1.Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).
Google Scholar
2.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).
Google Scholar
3.Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. CRC Crit. Rev. Plant Sci. 22, 151–184 (2003).
Google Scholar
4.Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Chang. Biol. 4, 229–233 (1998).
Google Scholar
5.Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
Google Scholar
6.Grace, J. et al. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).
Google Scholar
7.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).
Google Scholar
8.Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).
Google Scholar
9.Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).
Google Scholar
10.Certini, G., Nocentini, C., Knicker, H., Arfaioli, P. & Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 167–168, 148–155 (2011).
Google Scholar
11.Jiménez-Morillo, N. T. et al. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 145, 266–273 (2016).
Google Scholar
12.Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).
Google Scholar
13.Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).
Google Scholar
14.Santin, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 22, 76–91 (2016).
Google Scholar
15.Czimczik, C. I. & Masiello, C. A. Controls on black carbon storage in soils. Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002798 (2007).16.Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).
Google Scholar
17.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2012JG002128 (2012).18.Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).
Google Scholar
19.Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).
Google Scholar
20.Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).
Google Scholar
21.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).
Google Scholar
22.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Google Scholar
23.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
Google Scholar
24.Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 21, 1189–1201 (2011).
Google Scholar
25.McKee, W. H. Changes in Soil Fertility Following Prescribed Burning on Coastal Plain Pine Sites Research Paper-RE-234 (US Department of Agriculture, 1982).26.Fynn, R. W. S., Haynes, R. J. & O’Connor, T. G. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biol. Biochem. 35, 677–687 (2003).
Google Scholar
27.Roscoe, R., Buurman, P., Velthorst, E. J. & Pereira, J. A. A. Effects of fire on soil organic matter in a “cerrado sensu-stricto” from southeast Brazil as revealed by changes in δ13C. Geoderma 95, 141–160 (2000).
Google Scholar
28.Phillips, D. H., Foss, J. E., Buckner, E. R., Evans, R. M. & FitzPatrick, E. A. Response of surface horizons in an oak forest to prescribed burning. Soil Sci. Soc. Am. J. 64, 754–760 (2000).
Google Scholar
29.Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Chang. 10, 1130–1136 (2020).
Google Scholar
30.Hartford, R. & Frandsen, W. When it’s hot, it’s hot… or maybe it’s not! (Surface flaming may not portend extensive soil heating). Int. J. Wildland Fire 2, 139–144 (1992).
Google Scholar
31.Pellegrini, A. F. A. et al. Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. J. Ecol. 108, 1426–1441 (2020).
Google Scholar
32.Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M. & Coomes, D. A. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300, 972–975 (2003).
Google Scholar
33.Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).
Google Scholar
34.Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).
Google Scholar
35.Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. For. Ecol. Manage. 140, 227–238 (2001).
Google Scholar
36.González-Pérez, J. A., González-Vila, F. J., Almendros, G. & Knicker, H. The effect of fire on soil organic matter—a review. Environ. Int. 30, 855–870 (2004).
Google Scholar
37.Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).
Google Scholar
38.Boyer, W. D. & Miller, J. H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. For. Ecol. Manage. 70, 311–318 (1994).
Google Scholar
39.Martin, A., Mariotti, A., balesdent, J., Lavelle, P. & Vuattoux, R. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol. Biochem. 22, 517–523 (1990).
Google Scholar
40.McKee, W. H. & Lewis, C. E. Influence of burning and grazing on soil nutrient properties and tree growth on a Georgia coastal plain site after 40 years. In Proc. Second Biennial Southern Silvicultural Research Station Conference (Ed. Jones, E. P. J.) 79–86 (US Department of Agriculture, 1983).41.Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manage. 250, 234–243 (2007).
Google Scholar
42.Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of Eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).
Google Scholar
43.Guinto, D. F., Xu, Z. H., House, A. P. N. & Saffigna, P. G. Soil chemical properties and forest floor nutrients under repeated prescribed-burning in eucalypt forests of south-east Queensland, Australia. N. Z. J. For. Sci. 31, 170–187 (2001).
Google Scholar
44.Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82 (2014).
Google Scholar
45.O’Donnell, J. A. et al. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob. Chang. Biol. 17, 1461–1474 (2011).
Google Scholar
46.Butnor, J. R. et al. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. For. Ecol. Manage. 390, 15–26 (2017).
Google Scholar
47.Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65–105 (1996).
Google Scholar
48.Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).
Google Scholar
49.Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).
Google Scholar
50.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).
Google Scholar
51.Lutzow, M. V. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 57, 426–445 (2006).
Google Scholar
52.Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).
Google Scholar
53.Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
Google Scholar
54.Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A. & Zavala, L. M. Fire effects on soil aggregation: a review. Earth Sci. Rev. 109, 44–60 (2011).
Google Scholar
55.Chen, H. Y. H. & Shrestha, B. M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 50, 149–157 (2012).
Google Scholar
56.Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).
Google Scholar
57.Jian, M., Berhe, A. A., Berli, M. & Ghezzehei, T. A. Vulnerability of physically protected soil organic carbon to loss under low severity fires. Front. Environ. Sci. 6, 66 (2018).
Google Scholar
58.Debano, L. F. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231, 195–206 (2000).
Google Scholar
59.Hallett, P. D. et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314, 183–196 (2009).
Google Scholar
60.Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).
Google Scholar
61.Hartnett, D. C., Potgieter, A. F. & Wilson, G. W. T. Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr. J. Ecol. 42, 328–337 (2004).
Google Scholar
62.Eom, A.-H., Hartnett, D. C., Wilson, G. W. T. & Figge, D. A. H. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am. Midl. Nat. 142, 55–70 (1999).
