More stories

  • in

    Hydrogen peroxide can be a plausible biomarker in cyanobacterial bloom treatment

    1.Barrington, D. J. & Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobcteria and other phytoplankton from waste water. Environ. Sci. Technol. 4(23), 8916–8921 (2008).ADS 

    Google Scholar 
    2.Lurling, M., Meng, D. & Fassen, E. L. Effects of hydrogen peroxide and ultrasound on biomass reduction and toxin release in cyanobacterium, Microcytis aeruginosa. Toxins 6(12), 3260–3281 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    3.Ghime, D. & Ghosh, P. Advanced oxidation processes: A powerful treatment option for the removal of recalcitrant organic compounds. In Advanced Oxidation Processes-Applications, Trends, and Prospects (IntechOpen, 2020).4.Rahdar, S., Igwegbe, C. A., Ghasem, M. & Ahmadi, S. Degradation of aniline by the combined process of ultrasound and hydrogen peroxide (US/H2O2). MethodsX 6, 492–499 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    5.Derakhshan, Z. et al. Evaluation of kenaf fibers as moving bed biofilm carriers in algal membrane photobioreactor. Ecotoxicol. Environ. Saf. 152, 1–7 (2018).PubMed 
    CAS 

    Google Scholar 
    6.Shekoohiyan, S. et al. Performance evaluation of cyanobacteria removal from water reservoirs by biological method. Afr. J. Microbiol. Res. 7(17), 1729–1734 (2013).CAS 

    Google Scholar 
    7.Cooper, W. J., Zika, R., Petasne, R. G. & Plane, J. M. Photochemical formation of hydrogen peroxide in natural waters exposed to sunlight. Environ. Sci. Technol. 22, 1156–1160. https://doi.org/10.1021/es00175a004 (1988).ADS 
    Article 
    PubMed 
    CAS 

    Google Scholar 
    8.Cooper, W. J., Lean, D. R. S. & Carey, J. H. Spatial and temporal patterns of hydrogen peroxide in lake waters. Can. J. Fish. Aquat. Sci. 46, 1227–1231. https://doi.org/10.1139/f89-158 (1989).Article 
    CAS 

    Google Scholar 
    9.Cory, R. M. et al. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00054 (2016).Article 

    Google Scholar 
    10.Caverzan, A. et al. Plant responses to stresses: Role of ascorbate peroxidase in the antioxidant protection. Genet. Mol. Biol. 35(4), 1011–1019 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    11.Sharma, P., Jha, A. B., Dubey, R. S. & Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012, 1–26 (2012).
    Google Scholar 
    12.Ugya, A. Y., Imam, T. S., Li, A., Ma, J. & Hua, X. Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production: A mini review. J. Chem. Ecol. 36(2), 174–193 (2020).CAS 

    Google Scholar 
    13.Rastogi, R. P., Singh, S. P., Häder, D.-P. & Sinha, R. P. Detection of reactive oxygen species (ROS) by the oxidant-sensing probe 2′,7′-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Biophys. Res. Commun. 397(3), 603–607 (2010).PubMed 
    CAS 

    Google Scholar 
    14.Foyer, C. H. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ. Exp. Bot. 154, 134–142 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    15.Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12), 909–930 (2010).PubMed 
    CAS 

    Google Scholar 
    16.Ma, Z. & Gao, K. Spiral breakage and photoinhibition of Arthrospira platensis (Cyanophyta) caused by accumulation of reactive oxygen species under solar radiation. Environ. Exp. Bot. 68(2), 208–213 (2010).CAS 

    Google Scholar 
    17.Welkie, D. G. et al. A hard day’s night: Cyanobacteria in diel cycles. Trends Microbiol. 27(3), 231–242 (2019).PubMed 
    CAS 

    Google Scholar 
    18.Latifi, A., Ruiz, M. & Zhang, C. C. Oxidative stress in cyanobacteria. FEMS Microbiol. Rev. 33(2), 258–278 (2009).PubMed 
    CAS 

    Google Scholar 
    19.Lea-Smith, D. J., Bombelli, P., Vasudevan, R. & Howe, C. J. Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochim. Biophys. Acta (BBA) Bioenerg. 1857(3), 247–255 (2016).CAS 

    Google Scholar 
    20.Raja, V., Majeed, U., Kang, H., Andrabi, K. I. & John, R. Abiotic stress: Interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 137, 142–157 (2017).CAS 

    Google Scholar 
    21.Asada, S., Fukuda, K., Oh, M., Hamanishi, C. & Tanaka, S. Effect of hydrogen peroxide on the metabolism of articular chondrocytes. Inflamm. Res. 48(7), 399–403 (1999).PubMed 
    CAS 

    Google Scholar 
    22.Nishiyama, Y. & Murata, N. Revised scheme for the mechanisms of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl. Microbiol. Biotechnol. 98(21), 8777–8796 (2014).PubMed 
    CAS 

    Google Scholar 
    23.Mikula, P., Zezulka, S., Jancula, D. & Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa—New findings on hydrogen peroxide toxicity in cyanobacteria. Eur. J. Phycol. 47(3), 195–206 (2012).CAS 

    Google Scholar 
    24.Huisman, J. & Hulot, F. D. Population dynamics of harmful cyanobacteria. In Harmful Cyanobacteria, 143–176 (Springer, 2005).25.Bergström, A. K. The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquat. Sci. 72(3), 277–281 (2010).
    Google Scholar 
    26.Downing, J. A. & McCauley, E. The nitrogen: Phosphorus relationship in lakes. Limnol. Oceanogr. 37(5), 936–945 (1992).ADS 
    CAS 

    Google Scholar 
    27.Horne, A. J. & Goldman, C. R. Limnology Vol. 2 (McGraw-Hill, 1994).
    Google Scholar 
    28.Mittler, R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002 (2006).Article 
    PubMed 
    CAS 

    Google Scholar 
    29.Saints, M., Diaz, P., Monza, J. & Borsani, O. Heat stress results in loss of chloroplast Cu/Zn superoxide dismutase and increased damage to Photosystem II in combined drought-heat stressed Lotus japonicus. Physiol. Plant 140(1), 46–56. https://doi.org/10.1111/j.1399-3054.2010.01383.x (2010).Article 
    CAS 

    Google Scholar 
    30.Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E. & Mittler, R. Abiotic and biotic stress combinations. New Phytol. 203(1), 3–43. https://doi.org/10.1111/nph.12797 (2014).Article 

    Google Scholar 
    31.Asaeda, T. & Barnuevo, A. Oxidative stress as an indicator of niche-width preference of mangrove Rhizophora stylosa. For. Ecol. Manag. 432, 73–82 (2019).
    Google Scholar 
    32.Asaeda, T., Senavirathna, M. D. H. J., Vamsi Krishna, L. & Yoshida, N. Impact of regulated water levels on willows (Salix subfragilis) at a flood-control dam, and the use of hydrogen peroxide as an indicator of environmenal stress. Ecol. Eng. 127, 96–102 (2019).
    Google Scholar 
    33.Asaeda, T., Senavirathna, M. D. H. J. & Vamsi Krishna, L. Evaluation of habitat preferance of invasive macrophyte Egeria densa in different channel slopes using hydrogen peroxide as an indicator. Front. Plant Sci. 11, 422. https://doi.org/10.3389/fpls.2020.00422 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Diaz, J. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: Past and future directions. J. Plankton Res. 40(6), 655–666 (2018).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    35.Drábková, M., Admiraal, W. & Maršálek, B. Combined exposure to hydrogen peroxide and PAR selective effects on cyanobacteria, green algae, and diatoms. Environ. Sci. Technol. 41(1), 309–314 (2007).ADS 
    PubMed 

