More stories

  • in

    Serotonin transporter (SERT) polymorphisms, personality and problem-solving in urban great tits

    1.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Phil. Trans. R. Soc. B 365, 3947–3958. https://doi.org/10.1098/rstb.2010.0221 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Wolf, M., van Doorn, G., Leimar, O. & Weissing, F. J. Life-history trade-offs favour the evolution of animal personalities. Nature 447, 581–584. https://doi.org/10.1038/nature05835 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Sih, A. & Bell, A. M. Insights for behavioral ecology from behavioral syndromes. Adv. Study Behav. 38, 227–281. https://doi.org/10.1016/S0065-3454(08)00005-3 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Sih, A., Bell, A. M. & Johnson, J. C. Behavioral syndromes: An ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378. https://doi.org/10.1016/j.tree.2004.04.009 (2004).Article 
    PubMed 

    Google Scholar 
    6.Drent, P. J., van Oers, K. & van Noordwijk, A. J. Realized heritability of personalities in the great tit (Parus major). Proc. R. Soc. B. 270, 45–51. https://doi.org/10.1098/rspb.2002.2168 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Sol, D., Griffin, A. S., Bartomeus, I. & Boyce, H. Exploring or avoiding novel food resources? The novelty conflict in an invasive bird. PLoS ONE 6, e19535. https://doi.org/10.1371/journal.pone.0019535 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Dammhahn, M., Mazza, V., Schirmer, A., Göttsche, C. & Eccard, J. C. Of city and village mice: Behavioural adjustments of striped field mice to urban environments. Sci. Rep. 10, 13056. https://doi.org/10.1038/s41598-020-69998-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: A behavioural ecological perspective. Phil. Trans. R. Soc. B 367, 2762–2772. https://doi.org/10.1098/rstb.2012.0216 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Stoewe, M. & Kotrschal, K. Behavioural phenotypes may determine whether social context facilitates or delays novel object exploration in ravens (Corvus corax). J. Ornithol. 148, S179–S184. https://doi.org/10.1007/s10336-007-0145-1 (2007).Article 

    Google Scholar 
    11.Guillette, L. M., Reddon, A. R., Hoeschele, M. & Sturdy, C. B. Sometimes slower is better: Slow-exploring birds are more sensitive to changes in a vocal discrimination task. Proc. R. Soc. B 278, 767–773. https://doi.org/10.1098/rspb.2010.1669 (2011).Article 
    PubMed 

    Google Scholar 
    12.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B 282, 20142201. https://doi.org/10.1098/rspb.2014.2201 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Van Oers, K., De Jong, G., Van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206. https://doi.org/10.1163/156853905774539364 (2005).Article 

    Google Scholar 
    14.Van Oers, K. & Mueller, J. C. Evolutionary genomics of animal personality. Phil. Trans. R. Soc. B 365, 3991–4000. https://doi.org/10.1098/rstb.2010.0178 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Croston, R., Branch, C. L., Kozlovsky, D. Y., Dukas, R. & Pravosudov, V. V. Heritability and the evolution of cognitive traits. Behav. Ecol. 26, 1447–1459. https://doi.org/10.1093/beheco/arv088 (2015).Article 

    Google Scholar 
    16.Quinn, J. L., Cole, E. F., Reed, T. E. & Morand-Ferron, J. Environmental and genetic determinants of innovativeness in a natural population of birds. Phil. Trans. R. Soc. B 371, 20150184. https://doi.org/10.1098/rstb.2015.0184 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Evans, J., Boudreau, K. & Hyman, J. Behavioural syndromes in urban and rural populations of song sparrows. Ethology 116, 588–595. https://doi.org/10.1111/j.1439-0310.2010.01771.x (2010).Article 

    Google Scholar 
    18.Bókony, V., Kulcsár, A., Tóth, Z. & Liker, A. Personality traits and behavioral syndromes in differently urbanized populations of house sparrows (Passer domesticus). PLoS ONE 7, 36639. https://doi.org/10.1371/journal.pone.0036639 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Charmantier, A., Deyeyrier, V., Lambrechts, M., Perret, S. & Grégoire, A. Urbanization is associated with divergence in pace-of-life in great tits. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00053 (2017).Article 

    Google Scholar 
    20.Isaksson, C., Rodewald, A. D. & Gil, D. Editorial: Behavioural and ecological consequences of urban life in birds. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00050 (2018).Article 

    Google Scholar 
    21.Audet, J.-N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644. https://doi.org/10.1093/beheco/arv201 (2016).Article 

    Google Scholar 
    22.Miranda, A. C., Schielzeth, H., Sonntag, T. & Partecke, J. Urbanization and its effects on personality traits: A result of microevolution or phenotypic plasticity. Glob. Change Biol. 19, 2634–2644. https://doi.org/10.1111/gcb.12258 (2013).ADS 
    Article 

    Google Scholar 
    23.Riyahi, S., Björklund, M., Mateos-Gonzalez, F. & Senar, J. C. Personality and urbanization: Behavioural traits and DRD4 SNP830 polymorphisms in great tits in Barcelona city. J. Ethol. 35, 101–108. https://doi.org/10.1007/s10164-016-0496-2 (2017).Article 

    Google Scholar 
    24.Schinka, J. A., Letsch, E. A. & Crawford, F. C. DRD4 and novelty seeking: Results of meta-analyses. Am. J. Med. Genet. 114, 643–648. https://doi.org/10.1002/ajmg.10649 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Chen, C. S., Burton, M., Greenberger, E. & Dmitrieva, J. Population migration and the variation of Dopamine D4 Receptor (DRD4) allele frequencies around the globe. Evol. Hum. Behav. 20, 309–324. https://doi.org/10.1016/S1090-5138(99)00015-X (1999).Article 

    Google Scholar 
    26.Shimada, M. K. et al. Polymorphism in the second intron of dopamine receptor D4 gene in humans and apes. Biochem. Biophys. Res. Commun. 316, 1186–1190. https://doi.org/10.1016/j.bbrc.2004.03.006 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Fidler, A. E. et al. Drd4 gene polymorphisms are associated with personality variation in a passerine bird. Proc. R. Soc. B. 274, 1685–1691. https://doi.org/10.1098/rspb.2007.0337 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Mueller, J. C. et al. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Mol. Ecol. 22, 2797–2809. https://doi.org/10.1111/mec.12282 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Korsten, P. et al. Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Mol. Ecol. 19, 832–843. https://doi.org/10.1111/j.1365-294X.2009.04518.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Jiang, W., Shang, S. & Su, Y. Genetic influences on insight problem solving: The role of catechol-O-methyltransferase polymorphisms. Front. Psychol. 6, 1569. https://doi.org/10.3389/fpsyg.2015.01569 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hopkins, W. et al. Genetic influences on receptive joint attention in chimpanzees (Pan troglodytes). Sci. Rep. 4, 3774. https://doi.org/10.1038/srep03774 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Fitzpatrick, M. J. et al. Candidate genes for behavioural ecology. Trends Ecol. Evol. 20, 96–104. https://doi.org/10.1016/j.tree.2004.11.017 (2005).Article 
    PubMed 

    Google Scholar 
    33.Munafo, M. R., Brown, S. M. & Harkless, K. C. Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biol. Psychiatry 63, 852–857. https://doi.org/10.1016/j.biopsych.2007.08.016 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Staes, N. et al. Serotonin receptor 1A variation is associated with anxiety and agonistic behavior in chimpanzees. Mol. Biol. Evol. 36, 1418–1429. https://doi.org/10.1093/molbev/msz061 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Mueller, J. C. et al. Behaviour-related DRD4 polymorphisms in invasive bird populations. Mol. Ecol. 23, 2876–2885. https://doi.org/10.1111/mec.12763 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Timm, K., Tilgar, V. & Saag, P. DRD4 gene polymorphism in great tits: Gender-specific association with behavioural variation in the wild. Behav. Ecol. Sociobiol. 69, 729–735. https://doi.org/10.1007/s00265-015-1887-z (2015).Article 

    Google Scholar 
    37.Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D. & Senar, J. C. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behaviour in great tit Parus major. Epigenetics 10, 516–525. https://doi.org/10.1080/15592294.2015.1046027 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Holtmann, B. et al. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol. Ecol. 25, 706–722. https://doi.org/10.1111/mec.13514 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Krause, E. T., Kjaer, J. B., Lüders, C. & van Phi, L. A polymorphism in the 5′-flanking region of the serotonin transporter (5-HTT) gene affects fear-related behaviors of adult domestic chickens. Behav. Brain Res. 14, 92–96. https://doi.org/10.1016/j.bbr.2017.04.051 (2017).CAS 
    Article 

    Google Scholar 
    40.Timm, K., van Oers, K. & Tilgar, V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J. Exp. Biol. 221, jeb171595. https://doi.org/10.1242/jeb.171595 (2018).Article 
    PubMed 

    Google Scholar 
    41.Timm, K., Koosa, K. & Tilgar, V. The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J. Ethol. 37, 221–227. https://doi.org/10.1007/s10164-019-00593-7 (2019).Article 

    Google Scholar 
    42.Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366. https://doi.org/10.1146/annurev.med.60.042307.110802 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Lesch, K. P. & Merschdorf, U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law 18, 581–604 (2000).CAS 
    Article 

