Diversity of life history and population connectivity of threadfin fish Eleutheronema tetradactylum along the coastal waters of Southern China
Jones, J. B., Arkhipkin, A. I., Marriott, A. L. & Pierce, G. J. Using statolith elemental signatures to confirm ontogenetic migrations of the squid Doryteuthis gahi around the Falkland Islands (Southwest Atlantic). Chemi. Geol. 481, 85–94. https://doi.org/10.1016/j.chemgeo.2018.01.034 (2018).Article
ADS
CAS
Google Scholar
Wright, P. J., Regnier, T., Gibb, F. M., Augley, J. & Devalla, S. Assessing the role of ontogenetic movement in maintaining population structure in fish using otolith microchemistry. Ecol. Evol. 8, 7907–7920. https://doi.org/10.1002/ece3.4186 (2018).Article
PubMed
PubMed Central
Google Scholar
Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772. https://doi.org/10.1038/s41598-019-52273-8 (2019).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Ryan, D., Wogerbauer, C. & Roche, W. K. Otolith microchemistry to investigate nursery site fidelity and connectivity of juvenile European sea bass in Ireland. Mar. Ecol. Prog. Ser. MFCav2 https://doi.org/10.3354/meps14185 (2022).Article
Google Scholar
Sabetian, A. et al. Fish nearshore habitat-use patterns as ecological indicators of nursery quality. Ecol. Indic. 131, 108225. https://doi.org/10.1016/j.ecolind.2021.108225 (2021).Article
Google Scholar
Nelson, T. R., Hightower, C. L., Coogan, J., Walther, B. D. & Powers, S. P. Patterns and consequences of life history diversity in salinity exposure of an estuarine dependent fish. Environ. Biol. Fish. 104, 419–436. https://doi.org/10.1007/s10641-021-01080-0 (2021).Article
Google Scholar
Russell, A., Taylor, M. D., Barnes, T. C., Johnson, D. D. & Gillanders, B. M. Habitat transitions by a large coastal sciaenid across life history stages, resolved using otolith chemistry. Mar. Environ. Res. 176, 105614. https://doi.org/10.1016/j.marenvres.2022.105614 (2022).Article
CAS
PubMed
Google Scholar
Moore, J. W., Yeakel, J. D., Peard, D., Lough, J. & Beere, M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J. Anim. Ecol. 83, 1035–1046. https://doi.org/10.1111/1365-2656.12212 (2014).Article
PubMed
Google Scholar
Moore, B. R. & Simpfendorfer, C. A. Assessing connectivity of a tropical estuarine teleost through otolith elemental profiles. Mar. Ecol. Prog. Ser. 501, 225–238 (2014).Article
ADS
CAS
Google Scholar
Pan, X. et al. Population connectivity in a highly migratory fish, Japanese Spanish mackerel (Scomberomorus niphonius), along the Chinese coast, implications from otolith chemistry. Fish. Res. 231, 105690. https://doi.org/10.1016/j.fishres.2020.105690 (2020).Article
Google Scholar
Delerue-Ricard, S. et al. Extensive larval dispersal and restricted movement of juveniles on the nursery grounds of sole in the Southern North Sea. J. Sea Res. 155, 101822. https://doi.org/10.1016/j.seares.2019.101822 (2019).Article
Google Scholar
Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421–1435. https://doi.org/10.1111/mec.15414 (2020).Article
CAS
PubMed
Google Scholar
Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).Article
ADS
CAS
Google Scholar
Thomas, O. R., Ganio, K., Roberts, B. R. & Swearer, S. E. Trace element-protein interactions in endolymph from the inner ear of fish: Implications for environmental reconstructions using fish otolith chemistry. Metallomics 9, 239–249. https://doi.org/10.1039/c6mt00189k (2017).Article
CAS
PubMed
Google Scholar
Doubleday, Z. A., Harris, H. H., Izzo, C. & Gillanders, B. M. Strontium randomly substituting for calcium in fish otolith aragonite. Anal. Chem. 86, 865–869. https://doi.org/10.1021/ac4034278 (2014).Article
CAS
PubMed
Google Scholar
Izzo, C., Doubleday, Z. A. & Gillanders, B. M. Where do elements bind within the otoliths of fish?. Mar. Freshwater Res. 67, 1072–1076. https://doi.org/10.1071/mf15064 (2016).Article
CAS
Google Scholar
Clarke, L. M., Gillanders, B., Thorrold, S. R. & Conover, D. O. Population differences in otolith chemistry have a genetic basis in Menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/f10-147 (2011).Article
CAS
Google Scholar
Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution 6(7), 806–816 (2015).Article
Google Scholar
Hamer, P. et al. Atypical correlation of otolith strontium : calcium and barium : calcium across a marine–freshwater life history transition of a diadromous fish. Mar. Freshwater Res. 66, 411–419. https://doi.org/10.1071/mf14001 (2015).Article
CAS
Google Scholar
Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454. https://doi.org/10.1111/faf.12264 (2018).Article
Google Scholar
Motomura, H. Threadfins of the World (family Polynemidae). An Annotated and Illustrated Catalogue of Polynemid Species Known to Date 117 (FAO, 2004).
