More stories

  • in

    Diversity of life history and population connectivity of threadfin fish Eleutheronema tetradactylum along the coastal waters of Southern China

    Jones, J. B., Arkhipkin, A. I., Marriott, A. L. & Pierce, G. J. Using statolith elemental signatures to confirm ontogenetic migrations of the squid Doryteuthis gahi around the Falkland Islands (Southwest Atlantic). Chemi. Geol. 481, 85–94. https://doi.org/10.1016/j.chemgeo.2018.01.034 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Wright, P. J., Regnier, T., Gibb, F. M., Augley, J. & Devalla, S. Assessing the role of ontogenetic movement in maintaining population structure in fish using otolith microchemistry. Ecol. Evol. 8, 7907–7920. https://doi.org/10.1002/ece3.4186 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobbs, J. A., Lewis, L. S., Willmes, M., Denney, C. & Bush, E. Complex life histories discovered in a critically endangered fish. Sci. Rep. 9, 16772. https://doi.org/10.1038/s41598-019-52273-8 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ryan, D., Wogerbauer, C. & Roche, W. K. Otolith microchemistry to investigate nursery site fidelity and connectivity of juvenile European sea bass in Ireland. Mar. Ecol. Prog. Ser. MFCav2 https://doi.org/10.3354/meps14185 (2022).Article 

    Google Scholar 
    Sabetian, A. et al. Fish nearshore habitat-use patterns as ecological indicators of nursery quality. Ecol. Indic. 131, 108225. https://doi.org/10.1016/j.ecolind.2021.108225 (2021).Article 

    Google Scholar 
    Nelson, T. R., Hightower, C. L., Coogan, J., Walther, B. D. & Powers, S. P. Patterns and consequences of life history diversity in salinity exposure of an estuarine dependent fish. Environ. Biol. Fish. 104, 419–436. https://doi.org/10.1007/s10641-021-01080-0 (2021).Article 

    Google Scholar 
    Russell, A., Taylor, M. D., Barnes, T. C., Johnson, D. D. & Gillanders, B. M. Habitat transitions by a large coastal sciaenid across life history stages, resolved using otolith chemistry. Mar. Environ. Res. 176, 105614. https://doi.org/10.1016/j.marenvres.2022.105614 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moore, J. W., Yeakel, J. D., Peard, D., Lough, J. & Beere, M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J. Anim. Ecol. 83, 1035–1046. https://doi.org/10.1111/1365-2656.12212 (2014).Article 
    PubMed 

    Google Scholar 
    Moore, B. R. & Simpfendorfer, C. A. Assessing connectivity of a tropical estuarine teleost through otolith elemental profiles. Mar. Ecol. Prog. Ser. 501, 225–238 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Pan, X. et al. Population connectivity in a highly migratory fish, Japanese Spanish mackerel (Scomberomorus niphonius), along the Chinese coast, implications from otolith chemistry. Fish. Res. 231, 105690. https://doi.org/10.1016/j.fishres.2020.105690 (2020).Article 

    Google Scholar 
    Delerue-Ricard, S. et al. Extensive larval dispersal and restricted movement of juveniles on the nursery grounds of sole in the Southern North Sea. J. Sea Res. 155, 101822. https://doi.org/10.1016/j.seares.2019.101822 (2019).Article 

    Google Scholar 
    Hoey, J. A. et al. Using multiple natural tags provides evidence for extensive larval dispersal across space and through time in summer flounder. Mol. Ecol. 29, 1421–1435. https://doi.org/10.1111/mec.15414 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Thomas, O. R., Ganio, K., Roberts, B. R. & Swearer, S. E. Trace element-protein interactions in endolymph from the inner ear of fish: Implications for environmental reconstructions using fish otolith chemistry. Metallomics 9, 239–249. https://doi.org/10.1039/c6mt00189k (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doubleday, Z. A., Harris, H. H., Izzo, C. & Gillanders, B. M. Strontium randomly substituting for calcium in fish otolith aragonite. Anal. Chem. 86, 865–869. https://doi.org/10.1021/ac4034278 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Izzo, C., Doubleday, Z. A. & Gillanders, B. M. Where do elements bind within the otoliths of fish?. Mar. Freshwater Res. 67, 1072–1076. https://doi.org/10.1071/mf15064 (2016).Article 
    CAS 

    Google Scholar 
    Clarke, L. M., Gillanders, B., Thorrold, S. R. & Conover, D. O. Population differences in otolith chemistry have a genetic basis in Menidia menidia. Can. J. Fish. Aquat. Sci. 68, 105–114. https://doi.org/10.1139/f10-147 (2011).Article 
    CAS 

    Google Scholar 
    Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Methods in Ecology and Evolution 6(7), 806–816 (2015).Article 

    Google Scholar 
    Hamer, P. et al. Atypical correlation of otolith strontium : calcium and barium : calcium across a marine–freshwater life history transition of a diadromous fish. Mar. Freshwater Res. 66, 411–419. https://doi.org/10.1071/mf14001 (2015).Article 
    CAS 

    Google Scholar 
    Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454. https://doi.org/10.1111/faf.12264 (2018).Article 

    Google Scholar 
    Motomura, H. Threadfins of the World (family Polynemidae). An Annotated and Illustrated Catalogue of Polynemid Species Known to Date 117 (FAO, 2004).
    Google Scholar 
    Huang, C. T. et al. Bioeconomic evaluation of Eleutheronema tetradactylum farming: A case study in Taiwan. Fish. Sci. 88, 437–447. https://doi.org/10.1007/s12562-022-01591-4 (2022).Article 
    CAS 

    Google Scholar 
    Shihab, I. et al. Histological profiling of gonads depicting protandrous hermaphroditism in Eleutheronema tetradactylum. J. Fish. Biol. 90, 2402–2411. https://doi.org/10.1111/jfb.13324 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Presti, P., Johnson, G. D. & Datovo, A. Anatomy and evolution of the pectoral filaments of threadfins (Polynemidae). Sci. Rep. 10, 1–5. https://doi.org/10.1038/s41598-020-74896-y (2020).Article 
    CAS 

    Google Scholar 
    Alshari, N. F. M. A. H. et al. Metabarcoding of fish larvae in the merbok river reveals species diversity and distribution along its mangrove environment. Zool. Stud. 60, e76. https://doi.org/10.6620/ZS.2021.60-76 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tobin, A. J., Mapleston, A., Harry, A. V. & Espinoza, M. Big fish in shallow water; use of an intertidal surf-zone habitat by large-bodied teleosts and elasmobranchs in tropical northern Australia. Environ. Biol. Fish. 97, 821–838. https://doi.org/10.1007/s10641-013-0182-y (2013).Article 

    Google Scholar 
    Adkins, M. E., Simpfendorfer, C. A. & Tobin, A. J. Large tropical fishes and their use of the nearshore littoral, intertidal and subtidal habitat mosaic. Mar. Freshwater Res. 67, 1534–1545. https://doi.org/10.1071/mf14339 (2016).Article 

    Google Scholar 
    Xuan, Z. et al. Otolith microchemistry reveals different environmental histories for two endangered fourfinger threadfin species. Mar. Ecol. Prog. Ser. 700, 161–178 (2022).Article 
    ADS 

    Google Scholar 
    Condini, M. V. et al. Prolonged estuarine habitat use by dusky grouper Epinephelus marginatus at subtropical latitudes revealed by otolith microchemistry. Endanger. Species Res. 29, 271–277 (2016).Article 

    Google Scholar 
    Teichert, N. et al. A multi-approach study to reveal eel life-history traits in an obstructed catchment before dam removal. Hydrobiologia 849, 1885–1903. https://doi.org/10.1007/s10750-022-04833-9 (2022).Article 

    Google Scholar 
    Wang, J., Sun, P. & Yin, F. Low mtDNA Cytb diversity and shallow population structure of Eleutheronema tetradactylum in the East China Sea and the South China Sea. Biochem. Syst. Ecol. 55, 268–274. https://doi.org/10.1016/j.bse.2014.03.026 (2014).Article 
    CAS 

    Google Scholar 
    Du, J. et al. Connectivity of fish assemblages along the mangrove-seagrass-coral reef continuum in Wenchang, China. Acta Oceanol. Sin. 39, 43–52. https://doi.org/10.1007/s13131-019-1490-7 (2020).Article 

    Google Scholar 
    Pember, M. B., Newman, S.J., Hesp, S.A., Young, G.C., Skepper, C.L., Hall, N.G. & Potter, I.C. Biological parameters for managing the fisheries for Blue and King Threadfin Salmons, Estuary Rockcod, Malabar Grouper and Mangrove Jack in north-western Australia. Fisheries Research and Development Corporation. (2005).Zheng, Q., Fang, G. & Song, Y. T. Introduction to special section: Dynamics and Circulation of the Yellow, East, and South China Seas. J. Geophys. Res. https://doi.org/10.1029/2005jc003261 (2006).Article 

    Google Scholar 
    Zhang, P. et al. Spatiotemporal variation, speciation, and transport flux of TDP in Leizhou Peninsula coastal waters, South China Sea. Mar. Pollut. Bull. 167, 112284. https://doi.org/10.1016/j.marpolbul.2021.112284 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stewart, J., Hughes, J. M., Stanley, C. & Fowler, A. M. The influence of rainfall on recruitment success and commercial catch for the large sciaenid, Argyrosomus japonicus, in eastern Australia. Mar. Environ. Res. 157, 104924. https://doi.org/10.1016/j.marenvres.2020.104924 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alber, M. A conceptual model of estuarine freshwater inflow management. Estuaries 25, 1246–1261. https://doi.org/10.1007/BF02692222 (2002).Article 