    Google Scholar 
    36.Bouchard, J. N. & Purdie, D. A. Effect of elevated temperature, darkness and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol. 47(6), 1316–1325 (2011).PubMed 
    CAS 

    Google Scholar 
    37.Leunert, F., Eckert, W., Paul, A., Gerhardt, V. & Grossart, H. P. Phytoplanktonic response to UV-generated hydrogen peroxide from natural organic matter. J. Plankton Res. 36(1), 185–197. https://doi.org/10.1093/plankt/fbt096 (2014).Article 
    CAS 

    Google Scholar 
    38.Wang, B. et al. Optimization method for Microcystis bloom mitigation by hydrogen peroxide and its stimulative effects on growth of chlorophytes. Chemosphere 228, 503–512 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    39.Foo, S. C., Chapman, I. J., Hartnell, D. M., Turner, A. D. & Franklin, D. J. Effects of H2O2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. Environ. Sci. Pollut. Res. 27(31), 38916–38927 (2020).CAS 

    Google Scholar 
    40.Barrington, D. J., Reichwaldt, E. S. & Ghadouani, A. The use of hydrogen peroxide to remove cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic systems. Ecol. Eng. 50, 86–94 (2013).
    Google Scholar 
    41.Drábková, M., Matthijs, H., Admiraal, W. & Maršálek, B. Selective effects of H2O2 on cyanobacterial photosynthesis. Photosynthetica 45(3), 363–369 (2007).
    Google Scholar 
    42.Marsac, N. T. D. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 130(1), 82–91 (1977).
    Google Scholar 
    43.Garcia, P. E., Queimalinos, C. & Dieguez, M. C. Natural levels and photo-production rates of hydrogen peroxide (H2O2) in Andean Patagonian aquatic sysyems: Influence of the dissolved organic matter pool. Chemosphere 217, 550–557 (2019).ADS 
    PubMed 
    CAS 

    Google Scholar 
    44.Herrmann, R. The daily changing pattern of hydrogen peroxide in New Zealand surface waters. Environ. Toxicol. Chem. 15(5), 652–662 (1996).CAS 

    Google Scholar 
    45.Spoof, L. et al. Elimination of cyanobacteria and microcystins in irrigation water—Effects of hydrogen peroxide treatment. Environ. Sci. Pollut. Res. 27(8), 8638–8652. https://doi.org/10.1007/s11356-019-07476-x (2020).Article 
    CAS 

    Google Scholar 
    46.Lopez, C. V. G. et al. Protein measuremements of microalgae and cyanobacterial biomass. Bioresour. Technol. 101(19), 7587–7591 (2010).PubMed 

    Google Scholar 
    47.Vesterkvist, P. S. M., Misiorek, J. O., Spoof, L. E. M., Toivola, D. M. & Meriluoto, J. A. O. Comparative cellular toxicity of hydrophilic and hydrophobic microcystins on Caco-2 cells. Toxins 4(11), 1008–1023 (2012).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    48.Preece, E. P., Hardy, F. J., Moore, B. C. & Bryan, M. A review of microcystin detections in estuarine and marine waters: Environmental implications and human health risk. Harmful Algae 61, 31–45 (2017).CAS 

    Google Scholar 
    49.Pham, T.-L. & Utsumi, M. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manag. 213, 520–529 (2018).CAS 

    Google Scholar 
    50.Goldman, J. C., McCarthy, J. J. & Peavey, D. G. Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature 279(5710), 210–215 (1979).ADS 
    CAS 

    Google Scholar 
    51.Paerl, H. W., Fulton, R. S. 3rd., Moisander, P. H. & Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World. J. 1, 76–113 (2001).CAS 

    Google Scholar 
    52.Xie, L., Xie, P., Li, S., Tang, H. & Liu, H. The low TN:TP ratio, a case or result of Microcystis blooms?. Water Res. 37(9), 2073–2080 (2003).PubMed 
    CAS 

    Google Scholar 
    53.Asaeda, T., Rashid, M. H. & Schoelynck, J. Tissue hydrogen peroxide concentration can explain the invasiveness of aquatic macrophytes: A modeling perspective. Front. Environ. Sci. 8, 292 (2021).ADS 

    Google Scholar 
    54.Hesse, K., Dittman, E. & Borner, T. Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol. Ecol. 37(1), 39–43 (2001).CAS 

    Google Scholar 
    55.Tilzer, M. M. Light‐dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwater Res. 21(3), 401-412 (1987).Article 
    CAS 

    Google Scholar 
    56.Iwase, S. & Abe, Y. Identification and change in concentration of musty-odor compounds during growth in blue–green algae. J. Mar. Sci. Technol. 8(1), 27–33 (2010).
    Google Scholar 
    57.Abeynayaka, H. D. L., Asaeda, T. & Kaneko, Y. Buoyancy limitation of filamentous cyanobacteria under prolonged pressure due to the gas vesicle collapse. Environ. Manag. 60(2), 293–303 (2017).ADS 

    Google Scholar 
    58.Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111(1), 1–61 (1979).
    Google Scholar 
    59.Jana, S. & Choudhuri, M. A. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12, 345–354 (1982).CAS 

    Google Scholar 
    60.Veljovic-Jovanovic, S., Noctor, G. & Foer, C. H. Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol. Biochem. 40, 501–507 (2002).CAS 

    Google Scholar 
    61.Cheeseman, J. M. Hydrogen peroxide concentrations in leaves under natular conditions. J. Exp. Bot. 57(10), 2435–2444 (2006).PubMed 
    CAS 

    Google Scholar 
    62.Queval, G., Hager, J., Gakiere, B. & Noctor, G. Why are literature data for H2O2 contents so variable? A discussion of potential difficulties in the quantitative assay of leaf extracts. J. Exp. Bot. 59(2), 135–146. https://doi.org/10.1093/jxb/erm193 (2008).Article 
    PubMed 
    CAS 

    Google Scholar 
    63.Aebi, H. Catalase in vitro. Methods Enzymol. 105, 121–126 (1984).PubMed 
    CAS 

    Google Scholar 
    64.Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22(5), 867–880 (1981).CAS 

    Google Scholar 
    65.Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and non enzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).PubMed 
    CAS 

    Google Scholar  More

  • in

    Temporally consistent predominance and distribution of secondary malaria vectors in the Anopheles community of the upper Zambezi floodplain

