Big bats fly towards extinction with hunters in pursuit
RESEARCH HIGHLIGHT
03 March 2023
Human hunt at least 19% of bat species worldwide — especially flying foxes, which can have wingspans of 1.5 metres. More
113 Shares109 Views
in Ecology
RESEARCH HIGHLIGHT
03 March 2023
Human hunt at least 19% of bat species worldwide — especially flying foxes, which can have wingspans of 1.5 metres. More
213 Shares109 Views
in Ecology
Acropora Biological Review Team. Atlantic Acropora Status Review: Report to National Marine Fisheries Service (Acropora Biological Review Team, 2005).
Google Scholar
Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean Corals. Science 301, 958–960 (2003).ADS
CAS
PubMed
Google Scholar
Jackson, E. J., Donovan, M., Cramer, K. & Lam, V. Status and Trends of Caribbean Coral Reefs: 1970–2012 306 (International Union for the Conservation of Nature, 2012).
Google Scholar
Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).ADS
Google Scholar
Lirman, D. et al. Propagation of the threatened staghorn coral Acropora cervicornis: Methods to minimize the impacts of fragment collection and maximize production. Coral Reefs 29, 729–735 (2010).ADS
Google Scholar
Mercado-Molina, A. E., Ruiz-Diaz, C. P. & Sabat, A. M. Demographics and dynamics of two restored populations of the threatened reef-building coral Acropora cervicornis. J. Nat. Conserv. 24, 17–23 (2015).
Google Scholar
Young, C., Schopmeyer, S. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).
Google Scholar
Carne, L., Kaufman, L. & Scavo, K. Measuring success for Caribbean acroporid restoration: key results from ten years of work in southern Belize. In Proc. 13th International Coral Reef Symposium, Honolulu (Abstract No. 27909) (2016).Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).CAS
PubMed
PubMed Central
Google Scholar
Shaver, E. C. et al. A roadmap to integrating resilience into the practice of coral reef restoration. Glob. Change Biol. 28, 4751–4764 (2022).CAS
Google Scholar
DeFilippo, L. B. et al. Assessing the potential for demographic restoration and assisted evolution to build climate resilience in coral reefs. Ecol. Appl. 32, e2650 (2022).PubMed
PubMed Central
Google Scholar
Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: A 3-decade study. Mar. Biol. 166, 108 (2019).
Google Scholar
Montenero, K. A. Florida Keys Integrated Ecosystem Assessment Ecosystem Status Report. https://doi.org/10.25923/F7CE-ST38.Palacio-Castro, A. M., Dennison, C. E., Rosales, S. M. & Baker, A. C. Variation in susceptibility among three Caribbean coral species and their algal symbionts indicates the threatened staghorn coral, Acropora cervicornis, is particularly susceptible to elevated nutrients and heat stress. Coral Reefs 40, 1601–1613 (2021).
Google Scholar
Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).ADS
Google Scholar
Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 11833 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
Bruno, J. F. et al. Thermal stress and coral cover as drivers of coral disease outbreaks. PLoS Biol. 5, e124 (2007).PubMed
PubMed Central
Google Scholar
Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2012).ADS
Google Scholar
Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: The key to understanding holobiont functioning? Trends Microbiol. 23, 490–497 (2015).PubMed
Google Scholar
Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95, 1995–2005 (2014).PubMed
Google Scholar
Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems 23, 798–811 (2020).CAS
Google Scholar
Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: Review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).CAS
PubMed
Google Scholar
Ferrier-Pagès, C., Gattuso, J.-P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).
Google Scholar
Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).CAS
PubMed
Google Scholar
Krediet, C. J., Ritchie, K. B., Paul, V. J. & Teplitski, M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc. R. Soc. B Biol. Sci. 280, 20122328 (2013).
Google Scholar
Mao-Jones, J., Ritchie, K. B., Jones, L. E. & Ellner, S. P. How microbial community composition regulates coral disease development. PLoS Biol. 8, e1000345 (2010).PubMed
PubMed Central
Google Scholar
Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).CAS
PubMed
Google Scholar
West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).
Google Scholar
Ritchie, K. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).ADS
CAS
Google Scholar
Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS
Google Scholar
Klinges, G., Maher, R. L., Thurber, R. L. V. & Muller, E. M. Parasitic ‘Candidatus aquarickettsia rohweri’ is a marker of disease susceptibility in Acropora cervicornis but is lost during thermal stress. Environ. Microbiol. 22, 5341–5355 (2020).CAS
PubMed
PubMed Central
Google Scholar
Williams, S. D. et al. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida’s Coral Reef. PeerJ 10, e13574 (2022).PubMed
PubMed Central
Google Scholar
Klinges, J. G., Patel, S. H., Duke, W. C., Muller, E. M. & Vega Thurber, R. L. Phosphate enrichment induces increased dominance of the parasite Aquarickettsia in the coral Acropora cervicornis. FEMS Microbiol. Ecol. 98, 013 (2022).
Google Scholar
Rosales, S. M. et al. Microbiome differences in disease-resistant vs susceptible Acropora corals subjected to disease challenge assays. Sci. Rep. 9, 18279 (2019).ADS
CAS
PubMed
PubMed Central
Google Scholar
Gignoux-Wolfsohn, S., Precht, W., Peters, E., Gintert, B. & Kaufman, L. Ecology, histopathology, and microbial ecology of a white-band disease outbreak in the threatened staghorn coral Acropora cervicornis. Dis. Aquat. Org. 137, 217–237 (2020).
