More stories

  • in

    Depth dependence of climatic controls on soil microbial community activity and composition

    1.Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio. 2019;10:e01318–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Brubaker SC, Jones AJ, Lewis DT, Frank K. Soil properties associated with landscape position. Soil Sci Soc Am J. 1993;57:235–9.
    Google Scholar 
    3.Richter DD, Markewitz D. How deep is soil? BioScience. 1995;45:600–9.
    Google Scholar 
    4.Rumpel C, Kögel-Knabner I. Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil. 2010;338:143–58.
    Google Scholar 
    5.Dove NC, Arogyaswamy K, Billings SA, Botthoff JK, Carey CJ, Cisco C, et al. Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environ Res Lett. 2020;15:1040a1.CAS 

    Google Scholar 
    6.Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, et al. Stoichiometry of soil enzyme activity at global scale. Ecol Lett. 2008;11:1252–64.PubMed 

    Google Scholar 
    7.Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346:6213.
    Google Scholar 
    8.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Jobbágy EG, Jackson RB. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl. 2000;10:423–36.
    Google Scholar 
    10.Chapin FS, Matson PA, Vitousek P. Principles of terrestrial ecosystem ecology. New York: Springer Science & Business Media; 2011.
    Google Scholar 
    11.Bárcenas‐Moreno G, Gómez‐Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Change Biol. 2009;15:2950–7.
    Google Scholar 
    12.Wallenstein M, Allison SD, Ernakovich J, Steinweg JM, Sinsabaugh R. Controls on the temperature sensitivity of soil enzymes: a key driver of in situ enzyme activity rates. In: Shukla G, Varma A, editors. Soil enzymology. Berlin, Heidelberg: Springer; 2011. p. 245–58.13.German DP, Marcelo KRB, Stone MM, Allison SD. The Michaelis–Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Change Biol. 2012;18:1468–79.
    Google Scholar 
    14.Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Change Biol. 2017;23:2117–29.
    Google Scholar 
    15.Jenny H. Factors of soil formation. New York: McGraw-Hill; 1941.
    Google Scholar 
    16.Parton WJ, Scurlock JMO, Ojima DS, Schimel DS, Hall DO. Impact of climate change on grassland production and soil carbon worldwide. Glob Change Biol. 1995;1:13–22.
    Google Scholar 
    17.Jenny H. The soil resource: origin and behavior. Berlin: Springer Science & Business Media; 1980.18.Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. PNAS. 2006;103:626–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, et al. Water balance creates a threshold in soil pH at the global scale. Nature. 2016;540:567–9.CAS 
    PubMed 

    Google Scholar 
    21.Brovkin V. Climate-vegetation interaction. J Phys IV France. 2002;12:57–72.
    Google Scholar 
    22.Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos. 1997;79:439–49.
    Google Scholar 
    23.Djukic I, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, et al. Early stage litter decomposition across biomes. Sci Total Environ. 2018;628–9:1369–94.
    Google Scholar 
    24.Shiozawa S, Campbell GS. Soil thermal conductivity. Remote Sens Rev. 1990;5:301–10.
    Google Scholar 
    25.Verhoef A, Fernández-Gálvez J, Diaz-Espejo A, Main BE, El-Bishti M. The diurnal course of soil moisture as measured by various dielectric sensors: effects of soil temperature and the implications for evaporation estimates. J Hydrol. 2006;321:147–62.
    Google Scholar 
    26.Dove NC, Torn MS, Hart SC, Taş N. Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile. Nat Commun. 2021;12:2089.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Bai W, Wang G, Xi J, Liu Y, Yin P. Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. Eur J Soil Biol. 2019;92:16–23.CAS 

    Google Scholar 
    28.Yost JL, Hartemink AE. How deep is the soil studied—an analysis of four soil science journals. Plant Soil. 2020;425:5–18.
    Google Scholar 
    29.Hicks Pries CE, Castanha C, Porras RC, Torn MS. The whole-soil carbon flux in response to warming. Science. 2017;355:1420–3.CAS 
    PubMed 

    Google Scholar 
    30.Jones DL, Magthab EA, Gleeson DB, Hill PW, Sánchez-Rodríguez AR, Roberts P, et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol Biochem. 2018;117:72–82.CAS 

    Google Scholar 
    31.Ofiti NOE, Zosso CU, Soong JL, Solly EF, Torn MS, Wiesenberg GLB, et al. Warming promotes loss of subsoil carbon through accelerated degradation of plant-derived organic matter. Soil Biol Biochem. 2021;156:108185.CAS 

    Google Scholar 
    32.Soong JL, Castanha C, Pries CEH, Ofiti N, Porras RC, Riley WJ, et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci Adv. 2021;7:eabd1343.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology. 2018;99:2455–66.PubMed 

    Google Scholar 
    34.O‘Geen A (Toby), Safeeq M, Wagenbrenner J, Stacy E, Hartsough P, Devine S., et al. Southern Sierra Critical Zone Observatory and Kings River Experimental Watersheds: a synthesis of measurements, new insights, and future directions. Vadose Zone J. 2018;17:180081.35.Frisbie JA. Soil organic carbon storage and aggregate stability in an arid mountain range, White Mountains, CA. UC Riverside Master’s Thesis. 2014. https://escholarship.org/uc/item/4rn6j9rq.36.Marchand DE. Soil contamination in the White Mountains, Eastern California. GSA Bull. 1970;81:2497–506.
    Google Scholar 
    37.Aciego SM, Riebe CS, Hart SC, Blakowski MA, Carey CJ, Aarons SM, et al. Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nat Commun. 2017;8:14800.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Dove NC, Safford HD, Bohlman GN, Estes BL, Hart SC. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecol Appl. 2020;30:e02072.PubMed 

    Google Scholar 
    39.USDA-NRCS. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. U.S. Department of Agriculture Handbook 436. 2nd edition. Washington D.C.: Natural Resources Conservation Service; 1999.40.Lajtha K, Driscoll CT, Jarrell WM, Elliot ET. Phosphorus characterization and total element analysis. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P, editors. Standard soil methods for long-term ecological research. New York: Oxford University Press; 1999. p. 115–42.41.Harris D, Horwáth WR, vanKessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Sci Soc Am J. 2001;65:1853–6.CAS 

    Google Scholar 
    42.Thomas GW, Soil pH and soil acidity. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al., editors. Methods of soil analysis, part 3: chemical methods. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy; 1996, p. 475–90.43.Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.CAS 

    Google Scholar 
    44.Hart SC, Firestone MK. Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest. Biogeochemistry. 1991;12:103–27.CAS 

    Google Scholar 
    45.Haubensak KA, Hart SC, Stark JM. Influences of chloroform exposure time and soil water content on C and N release in forest soils. Soil Biol Biochem. 2002;34:1549–62.CAS 

    Google Scholar 
    46.Stenberg B, Johansson M, Pell M, Sjödahl-Svensson K, Stenström J, Torstensson L. Microbial biomass and activities in soil as affected by frozen and cold storage. Soil Biol Biochem. 1998;30:393–402.CAS 

    Google Scholar 
    47.Bell CW, Fricks BE, Rocca JD, Steinweg JM, McMahon SK, Wallenstein MD. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J Vis Exp. 2013;81:e50961.
    Google Scholar 
    48.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.CAS 

    Google Scholar 
    50.Smith DP, Peay KG. Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS ONE. 2014;9:e90234.PubMed 
    PubMed Central 

    Google Scholar 
    51.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 

    Google Scholar 
    54.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinform. 2009;10:421.
    Google Scholar 
    55.Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, et al. The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist. 2010;186:281–5.
    Google Scholar 
    56.Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
    Google Scholar 
    57.R Development Core Team. R: a language and environment for statistical computing. 2008. Vienna, Australia: R Foundation for Statistical Computing. http://www.R-project.org.58.Cribari-Neto F, Zeileis A. Beta regression in R. J Statl Softw. 2010;34:1–24.
    Google Scholar 
    59.Fox J, Weisberg S. An {R} companion to applied regression, Second. 2011. Thousand Oaks, CA: Sage.60.Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Google Scholar 
    61.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Oksanen J, Blanchet FG, Kindt R, Legendre P, Simpson GL, Minchin PR, et al. vegan: community Ecology Package. 2013 http://CRAN.R-project.org/package=vegan.63.Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    64.Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta diversity. Ecol Lett. 2006;9:683–93.PubMed 

    Google Scholar 
    65.Legendre P, Cáceres MD. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol Lett. 2013;16:951–63.PubMed 

    Google Scholar 
    66.Legendre P, Anderson MJ. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69:1–24.
    Google Scholar 
    67.Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. Nat Commun. 2020;11:3514.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 

    Google Scholar 
    69.Kanzaki Y, Takemoto K. Diversity of dominant soil bacteria increases with warming velocity at the global scale. Diversity. 2021;13:120.
    Google Scholar 
    70.Russell NJ, Harrisson P, Johnston IA, Jaenicke R, Zuber M, Franks F, et al. Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci. 1990;326:595–611.CAS 
    PubMed 

    Google Scholar 
    71.Chanal A, Chapon V, Benzerara K, Barakat M, Christen R, Achouak W, et al. The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environ Microbiol. 2006;8:514–25.CAS 
    PubMed 

    Google Scholar 
    72.Jobbágy EG, Jackson RB. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry. 2001;53:51–77.
    Google Scholar 
    73.Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 

    Google Scholar 
    74.Offre P, Spang A, Schleper C. Archaea in biogeochemical cycles. Ann Rev Microbiol. 2013;67:437–57.CAS 

    Google Scholar 
    75.Stegen JC, Bottos EM, Jansson JK. A unified conceptual framework for prediction and control of microbiomes. Curr Opin in Microbiol. 2018;44:20–27.
    Google Scholar 
    76.Xiong J, Sun H, Peng F, Zhang H, Xue X, Gibbons SM, et al. Characterizing changes in soil bacterial community structure in response to short-term warming. FEMS Microbiol Ecol. 2014;89:281–92.CAS 
    PubMed 

    Google Scholar 
    77.DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.PubMed 
    PubMed Central 

    Google Scholar 
    78.Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, et al. Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol. 2012;14:3081–96.CAS 
    PubMed 

    Google Scholar 
    79.Johnston ER, Hatt JK, He Z, Wu L, Guo X, Luo Y, et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. PNAS. 2019;116:15096–105.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Větrovský T, Baldrian P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE. 2013;8:e57923.PubMed 
    PubMed Central 

    Google Scholar 
    81.Sarkar JM, Leonowicz A, Bollag J-M. Immobilization of enzymes on clays and soils. Soil Biol Biochem. 1989;21:223–30.CAS 

    Google Scholar 
    82.Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol Biochem. 2013;58:216–34.CAS 

    Google Scholar 
    83.Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem. 2012;50:58–65.CAS 

    Google Scholar 
    84.Kellogg CA, Griffin DW. Aerobiology and the global transport of desert dust. Trends Ecol Evol. 2006;21:638–44.PubMed 

    Google Scholar 
    85.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 

    Google Scholar 
    86.Du X, Deng Y, Li S, Escalas A, Feng K, He Q, et al. Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. Mol Ecol. 2021;30:1072–85.CAS 
    PubMed 

    Google Scholar 
    87.Fanning DS, Fanning MCB. Soil morphology, genesis and classification. New York: John Wiley & Sons; 1989.88.IPCC. Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 2014. Geneva, Switzerland: IPCC.89.Bradford MA, Davies CA, Frey SD, Maddox TR, Melillo JM, Mohan JE, et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol Lett. 2008;11:1316–27.PubMed 

    Google Scholar  More

  • in

    Ectoparasitic fungi of Myrmica ants alter the success of parasitic butterflies

    1.Frank, S. A. Models of parasite virulence. Q. Rev. Biol.  https://doi.org/10.1086/419267 (1996).Article 
    PubMed 

    Google Scholar 
    2.Dobson, A. P. The population dynamics of competition between parasites. Parasitology https://doi.org/10.1017/S0031182000057401 (1985).Article 
    PubMed 

    Google Scholar 
    3.Haelewaters, D. et al. Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. PeerJ https://doi.org/10.7717/peerj.10110 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Shapiro-Ilan, D. I., Bruck, D. J. & Lacey, L. A. Principles of Epizootiology and Microbial Control. In Insect Pathology 29–72 (Elsevier, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00003-8.5.Renkema, J. M. & Cuthbertson, A. G. S. Impact of multiple natural enemies on immature Drosophila suzukii in strawberries and blueberries. Biocontrol https://doi.org/10.1007/s10526-018-9874-8 (2018).Article 

    Google Scholar 
    6.Furlong, M. & Pell, J. Interactions between entomopathogenic fungi and other arthropods natural enemies. In Insect-Fungal Associations, Ecology and Evolution (eds Vega, F. & Blackwell, M.) 51–73 (Oxford University Press, 2005).
    Google Scholar 
    7.Lafferty, K. D. Interacting parasites. Science https://doi.org/10.1126/science.1196915 (2010).Article 
    PubMed 

    Google Scholar 
    8.Price, S. L. et al. Recent findings in fungus-growing ants: evolution, ecology, and behavior of a complex microbial symbiosis. In Genes, Behaviors and Evolution of Social Insects (eds Azuma, N. & Higashi, S.) 255–280 (Hokkaido University Press, 2003).
    Google Scholar 
    9.Telfer, S. et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science https://doi.org/10.1126/science.1190333 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108596 (2020).Article 

    Google Scholar 
    11.Colwell, R. K., Dunn, R. R. & Harris, N. C. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110411-160304 (2012).Article 

    Google Scholar 
    12.Gagne, R. B. et al. Parasites as conservation tools. Conserv. Biol. https://doi.org/10.1111/cobi.13719 (2021).Article 
    PubMed 

    Google Scholar 
    13.Csősz, S. & Majoros, G. Ontogenetic origin of mermithogenic Myrmica phenotypes (Hymenoptera, Formicidae). Insectes Soc.  https://doi.org/10.1007/s00040-008-1040-3 (2009).Article 

    Google Scholar 
    14.Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. https://doi.org/10.1038/srep46323 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Pearson, B. & Raybould, A. F. The effects of antibiotics on the development of larvae and the possible role of bacterial load in caste determination and diapause in Myrmica rubra (Hymenoptera: Formicidae). Sociobiology 31, 77–90 (1998).
    Google Scholar 
    16.Schmid Hempel, P. Evolutionary Parasitology—The Integrated Study of Infections, Immunology, Ecology, and Genetics (Oxford University Press, 2011).
    Google Scholar 
    17.Donisthorpe, J. K. The Guests of British Ants—Their Habits and Life Histories (George Routledge And Sons, Limited, 1927).
    Google Scholar 
    18.Hölldobler, B. E. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book 

    Google Scholar 
    19.Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    20.Quevillon, L. E. The Ecology, Epidemiology, and Evolution of Parasites Infecting Ants (Hymenoptera: Formicidae) (Pennsylvania State University, 2018).
    Google Scholar 
    21.Quevillon, L. E. & Hughes, D. P. Pathogens, parasites, and parasitoids of ants: a synthesis of parasite biodiversity and epide-miological traits. BioRxiv https://doi.org/10.1101/384495 (2018).Article 

    Google Scholar 
    22.Di Salvo, M. et al. The microbiome of the Maculinea-Myrmica host-parasite interaction. Sci. Rep. https://doi.org/10.1038/s41598-019-44514-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. https://doi.org/10.1007/s00040-014-0362-6 (2014).Article 