    Google Scholar 
    Possamai, B. et al. Freshwater inflow variability affects the relative importance of allochthonous sources for estuarine fishes. Estuar. Coast. 43, 880–893. https://doi.org/10.1007/s12237-019-00693-0 (2020).Article 

    Google Scholar 
    Halliday, I. A., Robins, J. B., Mayer, D. G., Staunton-Smith, J. & Sellin, M. J. Effects of freshwater flow on the year-class strength of a non-diadromous estuarine finfish, king threadfin (Polydactylus macrochir), in a dry-tropical estuary. Mar. Freshwater Res. 59, 157–164. https://doi.org/10.1071/MF07077 (2008).Article 

    Google Scholar 
    Muñoz Sabater, J. ERA5-Land monthly averaged data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). doi:https://doi.org/10.24381/cds.68d2bb30 (2023).Xiao, J. et al. Molecular phylogenetic and morphometric analysis of population structure and demography of endangered threadfin fish Eleutheronema from Indo-Pacific waters. Sci. Rep. 12, 3455. https://doi.org/10.1038/s41598-022-07342-w (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mischel, S. A., Mertz-Kraus, R., Jochum, K. P. & Scholz, D. TERMITE: An R script for fast reduction of laser ablation inductively coupled plasma mass spectrometry data and its application to trace element measurements. Rapid Commun. Mass Sp. 31, 1079–1087. https://doi.org/10.1002/rcm.7895 (2017).Article 
    CAS 

    Google Scholar 
    Butcher, D. J. Recent advances in the determination of calcium and its use as an internal standard in environmental samples: Fundamentals and applications. Appl. Spectrosc. Rev. 55, 60–75. https://doi.org/10.1080/05704928.2019.1570520 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Vignon, M. Extracting environmental histories from sclerochronological structures—Recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecol. Inform. 30, 159–169. https://doi.org/10.1016/j.ecoinf.2015.10.002 (2015).Article 

    Google Scholar 
    Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J. Fish. Biol. 98, 33–43. https://doi.org/10.1111/jfb.14554 (2021).Article 
    PubMed 

    Google Scholar 
    R Core Team, R: A language and environment for statistical computing. (2013).Hegg, J. C. & Kennedy, B. P. Let’s do the time warp again: non-linear time series matching as a tool for sequentially structured data in ecology. Ecosphere 12, e03742. https://doi.org/10.1002/ecs2.3742 (2021).Article 

    Google Scholar 
    Zhong, L., Wang, M., Li, D., Tang, S. & Chen, X. Mitochondrial genome of Eleutheronema rhadinum with an additional non-coding region and novel insights into the phylogenetics. Front. Mar. Sci. 8, 746598 (2021).Article 

    Google Scholar 
    Leis, J. M., Piola, R. F., Hay, A. C., Wen, C. & Kan, K.-P. Ontogeny of behaviour relevant to dispersal and connectivity in the larvae of two non-reef demersal, tropical fish species. Mar. Freshwater Res. 60, 211–223 (2009).Article 

    Google Scholar 
    Nelson, T. R., DeVries, D. R. & Wright, R. A. Salinity and temperature effects on element incorporation of gulf killifish Fundulus grandis otoliths. Estuar. Coast. 41, 1164–1177. https://doi.org/10.1007/s12237-017-0341-z (2018).Article 
    CAS 

    Google Scholar 
    Nelson, T. R. & Powers, S. P. Elemental concentrations of water and otoliths as salinity proxies in a Northern Gulf of Mexico estuary. Estuar. Coast. 43, 843–864. https://doi.org/10.1007/s12237-019-00686-z (2020).Article 
    CAS 

    Google Scholar 
    Breine, J. J., Lambeens, I., Maes, Y., De Bruyn, A. & Galle, L. First record of the fourfinger threadfin, Eleutheronema tetradactylum (Shaw, 1804) in Belgium. Estuar. Coast. Shelf Sci. 187, 28–30. https://doi.org/10.1016/j.ecss.2016.12.025 (2017).Article 
    ADS 

    Google Scholar 
    Pan, X. et al. Combining otolith elemental signatures with multivariate analytical models to verify the migratory pattern of Japanese Spanish mackerel (Scomberomorus niphonius) in the southern Yellow Sea. Acta Oceanol. Sin. 39, 54–64. https://doi.org/10.1007/s13131-020-1606-0 (2021).Article 

    Google Scholar 
    Miller, J. A. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: Implications for migratory reconstructions. J. Exp. Mar. Biol. Ecol. 405, 42–52. https://doi.org/10.1016/j.jembe.2011.05.017 (2011).Article 
    CAS 

    Google Scholar 
    Yokouchi, K. et al. Time lag of the response on the otolith strontium/calcium ratios of the Japanese eel, Anguilla japonica to changes in strontium/calcium ratios of ambient water. Environ. Biol. Fish. 92, 469–478. https://doi.org/10.1007/s10641-011-9864-5 (2011).Article 

    Google Scholar 
    Wheeler, S. G., Russell, A. D., Fehrenbacher, J. S. & Morgan, S. G. Evaluating chemical signatures in a coastal upwelling region to reconstruct water mass associations of settlement-stage rockfishes. Mar. Ecol. Prog. Ser. 550, 191–206. https://doi.org/10.3354/meps11704 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Lin, P., Hu, J., Zheng, Q., Sun, Z. & Zhu, J. Observation of summertime upwelling off the eastern and northeastern coasts of Hainan Island, China. Ocean Dyn. 66, 387–399. https://doi.org/10.1007/s10236-016-0934-2 (2016).Article 
    ADS 

    Google Scholar 
    Liu, W. et al. Dissolved barium as a tracer of Kuroshio incursion in the Kuroshio region east of Taiwan Island and the adjacent East China Sea. Sci. China Earth Sci. 60, 1356–1367. https://doi.org/10.1007/s11430-016-9039-7 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Able, K. W. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuar. Coast. Shelf Sci. 64, 5–17. https://doi.org/10.1016/j.ecss.2005.02.002 (2005).Article 
    ADS 

    Google Scholar 
    Whitfield, A. K. Littoral habitats as major nursery areas for fish species in estuaries: A reinforcement of the reduced predation paradigm. Mar. Ecol. Prog. Ser. 649, 219–234. https://doi.org/10.3354/meps13459 (2020).Article 

    Google Scholar 
    Acha, E. M., Simionato, C. G., Carozza, C. & Mianzan, H. Climate-induced year-class fluctuations of whitemouth croaker Micropogonias furnieri (Pisces, Sciaenidae) in the Río de la Plata estuary, Argentina-Uruguay. Fish. Oceanogr. 21, 58–77. https://doi.org/10.1111/j.1365-2419.2011.00609.x (2012).Article 

    Google Scholar 
    Schilling, H. T. et al. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia. Mar. Ecol. Prog. Ser. 598, 187–199. https://doi.org/10.3354/meps12495 (2018).Article 
    ADS 

    Google Scholar 
    Menezes, R. et al. Habitat use plasticity by the dog snapper (Lutjanus jocu) across the Abrolhos Bank shelf, eastern Brazil, inferred from otolith chemistry. Estuar. Coast. Shelf Sci. 263, 107637. https://doi.org/10.1016/j.ecss.2021.107637 (2021).Article 
    CAS 

    Google Scholar 
    Santos, R. O. et al. Linking bonefish (Albula vulpes) populations to nearshore estuarine habitats using an otolith microchemistry approach. Environ. Biol. Fish. 102, 267–283. https://doi.org/10.1007/s10641-018-0839-7 (2019).Article 

    Google Scholar 
    Pinceel, T. et al. An empirical confirmation of diversified bet hedging as a survival strategy in unpredictably varying environments. Ecology 102, e03496. https://doi.org/10.1002/ecy.3496 (2021).Article 
    PubMed 

    Google Scholar 
    Wang, V. H., White, J. W., Arnott, S. A. & Scharf, F. S. Population connectivity of southern flounder in the US South Atlantic revealed by otolith chemical analysis. Mar. Ecol. Prog. Ser. 596, 165–179 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gillson, J., Scandol, J. & Suthers, I. Estuarine gillnet fishery catch rates decline during drought in eastern Australia. Fish. Res. 99, 26–37. https://doi.org/10.1016/j.fishres.2009.04.007 (2009).Article 

    Google Scholar 
    Pritt, J. J., Roseman, E. F. & O’Brien, T. P. Mechanisms driving recruitment variability in fish: Comparisons between the Laurentian Great Lakes and marine systems. ICES J. Mar. Sci. 71, 2252–2267. https://doi.org/10.1093/icesjms/fsu080 (2014).Article 

