More stories

  • in

    Longitudinal monitoring in Cambodia suggests higher circulation of alpha and betacoronaviruses in juvenile and immature bats of three species

    1.Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).CAS 

    Google Scholar 
    3.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Woo, P. C. Y. et al. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86, 3995–4008 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Wong, A. C. P., Li, X., Lau, S. K. P. & Woo, P. C. Y. Global epidemiology of bat coronaviruses. Viruses 11, 174 (2019).CAS 
    PubMed Central 

    Google Scholar 
    6.Lacroix, A. et al. Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia. Infect. Genet. Evol. 48, 10–18 (2017).CAS 
    PubMed 

    Google Scholar 
    7.Tsuda, S. et al. Genomic and serological detection of bat coronavirus from bats in the Philippines. Arch. Virol. 157, 2349–2355 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Han, Y. et al. Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Front. Microbiol. 10, 20 (2019).
    Google Scholar 
    9.Xu, L. et al. Detection and characterization of diverse alpha- and betacoronaviruses from bats in China. Virol. Sin. 31, 69–77 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Chen, Y.-N. et al. Detection of the severe acute respiratory syndrome-related coronavirus and alphacoronavirus in the bat population of Taiwan. Zoonoses Public Health 63, 608–615 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Wacharapluesadee, S. et al. Group C betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1351 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Drexler, J. F. et al. Amplification of emerging viruses in a bat colony. Emerg. Infect. Dis. 17, 449–456 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Amman, B. R. et al. Seasonal pulses of marburg virus circulation in Juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 8, 25 (2012).
    Google Scholar 
    15.Peel, A. J. et al. The effect of seasonal birth pulses on pathogen persistence in wild mammal populations. Proc. R. Soc. Lond. B Biol. Sci. 281, 20132962 (2014).
    Google Scholar 
    16.Hayman, D. T. S. Biannual birth pulses allow filoviruses to persist in bat populations. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142591 (2015).
    Google Scholar 
    17.Gloza-Rausch, F. et al. Detection and prevalence patterns of Group I Coronaviruses in Bats, Northern Germany. Emerg. Infect. Dis. 14, 626–631 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    18.Annan, A. et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 19, 456–459 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    19.Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evol. 3, 25 (2017).
    Google Scholar 
    20.Montecino-Latorre, D. et al. Reproduction of East-African bats may guide risk mitigation for coronavirus spillover. One Health Outlook 2, 2 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    21.Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    23.Wacharapluesadee, S. et al. A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: Evidence for seasonal preference in disease transmission. Vector-Borne Zoonot. Dis. 10, 183–190 (2010).
    Google Scholar 
    24.Cappelle, J. et al. Nipah virus circulation at human-bat interfaces, Cambodia. Bull. World Health Organ. 98, 539–547 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Thavry, H., Cappelle, J., Bumrungsri, S., Thona, L. & Furey, N. M. The diet of the cave nectar bat (#Eonycteris spelaea# Dobson) suggests it pollinates economically and ecologically significant plants in Southern Cambodia. Zool. Stud. 56, 25 (2017).
    Google Scholar 
    26.Lim, T., Cappelle, J., Hoem, T. & Furey, N. Insectivorous bat reproduction and human cave visitation in Cambodia: A perfect conservation storm?. PLoS One 13, e0196554 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    27.Sikes, R. S. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mammal. 97, 663–688 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    28.Anthony, E. L. P. Age determination in bats. In Ecological and Behavioral Methods for the Study of Bats 47–58 (Smithsonian Press, 1988).
    Google Scholar 
    29.Racey, P. A. Reproductive assessment. In Behavioural and Ecological Methods for the Study of Bats 249–264 (Johns Hopkins University Press, 2009).
    Google Scholar 
    30.Watanabe, S. et al. Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Quan, P.-L. et al. Identification of a severe acute respiratory syndrome coronavirus-like virus in a leaf-nosed bat in Nigeria. MBio 1, 25 (2010).
    Google Scholar 
    32.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    34.Burgin, C. Family Rhinolophidae, horseshoe bats. In Handbook of the Mammals of the World Vol. 9 260–332 (Lynx Edicions, 2019).
    Google Scholar 
    35.Martín-Martín, A., Orduna-Malea, E., Thelwall, M. & Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 12, 1160–1177 (2018).
    Google Scholar 
    36.Racey, P. A. & Entwistle, E. Life history and reproductive strategies of bats. Reprod. Biol. Bats 20, 363–468 (2000).
    Google Scholar 
    37.Furey, N. M., Mackie, I. J. & Racey, P. A. Reproductive phenology of bat assemblages in Vietnamese karst and its conservation implications. Acta Chiropterol. 13, 341–354 (2011).
    Google Scholar 
    38.Sterling, E. J., Hurley, M. M. & Le, D. M. Vietnam: A Natural History (Yale University Press, 2006).
    Google Scholar 
    39.Van, N. K., Hzien, N. T., Loc, P. K. & Hiep, N. T. Bioclimatic Diagrams of Vietnam (Vietnam National University Publishing House, 2000).
    Google Scholar 
    40.Plowright, R. K. et al. Transmission or within-host dynamics driving pulses of zoonotic viruses in reservoir-host populations. PLoS Negl. Trop. Dis. 10, 0004796 (2016).
    Google Scholar 
    41.Peel, A. J. et al. Support for viral persistence in bats from age-specific serology and models of maternal immunity. Sci. Rep. 8, 3859 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Wanger, T. C., Darras, K., Bumrungsri, S., Tscharntke, T. & Klein, A.-M. Bat pest control contributes to food security in Thailand. Biol. Conserv. 171, 220–223 (2014).
    Google Scholar 
    43.Furey, N. M., Racey, P. A., Ith, S., Touch, V. & Cappelle, J. Reproductive ecology of wrinkle-lipped free-tailed bats Chaerephon plicatus (Buchannan, 1800) in relation to Guano production in Cambodia. Diversity 10, 91 (2018).
    Google Scholar 
    44.Ades, G. W. J. & Dudgeon, D. Insect seasonality in Hong Kong: A monsoonal environment in the northern tropics (1999).45.Kai, K. H. & Corlett, R. T. Seasonality of forest invertebrates in Hong Kong, South China. J. Trop. Ecol. 18, 637–644 (2002).
    Google Scholar 
    46.Kingston, T., Lim, B. L. & Zubaid, A. Bats of Krau Wildlife Reserve (Universiti Kebangsaan Malaysia, 2006).
    Google Scholar 
    47.Nurul-Ain, E., Rosli, H. & Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 49, 382–394 (2017).
    Google Scholar 
    48.Fleming, T. H., Hooper, E. T. & Wilson, D. E. Three Central American Bat Communities: Structure, reproductive cycles, and movement patterns. Ecology 53, 555–569 (1972).
    Google Scholar 
    49.Bernard, R. T. & Cumming, G. S. African bats: Evolution of reproductive patterns and delays. Q. Rev. Biol. 72, 253–274 (1997).CAS 
    PubMed 

    Google Scholar 
    50.Nguyen, S. T. et al. Bats (Chiroptera) of Bidoup Nui Ba National Park, Dalat Plateau, Vietnam. Mammal Stud. 46, 53–68 (2021).
    Google Scholar 
    51.Plowright, R. K. et al. Urban habituation, ecological connectivity and epidemic dampening: The emergence of Hendra virus from flying foxes (Pteropus spp.). Proc. R. Soc. B Biol. Sci. 278, 3703–3712 (2011).
    Google Scholar 
    52.Peel, A. J. et al. Synchronous shedding of multiple bat paramyxoviruses coincides with peak periods of Hendra virus spillover. Emerg. Microbes Infect. 8, 1314–1323 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Conserving evolutionarily distinct species is critical to safeguard human well-being