    1.Russell, T. L., Beebe, N. W., Cooper, R. D., Lobo, N. F. & Burkot, T. R. Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J. 12, 56. https://doi.org/10.1186/1475-2875-12-56 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Mouchet, J. et al. Biodiversité du paludisme dans le monde. (Editions John Libbey Eurotext, 2004).3.Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit Vectors 13, 295. https://doi.org/10.1186/s13071-020-04170-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Antonio-Nkondjio, C. et al. Complexity of the malaria vectorial system in Cameroon: contribution of secondary vectors to malaria transmission. J. Med. Entomol. 43, 1215–1221. https://doi.org/10.1093/jmedent/43.6.1215 (2006).Article 
    PubMed 

    Google Scholar 
    5.Afrane, Y. A., Bonizzoni, M. & Yan, G. in Current Topics in Malaria Ch. 20, (2016).6.Goupeyou-Youmsi, J. et al. Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighboring villages of Madagascar. bioRxiv 13, 430, https://doi.org/10.1101/787432 (2019).7.Ranson, H. & Lissenden, N. Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control. Trends Parasitol. 32, 187–196. https://doi.org/10.1016/j.pt.2015.11.010 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Killeen, G. F. Control of malaria vectors and management of insecticide resistance through universal coverage with next-generation insecticide-treated nets. Lancet 395, 1394–1400. https://doi.org/10.1016/s0140-6736(20)30745-5 (2020).Article 
    PubMed 

    Google Scholar 
    9.Kreppel, K. S. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10, 14527. https://doi.org/10.1038/s41598-020-71187-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    10.Chinula, D. et al. Proportional decline of Anopheles quadriannulatus and increased contribution of An. arabiensis to the An. gambiae complex following introduction of indoor residual spraying with pirimiphos-methyl: an observational, retrospective secondary analysis of pre-existing data from south-east Zambia. Parasit Vectors 11, 544, https://doi.org/10.1186/s13071-018-3121-0 (2018).11.Lwetoijera, D. W. et al. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 13, 331. https://doi.org/10.1186/1475-2875-13-331 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Russell, T. L. et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 9, 187. https://doi.org/10.1186/1475-2875-9-187 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Sougoufara, S., Harry, M., Doucoure, S., Sembene, P. M. & Sokhna, C. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal. Med. Vet. Entomol. 30, 365–368. https://doi.org/10.1111/mve.12171 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Agyekum, T. P. et al. A systematic review of the effects of temperature on Anopheles mosquito development and survival: Implications for malaria control in a future warmer climate. Int. J. Environ. Res. Public Health 18, 7255 (2021).CAS 
    Article 

    Google Scholar 
    15.Smith, M. W. et al. Incorporating hydrology into climate suitability models changes projections of malaria transmission in Africa. Nat. Commun. 11, 4353. https://doi.org/10.1038/s41467-020-18239-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Chemison, A. et al. Impact of an accelerated melting of Greenland on malaria distribution over Africa. Nat. Commun. 12, 3971. https://doi.org/10.1038/s41467-021-24134-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    17.Thomas, C. J., Davies, G. & Dunn, C. E. Mixed picture for changes in stable malaria distribution with future climate in Africa. Trends Parasitol. 20, 216–220. https://doi.org/10.1016/j.pt.2004.03.001 (2004).Article 
    PubMed 

    Google Scholar 
    18.Carnevale, P. & Manguin, S. Review of issues on residual malaria transmission. J. Infect. Dis. 223, S61–S80. https://doi.org/10.1093/infdis/jiab084 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Killeen, G. F., Chaki, P. P., Reed, T. E., Moyes, C. L. & Govella, N. J. in Towards Malaria Elimination – A Leap Forward Ch. 17, (2018).20.Killeen, G. F. Characterizing, controlling and eliminating residual malaria transmission. Malar J. 13, 330. https://doi.org/10.1186/1475-2875-13-330 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145, 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Lobo, N. F. et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci. Rep. https://doi.org/10.1038/srep17952 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.St Laurent, B. et al. Molecular characterization reveals diverse and unknown malaria vectors in the western Kenyan highlands. Am. J. Trop. Med. Hyg. 94, 327–335. https://doi.org/10.4269/ajtmh.15-0562 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Zhong, D. et al. Extensive new Anopheles cryptic species involved in human malaria transmission in western Kenya. Sci. Rep. 10, 16139. https://doi.org/10.1038/s41598-020-73073-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    25.Killeen, G. F. et al. Developing an expanded vector control toolbox for malaria elimination. BMJ Glob. Health 2, e000211. https://doi.org/10.1136/bmjgh-2016-000211 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Dambach, P. et al. Reduction of malaria vector mosquitoes in a large-scale intervention trial in rural Burkina Faso using Bti based larval source management. Malar J. 18, 311. https://doi.org/10.1186/s12936-019-2951-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Fillinger, U. & Lindsay, S. W. Suppression of exposure to malaria vectors by an order of magnitude using microbial larvicides in rural Kenya. Trop. Med. Int. Health 11, 1629–1642. https://doi.org/10.1111/j.1365-3156.2006.01733.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Hardy, A., Makame, M., Cross, D., Majambere, S. & Msellem, M. Using low-cost drones to map malaria vector habitats. Parasit Vectors 10, 29. https://doi.org/10.1186/s13071-017-1973-3 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Lwetoijera, D. et al. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopheles arabiensis in semi-field settings in Tanzania. Malar J. 13, 161. https://doi.org/10.1186/1475-2875-13-161 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Majambere, S., Lindsay, S. W., Green, C., Kandeh, B. & Fillinger, U. Microbial larvicides for malaria control in The Gambia. Malaria J. https://doi.org/10.1186/1475-2875-6-76 (2007).Article 

    Google Scholar 
    31.Unlu, I., Faraji, A., Wang, Y., Rochlin, I. & Gaugler, R. Heterodissemination: precision insecticide delivery to mosquito larval habitats by cohabiting vertebrates. Sci. Rep. 11, 14119. https://doi.org/10.1038/s41598-021-93492-2 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Majambere, S. et al. Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in The Gambia? A cross-over intervention trial. Am. J. Trop. Med. Hyg. 82, 176–184. https://doi.org/10.4269/ajtmh.2010.09-0373 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Dongus, S. et al. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Int. J. Health Geogr. 6, 37. https://doi.org/10.1186/1476-072X-6-37 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Ferguson, H. M. et al. Ecology: a prerequisite for malaria elimination and eradication. PLoS Med. 7, e1000303. https://doi.org/10.1371/journal.pmed.1000303 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Gu, W., Utzinger, J. & Novak, R. J. Habitat-based larval interventions: A new perspective for malaria control. Am. J. Trop. Med. Hyg. 78, 2–6 (2008).Article 

    Google Scholar 
    36.Cross, D. E. et al. Geographically extensive larval surveys reveal an unexpected scarcity of primary vector mosquitoes in a region of persistent malaria transmission in western Zambia. Parasit Vectors 14, 91. https://doi.org/10.1186/s13071-020-04540-1 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Orba, Y. et al. First isolation of West Nile virus in Zambia from mosquitoes. Transbound Emerg. Dis. 65, 933–938. https://doi.org/10.1111/tbed.12888 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Wastika, C. E. et al. Discoveries of exoribonuclease-resistant structures of insect-specific flaviviruses isolated in Zambia. Viruses https://doi.org/10.3390/v12091017 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Hulsman, P., Savenije, H. H. G. & Hrachowitz, M. Satellite-based drought analysis in the Zambezi River Basin: Was the 2019 drought the most extreme in several decades as locally perceived?. J. Hydrol. Reg. Stud. https://doi.org/10.1016/j.ejrh.2021.100789 (2021).Article 