    Google Scholar 
    44.Duke, A. A., Bègue, L., Bell, R. & Eisenlohr-Moul, T. Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychol. Bull. 139, 1148–1172. https://doi.org/10.1037/a0031544 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ferrari, P. F., Palanza, P., Parmigiani, S., de Almeida, R. M. & Miczek, K. A. Serotonin and aggressive behavior in rodents and nonhuman primates: Predispositions and plasticity. Eur. J. Pharmacol. 526, 259–273. https://doi.org/10.1016/j.ejphar.2005.10.002 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Bacqué-Cazenave, J. et al. Serotonin in animal cognition and behavior. Int. J. Mol. Sci. 21, 1649. https://doi.org/10.3390/ijms21051649 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    47.Walker, S. C. et al. Selective prefrontal serotonin depletion impairs acquisition of a detour-reaching task. Eur. J. Neurosci. 23, 3119–3123. https://doi.org/10.1111/j.1460-9568.2006.04826.x (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Cools, R., Roberts, A. C. & Robbins, T. W. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn. Sci. 12, 31–40. https://doi.org/10.1016/j.tics.2007.10.011 (2008).Article 
    PubMed 

    Google Scholar 
    49.Rudnick, G. & Sandtner, W. Serotonin transport in the 21st century. J. Gen. Physiol. 151, 1248–1264. https://doi.org/10.1085/jgp.201812066 (2018).CAS 
    Article 

    Google Scholar 
    50.Lesch, K. P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531. https://doi.org/10.1126/science.274.5292.1527 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Sen, S., Burmeister, M. & Ghosh, D. Meta-analysis of the association between a serotonin transporter promoter polymorphism (5- HTTLPR) and anxiety-related personality traits. Am. J. Med. Genet. 127, 85–89. https://doi.org/10.1002/ajmg.b.20158 (2004).Article 

    Google Scholar 
    52.Karg, K., Burmeister, M., Shedden, K. & Sen, S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch. Gen. Psychiatry 68, 444–454. https://doi.org/10.1001/archgenpsychiatry.2010.189 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Beversdorf, D. Q. et al. Influence of serotonin transporter SLC6A4 genotype on the effect of psychosocial stress on cognitive performance: An exploratory pilot study. Cogn. Behav. Neurol. 31, 79–85. https://doi.org/10.1097/WNN.0000000000000153 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Canli, T. & Lesch, P.-K. Long story short: The serotonin transporter in emotion regulation and social cognition. Nat. Neurosci. 10, 1103–1109. https://doi.org/10.1038/nn1964 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Jarrell, H. et al. Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol. Behav. 93, 807–819. https://doi.org/10.1016/j.physbeh.2007.11.042 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Bennett, A. et al. Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol. Psychiatry 7, 118–122. https://doi.org/10.1038/sj.mp.4000949 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Golebiowska, J. et al. Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci. Rep. 9, 20283. https://doi.org/10.1038/s41598-019-56629-y (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Thys, B. et al. The serotonin transporter gene and female personality variation in a free-living passerine. Sci. Rep. 11, 8577. https://doi.org/10.1038/s41598-021-88225-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Audet, J.-N. et al. Divergence in problem-solving skills is associated with differential expression of glutamate receptors in wild finches. Sci. Adv. 4, eaao6369. https://doi.org/10.1126/sciadv.aao6369 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Personality and plasticity in neophobia levels vary with anthropogenic disturbance but not toxic metal exposure in urban great tits. Sci. Total Environ. 656, 997–1009. https://doi.org/10.1016/j.scitotenv.2018.11.383 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Sources of individual variation in problem-solving performance in urban great tits (Parus major): Exploring effects of metal pollution, urban disturbance and personality. Sci. Tot. Environ. 749, 141436. https://doi.org/10.1016/j.scitotenv.2020.141436 (2020).CAS 
    Article 

    Google Scholar 
    62.Thys, B. et al. The female perspective of personality in a wild songbird: Repeatable aggressiveness relates to exploration behavior. Sci. Rep. 7, 7656. https://doi.org/10.1038/s41598-017-08001-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Grunst, A. S. et al. An important personality trait varies with blood and plumage metal concentrations in a free-living songbird. Environ. Sci. Technol. 53, 10487–10496. https://doi.org/10.1021/acs.est.9b03548 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Grunst, A. S. et al. Variation in personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ. 630, 668–678. https://doi.org/10.1016/j.scitotenv.2018.02.19 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Laucht, M. et al. Interaction between the 5-HTTLPR serotonin transporter polymorphism and environmental adversity for mood and anxiety psychopathology: Evidence from a high-risk community sample of young adults. Int. J. Neuropharmacol. 12, 737–747. https://doi.org/10.1017/S1461145708009875 (2009).CAS 
    Article 

    Google Scholar 
    66.Wang, Z. et al. Genome-wide gene by lead exposure interaction analysis identifies UNC5D as a candidate gene for neurodevelopment. Environ. Health 16, 81. https://doi.org/10.1186/s12940-017-0288-3 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Grunst, A. S., Grunst, M. L., Pinxten, R. & Eens, M. Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits. Environ. Pollut. 256, 113373. https://doi.org/10.1016/j.envpol.2019.113373 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Dingemanse, N. J. et al. Repeatability and heritability of exploratory behaviour in great tits from the wild. Anim. Behav. 64, 929–937. https://doi.org/10.1006/anbe.2002.2006 (2002).Article 

    Google Scholar 
    69.Solé, X. et al. SNPStats: A web tool for the analysis of association studies. Bioinformatics 22, 1928–1929. https://doi.org/10.1093/bioinformatics/bti283 (2005).Article 

    Google Scholar 
    70.Hecht, M., Bromberg, Y. & Rost, B. Better prediction of functional effects for sequence variants from VarI-SIG 2014: Identification and annotation of genetic variants in the context of structure, function and disease. BMC Genom. 16, S1. https://doi.org/10.1186/1471-2164-16-S8-S1 (2015).CAS 
    Article 

    Google Scholar 
    71.Choi, Y. & Chan, A. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747. https://doi.org/10.1093/bioinformatics/btv195 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30(6), 884–886. https://doi.org/10.1093/bioinformatics/btt607 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). URL https://www.R-project.org/.74.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2014).Article 

    Google Scholar 
    75.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13 (2017).Article 

    Google Scholar 
    76.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644. https://doi.org/10.1111/2041-210X.12797 (2017).Article 

    Google Scholar 
    77.Harrison, X. A. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616. https://doi.org/10.7717/peerj.616 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.3.01 (2019). https://CRAN.R-project.org/package=emmeans.79.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300. https://doi.org/10.2307/2346101 (1995).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    80.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article 

    Google Scholar 
    81.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of Regression Models Performance. R package version 0.4.6 (2020). https://CRAN.R-project.org/package=performance.82.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.6 (2019). https://CRAN.R-project.org/package=DHARMa.83.Mikros, E. & Diallinas, G. Tales of tails in transporters. Open Biol. 9, 190083. https://doi.org/10.1098/rsob.190083 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kern, C. et al. The N teminus specifies the switch between transporter modes of the human serotonin transporter. J. Biol. Chem. 292, 3603–3613. https://doi.org/10.1074/jbc.M116.771360 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Visser, M. E., Van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870. https://doi.org/10.1098/rspb.1998.0514 (1998).Article 
    PubMed Central 

    Google Scholar 
    86.Hunt, R., Sauna, Z. E., Ambudkar, S. V., Gottesman, M. M. & Kimchi-Sarfaty, C. Silent (Synonymous) SNPs: Should we care about them? In Single Nucleotide Polymorphisms Methods in Molecular Biology (Methods and Protocols) Vol. 578 (ed. Komar, A.) (Humana Press, 2009). https://doi.org/10.1007/978-1-60327-411-1_2.Chapter 

    Google Scholar 
    87.Grunst, A.S., Grunst, M.L. & Staes, N., Bert, T., Pinxten, R., Eens, M. Data for: Serotonin Transporter (SERT) Polymorphisms, Personality and Problem-Solving in Urban Great Tits. (Dryad Digital Repository, 2021). More

  • in

    The belowground growing season

    1.Piao, S. et al. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    2.Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    3.Ma, H. et al. Nat. Ecol. Evol. 5, 1110–1122 (2021).Article 

    Google Scholar 
    4.Mokany, K., Raison, R. J. & Prokushkin, A. S. Glob. Change Biol. 12, 84–96 (2006).Article 

    Google Scholar 
    5.Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. J. Exp. Bot. 67, 3617–3628 (2016).CAS 
    Article 

    Google Scholar 
    6.Liu, H. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01244-x (2021).7.Freschet, G. T. et al. New Phytol. 232, 1123–1158 (2021).Article 

    Google Scholar 
    8.Clemmensen, K. E. et al. Science 339, 1615–1618 (2013).CAS 
    Article 

    Google Scholar 
    9.Sokol, N. W. & Bradford, M. A. Nat. Geosci. 12, 46–53 (2019).CAS 
    Article 

    Google Scholar 
    10.Jones, D. L., Nguyen, C. & Finlay, R. D. Plant Soil 321, 5–33 (2009).CAS 
    Article 

    Google Scholar 
    11.Abramoff, R. Z. & Finzi, A. C. New Phytol. 205, 1054–1061 (2015).Article 

    Google Scholar 
    12.Warren, J. M. et al. New Phytol. 205, 59–78 (2015).Article 

    Google Scholar 
    13.Blume-Werry, G., Wilson, S. D., Kreyling, J. & Milbau, A. New Phytol. 209, 978–986 (2016).CAS 
    Article 