Google Scholar
Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635 (2020).PubMed
PubMed Central
Google Scholar
Aguirre, E. G., Million, W. C., Bartels, E., Krediet, C. J. & Kenkel, C. D. Host-specific epibiomes of distinct Acropora cervicornis genotypes persist after field transplantation. Coral Reefs. https://doi.org/10.1007/s00338-022-02218-x (2022).Article
Google Scholar
Shaver, E. C. et al. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral. Ecology 98, 830–839 (2017).PubMed
Google Scholar
Muller, E. M., Bartels, E. & Baums, I. B. Bleaching causes loss of disease resistance within the threatened coral species Acropora cervicornis. eLife 7, e35066 (2018).PubMed
PubMed Central
Google Scholar
Miller, M. W. et al. Genotypic variation in disease susceptibility among cultured stocks of Elkhorn and Staghorn corals. PeerJ 7, e6751 (2019).PubMed
PubMed Central
Google Scholar
Sunagawa, S., Woodley, C. M. & Medina, M. Threatened corals provide underexplored microbial habitats. PLoS ONE 5, e9554 (2010).ADS
PubMed
PubMed Central
Google Scholar
Pantos, O. et al. The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ. Microbiol. 5, 370–382 (2003).CAS
PubMed
Google Scholar
Sheu, S.-Y., Liu, L.-P., Tang, S.-L. & Chen, W.-M. Thalassotalea euphylliae sp. nov., isolated from the torch coral Euphyllia glabrescens. Int. J. Syst. Evol. Microbiol. 66, 5039–5045 (2016).CAS
PubMed
Google Scholar
Nakagawa, T., Iino, T., Suzuki, K.-I. & Harayama, S. Ferrimonas futtsuensis sp. nov. and Ferrimonas kyonanensis sp. nov., selenate-reducing bacteria belonging to the Gammaproteobacteria isolated from Tokyo Bay. Int. J. Syst. Evol. Microbiol. 56, 2639–2645 (2006).CAS
PubMed
Google Scholar
Maher, R. L. et al. Coral microbiomes demonstrate flexibility and resilience through a reduction in community diversity following a thermal stress event. Front. Ecol. Evol. 8, 1 (2020).ADS
Google Scholar
Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).CAS
PubMed
Google Scholar
Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).ADS
PubMed
PubMed Central
Google Scholar
McDevitt-Irwin, J. M. et al. Responses of coral-associated bacterial communities to local and global stressors. Front. Mar. Sci. 4, 262 (2017).
Google Scholar
Klinges, J. G. et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 13, 2938–2953 (2019).PubMed
PubMed Central
Google Scholar
Muscatine, L., Falkowski, P. G., Dubinsky, Z., Cook, P. A. & McCloskey, L. R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B 236, 311–324 (1989).ADS
Google Scholar
Waite, D. W. et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front. Microbiol. 8, 682 (2017).PubMed
PubMed Central
Google Scholar
Waite, D. W. et al. Addendum: Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. Nov.). Front. Microbiol. 9, 772 (2018).PubMed
PubMed Central
Google Scholar
Rosales, S. M. et al. Bacterial metabolic potential and micro-eukaryotes enriched in stony coral tissue loss disease lesions. Front. Mar. Sci. 8, 776859 (2022).
Google Scholar
Ricci, F. et al. Beneath the surface: Community assembly and functions of the coral skeleton microbiome. Microbiome 7, 159 (2019).PubMed
PubMed Central
Google Scholar
Yang, S.-H. et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome 7, 3 (2019).PubMed
PubMed Central
Google Scholar
Cai, L. et al. Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci. Rep. 7, 9320 (2017).ADS
PubMed
PubMed Central
Google Scholar
Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: Consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).ADS
Google Scholar
Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 296–307 (2020).ADS
CAS
Google Scholar
Miura, N. et al. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar. Biotechnol. 21, 1–8 (2019).CAS
Google Scholar
Bruno, J. F., Petes, L. E., Harvell, C. D. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).
Google Scholar
Ezzat, L. et al. Thermal stress interacts with surgeonfish feces to increase coral susceptibility to dysbiosis and reduce tissue regeneration. Front. Microbiol. 12, 620458 (2021).PubMed
PubMed Central
Google Scholar
Gajigan, A. P., Diaz, L. A. & Conaco, C. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. Microbiol. Open 6, e00478 (2017).
Google Scholar
MacKnight, N. J. et al. Microbial dysbiosis reflects disease resistance in diverse coral species. Commun. Biol. 4, 679 (2021).PubMed
PubMed Central
Google Scholar
Palacio-Castro, A. M., Rosales, S. M., Dennison, C. E. & Baker, A. C. Microbiome signatures in Acropora cervicornis are associated with genotypic resistance to elevated nutrients and heat stress. Coral Reefs 41, 1389–1403 (2022).
Google Scholar
Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS ONE 3, e3718 (2008).ADS
PubMed
PubMed Central
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS
CAS
PubMed
Google Scholar
Parkinson, J. E. et al. Extensive transcriptional variation poses a challenge to thermal stress biomarker development for endangered corals. Mol. Ecol. 27, 1103–1119 (2018).CAS
PubMed
Google Scholar
Siebeck, U. E., Logan, D. & Marshall, N. J. CoralWatch—A flexible coral bleaching monitoring tool for you and your group. In Proc. 11th Int. Coral Reef Symp. Ft Lauderdale, Florida, 7–11 July, Vol. 1392, 5 (2008).Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS
PubMed
Google Scholar
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
Google Scholar
Messyasz, A., Maher, R. L., Meiling, S. S. & Thurber, R. V. Nutrient enrichment predominantly affects low diversity microbiomes in a marine trophic symbiosis between algal farming fish and corals. Microorganisms 9, 1873 (2021).CAS
PubMed
PubMed Central
Google Scholar
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
Google Scholar
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
Magurran, A. E. Ecological Diversity and Its Measurement (Princeton University Press, 1988).