    Google Scholar 
    Mai, A. C. G. et al. High plasticity in habitat use of Lycengraulis grossidens (Clupeiformes, Engraulididae). Estuar. Coast. Shelf Sci. 141, 17–25. https://doi.org/10.1016/j.ecss.2014.01.014 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Horne, J. B., Momigliano, P., Welch, D. J., Newman, S. J. & Van Herwerden, L. Limited ecological population connectivity suggests low demands on self-recruitment in a tropical inshore marine fish (Eleutheronema tetradactylum: Polynemidae). Mol. Ecol. 20, 2291–2306. https://doi.org/10.1111/j.1365-294X.2011.05097.x (2011).Article 
    PubMed 

    Google Scholar 
    Newman, S. J. et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia as inferred from stable isotopes in sagittal otolith carbonate. Fish. Manag. Ecol. 18, 246–257. https://doi.org/10.1111/j.1365-2400.2010.00780.x (2011).Article 

    Google Scholar 
    Ballagh, A. C., Welch, D. J., Newman, S. J., Allsop, Q. & Stapley, J. M. Stock structure of the blue threadfin (Eleutheronema tetradactylum) across northern Australia derived from life-history characteristics. Fish. Res. 121–122, 63–72. https://doi.org/10.1016/j.fishres.2012.01.011 (2012).Article 

    Google Scholar 
    Moore, B. R. et al. Stock structure of blue threadfin Eleutheronema tetradactylum across northern Australia, as indicated by parasites. J. Fish. Biol. 78, 923–936. https://doi.org/10.1111/j.1095-8649.2011.02917.x (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McGuigan, C. J., Schlenker, L. S., Stieglitz, J. D., Benetti, D. D. & Grosell, M. Quantifying the effects of pop-up satellite archival tags on the swimming performance and behavior of young-adult mahi-mahi (Coryphaena hippurus). Can. J. Fish. Aquat. Sci. 78, 32–39. https://doi.org/10.1139/cjfas-2020-0030 (2020).Article 

    Google Scholar 
    Macdonald, J. I., Drysdale, R. N., Witt, R., Cságoly, Z. & Marteinsdóttir, G. Isolating the influence of ontogeny helps predict island-wide variability in fish otolith chemistry. Rev. Fish Biol. Fisheries 30, 173–202. https://doi.org/10.1007/s11160-019-09591-x (2019).Article 

    Google Scholar 
    Grammer, G. L. et al. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecol. Monogr. 87, 487–507. https://doi.org/10.1002/ecm.1264 (2017).Article 

    Google Scholar  More

  • in

    A meta-analysis of the stony coral tissue loss disease microbiome finds key bacteria in unaffected and lesion tissue in diseased colonies

    Summary of SCTLD microbiome studiesInitially, datasets were acquired from 17 SCTLD studies, but one study [24] did not pass quality filtering and was removed from the analysis, resulting in 16 SCTLD studies used in this meta-analysis. In addition, one Acropora spp. rapid tissue loss (RTL) disease study was included for comparison of bacteria which may be associated more generally with coral tissue loss diseases (Supplementary Table 1). The combined dataset included 2425 samples, representing various coral species and environments described below. A total of 63 miscellaneous samples such as lab controls were included in this total (Supplementary Table 1). Samples from the studies were sequenced using five primer pairs: CS1-515F/CS2-806R [31] with additional 5’ linker sequences [32] (n = 79), 515FY [33]/806RB [34] (n = 1219), S-D-Bact-0341-b-S-17/S-D-Bact-0785-a-A-21 [35] (n = 31), 515F/806R [31] (n = 49), and 515F [31]/Arch806R [36] (n = 984; Fig. 1A). Although five primer pairs were used across studies, only the forward reads were evaluated in this analysis (see “Methods”). A description of the differences between 515F primers can be found in detail [34].Fig. 1: The number of aquaria and field samples for each coral species.A small subunit (SSU) rRNA gene primer sets, B sample type, and C disease state. NAs in (A, B) represent sediment and seawater samples. Coral species codes represent the following: Acropora cervicornis (ACER), Acropora palmata (APAL), Colpophyllia natans (CNAT), Diploria labyrinthiformis (DLAB), Dichocoenia stokesii (DSTO), Montastraea cavernosa (MCAV), Meandrina meandrites (MMEA), Orbicella annularis (OANN), Orbicella faveolata (OFAV), Orbicella franksi (OFRA), Porites astreoides (PAST), Pseudodiploria clivosa (PCLI), Pseudodiploria strigosa (PSTR), Stephanocoenia intersepta (SINT), and Siderastrea siderea (SSID).Full size imageSamples were collected throughout Florida and the U.S. Virgin Islands (USVI). Field samples totaled 1274, representing 40 sites, and a further 1088 samples were from aquaria (i.e., laboratory-based experiments; Fig. 1). Thirteen SCTLD-susceptible coral species were included, with Montastraea cavernosa (MCAV; n = 543) and Orbicella faveolata (OFAV; n = 357) most represented and Pseudodiploria clivosa (PCLI; n = 6) and Orbicella franksi (OFRA; n = 7) least represented (Fig. 1). Coral samples (n = 2031) were from three compartments: mucus only (n = 393), mucus and surface tissue (tissue slurry; n = 1585), and skeleton samples with embedded coral tissue (tissue slurry skeleton; n = 53). Seawater (n = 198) and sediment (n = 133) samples from both the field and aquaria experiments also were included to evaluate potential sources of transmission of disease-associated bacteria (Fig. 1B). For seawater from aquaria experiments, 18 L samples were collected [27], while in the field between 60 mL and 1 L samples were collected [11, 25]. In sediment aquaria experiments, 2 mL samples were collected [12], and in the field, approximately 5 mL samples were collected (of the 5 mL, DNA was extracted from 0.25 g sediment [11]). Coral samples represented three SCTLD health states: apparently healthy colonies (AH), which was the most represented (n = 1021), followed by lesions on diseased colonies (DL; n = 661), and unaffected areas on diseased colonies (DU; n = 349; Fig. 1C). AH represents grossly normal tissue, DU grossly normal tissue on diseased colonies, and DL grossly abnormal tissue.Differences in the microbial composition were found in AH corals among zones (vulnerable, endemic, and epidemic)Differences in alpha-diversity were tested among three SCTLD zones: vulnerable (i.e., locations where the disease had not been observed/reported), endemic (i.e., locations where a disease outbreak had moved through the reef and no or few colonies had active lesions), and epidemic (i.e., locations where the outbreak was active and prevalent). For alpha-diversity, for AH field-sourced samples, after filtering, 41,504 amplicon sequence variants (ASVs) remained, which were reduced to 15,021 following rarefaction. Among the filtered AH samples, Shannon (alpha) diversity from the vulnerable zone was slightly higher (estimated marginal means (emmean) = 3.95) compared to the epidemic zone (emmean = 3.70), but this was not significant (Supplementary Fig. 1). For beta-diversity, both within and between-group differences were tested using a filtered counts table. Within-group beta-diversity (variation in microbial composition or dispersion) was not different between zones, but was significant for all comparisons between zones (PERMANOVA, P-adjusted (Padj) More

  • in

    Simultaneous sulfate and nitrate reduction in coastal sediments

    Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, et al. Permeable marine sediments: Overturning an old paradigm. Eos, Trans Am Geophys Union. 2001;82:133–6.Article 

    Google Scholar 
    Cook PL, Wenzhöfer F, Rysgaard S, Galaktionov OS, Meysman FJ, Eyre BD, et al. Quantification of denitrification in permeable sediments: Insights from a two‐dimensional simulation analysis and experimental data. Limnol Oceanogr Methods. 2006;4:294–307.Article 
    CAS 

    Google Scholar 
    Evrard V, Glud RN, Cook PL. The kinetics of denitrification in permeable sediments. Biogeochemistry. 2013;113:563–72.Article 

    Google Scholar 
    Huettel M, Berg P, Kostka JE. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Marine Sci. 2014;6:23–51.Article 

    Google Scholar 
    Rao AMF, McCarthy MJ, Gardner WS, Jahnke RA. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Continental Shelf Res. 2007;27:1801–19.Article 

    Google Scholar 
    Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Marine Ecol Progr Series. 2006;326:61–76.Jansen S, Walpersdorf E, Werner U, Billerbeck M, Böttcher ME, de Beer D. Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn. 2009;59:317–32.Article 

    Google Scholar 
    de Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JEE, et al. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr. 2005;50:113–27.Article 

    Google Scholar 
    Gao H, Matyka M, Liu B, Khalili A, Kostka JE, Collins G, et al. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol Oceanogr. 2012;57:185–98.Article 
    CAS 

    Google Scholar 
    Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 2009;4:417.Article 
    PubMed 

    Google Scholar 
    Elliott AH, Brooks NH. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour Res. 1997;33:123–36.Article 
    CAS 

    Google Scholar 
    Precht E, Huettel M. Advective pore‐water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr. 2003;48:1674–84.Article 

    Google Scholar 
    Ahmerkamp S, Marchant HK, Peng C, Probandt D, Littmann S, Kuypers MM, et al. The effect of sediment grain properties and porewater flow on microbial abundance and respiration in permeable sediments. Sci Rep. 2020;10:1–12.Article 

    Google Scholar 
    Ahmerkamp S, Winter C, Krämer K, Beer DD, Janssen F, Friedrich J, et al. Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol Oceanogr. 2017;62:1935–54.Article 
    CAS 

    Google Scholar 
    Cardenas MB, Wilson JL Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour Res. 2007;43:W08412.Santos IR, Eyre BD, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal Shelf Sci. 2012;98:1–15.Article 

