).Article 

    Google Scholar 
    25.Cosson-Mannevy, M. A., Wong, C. S. & Cretney, W. J. Putative neoplastic disorders in mussels (Mytilus edulis) from southern Vancouver Island waters, British Columbia. J. Invertebr. Pathol. 44(2), 151–160. https://doi.org/10.1016/0022-2011(84)90006-5 (1984).Article 

    Google Scholar 
    26.Brousseau, D. J. Seasonal aspects of sarcomatous neoplasia in Mya arenaria (soft-shell clam) from Long Island Sound. J. Invertebr. Pathol. 50(3), 269–276. https://doi.org/10.1016/0022-2011(87)90092-9 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Peters, E. C. Recent investigations on the disseminated sarcomas of marine bivalve molluscs. In: W. S. Fisher, editor. Diseases processes in marine bivalve mollusc. Washington, DC: special publication No. 18, American Fisheries Society. pp. 74–92 (1988).28.Ford, S. E., Barber, B. J. & Marks, E. Disseminated neoplasia in juvenile Eastern oyster Crassostrea virginica, and its relationship to the reproductive cycle. Dis. Aquat. Org. 28, 73–77. https://doi.org/10.3354/dao028073 (1997).Article 

    Google Scholar 
    29.Barber, B. J. Neoplastic diseases of commercially important marine bivalves. Aquat. Living Resour. 17, 449–466. https://doi.org/10.1051/alr:2004052 (2004).Article 

    Google Scholar 
    30.Randriananja, G. Evolution de la maturation de Mytilus edulis sur deux sites d’élevage du pertuis Breton : bouchots et filières. https://archimer.ifremer.fr/doc/00446/55762/57424.pdf (2006).31.Levitan, D. R. Sperm limitation, gamete competition and sexual selection in external fertilizers (eds. Birkhead, T. R., Moller, A. P.) 175–217. Sperm competition and sexual selection (Academic Press, 1998).32.Arzul, I. et al. Effects of temperature and salinity on the survival of Bonamia ostreae, a parasite infecting flat oysters Ostrea edulis. Dis. Aquat. Organ. 85, 67–75. https://doi.org/10.3354/dao02047 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481(7381), 306–313. https://doi.org/10.1038/nature10762 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Scott, J. & Marusyk, A. Somatic clonal evolution: a selection-centric perspective. Biochim. Biophys. Acta Rev. Cancer 1867(2), 139–150 (2017).CAS 
    Article 

    Google Scholar 
    35.Moore, M. N. & Lowe, D. M. The cytology and cytochemistry of the hemocytes of Mytilus edulis and their response to experimentally injected carbon particles. J. Invertebr. Pathol. 29, 18–30. https://doi.org/10.1016/0022-2011(77)90167-7 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Rasmussen, L. P. D., Hage, E. & Karlog, O. An electron microscope study of the circulating leucocytes of the marine mussel, Mytilus edulis. J. Invertebr. Pathol. 45, 158–167. https://doi.org/10.1016/0022-2011(85)90005-9 (1985).Article 

    Google Scholar 
    37.Carballal, M. J., López, M. C., Azevedo, C. & Villalba, A. Hemolymph cell types of the mussel Mytilus galloprovincialis. Dis. Aquat. Org. 29, 127–135. https://doi.org/10.3354/dao029127 (1997).Article 

    Google Scholar 
    38.Frei, E. 3rd. & Freireich, E. J. Progress and perspectives in the chemotherapy of acute leukemia. Adv. Chemother. 2, 269–298. https://doi.org/10.1016/b978-1-4831-9930-6.50011-3 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Ellison, R. R. & Murphy, M. L. “Apparent doubling time” of leukemic cells in marrow. Clin. Res. 12, 284 (1964).
    Google Scholar 
    40.Hirt, A., Schmid, A. M., Ammann, R. & Leibungut, K. In pediatric lymphoblastic leukemia of B-Cell origin, a small population of primitive blast cells is noncycling, suggesting them to be leukemia stem cell candidates. Pediatr. Res. 69, 194–199. https://doi.org/10.1203/PDR.0b013e3182092716 (2011).Article 
    PubMed 