Google Scholar
Lahti, L. & Shetty, S. Microbiome R Package.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed
PubMed Central
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package (2019).Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R Package Version 0.0.1 (2017).Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet
PubMed
MATH
Google Scholar
Kaul, A., Mandal, S., Davidov, O. & Peddada, S. D. Analysis of microbiome data in the presence of excess zeros. Front. Microbiol. 8, 2114 (2017).PubMed
PubMed Central
Google Scholar More
138 Shares169 Views
in Ecology
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Zhu, L. et al. Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation. Nat. Geosci. https://doi.org/10.1038/s41561-023-01137-y (2023). More
150 Shares139 Views
in Ecology
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article
Google Scholar
Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).Article
Google Scholar
Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).Article
Google Scholar
Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).Article
Google Scholar
Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).Article
Google Scholar
Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).Article
Google Scholar
Longo, M. et al. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 30, 1639–1660 (2016).Article
Google Scholar
Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article
Google Scholar
Smith, I. A., Hutyra, L. R., Reinmann, A. B., Marrs, J. K. & Thompson, J. R. Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Front. Ecol. Environ. 16, 213–221 (2018).Article
Google Scholar
Franklin, C. M. A., Harper, K. A. & Clarke, M. J. Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Can. J. For. Res. 51, 274–282 (2020).Article
Google Scholar
Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).Article
Google Scholar
Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article
Google Scholar
Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).Article
Google Scholar
Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article
Google Scholar
Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).Article
Google Scholar
Schoene, D., Killmann, W., Lüpke, H. V. & LoycheWilkie, M. Forests and Climate Change Working Paper 5: Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countries (FAO, 2007).Goetz, S. J. et al. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10, 123001 (2015).Article
Google Scholar
Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).Article
Google Scholar
Cadenasso, M. L., Traynor, M. M. & Pickett, S. T. Functional location of forest edges: gradients of multiple physical factors. Can. J. For. Res. 27, 774–782 (1997).Article
Google Scholar
Schmidt, M., Jochheim, H., Kersebaum, K.-C., Lischeid, G. & Nendel, C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes – a review. Agric. For. Meteorol. 232, 659–671 (2017).Article
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article
Google Scholar
Silva Junior, C. H. L. et al. Amazonian forest degradation must be incorporated into the COP26 agenda. Nat. Geosci. 14, 634–635 (2021).Article
Google Scholar
Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).Article
Google Scholar
Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).Article
Google Scholar
Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).Article
Google Scholar
Chuvieco, E. et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 10, 2015–2031 (2018).Article
Google Scholar
Zhao, Z. et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. https://doi.org/10.1038/s41561-021-00763-8 (2021).Cook, M., Schott, J. R., Mandel, J. & Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. https://doi.org/10.3390/rs61111244 (2014).Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).Article
Google Scholar
Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).Article
Google Scholar
Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).Article
Google Scholar
Silva Junior, C. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).Article
Google Scholar
Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).Article
Google Scholar
Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).Article
Google Scholar
Zheng, C., Jia, L. & Hu, G. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite Earth observations. J. Hydrol. 613, 128444 (2022).Article
Google Scholar
Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).Article
Google Scholar
Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article
Google Scholar
de Paula, M. D., Costa, C. P. A. & Tabarelli, M. Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop. Conserv. Sci. 4, 349–358 (2011).Article
Google Scholar
van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article
Google Scholar
Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013).Article
Google Scholar
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article
Google Scholar
Kozlowski, T. T. Responses of woody plants to flooding and salinity. Tree Physiol. 17, 490–490 (1997).Article
Google Scholar
Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).Article
Google Scholar
Sze, J. S., Carrasco, L. R., Childs, D. & Edwards, D. P. Reduced deforestation and degradation in Indigenous lands pan-tropically. Nat. Sustain. 5, 123–130 (2022).Article
Google Scholar
Masson-Delmotte, V. et al. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds) (Cambridge Univ. Press, 2021).Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-Ground Biomass for the Years 2010, 2017 and 2018, v3 (NERC EDS Centre for Environmental Data Analysis, 2021); https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).Article
Google Scholar
Alkama, R. et al. Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13, 606 (2022).Article
Google Scholar
Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).Article
Google Scholar
Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).Article
Google Scholar
Li, W. et al. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences 14, 5053–5067 (2017).Article
Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article
Google Scholar More
200 Shares99 Views
in Ecology
Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford University Press, 2017).Book
MATH
Google Scholar
Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).Book
Google Scholar
Shigesada, N., Kawasaki, K. & Takeda, Y. Modeling stratified diffusion in biological invasions. Am. Nat. 146, 229–251 (1995).Article
Google Scholar
Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article
ADS
Google Scholar
Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 36 (2020).Article
Google Scholar
Measey, G. J. et al. A global assessment of alien amphibian impacts in a formal framework. Divers. Distrib. 22, 970–981 (2016).Article
Google Scholar
Antonelli, A., Smith, R. J., Perrigo, A. L. & Crottini, A. Madagascar’s extraordinary biodiversity: Evolution, distribution, and use. Science 378, eabf0869 (2022).
Article
CAS
PubMed
Google Scholar
Marshall, B. M. et al. Widespread vulnerability of Malagasy predators to the toxins of an introduced toad. Curr. Biol. 28, R654–R655 (2018).Article
CAS
PubMed
Google Scholar
Licata, F. et al. Toad invasion of Malagasy forests triggers severe mortality of a predatory snake. Biol. Inv. 24, 1189–1198 (2022).Article
Google Scholar
Licata, F. et al. Abundance, distribution and spread of the invasive Asian toad Duttaphrynus melanostictus in eastern Madagascar. Biol. Inv. 21, 1615–1626 (2019).Article
Google Scholar
McClelland, P., Reardon, J. T., Kraus, F., Raxworthy, C. J. & Randrianantoandro, C. Asian toad eradication feasibility report for Madagascar (Te Anau, 2015).Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?. Ecography 28, 110–128 (2005).Article
Google Scholar
Shine, R. et al. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci. Rep. 11, 23574 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).Article
Google Scholar
Van Petegem, K. H. P. et al. Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evol. Ecol. 29, 299–310 (2015).Article
Google Scholar
Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).Article
ADS
CAS
PubMed
Google Scholar
Licata, F., Andreone, F., Crottini, A., Harison, R. F. & Ficetola, G. F. Does spatial sorting occur in the invasive Asian toad in Madagascar? Insights into the invasion unveiled by morphological analyses. JZSER 2021, 1–9 (2021).