    Google Scholar 
    40.Hardy, A. et al. Automatic detection of open and vegetated water bodies using Sentinel 1 to map African malaria vector mosquito breeding habitats. Remote Sensing 11, 593. https://doi.org/10.3390/rs11050593 (2019).Article 
    ADS 

    Google Scholar 
    41.Del Rio, T., Groot, J. C. J., DeClerck, F. & Estrada-Carmona, N. Integrating local knowledge and remote sensing for eco-type classification map in the Barotse Floodplain, Zambia. Data Brief 19, 2297–2304. https://doi.org/10.1016/j.dib.2018.07.009 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Timberlake, J. Biodiversity of the Zambezi Basin wetlands: Review and preliminary assessment of available information. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1997).43.Turpie, J., Smith, B., Emerton, L. & Barnes, J. Economic valuation of the Zambezi basin wetlands. IUCN – The World Conservation Union Regional Office for Southern Africa, Harare, Zimbabwe (1999).44.Ciubotariu, I. I. et al. Genetic diversity of Anopheles coustani in high malaria transmission foci in southern and central Africa. J. Med. Entom. 57, 1–11. https://doi.org/10.1093/jme/tjaa132 (2020).CAS 
    Article 

    Google Scholar 
    45.Jones, C. M. Vector biology and genomics of Anopheles in southern and central Africa PhD thesis, John Hopkins Bloomberg School of Public Health, (2019).46.Stephen, A., Nicholas, K., Busula, A. O., Webale, M. K. & Omukunda, E. Detection of Plasmodium sporozoites in Anopheles coustani s.l; a hindrance to malaria control strategies in highlands of western Kenya. bioRxiv, https://doi.org/10.1101/2021.02.10.430589 (2021).47.Tedrow, R. E. et al. Anopheles mosquito surveillance in Madagascar reveals multiple blood feeding behavior and Plasmodium infection. PLoS Negl. Trop. Dis. 13, e0007176. https://doi.org/10.1371/journal.pntd.0007176 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Taye, B., Lelisa, K., Emana, D., Asale, A. & Yewhalaw, D. Seasonal dynamics, longevity, and biting activity of anopheline mosquitoes in southwestern Ethiopia. J. Insect. Sci. https://doi.org/10.1093/jisesa/iev150 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Sikaala, C. H. et al. A cost-effective, community-based, mosquito-trapping scheme that captures spatial and temporal heterogeneities of malaria transmission in rural Zambia. Malar J. 13, 225. https://doi.org/10.1186/1475-2875-13-225 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.De Meillon, B. The anophelini of the Ethiopian geographical region. Publ. South Afr. Inst. Med. Res. 49, 1–272 (1947).
    Google Scholar 
    51.Gillies, M. T. & De Meillon, B. The Anophelinae of Africa south of the Sahara (Ethiopian Zoogeographical Region). Publ. South Afr. Inst. Med. Res. 54, 1–343 (1968).
    Google Scholar 
    52.Dida, G. O. et al. Spatial distribution and habitat characterization of mosquito species during the dry season along the Mara River and its tributaries, in Kenya and Tanzania. Infect. Dis. Poverty 7, 2. https://doi.org/10.1186/s40249-017-0385-0 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Njoroge, M. M. et al. Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya. Parasit Vectors 10, 18. https://doi.org/10.1186/s13071-016-1957-8 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Kibret, S. et al. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop. Med. Int. Health 15, 41–50. https://doi.org/10.1111/j.1365-3156.2009.02423.x (2010).Article 
    PubMed 

    Google Scholar 
    55.Coetzee, M. Anopheles crypticus, new species from South Africa is distinguished from Anopheles coustani (Diptera: Culicidae). Mosq. Syst. 26, 125–131 (1994).
    Google Scholar 
    56.Gillies, M. T. & Coetzee, M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical Region). Publ. South Afr. Inst. Med. Res. 55, 1–143 (1987).
    Google Scholar 
    57.Coetzee, M. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J. 19, 70. https://doi.org/10.1186/s12936-020-3144-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Carter, T. E., Yared, S., Hansel, S., Lopez, K. & Janies, D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 18, 135. https://doi.org/10.1186/s12936-019-2768-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Degefa, T. et al. Indoor and outdoor malaria vector surveillance in western Kenya: implications for better understanding of residual transmission. Malar J. 16, 443. https://doi.org/10.1186/s12936-017-2098-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Nepomichene, T. N. J. J., Tata, E. & Boyer, S. Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malaria J. 14, 475. https://doi.org/10.1186/s12936-015-1004-9 (2015).CAS 
    Article 

    Google Scholar 
    61.Finney, M. et al. Widespread zoophagy and detection of Plasmodium spp. in Anopheles mosquitoes in southeastern Madagascar. Malar J. 20, 25. https://doi.org/10.1186/s12936-020-03539-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Mwangangi, J. M. et al. The role of Anopheles arabiensis and Anopheles coustani in indoor and outdoor malaria transmission in Taveta District, Kenya. Parasit Vectors 6, 114. https://doi.org/10.1186/1756-3305-6-114 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Hoffman, J. E. et al. Phylogenetic complexity of morphologically identified Anopheles squamosus in southern Zambia. Insects 12, 146. https://doi.org/10.3390/insects12020146 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Fornadel, C. M., Norris, L. C., Franco, V. & Norris, D. E. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector Borne Zoonotic Dis. 11, 1173–1179. https://doi.org/10.1089/vbz.2010.0082 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Wilkes, T. J., Matola, Y. G. & Charlwood, J. D. Anopheles rivulorum, a vector of human malaria in Africa. Med. Vet. Entomol. 10, 108–110. https://doi.org/10.1111/j.1365-2915.1996.tb00092.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Majambere, S., Fillinger, U., Sayer, D. R., Green, C. & Lindsay, S. W. Spatial distribution of mosquito larvae and the potential for targeted larval control in The Gambia. Am. J. Trop. Med. Hyg. 79, 19–27 (2008).Article 

    Google Scholar 
    67.Thomas, C. J., Cross, D. E. & Bogh, C. Landscape movements of Anopheles gambiae malaria vector mosquitoes in rural Gambia. PLoS ONE https://doi.org/10.1371/journal.pone.0068679 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hardy, A. J. et al. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa. PLoS ONE 8, e81931. https://doi.org/10.1371/journal.pone.0081931 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    69.Kent, R. J., Thuma, P. E., Mharakurwa, S. & Norris, D. E. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am. J. Trop. Med. Hyg. 76, 267–274 (2007).Article 