    Google Scholar 
    24.Witek, M. et al. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12074 (2013).Article 

    Google Scholar 
    25.Tartally, A. et al. Patterns of host use by brood parasitic Maculinea butterflies across Europe. Philos. Trans. R Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2018.0202 (2019).Article 

    Google Scholar 
    26.Wardlaw, J. C., Thomas, J. A. & Elmes, G. W. Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol. Exp. Appl. https://doi.org/10.1046/j.1570-7458.2000.00646.x (2000).Article 

    Google Scholar 
    27.Thomas, J. A. & Wardlaw, J. C. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia https://doi.org/10.1007/BF00317247 (1992).Article 
    PubMed 

    Google Scholar 
    28.Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. https://doi.org/10.1007/s00040-018-0628-5 (2018).Article 

    Google Scholar 
    29.Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. https://doi.org/10.1038/s41598-021-93583-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: Changes in host mortality and behavior. Insectes Soc. https://doi.org/10.1007/s00040-014-0349-3 (2014).Article 

    Google Scholar 
    31.Báthori, F., Rádai, Z. & Tartally, A. The effect of Rickia wasmannii (Ascomycota, Laboulbeniales) on the aggression and boldness of Myrmica scabrinodis (Hymenoptera, Formicidae). J. Hymenopt. Res. https://doi.org/10.3897/jhr.58.13253 (2017).Article 

    Google Scholar 
    32.Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. https://doi.org/10.1016/j.jip.2015.01.005 (2015).Article 
    PubMed 

    Google Scholar 
    33.Tartally, A. Myrmecophily of Maculinea Butterflies in the Carpathian Basin (Lepidoptera: Lycaenidae), PhD thesis, https://dea.lib.unideb.hu/dea/handle/2437/78921 (University of Debrecen, Hungary, 2008)
    Google Scholar 
    34.Elmes, G. W., Wardlaw, J. C., Schönrogge, K., Thomas, J. A. & Clarke, R. T. Food stress causes differential survival of socially parasitic caterpillars of Maculinea rebeli integrated in colonies of host and non-host Myrmica ant species. Entomol. Exp. Appl. https://doi.org/10.1111/j.0013-8703.2004.00121.x (2004).Article 

    Google Scholar 
    35.Nash, D. R., Als, T. D. & Boomsma, J. J. Survival and growth of parasitic Maculinea alcon caterpillars (Lepidoptera, Lycaenidae) in laboratory nests of three Myrmica ant species. Insectes Soc. https://doi.org/10.1007/s00040-011-0157-y (2011).Article 

    Google Scholar 
    36.Wilson, K., Grenfell, B. T. & Shaw, D. J. Analysis of aggregated parasite distributions: a comparison of methods. Funct. Ecol. https://doi.org/10.2307/2390169 (1996).Article 

    Google Scholar 
    37.Tartally, A., Nash, D. R., Varga, Z. & Lengyel, S. Changes in host ant communities of Alcon Blue butterflies in abandoned mountain hay meadows. Insect Conserv. Divers. https://doi.org/10.1111/icad.12369 (2019).Article 

    Google Scholar 
    38.Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2017.01.004 (2017).Article 
    PubMed 

    Google Scholar 
    39.Baylis, M. & Pierce, N. E. Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for the loss of nutrients to ants. Physiol. Entomol. https://doi.org/10.1111/j.1365-3032.1992.tb01186.x (1992).Article 

    Google Scholar 
    40.Elgar, M. A. & Pierce, N. E. Mating success and fecundity in an ant-tended lycaenid butterfly. In Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems 59–75 (Chicago University Press, 1988).41.Thomas, J. A., Elmes, G. W. & Wardlaw, J. C. Contest competition among Maculinea rebeli butterfly larvae in ant nests. Ecol. Entomol. https://doi.org/10.1111/j.1365-2311.1993.tb01082.x (1993).Article 

    Google Scholar 
    42.Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science https://doi.org/10.1126/science.1149180 (2008).Article 
    PubMed 

    Google Scholar 
    43.Schlick-Steiner, B. C. et al. A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften https://doi.org/10.1007/s00114-004-0518-8 (2004).Article 
    PubMed 

    Google Scholar 
    44.Schönrogge, K. et al. Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J. Chem. Ecol.  https://doi.org/10.1023/B:JOEC.0000013184.18176.a9 (2004).Article 
    PubMed 

    Google Scholar 
    45.Als, T. D., Nash, D. R. & Boomsma, J. J. Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol. Entomol. https://doi.org/10.1046/j.1365-2311.2002.00427.x (2002).Article 

    Google Scholar 
    46.Als, T. D., Nash, D. R. & Boomsma, J. J. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim. Behav. https://doi.org/10.1006/anbe.2001.1716 (2001).Article 

    Google Scholar 
    47.Tartally, A., Somogyi, A. Á., Révész, T. & Nash, D. R. Host ant change of a socially parasitic butterfly (Phengaris alcon) through host nest take-over. Insects https://doi.org/10.3390/insects11090556 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Thomas, J. A., Elmes, G. W., Schönrogge, K., Simcox, D. J. & Settele, J. Primary hosts, secondary hosts and ‘non-hosts’: common confusions in the interpretation of host specificity in Maculinea butterflies and other social parasites of ants. In Studies on the Ecology and Conservation of Butterflies in Europe (eds. Settele, J., Kühn, E. & Thomas, J. A.) vol. 2 99–104 (Pensoft, 2005).49.Thomas, J. A. et al. Mimetic host shifts in an endangered social parasite of ants. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2012.2336 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Fürst, M. A., Durey, M. & Nash, D. R. Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2011.0581 (2012).Article 

    Google Scholar 
    51.Maák, I. et al. Habitat features and colony characteristics influencing ant personality and its fitness consequences. Behav. Ecol. https://doi.org/10.1093/beheco/araa112 (2021).Article 
    PubMed 

    Google Scholar 
    52.Chapman, B. B., Thain, H., Coughlin, J. & Hughes, W. O. H. Behavioural syndromes at multiple scales in Myrmica ants. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.05.019 (2011).Article 

    Google Scholar 
    53.Martin, S. J., Helanterä, H. & Drijfhout, F. P. Is parasite pressure a driver of chemical cue diversity in ants? Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.1047 (2011).Article 

    Google Scholar 
    54.Nehring, V., Evison, S. E. F., Santorelli, L. A., D’Ettorre, P. & Hughes, W. O. H. Kin-informative recognition cues in ants. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.2295 (2011).Article 

    Google Scholar 
    55.Van Zweden, J. S. et al. Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J. Evol. Biol. https://doi.org/10.1111/j.1420-9101.2010.02020.x (2010).Article 
    PubMed 

    Google Scholar 
    56.Nash, D. R. & Andersen, A. Maculinea-sommerfugle og stikmyrer på danske heder—coevolution i tid og rum. Flora og Fauna 121, 133–141 (2015).
    Google Scholar 
    57.Haelewaters, D., Boer, P., Gort, G. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants (II): variation of infection by Rickia wasmannii over habitats and time. Anim. Biol. https://doi.org/10.1163/15707563-00002472 (2015).Article 

    Google Scholar 
    58.Dallas, T. A., Laine, A.-L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.1109 (2019).Article 

    Google Scholar 
    59.Herczeg, D., Ujszegi, J., Kásler, A., Holly, D. & Hettyey, A. Host–multiparasite interactions in amphibians: a review. Parasit. Vectors https://doi.org/10.1186/s13071-021-04796-1 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. https://doi.org/10.1016/0169-5347(94)90246-1 (1994).Article 
    PubMed 

    Google Scholar 
    61.Zhang, Z., Yan, C. & Zhang, H. Mutualism between antagonists: Its ecological and evolutionary implications. Integr. Zool. https://doi.org/10.1111/1749-4877.12487 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Rogalski, M. A., Stewart Merrill, T., Gowler, C. D., Cáceres, C. E. & Duffy, M. A. Context-dependent host-symbiont interactions: Shifts along the parasitism-mutualism continuum. Am. Nat. https://doi.org/10.1086/716635 (2021).Article 
    PubMed 

    Google Scholar 
    63.Pfliegler, W. P., Báthori, F., Haelewaters, D. & Tartally, A. Studies of Laboulbeniales on Myrmica ants (III): myrmecophilous arthropods as alternative hosts of Rickia wasmannii. Parasite https://doi.org/10.1051/parasite/2016060 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Chouvenc, T., Efstathion, C. A., Elliott, M. L. & Su, N.-Y. Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften https://doi.org/10.1007/s00114-012-0977-2 (2012).Article 
    PubMed 

    Google Scholar 
    65.Lawton, J. H. & Hassell, M. P. Asymmetrical competition in insects. Nature https://doi.org/10.1038/289793a0 (1981).Article 

    Google Scholar 
    66.Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
    Google Scholar 
    67.Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication (eds D’Ettorre, P. & Hughes, D. P.) 55–80 (Oxford University Press, 2008).Chapter 

    Google Scholar 
    68.Tartally, A., Szűcs, B. & Ebsen, J. R. The first records of Rickia wasmannii Cavara, 1899, a myrmecophilous fungus, and its Myrmica Latreille, 1804 host ants in Hungary and Romania (Ascomycetes: Laboulbeniales; Hymenoptera: Formicidae). Myrmecol. News 10, 123 (2007).
    Google Scholar 
    69.Radchenko, A. G. & Elmes, G. W. Myrmica (Hymenoptera: Formicidae) ants of the Old World. vol. 6 (Fauna Mundi 3, 2010).70.Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. News 23, 81–89 (2016).
    Google Scholar 
    71.Haelewaters, D., Boer, P. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants: Rickia wasmannii in the Netherlands. J. Hymenopt. Res. https://doi.org/10.3897/JHR.44.4951 (2015).Article 

    Google Scholar 
    72.Espadaler, X. & Santamaria, S. Ecto- and endoparasitic fungi on ants from the Holarctic Region. Psyche, 2012, 168478. https://doi.org/10.1155/2012/168478 (2012).Article 

    Google Scholar 
    73.Báthori, F., Pfliegler, W. P., Zimmerman, C.-U. & Tartally, A. Online image databases as multi-purpose resources: discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. J. Hymenopt. Res, 61, 85-94. https://doi.org/10.3897/jhr.61.20255 (2017).Article 

    Google Scholar 
    74.Riddick, E. W. Ectoparasitic mite and fungus on an invasive lady beetle: parasite coexistence and influence on host survival. Bull. Insectol. 63, 13–20 (2010).
    Google Scholar 
    75.Konrad, M., Grasse, A. V, Tragust, S. & Cremer, S. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2014.197620141976 (2015).76.De Kesel, A., Haelewaters, D. & Dekoninck, W. Myrmecophilous Laboulbeniales Ascomycota in Belgium. Sterbeeckia 34, 3–6 (2016).
    Google Scholar 
    77.Haelewaters, D. The first record of Laboulbeniales (Fungi, Ascomycota) on Ants (Hymenoptera, Formicidae) in The Netherlands. Ascomycete.org 4, 65-69 (2012).78.van Swaay, C. et al. European Red List of Butterflies (Publications Office of the European Union, 2010).
    Google Scholar 
    79.Gergely, P. & Hudák, T. Revision of threatened butterfly species in Hungary (Lepidoptera: Rhopalocera). Lepidopterol. Hungarica https://doi.org/10.24386/lephung.2021.17.1.27 (2021).Article 

    Google Scholar 
    80.Wallis de Vries, M. Code rood voor het gentiaanblauwtje. Vlinders 4, 5–8 (2017).
    Google Scholar 
    81.Barbero, F., Thomas, J. A., Bonelli, S., Balletto, E. & Schönrogge, K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science https://doi.org/10.1126/science.1163583 (2009).Article 
    PubMed 

    Google Scholar 
    82.Thomas, J. A., Elmes, G. W., Wardlaw, J. C. & Woyciechowski, M. Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia https://doi.org/10.1007/BF00378660 (1989).Article 
    PubMed 

    Google Scholar 
    83.Elmes, G. W. et al. The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J. Insect Conserv. https://doi.org/10.1023/A:1009696823965 (1998).Article 

    Google Scholar 
    84.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Cammaerts-Tricot, M.-C. Ontogenesis of the defence reactions in the workers of Myrmica rubra L. (Hymenoptera: Formicidae). Anim. Behav. https://doi.org/10.1016/0003-3472(75)90058-5 (1975).Article 

    Google Scholar 
    86.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015). More

  • in

    Relation of hypertension with episodic primary headaches and chronic primary headaches in population of Rafsanjan cohort study

    1.Stovner, L. et al. The global burden of headache: A documentation of headache prevalence and disability worldwide. Cephalalgia 27, 193–210 (2007).PubMed 

    Google Scholar 
    2.Tension-type headache. Nat. Rev. Dis. Primers 7, 23. https://doi.org/10.1038/s41572-021-00263-4 (2021).3.Bigal, M. et al. Migraine and cardiovascular disease: A population-based study. Neurology 74, 628–635 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Matei, D. et al. Autonomic impairment in patients with migraine. Eur. Rev. Med. Pharmacol. Sci. 19, 3922–3927 (2015).CAS 
    PubMed 

    Google Scholar 
    5.Stovner, L. J. et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 954–976 (2018).
    Google Scholar 
    6.Lee, H. J., Lee, J. H., Cho, E. Y., Kim, S. M. & Yoon, S. Efficacy of psychological treatment for headache disorder: A systematic review and meta-analysis. J. Headache Pain 20, 1–16 (2019).
    Google Scholar 
    7.Pascual, J., Colás, R. & Castillo, J. Epidemiology of chronic daily headache. Curr. Pain Headache Rep. 5, 529–536 (2001).CAS 
    PubMed 

    Google Scholar 
    8.Buse, D. C. et al. Chronic migraine prevalence, disability, and sociodemographic factors: Results from the American migraine prevalence and prevention study. Headache J. Head Face Pain 52, 1456–1470 (2012).
    Google Scholar 
    9.Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380, 2163–2196 (2012).
    Google Scholar 
    10.Peng, K. P. & Wang, S. J. Epidemiology of headache disorders in the Asia-Pacific region. Headache J. Head Face Pain 54, 610–618 (2014).
    Google Scholar 
    11.Stovner, L. J., Zwart, J. A., Hagen, K., Terwindt, G. & Pascual, J. Epidemiology of headache in Europe. Eur. J. Neurol. 13, 333–345 (2006).CAS 
    PubMed 

    Google Scholar 
    12.Jensen, R. & Stovner, L. J. Epidemiology and comorbidity of headache. Lancet Neurol. 7, 354–361 (2008).PubMed 

    Google Scholar 
    13.Lipton, R. B. & Bigal, M. E. The epidemiology of migraine. Am. J. Med. Suppl. 118, 3–10 (2005).
    Google Scholar 
    14.Bigal, M. E., Rapoport, A. M., Lipton, R. B., Tepper, S. J. & Sheftell, F. D. Assessment of migraine disability using the migraine disability assessment (MIDAS) questionnaire: A comparison of chronic migraine with episodic migraine. Headache J. Head Face Pain 43, 336–342 (2003).
    Google Scholar 
    15.Murphy, C. & Hameed, S. Chronic Headaches (StatPearls, 2021).
    Google Scholar 
    16.Green, M. W. Medication overuse headache. Curr. Opin. Neurol. 34, 378–383 (2021).CAS 
    PubMed 