Google Scholar
Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).Article
Google Scholar
Brown, G. P., Kelehear, C. & Shine, R. Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet–dry tropics. Funct. Ecol. 25, 1339–1347 (2011).Article
Google Scholar
Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).Book
Google Scholar
Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010). https://doi.org/10.7208/9780226893334.Book
Google Scholar
Shaw, A. K., Kokko, H. & Neubert, M. G. Sex difference and Allee effects shape the dynamics of sex-structured invasions. J. Anim. Ecol. 87, 36–46 (2018).Article
PubMed
Google Scholar
Schwarzkopf, L. & Alford, R. A. Desiccation and shelter-site use in a tropical amphibian: Comparing toads with physical models. Funct. Ecol. 10, 193–200 (1996).Article
Google Scholar
Wogan, G. O. U., Stuart, B. L., Iskandar, D. T. & McGuire, J. A. Deep genetic structure and ecological divergence in a widespread human commensal toad. Biol. Lett. 12, 20150807 (2016).Article
PubMed
PubMed Central
Google Scholar
Licata, F. Exploring the invasion dynamics and impacts of the invasive Asian common toad in Madagascar (University of Porto, 2022).
Google Scholar
Reilly, S. B. et al. Toxic toad invasion of Wallacea: A biodiversity hotspot characterized by extraordinary endemism. Glob. Change Biol. 23, 5029–5031 (2017).Article
ADS
Google Scholar
Jørgensen, C. B., Shakuntala, K. & Vijayakumar, S. Body size, reproduction and growth in a tropical toad, Bufo melanostictus, with a comparison of ovarian cycles in tropical and temperate zone anurans. Oikos 46, 379 (1986).Article
Google Scholar
Vences, M. et al. Tracing a toad invasion: Lack of mitochondrial DNA variation, haplotype origins, and potential distribution of introduced Duttaphrynus melanostictus in Madagascar. Amphib. Reptilia 38, 197–207 (2017).Article
Google Scholar
Ngo, B. V. & Ngo, C. D. Reproductive activity and advertisement calls of the Asian common toad Duttaphrynus melanostictus (Amphibia, Anura, Bufonidae) from Bach Ma National Park, Vietnam. Zool. Stud. 52, 12 (2013).Article
Google Scholar
Licata, F. et al. The Asian toad (Duttaphrynus melanostictus) in Madagascar: A report of an ongoing invasion. In Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions (eds Angelici, F. M. & Rossi, L.) 617–638 (Springer, 2020). https://doi.org/10.1007/978-3-030-42335-3_21.Chapter
Google Scholar
Moore, M., Solofo Niaina Fidy, J. F. & Edmonds, D. The new toad in town: Distribution of the Asian toad, Duttaphrynus melanostictus, in the Toamasina area of eastern Madagascar. Trop. Conserv. Sci. 8, 440–455 (2015).Article
Google Scholar
Licata, F. et al. Using public surveys to rapidly profile biological invasions in hard-to-monitor areas. Anim. Conserv. https://doi.org/10.1111/acv.12835 (2023).Article
Google Scholar
Zhang, M. et al. Automatic high-resolution land cover production in madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sensing 12, 3663 (2020).Article
ADS
Google Scholar
Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4, 439–473 (2007).
Google Scholar
Merkel, A. Toamasina Climate (Madagascar). Accessed 20 July 2022. https://en.climate-data.org/africa/madagascar/toamasina/toamasina-4029/
(2021).Gordon, A. Secondary sexual characters of Bufo melanostictus schneider. Copeia 1933, 204–207 (1933).Article
Google Scholar
Alford, R. & Rowley, J. Techniques for tracking amphibians: The effects of tag attachment, and harmonic direction finding versus radio telemetry. Amphib. Reptilia 28, 367–376 (2007).Article
Google Scholar
Lassueur, T., Joost, S. & Randin, C. F. Very high resolution digital elevation models: Do they improve models of plant species distribution?. Ecol. Modell. 198, 139–153 (2006).Article
Google Scholar
Abrams, M., Crippen, R. & Fujisada, H. ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sensing 12, 1156 (2020).Article
ADS
Google Scholar
Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).Article
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article
MATH
Google Scholar
Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2021).Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article
Google Scholar
Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).Article
Google Scholar
Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the australian semi-desert. PLoS ONE 6, e25979 (2011).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Richards, S. J., Sinsch, U. & Alford, R. A. Radio Tracking. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds Heyer, R. et al.) 155–158 (Smithsonian Institution, 1994).
Google Scholar
Altobelli, J. T., Dickinson, K. J. M., Godfrey, S. S. & Bishop, P. J. Methods in amphibian biotelemetry: Two decades in review. Austral. Ecol. 47, 1382–1395 (2022).Article
Google Scholar
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article
Google Scholar
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002). https://doi.org/10.1007/978-1-4757-2917-7_3.Book
MATH
Google Scholar
Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. (2021).Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article
Google Scholar
Barton, K. MuMIn: Multi-Model Inference. (2022).Hodges, C. W., Marshall, B. M., Hill, J. G. & Strine, C. T. Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape. bioRxiv https://doi.org/10.1101/2021.09.08.459477 (2021).Article
Google Scholar
Muller, B. J., Cade, B. S. & Schwarzkopf, L. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts. Ecosphere 9, e02067 (2018).Article
Google Scholar
Linsenmair, K. E. & Spieler, M. Migration patterns and diurnal use of shelter in a ranid frog of a West African savannah: A telemetric study. Amphib. Reptilia 19, 43–64 (1998).Article
Google Scholar
Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).Article
PubMed
Google Scholar
Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane yoads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).Article
PubMed
PubMed Central
Google Scholar
Huang, W.-S., Lin, J.-Y. & Yu, J.Y.-L. Male reproductive cycle of the toad Bufo melanostictus in Taiwan. Zool. Sci. 14, 497–503 (1997).Article
Google Scholar
Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).Article
PubMed
PubMed Central
Google Scholar
Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).Article
PubMed
Google Scholar
Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).Article
PubMed
Google Scholar
Kot, M., Lewis, M. A. & van den Driessche, P. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996).Article