    Google Scholar 
    14.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. J. Ecol. 104, 239–248 (2016).CAS 
    Article 

    Google Scholar 
    15.Fu, Y. H. et al. Nature 526, 104–107 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Phenological mismatches between above- and belowground plant responses to climate warming

    1.Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
    Google Scholar 
    2.Forrest, J. & Miller-Rushing, A. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B 365, 3101–3112 (2010).
    Google Scholar 
    3.Lane, J. E., Kruuk, L., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).CAS 

    Google Scholar 
    4.Richardson, A. D. et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature 560, 368–371 (2018).CAS 

    Google Scholar 
    5.Abramoff, R. Z. & Finzi, A. C. Are above- and below-ground phenology in sync? New Phytol. 205, 1054–1061 (2015).
    Google Scholar 
    6.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).
    Google Scholar 
    7.Smithwick, E., Lucash, M. S., Mccormack, M. L. & Sivandran, G. Improving the representation of roots in terrestrial models. Ecol. Model. 291, 193–204 (2014).CAS 

    Google Scholar 
    8.Warren, J. M. et al. Root structural and functional dynamics in terrestrial biosphere models – evaluation and recommendations. New Phytol. 205, 59–78 (2015).
    Google Scholar 
    9.Ma, H., Mo, L., Crowther, T. W., Maynard, D. S. & Zohner, C. M. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 5, 1110–1122 (2021).
    Google Scholar 
    10.Neumann, R. B. & Cardon, Z. G. The magnitude of hydraulic redistribution by plant roots: a review and synthesis of empirical and modeling studies. New Phytol. 194, 337–352 (2012).
    Google Scholar 
    11.Lucas, M., Schlueter, S., Vogel, H.-J. & Vetterlein, D. Roots compact the surrounding soil depending on the structures they encounter. Sci. Rep. 9, 16236 (2019).
    Google Scholar 
    12.Oades, J. M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 56, 377–400 (1993).
    Google Scholar 
    13.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).CAS 

    Google Scholar 
    14.Roslin, T., Anto, L., Hllfors, M., Meyke, E. & Ovaskainen, O. Phenological shifts of abiotic events, producers and consumers across a continent. Nat. Clim. Change 11, 241–248 (2021).
    Google Scholar 
    15.Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).CAS 

    Google Scholar 
    16.Blume-Werry, G., Jansson, R. & Milbau, A. Root phenology unresponsive to earlier snowmelt despite advanced above‐ground phenology in two subarctic plant communities. Funct. Ecol. 31, 1493–1502 (2017).
    Google Scholar 
    17.Wilson, J. B. A review of evidence on the control of shoot:root ratio, in relation to models. Ann. Bot. 61, 433–449 (1988).
    Google Scholar 
    18.Schwieger, S., Kreyling, J., Milbau, A. & Blume-Werry, G. Autumnal warming does not change root phenology in two contrasting vegetation types of subarctic tundra. Plant Soil 424, 145–156 (2018).CAS 

    Google Scholar 
    19.Liu, H., Lu, C., Wang, S., Ren, F. & Wang, H. Climate warming extends growing season but not reproductive phase of terrestrial plants. Glob. Ecol. Biogeogr. 30, 950–960 (2021).
    Google Scholar 
    20.Steinaker, D. F., Wilson, S. D. & Peltzer, D. A. Asynchronicity in root and shoot phenology in grasses and woody plants. Glob. Change Biol. 16, 2241–2251 (2010).
    Google Scholar 
    21.Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 

    Google Scholar 
    22.Thakur, M. P. Climate warming and trophic mismatches in terrestrial ecosystems: the green–brown imbalance hypothesis. Biol. Lett. 16, 20190770 (2020).
    Google Scholar 
    23.Wang, H. et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol. Lett. 23, 701–710 (2020).
    Google Scholar 
    24.Chuine, I. A united model for budburst of trees. J. Theor. Biol. 2007, 337–347 (2000).
    Google Scholar 
    25.Lim, P. O., Kim, H. J. & Gil Nam, H. Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136 (2007).CAS 

    Google Scholar 
    26.Reich, P. B., Walters, M. & Ellsworth, D. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).
    Google Scholar 
    27.Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).
    Google Scholar 
    28.Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 

    Google Scholar 
    29.Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).CAS 

    Google Scholar 
    30.López-Bucio, J., Cruz-Ramírez, A. & Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280–287 (2003).
    Google Scholar 
    31.Friedl, M. A. et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83, 287–302 (2002).
    Google Scholar 
    32.Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).
    Google Scholar 
    33.Hollister, R. D., Webber, P. J. & Bay, C. Plant response to temperature in northern Alaska: implications for predicting vegetation change. Ecology 86, 1562–1570 (2005).
    Google Scholar 
    34.Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).
    Google Scholar 
    35.Collins, C. G. et al. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat. Commun. https://doi.org/10.1038/s41467-021-23841-2 (2021).36.Reyes-Fox, M. et al. Elevated CO2 further lengthens growing season under warming conditions. Nature 510, 259–267 (2014).CAS 

    Google Scholar 
    37.Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B 365, 3227–3246 (2010).
    Google Scholar 
    38.Wingler, A. & Hennessy, D. Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci. 7, 1130 (2016).
    Google Scholar 
    39.Schenk, H. J. & Jackson, R. B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 90, 480–494 (2002).
    Google Scholar 
    40.Wang, P., Huang, K. & Hu, S. Distinct fine-root responses to precipitation changes in herbaceous and woody plants: a meta-analysis. New Phytol. 225, 1491–1499 (2020).
    Google Scholar 
    41.Arft, A. et al. Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    42.Fu, Y. S. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).CAS 

    Google Scholar 
    43.Seastedt, T. & Knapp, A. Consequences of nonequilibrium resource availability across multiple time scales: the transient maxima hypothesis. Am. Nat. 141, 621–633 (1993).CAS 

    Google Scholar 
    44.Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 199, 441–451 (2013).
    Google Scholar 
    45.Sakai, A. & Larcher, W. Frost Survival of Plants: Responses and Adaptation to Freezing Stress (Springer‐Verlag, 1987).46.Zani, D., Crowther, T. W., Mo, L., Renner, S. S. & Zohner, C. M. Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science 370, 1066–1071 (2020).CAS 

    Google Scholar 
    47.Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).
    Google Scholar 
    48.Hijmans, R. J., Ca Meron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2010).
    Google Scholar 
    49.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub‐Arctic plant communities. J. Ecol. 104, 239–248 (2016).CAS 

    Google Scholar 
    50.Kou, L. et al. Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations. New Phytol. 218, 1450–1461 (2018).
    Google Scholar 
    51.Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).
    Google Scholar 
    52.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Soft. 36, 1–48 (2010).
    Google Scholar 
    53.Kattge, J. et al. TRY plant trait database-enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).
    Google Scholar 
    54.De Martonne, E. Une nouvelle fonction climatologique: l’indice d’aridité. La MétéOrol. 2, 449–458 (1926).
    Google Scholar 
    55.Breiman, L. Classification and Regression Trees (Routledge, 2017).56.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2/3, 18–22 (2002).
    Google Scholar 
    57.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 10, 696–697 (2020).
    Google Scholar 
    58.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).59.Liu, H. et al. Supporting data for ‘Phenological mismatches between above- and belowground plant responses to climate warming’. Figshare https://figshare.com/s/1f086364114021cd80d9 (2021). More

  • in

    Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids

    1.Beissinger, S. R. & Westphal, M. I. On the use of demographic models of population viability in endangered species management. J. Wildl. Manag. 62, 821–841 (1998).
    Google Scholar 
    2.Campana, S. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish. Biol. 59, 197–242 (2001).
    Google Scholar 
    3.Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Jarman, S. N. et al. Molecular biomarkers for chronological age in animal ecology. Mol. Ecol. 24, 4826–4847 (2015).CAS 
    PubMed 

    Google Scholar 
    5.Thompson, M. J., vonHoldt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    7.Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    8.Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 

    Google Scholar 
    10.Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 e956 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction, and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 

    Google Scholar 
    14.Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    15.Voisin, S. et al. An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle https://doi.org/10.1002/jcsm.12556 (2020).16.De Paoli-Iseppi, R. et al. Age estimation in a long-lived seabird (Ardenna tenuirostris) using DNA methylation-based biomarkers. Mol. Ecol. Resour. 19, 411–425 (2019).PubMed 

    Google Scholar 
    17.Ito, H., Udono, T., Hirata, S. & Inoue-Murayama, M. Estimation of chimpanzee age based on DNA methylation. Sci. Rep. 8, 9998 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    18.Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).CAS 
    PubMed 

    Google Scholar 
    20.Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi‐ supercentenarians and their offspring. Aging 7, 1159–1170 (2018).
    Google Scholar 
    21.Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    22.Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    23.Mitchell, C., Schneper, L. M. & Notterman, D. A. DNA methylation, early life environment, and health outcomes. Pediatr. Res. 79, 212–219 (2016).CAS 
    PubMed 

    Google Scholar 
    24.Pérez, R. F., Santamarina, P., Fernández, A. F., & Fraga, M. F. Epigenetics and Lifestyle: The Impact of Stress, Diet, and Social Habits on Tissue Homeostasis. In Epigenetics and Regeneration (ed. Palacios, D.) pp. 461–489 (Academic Press, 2019).25.Szyf, M., Tang, Y. Y., Hill, K. G. & Musci, R. The dynamic epigenome and its implications for behavioral interventions: a role for epigenetics to inform disorder prevention and health promotion. Transl. Behav. Med. 6, 55–62 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    26.Lee, R. S. et al. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151, 4332–4343 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    28.Biemont, C. Inbreeding effects in the epigenetic era. Nat. Rev. Genet. 11, 234 (2010).CAS 
    PubMed 

