More stories

  • in

    iVirus 2.0: Cyberinfrastructure-supported tools and data to power DNA virus ecology

    1.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nature Microbiol. 2018;3:977–82.CAS 

    Google Scholar 
    2.Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat. Med. 2018;24:392–400.3.Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 

    Google Scholar 
    4.Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.5.Howard-Varona C, Lindback MM, Bastien GE, Solonenko N, Zayed AA, Jang HB, et al. Phage-specific metabolic reprogramming of virocells. ISME J. 2020;14:881–95.PubMed 
    PubMed Central 

    Google Scholar 
    6.Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol. 2006;4:1344–57.CAS 

    Google Scholar 
    7.Lindell D, Jaffe JD, Johnson ZI, Church GM, Chisholm SW. Photosynthesis genes in marine viruses yield proteins during host infection. Nature. 2005;438:86–9.CAS 
    PubMed 

    Google Scholar 
    8.Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 

    Google Scholar 
    9.Thompson LR, Zeng Q, Kelly L, Huang KH, Singer AU, Stubbe J, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism. Proc Natl Acad Sci. 2011;108:E757–E764.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Gazitúa MC, Vik DR, Roux S, Gregory AC, Bolduc B, Widner B, et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 2021;15:981–98.PubMed 

    Google Scholar 
    11.Vik D, Gazitúa MC, Sun CL, Zayed AA, Aldunate M, Mulholland MR, et al. Genome-resolved viral ecology in a marine oxygen minimum zone. Environ Microbiol. 2021;23:2858–74.CAS 
    PubMed 

    Google Scholar 
    12.Rosenwasser S, Ziv C, Creveld SG, van, Vardi A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 2016;24:821–32.CAS 
    PubMed 

    Google Scholar 
    13.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, et al. Soil viruses are underexplored players in ecosystem carbon processing. mSystems. 2018;3:1–21.
    Google Scholar 
    15.Zhong Z-P, Tian F, Roux S, Gazitúa MC, Solonenko NE, Li Y-F, et al. Glacier ice archives nearly 15,000-year-old microbes and phages. Microbiome. 2021;9:160.PubMed 
    PubMed Central 

    Google Scholar 
    16.Zhong Z-P, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, et al. Viral ecogenomics of arctic cryopeg brine and sea ice. mSystems. 2020;5:e00246–20.17.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science. 2014;344:757–60.CAS 
    PubMed 

    Google Scholar 
    18.Gao S-M, Schippers A, Chen N, Yuan Y, Zhang M-M, Li Q, et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome. 2020;8:89.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Correa AMS, Howard-Varona C, Coy SR, Buchan A, Sullivan MB, Weitz JS. Revisiting the rules of life for viruses of microorganisms. Nat Rev Microbiol. 2021;19:501–13.CAS 
    PubMed 

    Google Scholar 
    20.Blazanin M, Turner PE. Community context matters for bacteria-phage ecology and evolution. ISME J. 2021;1–10.21.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell. 2019;177:1109–23. e14CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Gregory AC, Zablocki O, Zayed AA, Howell A, Bolduc B, Sullivan MB. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host and Microbe. 2020;28:724–40. e8CAS 
    PubMed 

    Google Scholar 
    23.Roux S, Páez-Espino D, Chen IA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res. 2021;49:1–12.24.Nayfach S, Páez-Espino D, Call L, Low SJ, Sberro H, Ivanova NN, et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat Microbiol. 2021;6:960–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Roux S, Matthijnssens J, Dutilh BE. Metagenomics in virology. Encycloped Virol. 2021;133–40. Published online 2021 Mar 1. https://doi.org/10.1016/B978-0-12-809633-8.20957-6.26.Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ, et al. Long-read viral metagenomics captures abundant and microdiverse viral populations and their niche-defining genomic islands. PeerJ. 2019;7:e6800.PubMed 
    PubMed Central 

    Google Scholar 
    27.Roux S, Solonenko NE, Dang VT, Poulos BT, Schwenck SM, Goldsmith DB, et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ. 2016;4:e2777.PubMed 
    PubMed Central 

    Google Scholar 
    28.Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, et al. Consensus statement: Virus taxonomy in the age of metagenomics. Nat Rev Microbiol. 2017;15:161–8.CAS 
    PubMed 

    Google Scholar 
    29.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum Information about an Uncultivated Virus Genome (MIUViG): a community consensus on standards and best practices for describing genome sequences from uncultivated viruses. Nat Biotechnol. 2018;37:29–37.PubMed 
    PubMed Central 

    Google Scholar 
    30.Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol 2019;37:632–9.
    Google Scholar 
    31.Nishimura Y, Yoshida T, Kuronishi M, Uehara H, Ogata H, Goto S. ViPTree: the viral proteomic tree server. Bioinformatics. 2017;33:2379–80.32.Moraru C, Varsani A, Kropinski AM. VIRIDIC-a novel tool to calculate the intergenomic similarities of prokaryote-infecting. Viruses. 2020;12:1268.CAS 
    PubMed Central 

    Google Scholar 
    33.Pons JC, Paez-Espino D, Riera G, Ivanova N, Kyrpides NC, Llabrés M. VPF-Class: taxonomic assignment and host prediction of uncultivated viruses based on viral protein families. Bioinformatics. 2021;37:1805–13.34.Bolduc B, Youens-Clark K, Roux S, Hurwitz BL, Sullivan MB. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 2017;11:7–14.PubMed 

    Google Scholar 
    35.Merchant N, Lyons E, Goff S, Vaughn M, Ware D, Micklos D, et al. The iPlant Collaborative: cyberinfrastructure for enabling data to discovery for the life sciences. PLOS Biol. 2016;14:e1002342.PubMed 
    PubMed Central 

    Google Scholar 
    36.Teytelman L, Stoliartchouk A, Kindler L, Hurwitz BL. Protocols.io: virtual communities for protocol development and discussion. PLOS Biol. 2016;14:e1002538.PubMed 
    PubMed Central 

    Google Scholar 
    37.Kindler L, Stoliartchouk A, Gomez C, Thornton J, Teytelman L, Hurwitz BL. VERVENet: the viral ecology research and virtual exchange network. PeerJ. 2021; in press.38.Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Sousa AL de, Maués D, Lobato A, Franco EF, Pinheiro K, Araújo F, et al. PhageWeb—web interface for rapid identification and characterization of prophages in bacterial genomes. Front Genet. 2018; 9.40.Tynecki P, Guziński A, Kazimierczak J, Jadczuk M, Dastych J, Onisko A. PhageAI—bacteriophage life cycle recognition with machine learning and natural language processing. bioRxiv 2020; 2020.07.11.198606.41.Wommack KE, Bhavsar J, Polson SW, Chen J, Dumas M, Srinivasiah S, et al. VIROME: a standard operating procedure for analysis of viral metagenome sequences. Standards Genom Sci. 2012;6:427–39.
    Google Scholar 
    42.Roux S, Faubladier M, Mahul A, Paulhe N, Bernard A, Debroas D, et al. Metavir: a web server dedicated to virome analysis. Bioinformatics. 2011;27:3074–5.CAS 
    PubMed 

    Google Scholar 
    43.Arkin AP, Cottingham RW, Henry CS, Harris NL, Stevens RL, Maslov S, et al. KBase: The United States department of energy systems biology knowledgebase. Nat Biotechnol. 2018;36:566–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ. 2015;3:e985.PubMed 
    PubMed Central 

    Google Scholar 
    45.Bolduc B, Jang HB, Doulcier G, You Z-QZ, Roux S, Sullivan MB. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ. 2017;5:e3243.PubMed 
    PubMed Central 

    Google Scholar 
    46.Hurwitz BL, Westveld AH, Brum JR, Sullivan MB. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc Natl Acad Sci. 2014;111:10714–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Guo J, Bolduc B, Zayed AA, Varsani A, Dominguez-Huerta G, Delmont TO, et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome. 2021;9:37.PubMed 
    PubMed Central 

    Google Scholar 
    48.Ren J, Kai S, Chao D, Nathan A, Ahlgren, JA, Fuhrman, YL, et al. Identifying viruses from metagenomic data using deep learning. Quant Biol. 2020;8:64–77. https://doi.org/10.1007/s40484-019-0187-4.49.Amgarten D, Braga LPP, da Silva AM, Setubal JC. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet. 2018;9:1–8.
    Google Scholar 
    50.Pratama A, Bolduc B, Zayed AA, Zhong Z-P, Guo J, Vik DR, et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ. 2021; In Press.51.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome. 2020;8:90. https://doi.org/10.1186/s40168-020-00867-0.52.Karner MB, DeLong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.CAS 
    PubMed 

    Google Scholar 
    53.Vik DR, Roux S, Brum JR, Bolduc B, Emerson JB, Padilla CCC, et al. Putative archaeal viruses from the mesopelagic ocean. PeerJ. 2017;5:e3428.PubMed 
    PubMed Central 

    Google Scholar 
    54.Vik D, Bolduc B, Roux S, Krupovic M, Sullivan MB. MArVDv2: a machine learning approach to metagenomic archaeal virus detection. bioRxiv 2021; In Press..55.Tisza MJ, Pastrana DV, Welch NL, Stewart B, Peretti A, Starrett GJ, et al. Discovery of several thousand highly diverse circular DNA viruses. eLife. 2020;9:1–26.
    Google Scholar 
    56.Tisza MJ, Belford AK, Domínguez-Huerta G, Bolduc B, Buck CB. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evolut. 2021;7:1–12.
    Google Scholar 
    57.Shaffer M, Borton MA, McGivern BB, Zayed AA, La Rosa SL, Solden LM, et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 2020;48:8883–8900.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol Rev. 2016;40:258–72.CAS 
    PubMed 

    Google Scholar 
    59.Galiez C, Siebert M, Enault F, Vincent J, Söding J. WIsH: who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics. 2017;33:3113–14.60.Nayfach S, Camargo AP, Schulz F, Eloe-Fadrosh E, Roux S & Kyrpides NC. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat Biotechnol 2021;39:578–85. https://doi.org/10.1038/s41587-020-00774-7.61.Gregory AC, Solonenko SA, Ignacio-Espinoza JC, LaButti K, Copeland A, Sudek S, et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genom. 2016;17:930.
    Google Scholar 
    62.Brum JR, Sullivan MB. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat Rev Microbiol. 2015;13:147–59.CAS 
    PubMed 

    Google Scholar 
    63.Gregory AC, Gerhardt K, Zhong Z-P, Bolduc B, Temperton B, Konstantinidis KT, et al. MetaPop: a pipeline for macro- and micro-diversity analyses and visualization of microbial and viral metagenome-derived populations. bioRxiv 2020; 2020.11.01.363960.64.Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    65.Mitchell AL, Almeida A, Beracochea M, Boland M, Burgin J, Cochrane G, et al. MGnify: the microbiome analysis resource in 2020. Nucleic Acids Res. 2019;48:D570–D578.PubMed Central 

    Google Scholar 
    66.Solonenko SA, Ignacio-Espinoza JC, Alberti A, Cruaud C, Hallam S, Konstantinidis K, et al. Sequencing platform and library preparation choices impact viral metagenomes. BMC Genom. 2013;14:320.CAS 

    Google Scholar 
    67.Wood-Charlson EM, Anubhav, Auberry D, Blanco H, Borkum MI, Corilo YE, et al. The National Microbiome Data Collaborative: enabling microbiome science. Nat Rev Microbiol. 2020;18:313–4.CAS 
    PubMed 

    Google Scholar  More

  • in

    Conventional agriculture and not drought alters relationships between soil biota and functions

    1.Baer, S. G. & Birgé, H. E. Soil ecosystem services: An overview. Manag. Soil Health Sustain. Agric. 1, 1–22 (2018).
    Google Scholar 
    2.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS 
    PubMed 

    Google Scholar 
    3.Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    4.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Global Change Biol. 21, 973–985 (2015).ADS 

    Google Scholar 
    5.Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 

    Google Scholar 
    6.Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. PNAS 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    8.Smith, P. et al. Global change pressures on soils from land use and management. Global Change Biol. 22, 1008–1028 (2016).ADS 