Google Scholar
Huang, C. T. et al. Bioeconomic evaluation of Eleutheronema tetradactylum farming: A case study in Taiwan. Fish. Sci. 88, 437–447. https://doi.org/10.1007/s12562-022-01591-4 (2022).Article
CAS
Google Scholar
Shihab, I. et al. Histological profiling of gonads depicting protandrous hermaphroditism in Eleutheronema tetradactylum. J. Fish. Biol. 90, 2402–2411. https://doi.org/10.1111/jfb.13324 (2017).Article
CAS
PubMed
Google Scholar
Presti, P., Johnson, G. D. & Datovo, A. Anatomy and evolution of the pectoral filaments of threadfins (Polynemidae). Sci. Rep. 10, 1–5. https://doi.org/10.1038/s41598-020-74896-y (2020).Article
CAS
Google Scholar
Alshari, N. F. M. A. H. et al. Metabarcoding of fish larvae in the merbok river reveals species diversity and distribution along its mangrove environment. Zool. Stud. 60, e76. https://doi.org/10.6620/ZS.2021.60-76 (2021).Article
PubMed
PubMed Central
Google Scholar
Tobin, A. J., Mapleston, A., Harry, A. V. & Espinoza, M. Big fish in shallow water; use of an intertidal surf-zone habitat by large-bodied teleosts and elasmobranchs in tropical northern Australia. Environ. Biol. Fish. 97, 821–838. https://doi.org/10.1007/s10641-013-0182-y (2013).Article
Google Scholar
Adkins, M. E., Simpfendorfer, C. A. & Tobin, A. J. Large tropical fishes and their use of the nearshore littoral, intertidal and subtidal habitat mosaic. Mar. Freshwater Res. 67, 1534–1545. https://doi.org/10.1071/mf14339 (2016).Article
Google Scholar
Xuan, Z. et al. Otolith microchemistry reveals different environmental histories for two endangered fourfinger threadfin species. Mar. Ecol. Prog. Ser. 700, 161–178 (2022).Article
ADS
Google Scholar
Condini, M. V. et al. Prolonged estuarine habitat use by dusky grouper Epinephelus marginatus at subtropical latitudes revealed by otolith microchemistry. Endanger. Species Res. 29, 271–277 (2016).Article
Google Scholar
Teichert, N. et al. A multi-approach study to reveal eel life-history traits in an obstructed catchment before dam removal. Hydrobiologia 849, 1885–1903. https://doi.org/10.1007/s10750-022-04833-9 (2022).Article
Google Scholar
Wang, J., Sun, P. & Yin, F. Low mtDNA Cytb diversity and shallow population structure of Eleutheronema tetradactylum in the East China Sea and the South China Sea. Biochem. Syst. Ecol. 55, 268–274. https://doi.org/10.1016/j.bse.2014.03.026 (2014).Article
CAS
Google Scholar
Du, J. et al. Connectivity of fish assemblages along the mangrove-seagrass-coral reef continuum in Wenchang, China. Acta Oceanol. Sin. 39, 43–52. https://doi.org/10.1007/s13131-019-1490-7 (2020).Article
Google Scholar
Pember, M. B., Newman, S.J., Hesp, S.A., Young, G.C., Skepper, C.L., Hall, N.G. & Potter, I.C. Biological parameters for managing the fisheries for Blue and King Threadfin Salmons, Estuary Rockcod, Malabar Grouper and Mangrove Jack in north-western Australia. Fisheries Research and Development Corporation. (2005).Zheng, Q., Fang, G. & Song, Y. T. Introduction to special section: Dynamics and Circulation of the Yellow, East, and South China Seas. J. Geophys. Res. https://doi.org/10.1029/2005jc003261 (2006).Article
Google Scholar
Zhang, P. et al. Spatiotemporal variation, speciation, and transport flux of TDP in Leizhou Peninsula coastal waters, South China Sea. Mar. Pollut. Bull. 167, 112284. https://doi.org/10.1016/j.marpolbul.2021.112284 (2021).Article
