More stories

  • in

    Large diatom bloom off the Antarctic Peninsula during cool conditions associated with the 2015/2016 El Niño

    Due to contrasts in oceanographic properties along the NAP24, the sampling grid was split in two subregions: north and south (Fig. 1; see “Methods”). The north and south subregions showed from the satellite data a much higher spring/summer (November–February) mean chlorophyll-a (Chl-a) in 2015/2016 than the decadal average time series (2010–2019; Table 1). In agreement with the El Niño effects10,16, the sea surface temperature (SST) and the air temperature showed substantially lower mean values during the spring/summer of 2015/2016 along the subregions (Table 1). However, there was an evident spatial/temporal variability in sea ice concentration/duration between the subregions, with a northward (southward) lower (higher) mean value during 2015/2016 in relation to the decadal average (Table 1). Along the south subregion during the spring/summer of 2015/2016, the increased Chl-a during January followed the decline in the sea ice concentration over the spring and early summer, concurrent with increased SST, which was markedly colder throughout the seasonal phytoplankton succession (Fig. 2a). These results to the south subregion are consistent with previous studies along the WAP, in which years characterized by longer sea ice cover in winter have led to higher phytoplankton biomass in the following summer associated with a more stable water column11,16,26. To the north subregion, however, although there was a similar pattern between Chl-a and SST, the increased Chl-a during January was not related with the sea ice retreat (Fig. 2b). Moreover, there was a clear difference between the Chl-a peaks (the highest Chl-a value reached) along the subregions from the satellite data. The Chl-a peak in the south subregion occurred in early January (10 January 2016, reaching 1.73 mg m–3), whereas in the north subregion the Chl-a peak was observed in late January (29 January 2016, reaching 2.23 mg m–3).Fig. 1: Study area.Location of hydrographic stations is marked by open circles (November), stars (January), and blue circles (February). The black dashed lines indicate the subregions (north and south) along the NAP and delimit the areas used to estimate average remote sensing measurements. The decadal-mean (2010–2019) remote sensing chlorophyll-a (Chl-a) is exhibited in the background, indicating the biomass (Chl-a) distribution of phytoplankton along the NAP in the last decade. An inset map in the lower right corner shows the location of the NAP within the Atlantic sector of the Southern Ocean.Full size imageTable 1 Biological production and ocean/atmosphere parameters by measurements of remote sensing and local meteorological stations during spring/summer in the NAP subregions.Full size tableFig. 2: Biological production and sea ice dynamics in the NAP seasonal phytoplankton succession of 2015/2016.Continuum remote sensing measurements of chlorophyll-a (Chl-a; solid green line), sea surface temperature (SST; solid blue line), and sea ice concentration (gray area) along the NAP, in south (a) and north (b) subregions during spring/summer of 2015/2016. The dashed green, blue and gray lines indicate the decadal average (2010–2019) of Chl-a, SST, and sea ice concentration, respectively. The solid light green lines represent the Chl-a interpolated values. The background shades show the in situ data sampling periods. It is important to note that Chl-a remote sensing data in Antarctic coastal waters are typically underestimated in respect to in situ Chl-a data (see Supplementary Fig. 1)12,29.Full size imageIt has been estimated that drifters entrained in the Gerlache Strait Current and the Bransfield Strait Current exit the Bransfield Strait in 10–20 days17, which is consistent with the interval of 19 days between both Chl-a peaks when considering the extreme distance between the subregions (see Fig. 1). These authors also estimated that drifters deployed in the Gerlache Strait Current were quickly advected out of the Gerlache Strait in less than 1 week (i.e., low residence time)17, which supports the similar diatom species assemblages identified in our microscopic analysis between stations of the Gerlache Strait and southwestern Bransfield Strait24. Therefore, it is plausible that phytoplankton growth in the north of the Gerlache Strait may be laterally advected northward into the Bransfield Strait, explaining the observed concomitant increase of satellite Chl-a data in both subregions from spring, associated with sea ice retreat southward (Fig. 2). In addition, as phytoplankton biomass tends to accumulate northward17,27,28, the advection processes could also explain the temporal and intensity differences of the Chl-a peaks along the subregions (see Fig. 2). This suggests that there was a link between the sea ice dynamics, phytoplankton biomass (Chl-a) and advection processes along the NAP during the spring/summer of 2015/2016, in which the sea ice melting first triggered an increase in phytoplankton biomass through water column stratification along the south subregion, and the advection processes led to a subsequent increase northward.The satellite Chl-a data require extensive validation with in situ data, especially in polar regions, where cloud cover is ubiquitous and performance is typically poor, due to not properly accurate Chl-a algorithms12,29. For that, although the mean Chl-a in 2015/2016 from the satellite data was approximately twice as large as the decadal average, there was a severe discrepancy in the mean Chl-a values observed between the in situ and remote sensing data (see Table 1 and Supplementary Table 1). This highlights the importance of the in situ dataset reported here, especially evident during February 2016, when the signal of an intense diatom bloom ( > 40 mg m–3 Chl-a)24 was not captured in the satellite data (Supplementary Fig. 1), supporting that phytoplankton biomass accumulation during this summer was much higher than recorded by remote sensing observations (see Table 1). In general, the in situ Chl-a achieved its maximum (40 mg m–3) and higher mean value (17.4 mg m–3) during February comparing to November and January (Supplementary Table 1).Phytoplankton community structure during the spring/summer of 2015/2016 was assessed through Chemical taxonomy (CHEMTAX) software, using accessory pigments versus in situ Chl-a concentrations measured via high-performance liquid chromatography (HPLC; see “Methods”). The main phytoplankton group over the season were diatoms, followed by haptophytes (Phaeocystis antarctica), cryptophytes, and dinoflagellates, according to the succession stage (Fig. 3a). Diatoms dominated the phytoplankton community composition in relation to the other groups along the whole in situ sampling period, although their relative biomass (to the total in situ Chl-a) was lower in some stations compared to others in different moments during spring/summer (Fig. 3a). To assess the degree to which the water column structure was a primary driver for development and intensity of diatom growth3,24, the mixed layer depth (MLD) and water column stability were calculated as a function of seawater potential density (see “Methods”). There was an inverse polynomial relationship between MLD and mean upper ocean stability (averaged over 5−150 m depth; hereafter referred to as upper ocean stability) (Fig. 3b). The significant positive exponential relationship between the upper ocean stability and diatom absolute concentrations (in situ Chl-a) demonstrates that stability, associated with MLD, was an important driver of diatom dynamics (Fig. 3b). This elucidates the increase in biological production during summer months of 2016, when upper ocean physical structures (MLD and stability) were sufficiently shallow and stable to produce the high phytoplankton biomass (in situ Chl-a) registered here. However, as MLD and stability showed similar values between summer months (Supplementary Table 1), only the upper ocean physical structures cannot be accounted for the high differences of in situ Chl-a values observed between diatom blooms in January (maximum of 12 mg m–3) and February (maximum of 40 mg m–3). Likewise, also not explaining these differences of in situ Chl-a values between summer months, macronutrients were highly abundant throughout the seasonal phytoplankton succession (Supplementary Table 1). Furthermore, although no measurements of dissolved iron, which can be considered as a limiting factor to primary productivity30, were carried out here, the Antarctic Peninsula continental shelves have been depicted as a substantial source of this micronutrient to the upper ocean, not limiting phytoplankton growth even during intense blooms31,32.Fig. 3: Phytoplankton community composition and upper ocean physical structures along the NAP seasonal phytoplankton succession of 2015/2016.a Relative biomass (to the total in situ chlorophyll-a; Chl-a) distribution of phytoplankton groups on surface, via HPLC/CHEMTAX analysis, during spring/summer of 2015/2016 along the NAP subregions. The black open circles indicate diatoms, the blue squares indicate Phaeocystis antarctica, the gray diamonds with crosses indicate cryptophytes, the green triangles indicate dinoflagellates, and the light gray open circles indicate green flagellates. b Exponential curve (R2 = 0.57; p 40% the community composition proportion in respect to the total Chl-a (considering the three fractionated size classes). Symbol color indicates the sampling month in respect to November (brown), January (gray), and February (black). The inset shows the polynomial inverse relationship (R2 = 0.51; p  70 µm in length; ref. 24), during January a large number ( > 2.5 × 106 cells L–1) of small ( More