    Google Scholar 
    Probandt D, Eickhorst T, Ellrott A, Amann R, Knittel K. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2018;12:623–33.Article 
    PubMed 

    Google Scholar 
    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchant HK, Holtappels M, Lavik G, Ahmerkamp S, Winter C, Kuypers MMM. Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments. Limnol Oceanogr. 2016;61:1033–48.Article 

    Google Scholar 
    Marchant HK, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Lavik G, Graf J, et al. Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions. Environ Microbiol. 2018;20:4486–502.Article 
    CAS 
    PubMed 

    Google Scholar 
    Laverman AM, Pallud C, Abell J, Van, Cappellen P. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments. Geochimica et Cosmochimica Acta. 2012;77:474–88.Article 
    CAS 

    Google Scholar 
    Fenchel T, Jørgensen B. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv Microb Ecol. 1977;1:1–58.Article 
    CAS 

    Google Scholar 
    Canfield DE, Kristensen E, Thamdrup B Aquatic Geomicrobiology: Elsevier Science; 2005.Froelich PN, Klinkhammer G, Bender ML, Luedtke N, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et cosmochimica Acta. 1979;43:1075–90.Article 
    CAS 

    Google Scholar 
    Eckford RE, Fedorak PM. Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. J Ind Microbiol Biotechnol. 2002;29:243–54.Article 
    CAS 
    PubMed 

    Google Scholar 
    Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, et al. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol. 2008;74:4324.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubert C, Nemati M, Jenneman G, Voordouw G. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Progr. 2003;19:338–45.Article 
    CAS 

    Google Scholar 
    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol. 2003;5:607–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wolfe BM, Lui SM, Cowan JA. Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough) Purification, characterization, kinetics and EPR studies. Eur J Biochem. 1994;223:79–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature. 1995;374:713–15.Article 
    CAS 

    Google Scholar 
    Jørgensen BB. Big sulfur bacteria. ISME J. 2010;4:1083.Article 
    PubMed 

    Google Scholar 
    Marzocchi U, Trojan D, Larsen S, Louise Meyer R, Peter Revsbech N, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Londry KL, Suflita JM. Use of nitrate to control sulfide generation by sulfate-reducing bacteria associated with oily waste. J Ind Microbiol Biotechnol. 1999;22:582–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    McInerney MJ, Bhupathiraju VK, Sublette KL. Evaluation of a microbial method to reduce hydrogen sulfide levels in a porous rock biofilm. J Ind Microbiol. 1992;11:53–8.Article 
    CAS 

    Google Scholar 
    Schwermer CU, Ferdelman TG, Stief P, Gieseke A, Rezakhani N, Van Rijn J, et al. Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter. FEMS Microbiol Ecol. 2010;72:476–84.Article 
    CAS 
    PubMed 

    Google Scholar 
    Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta. 1994;58:5115–29.Article 
    CAS 

    Google Scholar 
    Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn. 2009;59:351–70.Article 

    Google Scholar 
    Dyksma S, Pjevac P, Ovanesov K, Mussmann M. Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol. 2018;20:450–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, et al. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol. 2006;29:333–48.Article 
    PubMed 

    Google Scholar 
    Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.Article 
    PubMed 

    Google Scholar 
    Dyksma S, Lenk S, Sawicka JE, Mußmann M. Uncultured gammaproteobacteria and desulfobacteraceae account for major acetate assimilation in a coastal marine sediment. Front Microbiol. 2018;9:3124Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen J, Hanke A, Tegetmeyer HE, Kattelmann I, Sharma R, Hamann E, et al. Impacts of chemical gradients on microbial community structure. ISME J. 2017;11:920.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations. Environ Microbiol. 2017;19:4866–81.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brunet RC, Garcia-Gil LJ. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol. 1996;21:131–8.Article 
    CAS 

    Google Scholar 
    Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol. 2020;22:2124–39.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krekeler D, Cypionka H. The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol. 1995;17:271–7.Article 
    CAS 

    Google Scholar 
    Seitz H-J, Cypionka H. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol. 1986;146:63–7.Article 
    CAS 

    Google Scholar 
    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marietou A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett. 2016;363:fnw155.Article 
    PubMed 

    Google Scholar 
    Marietou A, Griffiths L, Cole J. Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. J Bacteriol. 2009;191:882–889.Article 
    CAS 
    PubMed 

    Google Scholar 
    Korte HL, Saini A, Trotter VV, Butland GP, Arkin AP, Wall JD. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth. Environ Sci Technol. 2015;49:924–931.Article 
    CAS 
    PubMed 

    Google Scholar 
    Pereira IA, LeGall J, Xavier AV, Teixeira M. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochimica et Biophysica Acta (BBA)-Protein Struct Mol Enzymol. 2000;1481:119–130.Article 
    CAS 

    Google Scholar 
    Werner U, Billerbeck M, Polerecky L, Franke U, Huettel M, van Beusekom JEE, et al. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, Germany). Limnol Oceanogr. 2006;51:2549–63.Article 
    CAS 

    Google Scholar 
    Marchant HK, Lavik G, Holtappels M, Kuypers MMM. The fate of nitrate in intertidal permeable sediments. PLOS ONE. 2014;9:e104517.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canfield DE. Reactive iron in marine sediments. Geochimica et cosmochimica acta. 1989;53:619–632.Article 
    CAS 
    PubMed 

    Google Scholar 
    Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M. Nutrient release from an exposed intertidal sand flat. Marine Ecol Progr Series. 2006;316:35–51.Article 
    CAS 

    Google Scholar 
    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean Coast. Science. 2010;330:1375.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol. 2001;26:350–355.Article 
    CAS 
    PubMed 

    Google Scholar 
    Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite. J Bacteriol. 2004;186:7944–7950.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrendt A, de Beer D, Stief P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences. 2013;10:7509–23.Article 

    Google Scholar 
    Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta. 2020;280:441–52.Article 
    CAS 

    Google Scholar 
    Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evolut Microbiol. 2020;70:5972–6016.Article 
    CAS 

    Google Scholar 
    Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–1953.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol. 2011;13:758–774.Article 
    CAS 
    PubMed 

    Google Scholar 
    An S, Gardner W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecol Progr Series. 2002;237:41–50.Article 
    CAS 

    Google Scholar 
    Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, et al. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat Commun. 2017;8:15595.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moura I, Bursakov S, Costa C, Moura JJ. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe. 1997;3:279–290.Article 
    CAS 
    PubMed 

    Google Scholar 
    Song G, Liu S, Zhang J, Zhu Z, Zhang G, Marchant HK, et al. Response of benthic nitrogen cycling to estuarine hypoxia. Limnol Oceanogr. 2021;66:652–66.Article 
    CAS 

    Google Scholar 
    Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek. 1983;48:569–583.Article 

    Google Scholar 
    Strohm TO, Griffin B, Zumft WG, Schink B. Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol. 2007;73:1420–1424.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences. 2011;8:1779–91.Article 

    Google Scholar 
    Røy H, Lee JS, Jansen S, de Beer D. Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr. 2008;53:1521–30.Article 

    Google Scholar 
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters 1. Limnol Oceanogr. 1969;14:454–458.Article 
    CAS 

    Google Scholar 
    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van, Cappellen P. The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl Geochem. 2000;15:785–90.Article 
    CAS 

    Google Scholar 
    Røy H, Weber HS, Tarpgaard IH, Ferdelman TG, Jørgensen BB. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive 35S tracer. Limnol Oceanogr Methods. 2014;12:196–211.Article 

    Google Scholar 
    García-Robledo E, Corzo A, Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chem. 2014;162:30–36.Article 

    Google Scholar 
    Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.Article 
    CAS 
    PubMed 

    Google Scholar 
    Holtappels M, Lavik G, Jensen MM, Kuypers MMM Chapter ten – 15N-Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean. In: Klotz MG, editor. Methods in Enzymology. 486: Academic Press; 2011. p. 223-251.Preisler A, De Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment.ISME J. 2007;1:341–353.Article 
    CAS 
    PubMed 

    Google Scholar 
    Warembourg FR 5 – Nitrogen fixation in soil and plant systems. In: Knowles R, Blackburn TH, editors. Nitrogen Isotope Techniques. San Diego: Academic Press; 1993. p. 127-156.Orellana LH, Rodriguez-R LM, Konstantinidis KT. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 2016;45:e14–e14.PubMed Central 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watanabe T, Kojima H, Fukui M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Sci Rep. 2016;6:36262.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The extent of windfarm infrastructures on recognised European blanket bogs

