Longitudinal monitoring in Cambodia suggests higher circulation of alpha and betacoronaviruses in juvenile and immature bats of three species
1.Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).CAS
PubMed
PubMed Central
Google Scholar
2.Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).CAS
Google Scholar
3.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
4.Woo, P. C. Y. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008 (2012).CAS
PubMed
PubMed Central
Google Scholar
5.Wong, A. C. P., Li, X., Lau, S. K. P. & Woo, P. C. Y. Global epidemiology of bat coronaviruses. Viruses 11, 174 (2019).CAS
PubMed Central
Google Scholar
6.Lacroix, A. et al. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infect. Genet. Evol. 48, 10–18 (2017).CAS
PubMed
Google Scholar
7.Tsuda, S. et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch. Virol. 157, 2349–2355 (2012).CAS
PubMed
PubMed Central
Google Scholar
8.Han, Y. et al. Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Front. Microbiol. 10, 20 (2019).
Google Scholar
9.Xu, L. et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77 (2016).CAS
PubMed
PubMed Central
Google Scholar
10.Chen, Y.-N. et al. Detection of the severe acute respiratory syndrome-related coronavirus and alphacoronavirus in the bat population of Taiwan. Zoonoses Public Health 63, 608–615 (2016).CAS
PubMed
PubMed Central
Google Scholar
11.Wacharapluesadee, S. et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1351 (2013).CAS
PubMed
PubMed Central
Google Scholar
12.Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
13.Drexler, J. F. et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456 (2011).CAS
PubMed
PubMed Central
Google Scholar
14.Amman, B. R. et al. Seasonal pulses of marburg virus circulation in Juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 8, 25 (2012).
Google Scholar
15.Peel, A. J. et al. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proc. R. Soc. Lond. B Biol. Sci. 281, 20132962 (2014).
Google Scholar
16.Hayman, D. T. S. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142591 (2015).
Google Scholar
17.Gloza-Rausch, F. et al. Detection and prevalence patterns of Group I Coronaviruses in Bats, Northern Germany. Emerg. Infect. Dis. 14, 626–631 (2008).PubMed
PubMed Central
Google Scholar
18.Annan, A. et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013).PubMed
PubMed Central
Google Scholar
19.Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, 25 (2017).
Google Scholar
20.Montecino-Latorre, D. et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Health Outlook 2, 2 (2020).PubMed
PubMed Central
Google Scholar
21.Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
22.Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).PubMed
PubMed Central
Google Scholar
23.Wacharapluesadee, S. et al. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: Evidence for seasonal preference in disease transmission. Vector-Borne Zoonot. Dis. 10, 183–190 (2010).
Google Scholar
24.Cappelle, J. et al. Nipah virus circulation at human-bat interfaces, Cambodia. Bull. World Health Organ. 98, 539–547 (2020).PubMed
PubMed Central
Google Scholar
25.Thavry, H., Cappelle, J., Bumrungsri, S., Thona, L. & Furey, N. M. The diet of the cave nectar bat (#Eonycteris spelaea# Dobson) suggests it pollinates economically and ecologically significant plants in Southern Cambodia. Zool. Stud. 56, 25 (2017).
Google Scholar
26.Lim, T., Cappelle, J., Hoem, T. & Furey, N. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?. PLoS One 13, e0196554 (2018).PubMed
PubMed Central
Google Scholar
27.Sikes, R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).PubMed
PubMed Central
Google Scholar
28.Anthony, E. L. P. Age determination in bats. In Ecological and Behavioral Methods for the Study of Bats 47–58 (Smithsonian Press, 1988).
Google Scholar
29.Racey, P. A. Reproductive assessment. In Behavioural and Ecological Methods for the Study of Bats 249–264 (Johns Hopkins University Press, 2009).
Google Scholar
30.Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).CAS
PubMed
PubMed Central
Google Scholar
31.Quan, P.-L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 1, 25 (2010).
Google Scholar
32.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS
PubMed
PubMed Central
Google Scholar
33.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
34.Burgin, C. Family Rhinolophidae, horseshoe bats. In Handbook of the Mammals of the World Vol. 9 260–332 (Lynx Edicions, 2019).
Google Scholar
35.Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177 (2018).
Google Scholar
36.Racey, P. A. & Entwistle, E. Life history and reproductive strategies of bats. Reprod. Biol. Bats 20, 363–468 (2000).
Google Scholar
37.Furey, N. M., Mackie, I. J. & Racey, P. A. Reproductive phenology of bat assemblages in Vietnamese karst and its conservation implications. Acta Chiropterol. 13, 341–354 (2011).
Google Scholar
38.Sterling, E. J., Hurley, M. M. & Le, D. M. Vietnam: A Natural History (Yale University Press, 2006).
Google Scholar
39.Van, N. K., Hzien, N. T., Loc, P. K. & Hiep, N. T. Bioclimatic Diagrams of Vietnam (Vietnam National University Publishing House, 2000).
Google Scholar
40.Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 10, 0004796 (2016).
Google Scholar
41.Peel, A. J. et al. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci. Rep. 8, 3859 (2018).ADS
PubMed
PubMed Central
Google Scholar
42.Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T. & Klein, A.-M. Bat pest control contributes to food security in Thailand. Biol. Conserv. 171, 220–223 (2014).
Google Scholar
43.Furey, N. M., Racey, P. A., Ith, S., Touch, V. & Cappelle, J. Reproductive ecology of wrinkle-lipped free-tailed bats Chaerephon plicatus (Buchannan, 1800) in relation to Guano production in Cambodia. Diversity 10, 91 (2018).
Google Scholar
44.Ades, G. W. J. & Dudgeon, D. Insect seasonality in Hong Kong: A monsoonal environment in the northern tropics (1999).45.Kai, K. H. & Corlett, R. T. Seasonality of forest invertebrates in Hong Kong, South China. J. Trop. Ecol. 18, 637–644 (2002).
Google Scholar
46.Kingston, T., Lim, B. L. & Zubaid, A. Bats of Krau Wildlife Reserve (Universiti Kebangsaan Malaysia, 2006).
Google Scholar
47.Nurul-Ain, E., Rosli, H. & Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 49, 382–394 (2017).
Google Scholar
48.Fleming, T. H., Hooper, E. T. & Wilson, D. E. Three Central American Bat Communities: Structure, reproductive cycles, and movement patterns. Ecology 53, 555–569 (1972).
Google Scholar
49.Bernard, R. T. & Cumming, G. S. African bats: Evolution of reproductive patterns and delays. Q. Rev. Biol. 72, 253–274 (1997).CAS
PubMed
Google Scholar
50.Nguyen, S. T. et al. Bats (Chiroptera) of Bidoup Nui Ba National Park, Dalat Plateau, Vietnam. Mammal Stud. 46, 53–68 (2021).
Google Scholar
51.Plowright, R. K. et al. Urban habituation, ecological connectivity and epidemic dampening: The emergence of Hendra virus from flying foxes (Pteropus spp.). Proc. R. Soc. B Biol. Sci. 278, 3703–3712 (2011).
Google Scholar
52.Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019).PubMed
PubMed Central
Google Scholar More