    Google Scholar 
    70.Imbahale, S. S. et al. A longitudinal study on Anopheles mosquito larval abundance in distinct geographical and environmental settings in western Kenya. Malar J. 10, 81. https://doi.org/10.1186/1475-2875-10-81 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Bayoh, M. N. et al. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J. 9, 62. https://doi.org/10.1186/1475-2875-9-62 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mawejje, H. D. et al. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J. 20, 138. https://doi.org/10.1186/s12936-021-03675-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Stevenson, J. C. et al. Spatio-temporal heterogeneity of malaria vectors in northern Zambia: Implications for vector control. Parasit Vectors 9, 510. https://doi.org/10.1186/s13071-016-1786-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Dabire, K. R. et al. Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso. J. Vector Ecol. 33, 70–75. https://doi.org/10.3376/1081-1710(2008)33[70:ytyasv]2.0.co;2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Tuno, N., Githeko, A., Yan, G. & Takagi, M. Interspecific variation in diving activity among Anopheles gambiae Giles, An. arabiensis Patton, and An. funestus Giles (Diptera: Culicidae) larvae. J. Vector Ecol. 32, 112–117. https://doi.org/10.3376/1081-1710(2007)32[112:ividaa]2.0.co;2 (2007).Article 
    PubMed 

    Google Scholar 
    76.Nambunga, I. H. et al. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J. 19, 219. https://doi.org/10.1186/s12936-020-03295-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control. Malar J. 8, 123. https://doi.org/10.1186/1475-2875-8-123 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Kweka, E. J. et al. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes. PLoS ONE 7, e52084. https://doi.org/10.1371/journal.pone.0052084 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    79.Libanda, B. & Ngonga, C. Projection of frequency and intensity of extreme precipitation in Zambia: a CMIP5 study. Climate Res. 76, 59–72. https://doi.org/10.3354/cr01528 (2018).Article 
    ADS 

    Google Scholar 
    80.Zimba, H. et al. Assessment of trends in inundation extent in the Barotse Floodplain, upper Zambezi River Basin: A remote sensing-based approach. J. Hydrol. Reg. Stud. 15, 149–170. https://doi.org/10.1016/j.ejrh.2018.01.002 (2018).Article 

    Google Scholar 
    81.Hamududu, B. H. & Killingtveit, A. Hydropower production in future climate scenarios; the case for the Zambezi River. Energies https://doi.org/10.3390/en9070502 (2016).Article 

    Google Scholar 
    82.IUCN. Barotse Floodplain, Zambia: Local economic dependence on wetland resources. IUCN – The World Conservation Union, Harare, Zimbabwe (2003).83.Moore, A. E., Cotterill, F.P.D., Main, M.P.L., Williams, H.B. in Large Rivers: Geomorphology and Management (ed Avijit Gupta) Ch. 15, (Wiley, 2007).84.Heyden, C. J. V. D. The hydrology and hydrogeology of dambos: a review. Prog. Phys. Geog. 28, 544–564. https://doi.org/10.1191/0309133304pp424oa (2004).Article 

    Google Scholar 
    85.Derua, Y. A. et al. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malaria J. https://doi.org/10.1186/1475-2875-11-188 (2012).Article 

    Google Scholar 
    86.Kröckel, U., Rose, A., Eiras, Á. E. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. J. Am. Mosq. Control Assoc. 22, 229–238. https://doi.org/10.2987/8756-971x(2006)22[229:Ntfsoa]2.0.Co;2 (2006).Article 
    PubMed 

    Google Scholar 
    87.Gama, R. A., Silva, I. M., Geier, M. & Eiras, A. E. Development of the BG-Malaria trap as an alternative to human-landing catches for the capture of Anopheles darlingi. Mem. Inst. Oswaldo Cruz 108, 763–771. https://doi.org/10.1590/0074-0276108062013013 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Ribeiro, J. M., Seulu, F., Abose, T., Kidane, G. & Teklehaimanot, A. Temporal and spatial distribution of anopheline mosquitos in an Ethiopian village: implications for malaria control strategies. Bull. World Health Organ. 74, 299–305 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Russell, T. L. et al. Geographic coincidence of increased malaria transmission hazard and vulnerability occurring at the periphery of two Tanzanian villages. Malar J. 12, 24. https://doi.org/10.1186/1475-2875-12-24 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Smith, D. L., Dushoff, J. & McKenzie, F. E. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol. 2, e368. https://doi.org/10.1371/journal.pbio.0020368 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Midega, J. T. et al. Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat. Commun. 3, 674. https://doi.org/10.1038/ncomms1672 (2012).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    92.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Singh, B. et al. A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am. J. Trop. Med. Hyg. 60, 687–692. https://doi.org/10.4269/ajtmh.1999.60.687 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    94.QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2021).95.Postma, M. & Goedhart, J. PlotsOfData – A web app for visualizing data together with their summaries. PLoS Biol 17, e3000202. https://doi.org/10.1371/journal.pbio.3000202 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.IBM SPSS Statistics for Windows, Version 25.0 (Armonk, NY, 2017).97.Rita, H. & Komonen, A. Odds ratio: an ecologically sound tool to compare proportions. Ann. Zool. Fenn. 45, 66–72. https://doi.org/10.5735/086.045.0106 (2008).Article 

    Google Scholar  More

  • in

    Air pollution from gas refinery through contamination with various elements disrupts semiarid Zagros oak (Quercus brantii Lindl.) forests, Iran