    Google Scholar 
    9.Birkhofer, K., Smith, H. G. & Rundlöf, M. Environmental Impacts of Organic Farming. in eLS. 1–7 (John Wiley & Sons Ltd, 2016).10.Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005).
    Google Scholar 
    11.Abbott, L. K. & Manning, D. A. C. Soil health and related ecosystem services in organic agriculture. Sustain. Agric. Res. 4, 116 (2015).
    Google Scholar 
    12.de Graaff, M.-A., Hornslein, N., Throop, H. L., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: A meta-analysis. in Advances in Agronomy vol. 155 1–44 (Elsevier, 2019).13.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Pokhrel, Y. et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Change 11, 226–233 (2021).ADS 

    Google Scholar 
    15.Iglesias, A. & Garrote, L. Adaptation strategies for agricultural water management under climate change in Europe. Agric. Water Manage. 155, 113–124 (2015).
    Google Scholar 
    16.Pörtner, H. O. et al. IPBES-IPCC Co-sponsored Workshop Report Synopsis on Biodiversity and Climate Change. https://zenodo.org/record/4920414 (2021).17.Blankinship, J. C., Niklaus, P. A. & Hungate, B. A. A meta-analysis of responses of soil biota to global change. Oecologia 165, 553–565 (2011).ADS 
    PubMed 

    Google Scholar 
    18.Holmstrup, M. et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland. Sci. Rep. 7, 41388 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Fry, E. L. et al. Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland. Ecology 99, 2260–2271 (2018).PubMed 

    Google Scholar 
    20.Zhou, Z., Wang, C. & Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 11, 3072 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Schimel, J. P. Life in dry soils: Effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    22.Kundel, D. et al. Drought effects on nitrogen provisioning in different agricultural systems: Insights gained and lessons learned from a field experiment. Nitrogen 2, 1–17 (2021).
    Google Scholar 
    23.Abbasi, A. O. et al. Reviews and syntheses: Soil responses to manipulated precipitation changes: An assessment of meta-analyses. Biogeosciences 17, 3859–3873 (2020).ADS 
    CAS 

    Google Scholar 
    24.Webber, H. et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 9, 4249 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Gomez-Zavaglia, A., Mejuto, J. C. & Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 134, 109256 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Yin, R. et al. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 147, 107847 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).ADS 
    CAS 

    Google Scholar 
    28.Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).
    Google Scholar 
    29.Iizumi, T. & Wagai, R. Leveraging drought risk reduction for sustainable food, soil and climate via soil organic carbon sequestration. Sci. Rep. 9, 19744 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).
    Google Scholar 
    31.Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. PNAS 109, 18226–18231 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Schädler, M. et al. Investigating the consequences of climate change under different land-use regimes: A novel experimental infrastructure. Ecosphere 10, e02635 (2019).
    Google Scholar 
    33.Birkhofer, K. et al. Ecosystem services: Current challenges and opportunities for ecological research. Front. Ecol. Evol. 2, 87 (2015).
    Google Scholar 
    34.Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018).
    Google Scholar 
    35.Chabert, A. & Sarthou, J.-P. Conservation agriculture as a promising trade-off between conventional and organic agriculture in bundling ecosystem services. Agric. Ecosyst. Environ. 292, 106815 (2020).CAS 

    Google Scholar 
    36.Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. PNAS 117, 28140–28149 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity: A meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    38.Kundel, D. et al. Effects of simulated drought on biological soil quality, microbial diversity and yields under long-term conventional and organic agriculture. FEMS Microbiol. Ecol. 96, fiaa205 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Chen, Q.-L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).CAS 

    Google Scholar 
    40.Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).
    Google Scholar 
    41.Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vazquez, C., de Goede, R. G. M., Rutgers, M., de Koeijer, T. J. & Creamer, R. E. Assessing multifunctionality of agricultural soils: Reducing the biodiversity trade-off. Eur. J. Soil. Sci. 72, 1624–1639 (2020).
    Google Scholar 
    43.Zwetsloot, M. J. et al. Soil multifunctionality: Synergies and trade-offs across European climatic zones and land uses. Eur. J. Soil. Sci. 72, 1640–1654 (2020).
    Google Scholar 
    44.Delgado-Baquerizo, M. et al. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 20, 1295–1305 (2017).PubMed 

    Google Scholar 
    45.Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: Resistance, resilience and transitions to alternative states. Phil. Trans. R. Soc. B 375, 20190112 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Meyer, S., Kundel, D., Birkhofer, K., Fliessbach, A. & Scheu, S. Soil microarthropods respond differently to simulated drought in organic and conventional farming systems. Ecol. Evol. 11, 10369–10380 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    47.De Smedt, P. et al. Linking macrodetritivore distribution to desiccation resistance in small forest fragments embedded in agricultural landscapes in Europe. Landscape Ecol. 33, 407–421 (2018).
    Google Scholar 
    48.Liu, W. P. A., Phillips, L. M., Terblanche, J. S., Janion-Scheepers, C. & Chown, S. L. An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia 195, 873–885 (2021).ADS 
    PubMed 

    Google Scholar 
    49.Birkhofer, K. et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 40, 2297–2308 (2008).CAS 

    Google Scholar 
    50.Mäder, P. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).ADS 
    PubMed 

    Google Scholar 
    51.Birkhofer, K., Bezemer, T. M., Hedlund, K. & Setälä, H. Community composition of soil organisms under different wheat farming systems. in Microbial Ecology in Sustainable Agroecosystems 89–111 (CRC press Boca Raton, 2012).52.Birkhofer, K. et al. Soil fauna feeding activity in temperate grassland soils increases with legume and grass species richness. Soil Biol. Biochem. 43, 2200–2207 (2011).CAS 

    Google Scholar 
    53.Siebert, J. et al. Extensive grassland-use sustains high levels of soil biological activity, but does not alleviate detrimental climate change effects. Adv. Ecol. Res. 60, 25–58 (2019).
    Google Scholar 
    54.de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).ADS 

    Google Scholar 
    55.Torode, M. D. et al. Altered precipitation impacts on above-and below-ground grassland invertebrates: Summer drought leads to outbreaks in spring. Front. Plant Sci. 7, 1468 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    56.Jonas, J. L., Wilson, G. W. T., White, P. M. & Joern, A. Consumption of mycorrhizal and saprophytic fungi by Collembola in grassland soils. Soil Biol. Biochem. 39, 2594–2602 (2007).CAS 

    Google Scholar 
    57.Susanti, W. I., Pollierer, M. M., Widyastuti, R., Scheu, S. & Potapov, A. Conversion of rainforest to oil palm and rubber plantations alters energy channels in soil food webs. Ecol. Evol. 9, 9027–9039 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    58.Seres, A. et al. Collembola decrease the nitrogen uptake of maize through arbuscular mycorrhiza. ekol 28, 242–247 (2009).
    Google Scholar 
    59.Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS 

    Google Scholar 
    60.Carson, J. K. et al. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 76, 3936–3942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Krause, H.-M., Fliessbach, A., Mayer, J. & Mäder, P. Implementation and management of the DOK long-term system comparison trial. in Long-Term Farming Systems Research 37–51, (Elsevier, 2020).62.Richner, W. et al. Grundlagen für die Düngung landwirtschaftlicher Kulturen in der Schweiz (GRUD 2017). Agrarforschung Schweiz 8, 47–66 (2017).
    Google Scholar 
    63.Kundel, D. et al. Design and manual to construct rainout-shelters for climate change experiments in agroecosystems. Front. Environ. Sci. 6, 14 (2018).
    Google Scholar 
    64.Garland, G. et al. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 109, 600–613 (2021).
    Google Scholar 
    65.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). in Wiley StatsRef: Statistics Reference Online 1–15.66.Fletcher, D. J. & Underwood, A. J. How to cope with negative estimates of components of variance in ecological field studies. J. Exp. Mar. Biol. Ecol. 273, 89–95 (2002).
    Google Scholar 
    67.Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond P values: data analysis with estimation graphics. Nat. Methods 16, 565–566 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org.69.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar  More

  • in

    Attachment of zebra and quagga mussel adhesive plaques to diverse substrates

    1.Hebert, P. D. N., Muncaster, B. W. & Mackie, G. L. Ecological and genetic studies on Dreissena polymorpha (Pallas): A new mollusc in the Great Lakes. Can. J. Fish. Aquat. Sci. 46, 1587–1591 (1989).
    Google Scholar 
    2.May, B. & Marsden, J. E. Genetic identification and implications of another invasive species of dreissenid mussel in the Great Lakes. Can. J. Fish. Aquat. Sci. 49, 1501–1506 (1992).
    Google Scholar 
    3.Ackerman, J. D., Cottrell, C. M., Ethier, C. R., Allen, D. G. & Spelt, J. K. Attachment strength of zebra mussels on natural, polymeric, and metallic materials. J. Environ. Eng. ASCE 122, 141–148 (1996).CAS 

    Google Scholar 
    4.Kobak, J. Attachment strength of Dreissena polymorph on artificial substrates. In The Zebra Mussel in Europe (eds van der Velde, G. et al.) 349–354 (Margraf Publishers, 2010).
    Google Scholar 
    5.Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: A review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).CAS 

    Google Scholar 
    6.Karatayev, V. A., Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Lakewide dominance does not predict the potential for spread of dreissenids. J. Great Lakes Res. https://doi.org/10.1016/j.jglr.2013.09.007 (2013).Article 

    Google Scholar 
    7.Peyer, S. M., McCarthy, A. J. & Lee, C. E. Zebra mussels anchor byssal threads faster and tighter than quagga mussels in flow. J. Exp. Biol. https://doi.org/10.1242/jeb.028688 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Amini, S. et al. Preventing mussel adhesion using lubricant-infused materials. Science 357, 668–673 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Matsui, Y. et al. Attachment strength of Limnoperna fortunei on substrates, and their surface properties. Biofouling 17, 29–39 (2001).
    Google Scholar 
    10.Marsden, J. E. & Lansky, D. M. Substrate selection by settling zebra mussels, Dreissena polymorpha, relative to material, texture, orientation, and sunlight. Can. J. Zool. 78, 787–793 (2000).
    Google Scholar 
    11.Kobak, J. Factors influencing the attachment strength of Dreissena polymorpha (Bivalvia). Biofouling 22, 141–150 (2006).
    Google Scholar 
    12.Ackerman, J. D., Ethier, C. R., Allen, D. G. & Spelt, J. K. Investigation of zebra mussel adhesion strength using rotating disks. J. Environ. Eng. 118, 708–724 (1992).
    Google Scholar 
    13.Ackerman, J. D., Ethier, C. R., Spelt, J. K., Allen, D. G. & Cottrell, C. M. A wall jet to measure the attachment strength of zebra mussels. Can. J. Fish. Aquat. Sci. 52, 126–135 (1995).
    Google Scholar 
    14.Balogh, C., Serfőző, Z., bij de Vaate, A., Noordhuis, R. & Kobak, J. Biometry, shell resistance and attachment of zebra and quagga mussels at the beginning of their co-existence in large European lakes. J. Great Lakes Res. 45, 777–787 (2019).
    Google Scholar 
    15.Grutters, B. M. C., Verhofstad, M. J. J. M., van der Velde, G., Rajagopal, S. & Leuven, R. S. E. W. A comparative study of byssogenesis on zebra and quagga mussels: The effects of water temperature, salinity and light–dark cycle. Biofouling 28, 121–129 (2012).PubMed 

    Google Scholar 
    16.Naddafi, R. & Rudstam, L. G. Predator-induced behavioural defences in two competitive invasive species: The zebra mussel and the quagga mussel. Anim. Behav. 86, 1275–1284 (2013).
    Google Scholar 
    17.Bell, E. C. & Gosline, J. M. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 199, 1005–1017 (1996).CAS 
    PubMed 

    Google Scholar 
    18.Brazee, S. L. & Carrington, E. Interspecific comparison of the mechanical properties of mussel byssus. Biol. Bull. 211, 263–274 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    19.Burkett, J. R., Wojtas, J. L., Cloud, J. L. & Wilker, J. J. A method for measuring the adhesion strength of marine mussels. J. Adhes. 85, 601–615 (2009).CAS 

    Google Scholar 
    20.Desmond, K. W., Zacchia, N. A., Waite, J. H. & Valentine, M. T. Dynamics of mussel plaque detachment. Soft Matter 11, 6832–6839 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Hamada, N., Roman, V., Howell, S. & Wilker, J. Examining potential active tempering of adhesive curing by marine mussels. Biomimetics 2, 16 (2017).
    Google Scholar 
    22.Farsad, N. & Sone, E. D. Zebra mussel adhesion: Structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha. J. Struct. Biol. 177, 613–620 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    23.Stalder, A. F. et al. Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf. A Physicochem. Eng. Asp. 364, 72–81 (2010).CAS 