    Google Scholar 
    17.Bigal, M. E., Sheftell, F. D., Rapoport, A. M., Tepper, S. J. & Lipton, R. B. Chronic daily headache: Identification of factors associated with induction and transformation. Headache J. Head Face Pain 42, 575–581 (2002).
    Google Scholar 
    18.Patel, U. K. et al. Fibromyalgia and myositis linked to higher burden and disability in patients with migraine. SN Compr. Clin. Med. 1, 882–890 (2019).CAS 

    Google Scholar 
    19.Tiseo, C. et al. Migraine and sleep disorders: A systematic review. J. Headache Pain 21, 1–13 (2020).
    Google Scholar 
    20.Dresler, T. et al. Understanding the nature of psychiatric comorbidity in migraine: A systematic review focused on interactions and treatment implications. J. Headache Pain 20, 51 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    21.Wang, Y.-F. & Wang, S.-J. Hypertension and migraine: Time to revisit the evidence. Curr. Pain Headache Rep. 25, 1–9 (2021).
    Google Scholar 
    22.Friedman, B. W., Mistry, B., West, J. R. & Wollowitz, A. The association between headache and elevated blood pressure among patients presenting to an ED. Am. J. Emerg. Med. 32, 976–981 (2014).PubMed 

    Google Scholar 
    23.Arnold, M. Headache classification committee of the international headache society (IHS) the international classification of headache disorders. Cephalalgia 38, 1–211 (2018).
    Google Scholar 
    24.Kuo, C.-Y. et al. Increased risk of hemorrhagic stroke in patients with migraine: A population-based cohort study. PLoS ONE 8, e55253 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Wang, Y.-C., Lin, C.-W., Ho, Y.-T., Huang, Y.-P. & Pan, S.-L. Increased risk of ischemic heart disease in young patients with migraine: A population-based, propensity score-matched, longitudinal follow-up study. Int. J. Cardiol. 172, 213–216 (2014).PubMed 

    Google Scholar 
    26.Gardener, H. et al. Hypertension and migraine in the Northern Manhattan Study. Ethn. Dis. 26, 323 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Rapsomaniki, E. et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. The Lancet 383, 1899–1911 (2014).
    Google Scholar 
    28.Shnayder, N. A. et al. The role of single-nucleotide variants of NOS1, NOS2, and NOS3 genes in the comorbidity of arterial hypertension and tension-type headache. Molecules 26, 1556 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Petrova, M., Moskaleva, P., Shnayder, N. & Nasyrova, R. Comorbidity of arterial hyperten-sion and tension-type headache. Kardiologiia 60, 132–140 (2020).CAS 
    PubMed 

    Google Scholar 
    30.Adney, J., Koehler, S., Tian, L. & Maliakkal, J. Headache and hypertension in a 9-year-old girl. Pediatr. Rev. 42, 383–386 (2021).PubMed 

    Google Scholar 
    31.Organization, W. H. Atlas of Headache Disorders and Resources in the World 2011 (World Health Organisation, 2011).
    Google Scholar 
    32.Saylor, D. & Steiner, T. J. Seminars in Neurology 182–190 (Thieme Medical Publishers, 2021).
    Google Scholar 
    33.Silberstein, S. D., Lipton, R. B., Solomon, S. & Mathew, N. T. Classification of daily and near-daily headaches: Proposed revisions to the IHS criteria. Headache J. Head Face Pain 34, 1–7 (1994).
    Google Scholar 
    34.Caponnetto, V. et al. Comorbidities of primary headache disorders: A literature review with meta-analysis. J. Headache Pain 22, 1–18 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    35.Blumenfeld, A. et al. Disability, HRQoL and resource use among chronic and episodic migraineurs: Results from the International Burden of Migraine Study (IBMS). Cephalalgia 31, 301–315 (2011).CAS 
    PubMed 

    Google Scholar 
    36.Buse, D., Manack, A., Serrano, D., Turkel, C. & Lipton, R. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J. Neurol. Neurosurg. Psychiatry 81, 428–432 (2010).CAS 
    PubMed 

    Google Scholar 
    37.Bigal, M. E., Serrano, D., Reed, M. & Lipton, R. B. Chronic migraine in the population: Burden, diagnosis, and satisfaction with treatment. Neurology 71, 559–566 (2008).PubMed 

    Google Scholar 
    38.Katsarava, Z. et al. Chronic migraine: Classification and comparisons. Cephalalgia 31, 520–529 (2011).CAS 
    PubMed 

    Google Scholar 
    39.Hakimi, H. et al. The profile of Rafsanjan cohort study. Eur. J. Epidemiol. 36, 243–252 (2021).CAS 
    PubMed 

    Google Scholar 
    40.Poustchi, H. et al. Prospective epidemiological research studies in Iran (the PERSIAN Cohort Study): Rationale, objectives, and design. Am. J. Epidemiol. 187, 647–655 (2018).PubMed 

    Google Scholar 
    41.Ahmadi, M., Nasehi, M. M., Kheradmand, M. & Moosazadeh, M. Chronic headache in tabari cohort population: Prevalence and its related risk factors. Clin. Epidemiol. Glob. Health 8, 101–104 (2020).
    Google Scholar 
    42.Azizi, M. Meta-analysis of psychological factors of migraines in Iran. Q. J. Health Psychol. 6, 88–100 (2017).
    Google Scholar 
    43.Zarea, K., Rahmani, M., Hassani, F. & Hakim, A. Epidemiology and associated factors of migraine headache among Iranian medical students: A descriptive-analytical study. Clin. Epidemiol. Glob. Health 6, 109–114 (2018).
    Google Scholar 
    44.Huang, Q. et al. Elevated blood pressure and analgesic overuse in chronic daily headache: An outpatient clinic-based study from China. J. Headache Pain 14, 1–8 (2013).
    Google Scholar 
    45.Pietrini, U., De Luca, M. & De Santis, G. Hypertension in headache patients? A clinical study. Acta Neurol. Scand. 112, 259–264 (2005).CAS 
    PubMed 

    Google Scholar 
    46.Jensen, R. & Bendtsen, L. Is chronic daily headache a useful diagnosis? J. Headache Pain 5, 87–93 (2004).PubMed Central 

    Google Scholar 
    47.Gipponi, S., Venturelli, E., Rao, R., Liberini, P. & Padovani, A. Hypertension is a factor associated with chronic daily headache. Neurol. Sci. 31, 171–173 (2010).
    Google Scholar 
    48.Prudenzano, M. P. et al. The comorbidity of migraine and hypertension. A study in a tertiary care headache centre. J. Headache Pain 6, 220–222 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    49.Rist, P. M., Winter, A. C., Buring, J. E., Sesso, H. D. & Kurth, T. Migraine and the risk of incident hypertension among women. Cephalalgia 38, 1817–1824 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    50.Wang, J.-G. Chinese hypertension guidelines. Pulse 3, 14–20 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    51.Hagen, K. et al. Blood pressure and risk of headache: A prospective study of 22 685 adults in Norway. J. Neurol. Neurosurg. Psychiatry 72, 463–466 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Towards the biogeography of prokaryotic genes

    1.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 

    Google Scholar 
    2.Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Mohammad, B. F. et al. Structure and function of the global topsoil microbiome. Nature 560 233–237 (2018).4.Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 33, 1103–1108 (2015).CAS 
    PubMed 

    Google Scholar 
    6.Coelho, L. P. et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6, 72 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    7.Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, (2018).9.Mende, D. R. et al. ProGenomes2: An improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes. Nucleic Acids Res. 48, D621–D625 (2020).CAS 
    PubMed 

    Google Scholar 
    10.Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Daniel H. et al. RefSeq: an update on prokaryotic genome annotation and curation. Nuc. Acids Res. 46, D851–D860 (2018).13.Mering, C. von et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007).ADS 

    Google Scholar 
    14.Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    15.Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).CAS 
    PubMed 

    Google Scholar 
    16.Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).CAS 
    PubMed 

    Google Scholar 
    17.Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    19.Maistrenko, O. M. et al. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J. 14, 1247–1259 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    20.Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The diversity of a distributed genome in bacterial populations. Ann. Appl. Probab. 20, 1567–1606 (2010).MathSciNet 
    MATH 

    Google Scholar 
    21.Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Dandekar, T., Snel, B., Huynen, M. & Bork, P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998).CAS 
    PubMed 

    Google Scholar 
    23.Nei, M., Suzuki, Y. & Nozawa, M. The neutral theory of molecular evolution in the genomic era. Annu. Rev. Genomics Hum. Genet. 11, 265–289 (2010).CAS 
    PubMed 

    Google Scholar 
    24.Iranzo, J., Cuesta, J. A., Manrubia, S., Katsnelson, M. I. & Koonin, E. V. Disentangling the effects of selection and loss bias on gene dynamics. Proc. Natl Acad. Sci. USA 114, E5616–E5624 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Wolf, Y. I., Makarova, K. S., Lobkovsky, A. E. & Koonin, E. V. Two fundamentally different classes of microbial genes. Nat. Microbiol. 2, 16208 (2016).CAS 
    PubMed 

    Google Scholar 
    26.Rasko, D. A. et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881–6893 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1, 1606–1615 (2017).PubMed 

    Google Scholar 
    28.Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).CAS 
    PubMed 

    Google Scholar 
    29.Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2015).ADS 
    PubMed 

    Google Scholar 
    30.Vincent, C. et al. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection. Microbiome 4, 12 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    31.Zeller, G. et al. Potential of fecal microbiota for early‐stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    32.Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).CAS 
    PubMed 

    Google Scholar 
    34.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hannigan, G. D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 6, e01578-15 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Taft, D. H. et al. Intestinal microbiota of preterm infants differ over time and between hospitals. Microbiome 2, 36 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    39.Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).CAS 
    PubMed 

    Google Scholar 
    40.Wilhelm, R. C. et al. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J. 11, 2552–2568 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    41.Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572–584.e3 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.The MetaSUB International Consortium. The metagenomics and metadesign of the subways and urban biomes (metasub) international consortium inaugural meeting report. Microbiome 4, 24 (2016).
    Google Scholar 
    43.Chatelier, E. L. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).PubMed 

    Google Scholar 
    44.Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, (2017).45.Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).CAS 
    PubMed 

    Google Scholar 
    47.Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    48.Gu, Y. et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun. 8, 1785 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Karlsson, F. H. et al. Gut metagenome in european women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).CAS 
    PubMed 

    Google Scholar 
    51.Youngster, I. et al. Fecal microbiota transplant for relapsing clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin. Infect. Dis. 58, 1515–1522 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    52.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nat. Commun. 10, 512 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Vogtmann, E. et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS ONE 11, e0155362 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Chng, K. R. et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 1, 16106 (2016).CAS 
    PubMed 

    Google Scholar 
    55.Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Van Rossum, T. et al. Spatiotemporal dynamics of river viruses, bacteria and microeukaryotes. Preprint at https://doi.org/10.1101/259861 (2018).57.Feng, Q. et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci. Rep. 6, 22525 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Oh, J., Byrd, A. L., Park, M., Kong, H. H. & Segre, J. A. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Xiao, L. et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1, 16161 (2016).CAS 
    PubMed 

    Google Scholar 
    60.R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2014).61.Coelho, L. P. et al. NG-meta-profiler: Fast processing of metagenomes using ngless, a domain-specific language. Microbiome 7, 84 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    62.Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct De Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Besemer, J. & Borodovsky, M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 33, W451–W454 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Coelho, L. P. Jug: Software for parallel reproducible computation in Python. J. Open Res. Softw. 5, 30 (2017).
    Google Scholar 
    65.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using diamond. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 

    Google Scholar 
    66.Eberhardt, R. Y. et al. AntiFam: A tool to help identify spurious ORFs in protein annotation. Database 2012, bas003 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    67.Kang, D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    68.Li, H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. Preprint at https://arxiv.org/abs/1303.3997 (2013).69.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Zhou, W., Gay, N. & Oh, J. ReprDB and panDB: minimalist databases with maximal microbial representation. Microbiome 6, 15 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    72.Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in tara oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 

    Google Scholar 
    74.Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    75.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Smyshlyaev, G., Barabas, O. & Bateman, A. Sequence analysis allows functional annotation of tyrosine recombinases in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Jia, B. et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).CAS 
    PubMed 

    Google Scholar 
    78.Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9, 207–216 (2015).CAS 
    PubMed 

    Google Scholar 
    79.Li, T., Fan, K., Wang, J. & Wang, W. Reduction of protein sequence complexity by residue grouping. Protein Eng. 16, 323–330 (2003).CAS 
    PubMed 

    Google Scholar 
    80.Zhao, M., Lee, W.-P., Garrison, E. P. & Marth, G. T. SSW library: an SIMD Smith–Waterman C/C++ library for use in genomic applications. PLoS ONE 8, e82138 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2017).
    Google Scholar 
    82.Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    84.Kumar, R., Acharya, V., Singh, D. & Kumar, S. Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01. Stand. Genomic Sci. 13, 11 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Patijanasoontorn, B. et al. Hospital acquired Janthinobacterium lividum septicemia in srinagarind hospital. J. Med. Assoc. Thai. 75 Suppl 2, 6–10 (1992).PubMed 

    Google Scholar 
    86.Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 
    MATH 

    Google Scholar 
    89.Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).CAS 
    PubMed 

    Google Scholar 
    90.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    91.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–12 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Murrell, B. et al. FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol. Biol. Evol. 30, 1196–1205 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Washietl, S. et al. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA 17, 578–594 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Experimental evidence for recovery of mercury-contaminated fish populations