    Google Scholar 
    29.Venney, C. J., Johansson, M. L. & Heath, D. D. Inbreeding effects on gene-specific DNA methylation among tissues of Chinook salmon. Mol. Ecol. 25, 4521–4533 (2016).CAS 
    PubMed 

    Google Scholar 
    30.Vergeer, P., Wagemaker, N. C. & Ouborg, N. J. Evidence for an epigenetic role in inbreeding depression. Biol. Lett. 8, 798–801 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    31.Han, W. et al. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112, 2677–2687 (2020).CAS 
    PubMed 

    Google Scholar 
    32.Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    35.Pinho, G. M. et al. Hibernation slows epigenetic aging in yellow-bellied marmots. Preprint at bioRxiv https://doi.org/10.1101/2021.03.07.434299 (2021).36.Moehlman, P. D. Equids: Zebras, Asses, and Horses Status Survey and Conservation Action Plan Vol. 37, 190 pp (IUCN/SSC Equid Specialist Group, 2002).37.Moehlman, P. D. & King, S. R. B. IUCN SSC Equid Specialist Group 2020 Report. https://www.iucn.org/commissions/ssc-groups/mammals/mammals-a-e/equid (2020).38.Rubinacci, S., Ribeiro, D. M., Hofmeister, R. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).CAS 
    PubMed 

    Google Scholar 
    39.Ceballos, F. C., Hazelhurst, S. & Ramsay, M. Runs of homozygosity in sub-Saharan African populations provide insights into complex demographic histories. Hum. Genet. 138, 1123–1142 (2019).CAS 
    PubMed 

    Google Scholar 
    40.Curik, I., Ferenčaković, M. & Sölkner, J. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest. Sci. 166, 26–34 (2014).
    Google Scholar 
    41.Anderson, J. A. et al. The costs of competition: high social status males experience accelerated epigenetic aging in wild baboons. eLife 10, e66128 (2020).
    Google Scholar 
    42.McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. https://doi.org/10.1038/nbt.1630 (2010).43.Gronniger, E. et al. Aging and chronic sun exposure cause distinct epigenetic changes in human skin. PLoS Genet. 6, e1000971 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    44.Robeck, T. R. et al. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun. Biol. https://doi.org/10.1038/s42003-021-02179-x (2021).45.Jonsson, H. et al. Speciation with gene flow in equids despite extensive chromosomal plasticity. Proc. Natl Acad. Sci. USA 111, 18655–18660 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Vilstrup, J. T. et al. Mitochondrial phylogenomics of modern and ancient equids. PLoS One 8, e55950 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Jensen-Seaman, M. I. & Hooper-Boyd, K. A. in Encyclopedia of Life Sciences (ELS) (John Wiley & Sons, Ltd., 2008).48.Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker—modeling epigenetic states under an evolutionary framework. Bioinformatics https://doi.org/10.1093/bioinformatics/btaa585 (2020).49.Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).CAS 
    PubMed 

    Google Scholar 
    50.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA 93, 6140–6145 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Fox, C. W. Inbreeding depression increases with maternal age. Evolut. Ecol. Res. 12, 961–972 (2010).
    Google Scholar 
    52.Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).PubMed 

    Google Scholar 
    53.Mayne, B., Berry, O., Davies, C., Farley, J. & Jarman, S. A genomic predictor of lifespan in vertebrates. Sci. Rep. 9, 17866 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.McClain, A. T. & Faulk, C. The evolution of CpG density and lifespan in conserved primate and mammalian promoters. Aging 10, 561–572 (2018).
    Google Scholar 
    55.Alpi, A. F., Pace, P. E., Babu, M. M. & Patel, K. J. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32, 767–777 (2008).CAS 
    PubMed 

    Google Scholar 
    56.Kannan, M. B., Solovieva, V. & Blank, V. The small MAF transcription factors MAFF, MAFG, and MAFK: current knowledge and perspectives. Biochim. Biophys. Acta 1823, 1841–1846 (2012).CAS 
    PubMed 

    Google Scholar 
    57.Li, Z. et al. PBX3 is an important cofactor of HOXA9 in leukemogenesis. Blood 121, 1422–1431 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Malecki, M. T. et al. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 23, 323–328 (1999).CAS 
    PubMed 

    Google Scholar 
    59.Ding, Q., Joshi, P. S., Xie, Z. H., Xiang, M. & Gan, L. BARHL2 transcription factor regulates the ipsilateral/contralateral subtype divergence in postmitotic dI1 neurons of the developing spinal cord. Proc. Natl Acad. Sci. USA 109, 1566–1571 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Mo, Z., Li, S., Yang, X. & Xiang, M. Role of the Barhl2 homeobox gene in the specification of glycinergic amacrine cells. Development 131, 1607–1618 (2004).CAS 
    PubMed 

    Google Scholar 
    61.Giampietro, C. et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat. Commun. 6, 8479 (2015).CAS 
    PubMed 

    Google Scholar 
    62.Yano, M., Hayakawa-Yano, Y., Mele, A. & Darnell, R. B. Nova2 regulates neuronal migration through an RNA switch in disabled-1 signaling. Neuron 66, 848–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Deneen, B. et al. The transcription factor NFIA controls the onset of gliogenesis in the developing spinal cord. Neuron 52, 953–968 (2006).CAS 
    PubMed 

    Google Scholar 
    64.Hiraike, Y. et al. NFIA co-localizes with PPARgamma and transcriptionally controls the brown fat gene program. Nat. Cell Biol. 19, 1081–1092 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Caricasole, A., Sala, C., Roncarati, R., Formenti, E. & Terstappen, G. C. Cloning and characterization of the human phosphoinositide-specific phospholipase C-beta 1 (PLCβ1). Biochim. Biophys. Acta 1517, 63–72 (2000).CAS 
    PubMed 

    Google Scholar 
    66.McOmish, C. E., Burrows, E. L., Howard, M. & Hannan, A. J. PLC-beta1 knockout mice as a model of disrupted cortical development and plasticity: behavioral endophenotypes and dysregulation of RGS4 gene expression. Hippocampus 18, 824–834 (2008).CAS 
    PubMed 

    Google Scholar 
    67.Mittelstaedt, T., Alvarez-Baron, E. & Schoch, S. RIM proteins and their role in synapse function. Biol. Chem. 391, 599–606 (2010).CAS 
    PubMed 

    Google Scholar 
    68.Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 415, 321–326 (2002).CAS 
    PubMed 

    Google Scholar 
    69.Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).70.Nishikawa, K. et al. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation. J. Clin. Invest. 120, 3455–3465 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Saidak, Z., Hay, E., Marty, C., Barbara, A. & Marie, P. J. Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling. Aging Cell 11, 467–474 (2012).CAS 
    PubMed 

    Google Scholar 
    72.McClay, J. L. et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum. Mol. Genet. 23, 1175–1185 (2014).CAS 
    PubMed 

    Google Scholar 
    73.Ambeskovic, M. et al. Ancestral stress programs sex-specific biological aging trajectories and non-communicable disease risk. Aging 12, 3828–3847 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Burger, C., Lopez, M. C., Baker, H. V., Mandel, R. J. & Muzyczka, N. Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol. Learn Mem. 89, 379–396 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Horvath, S. et al. DNA methylation clocks show slower progression of aging in naked mole-rat queens. Preprint at bioRxiv https://doi.org/10.1101/2021.03.15.435536 (2021).76.Rapoport, S. I., Primiani, C. T., Chen, C. T., Ahn, K. & Ryan, V. H. Coordinated expression of phosphoinositide metabolic genes during development and aging of human dorsolateral prefrontal cortex. PLoS One 10, e0132675 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    77.Dube, J. B. et al. Genetic determinants of “cognitive impairment, no dementia”. J. Alzheimers Dis. 33, 831–840 (2013).CAS 
    PubMed 

    Google Scholar 
    78.Hinney, A. et al. Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am. J. Med. Genet. B Neuropsychiatr. Genet. 165B, 283–293 (2014).PubMed 

    Google Scholar 
    79.Ntalla, I. et al. Replication of established common genetic variants for adult BMI and childhood obesity in Greek adolescents: the TEENAGE study. Ann. Hum. Genet. 77, 268–274 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    80.Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Gao, Z. et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci. 12, 1090–1092 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Badawi, Y. & Nishimune, H. Presynaptic active zones of mammalian neuromuscular junctions: Nanoarchitecture and selective impairments in aging. Neurosci. Res. 127, 78–88 (2018).CAS 
    PubMed 

    Google Scholar 
    83.Tollervey, J. R. et al. Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res. 21, 1572–1582 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kim, B. H., Nho, K. & Lee, J. M., Alzheimer’s Disease Neuroimaging, I. Genome-wide association study identifies susceptibility loci of brain atrophy to NFIA and ST18 in Alzheimer’s disease. Neurobiol. Aging 102, 200 e201–200 e211 (2021).
    Google Scholar 
    85.Horvath, S. et al. DNA methylation aging and transcriptomic studies in horses. Preprint at bioRxiv https://doi.org/10.1101/2021.03.11.435032 (2021).86.Benayoun, B. A., Pollina, E. A. & Brunet, A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat. Rev. Mol. Cell Biol. 16, 593–610 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9, 419–446 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Crary-Dooley, F. K. et al. A comparison of existing global DNA methylation assays to low-coverage whole-genome bisulfite sequencing for epidemiological studies. Epigenetics 12, 206–214 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    89.Reed, K., Poulin, M. L., Yan, L. & Parissenti, A. M. Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation. Anal. Biochem. 397, 96–106 (2010).CAS 
    PubMed 