    When studying windfarm developments at the European region scale, the high densities of windfarm developments on blanket bog in Galicia and Greater Manchester (north England) are influenced by the total extent of the recognised blanket bog which is lower in Spain (31.2 km2 total extent) and in Greater Manchester (40.8 km2 total extent) in comparison to other regions (Fig. 1), although no relationship between the total extent of recognised blanket bog and the windfarm developments (wind turbines, tracks and total affected area) was found. Although the rest of the European regions across Spain showed lower densities of windfarm infrastructures (Fig. 2), the total extent of recognised blanket bogs across those regions was under 1 km2 (Fig. 1) meaning that the majority of recognised Spanish blanket bogs could be under threat due to their small size and the potential impact of windfarm infrastructures, if installed. In addition to this, previously unrecognised Spanish blanket bogs that have now been reported17 that could also be under pressure as the lack of formal recognition and protection leaves this habitat exposed to a range of anthropogenic activities, including windfarm developments. In fact, some examples of blanket bogs with extensive damage have been identified and reported in Galicia25, and more recently in Cantabrian blanket bogs17.Spanish unmapped areas of blanket bog at the edge-of-range of this habitat in the south of Europe are, therefore, particularly at risk from windfarm developments, and may disappear before their extent and importance can be defined40. Currently, new renewable energy regulations have been developed as a result of the climate emergency, and several windfarm developments have been proposed in ecologically sensitive areas, where blanket bogs have been reported (e.g. Sierra del Escudo, Spain) increasing the pressure on this habitat. Spanish blanket bogs also have specific characteristics, such as their small size as a consequence of the topographical limitations (e.g. slope) for their development26, meaning that they usually only cover the hill summits, where wind energy potential is at its greatest. Since blanket bogs are small and the windfarm development may cover all of the hill summit for their installation, many blanket bogs will be irrevocably damaged40.Most of the Galician blanket bogs were protected in 1999, under the Natura 2000 network and were declared as Special Area of Conservation (SAC) in 2014. However, between 1999 and 2012, Galician blanket bogs underwent severe and significant alterations in the peatland surface as a consequence of the large number of windfarm developments41 that were established during the period (Table A—Supplementary information), even when the site was incorporated into the Natura 2000 network (Table B—Supplementary information). Despite available scientific evidence that showed the potential environmental risks for these vulnerable ecosystems, windfarms were installed in what this work found to be the most extensive windfarm infrastructures across recognised European blanket bogs (Fig. 2).The incomplete current understanding of the extent of Spanish blanket bogs highlights the need to improve the completeness and representativeness of their current records across the Spanish Atlantic biogeographical region to include, within Natura 2000, a sufficient cover of their occupied area, in proportion to the representation of this natural habitat type in the Member state, for which it could therefore be concluded that the network is complete. Due to the increasing evidence highlighting how important the transitional areas are within the blanket bog complex42, other peatland types and wet heaths should be also considered when recognising and protecting blanket bogs. Mapping unrecorded blanket bogs must be a priority to fully understand the geographical and climatic range of this habitat, and obligatory protection under the Habitats Directive (92/43/EEC) is key to protecting the southern edge-of-range of this habitat.In addition to the lack of protection and updated inventories, the priority status included in the Habitats Directive, key to promoting their protection and restoration, is only for active blanket bogs, excluding other degraded blanket bogs with the potential to be active (carbon sinks), if they are restored. An approach similar to that of Scotland, where degraded blanket bogs are included33,39, could promote blanket bog restoration across Europe and improve the protection of this natural carbon storage.Many countries have also misinterpreted the active status of the blanket bog meaning that it is difficult to define whether the recognised blanket bog habitat is classed as a priority or not. Some countries, such as the Republic of Ireland, have classified as 7130 only active blanket bogs36, meaning that degraded blanket bogs lack appropriate classification and incorrectly applying the Habitat Directive designation as not all blanket bogs are included. The priority status is given when the habitat is particularly vulnerable or unique to the EU and necessitates additional measures for their protection and surveillance; however, whilst some blanket bogs may not act currently as carbon sinks, they still contain large amounts of carbon, and when restored they can recover their carbon sink function1, and then act to mitigate climate change.The issue of windfarm developments across the Republic of Ireland has been previously reported using a peat map43. However, despite researchers highlighting the importance of excluding vulnerable peatland ecosystems in future developments44, new areas of windfarms have been built affecting further recognised blanket bogs. At least 79 wind turbines have been installed in the Republic of Ireland since 2008 on recognised blanket bogs (Table A—Supplementary information) representing the 9.8% of the total onshore turbines installed in the country (Table 3), highlighting the importance of this conflict. The contribution of wind energy production to electricity supply was predicted to be up to 30% by 202044. In 2020, wind energy consumed in the Republic of Ireland represented 36%45. This represented an average annual increase of wind energy consumption of 16.9%45 between 2005 and 2020, which may explain part of the increase of 42% in wind turbines since 2008 (Table A—Supplementary information).Table 3 Total % of turbines on blanket bog (recognised/national inventories) in relation with the total turbines installed by country.Full size tableAcross Europe, several governments have developed climate action plans that over the next decade promote renewable energies to reduce carbon emissions. The government of the Republic of Ireland is aiming to generate up to 80% of electricity from renewable energy by 2030, providing support for onshore windfarm developments with an increase of up to 32% of the renewable energy production by 2030, but with a favourable preference for offshore wind energy production (up to 52% of the renewable energy production)46. This may help to reduce the conflict between blanket bogs and windfarm developments. Currently, windfarm annual energy production on blanket bogs accounts for 263.4 MW, 6.1% of the total production of wind energy in the Republic of Ireland47.The promotion of onshore wind energy production46 and the lack of protection of the full extent of blanket bogs are also threats that need to be considered in the Republic of Ireland. In 2008, a peat map was published showing the distribution of blanket bogs and raised bogs across the Republic of Ireland43. However, the inventory of current recognised blanket bogs under the Habitats Directive does not cover the full extent reported in this research43. While the total extent of recognised blanket bogs under the Habitats Directive 92/43/ECC reported a total of 3621 km2 of blanket bogs36, the real extent of blanket bogs across the country could be up to 2.5 times more (9202 km2)43, highlighting the lack of protection and the potential further increase of the windfarms and peatlands conflict in the Republic of Ireland as it happens in Spain and Scotland.The lack of recognition of blanket bog habitat in combination with the promotion of wind energy production across the island of Ireland could affect further areas of blanket bog, increasing the degradation of blanket bogs. An urgent review of inventories needs to be promoted in both countries, the Republic of Ireland and Northern Ireland, to fully assess the impact of the extensive areas of windfarms across the whole island.In Scotland, the pressure of windfarm developments on blanket bogs is also evident, where the Scottish Planning Policy considers classes 1 and 2 as areas of significant protection; although, windfarm developments may be possible under some circumstances48 as is permitted under the Habitats Directive across the EU29. However, to assess the impacts of windfarms on peatlands in a consistent way and evaluate the environmental impact of potential new developments on carbon-rich soils, a carbon calculator has been developed by the Scottish Government49. The carbon calculator allows users to estimate the carbon savings of windfarms installed on peatlands, although they highlight the importance of long-term management in relation to the final net carbon calculation49. Nonetheless, installing windfarms on non-degraded peatlands has been reported as unlikely to reduce carbon emissions even when the management has been considered carefully and it should be avoided 30. Therefore, peatlands under classes 1 and 2 considered by the Scottish government as a priority should be excluded from any windfarm developments (currently representing over 16% of onshore turbines, Table 3); especially considering the current policy of increasing onshore windfarms in Scotland50. Long-term research is needed to fully assess the impacts before new windfarm developments are installed.The difference between the recognised blanket bogs included in the EU Habitats Directive and the Scottish national inventory highlights the importance of updating and defining the complete extent of blanket bogs to facilitate their protection and restoration.In this novel research, the extent of windfarm developments across all recognised European blanket bogs under the Habitats Directive have been assessed. Large extents of blanket bogs have already been damaged, concentrated in the edge-of-range of this habitat and directly affecting hundreds of hectares of blanket bog across the rest of Europe. The full potential long-term damage to the habitat functionality is still unclear, but scientific evidence supports the negative impacts of windfarm developments on this critical habitat. European blanket bogs need further scientific evidence to demonstrate the real benefit of incentivising the reduction of carbon emissions by installing onshore windfarm infrastructures on peatlands which are causing the degradation of the most important long-term natural carbon sink and storage ecosystems. A strategic restoration plan and appropriate relevant legislation would be beneficial to promote the safeguarding of blanket bogs in the UK after Brexit. An urgent revision and compliance of the legislation regarding the protection of blanket bogs needs to be implemented, especially under the current trend of promotion and increasing legislation on renewable energy to reduce carbon emissions. An improvement of the national inventories across the EU and UK protected area networks is critical to implement the recognition, protection, and restoration of this habitat, in order to guarantee its favourable conservation status and its function as a long-term carbon sink to mitigate climate change. More

  • in

    Diel variations in planktonic ciliate community structure in the northern South China Sea and tropical Western Pacific

    Lynn, D. H. Ciliated Protozoa: Characterization, Classification, and Guide to the Literature 3rd edn, 1–455 (Springer, 2008).
    Google Scholar 
    Stoecker, D. K., Michaels, A. E. & Davis, L. H. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9, 901–915 (1987).Article 

    Google Scholar 
    Dolan, J. R., Vidussi, F. & Claustre, H. Planktonic ciliates in the Mediterranean Sea: Longitudinal trends. Deep-Sea Res. I(46), 2025–2039 (1999).Article 

    Google Scholar 
    Gómez, F. Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecol. 32, 188–202 (2007).Article 
    ADS 

    Google Scholar 
    Azam, F. et al. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article 
    ADS 

    Google Scholar 
    Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).
    Google Scholar 
    Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167 (2005).Article 

    Google Scholar 
    Kim, Y. O. et al. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Sci. J. 47, 161–172 (2012).Article 
    ADS 