    Description of study areasIGR plant (33° 42/N, 46° 13/E) is located along the edge of the mountains of Zagros forests and 25 km from Ilam city. Its main activity, to supply gas to the western provinces of Iran, started in 2007. It converts sour gas to sweet gas and also produces various products such as pastil sulfur, ethane, and liquefied gas. The refinery has two chimneys, which release waste gases into the atmosphere. Oak trees are the main tree species of the Zagros forests around the refinery; these are exposed to various air pollutants and different elements from this source. Based on random analysis of exhaust emissions, sulfur dioxide and sulfide hydrogen are the major pollutants emitted from the flare gases of this refinery plant34. The sampling points have an average altitude of about 1000–1250 m and a slope of less than 20%. The climate of the region is semiarid and influenced by Mediterranean winds. The predominant wind direction was west and southwest. The highest and lowest air temperatures were 41.4 °C and − 11.3 °C, respectively. The average annual rainfall was 71.94 mm (http://www.amarilam.ir).Samples collection and analysesAll methods were carried out in accordance with the relevant institutional, national, and international guidelines and legislation. Besides they were discussed and approved by the Research Ethics Committee of Tarbiat Modares University. The formal identification of the Quercus brantii Lindl. was performed by H. Dadkhah-Aghdash based on colorful Flora of Iran35. The permissions or licenses to collect Brant oak (Quercus brantii Lindl.) trees in Zagros forests were obtained. A voucher specimen of Brant oaks were collected and deposited at the Herbarium of department of Plant Biology of Tarbiat Modares University.We studied different distances (1000, 1500, 2000, 2500, and 10,000 m [control]) in an easterly direction from the gas refinery. The map of study area was drawn by software of ArcGIS version of 10.5, https://desktop.arcgis.com (Fig. 5). At each distance, three soil samples taken from the depth of 0–20 cm with a plastic gardening shovel, 30 healthy and mature leaves were collected from a certain height (nearly the middle of the canopy) and the outer canopy of three Brant oak trees in the late spring, summer, and autumn of 2019. These trees with average height and diameter at breast height of 5.5 m and 45 cm were selected randomly. The leaf and soil samples were put into polyethylene bags and transported to the laboratory for analysis36.Figure 5Locations of collection sites of soil samples and Brant oak leaves at five different distances (1000, 1500, 2000, 2500 and 10,000 m [control]) from the gas refinery (drawn by H. Dadkhah-Aghdash using software of ArcGIS Desktop. version of 10.5. ESRI, California, US. https://desktop.arcgis.com).Full size imageIn the lab, firstly the leaves were categorized into two types: unwashed leaves and leaves washed with ethylenediaminetetraacetic acid (EDTA) solution to remove some atmospheric dusts and particles deposition. The leaf and soil samples were dried for 10 days until they reached a constant weight at lab temperature. The leaves were grinded and homogenized, soils were sieved with ASTM mesh (DAMAVAND, Iran) with a diameter of 2 mm and homogenized.To determine the pH and electrical conductivity (EC) of soils, 2 g of the soil samples were shaken in 10 ml of double-distilled water with a ratio of 1:5; after 1 h, the pH and electrical conductivity (EC) of the solution were measured by a digital pH meter (Fan Azma Gostar Company, Iran) and EC meter (Sartorius, PT-20, USA). The analysis of the particle sizes of the soil was carried out using the hydrometer method and texture class was determined with a soil texture triangle37.According to different U.S.EPA protocols that were modified by following references, the soil and leaf samples were prepared and dissolved. The digestion of soil samples was conducted with a mixture of concentrated HF–HClO4–HNO338. Approximately 0.5 g of dry soil sample was digested with 10 mL of HCl on a hot plate at ~ 180 °C until the solution was reduced to 3 mL. Approximately 5 mL of HF (40%, w/w), 5 mL of HNO3 (63%, w/w), and 3 mL of HClO4 (70%, w/w) were then added and the solution was digested. This process was continued with adding 3 mL of HNO3, 3 mL of HF, and 1 mL of HClO4 until the silicate minerals had fully disappeared. This solution was transferred to a 25 mL volumetric tube, and 1% HNO3 was added to bring the sample up to a constant volume for the element’s determinations. After filtering the digested samples, the concentrations of sulfur (S), arsenic (As), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and nickel (Ni) were measured via inductively coupled plasma mass spectrometry (ICP-MS,7500 CS, Agilent, US). The procedures of quality assurance and quality control (QA/QC) were performed.To quantify element contents from soil samples, external standards with calibration levels were used. The precision and the repeatability of the analysis were tested on the instrument by analyzing three replicate samples.According to Liang et al.39 leaf samples were acid digested and sieved powder samples were placed in the acid-washed tubes and 10 mL of 65% nitric acid was added to it. The solution was placed at room temperature overnight (12 h) after that, it was placed for 4 h at 100 °C and then 4 h at 140 °C until the solution color was clear. After cooling, the solution was diluted by deionized water to 50 mL and then passed through Whatman filter paper until 25 mL of the filtrate volume was provided. Each sample was digested three times and the average of measurements is reported. Total plant elements were measured by using the ICP-MS (7500 CS, Agilent, US). A control sample was also used beside each sample to determine the background pollution during digestion. To confirm the accuracy of the methodology and to ensure the extraction of trace elements from the leaf samples, the standard solution of each studied elements was used.Measuring of pollution levels of different elements in soils and leavesFor assessment of contamination levels (concentration) of different elements in soils and trees, common indices of pollution including geoaccumulation index (Igeo), pollution index (PI), pollution load index (PLI), enrichment factor of plants (EFplant), bioconcentration factor (BCF), air originated metals (AOM ), metal accumulation index (MAI) were used.Igeo was calculated using the following (Eq. 1):$${text{I}}_{{{text{geo}}}} = log_{2} left[ {{text{C}}_{{text{n}}} / 1.5{text{ B}}_{{text{n}}} } right]$$
    (1)
    where Cn is the measured concentration of the element n, Bn is the geoaccumulation background for this element and 1.5 is a constant coefficient used to eliminate potential variations in the baseline data40. The Igeo classifies samples into seven grades:  5 for extremely polluted30.The first PI is expressed as (Eq. 2):$${text{PI }} = {text{ C}}_{{text{i}}} /{text{S}}_{{text{i}}}$$
    (2)
    where Ci is the concentration of element i in the soil (mg kg−1) and Si is the soil quality standard or reference value for element i (mg kg−1). The PLI for different elements is calculated via the (Eq. 3):$${text{PLI}} = left( {{text{PI}}_{{1}} times {text{ PI}}_{{2}} times {text{ PI}}_{{3}} times cdots times {text{PI}}_{{text{n}}} } right)^{{{1}/{text{n}}}}$$
    (3)
    The PLI of soils is classified as follows: PLI  More

  • in

    Whales in the way

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    From under the ice

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Resilience of countries to COVID-19 correlated with trust

    Up to 1 December 2020, 156 countries had exhibited at least one peak and then decay of cases/capita (of which 36 had experienced a second peak and decay), 151 countries had exhibited at least one peak and then decay of deaths/capita (of which 32 had experienced a second peak and decay), and 93 countries had sufficient testing data to determine at least one peak and then decay of cases/tests (of which 23 had experienced a second peak and decay). Time-series for all countries and the three metrics are shown in Supplementary Fig. 1. For resilience, having filtered cases of reasonably exponential decay for further analysis (r2 ≥ 0.8) and included multiple instances of well-fitted recovery occurring in one country in the dataset, we obtain n = 177 decays for cases/capita, n = 159 for deaths/capita, n = 105 for cases/tests. In a few countries a minimum had not yet been reached by 1 December 2020, so the reduction dataset is smaller (cases/capita n = 165, deaths/capita n = 150, cases/tests n = 101).Comparable resilience and reduction of cases and deathsThe relative measures of resilience (rate of decay) and (proportional) reduction of cases should be more reliably estimated than absolute case numbers but could still be biased by variations in testing intensity across time and space. Encouragingly, we find across countries and waves, resilience of cases/capita and cases/tests are strongly positively rank correlated (n = 100, (rho) =0.86, p  More

  • in

    Network traits predict ecological strategies in fungi

    1.Fischer MS, Glass NL. Communicate and fuse: How filamentous fungi establish and maintain an interconnected mycelial network. Front Microbiol. 2019;10:619.2.Fricker MD, Heaton LLM, Jones NS, Boddy L. The mycelium as a network. Microbiol Spectr. 2017;5:335–67.3.Heaton LLM, Jones NS, Fricker MD. A mechanistic explanation of the transition to simple multicellularity in fungi. Nat Commun. 2020;11:2594.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Kiss E, Hegedus B, Viragh M, Varga T, Merenyi Z, Koszo T, et al. Comparative genomics reveals the origin of fungal hyphae and multicellularity. Nat Commun. 2019;10:4080.PubMed 
    PubMed Central 

    Google Scholar 
    5.Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. Fungal Biol Rev. 2020;34:151–69.
    Google Scholar 
    6.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc. 2019;94:1443–76.PubMed 
    PubMed Central 

    Google Scholar 
    7.Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, et al. The fungi. Curr Biol. 2009;19:R840–845.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Adler PB, Salguero-Gómez R, Compagnoni A, Hsu JS, Ray-Mukherjee J, Mbeau-Ache C, et al. Functional traits explain variation in plant life history strategies. Proc. Natl Acad Sci USA. 2014;111:740–5.CAS 
    PubMed 