    Google Scholar 
    90.Tost, J., Dunker, J. & Gut, I. G. Analysis and quantification of multiple methylation variable positions in CpG islands by Pyrosequencing. Biotechniques 35, 152–156 (2003).CAS 
    PubMed 

    Google Scholar 
    91.Karesh, W. B. in Zoo and Wild Animal Medicine: Current Therapy (eds Fowler Murray, E. & Eric Miller, R.) 298−308 (Saunders Elsevier, 2008).92.Chiou, K. L. & Bergey, C. M. Methylation-based enrichment facilitates low-cost, noninvasive genomic scale sequencing of populations from feces. Sci. Rep. 8, 1975 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    93.Orkin, J. D. et al. The genomics of ecological flexibility, large brains, and long lives in capuchin monkeys revealed with fecalFACS. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2010632118 (2021).94.Snyder-Mackler, N. et al. Efficient genome-wide sequencing and low-coverage pedigree analysis from noninvasively collected samples. Genetics 203, 699–714 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Harley, E. H., Knight, M. H., Lardner, C., Wooding, B. & Gregor, M. The Quagga project: progress over 20 years of selective breeding. South African J. Wildlife Res. https://doi.org/10.3957/056.039.0206 (2009).96.Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences Preprint at bioRxiv https://doi.org/10.1101/2021.01.07.425637 (2021).97.Kalbfleisch, T. S. et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 1, 197 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    98.Wade, C. M. et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science https://doi.org/10.1126/science.1178158 (2009).99.Zhou, W., Triche, T. J. Jr., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    100.Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    103.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).104.Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).105.Larison, B. et al. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Mol. Ecol. 30, 379–390 (2021).CAS 
    PubMed 

    Google Scholar 
    106.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows−Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    107.Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. Preprint at https://arxiv.org/abs/1207.3907 (2012).108.Freed, D., Aldana, R., Weber, J. A. & Edwards, J. S. The Sentieon Genomics Tools—A fast and accurate solution to variant calling from next-generation sequence data. Preprint at bioRxiv https://doi.org/10.1101/115717 (2017).109.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    110.Meyermans, R., Gorssen, W., Buys, N. & Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21, 94 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.McQuillan, R. et al. Runs of homozygosity in European populations. Am. J. Hum. Genet. 83, 359–372 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    114.Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. 11, 1–17 (2004).
    Google Scholar 
    115.Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-oriented implementation of clustered covariances in R. J. Stat. Softw. 95, 1–36 (2020).
    Google Scholar 
    116.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
    Google Scholar 
    117.Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A. & Williams, R. M. J. Adjustment During Army Life (Princeton University Press, 1949). More

  • in

    Different increase rate in body mass of two marten species due to climate warming potentially reinforces interspecific competition

    1.Schmidt-Nielsen, K. Scaling: Why is Animal Size So Important? (Cambrige University Press, 1984).Book 

    Google Scholar 
    2.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406. https://doi.org/10.1038/nclimate1259 (2011).ADS 
    Article 

    Google Scholar 
    3.Yom-Tov, Y., Heggberget, T. M., Wiig, O. & Yom-Tov, S. Body size changes among otters, Lutra lutra, in Norway: The possible effects of food availability and global warming. Oecologia 150, 155–160. https://doi.org/10.1007/s00442-006-0499-8 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    4.Bergmann, C. Ueber die Verhältnisse der Wärmeökonomie der Tiere zu ihrer Grösse. Gött Stud. 3, 595–708 (1847).
    Google Scholar 
    5.Dehnel, A. Studies on the genus Sorex L.. Ann. Univ. Mariae Curie Sklodowska 5, 17–102 (1949).
    Google Scholar 
    6.Foster, J. B. Evolution of mammals on islands. Nature 202, 234–235. https://doi.org/10.1038/202234a0 (1964).ADS 
    Article 

    Google Scholar 
    7.Mayr, E. Geographical character gradients and climatic adaptation. Evolution 10, 105–108. https://doi.org/10.1111/j.1558-5646.1956.tb02836.x (1956).Article 

    Google Scholar 
    8.Allen, J. A. The Influence of physical conditions in the genesis of species. Radic. Rev. 1, 108–140 (1877).
    Google Scholar 
    9.Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: A clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174. https://doi.org/10.1046/j.1472-4642.1999.00046.x (1999).Article 

    Google Scholar 
    10.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. Elife 7, 16. https://doi.org/10.7554/eLife.27166 (2018).Article 

    Google Scholar 
    11.Ashton, K. G. Patterns of within-species body size variation of birds: Strong evidence for Bergmann’s rule. Glob. Ecol. Biogeogr. 11, 505–523. https://doi.org/10.1046/j.1466-822X.2002.00313.x (2002).Article 

    Google Scholar 
    12.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351. https://doi.org/10.1046/j.1365-2699.2003.00837.x (2003).Article 

    Google Scholar 
    13.Reig, S. Geographic variation in pine marten (Martes martes) and beech marten (M. foina) in Europe. J. Mammal. 73, 744–769. https://doi.org/10.2307/1382193 (1992).Article 

    Google Scholar 
    14.Blackburn, T. M. & Hawkins, B. A. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724. https://doi.org/10.1111/j.0906-7590.2004.03999.x (2004).Article 

    Google Scholar 
    15.Diniz, J. A. F., Bini, L. M., Rodriguez, M. A., Rangel, T. & Hawkins, B. A. Seeing the forest for the trees: Partitioning ecological and phylogenetic components of Bergmann’s rule in European Carnivora. Ecography 30, 598–608. https://doi.org/10.1111/j.2007.0906-7590.04988.x (2007).Article 

    Google Scholar 
    16.Hoy, S. R., Peterson, R. O. & Vucetich, J. A. Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit. Glob. Change Biol. 24, 2488–2497. https://doi.org/10.1111/gcb.14015 (2018).ADS 
    Article 

    Google Scholar 
    17.Martin, J. M., Mead, J. I. & Barboza, P. S. Bison body size and climate change. Ecol. Evol. 8, 4564–4574. https://doi.org/10.1002/ece3.4019 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda. Science 325, 464–467. https://doi.org/10.1126/science.1173668 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Prokosch, J., Bernitz, Z., Bernitz, H., Erni, B. & Altwegg, R. Are animals shrinking due to climate change? Temperature-mediated selection on body mass in mountain wagtails. Oecologia 189, 841–849. https://doi.org/10.1007/s00442-019-04368-2 (2019).ADS 
    Article 
    PubMed 

    Google Scholar 
    20.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055. https://doi.org/10.1038/nature08649 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Schloss, C. A., Nunez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl. Acad. Sci. U.S.A. 109, 8606–8611. https://doi.org/10.1073/pnas.1116791109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Williams, J. E. & Blois, J. L. Range shifts in response to past and future climate change: Can climate velocities and species’ dispersal capabilities explain variation in mammalian range shifts? J. Biogeogr. 45, 2175–2189. https://doi.org/10.1111/jbi.13395 (2018).Article 

    Google Scholar 
    23.Gordon, C. J. Effects of ambient temperature and exposure to 2450-MHz microwave radiation of evaporative heat loss in the mouse. J. Microw. Power Electromagn. Energy 17, 145–150 (1982).CAS 

    Google Scholar 
    24.Zub, K., Piertney, S., Szafranska, P. A. & Konarzewski, M. Environmental and genetic influences on body mass and resting metabolic rates (RMR) in a natural population of weasel Mustela nivalis. Mol. Ecol. 21, 1283–1293. https://doi.org/10.1111/j.1365-294X.2011.05436.x (2012).Article 
    PubMed 

    Google Scholar 
    25.Leyequien, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741. https://doi.org/10.1007/s11284-006-0311-6 (2007).Article 

    Google Scholar 
    26.Briscoe, N. J., Krockenberger, A., Handasyde, K. A. & Kearney, M. R. Bergmann meets Scholander: Geographical variation in body size and insulation in the koala is related to climate. J. Biogeogr. 42, 791–802. https://doi.org/10.1111/JBI.12445 (2015).Article 

    Google Scholar 
    27.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming? Trends Ecol. Evol. 26, 285–291. https://doi.org/10.1016/J.TREE.2011.03.005 (2011).Article 
    PubMed 

    Google Scholar 
    28.Reyer, C. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71, 211–225. https://doi.org/10.1007/s13595-013-0306-8 (2014).Article 

    Google Scholar 
    29.Laidre, K. L. et al. Transient benefits of climate change for a high-Arctic polar bear (Ursus maritimus) subpopulation. Glob. Change Biol. 26, 6251–6265. https://doi.org/10.1111/gcb.15286 (2020).ADS 
    Article 

    Google Scholar 
    30.Yunger, J. A. Response of two low-density populations of Peromyscus leucopus to increased food availability. J. Mammal. 83, 267–279. https://doi.org/10.1644/1545-1542(2002)083%3c0267:rotldp%3e2.0.co;2 (2002).Article 