    Google Scholar 
    Wang, C. F. et al. Impact of the warm eddy on planktonic ciliate, with an emphasis on tintinnids as bioindicator species. Ecol. Indic. 133, 108441 (2021).Article 

    Google Scholar 
    Wang, C. F. et al. Planktonic tintinnid community structure variations in different water masses of the Arctic Basin. Front. Mar. Sci. 8, 775653 (2022).Article 

    Google Scholar 
    Haney, J. F. Diel patterns of zooplankton behavior. Bull. Mar. Sci. 43, 583–603 (1988).ADS 

    Google Scholar 
    Vaulot, D. & Marie, D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res-Oceans 104, 3297–3310 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Hays, G. C., Webb, P. I. & Frears, S. L. Diet changes in the carbon and nitrogen content of the copepod Metridia lucens. J. Plankton Res. 4, 727–737 (1998).Article 

    Google Scholar 
    Hays, G. C., Harris, R. P. & Head, R. N. Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants. Deep-Sea Res. II(48), 1063–1068 (2001).ADS 

    Google Scholar 
    Anna, A., Enric, S. & Albert, C. Towards an understanding of diel feeding phythms in marine protists: Consequences of light manipulation. Microb. Ecol. 79, 64–72 (2020).Article 

    Google Scholar 
    Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482 (1995).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Binder, B. J. & DuRand, M. D. Diel cycles in surface waters of the equatorial Pacific. Deep-Sea Res. II(49), 2601–2617 (2002).ADS 

    Google Scholar 
    Li, C. L. et al. Quasi-antiphase diel patterns of abundance and cell size/biomass of picophytoplankton in the oligotrophic ocean. Geophys. Res. Lett. 49, e2022GL097753 (2022).ADS 

    Google Scholar 
    Ohman, M. D. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60, 257–281 (1990).Article 

    Google Scholar 
    Ringelberg, J. The photo behavior of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. 74, 397–423 (1999).Article 

    Google Scholar 
    Tarling, G. A., Jarvis, T., Emsley, S. M. & Matthews, J. B. L. Midnight sinking behaviour in Calanus finmarchicus: A response to satiation or krill predation?. Mar. Ecol. Prog. 240, 183–194 (2002).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Mar. Biol. 147, 387–398 (2005).Article 

    Google Scholar 
    Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. II. Proximate role of exogenous light cues and endogenous rhythms. Mar. Biol. 147, 399–410 (2005).Article 

    Google Scholar 
    Ringelberg, J. Diel Vertical Migration of Zooplankton in Lakes and Oceans 1–347 (Springer, 2010).
    Google Scholar 
    Liu, H. J., Zhu, M. L., Guo, S. J., Zhao, X. H. & Sun, X. X. Effects of an anticyclonic eddy on the distribution and community structure of zooplankton in the South China Sea northern slope. J. Mar. Syst. 205, 103311 (2020).Article 

    Google Scholar 
    Tao, Z. C. et al. The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean. Sci. Rep. 12, 18908 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dale, T. Diel vertical distribution of planktonic ciliates in Lindåspollene, Western Norway. Mar. Microb. Food Webs 2, 15–28 (1987).
    Google Scholar 
    Jonsson, P. R. Vertical distribution of planktonic ciliates–an experimental analysis of swimming behavior. Mar. Ecol. Prog. Ser. 52, 39–53 (1989).Article 
    ADS 

    Google Scholar 
    Stocker, D. K., Taniguchi, A. & Michaels, A. E. Abundance of autotrophic, mixotrophic and heterotrophic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50, 241–254 (1989).Article 
    ADS 

    Google Scholar 
    Passow, U. Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Mar. Biol. 110, 455–463 (1991).Article 

    Google Scholar 
    Suzuki, T. & Taniguchi, A. Temporal change of clustered distribution of planktonic ciliates in Toyama Bay in summers of 1989 and 1990. J. Oceanogr. 53, 35–40 (1997).Article 
    CAS 

    Google Scholar 
    Olli, K. Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga. J. Mar. Syst. 23, 145–163 (1999).Article 

    Google Scholar 
    Pérez, M. T., Dolan, J. R., Vidussi, F. & Fukai, E. Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterrean (May 1995). Deep-Sea Res. I(47), 479–503 (2000).Article 

    Google Scholar 
    Rossberg, M. & Wickham, S. A. Ciliate vertical distribution and diel vertical migration in a eutrophic lake. Fund. Appl. Limnol. 171, 1–14 (2008).Article 

    Google Scholar 
    Gu, B. W. et al. High dynamics of ciliate community revealed via short-term, high-frequency sampling in a subtropical estuarine ecosystem. Front. Microbiol. 13, 797638 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Su, J. L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography near the Pearl River Estuary. Cont. Shelf Res. 24, 1745–1760 (2004).Article 

    Google Scholar 
    Cravatte, S., Delcroix, T., Zhang, D., Mcphaden, M. & Leloup, J. Observed freshening and warming of the western pacific warm pool. Clim. Dyn. 33, 565–589 (2009).Article 

    Google Scholar 
    Feng, M. P., Zhang, W. C., Yu, Y., Xiao, T. & Sun, J. Horizontal distribution of tintinnids in the western South China Sea during summer 2007. J. Trop. Oceanogr. 32, 86–92 (2013).
    Google Scholar 
    Liu, H. X. et al. Composition and distribution of planktonic ciliates in the southern South China Sea during late summer: Comparison between surface and 75 m deep layer. J. Ocean Univ. China 15, 171–176 (2016).Article 
    ADS 

    Google Scholar 
    Wang, C. F. et al. Vertical distribution of planktonic ciliates in the oceanic and slope areas of the western Pacific Ocean. Deep-Sea Res. II(167), 70–78 (2019).
    Google Scholar 
    Sun, P., Zhang, S. L., Wang, Y. & Huang, B. Q. Biogeographic role of the Kuroshio Current Intrusion in the microzooplankton community in the boundary zone of the northern South China Sea. Microorganisms 9, 1104 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sohrin, R., Imazawa, M., Fukuda, H. & Suzuki, Y. Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. II(57), 1537–1550 (2010).ADS 

    Google Scholar 
    Wang, C. F. et al. Difference of planktonic ciliate communities of the tropical West Pacific, the Bering Sea and the Arctic Ocean. Acta Oceanol. Sin. 39, 9–17 (2020).Article 
    CAS 

    Google Scholar 
    Wang, C. F. et al. Planktonic ciliate trait structure variation over Yap, Mariana and Caroline seamounts in the tropical western Pacific Ocean. J. Oceanol. Limnol. 39, 1705–1717 (2021).Article 
    ADS 

    Google Scholar 
    McLaren, I. A. Demographic strategy of vertical migration by a marine copepod. Amer. Nat. 108, 91–102 (1974).Article 

    Google Scholar 
    Loose, C. J., Von Elert, E. & Dawidowicz, P. Chemically-induced diel vertical migration in Daphnia: A new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126, 329–337 (1993).Article 

    Google Scholar 
    Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K. Two hundred years of zooplankton vertical migration research. Biol. Rev. 96, 1–43 (2021).Article 

    Google Scholar 
    Oubelkheir, K. & Sciandra, A. Diel variations in particle stocks in the oligotrophic waters of the Ionian Sea (Mediterranean). J. Mar. Syst. 74, 364–371 (2008).Article 

    Google Scholar 
    Yang, E. J., Choi, J. K. & Hyun, J. H. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146, 1–15 (2004).Article 

    Google Scholar 
    Wang, C. F. et al. Planktonic ciliate community structure and its distribution in the oxygen minimum zones in the Bay of Bengal (Eastern Indian Ocean). J. Sea Res. 190, 102311 (2022).Article 

    Google Scholar 
    Daro, M. H. Migratory and grazing behavior of copepods and vertical distribution of phytoplankton. Bull. Mar. Sci. 43, 710–729 (1988).
    Google Scholar 
    Ursella, L., Cardin, V., Batistić, M., Garić, R. & Gačić, M. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records. Prog. Oceanogr. 167, 78–96 (2018).Article 
    ADS 

    Google Scholar 
    Roman, M. R., Dam, H. G., Le Borgne, R. & Zhang, X. Latitudinal comparisons of equatorial Pacific zooplankton. Deep-Sea Res. II(49), 2695–2711 (2002).ADS 

    Google Scholar 
    Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II(55), 1615–1635 (2008).ADS 

    Google Scholar 
    Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).Article 

    Google Scholar 
    Dolan, J. R. Morphology and ecology in tintinnid ciliates of the marine plankton: Correlates of lorica dimensions. Acta Protozoologica 49, 235–244 (2010).
    Google Scholar 
    Jacquet, S., Partensky, F., Lennon, J. F. & Vaulot, D. Diel patterns of growth and division in marine picoplankton in culture. J. Phycol. 37, 357–369 (2001).Article 

    Google Scholar 
    Pitta, P., Giannakourou, A. & Christaki, U. Planktonic ciliates in the oligotrophic Mediterranean Sea: Longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat. Microb. Ecol. 24, 297–311 (2001).Article 

    Google Scholar 
    Weisse, T. & Montagnes, D. J. S. Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges. J. Eukaryot. Microbiol. 69, e12879 (2022).Article 
    PubMed 