    Google Scholar 
    24.Claxton, W. T., Wilson, A. B., Mackie, G. L. & Boulding, E. G. A genetic and morphological comparison of shallow- and deep-water populations of the introduced dreissenid bivalve Dreissena bugensis. Can. J. Zool. 76, 1269–1276 (1998).
    Google Scholar 
    25.Peyer, S. M., Hermanson, J. C. & Lee, C. E. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes. J. Exp. Biol. 213, 2602–2609 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    26.Sprung, M. Field and laboratory observations of Dreissena polymorpha larvae: Abundance, growth, mortality and food demands. Arch. Hydrobiol. 115, 537–561 (1989).
    Google Scholar 
    27.Nichols, S. J. Maintenance of the zebra mussel (Dreissena polymorpha) under laboratory conditions. In Zebra Mussels: Biology, Impacts, and Control (eds Nalepa, T. F. & Schloesser, D. W.) 733–747 (Lewis Publishers, 1992).
    Google Scholar 
    28.Porter, A. E. & Marsden, J. E. Adult zebra mussels (Dreissena polymorpha) avoid attachment to mesh materials. Northeast. Nat. 15, 589–594 (2008).
    Google Scholar 
    29.Kimmins, K. M., James, B. D., Nguyen, M. T., Hatton, B. D. & Sone, E. D. Oil-infused silicone prevents zebra mussel adhesion. ACS Appl. Bio Mater. https://doi.org/10.1021/acsabm.9b00832 (2019).Article 

    Google Scholar 
    30.Peyer, S. M., Hermanson, J. C. & Lee, C. E. Effects of shell morphology on mechanics of zebra and quagga mussel locomotion. J. Exp. Biol. 214, 2226–2236 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    31.Berkman, P. A., Garton, D. W., Haltuch, M. A., Kennedy, G. W. & Febo, L. R. Habitat shift in invading species: Zebra and quagga mussel population characteristics on shallow soft substrates. Biol. Invasions https://doi.org/10.1023/A:1010088925713 (2000).Article 

    Google Scholar 
    32.Skaja, A., Tordonato, D. & Merten, B. Coatings for invasive mussel control: Colorado river field study. In Biol. Manag. Invasive Quagga Zebra Mussels West. United States 451–466 (2015) https://doi.org/10.1201/b18447-37https://doi.org/10.1201/b18447-37.33.Zhao, H., Robertson, N. B., Jewhurst, S. A. & Waite, J. H. Probing the adhesive footprints of Mytilus californianus byssus. J. Biol. Chem. https://doi.org/10.1074/jbc.M510792200 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kimmins, K. Freshwater Mussel Adhesion: Interfacial Structures & Antifouling Surfaces (Univesity of Toronto, 2020).
    Google Scholar 
    35.Kobak, J. Behavior of juvenile and adult zebra mussels (Dreissena polymorpha). In Quagga Zebra Mussel Biol. Impacts, Control 331–344 (2013) https://doi.org/10.1201/b15437-28.36.Waite, J. H. Adhesion in byssally attached bivalves. Biol. Rev. 58, 209–231 (1983).CAS 

    Google Scholar 
    37.Lachance, A. A., Myrand, B., Tremblay, R., Koutitonsky, V. & Carrington, E. Biotic and abiotic factors influencing attachment strength of blue mussels Mytilus edulis in suspended culture. Aquat. Biol. 2, 119–129 (2008).
    Google Scholar 
    38.Lee, H., Scherer, N. F. & Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. 103, 12999–13003 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Rzepecki, L. M. & Waite, J. H. The byssus of the zebra mussel, Dreissena polymorpha. I: Morphology and in situ protein processing during maturation. Mol. Mar. Biol. Biotechnol. 2, 255–266 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Waite, J. H. & Qin, X. Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry 40, 2887–2893 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Zhao, H. & Waite, J. H. Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281, 26150–26158 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Petrone, L. et al. Mussel adhesion is dictated by time-regulated secretion and molecular conformation of mussel adhesive proteins. Nat. Commun. 6, 8737 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Waite, J. H. Mussel adhesion—Essential footwork. J. Exp. Biol. 220, 517–530 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Lee, B. P., Messersmith, P. B., Israelachvili, J. N. & Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41, 99–132 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Ou, X. et al. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci. Adv. 6, eabb7620 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N. & Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 349, 628–632 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bilotto, P. et al. Adhesive properties of adsorbed layers of two recombinant mussel foot proteins with different levels of DOPA and tyrosine. Langmuir 35, 15481–15490 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Kim, S. et al. Cation–π interaction in DOPA-deficient mussel adhesive protein mfp-1. J. Mater. Chem. B 3, 738–743 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Comparing alternatives to the fixed degree sequence model for extracting the backbone of bipartite projections