CAS
PubMed
Google Scholar
Stewart, J., Hughes, J. M., Stanley, C. & Fowler, A. M. The influence of rainfall on recruitment success and commercial catch for the large sciaenid, Argyrosomus japonicus, in eastern Australia. Mar. Environ. Res. 157, 104924. https://doi.org/10.1016/j.marenvres.2020.104924 (2020).Article
CAS
PubMed
Google Scholar
Alber, M. A conceptual model of estuarine freshwater inflow management. Estuaries 25, 1246–1261. https://doi.org/10.1007/BF02692222 (2002).Article
Google Scholar
Possamai, B. et al. Freshwater inflow variability affects the relative importance of allochthonous sources for estuarine fishes. Estuar. Coast. 43, 880–893. https://doi.org/10.1007/s12237-019-00693-0 (2020).Article
Google Scholar
Halliday, I. A., Robins, J. B., Mayer, D. G., Staunton-Smith, J. & Sellin, M. J. Effects of freshwater flow on the year-class strength of a non-diadromous estuarine finfish, king threadfin (Polydactylus macrochir), in a dry-tropical estuary. Mar. Freshwater Res. 59, 157–164. https://doi.org/10.1071/MF07077 (2008).Article
Google Scholar
Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). doi:https://doi.org/10.24381/cds.68d2bb30 (2023).Xiao, J. et al. Molecular phylogenetic and morphometric analysis of population structure and demography of endangered threadfin fish Eleutheronema from Indo-Pacific waters. Sci. Rep. 12, 3455. https://doi.org/10.1038/s41598-022-07342-w (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. TERMITE: An R script for fast reduction of laser ablation inductively coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Sp. 31, 1079–1087. https://doi.org/10.1002/rcm.7895 (2017).Article
CAS
Google Scholar
Butcher, D. J. Recent advances in the determination of calcium and its use as an internal standard in environmental samples: Fundamentals and applications. Appl. Spectrosc. Rev. 55, 60–75. https://doi.org/10.1080/05704928.2019.1570520 (2020).Article
ADS
CAS
Google Scholar
Vignon, M. Extracting environmental histories from sclerochronological structures—Recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecol. Inform. 30, 159–169. https://doi.org/10.1016/j.ecoinf.2015.10.002 (2015).Article
Google Scholar
Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J. Fish. Biol. 98, 33–43. https://doi.org/10.1111/jfb.14554 (2021).Article
PubMed
Google Scholar
R Core Team, R: A language and environment for statistical computing. (2013).Hegg, J. C. & Kennedy, B. P. Let’s do the time warp again: non-linear time series matching as a tool for sequentially structured data in ecology. Ecosphere 12, e03742. https://doi.org/10.1002/ecs2.3742 (2021).Article
Google Scholar
Zhong, L., Wang, M., Li, D., Tang, S. & Chen, X. Mitochondrial genome of Eleutheronema rhadinum with an additional non-coding region and novel insights into the phylogenetics. Front. Mar. Sci. 8, 746598 (2021).Article
Google Scholar
Leis, J. M., Piola, R. F., Hay, A. C., Wen, C. & Kan, K.-P. Ontogeny of behaviour relevant to dispersal and connectivity in the larvae of two non-reef demersal, tropical fish species. Mar. Freshwater Res. 60, 211–223 (2009).Article
Google Scholar
Nelson, T. R., DeVries, D. R. & Wright, R. A. Salinity and temperature effects on element incorporation of gulf killifish Fundulus grandis otoliths. Estuar. Coast. 41, 1164–1177. https://doi.org/10.1007/s12237-017-0341-z (2018).Article