    Google Scholar 
    10.Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167.
    Google Scholar 
    11.Dawson SK, Boddy L, Halbwachs H, Bässler C, Andrew C, Crowther TW, et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct Ecol. 2018;33:372–87.
    Google Scholar 
    12.Aguilar-Trigueros CA, Hempel S, Powell JR, Anderson IC, Antonovics J, Bergmann J, et al. Branching out: Towards a trait-based understanding of fungal ecology. Fungal Biol Rev. 2015;29:34–41.
    Google Scholar 
    13.Pringle A, Taylor JW. The fitness of filamentous fungi. Trends Microbiol. 2002;10:474–81.CAS 
    PubMed 

    Google Scholar 
    14.Zanne AE, Abarenkov K, Afkhami ME, Aguilar-Trigueros CA, Bates S, Bhatnagar JM, et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol Rev. 2020;95:409–33.PubMed 

    Google Scholar 
    15.Boddy L. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia. 1999;91:13–32.
    Google Scholar 
    16.Boddy L, Donnelly DP. Fractal geometry and microorganisms in the environment. Biophys Chem Fractal Struct Processes Environ Syst. 2008;11:239–72.17.Lehmann A, Zheng W, Soutschek K, Roy J, Yurkov AM, Rillig MC. Tradeoffs in hyphal traits determine mycelium architecture in saprobic fungi. Sci Rep. 2019;9:14152.PubMed 
    PubMed Central 

    Google Scholar 
    18.Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. Homo- and dikaryons of the arbuscular mycorrhizal fungus rhizophagus irregularis differ in life history strategy. Front Plant Sci. 2021;12:1544.
    Google Scholar 
    19.Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 2011;115:493–505.PubMed 

    Google Scholar 
    20.Aleklett K, Ohlsson P, Bengtsson M, Hammer EC. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips. ISME J. 2021;15:1782–1793.21.De Ligne L, Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Van Acker J, De Baets B. Analysis of spatio-temporal fungal growth dynamics under different environmental conditions. IMA Fungus. 2019;10:7.PubMed 
    PubMed Central 

    Google Scholar 
    22.Dikec J, Olivier A, Bobee C, D’Angelo Y, Catellier R, David P, et al. Hyphal network whole field imaging allows for accurate estimation of anastomosis rates and branching dynamics of the filamentous fungus Podospora anserina. Sci Rep. 2020;10:3131.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Du H, Lv P, Ayouz M, Besserer A, Perré P. Morphological characterization and quantification of the mycelial growth of the Brown-Rot fungus Postia placenta for modeling purposes. PLoS One. 2016;11:e0162469.PubMed 
    PubMed Central 

    Google Scholar 
    24.Vidal-Diez de Ulzurrun G, Baetens JM, Van den Bulcke J, Lopez-Molina C, De Windt I, De Baets B. Automated image-based analysis of spatio-temporal fungal dynamics. Fungal Genet Biol. 2015;84:12–25.CAS 
    PubMed 

    Google Scholar 
    25.Boddy L, Wood J, Redman E, Hynes J, Fricker MD. Fungal network responses to grazing. Fungal Genet Biol. 2010;47:522–30.PubMed 

    Google Scholar 
    26.Rotheray TD, Jones TH, Fricker MD, Boddy L. Grazing alters network architecture during interspecific mycelial interactions. Fungal Ecol. 2008;1:124–32.
    Google Scholar 
    27.Bebber DP, Hynes J, Darrah PR, Boddy L, Fricker MD. Biological solutions to transport network design. Proc Biol Sci/R Soc. 2007;274:2307–15.
    Google Scholar 
    28.Fricker MD, Akita D, Heaton LLM, Jones N, Obara B, Nakagaki T. Automated analysis of Physarumnetwork structure and dynamics. J Phys D: Appl Phys. 2017;50:254005.
    Google Scholar 
    29.Lee SH, Fricker MD, Porter MA. Mesoscale analyses of fungal networks as an approach for quantifying phenotypic traits. J Complex Netw. 2017;5:145–59.
    Google Scholar 
    30.Obara B, Grau V, Fricker MD. A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics. 2012;28:2374–81.CAS 
    PubMed 

    Google Scholar 
    31.Bebber DP, Tlalka M, Hynes J, Darrah PR, Ashford A, Watkinson SC et al. Fungi and the environment. Cambridge: Cambridge University Press; 2007. p. 1−21.32.Fricker MD, Lee JA, Bebber DP, Tlalka M, Hynes J, Darrah PR, et al. Imaging complex nutrient dynamics in mycelial networks. J. Microsc. 2008;231:317–31.CAS 
    PubMed 

    Google Scholar 
    33.Vidal-Diez de Ulzurrun G, Huang T-Y, Chang C-W, Lin H-C, Hsueh Y-P. Fungal feature tracker (FFT): A tool for quantitatively characterizing the morphology and growth of filamentous fungi. PLoS Comp Biol. 2019;15:e1007428.CAS 

    Google Scholar 
    34.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Growth-induced mass flows in fungal networks. Proc R Soc B: Biol Sci. 2010;277:3265–74.
    Google Scholar 
    35.Heaton LLM, López E, Maini PK, Fricker MD, Jones NS. Advection, diffusion, and delivery over a network. Phys Rev E. 2012;86:021905.
    Google Scholar 
    36.Fricker MD, Boddy L, Nakagaki T, Bebber DP (2009). Adaptive biological networks. In: Gross T, Sayama H, editors. Adaptive networks: theory, models, and applications. Berlin: Springer; 2009. p. 51−70.37.Boddy L, Jones TH. Mycelial responses in heterogeneous environments: parallels with macroorganisms. Fungi Environ. 2007;25:112–58.
    Google Scholar 
    38.Crowther TW, Boddy L, Hefin Jones T. Functional and ecological consequences of saprotrophic fungus–grazer interactions. ISME J. 2012;6:1992–2001.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Crowther TW, Jones TH, Boddy L. Interactions between saprotrophic basidiomycete mycelia and mycophagous soil fauna. Mycology. 2012;3:77–86.
    Google Scholar 
    40.Tordoff GM, Boddy L, Jones TH. Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete uelutina, and Resinicium bicolor. Mycol Res. 2006;110:335–45.PubMed 

    Google Scholar 
    41.Heaton L, Obara B, Grau V, Jones N, Nakagaki T, Boddy L, et al. Analysis of fungal networks. Fungal Biol Rev. 2012;26:12–29.
    Google Scholar 
    42.Barthelemy M. Morphogenesis of spatial networks. Cham, Switzerland: Springer International Publishing; 2018.43.Fricker MD, Bebber D, Boddy L. Chapter 1 Mycelial networks: structure and dynamics. In: Boddy L, Frankland JC, van West P, editors. British mycological society symposia series. London, UK, Academic Press; 2008. p. 3−18.44.Fricker M, Boddy L, Bebber D. Biology of the fungal cell. Berlin Heidelberg: Springer Verlag; 2007. p. 309−30.45.Fricker MD, Lee JA, Boddy L, Bebber DP. The Interplay between structure and function in fungal networks. Topologica 2008;1:004.46.Moore D, Robson GD, Trinci AP. 21st century guidebook to fungi. Cambridge, UK: Cambridge University Press; 2011.47.Bielčik M, Aguilar-Trigueros CA, Lakovic M, Jeltsch F, Rillig MC. The role of active movement in fungal ecology and community assembly. Movement Ecol. 2019;7:36.
    Google Scholar 
    48.Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.CAS 