Google Scholar
63.Sankey, J. B. et al. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds. Geophys. Res. Lett. 44, 8884–8892 (2017).
Google Scholar
64.Van Oost, K. et al. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).
Google Scholar
65.Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy 130, 1–140 (2015).
Google Scholar
66.Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).
Google Scholar
67.Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697–710 (2000).
Google Scholar
68.Kaiser, K. & Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 54, 219–236 (2003).
Google Scholar
69.Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118 (2007).
Google Scholar
70.Ketterings, Q. M., Bigham, J. M. & Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117 (2000).
Google Scholar
71.Ulery, A. L., Graham, R. C. & Bowen, L. H. Forest fire effects on soil phyllosilicates in California. Soil Sci. Soc. Am. J. 60, 309–315 (1996).
Google Scholar
72.Fernández, I., Cabaneiro, A. & Carballas, T. Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 29, 1–11 (1997).
Google Scholar
73.Heckman, K., Campbell, J., Powers, H., Law, B. & Swanston, C. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA. Fire Ecol. 9, 40–56 (2013).
Google Scholar
74.Knicker, H., González-Vila, F. J. & González-Vázquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 56, 31–39 (2013).
Google Scholar
75.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).
Google Scholar
76.Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).
Google Scholar
77.Neff, J., Harden, J. & Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. For. 35, 2178–2187 (2005).
Google Scholar
78.Harden, J. W. et al. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002194 (2004).79.DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).
Google Scholar
80.Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties. Biogeosci. Discuss. 3, 211–271 (2006).
Google Scholar
81.Krishnaraj, S. J., Baker, T. G., Polglase, P. J., Volkova, L. & Weston, C. J. Prescribed fire increases pyrogenic carbon in litter and surface soil in lowland Eucalyptus forests of south-eastern Australia. For. Ecol. Manage. 366, 98–105 (2016).
Google Scholar
82.Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).
Google Scholar
83.Knicker, H., Almendros, G., González-Vila, F. J., Martin, F. & Lüdemann, H. D. 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol. Biochem. 28, 1053–1060 (1996).
Google Scholar
84.Waldrop, M. P. & Harden, J. W. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob. Chang. Biol. 14, 2591–2602 (2008).
Google Scholar
85.Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).
Google Scholar
86.Wang, Q., Zhong, M. & Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manage. 271, 91–97 (2012).
Google Scholar
87.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).
Google Scholar
88.Beringer, J. et al. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 12, 333–340 (2003).
Google Scholar
89.Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).
Google Scholar
90.Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).
Google Scholar
91.Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46 (2013).
Google Scholar
92.Gongalsky, K. B. et al. Forest fire induces short-term shifts in soil food webs with consequences for carbon cycling. Ecol. Lett. 24, 438–450 (2021).
Google Scholar
93.Wardle, D. A., Nilsson, M.-C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320, 629 (2008).
Google Scholar
94.Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).
Google Scholar
95.Harden, J. W. et al. The role of fire in the boreal carbon budget. Glob. Chang. Biol. 6, 174–184 (2000).
Google Scholar
96.Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).
Google Scholar
97.Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).
Google Scholar
98.Pellegrini, A. F. A. et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob. Chang. Biol. 27, 3810–3823 (2021).
Google Scholar
99.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Google Scholar
100.Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).
Google Scholar
101.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 6497 (2020).
Google Scholar
102.Walker, R. B., Coop, J. D., Parks, S. A. & Trader, L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9, e02182 (2018).
Google Scholar
103.Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2 (Oak Ridge National Laboratory, 2014); https://doi.org/10.3334/ORNLDAAC/1247104.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Google Scholar
105.Oliveras, I. et al. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int. J. Wildland Fire 22, 368–380 (2013).
Google Scholar
106.Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine – Douglas-fir forests in western Montana. Can. J. For. Res. 30, 274–282 (2000).
Google Scholar
107.Bormann, B. T., Homann, P. S., Darbyshire, R. L. & Morrissette, B. A. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can. J. For. Res. 38, 2771–2783 (2008).
Google Scholar
108.Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82, 1703–1719 (2001).
Google Scholar
109.O’Neill, K. P., Richter, D. D. & Kasischke, E. S. Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry 80, 1–20 (2006).
Google Scholar
110.Köster, E. et al. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J. Environ. Manage. 228, 405–415 (2018).
Google Scholar
111.Zhao, H., Tong, D. Q., Lin, Q., Lu, X. & Wang, G. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189–190, 532–539 (2012).
Google Scholar
112.Kuzyakov, Y., Friedel, J. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).
Google Scholar
113.Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 8, 512–523 (2016).
Google Scholar
114.Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol. 5, 504–512 (2021).
Google Scholar
115.Peterson, D. W., Reich, P. B., Wrage, K. J. & Franklin, J. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. J. Veg. Sci. 18, 3–12 (2007).
Google Scholar
116.Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4, 80 (2016).
Google Scholar
117.Loades, K. W., Bengough, A. G., Bransby, M. F. & Hallett, P. D. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng. 36, 276–284 (2010).
Google Scholar
118.Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J. Geophys. Res. 112, G02029 (2007).
Google Scholar
119.Aaltonen, H. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 143, 257–274 (2019).
Google Scholar
120.Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Appl. 14, 1826–1838 (2004).
Google Scholar
121.Kelly, J. et al. Boreal forest soil carbon fluxes one year after a wildfire: effects of burn severity and management. Glob. Chang. Biol. 27, 4181–4195 (2021).
Google Scholar
122.Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644 (2019).
Google Scholar More