CAS
Google Scholar
Nelson, T. R. & Powers, S. P. Elemental concentrations of water and otoliths as salinity proxies in a Northern Gulf of Mexico estuary. Estuar. Coast. 43, 843–864. https://doi.org/10.1007/s12237-019-00686-z (2020).Article
CAS
Google Scholar
Breine, J. J., Lambeens, I., Maes, Y., De Bruyn, A. & Galle, L. First record of the fourfinger threadfin, Eleutheronema tetradactylum (Shaw, 1804) in Belgium. Estuar. Coast. Shelf Sci. 187, 28–30. https://doi.org/10.1016/j.ecss.2016.12.025 (2017).Article
ADS
Google Scholar
Pan, X. et al. Combining otolith elemental signatures with multivariate analytical models to verify the migratory pattern of Japanese Spanish mackerel (Scomberomorus niphonius) in the southern Yellow Sea. Acta Oceanol. Sin. 39, 54–64. https://doi.org/10.1007/s13131-020-1606-0 (2021).Article
Google Scholar
Miller, J. A. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: Implications for migratory reconstructions. J. Exp. Mar. Biol. Ecol. 405, 42–52. https://doi.org/10.1016/j.jembe.2011.05.017 (2011).Article
CAS
Google Scholar
Yokouchi, K. et al. Time lag of the response on the otolith strontium/calcium ratios of the Japanese eel, Anguilla japonica to changes in strontium/calcium ratios of ambient water. Environ. Biol. Fish. 92, 469–478. https://doi.org/10.1007/s10641-011-9864-5 (2011).Article
Google Scholar
Wheeler, S. G., Russell, A. D., Fehrenbacher, J. S. & Morgan, S. G. Evaluating chemical signatures in a coastal upwelling region to reconstruct water mass associations of settlement-stage rockfishes. Mar. Ecol. Prog. Ser. 550, 191–206. https://doi.org/10.3354/meps11704 (2016).Article
ADS
CAS
Google Scholar
Lin, P., Hu, J., Zheng, Q., Sun, Z. & Zhu, J. Observation of summertime upwelling off the eastern and northeastern coasts of Hainan Island, China. Ocean Dyn. 66, 387–399. https://doi.org/10.1007/s10236-016-0934-2 (2016).Article
ADS
Google Scholar
Liu, W. et al. Dissolved barium as a tracer of Kuroshio incursion in the Kuroshio region east of Taiwan Island and the adjacent East China Sea. Sci. China Earth Sci. 60, 1356–1367. https://doi.org/10.1007/s11430-016-9039-7 (2017).Article
ADS
CAS
Google Scholar
Able, K. W. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuar. Coast. Shelf Sci. 64, 5–17. https://doi.org/10.1016/j.ecss.2005.02.002 (2005).Article
ADS
Google Scholar
Whitfield, A. K. Littoral habitats as major nursery areas for fish species in estuaries: A reinforcement of the reduced predation paradigm. Mar. Ecol. Prog. Ser. 649, 219–234. https://doi.org/10.3354/meps13459 (2020).Article
Google Scholar
Acha, E. M., Simionato, C. G., Carozza, C. & Mianzan, H. Climate-induced year-class fluctuations of whitemouth croaker Micropogonias furnieri (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina-Uruguay. Fish. Oceanogr. 21, 58–77. https://doi.org/10.1111/j.1365-2419.2011.00609.x (2012).Article
Google Scholar
Schilling, H. T. et al. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia. Mar. Ecol. Prog. Ser. 598, 187–199. https://doi.org/10.3354/meps12495 (2018).Article
ADS
Google Scholar
Menezes, R. et al. Habitat use plasticity by the dog snapper (Lutjanus jocu) across the Abrolhos Bank shelf, eastern Brazil, inferred from otolith chemistry. Estuar. Coast. Shelf Sci. 263, 107637. https://doi.org/10.1016/j.ecss.2021.107637 (2021).Article