    Dataset of beneficial plantsI collated a species-level dataset of plant benefits (presence/absence data) starting from the information gathered by Kleunen et al.32. These authors extracted data from the WEP database (National Plant Germplasm System GRIN-GLOBAL; https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearcheco.aspx, Accessed 7 Jan 2016), which is based on the book by Wiersema and León20. Their dataset included 84 categories and subcategories of plant benefits pertaining human and animal nutrition, materials, fuels, medicine, useful poisons, social and environmental benefits. Subcategories of benefits, which often included very few records, were merged here into 25 standard and major categories following the guidelines in the Economic Botany Data Collection Standard33 as in Molina-Venegas et al.13, namely ornamental plants, soil improvers, hedging/shelter, human food, human-food additives, vertebrate food, invertebrate food, fuelwood, charcoal, other biofuels, timber, cane/stems, fibres, tannins/dyestuffs, beads, gums/resins, lipids, waxes, essential oils/scents, latex/rubber, medicines, invertebrate poison, vertebrate poison, smoking materials/drugs and symbolic/inspirational plants (Fig. 1). A few records (n = 93) that could not be assigned to any of the above categories were disregarded, and so was the category ‘gene source’ because unlike other benefits, any species is intrinsically a potential gene donor and hence there is not a clear link between the benefit and species features. Note that this is not to say that preserving genetic diversity, which indeed is the underlying message of this research, is a meaningless goal. Infraspecific taxa were collapsed at the species level, and the very few fern taxa in the original database32 were excluded. In total, I gathered 15,834 plant-benefit records sorted in a matrix of 25 types of benefits and 9521 species of seed plants. Most species (83.74%) provided only one or two benefits representing 62.83% of the records in the dataset, and the maximum number of benefits per species was 10 (only three species). Although the WEP database is the largest species-level database on plant benefits32, it does not claim to be comprehensive20. Yet, the size of the dataset I gathered here represented 76.19% of the total seed-plant genus-level records collated for the same types of benefits in a more comprehensive survey by Molina-Venegas et al.13 that based on Mabberley’s Plant-book34. Moreover, the total number of records per category (at the genus-level) strongly correlated between the datasets (Pearson r = 0.94, p  More

  • in

    Plasticity in organic composition maintains biomechanical performance in shells of juvenile scallops exposed to altered temperature and pH conditions

    1.Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hofmann, G. E. et al. High-frequency dynamics of ocean ph: A multi-ecosystem comparison. PLoS ONE 6(12), e28983 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Kroeker, K. J. et al. Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecol. Lett. 19, 771–779 (2016).PubMed 

    Google Scholar 
    4.Gutiérrez, D. et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 38, L07603. https://doi.org/10.1029/2010GL046324 (2011).ADS 
    Article 

    Google Scholar 
    5.Aiken, C. M., Navarrete, S. A. & Pelegrí, J. L. Potential changes in larval dispersal and alongshore connectivity on the central Chilean coast due to an altered wind climate. J. Geophys. Res. 116, G04026. https://doi.org/10.1029/2011JG001731 (2011).ADS 
    Article 

    Google Scholar 
    6.Lagos, N. A., Castilla, J. C. & Broitman, B. Spatial Environmental correlates of intertidal recruitment: A test using barnacles in northern Chile. Ecol. Monogr. 78, 245–261 (2008).
    Google Scholar 
    7.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 84. https://doi.org/10.1038/s41559-017-0084 (2017).Article 
    PubMed 

    Google Scholar 
    8.Broitman, B. R. et al. Phenotypic plasticity is not a cline: Thermal physiology of an intertidal barnacle over 20° of latitude. J. Anim. Ecol. 00, 1–12. https://doi.org/10.1111/1365-2656.13514 (2021).Article 

    Google Scholar 
    9.Ramajo, L. et al. Physiological responses of juvenile Chilean scallops (Argopecten purpuratus) to isolated and combined environmental drivers of coastal upwelling. ICES J. Mar. Sci. 76, 1836e1849 (2019).
    Google Scholar 
    10.Saavedra, L. M., Saldías, G., Broitman, B. & Vargas, C. Carbonate chemistry dynamics in shellfish farming areas along the Chilean coast: Natural ranges and biological implications. ICES J. Mar. Sci. 78, 323–339 (2021).
    Google Scholar 
    11.Lardies, M. A. et al. Physiological and histopathological impacts of increased carbon dioxide and temperature on the scallops Argopecten purpuratus cultured under upwelling influences in northern Chile. Aquaculture 479, 455–466 (2017).
    Google Scholar 
    12.Ramajo, L. et al. Upwelling intensity modulates the fitness and physiological performance of coastal species: Implications for the aquaculture of the scallop Argopecten purpuratus in the Humboldt Current System. Sci. Total Environ. 745, 140949 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Wang, D. et al. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    15.Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).ADS 

    Google Scholar 
    16.Ramajo, L. et al. Plasticity and trade-offs in physiological traits of intertidal mussels subjected to freshwater-induced environmental variation. Mar. Ecol. Prog. Ser. 553, 93–109 (2016).ADS 

    Google Scholar 
    17.Leung, J. Y., Connell, S. D., Nagelkerken, I. & Russell, B. D. Impacts of near-future ocean acidification and warming on the shell mechanical and geochemical properties of gastropods from intertidal to subtidal zones. Environ. Sci. Technol. 51, 12097–12103 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Findlay, H. et al. Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss. 6, 2267–2284 (2009).ADS 

    Google Scholar 
    19.Waldbusser, G. et al. Saturation-state sensitivity of marine bivalves larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).ADS 
    CAS 

    Google Scholar 
    20.Tunnicliffe, V. et al. Survival of mussels in extremely acidic waters on a submarine volcano. Nat. Geosci. 2, 344–348 (2009).ADS 
    CAS 

    Google Scholar 
    21.Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 

    Google Scholar 
    22.Leung, J. Y., Russell, B. D. & Connell, S. D. Mineralogical plasticity acts as a compensatory mechanism to the impacts of ocean acidification. Environ. Sci. Technol. 51, 2652–2659 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    23.Duarte, C. et al. The energetic physiology of juvenile mussels, Mytilus chilensis (Hupe): The prevalent role of salinity under current and predicted pCO2 scenarios. Environ. Pollut. 242, 156–163 (2018).CAS 
    PubMed 

    Google Scholar 
    24.Rodolfo-Metalpa, R. et al. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat. Clim. Change. 1, 308–312 (2011).ADS 
    CAS 

    Google Scholar 
    25.Waldbusser, G. et al. Slow shell building, a possible trait for resistance to the effects of acute ocean acidification. Limnol. Oceanogr. 61, 1969–1983 (2016).ADS 

    Google Scholar 
    26.Fitzer, S. C. et al. Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection?. Ecol. Evol. 5, 4875–4884 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Fitzer, S. C., Phoenix, V. R., Cusack, M. & Kamenos, N. A. Ocean acidification impacts mussel control on biomineralization. Sci. Rep. 28, 6218 (2014).
    Google Scholar 
    28.Fitzer, S. C., Cusack, M., Phoenix, V. R. & Kamenos, N. A. Ocean acidification reduces the crystallographic control in juvenile mussel shells. J. Struct. Biol. 188, 39–45 (2014).CAS 
    PubMed 

    Google Scholar 
    29.Fitzer, S. C. et al. Biomineral shell formation under ocean acidification: A shift from order to chaos. Sci. Rep. 6, 21076 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lagos, N. A. et al. Effects of temperature and ocean acidification on shell characteristics of Argopecten purpuratus: Implications for scallop aquaculture in an upwelling-influenced area. Aquac. Environ. Interact. 8, 357–370 (2016).
    Google Scholar 
    31.Ramajo, L. et al. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Glob. Chang. Biol. 22, 2025–2203 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Osores, S. J. et al. Plasticity and inter-population variability in physiological and life-history traits of the mussel Mytilus chilensis: A reciprocal transplant experiment. J. Exp. Mar. Biol. Ecol. 490, 1–12 (2017).
    Google Scholar 
    33.Telesca, L. et al. Plasticity and environmental heterogeneity predict geographic resilience patterns of foundation species to future change. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14758 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Grenier, C. et al. The combined effects of salinity and pH on shell biomineralization of the edible mussel Mytilus chilensis. Environ. Pollut. 263, 114555 (2020).CAS 
    PubMed 