    Mercury additions to the study catchmentMETAALICUS was conducted on the Lake 658 catchment at the Experimental Lakes Area (ELA; now IISD-ELA), a remote area in the Precambrian Shield of northwestern Ontario, Canada (49° 43′ 95″ N, 93° 44′ 20″ W) set aside for whole-ecosystem research31. The Lake 658 catchment includes upland (41.2 ha), wetland (1.7 ha) and lake surface (8.4 ha) areas. Lake 658 is a double basin (13 m depth), circumneutral, headwater lake, with a fish community consisting of forage (yellow perch (P. flavescens) and blacknose shiner (Notropis heterolepis)), benthivorous (lake whitefish (C. clupeaformis) and white sucker (Catostomus commersonii)), and piscivorous (northern pike (E. lucius)) fishes. The lake is closed to fishing.Hg addition methods used in METAALICUS have been described in detail elsewhere19,32,33. In brief, three Hg spikes, each enriched with a different stable Hg isotope, were applied separately to the lake surface, upland and wetland areas. Upland and wetland spikes were applied once per year (when possible; Fig. 1a) by fixed-wing aircraft (Cessna 188 AGtruck). Mercury spikes (as HgNO3) were diluted in acidified water (pH 4) in a 500 l fiberglass tank and sprayed with a stainless-steel boom on upland (approximately 79.9% 200Hg) and wetland (approximately 90.1% 198Hg) areas. Spraying was completed during or immediately before a rain event, with wind speeds less than 15 km h−1 to minimize drift of spike Hg outside of target areas. Aerial spraying of upland and wetland areas left a 20-m buffer to the shoreline, which was sprayed by hand with a gas-powered pump and fire hose to within about 5 m of the lake32. Average net application rates of isotopically labelled Hg to the upland and wetland areas were 18.5 μg m−2 yr−1 and 17.8 μg m−2 yr−1, respectively.The average net application rate for lake spike Hg was 22.0 μg m−2 yr−1. For each lake addition, inorganic Hg enriched with approximately 89.7% 202Hg was added as HgNO3 from four 20-l carboys filled with acidified lake water (pH 4). Nine lake additions were conducted bi-weekly at dusk over an 18-week (wk) period during the open-water season of each year (2001–2007) by injecting at 70-cm depth into the propeller wash of trolling electric motors of two boats crisscrossing each basin of the lake32,33. It was previously demonstrated with 14C additions to an ELA lake that this approach evenly distributed spike added in the evening by the next morning34.We did not attempt to simulate Hg in rainfall for isotopic lake additions because it is impossible to simulate natural rainfall concentrations (about 10 ng l−1) in the 20-l carboys used for additions. Instead, our starting point for the experiment was to ensure that the spike was behaving as closely as possible to ambient surface water Hg very soon after it entered the lake. Several factors support this assertion. By the next morning each spike addition had increased epilimnetic Hg concentrations by only 1 ng l−1 202Hg. Average ambient concentrations were 2 ng l−1. Thus, while the Hg concentrations in the carboys were high (2.6 mg l−1), the receiving waters were soon at trace levels. Furthermore, we investigated if the additions altered the degree of bioavailability or photoreactivity of Hg(ii) in the receiving surface water. We examined the bioavailability of spike Hg(ii) as compared to ambient Hg in the lake itself using a genetically engineered bioreporter bacterium35. On seven occasions, epilimnetic samples were collected on the day before and within 12 h of spike additions. The spike was added to the lake as Hg(NO3)2, which is bioavailable to the bioreporter bacterium (detection limit = 0.1 ng Hg(ii) l−1), but we never saw bioavailable ambient or spike Hg(ii) in the lake, presumably because it was quickly bound to dissolved organic carbon (DOC). This indicates that, in terms of bioavailability, the spike Hg was behaving like ambient Hg soon after additions. Photoreactivity in the surface water was examined on seven occasions, by measuring the % of total Hg(ii) that was dissolved gaseous Hg for spike and ambient Hg, either 24 h or 48 h after the lake was spiked36. There was no significant difference (paired t-test, P > 0.05), demonstrating that by then the lake spike was behaving in the same way as ambient Hg during gaseous Hg production.Lake, food web and fish samplingWater samples were collected from May to October every four weeks at the deepest point of Lake 658. Water was pumped from six depths through acid-cleaned Teflon tubing into acid-cleaned Teflon or glass bottles. Water samples were filtered in-line using pre-ashed quartz fibre filters (Whatman GFQ, 0.7 µm). Subsequently, Hg species were measured in the filtered water samples (dissolved Hg and MeHg) and in particles collected on the quartz fibre filter (particulate Hg and MeHg).From 2001 to 2012, Lake 658 sediments were sampled at 4 fixed sites up to 5 times per year. Sampling frequency was highest in 2001, with monthly sampling from May to September, and declined over the course of the study. Fixed sites were located at depths of 0.5, 2, 3 and 7 m. A sediment survey of up to 12 additional sites was also conducted once or twice each year. Survey sites were selected to represent the full range of water depths in both basins. Cores were collected by hand by divers, or by subsampling sediments collected using a small box corer. Cores were capped and returned to the field station for processing within a few hours. For each site, three separate cores were sectioned and composited in zipper lock bags for a 0- to 2-cm depth sampling horizon, and then frozen at −20 °C.Bulk zooplankton and Chaoborus samples were collected from Lake 658 for MeHg analysis. Zooplankton were collected during the day from May to October (bi-weekly: 2001–2007; monthly: 2008–2015). A plankton net (150 μm, 0.5 m diameter) was towed vertically through the water column from 1 m above the lake bottom at the deepest point to the surface of the lake. Samples were frozen in plastic Whirl-Pak bags after removal of any Chaoborus using acid-washed tweezers. Dominant zooplankton taxa in Lake 658 included calanoid copepods (Diaptomus oregonensis) and Cladocera (Holopedium glacialis, Daphnia pulicaria and Daphnia mendotae). Chaoborus samples were collected monthly in the same manner at least 1 h after sunset. After collection, Chaoborus were picked from the sample using forceps and frozen in Whirl-Pak bags. Chaoborus were not separated by species for MeHg analyses, but both C. flavicans and C. punctipennis occur in the lake. Profundal chironomids were sampled at the deepest part of the lake using a standard Ekman grab sampler. Grab material was washed using water from a nearby lake and individual chironomids were picked by hand.All work with vertebrate animals was approved by Animal Care Committees (ACC) through the Canadian Council on Animal Care (Freshwater Institute ACC for Fisheries and Oceans Canada, 2001–2013; University of Manitoba ACC for IISD-ELA, 2014–2015). Licenses to Collect Fish for Scientific Purposes were granted annually by the Ontario Ministry of Natural Resources and Forestry. Prior to any Hg additions, a small-mesh fence was installed at the outlet of Lake 658 to the downstream lake to prevent movement of fish between lakes. Sampling for determination of MeHg concentrations (measured as total mercury (THg), see below) occurred each autumn (August–October; that is, the end of the growing season in north temperate lakes) for all fish species in Lake 658, and for northern pike and yellow perch in nearby reference Lake 240 (Extended Data Tables 2, 3). Fish collections occurred randomly throughout the lakes. Forage fish (YOY and 1+ yellow perch, and blacknose shiner) were captured using small mesh gillnets (6–10 mm) set for 90% of the Hg in muscle tissue from yellow perch in Lake 658 is MeHg40,41, here we report fish mercury data as MeHg.THg concentrations (ambient, lake spike, upland spike and wetland spike) in fish muscle samples were quantified by ICP-MS39. Samples were digested with HNO3/H2SO4 (7:3 v/v) and heated at 80 °C until brown NOx gases no longer formed. The THg in sample digests was reduced by SnCl2 to Hg0 which was then quantified by ICP-MS (Thermo-Finnigan Element2) using a continuous flow cold vapour generation technique41. To correct for procedural recoveries, all samples were spiked with 201HgCl2 prior to sample analysis. Samples of CRMs (DORM2 (2001–2011), DORM3 (2012–2013), DORM4 (2014–2015); National Research Council of Canada) were submitted to the same procedures; measured THg concentrations in the reference materials were not statistically different from certified values (P > 0.05). Detection limit for each of the spikes was 0.5% of ambient Hg.Calculations and statistical methodsAnalyses were completed with Statistica (6.1, Statsoft) and Sigmaplot (11.0, Systat Software). We present wet weight (w.w.) MeHg concentrations for all samples, except sediments which are dry weight (d.w.) concentrations. For zooplankton, Chaoborus, and profundal chironomids, d.w. MeHg concentrations were multiplied by a standard proportion (0.15) to yield w.w. concentrations for each sample42. The resulting w.w. concentrations were averaged over each open water season to determine annual means. For fish muscle biopsies, d.w. MeHg concentrations were multiplied by individual d.w. proportions to yield w.w. MeHg concentrations for each sample. To avoid any size-related biases, we calculated standardized annual MeHg concentrations (ambient and lake spike) for northern pike and lake whitefish by determining best-fit relationships between FL and MeHg concentrations for each year (quadratic polynomial, except for a linear fit for lake whitefish in 2004), and using the resulting regression equations to estimate MeHg concentrations at a standard FL43 (the mean FL of all fish sampled for each species: northern pike, 475 mm; lake whitefish, 530 mm). Square root transformation of raw northern pike data was required to satisfy assumptions of normality and homoscedasticity prior to standardization. The resulting data represent standardized concentrations of lake spike and ambient MeHg for each species each year.We used the ratio of lake spike and ambient Hg in each sample as a measure of the amount by which Hg concentrations were changed with the addition of isotopically enriched Hg:$${rm{P}}{rm{e}}{rm{r}}{rm{c}}{rm{e}}{rm{n}}{rm{t}},{rm{i}}{rm{n}}{rm{c}}{rm{r}}{rm{e}}{rm{a}}{rm{s}}{rm{e}}={[{rm{l}}{rm{a}}{rm{k}}{rm{e}}{rm{s}}{rm{p}}{rm{i}}{rm{k}}{rm{e}}{rm{H}}{rm{g}}]}_{i}/{[{rm{a}}{rm{m}}{rm{b}}{rm{i}}{rm{e}}{rm{n}}{rm{t}}{rm{H}}{rm{g}}]}_{i}times 100$$
    (1)
    where [lake spike Hg]i is the concentration of lake spike MeHg in sample i, and [ambient Hg]i is the concentration of ambient MeHg in sample i. For northern pike and lake whitefish, we calculated the mean annual relative increase from all individuals (not the size-standardized concentration data).Biomagnification factors (BMF) were calculated to describe differences in Hg concentrations between predator and prey5:$${rm{BMF}}={log }_{10}({[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{d}}{rm{a}}{rm{t}}{rm{o}}{rm{r}}}/{[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{y}}})$$
    (2)
    where [MeHg]predator is the mean (forage fish) or standardized (large-bodied fish) concentration of MeHg in the predator (ng g−1 w.w.) and [MeHg]prey is the mean concentration of MeHg in the prey (ng g−1 w.w.). MeHg concentration of prey items were averaged from samples collected throughout the open-water season immediately prior to autumn sampling of fish species to represent an integrated exposure for calculation of BMF. We used a dominant prey item to represent the diet of each fish species. For age 1+ yellow perch, northern pike, and lake whitefish, dominant prey items were zooplankton, forage fishes (YOY and 1+ yellow perch, and blacknose shiner) and Chaoborus, respectively.To assess loss of lake spike MeHg by northern pike during the recovery period (2008–2015), we calculated28 whole body burdens (in μg) of lake spike MeHg for the standardized population and for individuals that had been sampled in autumn 2007 (t0 is the final time spike Hg was added to the lake) and again in at least one subsequent year during annual autumn sampling (n = 16 fish, of which 1–9 individuals were recaptured annually from 2008–2015). This calculation of MeHg burden is a relative measure of whole fish Hg content because MeHg is higher in muscle tissue than in other tissue types28,40. For the standardized population data, we used best-fit relationships between FL (in mm) and body weight (in g; quadratic polynomial) to determine body weight at the standard FL. We multiplied this body weight by standard ambient and spike MeHg concentrations (in ng g−1 w.w.) in muscle tissue for each year to determine body burdens over time (in ng). For individual fish, we multiplied spike MeHg concentration (in ng g−1 w.w.) by body weight (in g) to yield individual body burdens (in ng). To account for differences among individuals and between individuals and the population, we normalized the data to examine the mean proportion of original (t0) lake spike MeHg burden present in northern pike each year of the recovery period (2008–2015).$${rm{change}},{rm{in}},{rm{burden}},{rm{from}},{t}_{0}={{rm{burden}}}_{{rm{tx}}}/{{rm{burden}}}_{{rm{t}}0}$$
    (3)
    We used a best fit regression (exponential decay, beginning in the second year of recovery) to estimate the half-life (50% of original burden) of lake spike MeHg for the population.Northern pike and lake whitefish ages were determined by cleithra and otoliths, respectively, if mortality had occurred, but most ages were quantified using fin rays collected from live fish44 (K. H. Mills, DFO or North/South Consultants). Northern pike of the sizes selected for biopsy sampling had a median age of 3 years (range: 2–12 years; n = 305); the median age of lake whitefish was 17 years (range: 3–38 years; n = 86).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More

  • in

    Biogeochemical extremes and compound events in the ocean

    1.Gruber, N. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1980–1996 (2011). Identifies the potential synegistic threat to marine ecosystems resulting from ocean warming, deoxygenation and acidification.ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    4.Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 

    Google Scholar 
    6.Keeling, R. F., Kortzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    7.Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).ADS 

    Google Scholar 
    8.Sallée, J. B. et al. Summertime increases in upper-ocean stratification and mixed-layer depth. Nature 591, 592–598 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Sarmiento, J. L. & Gruber, N. Ocean Biogeochemical Dynamics (Princeton Univ. Press, 2006).10.Mikaloff Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles 20, GB2002 (2006).ADS 

    Google Scholar 
    11.Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Ann. Rev. Mar. Sci. 1, 169–192 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    12.Doney, S. C., Busch, D. S., Cooley, S. R. & Kroeker, K. J. The impacts of ocean acidification on marine ecosystems and reliant human communities. Annu. Rev. Environ. Resour. 45, 83–112 (2020).
    Google Scholar 
    13.Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    14.Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl Acad. Sci. USA 115, 1754–1759 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).ADS 

    Google Scholar 
    16.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 

    Google Scholar 
    17.Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).18.Lavell, A. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 25–64 (2012).19.Parmesan, C., Root, T. L. & Willig, M. R. Impacts of extreme weather and climate on terrestrial biota. Bull. Am. Meteor. Soc. 81, 443–450 (2000).ADS 

    Google Scholar 
    20.Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).
    Google Scholar 
    21.Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    22.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018). Quantifies the future evolution of marine heatwaves under different climate scenarios and their attribution to climate change.ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018). Highlights the strong increase in the occurrence and intensity of marine heatwaves in recent decades.ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
    Google Scholar 
    25.Benedetti-Cecchi, L. Complex networks of marine heatwaves reveal abrupt transitions in the global ocean. Sci. Rep. 11, 1739 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019). Assesses the potential for global ocean ecosystem impacts of marine heatwaves.ADS 

    Google Scholar 
    27.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2012). Demonstrates marked ocean ecosystem changes in response to a heatwave.ADS 

    Google Scholar 
    28.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 

    Google Scholar 
    29.Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).ADS 

    Google Scholar 
    31.Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the west coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).ADS 

    Google Scholar 
    32.Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016). A synthesis of the ecosystem impacts of the 2013–2015 Blob heatwave.33.Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 north Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).ADS 

    Google Scholar 
    34.Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).
    Google Scholar 
    35.Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013). Models the evolution of ocean-acidification-related extremes in the California Current System.ADS 

    Google Scholar 
    38.Burger, F. A., John, J. G. & Frölicher, T. L. Increase in ocean acidity variability and extremes under increasing atmospheric CO2. Biogeosciences 17, 4633–4662 (2020).ADS 
    CAS 

    Google Scholar 
    39.Leonard, M. et al. A compound event framework for understanding extreme impacts. Wiley Interdiscip. Rev. Clim. Change 5, 113–128 (2014).
    Google Scholar 
    40.Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).
    Google Scholar 
    41.Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).ADS 

    Google Scholar 
    42.Boyd, P. W. & Brown, C. J. Modes of interactions between environmental drivers and marine biota. Front. Mar. Sci. 2, 9 (2015).
    Google Scholar 
    43.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).44.Limburg, K. E., Breitburg, D., Swaney, D. P. & Jacinto, G. Ocean deoxygenation: a primer. One Earth 2, 24–29 (2020).
    Google Scholar 
    45.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 

    Google Scholar 
    46.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 

    Google Scholar 
    47.Allen, M. R. et al. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds. Masson-Delmotte, V. et al.) 49–91 (IPCC, 2018).48.Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Pilo, G. S., Holbrook, N. J., Kiss, A. E. & Hogg, A. M. C. sensitivity of marine heatwave metrics to ocean model resolution. Geophys. Res. Lett. 46, 14604–14612 (2019).ADS 

    Google Scholar 
    50.Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
    Google Scholar 
    51.Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).52.Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).ADS 

    Google Scholar 
    53.Amaya, D. J., Miller, A. J., Xie, S. P. & Kosaka, Y. Physical drivers of the summer 2019 north Pacific marine heatwave. Nat. Commun. 11, 1903 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Negrete-García, G., Lovenduski, N. S., Hauri, C., Krumhardt, K. M. & Lauvset, S. K. Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean. Nat. Clim. Change 9, 313–317 (2019).ADS 