    Google Scholar 
    Heinbokel, J. F. Diel periodicities and rates of reproduction in natural populations of tintinnines in the oligotrophic waters off Hawaii, September 1982. Mar. Microb. Food Webs 2, 1–14 (1987).
    Google Scholar 
    Tsai, A. Y., Chiang, K. P., Chang, J. & Gong, G. C. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 50, 1221–1231 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl. Acad. Sci. U. S. A. 112, 8008–8012 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Connell, P. E., Ribalet, F., Armbrust, E. V., White, A. & Caron, D. A. Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 85, 167–181 (2020).Article 

    Google Scholar 
    Cheung, K. C., Poon, B., Lan, C. Y. & Wong, M. H. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52, 1431–1440 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huang, X. P., Huang, L. M. & Yue, W. Z. The characteristics of nutrients and eutrophication in the Pearl River estuary. South China. Mar. Pollut. Bull. 47, 30–36 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, S. M. et al. Nutrient dynamics in the winter thermohaline frontal zone of the northern shelf region of the South China Sea. J. Geophys. Res. 115, C11020 (2010).Article 
    ADS 

    Google Scholar 
    Shu, Y. Q., Wang, Q. & Zu, T. T. Progress on shelf and slope circulation in the northern South China Sea. Sci. China Earth Sci. 61, 560–571 (2018).Article 
    ADS 

    Google Scholar 
    Dai, S. et al. The effects of a warm-core eddy on chlorophyll a distribution and phytoplankton community structure in the northern South China Sea in spring 2017. J. Mar. Syst. 210, 103396 (2020).Article 

    Google Scholar 
    He, X. Q. et al. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea. Cont. Shelf Res. 124, 117–124 (2016).Article 
    ADS 

    Google Scholar 
    Pan, X. J. et al. Remote sensing of surface [nitrite + nitrate] in river-influenced shelf-seas: The northern South China Sea Shelf-sea. Remote Sens. Environ. 210, 1–11 (2018).Article 
    ADS 

    Google Scholar 
    Xu, J. et al. Phosphorus limitation in the northern South China Sea during late summer: Influence of the Pearl River. Deep-Sea Res. I. 55, 1330–1342 (2008).Article 
    CAS 

    Google Scholar 
    Caron, D. Inorganic nutrients, bacteria, and the microbial loop. Microb. Ecol. 28, 295–298 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kirchman, D. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28, 255–271 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Song, J. M. Biogeochemical Processes of Biogenic Elements in China Marginal Seas 1–657 (Springer, 2011).
    Google Scholar 
    Zhang, W. C. et al. Review of nutrient (nitrogen and phosphorus) regeneration in the marine pelagic microbial food web. Mar. Sci. Bull. 35, 241–251 (2016).CAS 

    Google Scholar 
    Ma, J. et al. Effects of Y3 seamount on nutrients influencing the ecological environment in the Western Pacific Ocean. Earth Sci. Front. 27, 322–331 (2020).
    Google Scholar 
    Li, H. B. et al. Tintinnid diversity in the tropical West Pacific Ocean. Acta Oceanol. Sin. 37, 218–228 (2018).Article 
    CAS 

    Google Scholar 
    Dolan, J. R., Ritchie, M. E. & Ras, J. The, “neutral” community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean. Biogeosciences 4, 297–310 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Dolan, J. R., Ritchie, M. E., Tunin-Ley, A. & Pizay, M. Dynamics of core and occasional species in the marine plankton: Tintinnid ciliates in the north-west Mediterranean Sea. J. Biogeogr. 36, 887–895 (2009).Article 

    Google Scholar 
    Dolan, J. R. & Marrasé, C. Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, NW Mediterranean, June 1993. Deep-Sea Res. I(42), 1965–1987 (1995).Article 

    Google Scholar 
    Suzuki, T. & Taniguchi, A. Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382 (1998).Article 

    Google Scholar 
    Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton Methodik. Mit. Int. Ver. Theor. Angew. Limnol. 9, 1–38 (1958).
    Google Scholar 
    Lund, J. W. G., Kipling, C. & Cren, E. D. L. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).Article 

    Google Scholar 
    Kofoid, C. A. & Campbell, A. S. A Conspectus of the Marine and Fresh-Water Ciliata Belonging to the Suborder Tintinnoinea: With Descriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905 (University of California Press, 1929).
    Google Scholar 
    Kofoid, C. A., & Campbell, A. S. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge to Alexander Agassiz, by US Fish commission steamer “Albatross”, from October 1904 to March 1905, The Ciliata: The Tintinnoinea (Bulletin of the Museum of Comparative Zoology of Harvard College), vol. XXXVII. Cambridge University, Harvard (Lieut.-Commander LM Garrett, USN commanding) (1939).Zhang, W. C., Feng, M. P., Yu, Y., Zhang, C. X. & Xiao, T. An Illustrated Guide to Contemporary Tintinnids in the World 1–499 (Science Press, 2012).
    Google Scholar 
    Paranjape, M. A. & Gold, K. Cultivation of marine pelagic protozoa. Ann. Inst. Oceanogr. Paris 58, 143–150 (1982).
    Google Scholar 
    Alder, V. A. Tintinnoinea. In South Atlantic zooplankton (ed. Boltovskoy, D.) 321–384 (Backhuys, 1999).
    Google Scholar 
    Verity, P. G. & Langdon, C. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton R. 6, 859–868 (1984).Article 
    CAS 

    Google Scholar 
    Putt, M. & Stoecker, D. K. An experimentally determined carbon: Volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).Article 
    ADS 

    Google Scholar 
    Yu, Y. et al. Basin-scale variation in planktonic ciliate distribution: A detailed temporal and spatial study of the Yellow Sea. Mar. Biol. Res. 10, 641–654 (2014).Article 

    Google Scholar 
    Wang, C. F. et al. Hydrographic feature variation caused pronounced differences of planktonic ciliate community in the Pacific Arctic Region in summer 2016 and 2019. Front. Microbiol. 13, 881048 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
    Google Scholar 
    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Dolan, J. R. & Pierce, R. W. Diversity and distributions of tintinnid ciliates. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 214–243 (Wiley-Blackwell, 2013).
    Google Scholar 
    Xu, Z. L. & Chen, Y. Q. Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea. J. Ecol. 8, 13–15 (1989).
    Google Scholar 
    Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (PRIMER-E, 2008).
    Google Scholar 
    Jiang, Y., Xu, G. & Xu, H. Use of multivariate dispersion to assess water quality based on species composition data. Environ. Sci. Pollut. Res. 23, 3267–3272 (2016).Article 
    CAS 

    Google Scholar  More

  • in

    The terrestrial isopod symbiont ‘Candidatus Hepatincola porcellionum’ is a potential nutrient scavenger related to Holosporales symbionts of protists

    McCutcheon JP, Boyd BM, Dale C. The life of an insect endosymbiont from the cradle to the grave. Curr Biol. 2019;29:R485–95.Article 
    CAS 
    PubMed 

    Google Scholar 
    McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26.Article 
    CAS 

    Google Scholar 
    Latorre A, Manzano-Marin A. Dissecting genome reduction and trait loss in insect endosymbionts. Ann N Y Acad Sci. 2017;1389:52–75.Article 
    PubMed 

    Google Scholar 
    Salje J. Cells within cells: Rickettsiales and the obligate intracellular bacterial lifestyle. Nat Rev Microbiol. 2021;19:375–90.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kaur R, Shropshire JD, Cross KL, Leigh B, Mansueto AJ, Stewart V, et al. Living in the endosymbiotic world of Wolbachia: a centennial review. Cell Host Microbe. 2021;29:879–93.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Thongprem P, Davison HR, Siozios S, Baylis M, Zakharov EV, et al. Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. Gigascience. 2021;10:giab021.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilgrim J, Ander M, Garros C, Baylis M, Hurst GDD, Siozios S. Torix group Rickettsia are widespread in Culicoides biting midges (Diptera: Ceratopogonidae), reach high frequency and carry unique genomic features. Environ Microbiol. 2017;19:4238–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol. 1999;1:357–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Schulz F, Lagkouvardos I, Wascher F, Aistleitner K, Kostanjsek R, Horn M. Life in an unusual intracellular niche: a bacterial symbiont infecting the nucleus of amoebae. ISME J. 2014;8:1634–44.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjsek R, Ettema TJ, et al. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol. 2016;18:2326–42.Article 
    CAS 
    PubMed 

    Google Scholar 
    Hess S, Suthaus A, Melkonian M. “Candidatus Finniella” (Rickettsiales, Alphaproteobacteria), Novel Endosymbionts of Viridiraptorid Amoeboflagellates (Cercozoa, Rhizaria). Appl Environ Microbiol. 2016;82:659–70.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Sabaneyeva E, Lanzoni O, Lebedeva N, Floriano AM, Gaiarsa S, et al. Deianiraea, an extracellular bacterium associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of Rickettsiales. ISME J. 2019;13:2280–94.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Floriano AM, Castelli M, Krenek S, Berendonk TU, Bazzocchi C, Petroni G, et al. The genome sequence of “Candidatus Fokinia solitaria”: insights on reductive evolution in Rickettsiales. Genome Biol Evol. 2018;10:1120–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    George EE, Husnik F, Tashyreva D, Prokopchuk G, Horak A, Kwong WK, et al. Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr Biol. 2020;30:925–33.e3.Article 
    CAS 
    PubMed 