    PreliminariesA bipartite network captures connections between nodes of one type (agents) and nodes of a second type (artifacts). Throughout this section, we use the ecological case of Darwin’s Finches to provide a concrete example24,25. On his voyage to the Galapagos Islands on the H.M.S. Beagle, Darwin observed that only some species of finches lived on each island. These patterns can be represented as a bipartite network in which finch species (the agent nodes) are connected to the islands (the artifact nodes) where they are found26. A bipartite network can be represented as a binary matrix in which the agents are arrayed as rows, and the artifacts are arrayed as columns. We use ({mathbf {B}}) to denote a bipartite network’s representation as a matrix, where (B_{ik}=1) if agent i is connected to artifact k, and otherwise is 0. The sequence of row sums and the sequence of column sums of ({mathbf {B}}) are called the agent and artifact degrees sequences, respectively. These sequences are among the bipartite network’s most significant features and are known to have implications for bipartite projections and backbones15,27,28. In the ecological case, the agent degree sequence captures the number of islands where each species is found, while the artifact degree sequence captures the number of species found on each island.The projection of a bipartite network is a weighted unipartite co-occurrence network in which a pair of agents is connected by an edge with a weight equal to their number of shared artifacts. For example, the bipartite projection of Darwin’s finch network is a species co-occurrence network in which a pair of finch species is connected by an edge with a weight equal to the number of islands where they are both found. We use ({mathbf {P}}) to denote the matrix representation of a bipartite projection, which is computed as ({{mathbf {B}}}{{mathbf {B}}}^T), where ({mathbf {B}}^T) indicates the transpose of ({mathbf {B}}). In a projection ({mathbf {P}}), (P_{ij}) indicates the number of times agents i and j were connected to the same artifact k in ({mathbf {B}}). The diagonal entries of ({mathbf {P}}), (P_{ii}), are equal to the agent degrees, but in practice are ignored.The backbone of a bipartite projection is a binary representation of ({mathbf {P}}) that contains only the most ‘important’ or ‘significant’ edges. For example, the backbone of a species co-occurrence network connects pairs of species if they are found on a significant number of the same islands, which might be interpreted as evidence that the two species do not compete for resources and perhaps are symbiotic. We use ({mathbf {P}}’) to denote the matrix representation of the backbone of ({mathbf {P}}). Because multiple methods exist for deciding when an edge is significant and thus should be preserved in the backbone, we use (mathbf{P }^{‘{text {M}}}) denote a backbone extracted using method M. It is important to note that for a given bipartite projection, there is no ‘true’ backbone, but only backbones corresponding to specific backbone methods M. The backbone extracted using FDSM (i.e. (mathbf{P }^{‘{text{FDSM}}})) may be similar or different from a backbone extracted using another method such as SDSM (i.e. (mathbf{P }^{‘{text {SDSM}}})), and these similarities and differences depend on the information that is considered by the respective methods when determining whether edges’ weights are significant. It is these similarities and differences that we explore in the four studies below.Backbone extraction methods that were originally developed for non-projection weighted networks are often applied to weighted bipartite projections. One simple method preserves an edge in the backbone if its weight in the projection exceeds some global threshold T. However, when (T = 0), which is common, the backbone will be dense and have a high clustering coefficient because each artifact of degree d induces (d(d-1)/2) edges in the backbone29. Using (T > 0) can yield a sparser and less clustered backbone30,31,32, but still yields highly clustered networks in which low-degree nodes are excluded while high-degree nodes are preserved19. More sophisticated methods, including the disparity filter19 and likelihood filter20, aim to overcome these limitations of the global threshold method by using a different threshold for each edge based on a null model. However, all methods that were developed for non-projection weighted networks have the same shortcoming when applied to weighted bipartite projections: they ignore information about the artifacts, which is lost when generating the projection18. In the ecological case, the global threshold, disparity filter, and likelihood filter methods all decide whether two species should be connected in the backbone only by examining how many islands these two species are both found on, but do not consider the characteristics of those islands, including how many other species are found there, or even how many islands there are. Therefore, although these methods are promising for extracting the backbone from non-projection weighted networks, different methods are required for extracting the backbone from a bipartite projection.Bipartite ensemble backbone modelsBipartite ensemble backbone models decide whether an edge’s observed weight (P_{ij}) is significantly large, and thus whether a corresponding edge should be included in the backbone by comparing it to an ensemble of random bipartite networks. Let ({mathscr {B}}) be the set of all bipartite networks (mathbf {B^*}) having the same number of agents and artifacts as ({mathbf {B}}). In the ecological case, (mathbf {B^*}) might be viewed as representing a possible world containing the same species and islands, but in which locations of species on islands is different, and likewise ({mathscr {B}}) is the set of all such possible worlds. The bipartite ensembles used in backbone models take a subset ({mathscr{B}}^{text{M}}) of ({mathscr {B}}), subject to certain constraints M, and impose a probability distribution on it. In all models except the SDSM, the uniform probability distribution is imposed on ({mathscr{B}}^{text{M}}), that is, each element of the ensemble is equally likely. The backbone is then extracted from the projection of ({mathbf {B}}) by using the distribution of edge weights arising from projections of members of the ensemble to evaluate their statistical significance.We use (P^*_{ij}) to denote a random variable equal to ((mathbf {B^*}mathbf {B^*}^T)_{ij}) for (mathbf {B^*}~in ~{mathscr {B}}^{text {M}}). That is, (P^*_{ij}) is the number of artifacts shared by i and j in a bipartite network randomly drawn from ({mathscr {B}}^{text {M}}). In the ecological case, (P^*_{ij}) represents the number of islands that are home to both species i and j in a possible world, while the distribution of (P^*_{ij}) is the distribution of the number of islands shared by species i and j in all possible worlds.Decisions about which edges should appear in a backbone extracted at the statistical significance level (alpha) are made by comparing (P_{ij}) to (P^*_{ij})$$begin{aligned} P_{ij}’= {left{ begin{array}{ll} 1 &{} quad {text { if }} Pr (P^*_{ij} ge P_{ij}) < frac{alpha }{2},\ 0 &{} quad {text {otherwise.}} end{array}right. } end{aligned}$$This test includes edge (P'_{ij}) in the backbone if its weight in the observed projection (P_{ij}) is uncommonly large compared to its weight in projections of members of the ensemble (P^*_{ij}). We use a two-tailed significance test in the studies below because, in principle, an edge’s weight in the observed projection could be uncommonly larger or uncommonly smaller than its weight in projections of members of the ensemble, however a one-tailed test may also be used. In the ecological case, two species are connected in the backbone if their number of shared islands in the observed world is uncommonly large compared to their number of shared islands in all possible worlds.There are many ways that ({mathscr {B}}) can be constrained33, with each set of constraints describing a particular ensemble ({mathscr {B}}^{text {M}}), which is used in a particular ensemble backbone model M to yield a particular backbone ({mathbf {P}}^{'M}). In the case of ensembles used to extract the backbone of bipartite projections, our focus in this paper, two broad types of constraints are common23. First, ensembles can be distinguished by what they constrain: only the number of edges, the degrees of the agent nodes, the degrees of the artifact nodes, or the degrees of both the agent and artifact nodes. Second, ensembles can be distinguished by how they impose these constraints: the constraints can be satisfied exactly, or only on average. In statistical physics, ensembles that impose exact or ‘hard’ constraints are known as microcanonical, while ensembles that satisfy constraints on average or impose ‘soft’ constraints are known as canonical9.Prior work on these ensembles generally adopts either a theoretical focus on the ensembles themselves, or an applied focus on the consequences of ensemble choice. In the theoretical literature, some (primarily mathematicians) have aimed to characterize the properties of ensembles, such as estimating the cardinality of the ensemble of matrices with fixed rows and columns (below, we call this ensemble ({mathscr{B}}^{{text{FDSM}}}))34. Others (primarily physicists) have aimed to identify conditions under which ensembles are equivalent or non-equivalent, typically interpreting ensembles as representing thermodynamic systems35,36,37. In the applied literature, the focus is not on identifying fundamental properties of ensembles, but instead on understanding the implications of choosing a particular ensemble when detecting a particular pattern, such as nestedness38 or community structure23,27. The present work falls into this latter group: we are not directly concerned with identifying fundamental properties of ensembles, but instead on identifying the consequences of ensemble choice, with the ultimate goal of offering practical guidance to applied researchers wishing to extract the backbone of a bipartite projection.In the remaining subsections below, we first describe the FDSM in terms of its ensemble. We then present four potential alternative backbone models whose ensembles differ only slightly from FDSM, in terms of either what they constrain or how they impose constraints. We then turn to exploring the consequences of choosing one of these alternatives over FDSM when extracting a backbone.Fixed degree sequence model (FDSM)In the fixed degree sequence model (FDSM), (mathbf {B^*}~in ~{mathscr {B}}^{{text{FDSM}}}) are constrained to have the same agent and artifact degree sequences as ({mathbf {B}}). That is, FDSM constrains the degrees of both the agent and artifact nodes, and requires that these constraints are satisfied exactly, making it a tightly-constrained microcanonical ensemble. Adopting the FDSM implies, for example, that in all possible worlds a given species is found on exactly the same number of islands, and a given island is home to exactly the same number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text{FDSM}}}) is unknown, but can be approximated by uniformly sampling (mathbf {B^*}) from ({mathscr {B}}^{text{FDSM}}), constructing (mathbf {P^*}), and saving the values (P^*_{ij}). In the studies below, we use 1000 samples of (mathbf {B^*}) generated using the ‘curveball’ algorithm, which is among the fastest methods to sample ({mathscr {B}}^{text{FDSM}}) uniformly at random39,40. The FDSM has been used to extract the backbone of bipartite projections of, for example, movies co-liked by viewers21 and conference panel co-participation by scholars41,42.The FDSM offers an intuitively appealing approach to extracting the backbone of bipartite projections because it fully controls for both bipartite degree sequences, which are known to be responsible for many of the projection’s structural characteristics15,16. However, because the distribution of (P^*_{ij}) must be computed via Monte Carlo sampling, it is computationally costly, making it impractical for all but relatively small bipartite projections. There are at least three distinct computational challenges. First, although the curveball algorithm is the fastest among existing methods for randomly sampling a bipartite graph with fixed degree sequences (i.e. for sampling (mathbf {B^*}) from ({mathscr {B}}^{text{FDSM}})), it still can require several seconds per sample for large graphs. Second, once a (mathbf {B^*}) has been sampled, constructing each (mathbf {P^*}) requires matrix multiplication, which must be performed repeatedly and has complexity of at least ({mathscr {O}}(n^{2.37}))43. Finally, computing an edge’s p value (i.e. (Pr (P^*_{ij} ge P_{ij}))) with sufficient precision to achieve a specified familywise error rate that controls for Type-I error inflation due to multiple testing22 can require these sampling and multiplication steps to be performed a very large number of times (see Supplementary Text S2).These computational challenges have led researchers to develop other backbone models3,9,18. Many such models exist, however here we are focused on identifying methods that yield backbones similar to what would be obtained using FDSM, and thus which may serve as computationally-feasible alternatives to FDSM. Therefore, we consider only those models whose ensembles involve at least one of the two types of constraints imposed by FDSM. That is, we consider models that either (1) impose exact constraints, or (2) impose constraints on both the agent and artifact degrees.Fixed fill model (FFM)In the fixed fill model (FFM), (mathbf {B^*}~in ~{mathscr {B}}^{{text {FFM}}}) are simply constrained to contain the same number of 1s as ({mathbf {B}}). That is, the FFM constrains only the number of edges, but requires that this constraint is satisfied exactly. Adopting the FFM implies, for example, that in all possible worlds only the total number of species-island pairs is fixed, but any given species may be found on a different number of islands and any given island may be home to a different number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text {FFM}}}) has not been described before, but is derived in Supplementary Text S1.1. We call it a Jacobi distribution because it is related to Jacobi polynomials.Fixed row model (FRM)In the fixed row model (FRM), (mathbf {B^*}~in ~{mathscr {B}}^{{text {FRM}}}) are constrained to have the same agent degree sequence as ({mathbf {B}}), but have unconstrained artifact degree sequences. That is, the FRM constrains the degrees of the agent nodes, and requires that this constraint is satisfied exactly. A canonical variant of the FRM, the (hbox {BiPCM}_r), also constrains the degrees of the agent nodes, but only requires this constraint to be satisfied on average; we do not consider it here because it involves neither of FDSM’s constraints9. Adopting the FRM for backbone extraction implies, for example, that in all possible worlds a given species is found on the same number of islands, but a given island may be home to a different number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text {FRM}}}) is hypergeometric (see Supplementary Text S1.2), and for this reason it is sometimes referred to as the hypergeometric model22,23,44. The FRM has been used to extract the backbone of bipartite projections of, for example, movies co-starring actors22, papers co-written by authors22, parties co-attended by women44, majority opinions joined by Supreme Court justices44, and microRNAs co-associated with diseases45.Fixed column model (FCM)In the fixed column model (FCM), (mathbf {B^*}~in ~{mathscr {B}}^{{text {FCM}}}) are constrained to have the same artifact degree sequence as ({mathbf {B}}), but have unconstrained agent degree sequences. That is, the FCM constrains the degrees of the artifact nodes, and requires that this constraint is satisfied exactly. A canonical variant of the FCM, the (hbox {BiPCM}_c), also constrains the degrees of the artifact nodes, but only requires this constraint to be satisfied on average; we do not consider it here because it involves neither of FDSM’s constraints9. Adopting the FCM for backbone extraction implies, for example, that in all possible worlds a given species may be found on a different number of islands, but a given island is home to the same number of species. The distribution of (P^*_{ij}) arising from ({mathscr {B}}^{{text {FCM}}}) has not been described before, but is derived in Supplementary Text S1.3, where we show it is Poisson-binomial.Stochastic degree sequence model (SDSM)Finally, the stochastic degree sequence model (SDSM) takes ({mathscr {B}}^{{text {SDSM}}}) to be all binary (m times n) matrices, but also gives a process for generating these matrices with different probabilities. Each (mathbf {B^*}) is generated by filling the cells (B^*_{ik}) with a 0 or 1 depending on the outcome of an independent Bernoulli trial with probability (p^*_{ik}). The distribution of the random variable (P^*_{ij}) arising from ({mathscr {B}}^{{text {SDSM}}}) is Poisson-binomial with parameters which can be computed using the (p^*_{ik}) (see Supplementary Text S1.4)27,46. There are many ways to choose (p^*_{ik}), but in the studies below we choose (p^*_{ik}) so that it approximates (Pr (B^*_{ik} = 1)) for (mathbf {B^*}~in ~{mathscr {B}}^{{text{FDSM}}}). This choice of (p^*_{ik}) ensures that the SDSM constrains the degrees of both the agent and artifact nodes, but only requires these constraints to be satisfied on average. Adopting such a version of SDSM implies, for example, that in each possible world a given species may be found on many or few islands and a given island may be home to many or few species, but the average number of islands on which a given species lives in all possible worlds and the average number of species that live on an given island in all possible worlds matches these values the observed world. The SDSM has been used to extract the backbone of bipartite projections of, for example, legislators co-sponsoring bills1,18,47,48,49, zebrafish (Danio rerio) sharing operational taxonomic units50, countries sharing exports3, and genes expressed in genesets51. More

  • in

    A synthesis and future research directions for tropical mountain ecosystem restoration

    1.Dimitrov, D., Nogués-Bravo, D. & Scharff, N. Why do tropical mountains support exceptionally high biodiversity? The eastern arc mountains and the drivers of saintpaulia diversity. PLoS One 7, e48908 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Spehn, E. & Körner, C. A Global Assessment of Mountain Biodiversity and its Function, vol. 23, 393–400 (2005).3.Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Mengist, W., Soromessa, T. & Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702, 134581 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Gleeson, E. H. et al. Mountains of our future earth: defining priorities for mountain research: A synthesis from the 2015 Perth III conference. Mt. Res. Dev. 36, 537–548 (2016).
    Google Scholar 
    6.Jacob, M. et al. Land use and cover dynamics since 1964 in the Afro-Alpine vegetation belt: Lib Amba Mountain in North Ethiopia. Land Degrad. Dev. 27, 641–653 (2016).
    Google Scholar 
    7.Dhakal, B. et al. Impacts of cardamom cultivation on montane forest ecosystems in Sri Lanka. For. Ecol. Manag. 274, 151–160 (2012).
    Google Scholar 
    8.Thijs, K. W. et al. Contrasting cloud forest restoration potential between plantations of different exotic tree species. Restor. Ecol. 22, 472–479 (2014).
    Google Scholar 
    9.Long, M. S. et al. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biol. Invasions 19, 749–763 (2017).
    Google Scholar 
    10.Elgar, A. T., Freebody, K., Pohlman, C. L., Shoo, L. P. & Catterall, C. P. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Front. Plant Sci. 5, 200 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    11.Rojas-Botero, S., Solorza-Bejarano, J., Kollmann, J. & Teixeira, L. H. Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecol. Eng. 158, 106031 (2020).
    Google Scholar 
    12.Hooper, E., Legendre, P. & Condit, R. Barriers to forest regeneration of deforested and abandoned land in Panama. J. Appl. Ecol. 42, 1165–1174 (2005).
    Google Scholar 
    13.Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2013).ADS 

    Google Scholar 
    14.Soh, M. C. K. et al. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: A systematic map for identifying future research priorities. Front. For. Glob. Change 2, 1–18 (2019).
    Google Scholar 
    15.Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. Diverging responses of tropical andean biomes under future climate conditions. PLoS One 8, e63634 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS One 14, e0213155 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B. & Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142, 2510–2521 (2009).
    Google Scholar 
    18.Christmann, T. & Oliveras, I. Nature of alpine ecosystems in tropical mountains of South America. in Encyclopedia of the World’s Biomes 1–10 (Elsevier Inc., 2020). https://doi.org/10.1016/B978-0-12-409548-9.12481-919.Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).
    Google Scholar 
    20.Young, K. R. & León, B. Tree-line changes along the Andes: Implications of spatial patterns and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 362, 263–272 (2007).
    Google Scholar 
    21.Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 20, 582–596 (2011).
    Google Scholar 
    22.Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol. Process. 25, 465–498 (2011).ADS 

    Google Scholar 
    23.Kessler, M. & Kluge, J. Diversity and endemism in tropical montane forests—From patterns to processes. Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, vol. 2 (2010).24.Aide, T. M. & Grau, H. R. Globalization, migration, and Latin American ecosystems. Science 305, 1915–1917 (2004).PubMed 

    Google Scholar 
    25.Bender, O. Abandoned altitudes? Decrease and expansion of grassland in the Hinterland of Popayán, Southern Colombian Andes. J. Mt. Sci. 12, 123–133 (2015).
    Google Scholar 
    26.Zhang, B., Mo, S., Tan, T., Xiao, F. & Wu, H. Urbanization and De-urbanization in mountain regions of China. Mt. Res. Dev. 24, 206–209 (2004).
    Google Scholar 
    27.Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. https://doi.org/10.1111/gcb.15498 (2021).Article 

    Google Scholar 
    28.International Union for Conservation of Nature. The Bonn Challenge | Bonchallenge. Iucn (2020).29.Society for Ecological Restoration. The SER primer on ecological restoration. Sci. Policy Work. Gr. 2002, 9 (2002).
    Google Scholar 
    30.Holl, K. D. Primer of Ecological Restoration (Island Press, 2020). https://doi.org/10.1007/s13412-020-00621-w.Book 