    Google Scholar 
    55.Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: the role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).ADS 

    Google Scholar 
    56.Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).ADS 

    Google Scholar 
    57.Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).ADS 

    Google Scholar 
    58.Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Frenger, I. et al. Biogeochemical role of subsurface coherent eddies in the ocean: tracer cannonballs, hypoxic storms, and microbial stewpots? Glob. Biogeochem. Cycles 32, 226–249 (2018).ADS 
    CAS 

    Google Scholar 
    60.Schütte, F. et al. Characterization of ‘dead-zone’ eddies in the eastern tropical north Atlantic. Biogeosciences 13, 5865–5881 (2016).ADS 

    Google Scholar 
    61.Lauvset, S. K. et al. Processes driving global interior ocean pH distribution. Glob. Biogeochem. Cycles 34, e2019GB006229 (2020).ADS 
    CAS 

    Google Scholar 
    62.Gaube, P., Chelton, D. B., Strutton, P. G. & Behrenfeld, M. J. Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans 118, 6349–6370 (2013).ADS 
    CAS 

    Google Scholar 
    63.Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans 120, 7413–7449 (2015).ADS 

    Google Scholar 
    64.Hauss, H. et al. Dead zone or oasis in the open ocean? Zooplankton distribution and migration in low-oxygen modewater eddies. Biogeosciences 13, 1977–1989 (2016).ADS 
    CAS 

    Google Scholar 
    65.Gruber, N. et al. Rapid progression of ocean acidification in the California Current System. Science 337, 220–223 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).ADS 

    Google Scholar 
    68.Peterson, W. T., Bond, N. A. & Robert, M. The Blob (part three): going, going, gone? PICES Press 24, 46–48 (2016).
    Google Scholar 
    69.Frischknecht, M., Münnich, M. & Gruber, N. Local atmospheric forcing driving an unexpected California Current System response during the 2015–2016 El Niño. Geophys. Res. Lett. 44, 304–311 (2017).ADS 

    Google Scholar 
    70.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).72.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Pörtner, H. O. Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar. Ecol. Progr. Ser. 373, 203–217 (2008).ADS 

    Google Scholar 
    74.Stillman, J. H. Heat waves, the new normal: summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 34, 86–100 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Straub, S. C. et al. Resistance, extinction, and everything in between—the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 
    76.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018). Demonstrates the global-scale impact of marine heatwaves on warm-water corals.ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Donovan, M. K. et al. Local conditions magnify coral loss following marine heatwaves. Science 372, 977–980 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. https://doi.org/10.1111/gcb.15818 (2021).79.McMahon, B. R. Physiological responses to oxygen depletion in intertidal animals. Am. Zool. 28, 39–53 (1988).
    Google Scholar 
    80.Kroeker, K. J. et al. Ecological change in dynamic environments: accounting for temporal environmental variability in studies of ocean change biology. Glob. Change Biol. 26, 54–67 (2020).ADS 

    Google Scholar 
    81.Hofmann, G. E. et al. High-frequency dynamics of ocean pH: a multi-ecosystem comparison. PLoS ONE 6, e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Spisla, C. et al. Extreme levels of ocean acidification restructure the plankton community and biogeochemistry of a temperate coastal ecosystem: a mesocosm study. Front. Mar. Sci. 7, 611157 (2021).
    Google Scholar 
    83.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Bednaršek, N. et al. El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California current system with implications for increased bioenergetic costs. Front. Mar. Sci. 5, 486 (2018). Shows the impact of a compound event on pteropods, a keystone zooplankton species in many marine ecosystems.
    Google Scholar 
    85.Calderón-Liévanos, S. et al. Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes. Mar. Freshw. Behav. Physiol. 52, 1–15 (2019).
    Google Scholar 
    86.Mieszkowska, N., Burrows, M. T., Hawkins, S. J. & Sugden, H. Impacts of pervasive climate change and extreme events on rocky intertidal communities: evidence from long-term data. Front. Mar. Sci. 8, 642764 (2021).87.Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several northeast Pacific marine ecosystems. Glob. Chang. Biol. 27, 506–520 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Garrabou, J. et al. Mass mortality in northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).ADS 

    Google Scholar 
    90.Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940 (2013).ADS 

    Google Scholar 
    91.Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).ADS 

    Google Scholar 
    92.Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the Northern Gulf of Alaska. Front. Mar. Sci. 8, 556820 (2021).93.Samuels, T., Rynearson, T. A. & Collins, S. Surviving heatwaves: thermal experience predicts life and death in a Southern Ocean Diatom. Front. Mar. Sci. 8, 600343 (2021).94.Vajedsamiei, J., Wahl, M., Schmidt, A. L., Yazdanpanahan, M. & Pansch, C. The higher the needs, the lower the tolerance: extreme events may select ectotherm recruits with lower metabolic demand and heat sensitivity. Front. Mar. Sci. 8, 660427 (2021).
    Google Scholar 
    95.Bindoff, N. L. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 5 (IPCC, 2021).96. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 6 (Cambridge Univ. Press, 2014).97.Harvey, B. P., Gwynn-Jones, D. & Moore, P. J. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol. Evol. 3, 1016–1030 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    98.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Ann. Rev. Mar. Sci. 8, 357–378 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    99.Seifert, M., Rost, B., Trimborn, S. & Hauck, J. Meta-analysis of multiple driver effects on marine phytoplankton highlights modulating role of pCO2. Glob. Change Biol. 26, 6787–6804 (2020).ADS 

    Google Scholar 
    100.Sampaio, E. et al. Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat. Ecol. Evol. 5, 311–321 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    101.Bernhardt, J. R., O’Connor, M. I., Sunday, J. M. & Gonzalez, A. Life in fluctuating environments: adaptation to changing environments. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190454 (2020).
    Google Scholar 
    102.Somero, G. N. The cellular stress response and temperature: function, regulation, and evolution. J. Exp. Zool. A Ecol. Integr. Physiol. 333, 379–397 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Fordyce, A. J., Ainsworth, T. D., Heron, S. F. & Leggat, W. Marine heatwave hotspots in coral reef environments: physical drivers, ecophysiological outcomes and impact upon structural complexity. Front. Mar. Sci. 6, 498 (2019).
    Google Scholar 
    104.Krueger, T. et al. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J. Phycol. 50, 1035–1047 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    106.Schlüter, L., Lohbeck, K. T., Gröger, J. P., Riebesell, U. & Reusch, T. B. H. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification. Sci. Adv. 2, e1501660 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Schlüter, L. et al. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat. Clim. Change 4, 1024–1030 (2014).ADS 

    Google Scholar 
    108.Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    109.Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    110.Hinder, S. L. et al. Multi-decadal range changes vs. thermal adaptation for north east Atlantic oceanic copepods in the face of climate change. Glob. Change Biol. 20, 140–146 (2014).ADS 

    Google Scholar 
    111.Antell, G. S., Fenton, I. S., Valdes, P. J. & Saupe, E. E. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc. Natl Acad. Sci. USA 118, e2017105118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).
    Google Scholar 
    113.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    114.Thurman, L. L. et al. Persist in place or shift in space? Evaluating the adaptive capacity of species to climate change. Front. Ecol. Environ. 18, 520–528 (2020).
    Google Scholar 
    115.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    116.Dutkiewicz, S., Boyd, P. W. & Riebesell, U. Exploring biogeochemical and ecological redundancy in phytoplankton communities in the global ocean. Glob. Change Biol. 27, 1196–1213 (2021).ADS 

    Google Scholar 
    117.Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    118.Grant, P. R. et al. Evolution caused by extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 5–8 (2017).ADS 

    Google Scholar 
    119.Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).
    Google Scholar 
    120.Vallina, S. M. & Le Quéré, C. Stability of complex food webs: resilience, resistance and the average interaction strength. J. Theor. Biol. 272, 160–173 (2011).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    121.Neutel, A. M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    122.Ives, A. R. & Cardinale, B. J. Food-web interactions govern the resistance of communities after non-random extinctions. Nature 429, 174–177 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Nagelkerken, I., Goldenber, S. U., Ferreir, C. M., Ullah, H. & Conne, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369, 829–832 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    124.Carpenter, S. R. et al. Cascading trophic interactions and lake productivity. Bioscience 35, 634–639 (1985).
    Google Scholar 
    125.Bideault, A. et al. Thermal mismatches in biological rates determine trophic control and biomass distribution under warming. Glob. Change Biol. 27, 257–269 (2021).ADS 

    Google Scholar 
    126.Dee, L. E., Okamtoto, D., Gårdmark, A., Montoya, J. M. & Miller, S. J. Temperature variability alters the stability and thresholds for collapse of interacting species: species interactions facing variability. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190457 (2020).
    Google Scholar 
    127.Adjeroud, M. et al. Recovery of coral assemblages despite acute and recurrent disturbances on a south central Pacific reef. Sci. Rep. 8, 9680 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 

    Google Scholar 
    129.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Glob. Change Biol. 22, 2633–2650 (2016).ADS 

    Google Scholar 
    130.Ainsworth, T. D., Hurd, C. L., Gates, R. D. & Boyd, P. W. How do we overcome abrupt degradation of marine ecosystems and meet the challenge of heat waves and climate extremes? Glob. Change Biol. 26, 343–354 (2020).ADS 

    Google Scholar 
    131.Pörtner, H.-O. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010). Develops the concept of how other stressors can interact with each other in marine ectotherms.PubMed 
    PubMed Central 

    Google Scholar 
    132.Deutsch, C., Ferrel, A., Seibel, B., Portner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    134.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    135.Bertolini, C. & Pastres, R. Tolerance landscapes can be used to predict species-specific responses to climate change beyond the marine heatwave concept: using tolerance landscape models for an ecologically meaningful classification of extreme climate events. Estuar. Coast. Shelf Sci. 252, 107284 (2021).
    Google Scholar 
    136.Le Gland, G., Vallina, S. M., Smith, S. L. & Cermeño, P. SPEAD 1.0—simulating plankton evolution with adaptive dynamics in a two-trait continuous fitness landscape applied to the Sargasso Sea. Geosci. Model Dev. 14, 1949–1985 (2021).ADS 

    Google Scholar 
    137.Merico, A., Bruggeman, J. & Wirtz, K. A trait-based approach for downscaling complexity in plankton ecosystem models. Ecol. Modell. 220, 3001–3010 (2009).CAS 

    Google Scholar 
    138.Walworth, N. G., Zakem, E. J., Dunne, J. P., Collins, S. & Levine, N. M. Microbial evolutionary strategies in a dynamic ocean. Proc. Natl Acad. Sci. USA 117, 5943–5948 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    139.Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).ADS 
    CAS 

    Google Scholar 
    140.Collins, M. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) Ch. 6 (IPCC, 2021).141.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    142.Cheung, W. W. L., Reygondeau, G. & Frölicher, T. L. Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science 354, 1591–1594 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Rashid Sumaila, U. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    144.Tilbrook, B. et al. An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange. Front. Mar. Sci. 6, 337 (2019).
    Google Scholar 
    145.Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with Biogeochemical-Argo. Ann. Rev. Mar. Sci. 12, 23–48 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    146.Chai, F. et al. Monitoring ocean biogeochemistry with autonomous platforms. Nat. Rev. Earth Environ. 1, 315–326 (2020).ADS 

    Google Scholar 
    147.Fennel, K. et al. Advancing marine biogeochemical and ecosystem reanalyses and forecasts as tools for monitoring and managing ecosystem health. Front. Mar. Sci. 6, 89 (2019).
    Google Scholar 
    148.Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    149.Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).ADS 

    Google Scholar 
    151.Boyd, P. & Hutchins, D. Understanding the responses of ocean biota to a complex matrix of cumulative anthropogenic change. Mar. Ecol. Prog. Ser. 470, 125–135 (2012).ADS 

    Google Scholar 
    152.Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).ADS 

    Google Scholar 
    153.Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Modell. 222, 3823–3837 (2011).
    Google Scholar 
    154.Bruggeman, J. & Kooijman, S. A. L. M. A biodiversity-inspired approach to aquatic ecosystem modeling. Limnol. Oceanogr. 52, 1533–1544 (2007).ADS 

    Google Scholar 
    155.Small-Lorenz, S. L., Culp, L. A., Ryder, T. B., Will, T. C. & Marra, P. P. A blind spot in climate change vulnerability assessments. Nat. Clim. Change 3, 91–93 (2013).ADS 

    Google Scholar 
    156.Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    159.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).
    Google Scholar 
    160.Liquete, C. et al. Current status and future prospects for the assessment of marine and coastal ecosystem services: a systematic review. PLoS ONE 8, e67737 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    161.Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Nino-coincident coral mortality. Coral Reefs 8, 181–191 (1990).ADS 

    Google Scholar 
    162.Eakin, C. M. et al. Caribbean corals in crisis: record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Gardner, J., Manno, C., Bakker, D. C. E., Peck, V. L. & Tarling, G. A. Southern Ocean pteropods at risk from ocean warming and acidification. Mar. Biol. 165, 8 (2018).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Comparing alternatives to the fixed degree sequence model for extracting the backbone of bipartite projections