Google Scholar
Deguise, I. & Richardson, J. S. Movement behaviour of adult western toads in a fragmented, forest landscape. Can. J. Zool. 87, 1184–1194 (2009).Article
Google Scholar
Mitrovich, M. J., Gallegos, E. A., Lyren, L. M., Lovich, R. E. & Fisher, R. N. Habitat use and movement of the endangered Arroyo toad (Anaxyrus californicus) in coastal southern California. J. Herpetol. 45, 319–328 (2011).Article
Google Scholar
Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).Article
PubMed
Google Scholar
Enriquez-Urzelai, U., Montori, A., Llorente, G. A. & Kaliontzopoulou, A. Locomotor mode and the evolution of the hindlimb in western mediterranean anurans. Evol. Biol. 42, 199–209 (2015).Article
Google Scholar
Junior, B. T. & Gomes, F. R. Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLoS ONE 10, e0140761 (2015).Article
Google Scholar
Klockmann, M., Günter, F. & Fischer, K. Heat resistance throughout ontogeny: Body size constrains thermal tolerance. Glob. Change Biol. 23, 686–696 (2017).Article
ADS
Google Scholar
Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Lévy flight. PNAS 108, 8704–8707 (2011).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. PNAS 110, 13452–13456 (2013).Article
ADS
PubMed
PubMed Central
Google Scholar
Tingley, R. et al. New weapons in the toad toolkit: A review of methods to control and mitigate the biodiversity impacts of invasive Cane toads (Rhinella marina). Q. Rev. Biol. 92, 123–149 (2017).Article
PubMed
Google Scholar
Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article
Google Scholar
DeVore, J. L., Crossland, M. R., Shine, R. & Ducatez, S. The evolution of targeted cannibalism and cannibal-induced defenses in invasive populations of cane toads. Proc. Natl. Acad. Sci. 118, e2100765118 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Muller, B. J. & Schwarzkopf, L. Relative effectiveness of trapping and hand-capture for controlling invasive cane toads (Rhinella marina). Int. J. Pest Manag. 64, 185–192 (2018).Article
CAS
Google Scholar More
188 Shares159 Views
in Ecology
All procedures involving animals were conducted in accordance with the guidelines and regulations from Institutional Animal Care and Use Committee (IACUC) of the University of Florida (protocol #201509019). Tis manuscript is reported in accordance with ARRIVE guidelines.Site descriptionThis study was carried out at the North Florida Research and Education Center, in Marianna, FL (30°46′35″N 85°14′17″W, 51 m.a.s.l). The trial was performed in two experimental years (2019 and 2020) in a greenhouse.The soil used was collected from a pasture of rhizoma peanut (Arachis glabrata Benth.) and Argentine bahiagrass (Paspalum notatum Flügge) as the main forages. Without plant and root material, only soil was placed into buckets, as described below in the bucket assemblage section. Soil was classified as Orangeburg loamy sand (fine-loamy-kaolinitic, thermic Typic Kandiudults), with a pHwater of 6.7, Mehlich-1-extratable P, K, Mg and Ca concentrations of 41, 59, 63, 368 mg kg−1, respectively. Average of minimum and maximum daily temperature and relative humidity in the greenhouse for September and November (September for beetle trial due seasonal appearance of beetles, and October and November to the Pear Millet trial) in 2019 and 2020 were 11 and 33 °C, 81%; 10 and 35 °C, 77%, respectively.Biological material determinationTo select the species of beetles, a previous dung beetle sampling was performed in the grazing experiment in the same area (grass and legume forage mixture) to determine the number of dung beetle species according to the functional groups as described by Conover et al.44. Beetles were pre-sampled from March 2017 to June 2018, where Tunnelers group were dominant and represented by Onthophagus taurus (Schreber), Digitonthophagus gazella (Fabricius), Phanaeus vindex (MacLeay), Onthophagus oklahomensis (Brown), and Euniticellus intermedius (Reiche). Other species were present but not abundant, including Aphodius psudolividus (Linnaeus), Aphodius carolinus (Linnaeus), and Canthon pilularius (Linnaeus) identified as Dweller and Roller groups, respectively. The pre-sampling indicated three species from the Tunneler group were more abundant, and thereby, were chosen to compose the experimental treatments (Fig. 4).Figure 4Most abundant dung beetle species in Marianna, FL used in the current study. Credits: Carlos C.V. García.Full size imageBeetles collection and experimental treatmentsThree species of common communal dung beetles were used: O. taurus (1), D. gazella (2), and P. vindex (3). Treatments included two treatments containing only soil and soil + dung without beetles were considered as Control 1 (T1) and Control 2 (T2), respectively. Isolated species T3 = 1, T4 = 2, T5 = 3 and their combinations T6 = 1 + 2 and T7 = 1 + 2 + 3. Dung beetles were trapped in the pasture with grazing animals using the standard cattle-dung-baited pitfall traps, as described by Bertone et al.41. To avoid losing samples due to cattle trampling, 18 traps were randomized in nine paddocks (two traps per paddock) and installed protected by metal cages, and after a 24-h period, beetles were collected, and the traps removed. Table 1 shows the number of dung beetles, their total mass (used to standardize treatments) per treatment, and the average mass per species. To keep uniformity across treatments we kept beetle biomass constant across species at roughly 1.7 to 1.8 g per assemblage (Table 1). Twenty-four hours after retrieving the beetles from the field traps, they were separated using an insect rearing cage, classified, and thereafter stored in small glass bottles provided with a stopper and linked to a mesh to keep the ventilation and maintaining the beetles alive.Table 1 Total number and biomass of dung beetles per treatment.Full size tableBuckets assemblageThe soil used in the buckets was collected from the grazing trial in two experimental years (August 2019 and August 2020) across nine paddocks (0.9 ha each). The 21 plastic buckets had a 23-cm diameter and 30-cm (0.034 m2) and each received 10 kg of soil (Fig. 5). At the bottom of the recipient, seven holes were made for water drainage using a metallic mesh with 1-mm diameter above the surface of the holes to prevent dung beetles from escaping. Water was added every four days to maintain the natural soil conditions at 60% of the soil (i.e., bucket) field capacity (measured with the soil weight and water holding capacity of the soil). Because soil from the three paddocks had a slightly different texture (sandy clay and sandy clay loam), we used them as the blocking factor.Figure 5Bucket plastic bucket details for dung beetle trial.Full size imageThe fresh dung amount used in the trial was determined based on the average area covered by dung and dung weight (0.05 to 0.09 m2 and 1.5 to 2.7 kg) from cattle in grazing systems, as suggested by Carpinelli et al.45. Fresh dung was collected from Angus steers grazing warm-season grass (bahiagrass) pastures and stored in fridge for 24 h, prior to start the experiment. A total of 16.2 kg of fresh dung was collected, in which 0.9 kg were used in each bucket. After the dung application, dung beetles were added to the bucket. To prevent dung beetles from escaping, a mobile plastic mesh with 0.5 mm diameter was placed covering the buckets before and after each evaluation. The experiment lasted for 24 days in each experimental year (2019 and 2020), with average temperature 28 °C and relative humidity of 79%, acquired information from the Florida Automated Weather Network (FAWN).Chamber measurementsThe gas fluxes from treatments were evaluated using the static chamber technique46. The chambers were circular, with a radius of 10.5 cm (0.034 m2). Chamber bases and lids were made of polyvinyl chloride (PVC), and the lid were lined with an acrylic sheet to avoid any reactions of gases of interest with chamber material (Fig. 6). The chamber lids were covered with reflective tape to provide insulation, and equipped with a rubber septum for sampling47. The lid was fitted with a 6-mm diameter, 10-cm length copper venting tube to ensure adequate air pressure inside the chamber during measurements, considering an average wind speed of 1.7 m s−148,49. During measurements, chamber lids and bases were kept sealed by fitting bicycle tire inner tubes tightly over the area separating the lid and the base. Bases of chambers were installed on top of the buckets to an 8-cm depth, with 5 cm extending above ground level. Bases were removed in the last evaluation day (24th) of each experimental year.Figure 6Static chamber details and instruments for GHG collection in the dung beetle trial.Full size imageGas fluxes measurementsThe gas fluxes were measured at 1000 h following sampling recommendations by Parkin & Venterea50, on seven occasions from August 28th to September 22nd in both years (2019 and 2020), being days 0, 1, 2, 3, 6, 12, and 24 after dung application. For each chamber, gas samples were taken using a 60-mL syringe at 15-min intervals (t0, t15, and t30). The gas was immediately flushed into pre-evacuated 30-mL glass vials equipped with a butyl rubber stopper sealed with an aluminium septum (this procedure was made twice per vial and per collection time). Time zero (t0) represented the gas collected out of the buckets (before closing the chamber). Immediately thereafter, the bucket lid was tightly closed by fitting the lid to the base with the bicycle inner tube, followed by the next sample deployment times.Gas sample analyses were conducted using a gas chromatograph (Trace 1310 Gas Chromatograph, Thermo Scientific, Waltham, MA). For N2O, an electron capture detector (350 °C) and a capillary column (J&W GC packed column in stainless steel tubing, length 6.56 ft (2 M), 1/8 in. OD, 2 mm ID, Hayesep D packing, mesh size 80/100, pre-conditioned, Agilent Technologies) were used. Temperature of the injector and columns were 80 and 200 °C, respectively. Daily flux of N2O-N (g ha−1 day−1) was calculated as described in Eq. (1):$${text{F}}, = ,{text{A}}*{text{dC}}/{text{dt}}$$
(1)
where F is flux of N2O (g ha−1 day−1), A is the area of the chamber, and dC/dt is the change of concentration in time calculated using a linear method of integration by Venterea et al.49.Ammonia volatilization measurementAmmonia volatilization was measured using the open chamber technique, as described by Araújo et al.51. The ammonia chamber was made of a 2-L volume polyethylene terephthalate (PET) bottle. The bottom of the bottle was removed and used as a cap above the top opening to keep the environment controlled, free of insects and other sources of contamination. An iron wire was used to support the plastic jar. A strip of polyfoam (250 mm in length, 25 mm wide, and 3 mm thick) was soaked in 20 ml of acid solution (H2SO4 1 mol dm−3 + glycerine 2% v/v) and fastened to the top, with the bottom end of the foam remaining inside the plastic jar. Inside each chamber there was a 250-mm long wire designed with a hook to support it from the top of the bottle, and wire basket at the bottom end to support a plastic jar (25 mL) that contained the acid solution to keep the foam strip moist during sampling periods (Fig. 7). The ammonia chambers were placed installed in the bucket located in the middle of each experimental block after the last gas sampling of the day and removed before the start of the next gas sampling.Figure 7Mobile ammonia chamber details for ammonia measurement in dung beetle trial. Adapted from Araújo et al.51.Full size imageNutrient cyclingPhotographs of the soil and dung portion of each bucket were taken twenty-four hours after the last day of gas flux measurement sampling to determine the dung removal from single beetle species and their combination. In the section on statistical analysis, the programming and statistical procedures are described. After this procedure, seeds of pearl millet were planted in each bucket. After 5 days of seed germination plants were thinned, maintaining four plants per bucket. Additionally, plants were clipped twice in a five-week interval, with the first cut occurring on October 23rd and the second cut occurring on November 24th, in both experimental years. Before each harvest, plant height was measured twice in the last week. In the harvest day all plants were clipped 10 cm above the ground level. Samples were dried at 55 °C in a forced-air oven until constant weight and ball-milled using a Mixer Mill MM 400 (Retsch, Newton, PA, USA) for 9 min at 25 Hz, and analyzed for total N concentration using a C, H, N, and S analyzer by the Dumas dry combustion method (Vario Micro Cube; Elementar, Hanau, Germany).Statistical analysisTreatments were distributed in a randomized complete block design (RCBD), with three replications. Data were analyzed using the Mixed Procedure from SAS (ver. 9.4., SAS Inst., Cary, NC) and LSMEANS compared using PDIFF adjusted by the t-test (P More