    Google Scholar 
    31.Monterroso, P., Francisco, D. R., Lukacs, P. M., Alves, P. C. & Ferreras, P. Ecological traits and the spatial structure of competitive coexistence among carnivores. Ecology. https://doi.org/10.1002/ecy.3059 (2020).Article 
    PubMed 

    Google Scholar 
    32.Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894. https://doi.org/10.1111/j.1461-0248.2005.00791.x (2005).Article 

    Google Scholar 
    33.Creel, S. & Creel, N. M. Limitation of African wild dogs by competition with larger carnivores. Conserv. Biol. 10, 526–538. https://doi.org/10.1046/j.1523-1739.1996.10020526.x (1996).Article 

    Google Scholar 
    34.Wereszczuk, A. & Zalewski, A. Spatial niche segregation of sympatric stone marten and pine marten—Avoidance of competition or selection of optimal habitat? PLoS ONE 10, e0139852. https://doi.org/10.1371/journal.pone.0139852 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Pereboom, V. et al. Movement patterns, habitat selection, and corridor use of a typical woodland-dweller species, the European pine marten (Martes martes), in fragmented landscape. Can. J. Zool. 86, 983–991. https://doi.org/10.1139/Z08-076 (2008).Article 

    Google Scholar 
    36.Virgos, E., Zalewski, A., Rosalino, L. M. & Mergey, M. Habitat ecology of Martens species in Europe. A review of the evidence. In Biology and Conservation of Martens, Sables and Fishers: A New Synthesis (eds Aubry, K. B. et al.) 255–266 (Cornell University Press, 2012).
    Google Scholar 
    37.Goszczyński, J., Posłuszny, M., Pilot, M. & Gralak, B. Patterns of winter locomotion and foraging in two sympatric marten species: Martes martes and Martes foina. Can. J. Zool. 85, 239–249. https://doi.org/10.1139/Z06-212 (2007).ADS 
    Article 

    Google Scholar 
    38.Larroque, J., Ruette, S., Vandel, J. M. & Devillard, S. Where to sleep in a rural landscape? A comparative study of resting sites pattern in two syntopic Martes species. Ecography 38, 1129–1140. https://doi.org/10.1111/ecog.01133 (2015).Article 

    Google Scholar 
    39.Monakhov, V. G. & Hamilton, M. J. Spatial trends in the size structure of pine Marten Martes martes Linnaeus, 1756 (Mammalia: Mustelidae) within the species range. Russ. J. Ecol. 51, 250–259. https://doi.org/10.1134/s1067413620030108 (2020).CAS 
    Article 

    Google Scholar 
    40.Meiri, S., Dayan, T. & Simberloff, D. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588. https://doi.org/10.1111/j.1095-8312.2004.00310.x (2004).Article 

    Google Scholar 
    41.Keinath, D. A. et al. A global analysis of traits predicting species sensitivity to habitat fragmentation. Glob. Ecol. Biogeogr. 26, 115–127. https://doi.org/10.1111/geb.12509 (2017).Article 

    Google Scholar 
    42.Bailey, L. D. et al. Using different body size measures can lead to different conclusions about the effects of climate change. J. Biogeogr. 47, 1687–1697. https://doi.org/10.1111/jbi.13850 (2020).Article 

    Google Scholar 
    43.Buskirk, S. W. & Harlow, H. J. Body-fat dynamics of the American marten (Martes americana) in winter. J. Mammal. 70, 191–193. https://doi.org/10.2307/1381687 (1989).Article 

    Google Scholar 
    44.Wereszczuk, A.et al. Various responses of pine marten
    morphology and demography to temporal climate changes and primary productivity. PREPRINT (Version 1) available at
    Research Square https://doi.org/10.21203/rs.3.rs-1021314/v1 (2021)45.Desy, E. A. & Batzli, G. O. Effects of food availability and predation on prairie vole demography—A field experiment. Ecology 70, 411–421. https://doi.org/10.2307/1937546 (1989).Article 

    Google Scholar 
    46.Geist, V. Bergmann rule is invalid. Can. J. Zool. 65, 1035–1038. https://doi.org/10.1139/z87-164 (1987).Article 

    Google Scholar 
    47.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563. https://doi.org/10.1126/science.1082750 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Svensson, B. M., Carlsson, B. A. & Melillo, J. M. Changes in species abundance after seven years of elevated atmospheric CO2 and warming in a Subarctic birch forest understorey, as modified by rodent and moth outbreaks. PeerJ 6, e4843. https://doi.org/10.7717/peerj.4843 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Zalewski, A., Jedrzejewski, W. & Jedrzejewska, B. Mobility and home range use by pine martens (Martes martes) in a Polish primeval forest. Ecoscience 11, 113–122. https://doi.org/10.1080/11956860.2004.11682815 (2004).Article 

    Google Scholar 
    50.Krebs, C. J., Cowcill, K., Boonstra, R. & Kenney, A. J. Do changes in berry crops drive population fluctuations in small rodents in the southwestern Yukon? J. Mammal. 91, 500–509. https://doi.org/10.1644/09-mamm-a-005.1 (2010).Article 

    Google Scholar 
    51.Selas, V., Kobro, S. & Sonerud, G. A. Population fluctuations of moths and small rodents in relation to plant reproduction indices in southern Norway. Ecosphere 4, 1–11. https://doi.org/10.1890/es13-00228.1 (2013).Article 

    Google Scholar 
    52.Yom-Tov, Y., Yom-Tov, S. & Jarrell, G. Recent increase in body size of the American marten Martes americana in Alaska. Biol. J. Linn. Soc. 93, 701–707. https://doi.org/10.1111/j.1095-8312.2007.00950.x (2008).Article 

    Google Scholar 
    53.Caryl, F. M., Quine, C. P. & Park, K. J. Martens in the matrix: the importance of nonforested habitats for forest carnivores in fragmented landscapes. J. Mammal. 93, 464–474. https://doi.org/10.1644/11-mamm-a-149.1 (2012).Article 

    Google Scholar 
    54.Zalewski, A. Factors affecting the duration of activity by pine martens (Martes martes) in the Bialowieza National Park, Poland. J. Zool. 251, 439–447. https://doi.org/10.1111/j.1469-7998.2000.tb00799.x (2000).Article 

    Google Scholar 
    55.Zalewski, A. Factors affecting selection of resting site type by pine marten in primeval deciduous forests (Bialowieza National Park, Poland). Acta Theriol. 42, 271–288. https://doi.org/10.4098/AT.arch.97-29 (1997).Article 

    Google Scholar 
    56.Gilbert, J. H., Zollner, P. A., Green, A. K., Wright, J. L. & Karasov, W. H. Seasonal field metabolic rates of American martens in Wisconsin. Am. Midl. Nat. 162, 327–334. https://doi.org/10.1674/0003-0031-162.2.327 (2009).Article 

    Google Scholar 
    57.Zub, K., Szafranska, P. A., Konarzewski, M. & Speakman, J. R. Effect of energetic constraints on distribution and winter survival of weasel males. J. Anim. Ecol. 80, 259–269. https://doi.org/10.1111/j.1365-2656.2010.01762.x (2011).Article 
    PubMed 

    Google Scholar 
    58.Hantak, M. M., McLean, B. S., Li, D. & Guralnick, R. P. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun. Biol. https://doi.org/10.1038/s42003-021-02505-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Yom-Tov, Y., Yom-Tov, S. & Baagoe, H. Increase of skull size in the red fox (Vulpes vulpes) and Eurasian badger (Meles meles) in Denmark during the twentieth century: An effect of improved diet? Evol. Ecol. Res. 5, 1037–1048 (2003).
    Google Scholar 
    60.Wereszczuk, A., Leblois, R. & Zalewski, A. Genetic diversity and structure related to expansion history and habitat isolation: Stone marten populating rural-urban habitats. BMC Ecol. 17, 46. https://doi.org/10.1186/s12898-017-0156-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Phillips, B. L., Brown, G. P., Webb, J. K. & Shine, R. Invasion and the evolution of speed in toads. Nature 439, 803. https://doi.org/10.1038/439803a (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Sidorovich, V., Kruuk, H. & Macdonald, D. W. Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J. Zool. 248, 521–527. https://doi.org/10.1017/s0952836999008110 (1999).Article 

    Google Scholar 
    63.Pagh, S., Hansen, M. S., Jensen, B., Pertoldi, C. & Chriel, M. Variability in body mass and sexual dimorphism in Danish red foxes (Vulpes vulpes) in relation to population density. Zool. Ecol. 28, 1–9. https://doi.org/10.1080/21658005.2017.1409997 (2018).Article 

    Google Scholar 
    64.Zalewski, A. & Bartoszewicz, M. Phenotypic variation of an alien species in a new environment: The body size and diet of American mink over time and at local and continental scales. Biol. J. Linn. Soc. 105, 681–693. https://doi.org/10.1111/j.1095-8312.2011.01811.x (2012).Article 

    Google Scholar 
    65.Balestrieri, A. et al. Range expansion of the pine marten (Martes martes) in an agricultural landscape matrix (NW Italy). Mamm. Biol. 75, 412–419. https://doi.org/10.1016/j.mambio.2009.05.003 (2010).Article 

    Google Scholar 
    66.Rosellini, S., Osorio, E., Ruiz-Gonzalez, A., Isabel, A. P. & Barja, I. Monitoring the small-scale distribution of sympatric European pine martens (Martes martes) and stone martens (Martes foina): A multievidence approach using faecal DNA analysis and camera-traps. Wildl. Res. 35, 434–440. https://doi.org/10.1071/wr07030 (2008).Article 