    Google Scholar 
    35.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 

    Google Scholar 
    36.Mackenzie, C. L. et al. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS ONE 9(1), e86764 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Rykaczewski, R. R. et al. Poleward displacement of coastal upwelling-favorable winds in the ocean’s eastern boundary currents through the 21st century. Geophys. Res. Lett. 42, 6424–6431 (2015).ADS 

    Google Scholar 
    38.Rodríguez-Navarro, A. B. Rapid quantification of avian eggshell microstructure and crystallographic-texture using two-dimensional X-ray diffraction. Br. Poult. Sci. 48, 133–144 (2007).PubMed 

    Google Scholar 
    39.Rodríguez-Navarro, A. B. XRD2DScan: New software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J. Appl. Cryst. 39, 905–909 (2006).
    Google Scholar 
    40.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol. 218, 3623–3631 (2015).PubMed 

    Google Scholar 
    41.Li, S. et al. Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata. Environ. Sci. Technol. 50, 1157–1165 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    42.Gestoso, I., Arenas, F. & Olabarria, C. Ecological interactions modulate responses of two intertidal mussel species to changes in temperature and pH. J. Exp. Mar. Biol. 474, 116–125 (2016).
    Google Scholar 
    43.Babarro, J. M., Abad, M. J., Gestoso, I., Silva, E. & Olabarria, C. Susceptibility of two co-existing mytilid species to simulated predation under projected climate change conditions. Hydrobiologia 807, 247–261 (2018).
    Google Scholar 
    44.Barthelat, F., Rim, J. E. & Espinosa, H. D. A review on the structure and mechanical properties of mollusk shells: Perspectives on synthetic biomimetic materials. In Applied Scanning Probe Methods XIII (eds Bhushan, B. & Fuchs, H.) 17–44 (Springer, 2009).
    Google Scholar 
    45.Leung, J. Y. et al. Calcifiers can adjust shell building at the nanoscale to resist ocean acidification. Small 16, 2003186 (2020).CAS 

    Google Scholar 
    46.Chatzinikolaou, E., Grigoriou, P., Keklikoglou, K., Faulwetter, S. & Papageorgiou, N. The combined effects of reduced pH and elevated temperature on the shell density of two gastropod species measured using micro-CT imaging. ICES J. Mar. Sci. 74, 1135–1149 (2017).
    Google Scholar 
    47.Nienhuis, S., Palmer, R. & Harley, C. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail. Proc. R. Soc. Lond. B Biol. Sci. 277, 2553–2558 (2010).CAS 

    Google Scholar 
    48.Bourdeau, P. E. Prioritized phenotypic responses to combined predators in a marine snail. Ecology 90, 1659–1669 (2009).PubMed 

    Google Scholar 
    49.Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Sci. 41, 21–40 (2011).ADS 
    CAS 

    Google Scholar 
    50.Nudelman, F. Nacre biomineralisation: A review on the mechanisms of crystal nucleation (In Seminars in cell & developmental biology), 2–10 (Academic Press, 2015).51.Harper, E. M., Checa, A. G. & Rodríguez-Navarro, A. B. Organization and mode of secretion of the granular prismatic microstructure of Entodesma navicular (Bivalvia: Mollusca). Acta Zool. 90, 132e141 (2009).
    Google Scholar 
    52.Pennington, B. J. & Currey, J. D. A mathematical model for the mechanical properties of scallop shells. J. Zool. 202, 239–263 (1984).
    Google Scholar 
    53.Yevenes, M. A., Lagos, N. A., Farías, L. & Vargas, C. A. Greenhouse gases, nutrients and the carbonate system in the Reloncaví Fjord (Northern Chilean Patagonia): Implications on aquaculture of the mussel, Mytilus chilensis, during an episodic volcanic eruption. Sci. Total Environ. 669, 49–61 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Dickinson, G. H. et al. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol. 215, 29–43 (2012).CAS 
    PubMed 

    Google Scholar 
    55.Gaylord, B. et al. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586–2594 (2011).CAS 
    PubMed 

    Google Scholar 
    56.O’Toole-Howes, M. et al. Deconvolution of the elastic properties of bivalve shell nanocomposites from direct measurement and finite element analysis. J. Mater. Res. 34, 2869–2880 (2019).ADS 

    Google Scholar 
    57.Auzoux-Bordenave, S. et al. Ocean acidification impacts growth and shell mineralization in juvenile abalone (Haliotis tuberculata). Mar. Biol. 167, 11 (2020).CAS 

    Google Scholar 
    58.Torres, R. et al. Evaluation of a semiautomatic system for long-term seawater carbonate chemistry manipulation. Rev. Chil. Hist. Nat. 86, 443–451 (2013).
    Google Scholar 
    59.IPCC. Climate Change 2021. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou). Cambridge University Press. In Press. (2021).60.DOE. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater; version 2 (eds. Dickson, A.G. & Goyet, C.), (ORNL/CDIAC, 74, 1994).61.Meinshausen, M. et al. The RPC greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change. 109, 213–241 (2011).ADS 
    CAS 

    Google Scholar 
    62.Rahn, D. A., Rosenblüth, B. & Rutllant, J. A. Detecting subtle seasonal transitions of upwelling in North-Central Chile. J. Phys. Oceanogr. 45, 854–867 (2015).ADS 

    Google Scholar 
    63.Meng, Y., Guo, Z., Yao, H., Yeung, K. W. & Thiyagarajan, V. Calcium carbonate unit realignment under acidification: A potential compensatory mechanism in an edible estuarine oyster. Mar. Pollut. Bull. 139, 141–149 (2019).CAS 
    PubMed 

    Google Scholar 
    64.Rasband, W. S. ImageJ U.S. National Institute of Health, Maryland, USA (1997–2020). More

  • in

    An intergenerational androgenic mechanism of female intrasexual competition in the cooperatively breeding meerkat

    Study populationWe studied wild meerkats at the Kuruman River Reserve (a ~63 km2 area comprising dry riverbeds, herbaceous flats and grassy dunes) in the Kalahari region of South Africa (26°58′S, 21°49′E)28,48. Our study period (Nov 2011–Apr 2015) included an extended drought, during which female reproductive success tracked rainfall22 (Supplementary Fig. 1). The annual mean population size was 270 animals, in 22 established clans of 4–39 animals15,22. Habituated to close observation ( More

  • in

    Spatial and temporal patterns in the sex ratio of American lobsters (Homarus americanus) in southwestern Nova Scotia, Canada

    1.Hanson, J. M. Predator-prey interactions of American lobster (Homarus americanus) in the southern Gulf of St. Lawrence, Canada. New Zeal. J. Mar. Freshw. Res. 43, 69–88 (2009).
    Google Scholar 
    2.DFO. Canada’s Fisheries Fast Facts 2019. (2020).3.Fisheries and Oceans Canada. Integrated Fishery Management Plan (Summary). Lobster fishing area 27–38. Scotia-Fundy Sector Maritimes Region 2011. DFO Report (2009).4.Howell, W. H., Watson, W. H. & Jury, S. H. Skewed sex ratio in an estuarine lobster (Homarus americanus) population. J. Shellfish Res. 18, 193–201 (1999).
    Google Scholar 
    5.Jury, S. H., Pugh, T. L., Henninger, H., Carloni, J. T. & Watson, W. H. Patterns and possible causes of skewed sex ratios in American lobster (Homarus americanus) populations. Invertebr. Reprod. Dev. https://doi.org/10.1080/07924259.2019.1595184 (2019).Article 