125 Shares149 Views
in Ecology
Dillon, M. E., Wang, G. & Huey, R. B. Nature 467, 704–706 (2010).Article
CAS
Google Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnoy, E. L. Science 293, 2248–2251 (2001).Article
CAS
Google Scholar
Alton, L. A. & Kellermann, V. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01607-6 (2023).Article
Google Scholar
Lighton, J. R. B. Measuring Metabolic Rates: A Manual for Scientists (Oxford Univ. Press, 2019).Careau, V., Killen, S. S. & Metcalfe, N. B. in Integrative Organismal Biology (eds Martin, L. B. et al.) Ch. 14, 219–233 (John Wiley & Sons, 2014).Speakman, J. R., Selman, C., Mclaren, J. S. & Harper, E. J. J. Nutr. 132, 1583S–1597S (2002).Article
CAS
Google Scholar
Janča, M. & Gvoždík, L. Sci. Rep. 7, 5177 (2017).Article
Google Scholar
Seebacher, F., White, C. R. & Franklin, C. E. Nat. Clim. Change 5, 61–66 (2016).Article
Google Scholar More
238 Shares169 Views
in Ecology
Study site, tree selections, and drought-simulation experimentThis research was performed in Guangzhou (22°26′-23°56′N, 112°57′-114°03′E), which is a core city located in subtropical zones. With an area of 7434.4 km2 and a population of 18.87 million, Guangzhou’s urbanization rate has reached 86.46%. To cope with multiple environmental challenges, several urban-forest nurseries were established to cultivate and introduce various tree species. Among them, we selected the one in Tianhe District as our study site. This nursery was not only abundant with native and exotic tree species but also equipped with similar edatope in cities, which was ideal for our research.Tilia cordata Mill. (Tc) and Tilia tomentosa Moench (Tt), originating from the west of Britain and southeast of Europe, were common urban tree species planted in European cities. Based on their performance in providing ecological and landscape functions, these two tree species were considered to be introduced for urban greening. Therefore, Tilia cordata Mill. (Tc) and Tilia tomentosa Moench (Tt) were selected as our objectives, which were investigated for their growth and ecosystem services to evaluate their adaption in Guangzhou. In addition, a native tree species Tilia miqueliana Maxim (Tm) was also implemented concurrent measurement as a comparison.For each of the three surveyed tree species, ten trees with a diameter at breast height (DBH) around 5.5 cm and tree height around 2.5 m were chosen for our experiment, which were thought to possess similar initial statuses. To investigate the impact of drought on the growth and ecosystem services of the three selected tree species, a controlled experiment was launched from January to December in 2020. For each tree species, five trees were planted in the common environment as the controlled group, while the other five trees were under the precipitation-exclusion installation (PEI) as the drought-simulation group. Consisting of several water-proof tents, PEI was adequately large and could completely prevent trees from obtaining rainfalls, which created a precipitation-exclusive environment to simulate an enduring drought event within the whole research period (Fig. 1).Figure 1Schematic diagram of the drought simulation experiment for the three surveyed tree species.Full size imageEnvironmental monitoring systemsClimatic data were sampled every 10 min with a weather station (WP3103 mesoscale automatic weather station, China) located at an unshaded site in the nursery. The data were stored in the logger and copied to our laboratory to produce daily or monthly data. All the climatic variables, including photosynthetically active radiation (PAR, µmol m-2 s-1), wind speed (m s-1), precipitation (mm), and air temperature (°C) were calculated from January to December in 2020.For volumetric soil water content (%; VWC), the HOBO MX2307 system (Onetemp, Adelaide, Australia), placed in a shaded box in the nursery, was applied for all the three tree species from both the controlled and drought-simulation groups. For each individual tree, the sensing probe was inserted horizontally at the depths of 30 cm and located 20 cm in the northern direction from the tree stems. Based on the daily readings, monthly means were calculated from January to December in 2020.Measurement of above-ground growthTo investigate the above-ground growth of the three tree species from both the controlled and drought-simulation groups, their DBH (diameter at breast height, cm), tree height (m), and LAI (leaf area index) were measured at the beginning of each month in 2020. DBH was measured with the help of a caliper (Altraco Inc., Sausalito, California, USA), and their tree heights were measured using a standard tape. The crown analytical instrument CI-110 (Camas, Washington State, USA) was used to capture an accurate image of tree crowns and calculate LAI. Sufficient numbers of points were measured and recorded to describe each tree’s average crown shape. The software FV2200 (LICOR Biosciences, Lincoln, NE) helped compute each tree’s crown width and crown area.Measurement of below-ground growthFine root coring campaigns were launched for all the trees of the three tree species from both the controlled and drought treatment groups every three to four months, i.e., in February, May, September, and December. Although the coring campaign might damage part of the roots, the fine roots obtained each time were a mere portion of the whole root system, not affecting the general development of trees’ underground processes. For every individual tree, two 30-cm soil cores were applied in each direction of north, south, east, and west, of which one was located at 20 cm to the trunk (paracentral roots) and the other one was located at 40 cm (outer roots). In addition, the soil samples were evenly divided into three horizons which were 0–10 cm (shallow layer), 10–20 cm (middle layer), and 20–30 cm (deep layer). Then a sieve with 2-mm mesh size was used to filter all the fine roots. The fine roots were washed carefully to remove the adherent soils and dried in an oven at 65 ℃ for 72 h. Finally, all the samples were weighed using a balance with an accuracy of four decimal places to obtain the dry weight. The fine root biomass at different depths was calculated using the dry weight divided by the cross-sectional area of the auger20.Model’s simulation of ecosystem