    Google Scholar 
    31.Chazdon, R. REVIEW: Restoring tropical forests: A practical guide. Ecol. Restor. 33, 118–119 (2015).
    Google Scholar 
    32.Chazdon, R. L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6, 51–71 (2003).
    Google Scholar 
    33.Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).
    Google Scholar 
    34.Meli, P. et al. A global review of past land use, climate, and active vs passive restoration effects on forest recovery. PLoS One 12, 1–17 (2017).
    Google Scholar 
    35.Holl, K. D. Restoration of tropical forests. Restor. Ecol. New Front. https://doi.org/10.1002/9781118223130.ch9 (2012).Article 

    Google Scholar 
    36.Meli, P. Tropical forest restoration. Twenty years of academic research. Interciencia 28, 581 (2003).
    Google Scholar 
    37.Venkatesh, B., Lakshman, N. & Purandara, B. K. Hydrological impacts of afforestation—A review of research in India. J. For. Res. 25, 37–42 (2014).
    Google Scholar 
    38.Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. What is the state of tropical montane cloud forest restoration? Tropical Montane Cloud Forests: science for conservation and management. For. Ecol. Manag. https://doi.org/10.1017/CBO9780511778384.010 (2011).Article 

    Google Scholar 
    39.Guariguata, M. R. Restoring tropical montane forests. Forest Restoration in Landscapes: Beyond Planting Trees (2005). https://doi.org/10.1007/0-387-29112-1_4340.Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).PubMed 

    Google Scholar 
    41.Arasumani, M. et al. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island. PLoS One 13, e0190003 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Raman, T. R. S., Mudappa, D. & Kapoor, V. Restoring rainforest fragments: survival of mixed-native species seedlings under contrasting site conditions in the Western Ghats, India. Restor. Ecol. 17, 137–147 (2009).
    Google Scholar 
    43.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).
    Google Scholar 
    44.Lewin-Koh, N. J. et al. maptools: Tools for reading and handling spatial objects. R package version 0.8-10. http://CRAN.R-project.org/package=maptools (2011).45.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019). https://www.R-project.org/46.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org47.Srinivasan, M. P., Bhatia, S. & Shenoy, K. Vegetation-environment relationships in a South Asian tropical montane grassland ecosystem: Restoration implications. Trop. Ecol. 56, 201–217 (2015).
    Google Scholar 
    48.Le Stradic, S., Buisson, E. & Fernandes, G. W. Restoration of Neotropical grasslands degraded by quarrying using hay transfer. Appl. Veg. Sci. 17, 482–492 (2014).
    Google Scholar 
    49.De De Vasconcelos, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil?. Rev. Bras. Bot. 34, 241–246 (2011).
    Google Scholar 
    50.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.15513 (2021).Article 

    Google Scholar 
    51.Home | Trillion Trees (2020).52.Abadín, J. et al. Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biol. Biochem. 34, 1739–1748 (2002).
    Google Scholar 
    53.Abreu, Z., Llambí, L. D. & Sarmiento, L. Sensitivity of soil restoration indicators during páramo succession in the high tropical andes: Chronosequence and permanent plot approaches. Restor. Ecol. 17, 619–627 (2009).
    Google Scholar 
    54.Bueno, A. & Llambí, L. D. Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl. Veg. Sci. 18, 613–623 (2015).
    Google Scholar 
    55.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 63–74 (2003).
    Google Scholar 
    56.Sarmiento, L., Smith, J. K., Márquez, N., Escalona, A. & Erazo, M. C. Constraints for the restoration of tropical alpine vegetation on degraded slopes of the Venezuelan Andes. Plant Ecol. Divers. 8, 277–291 (2015).
    Google Scholar 
    57.Sarmiento, L. & Bottner, P. Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: Indications for fertility restoration. Appl. Soil Ecol. 19, 79–89 (2002).
    Google Scholar 
    58.Sarmiento, L., Abadín, J., González-Prieto, S. & Carballas, T. Assessing and modeling the role of the native legume Lupinus meridanus in fertility restoration in a heterogeneous mountain environment of the tropical Andes. Agric. Ecosyst. Environ. 159, 29–39 (2012).
    Google Scholar 
    59.Hilário, R. R., Castro, S. A. B., Ker, F. T. O. & Fernandes, G. Unexpected effects of pigeon-peas (Cajanus cajan) in the restoration of rupestrian fields [Efeito Inesperado do Feijão-Guandu (Cajanus cajan) na Restauração de Campos Rupestres]. Planta Daninha 29, 717–723 (2011).
    Google Scholar 
    60.Le Stradic, S., Buisson, E., Negreiros, D., Campagne, P. & Wilson Fernandes, G. The role of native woody species in the restoration of Campos Rupestres in quarries. Appl. Veg. Sci. 17, 109–120 (2014).
    Google Scholar 
    61.Arasumani, M., Bunyan, M. & Robin, V. V. Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands. J. Environ. Manag. 280, 111759 (2020).
    Google Scholar 
    62.Sarmiento, F. O. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24, 14–23 (1997).
    Google Scholar 
    63.Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35–46 (2008).
    Google Scholar 
    64.Middendorp, R. S., Pérez, A. J., Molina, A., Lambin, E. F. & Pérez Castañeda, A. J. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    65.De Guevara, I.H.-L., Rojas-Soto, O. R., López-Barrera, F., Puebla-Olivares, F. & Díaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    66.Lira-Noriega, A., Guevara, S., Laborde, J. & Sanchez-Rios, G. Floristic composition in pastures of Los Tuxtlas, Veracruz, Mexico. ACTA Bot. Mex. 80, 59–87 (2007).
    Google Scholar 
    67.Muniz-Castro, M. A., Williams-Linera, G. & Benayas, J. M. R. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    68.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. in Tropical Montane Cloud Forests: Science for Conservation and Management 584–594 (2011). https://doi.org/10.1017/CBO9780511778384.06369.Violi, H. A. et al. Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For. Ecol. Manag. 254, 276–290 (2008).
    Google Scholar 
    70.Williams-Linera, G., Alvarez-Aquino, C. & Pedraza, R. A. Forest restoration in the tropical montane cloud forest belt of central veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06771.Cole, R. J., Litton, C. M., Koontz, M. J. & Loh, R. K. Vegetation recovery 16 years after feral pig removal from a wet Hawaiian forest. Biotropica 44, 463–471 (2012).
    Google Scholar 
    72.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125–140 (2014).
    Google Scholar 
    73.Gould, R. K., Mooney, H., Nelson, L., Shallenberger, R. & Daily, G. C. Restoring native forest understory: The influence of ferns and light in a Hawaiian experiment. Sustainability 5, 1317–1339 (2013).
    Google Scholar 
    74.Hart, P. J. Tree growth and age in an ancient Hawaiian wet forest: Vegetation dynamics at two spatial scales. J. Trop. Ecol. 26, 1–11 (2010).
    Google Scholar 
    75.Ibanez, T. & Hart, P. J. Spatial patterns of tree recruitment in a montane Hawaiian wet forest after cattle removal and pig population control. Appl. Veg. Sci. 23, 197–209 (2020).
    Google Scholar 
    76.Pinto, J. R., Davis, A. S., Leary, J. J. K. & Aghai, M. M. Stocktype and grass suppression accelerate the restoration trajectory of Acacia koa in Hawaiian montane ecosystems. New For. 46, 855–867 (2015).
    Google Scholar 
    77.Hylander, K. & Nemomissa, S. Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest [Roles complementarios de jardines doḿesticos y plantaciones de ’arboles ex́oticos como h́abitats alternativos para plan. Conserv. Biol. 23, 400–409 (2009).PubMed 

    Google Scholar 
    78.Roose, E. & Ndayizigiye, F. Agroforestry, water and soil fertility management to fight erosion in tropical mountains of Rwanda. Soil Technol. 11, 109–119 (1997).
    Google Scholar 
    79.Uhlig, S. K. Tropical mountain ecology in Ethiopia as a basis for conservation, management and restoration. Trop. For. Transit. https://doi.org/10.1007/978-3-0348-7256-0_8 (1992).Article 

    Google Scholar 
    80.Carilla, J. & Grau, H. R. 150 years of tree establishment, land use and climate change in Montane grasslands, Northwest Argentina. Biotropica 42, 49–58 (2010).
    Google Scholar 
    81.Camelo, O. J., Urrego, L. E. & Orrego, S. A. Environmental and socioeconomic drivers of woody vegetation recovery in a human-modified landscape in the Rio Grande basin (Colombian Andes). Restor. Ecol. 25, 912–921 (2017).
    Google Scholar 
    82.Wilson, S. J., Coomes, O. T. & Dallaire, C. O. The `ecosystem service scarcity path’ to forest recovery: A local forest transition in the Ecuadorian Andes. Reg. Environ. Change 19, 2437–2451 (2019).
    Google Scholar 
    83.Middendorp, R. S., Pérez, A. J., Molina, A. & Lambin, E. F. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    84.Bingli, L., Weide, Z. & Rongyuan, Z. The rebirth of tropical rainforest – ecological restoration planning for Sanda Mountain of Xishuangbanna, China. Landsc. Archit. Front. 8, 108–125 (2020).
    Google Scholar 
    85.Byers, A. C. Alpine habitat conservation and restoration in tropical and sub-tropical high mountains. Routledge Handb. Ecol. Environ. Restor. https://doi.org/10.4324/9781315685977 (2017).Article 

    Google Scholar 
    86.Guariguata, M. R. Restoring tropical montane forests. in Forest Restoration in Landscapes: Beyond Planting Trees 298–302 (2005). https://doi.org/10.1007/0-387-29112-1_4387.González-Espinosa, M. et al. Restoration of forest ecosystems in fragmented landscapes of temperate and montane tropical Latin America. in Biodiversity Loss and Conservation in Fragmented Forest Landscapes: The Forests of Montane Mexico and Temperate South America 335–369 (2007).88.Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. U.S.A. 114, 9635–9640 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Holl, K. D. Research directions in tropical forest restoration. Ann. Mo. Bot. Gard. 102, 237–250 (2017).
    Google Scholar 
    90.Roose, E., Ndayizigiye, F. & Sekayange, L. Agroforestry and land husbandry in Rwanda. How to restore the acid soils productivity in tropical mountains densely populated? [L’agroforesterie et la GCES au Rwanda. Comment restaurer la productivite des terres acides dans une region tropicale de montagn. Cah. ORSTOM Ser. Pedol. 28, 327–349 (1993).
    Google Scholar 
    91.Diego Leon, J., Isabel Gonzalez, M. & Fernando Gallardo, J. Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia. Rev. Biol. Trop. 59, 1883–1894 (2011).
    Google Scholar 
    92.Chazdon, R. L. et al. Erratum: Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002. https://doi.org/10.1088/1748-9326/ab79e6 (2020).Article 
    ADS 

    Google Scholar 
    93.Miranda-Castro, L. & Padrón, S. From the mountains to the sea: Restoring shaded coffee plantations to protect tropical coastal ecosystems. in Proceedings of MTS/IEEE OCEANS, 2005 vol. 2005 662–669 (2005).94.Hakim, L. & Miyakawa, H. Integrating ecosystem restoration and development of recreation sites in degraded tropical mountain areas in East Java, Indonesia. AIP Conf. Proc. 2019 (2018).95.Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).ADS 

    Google Scholar 
    96.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06397.Chen, T.-S., Lin, C.-Y., Ho, S.-H., Lin, C.-Y. & Yang, Y.-L. Evaluation of priority order for the landslide treatment using biodiversity index in a watershed. J. Chin. Soil Water Conserv. 45, 119–127 (2014).
    Google Scholar 
    98.Liu, H., Yi, Y., Blagodatsky, S. & Cadisch, G. Impact of forest cover and conservation agriculture on sediment export: A case study in a montane reserve, south-western China. Sci. Total Environ. 702, 134802 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    99.Crespo, P. et al. Land use change impacts on the hydrology of wet Andean paramo ecosystems. in Status and Perspectives of Hydrology in Small Basins (Proceedings of the Workshop held at Goslar-Hahnenklee, Germany, 30 March–2 April 2009) (IAHS, 2010). doi:https://doi.org/10.13140/2.1.5137.6320100.Muñoz-Villers, L. E. & McDonnell, J. J. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 17, 3543–3560 (2013).ADS 