    Google Scholar 
    67.Delibes, M. Interspecific competition and the habitat of the stone marten Martes foina (Erxleben 1777) in Europe. Acta Zool. Fennica 174, 229–231 (1983).
    Google Scholar 
    68.Zabala, J., Zuberogoitia, I. & Antonio Martinez-Climent, J. Testing for niche segregation between two abundant carnivores using presence-only data. Folia Zool. 58, 385–395 (2009).
    Google Scholar 
    69.Jacob, D. et al. Climate impacts in Europe under +1.5 degrees C global warming. Earths Fut. 6, 264–285. https://doi.org/10.1002/2017ef000710 (2018).ADS 
    Article 

    Google Scholar 
    70.Fewster, R. M., Buckland, S. T., Siriwardena, G. M., Baillie, S. R. & Wilson, J. D. Analysis of population trends for farmland birds using generalized additive models. Ecology 81, 1970–1984. https://doi.org/10.2307/177286 (2000).Article 

    Google Scholar 
    71.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 

    Google Scholar 
    72.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).73.Lenssen, N. J. L. et al. Improvements in the GISTEMP uncertainty model. J. Geophys. Res. Atmos. 124, 6307–6326. https://doi.org/10.1029/2018jd029522 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Longitudinal monitoring in Cambodia suggests higher circulation of alpha and betacoronaviruses in juvenile and immature bats of three species

    1.Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).CAS 

    Google Scholar 
    3.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Woo, P. C. Y. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Wong, A. C. P., Li, X., Lau, S. K. P. & Woo, P. C. Y. Global epidemiology of bat coronaviruses. Viruses 11, 174 (2019).CAS 
    PubMed Central 

    Google Scholar 
    6.Lacroix, A. et al. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infect. Genet. Evol. 48, 10–18 (2017).CAS 
    PubMed 

    Google Scholar 
    7.Tsuda, S. et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch. Virol. 157, 2349–2355 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Han, Y. et al. Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Front. Microbiol. 10, 20 (2019).
    Google Scholar 
    9.Xu, L. et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Chen, Y.-N. et al. Detection of the severe acute respiratory syndrome-related coronavirus and alphacoronavirus in the bat population of Taiwan. Zoonoses Public Health 63, 608–615 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Wacharapluesadee, S. et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1351 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Drexler, J. F. et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Amman, B. R. et al. Seasonal pulses of marburg virus circulation in Juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 8, 25 (2012).
    Google Scholar 
    15.Peel, A. J. et al. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proc. R. Soc. Lond. B Biol. Sci. 281, 20132962 (2014).
    Google Scholar 
    16.Hayman, D. T. S. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142591 (2015).
    Google Scholar 
    17.Gloza-Rausch, F. et al. Detection and prevalence patterns of Group I Coronaviruses in Bats, Northern Germany. Emerg. Infect. Dis. 14, 626–631 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    18.Annan, A. et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    19.Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, 25 (2017).
    Google Scholar 
    20.Montecino-Latorre, D. et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Health Outlook 2, 2 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    21.Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    23.Wacharapluesadee, S. et al. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: Evidence for seasonal preference in disease transmission. Vector-Borne Zoonot. Dis. 10, 183–190 (2010).
    Google Scholar 
    24.Cappelle, J. et al. Nipah virus circulation at human-bat interfaces, Cambodia. Bull. World Health Organ. 98, 539–547 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Thavry, H., Cappelle, J., Bumrungsri, S., Thona, L. & Furey, N. M. The diet of the cave nectar bat (#Eonycteris spelaea# Dobson) suggests it pollinates economically and ecologically significant plants in Southern Cambodia. Zool. Stud. 56, 25 (2017).
    Google Scholar 
    26.Lim, T., Cappelle, J., Hoem, T. & Furey, N. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?. PLoS One 13, e0196554 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Sikes, R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    28.Anthony, E. L. P. Age determination in bats. In Ecological and Behavioral Methods for the Study of Bats 47–58 (Smithsonian Press, 1988).
    Google Scholar 
    29.Racey, P. A. Reproductive assessment. In Behavioural and Ecological Methods for the Study of Bats 249–264 (Johns Hopkins University Press, 2009).
    Google Scholar 
    30.Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Quan, P.-L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 1, 25 (2010).
    Google Scholar 
    32.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    34.Burgin, C. Family Rhinolophidae, horseshoe bats. In Handbook of the Mammals of the World Vol. 9 260–332 (Lynx Edicions, 2019).
    Google Scholar 
    35.Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177 (2018).
    Google Scholar 
    36.Racey, P. A. & Entwistle, E. Life history and reproductive strategies of bats. Reprod. Biol. Bats 20, 363–468 (2000).
    Google Scholar 
    37.Furey, N. M., Mackie, I. J. & Racey, P. A. Reproductive phenology of bat assemblages in Vietnamese karst and its conservation implications. Acta Chiropterol. 13, 341–354 (2011).
    Google Scholar 
    38.Sterling, E. J., Hurley, M. M. & Le, D. M. Vietnam: A Natural History (Yale University Press, 2006).
    Google Scholar 
    39.Van, N. K., Hzien, N. T., Loc, P. K. & Hiep, N. T. Bioclimatic Diagrams of Vietnam (Vietnam National University Publishing House, 2000).
    Google Scholar 
    40.Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 10, 0004796 (2016).
    Google Scholar 
    41.Peel, A. J. et al. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci. Rep. 8, 3859 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T. & Klein, A.-M. Bat pest control contributes to food security in Thailand. Biol. Conserv. 171, 220–223 (2014).
    Google Scholar 
    43.Furey, N. M., Racey, P. A., Ith, S., Touch, V. & Cappelle, J. Reproductive ecology of wrinkle-lipped free-tailed bats Chaerephon plicatus (Buchannan, 1800) in relation to Guano production in Cambodia. Diversity 10, 91 (2018).
    Google Scholar 
    44.Ades, G. W. J. & Dudgeon, D. Insect seasonality in Hong Kong: A monsoonal environment in the northern tropics (1999).45.Kai, K. H. & Corlett, R. T. Seasonality of forest invertebrates in Hong Kong, South China. J. Trop. Ecol. 18, 637–644 (2002).
    Google Scholar 
    46.Kingston, T., Lim, B. L. & Zubaid, A. Bats of Krau Wildlife Reserve (Universiti Kebangsaan Malaysia, 2006).
    Google Scholar 
    47.Nurul-Ain, E., Rosli, H. & Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 49, 382–394 (2017).
    Google Scholar 
    48.Fleming, T. H., Hooper, E. T. & Wilson, D. E. Three Central American Bat Communities: Structure, reproductive cycles, and movement patterns. Ecology 53, 555–569 (1972).
    Google Scholar 
    49.Bernard, R. T. & Cumming, G. S. African bats: Evolution of reproductive patterns and delays. Q. Rev. Biol. 72, 253–274 (1997).CAS 
    PubMed 

    Google Scholar 
    50.Nguyen, S. T. et al. Bats (Chiroptera) of Bidoup Nui Ba National Park, Dalat Plateau, Vietnam. Mammal Stud. 46, 53–68 (2021).
    Google Scholar 
    51.Plowright, R. K. et al. Urban habituation, ecological connectivity and epidemic dampening: The emergence of Hendra virus from flying foxes (Pteropus spp.). Proc. R. Soc. B Biol. Sci. 278, 3703–3712 (2011).
    Google Scholar 
    52.Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Conserving evolutionarily distinct species is critical to safeguard human well-being

    Dataset of beneficial plantsI collated a species-level dataset of plant benefits (presence/absence data) starting from the information gathered by Kleunen et al.32. These authors extracted data from the WEP database (National Plant Germplasm System GRIN-GLOBAL; https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearcheco.aspx, Accessed 7 Jan 2016), which is based on the book by Wiersema and León20. Their dataset included 84 categories and subcategories of plant benefits pertaining human and animal nutrition, materials, fuels, medicine, useful poisons, social and environmental benefits. Subcategories of benefits, which often included very few records, were merged here into 25 standard and major categories following the guidelines in the Economic Botany Data Collection Standard33 as in Molina-Venegas et al.13, namely ornamental plants, soil improvers, hedging/shelter, human food, human-food additives, vertebrate food, invertebrate food, fuelwood, charcoal, other biofuels, timber, cane/stems, fibres, tannins/dyestuffs, beads, gums/resins, lipids, waxes, essential oils/scents, latex/rubber, medicines, invertebrate poison, vertebrate poison, smoking materials/drugs and symbolic/inspirational plants (Fig. 1). A few records (n = 93) that could not be assigned to any of the above categories were disregarded, and so was the category ‘gene source’ because unlike other benefits, any species is intrinsically a potential gene donor and hence there is not a clear link between the benefit and species features. Note that this is not to say that preserving genetic diversity, which indeed is the underlying message of this research, is a meaningless goal. Infraspecific taxa were collapsed at the species level, and the very few fern taxa in the original database32 were excluded. In total, I gathered 15,834 plant-benefit records sorted in a matrix of 25 types of benefits and 9521 species of seed plants. Most species (83.74%) provided only one or two benefits representing 62.83% of the records in the dataset, and the maximum number of benefits per species was 10 (only three species). Although the WEP database is the largest species-level database on plant benefits32, it does not claim to be comprehensive20. Yet, the size of the dataset I gathered here represented 76.19% of the total seed-plant genus-level records collated for the same types of benefits in a more comprehensive survey by Molina-Venegas et al.13 that based on Mabberley’s Plant-book34. Moreover, the total number of records per category (at the genus-level) strongly correlated between the datasets (Pearson r = 0.94, p  More