    Google Scholar 
    41.Shimomatsuya, T., Tanigawa, N. & Muraoka, R. Proliferative activity of human tumors: assessment using bromodeoxyuridine and flow cytometry. Jpn. J. Cancer Res. 82(3), 357–362. https://doi.org/10.1111/j.1349-7006.1991.tb01854.x (1991).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Ford, S., Schotthoefer, A. & Spruck, C. In vivo dynamics of the microparasite Perkinsus marinus during progression and regression of infections in Eastern oysters. J. Parasitol. 85(2), 273–282. https://doi.org/10.2307/3285632 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Caza, F., Bernet, E., Veyrier, F. J., Betoulle, S. & St-Pierre, Y. Hemocytes released in seawater act as Troyan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 19696 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    44.McCallum, H. I. et al. Does terrestrial epidemiology apply to marine systems?. Trends Ecol. Evol. 19(11), 585–591. https://doi.org/10.1016/j.tree.2004.08.009 (2004).Article 

    Google Scholar 
    45.Ewald, P. W. Evolutionary biology and the treatment of signs and symptoms of infectious disease. J. Theor. Biol. 86(1), 169–176. https://doi.org/10.1016/0022-5193(80)90073-9 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Poulin, R. Chapter 5-Parasite Manipulation of Host Behavior: An Update and Frequently Asked Questions (eds: Brockmann, H. J., Roper, T. J., Naguib, M., Wynne-Edwards, K. E., Mitani, J. C., Simmons, L. W.). Advances in the Study of Behavior, Academic Press 41, 151–186. https://doi.org/10.1016/S0065-3454(10)41005-0 (2010).47.Cremonte, F., Vázquez, N. & Silva, M. R. Gonad atrophy caused by disseminated neoplasia in Mytilus chilensis cultured in the Beagle Channel, Tierra Del Fuego Province, Argentina. J. Shellfish Res. 30, 845–849. https://doi.org/10.2983/035.030.0325 (2011).Article 

    Google Scholar 
    48.Tissot, T. et al. Host manipulation by cancer cells: expectations, facts, and therapeutic implications. BioEssays 38(3), 276–285. https://doi.org/10.1002/bies/201500163 (2016).Article 
    PubMed 

    Google Scholar 
    49.Thomas, F., Guégan, J. F., Michalakis, Y. & Renaud, F. Parasites and host life-history traits: implications for community ecology and species co-existence. Int. J. Parasitol. 30(5), 669–674. https://doi.org/10.1016/s0020-7519(00)00040-0 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Charles, M. Etude des pathogènes, des conditions physiologiques et pathologiques impliqués dans les mortalités anormales de moules (Mytilus sp.). Biologie animale. Normandie Université. https://tel.archives-ouvertes.fr/tel-0.053331 (2019).51.Anderson, R. M. & May, R. M. Population biology of infectious diseases: part I. Nature 280, 361–367. https://doi.org/10.1038/280361a0 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Kuris, A. M. Trophic interactions: similarity of parasitic castrators to parasitoids. Q. Rev. Biol. 49, 129–148 (1974).Article 

    Google Scholar 
    53.Faure, M. F., David, P., Bonhomme, F. & Bierne, N. Genetic hitchhiking in a subdivided population of Mytilus edulis. BMC Evol. Biol. 8, 164. https://doi.org/10.1186/1471-2148-8-164 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Bierne, N. The distinctive footprints of local hitchhiking in a varied environment and global hitchhiking in a subdivided population. Evolution 64(11), 3254–3272. https://doi.org/10.1111/j.1558-5646.2010.01050.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Suquet, M. et al. Anesthesia in Pacific oyster Crassostrea gigas. Aquat. Living Resour. 22, 29–34. https://doi.org/10.1051/alr/2009006 (2009).CAS 
    Article 

    Google Scholar 
    56.Lubet, P. Recherches sur le cycle sexuel et l’émission des gamètes chez les Mytilidés et les Pectinidés. Rev Trav Inst Pêches marit. 23(4), 390–548 (1959).
    Google Scholar 
    57.Bierne, N. et al. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M galloprovincialis. Mol. Ecol. 12(2), 447–61. https://doi.org/10.1046/j.1365-294x.2003.01730.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar  More