    Google Scholar 
    101.Calle, Z., Henao-Gallego, N., Giraldo, C. & Armbrecht, I. A comparison of vegetation and ground-dwelling ants in abandoned and restored gullies and landslide surfaces in the Western Colombian Andes. Restor. Ecol. 21, 729–735 (2013).
    Google Scholar 
    102.Posada, J. M., Mitche, T. & Cavelier, J. Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restor. Ecol. 8, 370–379 (2000).
    Google Scholar 
    103.Lemenih, M. & Teketay, D. Changes in soil seed bank composition and density following deforestation and subsequent cultivation of a tropical dry Afromontane forest in Ethiopia. Trop. Ecol. 47, 1–12 (2006).
    Google Scholar 
    104.Galindo, V., Calle, Z., Chará, J. & Armbrecht, I. Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restor. Ecol. 25, 731–737 (2017).
    Google Scholar 
    105.Slocum, M. G., Aide, T. M., Zimmerman, J. K. & Navarro, L. A strategy for restoration of montane forest in anthropogenic fern thickets in the Dominican Republic. Restor. Ecol. 14, 526–536 (2006).
    Google Scholar 
    106.Rurangwa, M. L., Matthews, T. J., Niyigaba, P., Tobias, J. A. & Whittaker, R. J. Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study. For. Ecol. Manag. 10, 118765. https://doi.org/10.1016/j.foreco.2020.118765 (2020).Article 

    Google Scholar 
    107.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala Weerasinghe, H. M. S. P. & Burslem, D. F. R. P. Barriers to tree seedling emergence on human-induced grasslands in Sri Lanka. J. Appl. Ecol. 47, 157–165 (2010).
    Google Scholar 
    108.Le Stradic, S., Fernandes, G. W. & Buisson, E. No recovery of campo rupestre grasslands after gravel extraction: implications for conservation and restoration. Restor. Ecol. 26, S151–S159 (2018).
    Google Scholar 
    109.Sanchez-De Leon, Y., Zou, X., Borges, S. & Ruan, H. Recovery of native earthworms in abandoned tropical pastures. Conserv. Biol. 17, 999–1006 (2003).
    Google Scholar 
    110.Wilms, J. & Kappelle, M. Frugivorous birds, habitat preference and seed dispersal in a fragmented Costa Rican montane oak forest landscape. in Ecology and conservation of neotropical montane oak forests 309–324 (Springer, 2006).111.Shoo, L. P., Storlie, C., Vanderwal, J., Little, J. & Williams, S. E. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186–193 (2011).ADS 

    Google Scholar 
    112.Edwards, D. P., Massam, M. R., Haugaasen, T. & Gilroy, J. J. Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biol. Conserv. 209, 432–439 (2017).
    Google Scholar 
    113.Gutierrez-Chacon, C., Valderrama-A, C. & Klein, A.-M. Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. J. Insect Conserv. 24, 187–197 (2020).
    Google Scholar 
    114.Kattan, G. H., Correa, D., Escobar, F. & Medina, C. Leaf-litter arthropods in restored forests in the Colombian Andes: A comparison between secondary forest and tree plantations. Restor. Ecol. 14, 95–102 (2006).
    Google Scholar 
    115.Davies, R. W., Edwards, D. P. & Edwards, F. A. Secondary tropical forests recover dung beetle functional diversity and trait composition. Anim. Conserv. 23, 617–627 (2020).
    Google Scholar 
    116.Marian, F. et al. Conversion of Andean montane forests into plantations: Effects on soil characteristics, microorganisms, and microarthropods. Biotropica https://doi.org/10.1111/btp.12813 (2020).Article 

    Google Scholar 
    117.Brancalion, P. H. S. & Holl, K. D. Functional composition trajectory: A resolution to the debate between Suganuma, Durigan, and Reid. Restor. Ecol. 24, 1–3 (2016).
    Google Scholar 
    118.Matos, I. S., Eller, C. B., Oliveras, I., Mantuano, D. & Rosado, B. H. P. Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. J. Ecol. https://doi.org/10.1111/1365-2745.13481 (2020).Article 

    Google Scholar 
    119.Eller, C. B., Lima, A. L. & Oliveira, R. S. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489–501 (2016).CAS 
    PubMed 

    Google Scholar 
    120.Barnes, A. D. & Chapman, H. M. Dispersal traits determine passive restoration trajectory of a Nigerian montane forest. Acta Oecol. 56, 32–40 (2014).ADS 

    Google Scholar 
    121.Dimson, M. & Gillespie, T. W. Trends in active restoration of tropical dry forest: Methods, metrics, and outcomes. For. Ecol. Manage. 467, 118150 (2020).
    Google Scholar 
    122.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).
    Google Scholar 
    123.Wilson, S. J. & Rhemtulla, J. M. Acceleration and novelty: Community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecol. Appl. 26, 203–218 (2016).PubMed 

    Google Scholar 
    124.Muñiz-Castro, M. A. et al. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    125.Van Do, T., Osawa, A. & Thang, N. T. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. For. Ecol. Manag. 259, 1650–1659 (2010).
    Google Scholar 
    126.Joshua Atondo-Bueno, E., Bonilla-Moheno, M. & Lopez-Barrera, F. Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. For. Ecol. Manag. 409, 399–406 (2018).
    Google Scholar 
    127.Trujillo-Miranda, A. L., Toledo-Aceves, T., Lopez-Barrera, F. & Guenter, S. Tree diversity and timber productivity in planted forests: Pinus patula versus mixed cloud forest species. New For. https://doi.org/10.1007/s11056-020-09787-1 (2020).Article 

    Google Scholar 
    128.Gallegos, S. C., Hensen, I., Saavedra, F. & Schleuning, M. Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. For. Ecol. Manag. 337, 135–143 (2015).
    Google Scholar 
    129.Peláez-Silva, J. A., León-Peláez, J. D. & Lema-Tapias, A. Conifer tree plantations for land rehabilitation: An ecological-functional evaluation. Restor. Ecol. 27, 607–615 (2019).
    Google Scholar 
    130.Ortega-Pieck, A., López-Barrera, F., Ramírez-Marcial, N. & García-Franco, J. G. Early seedling establishment of two tropical montane cloud forest tree species: The role of native and exotic grasses. For. Ecol. Manag. 261, 1336–1343 (2011).
    Google Scholar 
    131.Muniz-Castro, M.-A. et al. Restoring montane cloud forest: Establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restor. Ecol. 23, 26–33 (2015).
    Google Scholar 
    132.Zhang, Z. H., Hu, G., Zhu, J. D. & Ni, J. Stand structure, woody species richness and composition of subtropical karst forests in Maolan, south-west China. J. Trop. For. Sci. 24, 498–506 (2012).
    Google Scholar 
    133.Garcia-De La Cruz, Y., Lopez-Barrera, F. & MariaRamos-Prado, J. Germination and seedling emergence of four endangered oak species. Madera y Bosques 22, 77–87 (2016).
    Google Scholar 
    134.Bare, M. C. & Ashton, M. S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For. 47, 333–355 (2016).
    Google Scholar 
    135.Borja, P., Molina, A., Govers, G. & Vanacker, V. Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains. CATENA 165, 42–53 (2018).
    Google Scholar 
    136.Gomez-Ruiz, P. A., Saenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine-oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    137.Toledo-Aceves, T. & Del-Val, E. Do plant-herbivore interactions persist in assisted migration plantings? Restor. Ecol. 29, (2020).138.Urgiles, N. et al. Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: A step towards reforestation with native species in the Andes of Ecuador. New For. 38, 229–239 (2009).
    Google Scholar 
    139.Braasch, M., Garcia-Barrios, L., Ramirez-Marcial, N., Huber-Sannwald, E. & Cortina-Villar, S. Can cattle grazing substitute fire for maintaining appreciated pine savannas at the frontier of a montane forest biosphere-reserve?. Agric. Ecosyst. Environ. 250, 59–71 (2017).
    Google Scholar 
    140.Hernandez-Ladron De Guevara, I., Rojas-Soto, O. R., Lopez-Barrera, F., Puebla-Olivares, F. & Diaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    141.Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).
    Google Scholar 
    142.Derroire, G., Coe, R. & Healey, J. R. Isolated trees as nuclei of regeneration in tropical pastures: Testing the importance of niche-based and landscape factors. J. Veg. Sci. 27, 679–691 (2016).
    Google Scholar 
    143.Rhoades, C. C., Eckert, G. E. & Coleman, D. C. Effect of pasture trees on soil nitrogen and organic matter: Implications for tropical montane forest restoration. Restor. Ecol. 6, 262–270 (1998).
    Google Scholar 
    144.Sheldon, K. S. & Nadkarni, N. M. The use of pasture trees by birds in a tropical montane landscape in Monteverde, Costa Rica. J. Trop. Ecol. 29, 459–462 (2013).
    Google Scholar 
    145.Sprenkle-Hyppolite, S. D., Latimer, A. M., Young, T. P. & Rice, K. J. Landscape factors and restoration practices associated with initial reforestation success in Haiti. Ecol. Restor. 34, 306–316 (2016).
    Google Scholar 
    146.Pang, C.-C., Ma, X.K.-K., Hung, T.T.-H. & Hau, B.C.-H. Early ecological succession on landslide trails, Hong Kong, China. Ecoscience 25, 153–161 (2018).
    Google Scholar 
    147.Scowcroft, P. G. & Jeffrey, J. Potential significance of frost, topographic relief, and Acacia koa stands to restoration of mesic Hawaiian forests on abandoned rangeland. For. Ecol. Manag. 114, 447–458 (1999).
    Google Scholar 
    148.Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded areas in the tropics. Restor. Ecol. 13, 92–102 (2005).
    Google Scholar 
    149.Dhakal, B., Pinard, M. A., Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. & Burslem, D. F. R. P. Strategies for restoring tree seedling recruitment in high conservation value tropical montane forests underplanted with cardamom. Appl. Veg. Sci. 18, 121–133 (2015).
    Google Scholar 
    150.Wilson, S. J. & Coomes, O. T. ‘Crisis restoration’ in post-frontier tropical environments: Replanting cloud forests in the Ecuadorian Andes. J. Rural Stud. 67, 152–165 (2019).
    Google Scholar 
    151.Pethiyagoda, R. S. & Manamendra-Arachchi, K. Endangered anurans in a novel forest in the highlands of Sri Lanka. Wildl. Res. 39, 641–648 (2012).
    Google Scholar 
    152.Del Castillo, R. F. & Blanco-Macías, A. Secondary succession under a slash-and-burn regime in a tropical montane cloud forest: soil and vegetation characteristics. Biodivers. loss Conserv. Fragm. For. landscapes. For. Mont. Mex. Temp. South Am. CABI, Wallingford, Oxfordshire, UK 158–180 (2007).153.Bautista-Cruz, A., Del Castillo, R. F., Etchevers-Barra, J. D., Gutiérrez-Castorena, M. D. C. & Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 277, 74–80 (2012).
    Google Scholar 
    154.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 145–156 (2003).
    Google Scholar 
    155.Raman, T. R. S. Effects of habitat structure and adjacent habitats on birds in tropical rainforest fragments and shaded plantations in the Western Ghats, India. Biodivers. Conserv. 15, 1577–1607 (2006).
    Google Scholar 
    156.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala, H. M. S. P. & Burslem, D. F. R. P. Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects. For. Ecol. Manag. 329, 340–350 (2014).
    Google Scholar 
    157.Mendoza-Vega, J., Ku-Quej, V. M., Messing, I. & Pérez-Jiménez, J. C. Effects of native tree planting on soil recovery in tropical montane cloud forests. For. Sci. 66, 700–711 (2020).
    Google Scholar 
    158.Calle, A. & Holl, K. D. Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. For. Ecol. Manag. 452, 117563 (2019).
    Google Scholar 
    159.Holl, K. D. Factors limiting tropical rain forest regeneration in abandoned pasture: Seed rain, seed germination, microclimate, and soil. Biotropica 31, 229–242 (1999).
    Google Scholar 
    160.Mullah, C. J. A., Klanderud, K., Totland, O. & Kigomo, B. Recovery of plant species richness and composition in an abandoned forest settlement area in Kenya. Restor. Ecol. 52, 77–87 (2011).
    Google Scholar 
    161.Liu, X., Lu, Y., Yang, Z. & Zhou, Y. Regeneration and development of native plant species in restored mountain forests, Hainan Island, China. Mt. Res. Dev. 34, 396–404 (2014).CAS 