    PreliminariesA bipartite network captures connections between nodes of one type (agents) and nodes of a second type (artifacts). Throughout this section, we use the ecological case of Darwin’s Finches to provide a concrete example24,25. On his voyage to the Galapagos Islands on the H.M.S. Beagle, Darwin observed that only some species of finches lived on each island. These patterns can be represented as a bipartite network in which finch species (the agent nodes) are connected to the islands (the artifact nodes) where they are found26. A bipartite network can be represented as a binary matrix in which the agents are arrayed as rows, and the artifacts are arrayed as columns. We use ({mathbf {B}}) to denote a bipartite network’s representation as a matrix, where (B_{ik}=1) if agent i is connected to artifact k, and otherwise is 0. The sequence of row sums and the sequence of column sums of ({mathbf {B}}) are called the agent and artifact degrees sequences, respectively. These sequences are among the bipartite network’s most significant features and are known to have implications for bipartite projections and backbones15,27,28. In the ecological case, the agent degree sequence captures the number of islands where each species is found, while the artifact degree sequence captures the number of species found on each island.The projection of a bipartite network is a weighted unipartite co-occurrence network in which a pair of agents is connected by an edge with a weight equal to their number of shared artifacts. For example, the bipartite projection of Darwin’s finch network is a species co-occurrence network in which a pair of finch species is connected by an edge with a weight equal to the number of islands where they are both found. We use ({mathbf {P}}) to denote the matrix representation of a bipartite projection, which is computed as ({{mathbf {B}}}{{mathbf {B}}}^T), where ({mathbf {B}}^T) indicates the transpose of ({mathbf {B}}). In a projection ({mathbf {P}}), (P_{ij}) indicates the number of times agents i and j were connected to the same artifact k in ({mathbf {B}}). The diagonal entries of ({mathbf {P}}), (P_{ii}), are equal to the agent degrees, but in practice are ignored.The backbone of a bipartite projection is a binary representation of ({mathbf {P}}) that contains only the most ‘important’ or ‘significant’ edges. For example, the backbone of a species co-occurrence network connects pairs of species if they are found on a significant number of the same islands, which might be interpreted as evidence that the two species do not compete for resources and perhaps are symbiotic. We use ({mathbf {P}}’) to denote the matrix representation of the backbone of ({mathbf {P}}). Because multiple methods exist for deciding when an edge is significant and thus should be preserved in the backbone, we use (mathbf{P }^{‘{text {M}}}) denote a backbone extracted using method M. It is important to note that for a given bipartite projection, there is no ‘true’ backbone, but only backbones corresponding to specific backbone methods M. The backbone extracted using FDSM (i.e. (mathbf{P }^{‘{text{FDSM}}})) may be similar or different from a backbone extracted using another method such as SDSM (i.e. (mathbf{P }^{‘{text {SDSM}}})), and these similarities and differences depend on the information that is considered by the respective methods when determining whether edges’ weights are significant. It is these similarities and differences that we explore in the four studies below.Backbone extraction methods that were originally developed for non-projection weighted networks are often applied to weighted bipartite projections. One simple method preserves an edge in the backbone if its weight in the projection exceeds some global threshold T. However, when (T = 0), which is common, the backbone will be dense and have a high clustering coefficient because each artifact of degree d induces (d(d-1)/2) edges in the backbone29. Using (T > 0) can yield a sparser and less clustered backbone30,31,32, but still yields highly clustered networks in which low-degree nodes are excluded while high-degree nodes are preserved19. More sophisticated methods, including the disparity filter19 and likelihood filter20, aim to overcome these limitations of the global threshold method by using a different threshold for each edge based on a null model. However, all methods that were developed for non-projection weighted networks have the same shortcoming when applied to weighted bipartite projections: they ignore information about the artifacts, which is lost when generating the projection18. In the ecological case, the global threshold, disparity filter, and likelihood filter methods all decide whether two species should be connected in the backbone only by examining how many islands these two species are both found on, but do not consider the characteristics of those islands, including how many other species are found there, or even how many islands there are. Therefore, although these methods are promising for extracting the backbone from non-projection weighted networks, different methods are required for extracting the backbone from a bipartite projection.Bipartite ensemble backbone modelsBipartite ensemble backbone models decide whether an edge’s observed weight (P_{ij}) is significantly large, and thus whether a corresponding edge should be included in the backbone by comparing it to an ensemble of random bipartite networks. Let ({mathscr {B}}) be the set of all bipartite networks (mathbf {B^*}) having the same number of agents and artifacts as ({mathbf {B}}). In the ecological case, (mathbf {B^*}) might be viewed as representing a possible world containing the same species and islands, but in which locations of species on islands is different, and likewise ({mathscr {B}}) is the set of all such possible worlds. The bipartite ensembles used in backbone models take a subset ({mathscr{B}}^{text{M}}) of ({mathscr {B}}), subject to certain constraints M, and impose a probability distribution on it. In all models except the SDSM, the uniform probability distribution is imposed on ({mathscr{B}}^{text{M}}), that is, each element of the ensemble is equally likely. The backbone is then extracted from the projection of ({mathbf {B}}) by using the distribution of edge weights arising from projections of members of the ensemble to evaluate their statistical significance.We use (P^*_{ij}) to denote a random variable equal to ((mathbf {B^*}mathbf {B^*}^T)_{ij}) for (mathbf {B^*}~in ~{mathscr {B}}^{text {M}}). That is, (P^*_{ij}) is the number of artifacts shared by i and j in a bipartite network randomly drawn from ({mathscr {B}}^{text {M}}). In the ecological case, (P^*_{ij}) represents the number of islands that are home to both species i and j in a possible world, while the distribution of (P^*_{ij}) is the distribution of the number of islands shared by species i and j in all possible worlds.Decisions about which edges should appear in a backbone extracted at the statistical significance level (alpha) are made by comparing (P_{ij}) to (P^*_{ij})$$begin{aligned} P_{ij}’= {left{ begin{array}{ll} 1 &{} quad {text { if }} Pr (P^*_{ij} ge P_{ij}) < frac{alpha }{2},\ 0 &{} quad {text {otherwise.}} end{array}right. } end{aligned}$$This test includes edge (P'_{ij}) in the backbone if its weight in the observed projection (P_{ij}) is uncommonly large compared to its weight in projections of members of the ensemble (P^*_{ij}). We use a two-tailed significance test in the studies below because, in principle, an edge’s weight in the observed projection could be uncommonly larger or uncommonly smaller than its weight in projections of members of the ensemble, however a one-tailed test may also be used. In the ecological case, two species are connected in the backbone if their number of shared islands in the observed world is uncommonly large compared to their number of shared islands in all possible worlds.There are many ways that ({mathscr {B}}) can be constrained33, with each set of constraints describing a particular ensemble ({mathscr {B}}^{text {M}}), which is used in a particular ensemble backbone model M to yield a particular backbone ({mathbf {P}}^{'M}). In the case of ensembles used to extract the backbone of bipartite projections, our focus in this paper, two broad types of constraints are common23. First, ensembles can be distinguished by what they constrain: only the number of edges, the degrees of the agent nodes, the degrees of the artifact nodes, or the degrees of both the agent and artifact nodes. Second, ensembles can be distinguished by how they impose these constraints: the constraints can be satisfied exactly, or only on average. In statistical physics, ensembles that impose exact or ‘hard’ constraints are known as microcanonical, while ensembles that satisfy constraints on average or impose ‘soft’ constraints are known as canonical9.Prior work on these ensembles generally adopts either a theoretical focus on the ensembles themselves, or an applied focus on the consequences of ensemble choice. In the theoretical literature, some (primarily mathematicians) have aimed to characterize the properties of ensembles, such as estimating the cardinality of the ensemble of matrices with fixed rows and columns (below, we call this ensemble ({mathscr{B}}^{{text{FDSM}}}))34. Others (primarily physicists) have aimed to identify conditions under which ensembles are equivalent or non-equivalent, typically interpreting ensembles as representing thermodynamic systems35,36,37. In the applied literature, the focus is not on identifying fundamental properties of ensembles, but instead on understanding the implications of choosing a particular ensemble when detecting a particular pattern, such as nestedness38 or community structure23,27. The present work falls into this latter group: we are not directly concerned with identifying fundamental properties of ensembles, but instead on identifying the consequences of ensemble choice, with the ultimate goal of offering practical guidance to applied researchers wishing to extract the backbone of a bipartite projection.In the remaining subsections below, we first describe the FDSM in terms of its ensemble. We then present four potential alternative backbone models whose ensembles differ only slightly from FDSM, in terms of either what they constrain or how they impose constraints. We then turn to exploring the consequences of choosing one of these alternatives over FDSM when extracting a backbone.Fixed degree sequence model (FDSM)In the fixed degree sequence model (FDSM), (mathbf {B^*}~in ~{mathscr {B}}^{{text{FDSM}}}) are constrained to have the same agent and artifact degree sequences as ({mathbf {B}}). That is, FDSM constrains the degrees of both the agent and artifact nodes, and requires that these constraints are satisfied exactly, making it a tightly-constrained microcanonical ensemble. Adopting the FDSM implies, for example, that in all possible worlds a given species is found on exactly the same number of islands, and a given island is home to exactly the same number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text{FDSM}}}) is unknown, but can be approximated by uniformly sampling (mathbf {B^*}) from ({mathscr {B}}^{text{FDSM}}), constructing (mathbf {P^*}), and saving the values (P^*_{ij}). In the studies below, we use 1000 samples of (mathbf {B^*}) generated using the ‘curveball’ algorithm, which is among the fastest methods to sample ({mathscr {B}}^{text{FDSM}}) uniformly at random39,40. The FDSM has been used to extract the backbone of bipartite projections of, for example, movies co-liked by viewers21 and conference panel co-participation by scholars41,42.The FDSM offers an intuitively appealing approach to extracting the backbone of bipartite projections because it fully controls for both bipartite degree sequences, which are known to be responsible for many of the projection’s structural characteristics15,16. However, because the distribution of (P^*_{ij}) must be computed via Monte Carlo sampling, it is computationally costly, making it impractical for all but relatively small bipartite projections. There are at least three distinct computational challenges. First, although the curveball algorithm is the fastest among existing methods for randomly sampling a bipartite graph with fixed degree sequences (i.e. for sampling (mathbf {B^*}) from ({mathscr {B}}^{text{FDSM}})), it still can require several seconds per sample for large graphs. Second, once a (mathbf {B^*}) has been sampled, constructing each (mathbf {P^*}) requires matrix multiplication, which must be performed repeatedly and has complexity of at least ({mathscr {O}}(n^{2.37}))43. Finally, computing an edge’s p value (i.e. (Pr (P^*_{ij} ge P_{ij}))) with sufficient precision to achieve a specified familywise error rate that controls for Type-I error inflation due to multiple testing22 can require these sampling and multiplication steps to be performed a very large number of times (see Supplementary Text S2).These computational challenges have led researchers to develop other backbone models3,9,18. Many such models exist, however here we are focused on identifying methods that yield backbones similar to what would be obtained using FDSM, and thus which may serve as computationally-feasible alternatives to FDSM. Therefore, we consider only those models whose ensembles involve at least one of the two types of constraints imposed by FDSM. That is, we consider models that either (1) impose exact constraints, or (2) impose constraints on both the agent and artifact degrees.Fixed fill model (FFM)In the fixed fill model (FFM), (mathbf {B^*}~in ~{mathscr {B}}^{{text {FFM}}}) are simply constrained to contain the same number of 1s as ({mathbf {B}}). That is, the FFM constrains only the number of edges, but requires that this constraint is satisfied exactly. Adopting the FFM implies, for example, that in all possible worlds only the total number of species-island pairs is fixed, but any given species may be found on a different number of islands and any given island may be home to a different number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text {FFM}}}) has not been described before, but is derived in Supplementary Text S1.1. We call it a Jacobi distribution because it is related to Jacobi polynomials.Fixed row model (FRM)In the fixed row model (FRM), (mathbf {B^*}~in ~{mathscr {B}}^{{text {FRM}}}) are constrained to have the same agent degree sequence as ({mathbf {B}}), but have unconstrained artifact degree sequences. That is, the FRM constrains the degrees of the agent nodes, and requires that this constraint is satisfied exactly. A canonical variant of the FRM, the (hbox {BiPCM}_r), also constrains the degrees of the agent nodes, but only requires this constraint to be satisfied on average; we do not consider it here because it involves neither of FDSM’s constraints9. Adopting the FRM for backbone extraction implies, for example, that in all possible worlds a given species is found on the same number of islands, but a given island may be home to a different number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text {FRM}}}) is hypergeometric (see Supplementary Text S1.2), and for this reason it is sometimes referred to as the hypergeometric model22,23,44. The FRM has been used to extract the backbone of bipartite projections of, for example, movies co-starring actors22, papers co-written by authors22, parties co-attended by women44, majority opinions joined by Supreme Court justices44, and microRNAs co-associated with diseases45.Fixed column model (FCM)In the fixed column model (FCM), (mathbf {B^*}~in ~{mathscr {B}}^{{text {FCM}}}) are constrained to have the same artifact degree sequence as ({mathbf {B}}), but have unconstrained agent degree sequences. That is, the FCM constrains the degrees of the artifact nodes, and requires that this constraint is satisfied exactly. A canonical variant of the FCM, the (hbox {BiPCM}_c), also constrains the degrees of the artifact nodes, but only requires this constraint to be satisfied on average; we do not consider it here because it involves neither of FDSM’s constraints9. Adopting the FCM for backbone extraction implies, for example, that in all possible worlds a given species may be found on a different number of islands, but a given island is home to the same number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text {FCM}}}) has not been described before, but is derived in Supplementary Text S1.3, where we show it is Poisson-binomial.Stochastic degree sequence model (SDSM)Finally, the stochastic degree sequence model (SDSM) takes ({mathscr {B}}^{{text {SDSM}}}) to be all binary (m times n) matrices, but also gives a process for generating these matrices with different probabilities. Each (mathbf {B^*}) is generated by filling the cells (B^*_{ik}) with a 0 or 1 depending on the outcome of an independent Bernoulli trial with probability (p^*_{ik}). The distribution of the random variable (P^*_{ij}) arising from ({mathscr {B}}^{{text {SDSM}}}) is Poisson-binomial with parameters which can be computed using the (p^*_{ik}) (see Supplementary Text S1.4)27,46. There are many ways to choose (p^*_{ik}), but in the studies below we choose (p^*_{ik}) so that it approximates (Pr (B^*_{ik} = 1)) for (mathbf {B^*}~in ~{mathscr {B}}^{{text{FDSM}}}). This choice of (p^*_{ik}) ensures that the SDSM constrains the degrees of both the agent and artifact nodes, but only requires these constraints to be satisfied on average. Adopting such a version of SDSM implies, for example, that in each possible world a given species may be found on many or few islands and a given island may be home to many or few species, but the average number of islands on which a given species lives in all possible worlds and the average number of species that live on an given island in all possible worlds matches these values the observed world. The SDSM has been used to extract the backbone of bipartite projections of, for example, legislators co-sponsoring bills1,18,47,48,49, zebrafish (Danio rerio) sharing operational taxonomic units50, countries sharing exports3, and genes expressed in genesets51. More

  • in

    A synthesis and future research directions for tropical mountain ecosystem restoration

    1.Dimitrov, D., Nogués-Bravo, D. & Scharff, N. Why do tropical mountains support exceptionally high biodiversity? The eastern arc mountains and the drivers of saintpaulia diversity. PLoS One 7, e48908 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Spehn, E. & Körner, C. A Global Assessment of Mountain Biodiversity and its Function, vol. 23, 393–400 (2005).3.Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Mengist, W., Soromessa, T. & Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702, 134581 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Gleeson, E. H. et al. Mountains of our future earth: defining priorities for mountain research: A synthesis from the 2015 Perth III conference. Mt. Res. Dev. 36, 537–548 (2016).
    Google Scholar 
    6.Jacob, M. et al. Land use and cover dynamics since 1964 in the Afro-Alpine vegetation belt: Lib Amba Mountain in North Ethiopia. Land Degrad. Dev. 27, 641–653 (2016).
    Google Scholar 
    7.Dhakal, B. et al. Impacts of cardamom cultivation on montane forest ecosystems in Sri Lanka. For. Ecol. Manag. 274, 151–160 (2012).
    Google Scholar 
    8.Thijs, K. W. et al. Contrasting cloud forest restoration potential between plantations of different exotic tree species. Restor. Ecol. 22, 472–479 (2014).
    Google Scholar 
    9.Long, M. S. et al. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biol. Invasions 19, 749–763 (2017).
    Google Scholar 
    10.Elgar, A. T., Freebody, K., Pohlman, C. L., Shoo, L. P. & Catterall, C. P. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Front. Plant Sci. 5, 200 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    11.Rojas-Botero, S., Solorza-Bejarano, J., Kollmann, J. & Teixeira, L. H. Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecol. Eng. 158, 106031 (2020).
    Google Scholar 
    12.Hooper, E., Legendre, P. & Condit, R. Barriers to forest regeneration of deforested and abandoned land in Panama. J. Appl. Ecol. 42, 1165–1174 (2005).
    Google Scholar 
    13.Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2013).ADS 