    Google Scholar 
    6.Ogburn, B. M. The effects of sex-biased fisheries on crustacean sex ratios and reproductive output. Invertebr. Reprod. Dev. 63, 200–207 (2019).
    Google Scholar 
    7.Cooper, R., Clifford, R. & Newelll, C. Seasonal abundance of the American lobster, Homarus americanus, in the Boothbay region of Maine. Trans. Am. Fish. Soc. 104, 669–674 (1975).
    Google Scholar 
    8.Pitnick, S. Operational sex ratios and sperm limitation in populations of Drosophila pachea. Behav. Ecol. Sociobiol. 33, 383–391 (1993).
    Google Scholar 
    9.MacDiarmid, A. B. & Butler, M. J. IV. Sperm economy and limitation in spiny lobsters. Behav. Ecol. Sociobiol. 46, 14–24 (1999).
    Google Scholar 
    10.Sato, T. Plausible causes for sperm-store variations in the coconut crab Birgus latro under large male-selective harvesting. Aquat. Biol. 13, 11–19 (2011).
    Google Scholar 
    11.Ogburn, M., Roberts, P., Richie, K., Johnson, E. & Hines, A. Temporal and spatial variation in sperm stores in mature female blue crabs Callinectes sapidus and potential effects on brood production in Chesapeake Bay. Mar. Ecol. Prog. Ser. 507, 249–262 (2014).ADS 

    Google Scholar 
    12.Pardo, L. M., Rosas, Y., Fuentes, J. P., Riveros, M. P. & Chaparro, O. R. Fishery induces sperm depletion and reduction in male reproductive potential for crab species under male-biased harvest strategy. PLoS ONE 10, e0115525 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    13.Pardo, L. M. et al. High fishing intensity reduces females’ sperm reserve and brood fecundity in a eubrachyuran crab subject to sex-and size-biased harvest. ICES J. Mar. Sci. 74, 2459–2469 (2017).
    Google Scholar 
    14.Tremblay, J. M. & Smith, S. J. Lobster (Homarus americanus) catchability in different habitats in late spring and early fall. Mar. Freshw. Res. 52, 1321–1331 (2001).
    Google Scholar 
    15.Karnofsky, E., Atema, J. & RH, E. Field observations of social behavior, shelter use, and foraging in the lobster, Homarus americanus. Biol. Bull. 176, 239–246 (1989).PubMed 

    Google Scholar 
    16.Cowan, D. F., Watson, W., Solow, A. & Mountcastle, A. Thermal histories of brooding lobsters, Homarus americanus, in the Gulf of Maine. Springer 150, 463–470 (2007).
    Google Scholar 
    17.Chang, J., Chen, Y., Holland, D. & Grabowski, J. Estimating spatial distribution of American lobster Homarus americanus using habitat variables. Mar. Ecol. Prog. Ser. 420, 145–156 (2010).ADS 

    Google Scholar 
    18.Anderson, J., Olsen, Z., Wagner Glen Sutton, T., Gelpi, C. & Topping, D. Environmental drivers of the spatial and temporal distribution of spawning blue crabs Callinectes sapidus in the Western Gulf of Mexico. N. Am. J. Fish. Manag. 37, 920–934 (2017).
    Google Scholar 
    19.Crossin, G. T., Al-Ayoub, S. A., Jury, S. H., Howell, W. H. & Watson, W. H. Behavioral thermoregulation in the American lobster Homarus americanus. J. Exp. Biol. 201, 365–374 (1998).PubMed 
    CAS 

    Google Scholar 
    20.Powers, J., Lopez, G., Cerrato, R. & Dove, A. Effects of thermal stress on Long Island Sound lobsters, H. americanus. in Long Island Sound Lobster Research Initiative Working Meeting. University of Connecticut at Avery Point, Groton. (2004).21.Comeau, M. & Savoie, F. Maturity and reproductive cycle of the female American lobster, Homarus americanus, in the southern Gulf of St. Lawrence, Canada. J. Crustac. Biol. https://doi.org/10.1163/20021975-99990290 (2002).Article 

    Google Scholar 
    22.Quinn, B. K. Threshold temperatures for performance and survival of American lobster larvae: A review of current knowledge and implications to modeling impacts of climate change. Fish. Res. 186, 383–396 (2017).
    Google Scholar 
    23.Campbell, A. & Stasko, A. Movement of lobsters (Homarus americanus) tagged in the Bay of Fundy, Canada. Mar. Biol. 92, 393–404 (1986).
    Google Scholar 
    24.Campbell, A. Aggregations of berried lobsters (Homarus americanus) in shallow waters off Grand Manan, eastern Canada. Can. J. Fish. Aquat. Sci. 47, 520–523 (1990).
    Google Scholar 
    25.Watson, W. & Jury, S. H. The relationship between American lobster catch, entry rate into traps and density. Taylor Fr. 9, 59–68 (2013).
    Google Scholar 
    26.Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).ADS 
    PubMed 
    CAS 

    Google Scholar 
    27.Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, 10 (2017).
    Google Scholar 
    28.Aiken, D. E. & Waddy, S. L. Environmental influence on recruitment of the American lobster, Homarus americanus: A perspective. Can. J. Fish. Aquat. Sci. 43, 2258–2270 (1986).
    Google Scholar 
    29.Greenan, B. J. W. et al. Climate change vulnerability of American lobster fishing communities in Atlantic Canada. Front. Mar. Sci. 6, 579 (2019).
    Google Scholar 
    30.QGIS Geographic Information System. QGIS Association. http://www.qgis.org/ (2021).31.Tveite, H. NNJoin. http://arken.nmbu.no/~havatv/gis/qgisplugins/NNJoin (2014).32.Hosmer, D. J., Lemeshow, S. & Sturdivant, R. Applied Logistic Regression (John Wiley & Sons, 2013).MATH 

    Google Scholar 
    33.Thakur, K. K. et al. Risk factors associated with soft-shelled lobsters (Homarus americanus) in southwestern Nova Scotia, Canada. FACETS 2, 15–33 (2017).
    Google Scholar 
    34.Dohoo, I., Martin, W. & Stryhn, H. Veterinary Epidemiologic Research (VER Inc., 2009).
    Google Scholar 
    35.Pezzack, D. S. et al. The American lobster Homarus americanus fishery off of south-western Nova Scotia (Lobster Fishing Area 34). Canadian Stock Assessment Secretariat Research Document 99/32 (1999).36.Watson, W. H. & Little, S. A. Differences in the size at maturity of female American lobsters, Homarus americanus, captured throughout the range of the offshore fishery. J. Crustac. Biol. 25, 585–592 (2005).
    Google Scholar 
    37.Pezzack, D., Tremblay, J., Claytor, R., Frail, C. & Smith, S. Stock status and indicators for the lobster fishery in Lobster Fishing Area 34. Canadian Stock Assessment Secretariat Research Document 2006/101 (2006).38.Wu, Y. & Tang, C. Atlas of ocean currents in eastern Canadian waters. Canadian Technical Report of Hydrography and Ocean Sciences. 271 (2011).39.Brickman, D. Could ocean currents be responsible for the west to east spread of aquatic invasive species in Maritime Canadian waters?. Mar. Pollut. Bull. 85, 235–243 (2014).PubMed 
    CAS 

    Google Scholar 
    40.Cowan, D. F., Solow, A. & Beet, A. R. Patterns in abundance and growth of juvenile lobster Homarus americanus. CSIRO https://doi.org/10.1071/MF01191 (2001).Article 

    Google Scholar 
    41.Morse, B. L., Quinn, B. K., Comeau, M. & Rochette, R. Stock structure and connectivity of the American lobster (Homarus americanus) in the southern Gulf of St. Lawrence: Do benthic movements matter?. Can. J. Fish. Aquat. Sci. 75, 2096–2108 (2018).
    Google Scholar 
    42.Staples, K. W., Chen, Y., Townsend, D. W. & Brady, D. C. Spatiotemporal variability in the phenology of the initial intra-annual molt of American lobster (Homarus americanus Milne Edwards, 1837) and its relationship with bottom temperatures in a changing Gulf of Maine. Fish. Oceanogr. 28, 468–485 (2019).
    Google Scholar 
    43.Goñi, R., Quetglas, A. & Reñones, O. Differential catchability of male and female European spiny lobster Palinurus elephas (Fabricius, 1787) in traps and trammelnets. Fish. Res. 65, 295–307 (2003).
    Google Scholar 
    44.Audet, D., Miron, G. & Moriyasu, M. Biological characteristics of a newly established green crab (Carcinus maenas) population in the southern gulf of St. Lawrence, Canada. J. Shellfish Res. 27, 427–441 (2008).
    Google Scholar 
    45.Laurans, M., Fifas, S., Demaneche, S., Brérette, S. & Debec, O. Modelling seasonal and annual variation in size at functional maturity in the European lobster (Homarus gammarus) from self-sampling data. ICES J. Mar. Sci. 66, 1892–1898 (2009).
    Google Scholar 
    46.Cooper, R. & Uzmann, J. Migrations and growth of deep-sea lobsters, Homarus americanus. Science 171, 288–290 (1971).ADS 
    PubMed 
    CAS 