servicesThe process-based model City-Tree was used to predict the ecosystem services of the three tree species from both the controlled and drought-simulation groups23. The model required the data of tree growth parameters including tree height, DBH, and crown area together with environmental conditions such as edaphic and climatic data24. In this research, cooling, evapotranspiration and CO2 fixation of the three surveyed tree species in the controlled and drought-treatment groups were simulated at the end of 2020.The actual evapotranspiration eta was calculated from the potential evapotranspiration using fetp[t], Tilia’s factors fetp[t], and the reduction factor fred:$${mathrm{et}}_{mathrm{a}}={mathrm{f}}_{mathrm{red}}*{mathrm{f}}_{mathrm{etp}}left[mathrm{t}right]*{mathrm{et}}_{mathrm{p}}$$The process of tree’s evapotranspiration (etp) was calculated on the basis of SVAT algorithm together with Penman formula in the module on water balance as below:$${mathrm{et}}_{mathrm{p}}=left[mathrm{s }/ left(mathrm{s}+upgamma right)right]*left({mathrm{r}}_{mathrm{s}}-{mathrm{r}}_{mathrm{L}}right) /mathrm{ L}+left[1-mathrm{s }/ left(mathrm{s}+upgamma right)right]*{mathrm{e}}_{mathrm{s}}*mathrm{f }left({mathrm{v}}_{mathrm{u}}right)$$with γ: psychrometric constant in hPa K−1; s: the slope of the saturation vapour pressure curve in hPa K−1; rs: short wave radiation balance in W m−2; rL: long-wave radiation balance in W m−2; L: specific evaporation heat in W m−2 mm−1 d; es: saturation deficit in hPa; f (vu): ventilation function with vu being the daily average wind speed in m s−1.Within the module cooling, the energy needed for the transition of water from liquid to gaseous phase was calculated based on the crown area (CA) and the transpiration eta sum:$${mathrm{E}}_{mathrm{A}}= {mathrm{et}}_{mathrm{a}}*mathrm{CA}-left({mathrm{L}}_{mathrm{O}}* -0.00242*mathrm{temp}right) / {mathrm{f}}_{mathrm{con}}$$with EA: energy released by a tree through transpiration (kWh tree-1), LO: energy needed for the transition of the 1 kg of water from the liquid to gaseous phase = 2.498 MJ (kgH2O)-1 and temp = temperature in ℃, fcon: 0.5.The calculation of new assimilation in the module of photosynthesis and respiration was on the basis of the approach of Haxeltine and Prenticem25. The model assumed that 50% of the incoming short-wave radiation is photosynthetic active radiation (PAR). Using the LAI and a light extinction factor of 0.5, the radiation amount of 1 m2 leaf area can be estimated based on an exponential function according to the Lambert–Beer law. This way, the gross assimilation per m2 leaf area as the daily mean of the month can be derived from:$${text{A}} = {text{d}}*{{left[ {left( {{text{J}}_{{text{p}}} + {text{J}}_{{text{r}}} – {text{sqrt}} left( {left( {{text{J}}_{{text{P}}} + {text{J}}_{{text{r}}} } right)^{2} – 4*uptheta *{text{J}}_{{text{p}}} *{text{J}}_{{text{r}}} } right)} right)} right]} mathord{left/ {vphantom {{left[ {left( {{text{J}}_{{text{p}}} + {text{J}}_{{text{r}}} – {text{sqrt}} left( {left( {{text{J}}_{{text{P}}} + {text{J}}_{{text{r}}} } right)^{2} – 4*uptheta *{text{J}}_{{text{p}}} *{text{J}}_{{text{r}}} } right)} right)} right]} {left( {2*uptheta } right)}}} right. kern-0pt} {left( {2*uptheta } right)}}$$with A: gross assimilation [g C m−2 d−1]; d: mean day length of the month [h]; Jp: reaction of photosynthesis on absorbed photosynthetic radiation [g C m−2 h−1]; Jr: rubisco limited rate of photosynthesis [g C m−2 h−1]; θ: form factor = 0.7.Jp was defined as a function of the photosynthetic active radiation PAR in mol m−2 h−1 and the efficiency of carbon fixation per absorbed PAR [g C mol−1].$${text{J}}_{{text{p}}} = {text{c}}_{{text{p}}} {text{*PAR}}$$$${text{c}}_{{text{p}}} = alpha *left( {{text{p}}_{{{text{ci}}}} – {text{r}}} right){ /}left( {{text{p}}_{{{text{ci}}}} – {text{r}}} right)*gamma *{text{m}}_{{{text{co}}_{2} }} *{text{i}}left[ {text{t}} right]$$with α: intrinsic quantum efficiency for CO2 uptake = 0.08; pci: partial pressure of the internal CO2 [Pa]; r: CO2 compensation point [Pa]; ϒ: species dependent adjustment function for tree age; m CO2: molecular mass of C = 12.0 g mol−1; i[t]: influence of temperature on efficiency.Net assimilation AN [g C m−2 d−1] was then derived from the gross assimilation A and the dark respiration Rd by:$${text{A}}_{{text{N}}} = {text{A}} – {text{R}}_{{text{d}}}$$$${text{R}}_{{text{d}}} =upbeta *{text{V}}_{{text{m}}}$$where Vm was calculated as:$${text{V}}_{{text{m}}} = {1 mathord{left/ {vphantom {1 upbeta }} right. kern-0pt} upbeta } * {{{text{c}}_{{text{p}}} } mathord{left/ {vphantom {{{text{c}}_{{text{p}}} } {{text{c}}_{{text{r}}} * {text{PAR}} * left[ {left( {2uptheta – 1} right) * beta * {{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – left( {2uptheta *upbeta *{{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – {text{c}}_{{text{r}}} } right)*varsigma } right]}}} right. kern-0pt} {{text{c}}_{{text{r}}} * {text{PAR}} * left[ {left( {2theta – 1} right) * beta * {{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – left( {2theta *upbeta *{{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – {text{c}}_{{text{r}}} } right)*varsigma } right]}}$$By multiplying AN, the number of days and the total leaf area, the entire monthly net assimilation of the tree can be obtained. In this study, we assumed a fixed share of 50% as respiration based on the gross primary production that the resulting net primary production NPP was transformed in the content of fixed carbon by multiplying the value with the carbon conversion factor 0.524.$${mathrm{Carbon}}_{mathrm{fix}}=0.5*mathrm{NPP}$$Statistical analysesThe software package R was used for statistical analysis. To investigate the differences between means, two-sampled t-test and analysis of variance (ANOVA) with Tukey’s HSD (honestly significant difference) test were used. All the cases, the means were reported as significant when P More
This portal is not a newspaper as it is updated without periodicity. It cannot be considered an editorial product pursuant to law n. 62 of 7.03.2001. The author of the portal is not responsible for the content of comments to posts, the content of the linked sites. Some texts or images included in this portal are taken from the internet and, therefore, considered to be in the public domain; if their publication is violated, the copyright will be promptly communicated via e-mail. They will be immediately removed.