    Google Scholar 
    14.Soh, M. C. K. et al. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: A systematic map for identifying future research priorities. Front. For. Glob. Change 2, 1–18 (2019).
    Google Scholar 
    15.Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. Diverging responses of tropical andean biomes under future climate conditions. PLoS One 8, e63634 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS One 14, e0213155 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B. & Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142, 2510–2521 (2009).
    Google Scholar 
    18.Christmann, T. & Oliveras, I. Nature of alpine ecosystems in tropical mountains of South America. in Encyclopedia of the World’s Biomes 1–10 (Elsevier Inc., 2020). https://doi.org/10.1016/B978-0-12-409548-9.12481-919.Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).
    Google Scholar 
    20.Young, K. R. & León, B. Tree-line changes along the Andes: Implications of spatial patterns and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 362, 263–272 (2007).
    Google Scholar 
    21.Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 20, 582–596 (2011).
    Google Scholar 
    22.Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol. Process. 25, 465–498 (2011).ADS 

    Google Scholar 
    23.Kessler, M. & Kluge, J. Diversity and endemism in tropical montane forests—From patterns to processes. Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, vol. 2 (2010).24.Aide, T. M. & Grau, H. R. Globalization, migration, and Latin American ecosystems. Science 305, 1915–1917 (2004).PubMed 

    Google Scholar 
    25.Bender, O. Abandoned altitudes? Decrease and expansion of grassland in the Hinterland of Popayán, Southern Colombian Andes. J. Mt. Sci. 12, 123–133 (2015).
    Google Scholar 
    26.Zhang, B., Mo, S., Tan, T., Xiao, F. & Wu, H. Urbanization and De-urbanization in mountain regions of China. Mt. Res. Dev. 24, 206–209 (2004).
    Google Scholar 
    27.Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. https://doi.org/10.1111/gcb.15498 (2021).Article 

    Google Scholar 
    28.International Union for Conservation of Nature. The Bonn Challenge | Bonchallenge. Iucn (2020).29.Society for Ecological Restoration. The SER primer on ecological restoration. Sci. Policy Work. Gr. 2002, 9 (2002).
    Google Scholar 
    30.Holl, K. D. Primer of Ecological Restoration (Island Press, 2020). https://doi.org/10.1007/s13412-020-00621-w.Book 

    Google Scholar 
    31.Chazdon, R. REVIEW: Restoring tropical forests: A practical guide. Ecol. Restor. 33, 118–119 (2015).
    Google Scholar 
    32.Chazdon, R. L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6, 51–71 (2003).
    Google Scholar 
    33.Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).
    Google Scholar 
    34.Meli, P. et al. A global review of past land use, climate, and active vs passive restoration effects on forest recovery. PLoS One 12, 1–17 (2017).
    Google Scholar 
    35.Holl, K. D. Restoration of tropical forests. Restor. Ecol. New Front. https://doi.org/10.1002/9781118223130.ch9 (2012).Article 

    Google Scholar 
    36.Meli, P. Tropical forest restoration. Twenty years of academic research. Interciencia 28, 581 (2003).
    Google Scholar 
    37.Venkatesh, B., Lakshman, N. & Purandara, B. K. Hydrological impacts of afforestation—A review of research in India. J. For. Res. 25, 37–42 (2014).
    Google Scholar 
    38.Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. What is the state of tropical montane cloud forest restoration? Tropical Montane Cloud Forests: science for conservation and management. For. Ecol. Manag. https://doi.org/10.1017/CBO9780511778384.010 (2011).Article 

    Google Scholar 
    39.Guariguata, M. R. Restoring tropical montane forests. Forest Restoration in Landscapes: Beyond Planting Trees (2005). https://doi.org/10.1007/0-387-29112-1_4340.Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).PubMed 

    Google Scholar 
    41.Arasumani, M. et al. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island. PLoS One 13, e0190003 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Raman, T. R. S., Mudappa, D. & Kapoor, V. Restoring rainforest fragments: survival of mixed-native species seedlings under contrasting site conditions in the Western Ghats, India. Restor. Ecol. 17, 137–147 (2009).
    Google Scholar 
    43.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).
    Google Scholar 
    44.Lewin-Koh, N. J. et al. maptools: Tools for reading and handling spatial objects. R package version 0.8-10. http://CRAN.R-project.org/package=maptools (2011).45.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019). https://www.R-project.org/46.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org47.Srinivasan, M. P., Bhatia, S. & Shenoy, K. Vegetation-environment relationships in a South Asian tropical montane grassland ecosystem: Restoration implications. Trop. Ecol. 56, 201–217 (2015).
    Google Scholar 
    48.Le Stradic, S., Buisson, E. & Fernandes, G. W. Restoration of Neotropical grasslands degraded by quarrying using hay transfer. Appl. Veg. Sci. 17, 482–492 (2014).
    Google Scholar 
    49.De De Vasconcelos, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil?. Rev. Bras. Bot. 34, 241–246 (2011).
    Google Scholar 
    50.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.15513 (2021).Article 

    Google Scholar 
    51.Home | Trillion Trees (2020).52.Abadín, J. et al. Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biol. Biochem. 34, 1739–1748 (2002).
    Google Scholar 
    53.Abreu, Z., Llambí, L. D. & Sarmiento, L. Sensitivity of soil restoration indicators during páramo succession in the high tropical andes: Chronosequence and permanent plot approaches. Restor. Ecol. 17, 619–627 (2009).
    Google Scholar 
    54.Bueno, A. & Llambí, L. D. Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl. Veg. Sci. 18, 613–623 (2015).
    Google Scholar 
    55.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 63–74 (2003).
    Google Scholar 
    56.Sarmiento, L., Smith, J. K., Márquez, N., Escalona, A. & Erazo, M. C. Constraints for the restoration of tropical alpine vegetation on degraded slopes of the Venezuelan Andes. Plant Ecol. Divers. 8, 277–291 (2015).
    Google Scholar 
    57.Sarmiento, L. & Bottner, P. Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: Indications for fertility restoration. Appl. Soil Ecol. 19, 79–89 (2002).
    Google Scholar 
    58.Sarmiento, L., Abadín, J., González-Prieto, S. & Carballas, T. Assessing and modeling the role of the native legume Lupinus meridanus in fertility restoration in a heterogeneous mountain environment of the tropical Andes. Agric. Ecosyst. Environ. 159, 29–39 (2012).
    Google Scholar 
    59.Hilário, R. R., Castro, S. A. B., Ker, F. T. O. & Fernandes, G. Unexpected effects of pigeon-peas (Cajanus cajan) in the restoration of rupestrian fields [Efeito Inesperado do Feijão-Guandu (Cajanus cajan) na Restauração de Campos Rupestres]. Planta Daninha 29, 717–723 (2011).
    Google Scholar 
    60.Le Stradic, S., Buisson, E., Negreiros, D., Campagne, P. & Wilson Fernandes, G. The role of native woody species in the restoration of Campos Rupestres in quarries. Appl. Veg. Sci. 17, 109–120 (2014).
    Google Scholar 
    61.Arasumani, M., Bunyan, M. & Robin, V. V. Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands. J. Environ. Manag. 280, 111759 (2020).
    Google Scholar 
    62.Sarmiento, F. O. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24, 14–23 (1997).
    Google Scholar 
    63.Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35–46 (2008).
    Google Scholar 
    64.Middendorp, R. S., Pérez, A. J., Molina, A., Lambin, E. F. & Pérez Castañeda, A. J. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    65.De Guevara, I.H.-L., Rojas-Soto, O. R., López-Barrera, F., Puebla-Olivares, F. & Díaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    66.Lira-Noriega, A., Guevara, S., Laborde, J. & Sanchez-Rios, G. Floristic composition in pastures of Los Tuxtlas, Veracruz, Mexico. ACTA Bot. Mex. 80, 59–87 (2007).
    Google Scholar 
    67.Muniz-Castro, M. A., Williams-Linera, G. & Benayas, J. M. R. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    68.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. in Tropical Montane Cloud Forests: Science for Conservation and Management 584–594 (2011). https://doi.org/10.1017/CBO9780511778384.06369.Violi, H. A. et al. Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For. Ecol. Manag. 254, 276–290 (2008).
    Google Scholar 
    70.Williams-Linera, G., Alvarez-Aquino, C. & Pedraza, R. A. Forest restoration in the tropical montane cloud forest belt of central veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06771.Cole, R. J., Litton, C. M., Koontz, M. J. & Loh, R. K. Vegetation recovery 16 years after feral pig removal from a wet Hawaiian forest. Biotropica 44, 463–471 (2012).
    Google Scholar 
    72.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125–140 (2014).
    Google Scholar 
    73.Gould, R. K., Mooney, H., Nelson, L., Shallenberger, R. & Daily, G. C. Restoring native forest understory: The influence of ferns and light in a Hawaiian experiment. Sustainability 5, 1317–1339 (2013).
    Google Scholar 
    74.Hart, P. J. Tree growth and age in an ancient Hawaiian wet forest: Vegetation dynamics at two spatial scales. J. Trop. Ecol. 26, 1–11 (2010).
    Google Scholar 
    75.Ibanez, T. & Hart, P. J. Spatial patterns of tree recruitment in a montane Hawaiian wet forest after cattle removal and pig population control. Appl. Veg. Sci. 23, 197–209 (2020).
    Google Scholar 
    76.Pinto, J. R., Davis, A. S., Leary, J. J. K. & Aghai, M. M. Stocktype and grass suppression accelerate the restoration trajectory of Acacia koa in Hawaiian montane ecosystems. New For. 46, 855–867 (2015).
    Google Scholar 
    77.Hylander, K. & Nemomissa, S. Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest [Roles complementarios de jardines doḿesticos y plantaciones de ’arboles ex́oticos como h́abitats alternativos para plan. Conserv. Biol. 23, 400–409 (2009).PubMed 

    Google Scholar 
    78.Roose, E. & Ndayizigiye, F. Agroforestry, water and soil fertility management to fight erosion in tropical mountains of Rwanda. Soil Technol. 11, 109–119 (1997).
    Google Scholar 
    79.Uhlig, S. K. Tropical mountain ecology in Ethiopia as a basis for conservation, management and restoration. Trop. For. Transit. https://doi.org/10.1007/978-3-0348-7256-0_8 (1992).Article 

    Google Scholar 
    80.Carilla, J. & Grau, H. R. 150 years of tree establishment, land use and climate change in Montane grasslands, Northwest Argentina. Biotropica 42, 49–58 (2010).
    Google Scholar 
    81.Camelo, O. J., Urrego, L. E. & Orrego, S. A. Environmental and socioeconomic drivers of woody vegetation recovery in a human-modified landscape in the Rio Grande basin (Colombian Andes). Restor. Ecol. 25, 912–921 (2017).
    Google Scholar 
    82.Wilson, S. J., Coomes, O. T. & Dallaire, C. O. The `ecosystem service scarcity path’ to forest recovery: A local forest transition in the Ecuadorian Andes. Reg. Environ. Change 19, 2437–2451 (2019).
    Google Scholar 
    83.Middendorp, R. S., Pérez, A. J., Molina, A. & Lambin, E. F. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    84.Bingli, L., Weide, Z. & Rongyuan, Z. The rebirth of tropical rainforest – ecological restoration planning for Sanda Mountain of Xishuangbanna, China. Landsc. Archit. Front. 8, 108–125 (2020).
    Google Scholar 
    85.Byers, A. C. Alpine habitat conservation and restoration in tropical and sub-tropical high mountains. Routledge Handb. Ecol. Environ. Restor. https://doi.org/10.4324/9781315685977 (2017).Article 

    Google Scholar 
    86.Guariguata, M. R. Restoring tropical montane forests. in Forest Restoration in Landscapes: Beyond Planting Trees 298–302 (2005). https://doi.org/10.1007/0-387-29112-1_4387.González-Espinosa, M. et al. Restoration of forest ecosystems in fragmented landscapes of temperate and montane tropical Latin America. in Biodiversity Loss and Conservation in Fragmented Forest Landscapes: The Forests of Montane Mexico and Temperate South America 335–369 (2007).88.Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. U.S.A. 114, 9635–9640 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Holl, K. D. Research directions in tropical forest restoration. Ann. Mo. Bot. Gard. 102, 237–250 (2017).
    Google Scholar 
    90.Roose, E., Ndayizigiye, F. & Sekayange, L. Agroforestry and land husbandry in Rwanda. How to restore the acid soils productivity in tropical mountains densely populated? [L’agroforesterie et la GCES au Rwanda. Comment restaurer la productivite des terres acides dans une region tropicale de montagn. Cah. ORSTOM Ser. Pedol. 28, 327–349 (1993).
    Google Scholar 
    91.Diego Leon, J., Isabel Gonzalez, M. & Fernando Gallardo, J. Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia. Rev. Biol. Trop. 59, 1883–1894 (2011).
    Google Scholar 
    92.Chazdon, R. L. et al. Erratum: Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002. https://doi.org/10.1088/1748-9326/ab79e6 (2020).Article 
    ADS 

    Google Scholar 
    93.Miranda-Castro, L. & Padrón, S. From the mountains to the sea: Restoring shaded coffee plantations to protect tropical coastal ecosystems. in Proceedings of MTS/IEEE OCEANS, 2005 vol. 2005 662–669 (2005).94.Hakim, L. & Miyakawa, H. Integrating ecosystem restoration and development of recreation sites in degraded tropical mountain areas in East Java, Indonesia. AIP Conf. Proc. 2019 (2018).95.Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).ADS 

    Google Scholar 
    96.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06397.Chen, T.-S., Lin, C.-Y., Ho, S.-H., Lin, C.-Y. & Yang, Y.-L. Evaluation of priority order for the landslide treatment using biodiversity index in a watershed. J. Chin. Soil Water Conserv. 45, 119–127 (2014).
    Google Scholar 
    98.Liu, H., Yi, Y., Blagodatsky, S. & Cadisch, G. Impact of forest cover and conservation agriculture on sediment export: A case study in a montane reserve, south-western China. Sci. Total Environ. 702, 134802 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    99.Crespo, P. et al. Land use change impacts on the hydrology of wet Andean paramo ecosystems. in Status and Perspectives of Hydrology in Small Basins (Proceedings of the Workshop held at Goslar-Hahnenklee, Germany, 30 March–2 April 2009) (IAHS, 2010). doi:https://doi.org/10.13140/2.1.5137.6320100.Muñoz-Villers, L. E. & McDonnell, J. J. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 17, 3543–3560 (2013).ADS 

    Google Scholar 
    101.Calle, Z., Henao-Gallego, N., Giraldo, C. & Armbrecht, I. A comparison of vegetation and ground-dwelling ants in abandoned and restored gullies and landslide surfaces in the Western Colombian Andes. Restor. Ecol. 21, 729–735 (2013).
    Google Scholar 
    102.Posada, J. M., Mitche, T. & Cavelier, J. Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restor. Ecol. 8, 370–379 (2000).
    Google Scholar 
    103.Lemenih, M. & Teketay, D. Changes in soil seed bank composition and density following deforestation and subsequent cultivation of a tropical dry Afromontane forest in Ethiopia. Trop. Ecol. 47, 1–12 (2006).
    Google Scholar 
    104.Galindo, V., Calle, Z., Chará, J. & Armbrecht, I. Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restor. Ecol. 25, 731–737 (2017).
    Google Scholar 
    105.Slocum, M. G., Aide, T. M., Zimmerman, J. K. & Navarro, L. A strategy for restoration of montane forest in anthropogenic fern thickets in the Dominican Republic. Restor. Ecol. 14, 526–536 (2006).
    Google Scholar 
    106.Rurangwa, M. L., Matthews, T. J., Niyigaba, P., Tobias, J. A. & Whittaker, R. J. Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study. For. Ecol. Manag. 10, 118765. https://doi.org/10.1016/j.foreco.2020.118765 (2020).Article 