    Google Scholar 
    162.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Weerasinghe, H. M. S. P. M. & Burslem, D. F. R. P. Release from root competition promotes tree seedling survival and growth following transplantation into human-induced grasslands in Sri Lanka. For. Ecol. Manag. 262, 229–236 (2011).163.Cole, R. J., Holl, K. D., Keene, C. L. & Zahawi, R. A. Direct seeding of late-successional trees to restore tropical montane forest. For. Ecol. Manag. 261, 1590–1597 (2011).
    Google Scholar 
    164.Alvarez-Aquino, C., Williams-Linera, G. & Newton, A. C. Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restor. Ecol. 12, 412–418 (2004).
    Google Scholar 
    165.Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forest–grassland mosaic; But alien tree invasion and warming can disrupt this balance. J. Ecol. https://doi.org/10.1111/1365-2745.13239 (2019).Article 

    Google Scholar 
    166.Singh, K. P., Mandal, T. N. & Tripathi, S. K. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the Sal forest ecosystem of Nepal Himalaya. Ecol. Eng. 17, 385–401 (2001).
    Google Scholar 
    167.Wilcke, W. et al. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. CATENA 53, 79–95 (2003).
    Google Scholar 
    168.Diaz-Garcia, J. M., Pineda, E., Lopez-Barrera, F. & Moreno, C. E. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodivers. Conserv. 26, 2569–2589 (2017).
    Google Scholar 
    169.Doust, S. J., Erskine, P. D. & Lamb, D. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For. Ecol. Manag. 234, 333–343 (2006).
    Google Scholar 
    170.Howorth, R. T. & Pendry, C. A. Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodivers. Conserv. 15, 693–715 (2006).
    Google Scholar 
    171.Gomes, L. G. L., Oostra, V., Nijman, V., Cleef, A. M. & Kappelle, M. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biol. Conserv. 141, 860–871 (2008).
    Google Scholar 
    172.Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).CAS 
    PubMed 

    Google Scholar 
    173.Pérez-García, O. & del Castillo, R. F. Shifts in swidden agriculture alter the diversity of young fallows: Is the regeneration of cloud forest at stake in southern Mexico?. Agric. Ecosyst. Environ. 248, 162–174 (2017).
    Google Scholar 
    174.Gallegos, S. C. et al. Factors limiting montane forest regeneration in bracken-dominated habitats in the tropics. For. Ecol. Manag. 381, 168–176 (2016).
    Google Scholar 
    175.Riviere, J.-N. et al. Role of tree ferns in flowering plant settlement in the tropical montane rainforests of La Reunion (Mascarene Archipelago, Indian Ocean). Rev. D Ecol. TERRE LA VIE 63, 199–207 (2008).
    Google Scholar 
    176.Mohandass, D., Chhabra, T., Singh Pannu, R. & Beng, K. C. Recruitment of saplings in active tea plantations of the Nilgiri mountains: Implications for restoration ecology. Trop. Ecol. 57, 101–118 (2016).CAS 

    Google Scholar 
    177.Wassie, A., Bongers, F., Sterck, F. J. & Teketay, D. Church forests—relics of dry afromontane forests of Northern Ethiopia: opportunities and challenges for conservation and restauration. Degrad. For. East. Africa Manag. Restor. 123–133 (2010).178.Townsend, P. A. & Masters, K. L. Lattice-work corridors for climate change: A conceptual framework for biodiversity conservation and social-ecological resilience in a tropical elevational gradient. Ecol. Soc. https://doi.org/10.5751/ES-07324-200201 (2015).Article 

    Google Scholar 
    179.Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).
    Google Scholar 
    180.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).ADS 

    Google Scholar 
    181.Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    182.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    183.Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl. Acad. Sci. 112, E6084–E6084 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    184.Gómez-Ruiz, P. A., Sáenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine–oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    185.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS One 4, 1–6 (2009).
    Google Scholar 
    186.von Holle, B., Yelenik, S. & Gornish, E. S. Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Curr. Landsc. Ecol. Rep. 5, 85–97 (2020).
    Google Scholar 
    187.Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. xx, 1–9 (2020).
    Google Scholar 
    188.Monitoring Task Force. Briefing note on the Task Force on Monitoring for the UN Decade on Ecosystem Restoration 2021–2030 (2020).189.Elliott, S. The potential for automating assisted natural regeneration of tropical forest ecosystems. Biotropica 48, 825–833 (2016).
    Google Scholar  More

  • in

    Ecological dependencies make remote reef fish communities most vulnerable to coral loss

    Fish distributionWe rasterized a detailed reef distribution vector map35 at 5 × 5 latitude/longitude degrees (by considering as reef area each cell in the raster intersecting a polygon in the original shapefile). We collected all the occurrences of fish species intersecting the rasterized reef area from both the Ocean Biogeographic Information System36 and the Global Biodiversity Information Facility37. We used taxonomic and biogeographical (i.e., latitudinal/longitudinal extremes for a given species) information from FishBase38 to exclude potential incorrect occurrences (i.e., all the records falling outside the known species ranges). We also restricted the list to all the species for which FishBase provided relevant ecological information (as these were needed to evaluate prey-predator species interactions and identify indirect links between fish species and coral, see below). The filtered list comprises 9143 fish species.For these species, we used occurrence data to generate species ranges. For this, we used the α-hull procedure39, but instead of pre-selecting an α parameter and using it for all species, we developed a procedure to obtain conservative species ranges while including most of the known occurrences. First, we selected a very small α (0.001), to obtain a hull including most of the occurrences. Then, we progressively incremented α in small amounts (0.005) by computing, for each increment, the ratio between the relative reduction in the resulting hull area (in respect to the previous hull), and the relative reduction of occurrences included in the hull (in respect to the total number of available occurrences for the target species). We stopped increasing α when the ratio became 0.97.The random forest predictor was used to assess the probability of trophic interaction between a large list of potential interactions generated by combining all fish species from our reef fish occurrence dataset known to rely mainly or exclusively on fish for their survival (i.e. “true piscivores”, FishBase trophic level  > 3.5), with all the fish in the dataset. The full list included 31,768,450 potential interactions, that we reduced to 6,721,450 interactions by keeping only the interacting pairs identified by the random forest classifier with a probability ≥0.9.(3) If the ecological dependency between two species is actually manifested then the two species must obviously co-occur at some locations, and vice-versa, co-occurrence is a necessary pre-requisite for an ecological dependency. Following this logic, we took a final, additional step to further filter and improve the fish → fish interaction list. In particular, we quantified the tendency for species to co-occur in the same locality as one potential proxy layer for species interactions, complementary to our other approaches. There are various factors that can affect the co-occurrence of two species. In a simplification, this can emerge from stochasticity, shared environmental requirements, shared evolutionary history, and ecological dependencies. We attempted to disentangle the effect of the last factor from the first three.For each target species pair, we computed overlap in distribution as the raw number of reef localities where both target species were found. Then, we compared this number with the null expectation obtained by randomizing the distribution of species occurrences across reef localities. We designed a null model accounting for randomness, species niche and biogeographical history, and hence randomizing the occurrence of species only within areas where they could have possibly occurred according to environmental conditions and biogeographical factors (e.g., in the absence of hard or soft barriers). To implement the null model, we first excluded from the list of potential localities all the areas outside the biogeographical regions where the target species had been recorded, with regions identified according to Spalding et al.49. Then, within the remaining areas, we identified all the reef localities with climate envelopes favourable to target species survival. For this, we identified the min and max of major environmental drivers (mean annual surface temperature, salinity, pH) where the target species occurred, and then we identified all the localities with conditions not exceeding these limits. We generated, for each pairwise species comparison, one thousand randomized sets of species occurrences by rearranging randomly species occurrence within all suitable localities. We quantified co-occurrence between the species pair in each random scenario. Finally, we compared the observed co-occurrence with the random co-occurrences, computing a p-value as the fraction of null models with co-occurrence identical or higher than the observed one. We kept only the pairs with a p-value  More

  • in

    Using a climate attribution statistic to inform judgments about changing fisheries sustainability

    1.Silvy, Y., Guilyardi, E., Sallee, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).ADS 
    CAS 

    Google Scholar 
    2.Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).ADS 

    Google Scholar 
    3.Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).ADS 
    PubMed Central 
    PubMed 

    Google Scholar 
    4.Grothmann, T. & Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Change 15, 199–213 (2005).
    Google Scholar 
    5.Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).
    Google Scholar 
    6.Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).ADS 

    Google Scholar 
    7.van Putten, I. E. et al. Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES J. Mar. Sci. 73, 1306–1318 (2016).
    Google Scholar 
    8.Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. in Advances in Marine Biology (ed. Curry, BE) vol. 74, 1–68 (2016).9.Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
    Google Scholar 
    10.Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl. Acad. Sci. U. S. A. 116, 18378–18383 (2019).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    11.Overland, J. E. et al. Climate controls on marine ecosystems and fish populations. J. Mar. Syst. 79, 305–315 (2010).
    Google Scholar 
    12.Merryfield, W. J. et al. Current and emerging developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. 101, E869–E896 (2020).
    Google Scholar 
    13.Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).ADS 

    Google Scholar 
    14.Palmer, T. N. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl. Acad. Sci. U. S. A. 116, 24390–24395 (2019).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    15.Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).
    Google Scholar 
    16.Myers, R. A. When do environment-recruitment correlations work?. Rev. Fish Biol. Fish. 8, 285–305 (1998).
    Google Scholar 
    17.Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855 (2018).
    Google Scholar 
    18.Deyle, E. R. et al. Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. U. S. A. 110, 6430–6435 (2013).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    19.Planque, B. Projecting the future state of marine ecosystems, ‘la grande illusion’?. ICES J. Mar. Sci. 73, 204–208 (2016).MathSciNet 

    Google Scholar 
    20.Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).ADS 
    CAS 

    Google Scholar 
    21.Maguire, K. C., Nieto-Lugilde, D., Fitzpatrick, M. C., Williams, J. W. & Blois, J. L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 46, 343–368 (2015).
    Google Scholar 
    22.Glaser, S. M. et al. Complex dynamics may limit prediction in marine fisheries. Fish Fish. 15, 616–633 (2014).
    Google Scholar 
    23.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 

    Google Scholar 
    24.Palmer, M. C., Deroba, J. J., Legault, C. M. & Brooks, E. N. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).ADS 
    CAS 

    Google Scholar 
    25.Swain, D. P., Benoit, H. P., Cox, S. P. & Cadigan, N. G. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).ADS 
    CAS 

    Google Scholar 
    26.Pershing, A. J. et al. Response to comments on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).CAS 

    Google Scholar 
    27.Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).ADS 
    CAS 

    Google Scholar 
    28.Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change 7, 23–41 (2016).
    Google Scholar 
    29.Walsh, J. E. et al. The high latitude heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 99, S39–S43 (2018).
    Google Scholar 
    30.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP85 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 117, 19656–19657 (2020).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    31.Dorn, M. W. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-walleye-pollock-stock-gulf-alaska (2020).32.Barbeaux, S. J. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-pacific-cod-stock-gulf-alaska (2020).33.Litzow, M. A. et al. Evaluating ecosystem change as Gulf of Alaska temperature exceeds the limits of preindustrial variability. Prog. Oceanogr. 186, 102393 (2020).
    Google Scholar 
    34.Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).
    Google Scholar 
    35.Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020).
    Google Scholar 
    36.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087 (2020).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    37.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 

    Google Scholar 
    38.Hsieh, C.-H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).ADS 
    CAS 

    Google Scholar 
    39.Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650 (2020).
    Google Scholar 
    40.Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).
    Google Scholar 
    41.Rogers, L. A., Wilson, M. T., Duffy-Anderson, J. T., Kimmel, D. G. & Lamb, J. F. Pollock and “the Blob”: Impacts of a marine heatwave on walleye pollock early life stages. Fish. Oceanogr. 30, 142–158 (2021).
    Google Scholar 
    42.Filbee-Dexter, K. et al. Quantifying ecological and social drivers of ecological surprise. J. Appl. Ecol. 55, 2135–2146 (2018).
    Google Scholar 
    43.Allen, M. Liability for climate change. Nature 421, 891–892 (2003).ADS 
    CAS 

    Google Scholar 
    44.Lloyd, E. A. & Oreskes, N. Climate change attribution: When is it appropriate to accept new methods?. Earths Future 6, 311–325 (2018).ADS 