    Google Scholar 
    49.Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB, Korem Y, et al. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat Methods. 2015;12:233–5.CAS 
    PubMed 

    Google Scholar 
    50.Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, et al. Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science. 2012;336:1157–60.CAS 
    PubMed 

    Google Scholar 
    51.Andrade-Linares DR, Veresoglou SD, Rillig MC. Temperature priming and memory in soil filamentous fungi. Fungal Ecol. 2016;21:10–15.
    Google Scholar 
    52.A’Bear AD, Boddy L, Hefin Jones T. Impacts of elevated temperature on the growth and functioning of decomposer fungi are influenced by grazing collembola. Global Change Biol. 2012;18:1823–32.
    Google Scholar 
    53.Boddy L, Wells JM, Culshaw C, Donnelly DP. Fractal analysis in studies of mycelium in soil. Geoderma. 1999;88:301–28.
    Google Scholar 
    54.Pain C, Kriechbaumer V, Kittelmann M, Hawes C, Fricker M. Quantitative analysis of plant ER architecture and dynamics. Nat Commun. 2019;10:984.PubMed 
    PubMed Central 

    Google Scholar 
    55.Xu H, Blonder B, Jodra M, Malhi Y, Fricker M. Automated and accurate segmentation of leaf venation networks via deep learning. New Phytol. 2021;229:631–48.PubMed 

    Google Scholar 
    56.Wickham H, Bryan J. Read Excel Files. R package version 1.3.1. 2019. https://CRAN.R-project.org/package=readxl.57.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ, Complex Syst. 2006;1695:1–9.
    Google Scholar 
    58.R Development Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical computing; 2017.59.Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. vegan: Community ecology package. 2012. https://CRAN.R-project.org/package=vegan.60.A’Bear AD, Jones TH, Boddy L. Size matters: What have we learnt from microcosm studies of decomposer fungus–invertebrate interactions? Soil Biol Biochem. 2014;78:274–83.
    Google Scholar 
    61.Trinci APJ. A kinetic study of the growth of Aspergillus nidulans and other fungi. Microbiology. 1969;57:11–24.CAS 

    Google Scholar 
    62.Morin-Sardin S, Nodet P, Coton E, Jany J-L. Mucor: A Janus-faced fungal genus with human health impact and industrial applications. Fungal Biol Rev. 2017;31:12–32.
    Google Scholar 
    63.Grigoriev IV, Nikitin R, Haridas S, Kuo A, Ohm R, Otillar R, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–704.CAS 
    PubMed 

    Google Scholar 
    64.Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy, and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94:2101–37.PubMed 
    PubMed Central 

    Google Scholar 
    65.Domsch K, Gams W, Anderson T-H. Compendium of soil fungi. 2nd ed. Eching: IHW-Verlag; 2007.66.Thomma BP. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol. 2003;4:225–36.CAS 
    PubMed 

    Google Scholar 
    67.Bacon C, Yates I. Endophytic root colonization by fusarium species: histology, plant interactions, and toxicity. In: Schulz BE, Boyle CC, Sieber T, editors. Microbial root endophytes. Berlin: Springer; 2006. p. 133−52.68.Nguyen TA, Le S, Lee M, Fan J-S, Yang D, Yan J, et al. Fungal wound healing through instantaneous protoplasmic gelation. Curr Biol. 2021;31:271–82. e275CAS 
    PubMed 

    Google Scholar 
    69.Scheu S, Simmerling F. Growth and reproduction of fungal feeding Collembola as affected by fungal species, melanin, and mixed diets. Oecologia. 2004;139:347–53.PubMed 

    Google Scholar 
    70.Rayner ADM, Boddy L. Fungal decomposition of wood. Its biology and ecology. Chichester, Sussex: John Wiley & Sons Ltd.; 1988.71.Connolly JH, Shortle WC, Jellison J. Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Botany. 1999;77:179–87.CAS 

    Google Scholar 
    72.A’Bear AD, Jones TH, Boddy L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014;10:34–43.
    Google Scholar 
    73.Fukasawa Y, Savoury M, Boddy L. Ecological memory and relocation decisions in fungal mycelial networks: responses to quantity and location of new resources. ISME J. 2020;14:380–8.PubMed 

    Google Scholar 
    74.Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA. Untangling the fungal niche: the trait-based approach. Front Microbiol. 2014;5:579. More

  • in

    Soils and sediments host Thermoplasmata archaea encoding novel copper membrane monooxygenases (CuMMOs)

    Divergent CuMMOs identified in MAGs recovered from soil and sediment ecosystemsIn previous work we identified putative divergent amoA/pmoA homologues in 7 Thermoplasmatota genomes recovered from Mediterranean grassland soil [25]. This was intriguing, given that amo/pmo homologues had not been previously observed in archaea outside of the Nitrososphaerales. Here we searched for additional genomes encoding related (divergent) amo/pmo’s using a series of readily available, and custom built, hidden markov models (HMMs) across all archaeal genomes in the Genome Taxonomy Database (GTDB), and in all archaeal MAGs in our unpublished datasets from ongoing studies (Supplementary Fig. 1 and Supplementary Data 1). We found additional amoA/pmoA genes in genomes recovered from soils at the South Meadow and Rivendell sites of the Angelo Coast Range Reserve (CA) [25, 26], the nearby Sagehorn site [26], a hillslope of the East River watershed (CO) [27], and in sediments from the Rifle aquifer (CO) [28] and the deep ocean [29]. In total we identified 201 archaeal MAGs taxonomically placed using phylogenetically informative single copy marker genes outside of Nitrososphaerales containing divergent amo/pmo proteins (Supplementary Table 1 and Supplementary Data 1). Genome de-replication resulted in 34 species-level genome clusters, 20 of which encoded an amo/pmo homologue (Supplementary Table 2). Of these genomes, 11 are species not previously available in public databases. In all cases where assembled sequences were of sufficient length, the amoA/pmoA, B, and C protein coding genes were found co-located with each other and with a hypothetical protein here called amoX/pmoX in the order C-A-X-B (Fig. 1A, Supplementary Table 2, and Supplementary Fig. 2). The mean sequence identity of the novel amoA/pmoA, B, and C proteins to known bacterial sequences were 16.7, 8.0, and 14.2% and 13.8, 9.5, and 20.8% to known archaeal sequences. This level of divergent amino acid identity is typical for CuMMOs, as known bacterial and known archaeal amoA/pmoA, B, and C proteins share mean identities of 16.1, 9.7, and 16.5% respectively. As might be expected considering the large sequence divergence between the recovered sequences and known amo/pmo proteins, we found that no pair of typical primers used for bacterial and archaeal amoA/pmoA environmental surveys [30] matched any novel amoA/pmoA gene with More