    Google Scholar 
    107.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala Weerasinghe, H. M. S. P. & Burslem, D. F. R. P. Barriers to tree seedling emergence on human-induced grasslands in Sri Lanka. J. Appl. Ecol. 47, 157–165 (2010).
    Google Scholar 
    108.Le Stradic, S., Fernandes, G. W. & Buisson, E. No recovery of campo rupestre grasslands after gravel extraction: implications for conservation and restoration. Restor. Ecol. 26, S151–S159 (2018).
    Google Scholar 
    109.Sanchez-De Leon, Y., Zou, X., Borges, S. & Ruan, H. Recovery of native earthworms in abandoned tropical pastures. Conserv. Biol. 17, 999–1006 (2003).
    Google Scholar 
    110.Wilms, J. & Kappelle, M. Frugivorous birds, habitat preference and seed dispersal in a fragmented Costa Rican montane oak forest landscape. in Ecology and conservation of neotropical montane oak forests 309–324 (Springer, 2006).111.Shoo, L. P., Storlie, C., Vanderwal, J., Little, J. & Williams, S. E. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186–193 (2011).ADS 

    Google Scholar 
    112.Edwards, D. P., Massam, M. R., Haugaasen, T. & Gilroy, J. J. Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biol. Conserv. 209, 432–439 (2017).
    Google Scholar 
    113.Gutierrez-Chacon, C., Valderrama-A, C. & Klein, A.-M. Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. J. Insect Conserv. 24, 187–197 (2020).
    Google Scholar 
    114.Kattan, G. H., Correa, D., Escobar, F. & Medina, C. Leaf-litter arthropods in restored forests in the Colombian Andes: A comparison between secondary forest and tree plantations. Restor. Ecol. 14, 95–102 (2006).
    Google Scholar 
    115.Davies, R. W., Edwards, D. P. & Edwards, F. A. Secondary tropical forests recover dung beetle functional diversity and trait composition. Anim. Conserv. 23, 617–627 (2020).
    Google Scholar 
    116.Marian, F. et al. Conversion of Andean montane forests into plantations: Effects on soil characteristics, microorganisms, and microarthropods. Biotropica https://doi.org/10.1111/btp.12813 (2020).Article 

    Google Scholar 
    117.Brancalion, P. H. S. & Holl, K. D. Functional composition trajectory: A resolution to the debate between Suganuma, Durigan, and Reid. Restor. Ecol. 24, 1–3 (2016).
    Google Scholar 
    118.Matos, I. S., Eller, C. B., Oliveras, I., Mantuano, D. & Rosado, B. H. P. Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. J. Ecol. https://doi.org/10.1111/1365-2745.13481 (2020).Article 

    Google Scholar 
    119.Eller, C. B., Lima, A. L. & Oliveira, R. S. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489–501 (2016).CAS 
    PubMed 

    Google Scholar 
    120.Barnes, A. D. & Chapman, H. M. Dispersal traits determine passive restoration trajectory of a Nigerian montane forest. Acta Oecol. 56, 32–40 (2014).ADS 

    Google Scholar 
    121.Dimson, M. & Gillespie, T. W. Trends in active restoration of tropical dry forest: Methods, metrics, and outcomes. For. Ecol. Manage. 467, 118150 (2020).
    Google Scholar 
    122.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).
    Google Scholar 
    123.Wilson, S. J. & Rhemtulla, J. M. Acceleration and novelty: Community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecol. Appl. 26, 203–218 (2016).PubMed 

    Google Scholar 
    124.Muñiz-Castro, M. A. et al. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    125.Van Do, T., Osawa, A. & Thang, N. T. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. For. Ecol. Manag. 259, 1650–1659 (2010).
    Google Scholar 
    126.Joshua Atondo-Bueno, E., Bonilla-Moheno, M. & Lopez-Barrera, F. Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. For. Ecol. Manag. 409, 399–406 (2018).
    Google Scholar 
    127.Trujillo-Miranda, A. L., Toledo-Aceves, T., Lopez-Barrera, F. & Guenter, S. Tree diversity and timber productivity in planted forests: Pinus patula versus mixed cloud forest species. New For. https://doi.org/10.1007/s11056-020-09787-1 (2020).Article 

    Google Scholar 
    128.Gallegos, S. C., Hensen, I., Saavedra, F. & Schleuning, M. Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. For. Ecol. Manag. 337, 135–143 (2015).
    Google Scholar 
    129.Peláez-Silva, J. A., León-Peláez, J. D. & Lema-Tapias, A. Conifer tree plantations for land rehabilitation: An ecological-functional evaluation. Restor. Ecol. 27, 607–615 (2019).
    Google Scholar 
    130.Ortega-Pieck, A., López-Barrera, F., Ramírez-Marcial, N. & García-Franco, J. G. Early seedling establishment of two tropical montane cloud forest tree species: The role of native and exotic grasses. For. Ecol. Manag. 261, 1336–1343 (2011).
    Google Scholar 
    131.Muniz-Castro, M.-A. et al. Restoring montane cloud forest: Establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restor. Ecol. 23, 26–33 (2015).
    Google Scholar 
    132.Zhang, Z. H., Hu, G., Zhu, J. D. & Ni, J. Stand structure, woody species richness and composition of subtropical karst forests in Maolan, south-west China. J. Trop. For. Sci. 24, 498–506 (2012).
    Google Scholar 
    133.Garcia-De La Cruz, Y., Lopez-Barrera, F. & MariaRamos-Prado, J. Germination and seedling emergence of four endangered oak species. Madera y Bosques 22, 77–87 (2016).
    Google Scholar 
    134.Bare, M. C. & Ashton, M. S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For. 47, 333–355 (2016).
    Google Scholar 
    135.Borja, P., Molina, A., Govers, G. & Vanacker, V. Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains. CATENA 165, 42–53 (2018).
    Google Scholar 
    136.Gomez-Ruiz, P. A., Saenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine-oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    137.Toledo-Aceves, T. & Del-Val, E. Do plant-herbivore interactions persist in assisted migration plantings? Restor. Ecol. 29, (2020).138.Urgiles, N. et al. Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: A step towards reforestation with native species in the Andes of Ecuador. New For. 38, 229–239 (2009).
    Google Scholar 
    139.Braasch, M., Garcia-Barrios, L., Ramirez-Marcial, N., Huber-Sannwald, E. & Cortina-Villar, S. Can cattle grazing substitute fire for maintaining appreciated pine savannas at the frontier of a montane forest biosphere-reserve?. Agric. Ecosyst. Environ. 250, 59–71 (2017).
    Google Scholar 
    140.Hernandez-Ladron De Guevara, I., Rojas-Soto, O. R., Lopez-Barrera, F., Puebla-Olivares, F. & Diaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    141.Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).
    Google Scholar 
    142.Derroire, G., Coe, R. & Healey, J. R. Isolated trees as nuclei of regeneration in tropical pastures: Testing the importance of niche-based and landscape factors. J. Veg. Sci. 27, 679–691 (2016).
    Google Scholar 
    143.Rhoades, C. C., Eckert, G. E. & Coleman, D. C. Effect of pasture trees on soil nitrogen and organic matter: Implications for tropical montane forest restoration. Restor. Ecol. 6, 262–270 (1998).
    Google Scholar 
    144.Sheldon, K. S. & Nadkarni, N. M. The use of pasture trees by birds in a tropical montane landscape in Monteverde, Costa Rica. J. Trop. Ecol. 29, 459–462 (2013).
    Google Scholar 
    145.Sprenkle-Hyppolite, S. D., Latimer, A. M., Young, T. P. & Rice, K. J. Landscape factors and restoration practices associated with initial reforestation success in Haiti. Ecol. Restor. 34, 306–316 (2016).
    Google Scholar 
    146.Pang, C.-C., Ma, X.K.-K., Hung, T.T.-H. & Hau, B.C.-H. Early ecological succession on landslide trails, Hong Kong, China. Ecoscience 25, 153–161 (2018).
    Google Scholar 
    147.Scowcroft, P. G. & Jeffrey, J. Potential significance of frost, topographic relief, and Acacia koa stands to restoration of mesic Hawaiian forests on abandoned rangeland. For. Ecol. Manag. 114, 447–458 (1999).
    Google Scholar 
    148.Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded areas in the tropics. Restor. Ecol. 13, 92–102 (2005).
    Google Scholar 
    149.Dhakal, B., Pinard, M. A., Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. & Burslem, D. F. R. P. Strategies for restoring tree seedling recruitment in high conservation value tropical montane forests underplanted with cardamom. Appl. Veg. Sci. 18, 121–133 (2015).
    Google Scholar 
    150.Wilson, S. J. & Coomes, O. T. ‘Crisis restoration’ in post-frontier tropical environments: Replanting cloud forests in the Ecuadorian Andes. J. Rural Stud. 67, 152–165 (2019).
    Google Scholar 
    151.Pethiyagoda, R. S. & Manamendra-Arachchi, K. Endangered anurans in a novel forest in the highlands of Sri Lanka. Wildl. Res. 39, 641–648 (2012).
    Google Scholar 
    152.Del Castillo, R. F. & Blanco-Macías, A. Secondary succession under a slash-and-burn regime in a tropical montane cloud forest: soil and vegetation characteristics. Biodivers. loss Conserv. Fragm. For. landscapes. For. Mont. Mex. Temp. South Am. CABI, Wallingford, Oxfordshire, UK 158–180 (2007).153.Bautista-Cruz, A., Del Castillo, R. F., Etchevers-Barra, J. D., Gutiérrez-Castorena, M. D. C. & Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 277, 74–80 (2012).
    Google Scholar 
    154.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 145–156 (2003).
    Google Scholar 
    155.Raman, T. R. S. Effects of habitat structure and adjacent habitats on birds in tropical rainforest fragments and shaded plantations in the Western Ghats, India. Biodivers. Conserv. 15, 1577–1607 (2006).
    Google Scholar 
    156.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala, H. M. S. P. & Burslem, D. F. R. P. Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects. For. Ecol. Manag. 329, 340–350 (2014).
    Google Scholar 
    157.Mendoza-Vega, J., Ku-Quej, V. M., Messing, I. & Pérez-Jiménez, J. C. Effects of native tree planting on soil recovery in tropical montane cloud forests. For. Sci. 66, 700–711 (2020).
    Google Scholar 
    158.Calle, A. & Holl, K. D. Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. For. Ecol. Manag. 452, 117563 (2019).
    Google Scholar 
    159.Holl, K. D. Factors limiting tropical rain forest regeneration in abandoned pasture: Seed rain, seed germination, microclimate, and soil. Biotropica 31, 229–242 (1999).
    Google Scholar 
    160.Mullah, C. J. A., Klanderud, K., Totland, O. & Kigomo, B. Recovery of plant species richness and composition in an abandoned forest settlement area in Kenya. Restor. Ecol. 52, 77–87 (2011).
    Google Scholar 
    161.Liu, X., Lu, Y., Yang, Z. & Zhou, Y. Regeneration and development of native plant species in restored mountain forests, Hainan Island, China. Mt. Res. Dev. 34, 396–404 (2014).CAS 

    Google Scholar 
    162.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Weerasinghe, H. M. S. P. M. & Burslem, D. F. R. P. Release from root competition promotes tree seedling survival and growth following transplantation into human-induced grasslands in Sri Lanka. For. Ecol. Manag. 262, 229–236 (2011).163.Cole, R. J., Holl, K. D., Keene, C. L. & Zahawi, R. A. Direct seeding of late-successional trees to restore tropical montane forest. For. Ecol. Manag. 261, 1590–1597 (2011).
    Google Scholar 
    164.Alvarez-Aquino, C., Williams-Linera, G. & Newton, A. C. Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restor. Ecol. 12, 412–418 (2004).
    Google Scholar 
    165.Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forest–grassland mosaic; But alien tree invasion and warming can disrupt this balance. J. Ecol. https://doi.org/10.1111/1365-2745.13239 (2019).Article 

    Google Scholar 
    166.Singh, K. P., Mandal, T. N. & Tripathi, S. K. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the Sal forest ecosystem of Nepal Himalaya. Ecol. Eng. 17, 385–401 (2001).
    Google Scholar 
    167.Wilcke, W. et al. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. CATENA 53, 79–95 (2003).
    Google Scholar 
    168.Diaz-Garcia, J. M., Pineda, E., Lopez-Barrera, F. & Moreno, C. E. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodivers. Conserv. 26, 2569–2589 (2017).
    Google Scholar 
    169.Doust, S. J., Erskine, P. D. & Lamb, D. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For. Ecol. Manag. 234, 333–343 (2006).
    Google Scholar 
    170.Howorth, R. T. & Pendry, C. A. Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodivers. Conserv. 15, 693–715 (2006).
    Google Scholar 
    171.Gomes, L. G. L., Oostra, V., Nijman, V., Cleef, A. M. & Kappelle, M. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biol. Conserv. 141, 860–871 (2008).
    Google Scholar 
    172.Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).CAS 
    PubMed 

    Google Scholar 
    173.Pérez-García, O. & del Castillo, R. F. Shifts in swidden agriculture alter the diversity of young fallows: Is the regeneration of cloud forest at stake in southern Mexico?. Agric. Ecosyst. Environ. 248, 162–174 (2017).
    Google Scholar 
    174.Gallegos, S. C. et al. Factors limiting montane forest regeneration in bracken-dominated habitats in the tropics. For. Ecol. Manag. 381, 168–176 (2016).
    Google Scholar 
    175.Riviere, J.-N. et al. Role of tree ferns in flowering plant settlement in the tropical montane rainforests of La Reunion (Mascarene Archipelago, Indian Ocean). Rev. D Ecol. TERRE LA VIE 63, 199–207 (2008).
    Google Scholar 
    176.Mohandass, D., Chhabra, T., Singh Pannu, R. & Beng, K. C. Recruitment of saplings in active tea plantations of the Nilgiri mountains: Implications for restoration ecology. Trop. Ecol. 57, 101–118 (2016).CAS 

    Google Scholar 
    177.Wassie, A., Bongers, F., Sterck, F. J. & Teketay, D. Church forests—relics of dry afromontane forests of Northern Ethiopia: opportunities and challenges for conservation and restauration. Degrad. For. East. Africa Manag. Restor. 123–133 (2010).178.Townsend, P. A. & Masters, K. L. Lattice-work corridors for climate change: A conceptual framework for biodiversity conservation and social-ecological resilience in a tropical elevational gradient. Ecol. Soc. https://doi.org/10.5751/ES-07324-200201 (2015).Article 

    Google Scholar 
    179.Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).
    Google Scholar 
    180.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).ADS 

    Google Scholar 
    181.Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    182.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    183.Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl. Acad. Sci. 112, E6084–E6084 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    184.Gómez-Ruiz, P. A., Sáenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine–oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    185.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS One 4, 1–6 (2009).
    Google Scholar 
    186.von Holle, B., Yelenik, S. & Gornish, E. S. Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Curr. Landsc. Ecol. Rep. 5, 85–97 (2020).
    Google Scholar 
    187.Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. xx, 1–9 (2020).
    Google Scholar 
    188.Monitoring Task Force. Briefing note on the Task Force on Monitoring for the UN Decade on Ecosystem Restoration 2021–2030 (2020).189.Elliott, S. The potential for automating assisted natural regeneration of tropical forest ecosystems. Biotropica 48, 825–833 (2016).
    Google Scholar  More