    Google Scholar 
    47.Robichaud, D. A. & Campbell, A. Annual and seasonal size-frequency changes of trap-caught lobsters (Homarus americanus) in the Bay of Fundy. J. Northw. Atl. Fish. Sci 11, 2 (1991).
    Google Scholar 
    48.Waddy, S. L. & Aiken, D. E. Seasonal variation in spawning by preovigerous American lobster (Homarus americanus) in response to temperature and photoperiod manipulation. Can. J. Fish. Aquat. Sci. 49, 1114–1117 (1992).
    Google Scholar 
    49.Campbell, A. & Stasko, A. B. Movements of lobsters (Homarus americanus) tagged in the Bay of Fundy, Canada. Mar. Biol. Int. J. Life Ocean. Coast. Waters 92, 393–404 (1986).
    Google Scholar 
    50.Haakonsen, H. & Anoruo, A. Tagging and migration of the American lobster Homarus americanus. Rev. Fish. Sci. 2, 79–93 (1994).
    Google Scholar 
    51.Lawton, P. & Lavalli, K. Postlarval, juvenile, adolescent and adult ecology. In Biology of the lobster Homarus americanus (ed. Jd, F.) 47–81 (Academic, 1995).
    Google Scholar 
    52.Attard, J. & Hudon, C. Embryonic development and energetic investment in egg production in relation to size of female lobster (Homarus americanus). Can. J. Fish. Aquat. Sci. 44, 1157–1164 (1987).
    Google Scholar 
    53.Krouse, J. Maturity, sex ratio, and size composition of the natural population of American lobster, Homarus americanus, along the Maine coast. Fish. Bull. 71, 165–173 (1973).
    Google Scholar 
    54.Sato, T. Impacts of large male-selective harvesting on reproduction: Illustration with large decapod crustacean resources. Aqua-BioSci. Monogr. 5, 67–102 (2012).CAS 

    Google Scholar 
    55.Raymond, S. M. C. & Todd, C. R. Assessing risks to threatened crayfish populations from sex-based harvesting and differential encounter rates: A new indicator for reproductive state. Ecol. Indic. 118, 106661 (2020).
    Google Scholar 
    56.Estrella, B. & McKiernan, D. Catch-Per-Unit-Effort and Biological Parameters from the Massachusetts Coastal Lobster (Homarus americanus) Resource: Description and Trends (NOAA Technical Report, 1989).
    Google Scholar 
    57.Smolowitz, R., Chistoserdov, A. Y. & Hsu, A. A description of the pathology epizootic shell disease in the American lobster (Homarus americanus) H. Milne Edwards 1837. J. Shellfish Res. 24, 749–756 (2005).
    Google Scholar 
    58.Glenn, R. & Pugh, T. Epizootic shell disease in American lobster (Homarus americanus) in Massachusetts coastal waters: Interactions of temperature, maturity, and intermolt duration. J. Crustac. Biol. 26, 639–645 (2006).
    Google Scholar 
    59.Chistoserdov, A., Quinn, R., Gubbala, S. & Smolowitz, R. Bacterial communities associated with lesions of shell disease in the American lobster Homarus americanus. J. Shellfish Res. 31, 449–462 (2012).
    Google Scholar 
    60.Meres, N. et al. Dysbiosis in epizootic shell disease of the American lobster (Homarus americanus). J. Shellfish Res. 31, 463–472 (2012).
    Google Scholar 
    61.Shields, J. D., Wheeler, K. N. & Moss, J. A. Histological assessment of the lobster (Homarus americanus) in the ‘100 Lobsters’ project. J. Shellfish Res. 31, 439–447 (2012).
    Google Scholar 
    62.Hoenig, J. M. et al. Impact of disease on the survival of three commercially fished species. Ecol. Appl. 27, 2116–2127 (2017).PubMed 

    Google Scholar 
    63.Stevens, B. Effects of epizootic shell disease in American lobster Homarus americanus determined using a quantitative disease index. Dis. Aquat. Organ. 88, 25–34 (2009).PubMed 

    Google Scholar 
    64.Clark, A. S., Jury, S. H., Goldstein, J. S., Langley, T. G. & Watson, W. H. A comparison of American lobster size structure and abundance using standard and ventless traps. Fish. Res. 167, 243–251 (2015).
    Google Scholar 
    65.Jury, S., Kinnison, M., Howell, W., Winsor, H. & Watson, I. The behavior of lobsters in response to reduced salinity. J. Exp. Mar. Biol. Ecol. 180, 23–37 (1994).
    Google Scholar  More

  • in

    Traits of a mussel transmissible cancer are reminiscent of a parasitic life style

    1.Aktipis, A. The Cheating Cell: How Evolution Helps Us Understand and Treat Cancer (Princeton University Press, 2020).Book 

    Google Scholar 
    2.Martinez-Outschoorn, U. E. et al. Stromal–epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int. J. Biochem. Cell. B. 43(7), 1045–1051. https://doi.org/10.1016/j.biocel.2011.01.023 (2011).CAS 
    Article 

    Google Scholar 
    3.Ujvari, B. et al. Cancer and life-history traits: lessons from host-parasite interactions. Parasitology 143, 533–541. https://doi.org/10.1017/S0031182016000147 (2016).Article 
    PubMed 

    Google Scholar 
    4.Overstreet, R. M. & Lotz, J. M. Host-symbiont relationships: understanding the change from guest to pest. In The Rasputin Effect: Why Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology (ed. Hurst, C.) (Springer, Cham, 2016). https://doi.org/10.1007/978-3-319-28170-4_2.Chapter 

    Google Scholar 
    5.Combes, C. Parasitism: The Ecology and Evolution of Intimate Inter-actions (University of Chicago Press, 2001).
    Google Scholar 
    6.Dujon, A. M. et al. Transmissible cancers in an evolutionary Perspective. iScience 23(7), 101269. https://doi.org/10.1016/j.isci.2020.101269 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Murgia, C., Pritchard, J. K., Kim, S. Y., Fassati, A. & Weiss, R. A. Clonal origin and evolution of a transmissible cancer. Cell 126(3), 477–487. https://doi.org/10.1016/j.cell.2006.05.051 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Rebbeck, C. A., Thomas, R., Breen, M., Leroi, A. M. & Burt, A. Origins and evolution of a transmissible cancer. Evolution 63(9), 2340–2349. https://doi.org/10.1111/j.1558-5646.2009.00724.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Pearse, A. M. & Swift, K. Allograft theory: transmission of devil facial-tumor disease. Nature 439(7076), 549. https://doi.org/10.1038/439549a (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Pye, R. J. et al. A second transmissible cancer in Tasmanian devils. Proc. Natl. Acad. Sci. USA 113(2), 374–379. https://doi.org/10.1073/pnas.1519691113 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Metzger, M. J., Reinisch, C., Sherry, J. & Goff, S. P. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell 161(2), 255–263. https://doi.org/10.1016/j.cell.2015.02.042 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Metzger, M. J. et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature 534(7609), 705–709. https://doi.org/10.1038/nature18599 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Yonemitsu, M. A. et al. A single clonal lineage of transmissible cancer identified in two marine mussel species in South America and Europe. ELife 8, 1029. https://doi.org/10.7554/eLife.47788 (2019).Article 

    Google Scholar 
    14.Garcia-Souto, D. et al. Mitochondrial genome sequencing of marine leukemias reveals cancer contagion between clam species in the Seas of Southern Europe. BioRxiv https://doi.org/10.1101/2021.03.10.434714 (2021).Article 