  • in

    Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions

    1.Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hofmann, G. E. et al. High-frequency dynamics of ocean ph: A multi-ecosystem comparison. PLoS ONE 6(12), e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).PubMed 

    Google Scholar 
    4.Gutiérrez, D. et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 38, L07603. https://doi.org/10.1029/2010GL046324 (2011).ADS 
    Article 

    Google Scholar 
    5.Aiken, C. M., Navarrete, S. A. & Pelegrí, J. L. Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J. Geophys. Res. 116, G04026. https://doi.org/10.1029/2011JG001731 (2011).ADS 
    Article 

    Google Scholar 
    6.Lagos, N. A., Castilla, J. C. & Broitman, B. Spatial Environmental correlates of intertidal recruitment: A test using barnacles in northern Chile. Ecol. Monogr. 78, 245–261 (2008).
    Google Scholar 
    7.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 84. https://doi.org/10.1038/s41559-017-0084 (2017).Article 
    PubMed 

    Google Scholar 
    8.Broitman, B. R. et al. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J. Anim. Ecol. 00, 1–12. https://doi.org/10.1111/1365-2656.13514 (2021).Article 

    Google Scholar 
    9.Ramajo, L. et al. Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci. 76, 1836e1849 (2019).
    Google Scholar 
    10.Saavedra, L. M., Saldías, G., Broitman, B. & Vargas, C. Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: Natural ranges and biological implications. ICES J. Mar. Sci. 78, 323–339 (2021).
    Google Scholar 
    11.Lardies, M. A. et al. Physiological and histopathological impacts of increased carbon dioxide and temperature on the scallops Argopecten purpuratus cultured under upwelling influences in northern Chile. Aquaculture 479, 455–466 (2017).
    Google Scholar 
    12.Ramajo, L. et al. Upwelling intensity modulates the fitness and physiological performance of coastal species: Implications for the aquaculture of the scallop Argopecten purpuratus in the Humboldt Current System. Sci. Total Environ. 745, 140949 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Wang, D. et al. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).ADS 

    Google Scholar 
    16.Ramajo, L. et al. Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Mar. Ecol. Prog. Ser. 553, 93–109 (2016).ADS 

    Google Scholar 
    17.Leung, J. Y., Connell, S. D., Nagelkerken, I. & Russell, B. D. Impacts of near-future ocean acidification and warming on the shell mechanical and geochemical properties of gastropods from intertidal to subtidal zones. Environ. Sci. Technol. 51, 12097–12103 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Findlay, H. et al. Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss. 6, 2267–2284 (2009).ADS 

    Google Scholar 
    19.Waldbusser, G. et al. Saturation-state sensitivity of marine bivalves larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).ADS 
    CAS 

    Google Scholar 
    20.Tunnicliffe, V. et al. Survival of mussels in extremely acidic waters on a submarine volcano. Nat. Geosci. 2, 344–348 (2009).ADS 
    CAS 

    Google Scholar 
    21.Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 

    Google Scholar 
    22.Leung, J. Y., Russell, B. D. & Connell, S. D. Mineralogical plasticity acts as a compensatory mechanism to the impacts of ocean acidification. Environ. Sci. Technol. 51, 2652–2659 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Duarte, C. et al. The energetic physiology of juvenile mussels, Mytilus chilensis (Hupe): The prevalent role of salinity under current and predicted pCO2 scenarios. Environ. Pollut. 242, 156–163 (2018).CAS 
    PubMed 

    Google Scholar 
    24.Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Change. 1, 308–312 (2011).ADS 
    CAS 

    Google Scholar 
    25.Waldbusser, G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).ADS 

    Google Scholar 
    26.Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection?. Ecol. Evol. 5, 4875–4884 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralization. Sci. Rep. 28, 6218 (2014).
    Google Scholar 
    28.Fitzer, S. C., Cusack, M., Phoenix, V. R. & Kamenos, N. A. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188, 39–45 (2014).CAS 
    PubMed 

    Google Scholar 
    29.Fitzer, S. C. et al. Biomineral shell formation under ocean acidification: A shift from order to chaos. Sci. Rep. 6, 21076 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lagos, N. A. et al. Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: Implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact. 8, 357–370 (2016).
    Google Scholar 
    31.Ramajo, L. et al. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Chang. Biol. 22, 2025–2203 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Osores, S. J. et al. Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment. J. Exp. Mar. Biol. Ecol. 490, 1–12 (2017).
    Google Scholar 
    33.Telesca, L. et al. Plasticity and environmental heterogeneity predict geographic resilience patterns of foundation species to future change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14758 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Grenier, C. et al. The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis. Environ. Pollut. 263, 114555 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    36.Mackenzie, C. L. et al. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS ONE 9(1), e86764 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).ADS 

    Google Scholar 
    38.Rodríguez-Navarro, A. B. Rapid quantification of avian eggshell microstructure and crystallographic-texture using two-dimensional X-ray diffraction. Br. Poult. Sci. 48, 133–144 (2007).PubMed 

    Google Scholar 
    39.Rodríguez-Navarro, A. B. XRD2DScan: New software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Cryst. 39, 905–909 (2006).
    Google Scholar 
    40.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol. 218, 3623–3631 (2015).PubMed 

    Google Scholar 
    41.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environ. Sci. Technol. 50, 1157–1165 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gestoso, I., Arenas, F. & Olabarria, C. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. J. Exp. Mar. Biol. 474, 116–125 (2016).
    Google Scholar 
    43.Babarro, J. M., Abad, M. J., Gestoso, I., Silva, E. & Olabarria, C. Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions. Hydrobiologia 807, 247–261 (2018).
    Google Scholar 
    44.Barthelat, F., Rim, J. E. & Espinosa, H. D. A review on the structure and mechanical properties of mollusk shells: Perspectives on synthetic biomimetic materials. In Applied Scanning Probe Methods XIII (eds Bhushan, B. & Fuchs, H.) 17–44 (Springer, 2009).
    Google Scholar 
    45.Leung, J. Y. et al. Calcifiers can adjust shell building at the nanoscale to resist ocean acidification. Small 16, 2003186 (2020).CAS 

    Google Scholar 
    46.Chatzinikolaou, E., Grigoriou, P., Keklikoglou, K., Faulwetter, S. & Papageorgiou, N. The combined effects of reduced pH and elevated temperature on the shell density of two gastropod species measured using micro-CT imaging. ICES J. Mar. Sci. 74, 1135–1149 (2017).
    Google Scholar 
    47.Nienhuis, S., Palmer, R. & Harley, C. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc. R. Soc. Lond. B Biol. Sci. 277, 2553–2558 (2010).CAS 

    Google Scholar 
    48.Bourdeau, P. E. Prioritized phenotypic responses to combined predators in a marine snail. Ecology 90, 1659–1669 (2009).PubMed 

    Google Scholar 
    49.Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Sci. 41, 21–40 (2011).ADS 
    CAS 

    Google Scholar 
    50.Nudelman, F. Nacre biomineralisation: A review on the mechanisms of crystal nucleation (In Seminars in cell & developmental biology), 2–10 (Academic Press, 2015).51.Harper, E. M., Checa, A. G. & Rodríguez-Navarro, A. B. Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicular (Bivalvia: Mollusca). Acta Zool. 90, 132e141 (2009).
    Google Scholar 
    52.Pennington, B. J. & Currey, J. D. A mathematical model for the mechanical properties of scallop shells. J. Zool. 202, 239–263 (1984).
    Google Scholar 
    53.Yevenes, M. A., Lagos, N. A., Farías, L. & Vargas, C. A. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption. Sci. Total Environ. 669, 49–61 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Dickinson, G. H. et al. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol. 215, 29–43 (2012).CAS 
    PubMed 

    Google Scholar 
    55.Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).CAS 
    PubMed 

    Google Scholar 
    56.O’Toole-Howes, M. et al. Deconvolution of the elastic properties of bivalve shell nanocomposites from direct measurement and finite element analysis. J. Mater. Res. 34, 2869–2880 (2019).ADS 

    Google Scholar 
    57.Auzoux-Bordenave, S. et al. Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata). Mar. Biol. 167, 11 (2020).CAS 

    Google Scholar 
    58.Torres, R. et al. Evaluation of a semiautomatic system for long-term seawater carbonate chemistry manipulation. Rev. Chil. Hist. Nat. 86, 443–451 (2013).
    Google Scholar 
    59.IPCC. Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou). Cambridge University Press. In Press. (2021).60.DOE. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater; version 2 (eds. Dickson, A.G. & Goyet, C.), (ORNL/CDIAC, 74, 1994).61.Meinshausen, M. et al. The RPC greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change. 109, 213–241 (2011).ADS 
    CAS 

    Google Scholar 
    62.Rahn, D. A., Rosenblüth, B. & Rutllant, J. A. Detecting subtle seasonal transitions of upwelling in North-Central Chile. J. Phys. Oceanogr. 45, 854–867 (2015).ADS 

    Google Scholar 
    63.Meng, Y., Guo, Z., Yao, H., Yeung, K. W. & Thiyagarajan, V. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster. Mar. Pollut. Bull. 139, 141–149 (2019).CAS 
    PubMed 

    Google Scholar 
    64.Rasband, W. S. ImageJ U.S. National Institute of Health, Maryland, USA (1997–2020). More