CAS
Google Scholar
Santos, R. O. et al. Linking bonefish (Albula vulpes) populations to nearshore estuarine habitats using an otolith microchemistry approach. Environ. Biol. Fish. 102, 267–283. https://doi.org/10.1007/s10641-018-0839-7 (2019).Article
Google Scholar
Pinceel, T. et al. An empirical confirmation of diversified bet hedging as a survival strategy in unpredictably varying environments. Ecology 102, e03496. https://doi.org/10.1002/ecy.3496 (2021).Article
PubMed
Google Scholar
Wang, V. H., White, J. W., Arnott, S. A. & Scharf, F. S. Population connectivity of southern flounder in the US South Atlantic revealed by otolith chemical analysis. Mar. Ecol. Prog. Ser. 596, 165–179 (2018).Article
ADS
CAS
Google Scholar
Gillson, J., Scandol, J. & Suthers, I. Estuarine gillnet fishery catch rates decline during drought in eastern Australia. Fish. Res. 99, 26–37. https://doi.org/10.1016/j.fishres.2009.04.007 (2009).Article
Google Scholar
Pritt, J. J., Roseman, E. F. & O’Brien, T. P. Mechanisms driving recruitment variability in fish: Comparisons between the Laurentian Great Lakes and marine systems. ICES J. Mar. Sci. 71, 2252–2267. https://doi.org/10.1093/icesjms/fsu080 (2014).Article
Google Scholar
Mai, A. C. G. et al. High plasticity in habitat use of Lycengraulis grossidens (Clupeiformes, Engraulididae). Estuar. Coast. Shelf Sci. 141, 17–25. https://doi.org/10.1016/j.ecss.2014.01.014 (2014).Article
ADS
CAS
Google Scholar
Horne, J. B., Momigliano, P., Welch, D. J., Newman, S. J. & Van Herwerden, L. Limited ecological population connectivity suggests low demands on self-recruitment in a tropical inshore marine fish (Eleutheronema tetradactylum: Polynemidae). Mol. Ecol. 20, 2291–2306. https://doi.org/10.1111/j.1365-294X.2011.05097.x (2011).Article
PubMed
Google Scholar
Newman, S. J. et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia as inferred from stable isotopes in sagittal otolith carbonate. Fish. Manag. Ecol. 18, 246–257. https://doi.org/10.1111/j.1365-2400.2010.00780.x (2011).Article
Google Scholar
Ballagh, A. C., Welch, D. J., Newman, S. J., Allsop, Q. & Stapley, J. M. Stock structure of the blue threadfin (Eleutheronema tetradactylum) across northern Australia derived from life-history characteristics. Fish. Res. 121–122, 63–72. https://doi.org/10.1016/j.fishres.2012.01.011 (2012).Article
Google Scholar
Moore, B. R. et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia, as indicated by parasites. J. Fish. Biol. 78, 923–936. https://doi.org/10.1111/j.1095-8649.2011.02917.x (2011).Article
CAS
PubMed
Google Scholar
McGuigan, C. J., Schlenker, L. S., Stieglitz, J. D., Benetti, D. D. & Grosell, M. Quantifying the effects of pop-up satellite archival tags on the swimming performance and behavior of young-adult mahi-mahi (Coryphaena hippurus). Can. J. Fish. Aquat. Sci. 78, 32–39. https://doi.org/10.1139/cjfas-2020-0030 (2020).Article
Google Scholar
Macdonald, J. I., Drysdale, R. N., Witt, R., Cságoly, Z. & Marteinsdóttir, G. Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry. Rev. Fish Biol. Fisheries 30, 173–202. https://doi.org/10.1007/s11160-019-09591-x (2019).Article
Google Scholar
Grammer, G. L. et al. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecol. Monogr. 87, 487–507. https://doi.org/10.1002/ecm.1264 (2017).Article
Google Scholar More