    Google Scholar 
    15.Hammel, M. et al. Prevalence and polymorphism of a mussel transmissible cancer in Europe. Mol. Ecol. 2, 1–16. https://doi.org/10.1111/mec.16052 (2021).CAS 
    Article 

    Google Scholar 
    16.Skazina, M. et al. First description of a widespread Mytilus trossulus-derived bivalve transmissible cancer lineage in M. trossulus itself. Sci. Rep. 11(5809), 56930 (2021).
    Google Scholar 
    17.Burioli, E. A. V. et al. Implementation of various approaches to study the prevalence, incidence and progression of disseminated neoplasia in mussel stocks. J. Invertebr. Patho. 168, 107271. https://doi.org/10.1016/j.jip.2019.107271 (2019).CAS 
    Article 

    Google Scholar 
    18.Murray, M., James, Z. H. & Martin, W. B. A study of the cytology and karyotype of the canine transmissible venereal tumour. Res. Vet. Sci. 10(6), 565–572. https://doi.org/10.1016/50034-5288(18)34394-7 (1969).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hamede, R. K., McCallum, H. & Jones, M. Biting injuries and transmission of Tasmanian devil facial tumour disease. J. Anim. Ecol. 82(1), 182–190 (2013).Article 

    Google Scholar 
    20.Sunila, I. & Farley, C. Environmental limits for survival of sarcoma cells from the soft-shell clam Mya arenaria. Dis. Aquat. Organ. 7, 111–115. https://doi.org/10.3354/dao007111 (1989).Article 

    Google Scholar 
    21.Carballal, M. J., Barber, B. J., Iglesias, D. & Villalba, A. Neoplastic diseases of marine bivalves. J. Invertebr. Pathol. 131, 83–106. https://doi.org/10.1016/J.JIP.2015.06.004 (2015).Article 
    PubMed 

    Google Scholar 
    22.Carella, F., Figueras, A., Novoa, B. & De Vico, G. Cytomorphology and PCNA expression pattern in bivalves Mytilus galloprovincialis and Cerastoderma edule with haemic neoplasia. Dis. Aquat. Org. 105, 81–87. https://doi.org/10.3354/dao02612 (2013).Article 

    Google Scholar 
    23.Baudoin, M. Host castration as a parasitic strategy. Evolution 29, 335–352. https://doi.org/10.1111/j.1558-5646.1975.tb00213.x (1975).Article 
    PubMed 

    Google Scholar 
    24.Alderman, D. J., Van Banning, P. & Perez-Colomer, A. Two abnormal European oyster (Ostrea edulis) mortalities associated with an abnormal haemocytic condition. Aquaculture 10(4), 335–340. https://doi.org/10.1016/0044-8486(77)90124-7 (1977).Article 

    Google Scholar 
    25.Cosson-Mannevy, M. A., Wong, C. S. & Cretney, W. J. Putative neoplastic disorders in mussels (Mytilus edulis) from southern Vancouver Island waters, British Columbia. J. Invertebr. Pathol. 44(2), 151–160. https://doi.org/10.1016/0022-2011(84)90006-5 (1984).Article 

    Google Scholar 
    26.Brousseau, D. J. Seasonal aspects of sarcomatous neoplasia in Mya arenaria (soft-shell clam) from Long Island Sound. J. Invertebr. Pathol. 50(3), 269–276. https://doi.org/10.1016/0022-2011(87)90092-9 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Peters, E. C. Recent investigations on the disseminated sarcomas of marine bivalve molluscs. In: W. S. Fisher, editor. Diseases processes in marine bivalve mollusc. Washington, DC: special publication No. 18, American Fisheries Society. pp. 74–92 (1988).28.Ford, S. E., Barber, B. J. & Marks, E. Disseminated neoplasia in juvenile Eastern oyster Crassostrea virginica, and its relationship to the reproductive cycle. Dis. Aquat. Org. 28, 73–77. https://doi.org/10.3354/dao028073 (1997).Article 

    Google Scholar 
    29.Barber, B. J. Neoplastic diseases of commercially important marine bivalves. Aquat. Living Resour. 17, 449–466. https://doi.org/10.1051/alr:2004052 (2004).Article 

    Google Scholar 
    30.Randriananja, G. Evolution de la maturation de Mytilus edulis sur deux sites d’élevage du pertuis Breton : bouchots et filières. https://archimer.ifremer.fr/doc/00446/55762/57424.pdf (2006).31.Levitan, D. R. Sperm limitation, gamete competition and sexual selection in external fertilizers (eds. Birkhead, T. R., Moller, A. P.) 175–217. Sperm competition and sexual selection (Academic Press, 1998).32.Arzul, I. et al. Effects of temperature and salinity on the survival of Bonamia ostreae, a parasite infecting flat oysters Ostrea edulis. Dis. Aquat. Organ. 85, 67–75. https://doi.org/10.3354/dao02047 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481(7381), 306–313. https://doi.org/10.1038/nature10762 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Scott, J. & Marusyk, A. Somatic clonal evolution: a selection-centric perspective. Biochim. Biophys. Acta Rev. Cancer 1867(2), 139–150 (2017).CAS 
    Article 

    Google Scholar 
    35.Moore, M. N. & Lowe, D. M. The cytology and cytochemistry of the hemocytes of Mytilus edulis and their response to experimentally injected carbon particles. J. Invertebr. Pathol. 29, 18–30. https://doi.org/10.1016/0022-2011(77)90167-7 (1977).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Rasmussen, L. P. D., Hage, E. & Karlog, O. An electron microscope study of the circulating leucocytes of the marine mussel, Mytilus edulis. J. Invertebr. Pathol. 45, 158–167. https://doi.org/10.1016/0022-2011(85)90005-9 (1985).Article 

    Google Scholar 
    37.Carballal, M. J., López, M. C., Azevedo, C. & Villalba, A. Hemolymph cell types of the mussel Mytilus galloprovincialis. Dis. Aquat. Org. 29, 127–135. https://doi.org/10.3354/dao029127 (1997).Article 

    Google Scholar 
    38.Frei, E. 3rd. & Freireich, E. J. Progress and perspectives in the chemotherapy of acute leukemia. Adv. Chemother. 2, 269–298. https://doi.org/10.1016/b978-1-4831-9930-6.50011-3 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Ellison, R. R. & Murphy, M. L. “Apparent doubling time” of leukemic cells in marrow. Clin. Res. 12, 284 (1964).
    Google Scholar 
    40.Hirt, A., Schmid, A. M., Ammann, R. & Leibungut, K. In pediatric lymphoblastic leukemia of B-Cell origin, a small population of primitive blast cells is noncycling, suggesting them to be leukemia stem cell candidates. Pediatr. Res. 69, 194–199. https://doi.org/10.1203/PDR.0b013e3182092716 (2011).Article 
    PubMed 

    Google Scholar 
    41.Shimomatsuya, T., Tanigawa, N. & Muraoka, R. Proliferative activity of human tumors: assessment using bromodeoxyuridine and flow cytometry. Jpn. J. Cancer Res. 82(3), 357–362. https://doi.org/10.1111/j.1349-7006.1991.tb01854.x (1991).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Ford, S., Schotthoefer, A. & Spruck, C. In vivo dynamics of the microparasite Perkinsus marinus during progression and regression of infections in Eastern oysters. J. Parasitol. 85(2), 273–282. https://doi.org/10.2307/3285632 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Caza, F., Bernet, E., Veyrier, F. J., Betoulle, S. & St-Pierre, Y. Hemocytes released in seawater act as Troyan horses for spreading of bacterial infections in mussels. Sci. Rep. 10, 19696 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    44.McCallum, H. I. et al. Does terrestrial epidemiology apply to marine systems?. Trends Ecol. Evol. 19(11), 585–591. https://doi.org/10.1016/j.tree.2004.08.009 (2004).Article 