    Google Scholar 
    Midha S, Rigden DJ, Siozios S, Hurst GDD, Jackson AP. Bodo saltans (Kinetoplastida) is dependent on a novel Paracaedibacter-like endosymbiont that possesses multiple putative toxin-antitoxin systems. ISME J. 2021;15:1680–94.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castelli M, Lanzoni O, Giovannini M, Lebedeva N, Gammuto L, Sassera D, et al. ‘Candidatus Gromoviella agglomerans’, a novel intracellular Holosporaceae parasite of the ciliate Paramecium showing marked genome reduction. Environ Microbiol Rep. 2022;14:34–49.Article 
    CAS 
    PubMed 

    Google Scholar 
    Klinges JG, Rosales SM, McMinds R, Shaver EC, Shantz AA, Peters EC, et al. Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J. 2019;13:2938–53.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kroer P, Kjeldsen KU, Nyengaard JR, Schramm A, Funch P. A novel extracellular gut symbiont in the marine worm Priapulus caudatus (Priapulida) reveals an Alphaproteobacterial symbiont clade of the ecdysozoa. Front Microbiol. 2016;7:539.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yurchenko T, Sevcikova T, Pribyl P, El Karkouri K, Klimes V, Amaral R, et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 2018;12:2163–75.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferla MP, Thrash JC, Giovannoni SJ, Patrick WM. New rRNA gene-based phylogenies of the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic instability. PLoS ONE. 2013;8:e83383.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Szokoli F, Castelli M, Sabaneyeva E, Schrallhammer M, Krenek S, Doak TG, et al. Disentangling the taxonomy of Rickettsiales and description of two novel symbionts (“Candidatus Bealeia paramacronuclearis” and “Candidatus Fokinia cryptica”) sharing the cytoplasm of the ciliate protist Paramecium biaurelia. Appl Environ Microbiol. 2016;82:7236–47.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munoz-Gomez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH, et al. An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife. 2019;8:e42535.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sassera D, Beninati T, Bandi C, Bouman EA, Sacchi L, Fabbi M, et al. ‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int J Syst Evol Microbiol. 2006;56:2535–40.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fokin SI, Görtz HD, Diversity of Holospora bacteria in Paramecium and their characterization. In: Fujishima M, editor. Endosymbionts in Paramecium. Microbiology Monographs, vol 12. Berlin: Springer; 2009. https://doi.org/10.1007/978-3-540-92677-1_7.Min CK, Yang JS, Kim S, Choi MS, Kim IS, Cho NH. Genome-based construction of the metabolic pathways of Orientia tsutsugamushi and comparative analysis within the Rickettsiales order. Comp Funct Genomics. 2008;2008:623145.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garushyants SK, Beliavskaia AY, Malko DB, Logacheva MD, Rautian MS, Gelfand MS. Comparative genomic analysis of Holospora spp., intranuclear symbionts of paramecia. Front Microbiol. 2018;9:738.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boscaro V, Fokin SI, Schrallhammer M, Schweikert M, Petroni G. Revised systematics of Holospora-like bacteria and characterization of “Candidatus Gortzia infectiva”, a novel macronuclear symbiont of Paramecium jenningsi. Microb Ecol. 2013;65:255–67.Article 
    CAS 
    PubMed 

    Google Scholar 
    Serra V, Fokin SI, Castelli M, Basuri CK, Nitla V, Verni F, et al. “Candidatus Gortzia shahrazadis”, a novel endosymbiont of Paramecium multimicronucleatum and a revision of the biogeographical distribution of Holospora-like bacteria. Front Microbiol. 2016;7:1704.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takeshita K, Yamada T, Kawahara Y, Narihiro T, Ito M, Kamagata Y, et al. Tripartite symbiosis of an anaerobic scuticociliate with two hydrogenosome-associated endosymbionts, a Holospora-related Alphaproteobacterium and a Methanogenic Archaeon. Appl Environ Microbiol. 2019;85:e00854–19.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang Y, Brune A, Zimmer M. Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. FEMS Microbiol Ecol. 2007;61:141–52.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang Y, Stingl U, Anton-Erxleben F, Zimmer M, Brune A. ‘Candidatus Hepatincola porcellionum’ gen. nov., sp. nov., a new, stalk-forming lineage of Rickettsiales colonizing the midgut glands of a terrestrial isopod. Arch Microbiol. 2004;181:299–304.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fraune S, Zimmer M. Host-specificity of environmentally transmitted Mycoplasma-like isopod symbionts. Environ Microbiol. 2008;10:2497–504.Article 
    CAS 
    PubMed 

    Google Scholar 
    Dittmer J, Lesobre J, Moumen B, Bouchon D. Host origin and tissue microhabitat shaping the microbiota of the terrestrial isopod Armadillidium vulgare. FEMS Microbiol Ecol. 2016;92:fiw063.Article 
    PubMed 

    Google Scholar 
    Zimmer M, Topp W. Microorganisms and cellulose digestion in the gut of the woodlouse Porcellio scaber. J Chem Ecol. 1998;24:1397–408.Article 
    CAS 

    Google Scholar 
    Zimmer M, Danko JP, Pennings SC, Danford AR, Ziegler A, Uglow RF, et al. Hepatopancreatic endosymbionts in coastal isopods (Crustacea: Isopoda), and their contribution to digestion. Mar Biol. 2001;138:955–63.Article 

    Google Scholar 
    Bouchon D, Zimmer M, Dittmer J. The terrestrial isopod microbiome: an all-in-one toolbox for animal-microbe interactions of ecological relevance. Front Microbiol. 2016;7:1472.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dittmer J, Beltran-Bech S, Lesobre J, Raimond M, Johnson M, Bouchon D. Host tissues as microhabitats for Wolbachia and quantitative insights into the bacterial community in terrestrial isopods. Mol Ecol. 2014;23:2619–35.Article 
    CAS 
    PubMed 

    Google Scholar 
    Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loman NJ, Quick J, Simpson JT. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods. 2015;12:733–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–46.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Holt KE. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol. 2022;18:e1009802.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Dittmer J, Noel C, Moumen B, Bouchon D. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome. 2018;6:162.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bredon M, Herran B, Bertaux J, Greve P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. Biotechnol Biofuels. 2020;13:49.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prjibelski A, Antipov D, Meleshko D, Lapidus A, Korobeynikov A. Using SPAdes de novo assembler. Curr Protoc Bioinformatics. 2020;70:e102.Article 
    CAS 
    PubMed 

    Google Scholar 
    Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Badawi M, Moumen B, Giraud I, Greve P, Cordaux R. Investigating the molecular genetic basis of cytoplasmic sex determination caused by Wolbachia endosymbionts in terrestrial isopods. Genes. 2018;9:290.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wick RR, Judd LM, Gorrie CL, Holt KE. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb Genom. 2017;3:e000132.PubMed 
    PubMed Central 

    Google Scholar 
    Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17:1103–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49:D412–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 2004;32:W327–31.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.Article 
    CAS 
    PubMed 

    Google Scholar 
    Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 2012;28:464–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.Article 
    CAS 
    PubMed 

    Google Scholar 
    Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat Microbiol. 2021;6:3–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.Article 
    CAS 
    PubMed 

    Google Scholar 
    Abby SS, Cury J, Guglielmini J, Neron B, Touchon M, Rocha EP. Identification of protein secretion systems in bacterial genomes. Sci Rep. 2016;6:23080.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teufel F, Almagro Armenteros JJ, Johansen AR, Gislason MH, Pihl SI, Tsirigos KD, et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol. 2022;40:1023–5.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbourne LD, Tetu SG, Hassan KA, Paulsen IT. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. 2017;45:D320–4.Article 
    CAS 
    PubMed 

    Google Scholar 
    Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–35.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–21.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37:1530–4.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernomor O, von Haeseler A, Minh BQ. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 2016;65:997–1008.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.Article 
    CAS 
    PubMed 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–6.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: bacteria providing their host the killer trait. Syst Appl Microbiol. 2018;41:213–20.Article 
    PubMed 

    Google Scholar 
    Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, et al. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev. 2015;39:47–80.CAS 
    PubMed 

    Google Scholar  More

  • in

    Competition’s role

    Decline in organism size is seen as a major biological response to climate change, and can be particularly pronounced in aquatic ectotherms such as fish, with subsequent implications for fishery yield and food security. However, as well as being modulated by climate factors, the fish population size structure can also be impacted by biotic (competition, predation) and other human factors (harvesting). For migrating species such as salmon, while smaller size may represent reduced size at maturity, it may also indicate faster maturation. More

  • in

    Future riverine impact

    Shuang Gao from Bjerkens Center for Climate Research in Norway, and colleagues from Germany and the United States explored future changes in marine primary production and carbon uptake under climate scenarios using the Norwegian Earth-system model, with four river transport configurations incorporating established future economic development and nutrient-use efficiency pathways. The researchers find that riverine nutrient inputs lessen nutrient limitation under warmer conditions. In the future, the effect of increased riverine carbon may be larger than the effect of nutrient inputs on the projections of ocean carbon uptake. In the historical period, increased nutrient inputs are considered the most prominent driver of carbon uptake. The results of this study are subject to model limitations, and high-resolution models should be used to assess the future impact. More