    Google Scholar 
    45.Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).ADS 

    Google Scholar 
    46.Frame, D. J. et al. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Change 162, 781–797 (2020).ADS 

    Google Scholar 
    47.Frame, D. J., Wehner, M. F., Noy, I. & Rosier, S. M. The economic costs of Hurricane Harvey attributable to climate change. Clim. Change 160, 271–281 (2020).ADS 

    Google Scholar 
    48.Winkler, A. J. et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).ADS 

    Google Scholar 
    49.Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190013 (2019).ADS 

    Google Scholar 
    50.Litzow, M. A. et al. Quantifying a novel climate through changes in PDO-climate and PDO-salmon relationships. Geophys. Res. Lett. 47, 2020GL087972 (2020).ADS 

    Google Scholar 
    51.Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. 193, 102555 (2021).
    Google Scholar 
    52.Bailey, K. M. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Mar. Ecol. Prog. Ser. 198, 215–224 (2000).ADS 

    Google Scholar 
    53.Jutfelt, F. Metabolic adaptation to warm water in fish. Funct. Ecol. 34, 1138–1141 (2020).
    Google Scholar 
    54.Walsh, J. E. et al. Downscaling of climate model output for Alaskan stakeholders. Environ. Model. Softw. 110, 38–51 (2018).
    Google Scholar 
    55.Lott, F. C. & Stott, P. A. Evaluating simulated fraction of attributable risk using climate observations. J. Clim. 29, 4565–4575 (2016).ADS 

    Google Scholar 
    56.Freeland, H. & Ross, T. `The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014–2018?. Deep-Sea Res. I: Oceanogr. Res. Pap. 150, 103061 (2019).
    Google Scholar 
    57.Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).ADS 

    Google Scholar 
    58.Adamson, M. W. & Hilker, F. M. Resource-harvester cycles caused by delayed knowledge of the harvested population state can be dampened by harvester forecasting. Theor. Ecol. 13, 425–434 (2020).
    Google Scholar 
    59.Dorn, M. W. & Zador, S. G. A risk table to address concerns external to stock assessments when developing fisheries harvest recommendations. Ecosyst. Heal. Sustain. 6, 2 (2020).
    Google Scholar 
    60.Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. Deep-Sea Res. I: Oceanogr Res. Pap. 50, 691–699 (2003).ADS 

    Google Scholar 
    61.Lauffenburger, N., Williams, K. & Jones, D. Results of the acoustic-trawl surveys of walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska, March 2019. https://repository.library.noaa.gov/view/noaa/23711/ (2019).62.Stone, D. A., Rosier, S. M. & Frame, D. J. The question of life, the universe and event attribution. Nat. Clim. Change 11, 276–278 (2021).ADS 

    Google Scholar 
    63.Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552 (2003).
    Google Scholar 
    64.Holmes, E. E., Ward, E. J. & Wills, K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).
    Google Scholar 
    65.Yau, K. K. W., Wang, K. & Lee, A. H. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).MathSciNet 
    MATH 

    Google Scholar 
    66.Zuur, A. F., Ieno, N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 

    Google Scholar 
    67.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Series B Stat. Methodol. 65, 95–114 (2003).MathSciNet 
    MATH 

    Google Scholar 
    68.Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–29 (2017).
    Google Scholar 
    69.R Core Team. R: A language and environment for statistical computing. v4.0.2. http://www.r-project.org/ (2020).70.Buerkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    71.Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Series Stat. Soc. 182, 389–402 (2019).MathSciNet 

    Google Scholar  More

  • in

    Multi-centennial phase-locking between reproduction of a South American conifer and large-scale drivers of climate

    1.Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).CAS 
    PubMed 

    Google Scholar 
    2.Janzen, D. H. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465–492 (1971).
    Google Scholar 
    3.Silvertown, J. W. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14, 235–250 (1980).
    Google Scholar 
    4.Koenig, W. D. Global patterns of environmental synchrony and the Moran effect. Ecography 25, 283–288 (2002).
    Google Scholar 
    5.Moran, P. A. P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).
    Google Scholar 
    6.Ranta, E., Veijo, K. & Lindströom, J. Spatially autocorrelated disturbances and patterns in population synchrony. Proc. R. Soc. Lond. B 266, 1851–1856 (1999).
    Google Scholar 
    7.Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).
    Google Scholar 
    8.Sanguinetti, J. Producción y Predación de Semillas, Efectos de Corto y Largo Plazo Sobre el Reclutamiento de Plántulas. Caso de Estudio: Araucaria araucana (Universidad Nacional del Comahue, 2008).9.Schauber, E. M. et al. Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83, 1214–1225 (2002).
    Google Scholar 
    10.Fletcher, M.-S. Mast seeding and the El Niño-Southern Oscillation: a long-term relationship? Plant Ecol. 216, 527–533 (2015).
    Google Scholar 
    11.Koenig, W. D. & Knops, J. M. H. Scale of mast-seeding and tree-ring growth. Nature 396, 225 (1998).CAS 

    Google Scholar 
    12.Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Hadad, M. A., Roig, F. A., Arco Molina, J. G. & Hacket-Pain, A. Growth of male and female Araucaria araucana trees respond differently to regional mast events, creating sex-specific patterns in their tree-ring chronologies. Ecol. Indic. 122, 107245 (2021).
    Google Scholar 
    14.Thompson, D. W. J., Wallace, J. M. & Hegerl, G. C. Annular modes in the extratropical circulation. Part II: trends. J. Clim. 13, 1018–1036 (2000).
    Google Scholar 
    15.Holz, A., Kitzberger, T., Paritsis, J. & Veblen, T. T. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 3, 1–25 (2012).
    Google Scholar 
    16.Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R. & Barrera, M. D. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int. J. Wildland Fire 22, 194–206 (2013).
    Google Scholar 
    17.Mundo, I. A., Roig Juñent, F. A., Villalba, R., Kitzberger, T. & Barrera, M. D. Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees-Struct. Funct. 26, 443–458 (2012).
    Google Scholar 
    18.Veblen, T. T., Kitzberger, T., Villalba, R. & Donnegan, J. Fire history in Northern Patagonia: the roles of humans and climatic variation. Ecol. Monogr. 69, 47–67 (1999).
    Google Scholar 
    19.Sanguinetti, J. & Kitzberger, T. Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer Araucaria araucana. Austral Ecol. 33, 78–87 (2008).
    Google Scholar 
    20.Wigley, T. M. L., Briffa, K. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).
    Google Scholar 
    21.Swetnam, T. W. & Lynch, A. M. Multicentury, regional-scale patterns of Western Spruce budworm outbreaks. Ecol. Monogr. 63, 399–424 (1993).
    Google Scholar 
    22.Kitzberger, T., Veblen, T. T. & Villalba, R. Tectonic influences on tree growth in northern Patagonia, Argentina: the roles of substrate stability and climatic variation. Can. J. Res. 25, 1684–1696 (1995).
    Google Scholar 
    23.Mundo, I. A. et al. Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina. Trees Struct. Funct. 24, 561–570 (2010).
    Google Scholar 
    24.Rozas, V. et al. Climatic cues for secondary growth and cone production are sex-dependent in the long-lived dioecious conifer Araucaria araucana. Agric. Meteorol. 274, 132–143 (2019).
    Google Scholar 
    25.Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).CAS 
    PubMed 

    Google Scholar 
    26.Sanguinetti, J. & Kitzberger, T. Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biol. Invasions 12, 689–706 (2010).
    Google Scholar 
    27.Sanguinetti, J. & Kitzberger, T. Efectos de la producción de semillas y de la heterogeneidad vegetal sobre la supervivencia de semillas y el patrón espacio-temporal de establecimiento de plántulas en Araucaria araucana. Rev. Chil. Hist. Nat. 82, 319–335 (2009).
    Google Scholar 
    28.Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).PubMed 

    Google Scholar 
    29.Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).CAS 
    PubMed 

    Google Scholar 
    30.Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R. & Mohren, G. M. J. El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol. 16, 89–94 (2001).CAS 
    PubMed 

    Google Scholar 
    31.Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. J. Clim. 11, 3128–3147 (1998).
    Google Scholar 
    32.Kitzberger, T., Swetnam, T. W. & Veblen, T. T. Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Glob. Ecol. Biogeogr. 10, 315–326 (2001).
    Google Scholar 
    33.Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).
    Google Scholar 
    34.Silvestri, G. E. & Vera, C. S. Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 30, 2115 (2003).
    Google Scholar 
    35.Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).
    Google Scholar 
    36.Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79, 1039–1047 (2001).
    Google Scholar 
    37.Drobyshev, I., Niklasson, M., Mazerolle, M. J. & Bergeron, Y. Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric. Meteorol. 192–193, 9–17 (2014).
    Google Scholar 
    38.Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The North Atlantic Oscillation synchronises fruit production in western European forests. Ecography 40, 864–874 (2017).
    Google Scholar 
    39.Ascoli, D. et al. Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology 98, 1473 (2017).PubMed 

    Google Scholar 
    40.Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).CAS 

    Google Scholar 
    41.Jacques-Coper, M., Brönnimann, S., Martius, O., Vera, C. & Cerne, B. Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int. J. Climatol. 36, 1359–1374 (2016).
    Google Scholar 
    42.Estudio de la Variabilidad Climáticas en Chile para el Siglo XXI (CONAMA, 2006).43.Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).
    Google Scholar 
    44.Tortorelli, L. A. La explotación racional de los bosques de Araucaria de Neuquén. Su importancia económica. Servir (separata) VI, 1–74 (1942).45.Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A. & Villalba, R. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S) 120–155 (Melbourne Univ. Press, 1995).46.Lara, A. et al. Mapeo de la Ecoregión de los Bosques Valdivianos de Argentina y Chile, en escala 1:500.000 (Fundación Vida Silvestre Aregentina, 1999).47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).48.Cook, E. R., Briffa, K., Shiyatov, S. & Mazepa, V. in Methods of Dendrochronology—Applications in the Environmental Sciences (eds Cook, E. & Kairiukstis, L. A.) 104–132 (Kluwer Academic Publishers, 1990).49.Yamaguchi, D. K. A simple method for cross-dating increment cores from living trees. Can. J. Res. 21, 414–416 (1991).
    Google Scholar 
    50.Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    51.Visser, H. Note on the relation between ring widths and basal area increments. Forest Sci. 41, 297–304 (1995).52.Pedersen, B. S. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79, 79–93 (1998).
    Google Scholar 
    53.Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (University of Arizona, School of Renewable Natural Resources, 1985).54.Melvin, T. M., Briffa, K. R., Nicolussi, K. & Grabner, M. Time-varying-response smoothing. Dendrochronologia 25, 65–69 (2007).
    Google Scholar 
    55.Biondi, F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 9, 216–227 (1999).
    Google Scholar 
    56.Battipaglia, G. et al. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest. PLoS ONE 10, e0120962 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Blasing, T. J., Solomon, A. M. & Duvick, D. N. Response function revisited. Tree-Ring Bull. 44, 1–15 (1984).
    Google Scholar 
    58.Sanguinetti, J. Producción de semillas de Araucaria araucana (Molina) K. Koch durante 15 años en diferentes poblaciones del Parque Nacional Lanín (Neuquén-Argentina). Ecol. Austral 24, 265–275 (2014).
    Google Scholar 
    59.Ficha de Valorización de Resultados. Proyecto Producción, Técnicas de Poscosecha y Desarrollo de Productos a partir del Piñón (FIA, 2011).60.Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).
    Google Scholar 
    61.Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012).CAS 

    Google Scholar 
    62.Grissino-Mayer, H. D. Tree-ring Reconstructions of Climate and Fire at El Malpais National Monument, New Mexico (Univ. of Arizona, 1995).63.Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
    Google Scholar 
    64.Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).
    Google Scholar 
    65.Gouhier, T., Grinsted, A. & Simko, V. Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. R package version 0.20.19 https://github.com/tgouhier/biwavelet (2019).66.Mundo, I. A. Historia de incendios en bosques de Araucaria araucana (Molina) K. Koch de Argentina a través de un análisis dendroecológico (Universidad Nacional de La Plata, 2011).67.Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating Central Equatorial Pacific SST variability over the past millennium. Part I: methodology and validation. J. Clim. 26, 2302–2328 (2013).
    Google Scholar 
    68.Mundo, I. A. et al. Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina. Clim. Past 8, 815–829 (2012).
    Google Scholar  More