    Google Scholar 
    45.Ewald, P. W. Evolutionary biology and the treatment of signs and symptoms of infectious disease. J. Theor. Biol. 86(1), 169–176. https://doi.org/10.1016/0022-5193(80)90073-9 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Poulin, R. Chapter 5-Parasite Manipulation of Host Behavior: An Update and Frequently Asked Questions (eds: Brockmann, H. J., Roper, T. J., Naguib, M., Wynne-Edwards, K. E., Mitani, J. C., Simmons, L. W.). Advances in the Study of Behavior, Academic Press 41, 151–186. https://doi.org/10.1016/S0065-3454(10)41005-0 (2010).47.Cremonte, F., Vázquez, N. & Silva, M. R. Gonad atrophy caused by disseminated neoplasia in Mytilus chilensis cultured in the Beagle Channel, Tierra Del Fuego Province, Argentina. J. Shellfish Res. 30, 845–849. https://doi.org/10.2983/035.030.0325 (2011).Article 

    Google Scholar 
    48.Tissot, T. et al. Host manipulation by cancer cells: expectations, facts, and therapeutic implications. BioEssays 38(3), 276–285. https://doi.org/10.1002/bies/201500163 (2016).Article 
    PubMed 

    Google Scholar 
    49.Thomas, F., Guégan, J. F., Michalakis, Y. & Renaud, F. Parasites and host life-history traits: implications for community ecology and species co-existence. Int. J. Parasitol. 30(5), 669–674. https://doi.org/10.1016/s0020-7519(00)00040-0 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Charles, M. Etude des pathogènes, des conditions physiologiques et pathologiques impliqués dans les mortalités anormales de moules (Mytilus sp.). Biologie animale. Normandie Université. https://tel.archives-ouvertes.fr/tel-0.053331 (2019).51.Anderson, R. M. & May, R. M. Population biology of infectious diseases: part I. Nature 280, 361–367. https://doi.org/10.1038/280361a0 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Kuris, A. M. Trophic interactions: similarity of parasitic castrators to parasitoids. Q. Rev. Biol. 49, 129–148 (1974).Article 

    Google Scholar 
    53.Faure, M. F., David, P., Bonhomme, F. & Bierne, N. Genetic hitchhiking in a subdivided population of Mytilus edulis. BMC Evol. Biol. 8, 164. https://doi.org/10.1186/1471-2148-8-164 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Bierne, N. The distinctive footprints of local hitchhiking in a varied environment and global hitchhiking in a subdivided population. Evolution 64(11), 3254–3272. https://doi.org/10.1111/j.1558-5646.2010.01050.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Suquet, M. et al. Anesthesia in Pacific oyster Crassostrea gigas. Aquat. Living Resour. 22, 29–34. https://doi.org/10.1051/alr/2009006 (2009).CAS 
    Article 

    Google Scholar 
    56.Lubet, P. Recherches sur le cycle sexuel et l’émission des gamètes chez les Mytilidés et les Pectinidés. Rev Trav Inst Pêches marit. 23(4), 390–548 (1959).
    Google Scholar 
    57.Bierne, N. et al. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M galloprovincialis. Mol. Ecol. 12(2), 447–61. https://doi.org/10.1046/j.1365-294x.2003.01730.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Distance sampling surveys reveal 17 million vertebrates directly killed by the 2020’s wildfires in the Pantanal, Brazil

    1.Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Spinoni, J., Naumann, G., Carrao, H., Barbosa, P. & Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 34, 2792–2804 (2014).
    Google Scholar 
    3.Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165(3), 1–21 (2021).
    Google Scholar 
    4.Krawchuk, M. A., Moritz, M. A., Parisien, M. A., Van Dorn, J. & Hayhoe, K. Global Pyrogeography: The current and future distribution of wildfire. PLoS ONE 4(4), e5102 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Fut. 7, 892–910 (2019).ADS 

    Google Scholar 
    6.Garcia, L. C. et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: Integrative Fire Management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293, 112870 (2021).CAS 

    Google Scholar 
    7.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 

    Google Scholar 
    8.Criado, M. G., Myers-Smith, I. H., Bjorkman, A. D., Lehmann, C. E. R. & Stevens, N. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Glob. Ecol. Biogeogr. 29(5), 925–943 (2020).
    Google Scholar 
    9.Mancini, L. D., Corona, P. & Salvati, L. Ranking the importance of Wildfires’ human drivers through a multi-model regression approach. Environ. Impact Assess. Rev. 72, 177–186 (2018).
    Google Scholar 
    10.Moreira, F. et al. Landscape – wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 92(10), 2389–2402 (2011).
    Google Scholar 
    11.Clarke, H. et al. The proximal drivers of large fires: A pyrogeographic study. Front. Earth Sci. 8, 90 (2020).ADS 

    Google Scholar 
    12.Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 1 (2021).ADS 

    Google Scholar 
    13.Daskin, J. H., Aires, F. & Staver, A. C. Determinants of tree cover in tropical floodplains. Proc. R. Soc. B. 286, 20191755 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    14.Kotze, D. C. The effects of fire on wetland structure and functioning. Afr. J. Aquat. Sci. 38(3), 237–247 (2013).
    Google Scholar 
    15.Tedim, F. et al. Defining Extreme Wildfire Events: difficulties, challenges, and impacts. Fire 1, 9 (2018).
    Google Scholar 
    16.Libonati, R. et al. Sistema ALARMES – Alerta de área queimada Pantanal, situação final de 2020 https://www.researchgate.net/publication/350103205_Nota_Tecnica_012021_LASA-UFRJ_Queimadas_Pantanal_2020?channel=doi&linkId=6051109d92851cd8ce483fb1&showFulltext=true (2021).17.Libonati, R., DaCamara, C. C., Peres, F. L., de Carvalho, L. A. S. & Garcia, L. C. Rescue Brazil’s burning Pantanal wetlands. Nature 588, 217–219 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Marengo, J. A. et al. Extreme drought in the Brazilian Pantanal in 2019–2020: Characterization, causes and impacts. Front. Water 3, 639204 (2021).
    Google Scholar 
    19.Marengo, J. A., Alves, L. M. & Torres, R. R. Regional climate change scenarios in the Brazilian Pantanal watershed. Clim. Res. 68(2–3), 201–213 (2016).
    Google Scholar 
    20.Hardesty, J., Myers, R. & Fulks, W. Fire, ecosystems, and people: A preliminary assessment of fire as a global conservation issue. George Wright Forum 22, 78–87 (2005).
    Google Scholar 
    21.Bliege Bird, R., Bird, D. W., Codding, B. F., Parker, C. H. & Jones, J. H. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc. Natl. Acad. Sci. USA 105(39), 14796–14801 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Chang. Biol. 12, 2023–2031 (2006).ADS 

    Google Scholar 
    23.Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl. Acad. Sci. USA 106, 20359–20364 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Pott, A. & Pott, V. J. Features and conservation of the Brazilian Pantanal wetland. Wetl. Ecol. Manag. 12, 547–552 (2004).
    Google Scholar 
    25.Ferraz-Vicentini, K. R. & Salgado-Laboriau, M. L. Palynological analysis of a palm swamp in Central Brasil. J. South Am. Earth Sci. 9(3–4), 207–219 (1996).ADS 

    Google Scholar 
    26.Engstrom, R. T. First-order fire effects on animals: review and recommendations. Fire Ecol. 6(1), 115–130 (2010).
    Google Scholar 
    27.Whelan, R. J., Rodgerson, L., Dickman, C. R. & Sutherland, E. F. Critical life processes of plants and animals: Developing a process-based understanding of population changes in fireprone landscapes (Cambridge University Press, 2002).
    Google Scholar 
    28.van Eeden, L. M. et al. Impacts of the unprecedented 2019–2020 bushfires on Australian animals. https://www.wwf.org.au/ArticleDocuments/353/WWF_Impacts-of-the-unprecedented-2019-2020-bushfires-on-Australian-animals.pdf.aspx (2020).29.Pacheco, L. F., Quispe-Calle, L. C., Suárez-Guzmán, F. A., Ocampo, M. & Claure-Herrera, A. J. Muerte de mamíferos por los incendios de 2019 en la Chiquitania. Ecol. Boliv. 56(1), 4–16 (2021).
    Google Scholar 
    30.Berlinck, C. B. et al. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Braz. J. Biol. 82, e244200 (2021).CAS 
    PubMed 

    Google Scholar 
    31.Andersen, A. N., Woinarski, J. C. Z. & Parr, C. L. Savanna burning for biodiversity: Fire management for faunal conservation in Australian tropical savannas. Austral Ecol. 37, 658–667 (2012).
    Google Scholar 
    32.Komarek, R. Fire and the changing wildlife habitat. Proc. Tall Timbers Fire Ecol. Conf. 2, 35–43 (1963).
    Google Scholar 
    33.Layme, V. M. G., Lima, A. P. & Magnusson, W. E. Effects of fire, food availability and vegetation on the distribution of the rodent Bolomys lasiurus in an Amazonian savanna. J. Trop. Ecol. 20, 183–187 (2004).
    Google Scholar 
    34.Roberts, S. L., van Wagtendonk, J. W., Miles, A. K., Kelt, D. A. & Lutz, J. A. Modeling the effects of fire severity and spatial complexity on small mammals in Yosemite National Park, California. Fire Ecol. 4(2), 83–104 (2008).
    Google Scholar 
    35.Smith, J. K. Wildland Fire in Ecosystems: Effects of Fire on Fauna (Rocky Mountain Research Station, Colorado, 2000).36.Woinarski, J. C. Z. & Legge, S. The impacts of fire on birds in Australia’s tropical savannas. Emu 113(4), 319–352 (2013).
    Google Scholar 
    37.Pires, A. S., Fernandez, F. A., de Freitas, D. & Feliciano, B. R. Influence of edge and fire-induced changes on spatial distribution of small mammals in Brazilian Atlantic Forest fragments. Stud. Neotrop. Fauna Environ. 40(1), 7–14 (2005).
    Google Scholar 
    38.Silveira, L. F., Rodrigues, H. G., Jácomo, A. T. A. & Diniz Filho, J. A. F. Impact of wildfires on the megafauna of Emas National Park, Central Brazil. Oryx 33, 108–114 (1999).39.Tomas, W. M. et al. Checklist of mammals from Mato Grosso do Sul, Brazil. Iheringia, Sér. zool. 107(Suppl), e2017155 (2017).40.Tomas, W. M. et al. Mammals in the Pantanal wetland, Brazil (Pensoft Publishers, 2010).
    Google Scholar 
    41.Burnham, K. P., Anderson, D. R. & Laake, J. L. Estimation of density from line transect sampling of biological populations. Ecol. Monogr. 72, 1–202 (1980).
    Google Scholar 
    42.Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    43.Thielen, D. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLoS ONE 15(1), e0227437 (2020).44.Ciemer, C. et al. An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic Sea surface temperatures. Environ. Res. Lett. 15, 094087 (2020).45.Boers, N., Marwan, N., Barbosa, H. M. J. & Kurths, J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 7, 41489 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Bergier, I. et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 619–620, 1116–1125 (2018).ADS 
    PubMed 

    Google Scholar 
    47.Hofmann, G. et al. The Brazilian Cerrado is becoming hotter and drier. Glob. Chang. Biol. 00, 1–14 (2021).
    Google Scholar 
    48.Tomas, W. M. et al. Sustainability Agenda for the Pantanal Wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30 (2019).ADS 

    Google Scholar 
    49.Schulz, C. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: Synthesis and research agenda. Sci. Total Environ. 687, 1011–1027 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Harris, M. B. et al. Safeguarding the Pantanal wetlands: Threats and conservation initiatives. Conserv. Biol. 19(3), 714–720 (2005).
    Google Scholar 
    51.Ely, P., Fantin-Cruz, I., Tritico, H. M., Girard, P. & Kaplan, D. Dam-induced hydrologic alterations in the rivers feeding the Pantanal. Front. Environ. Sci. 8, 256 (2020).
    Google Scholar 
    52.Roque, F. O. et al. Simulating land use changes, sediment yields, and pesticide use in the Upper Paraguay River Basin: Implications for conservation of the Pantanal wetland. Agric. Ecosyst. Environ. 314, 107405 (2021).53.Guerra, A. et al. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91, 104388 (2020).54.Berlinck, C. N., Lima, L. H. A. & Carvalho Junior, E. A. R. Historical survey of research related to fire management and fauna conservation in the world and in Brazil. Biota Neotropica 21(3), e20201144 (2021).55.Estado de Mato Grosso do Sul. DECRETO Nº 15.654, de 15 de abril de 2021. Institui o Plano Estadual de Manejo Integrado do Fogo, e Dá Outras Providências. (Diário Oficial do Estado, Mato Grosso do Sul nº 10.477, 2021).56.Marino, E. et al. Forest fuel management for wildfire prevention in Spain: A quantitative SWOT analysis. Int. J. Wildland Fire 23, 373–384 (2014).
    Google Scholar 
    57.Finney, M. A. & Cohen, J. D. Expectation and Evaluation of Fuel Management Objectives (Rocky Mountain Research Station, Colorado, 2003).58.Amiro, B. D., Stocks, B. J., Alexander, M. E., Flannigan, M. D. & Wotton, B. M. Fire, climate change, carbon and fuel management in the Canadian boreal forest. Int. J. Wildland Fire 10(4), 405–413 (2001).
    Google Scholar 
    59.Rocca, M. E., Brown, P. M., MacDonald, L. H. & Carrico, C. M. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. Forest Ecol. Manag. 327, 290–305 (2014).
    Google Scholar 
    60.Pott, V. J., Pott, A., Lima, L. C. P., Moreira, S. N. & Oliveira, A. K. M. Aquatic macrophyte diversity of the Pantanal wetland and upper basin. Braz. J. Biol. 71(1), 255–563 (2011).CAS 
    PubMed 

    Google Scholar 
    61.Britski, H. A., Silimon, K. Z. S. & Lopes, B. S. Peixes do Pantanal: Manual de Identificação (EMPRAPA, Brasília, 2007).62.Sousa, T. P. et al. Cytogenetic and molecular data Support the occurrence of three Gymnotus species (Gymnotiformes: Gymnotidae) used as live bait in Corumbá, Brazil: Implications for conservation and management of professional fishing. Zebrafish 14(2), 177–186 (2017).PubMed 

    Google Scholar 
    63.Piva, A., Caramaschi, U. & Albuquerque, N. R. A new species of Elachistocleis (Anura: Microhylidae) from the Brazilian Pantanal. Phyllomedusa 16(2), 143–154 (2017).
    Google Scholar 
    64.Strüssmann, C., Ribeiro, R. A. K., Ferreira, V. L., & Beda, A. D. F. Herpetofauna do Pantanal Brasileiro [Herpetofauna of the Brazilian Pantanal]. (Sociedade Brasileira de Herpetologia, Belo Horizonte, 2007).65.Ferreira, V. L. et al. Répteis do Mato Grosso do Sul [Reptiles from Mato Grosso do Sul]. Brazil. Iheringia Sér. Zool. 107(Suppl), e2017153 (2017).66.Nunes, A. P. Quantas espécies de aves ocorrem no Pantanal? [How many bird species do occur in the Pantanal?]. Atualidades Ornitológicas 160, 45–54 (2011).
    Google Scholar 
    67.Tubelis, D. P. & Tomas, W. M. Bird species of the Pantanal wetland, Brazil.. Ararajuba 11(1), 5–37 (2003).
    Google Scholar 
    68.Thomas, L. et al. Distance software: design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47, 5–14 (2010).PubMed 

    Google Scholar  More

  • in

    Statistical inference, scale and noise in comparative anthropology

    To the Editor — In an insightful Comment Bliege Bird and Codding1 highlight a number of important issues to consider in the analysis of cross-cultural anthropological data. However, a casual reader of the Comment could be forgiven for taking away the message that cross-cultural data in anthropology is inherently flawed, and so is of limited use. We want to emphasize that comparative analysis plays an essential role in all non-experimental sciences, including anthropology and archaeology. This is because when systems cannot be manipulated due to scales of time and space, or issues of logistics or ethics, the only way to evaluate alternative outcomes is by analysing the results of natural experiments. More