  • in

    Sustainable intensification for a larger global rice bowl

    Data sourcesEighteen rice-producing countries were selected for our analysis (Supplementary Table 1). Those countries account for 88 and 86% of global rice production and harvested rice area2, respectively (FAOSTAT, 2015–2017). We followed two steps to select the dominant cropping systems in each country. Within each country, our study focused on the main rice-producing area(s) (Supplementary Tables 2 and 3). For example, in the case of Brazil, we selected the southern and northern regions, which together account for nearly all rice production in this country. In the case of Vietnam, we selected the Mekong Delta region, which accounts for nearly 60% of national rice production57. While we tried to cover all major rice cropping systems in each country, this was not possible in the case of rainfed lowland rice cropping systems in northeastern Thailand and eastern India because of lack of reliable estimates of yield potential and access to farmer yield and management data. Once the main rice-producing region(s) in each country was (were) identified, we then determined the dominant rice cropping system(s) for each of them (Supplementary Table 3). We note that “cropping system” refers to a unique combination of a number of rice crops planted on the same piece of land within a 12-month period (and their temporal arrangement), water regime (rainfed or irrigated), and ecosystem (upland or lowland) (Supplementary Fig. 1 and Supplementary Table 2). In our study, rice cropping systems are single-, double-, or triple-season rice; none of the cropping systems are ratoon rice. Following the previous examples, two cropping systems were selected for Brazil (rainfed upland single rice and lowland irrigated single rice in the northern and southern regions, respectively) and two systems (double and triple) were selected for the Mekong Delta region in Vietnam. These systems account for nearly all rice harvested areas in these regions. We distinguished between rice-based cropping systems sowing hybrid versus inbred cultivars in the southern USA. Across the 18 countries, this study included a total of 32 rice cropping systems, which, in turn, covered 51% of the global rice harvested area (Supplementary Tables 1 and 3). Note that the area coverage reported here corresponds to that accounted by 32 cropping systems (and not by the countries where the cropping systems were located). These systems portrayed a wide range of biophysical and socio-economic backgrounds (Supplementary Figs. 1 and 2 and Supplementary Tables 1 and 2), leading to average rice yields ranging from 2–10.4 Mg ha−1 (Supplementary Fig. 3). For data analysis purposes, rice cropping systems were classified into tropical and non-tropical9,58,59 and also based upon water regime and crop season.Agronomic information was collected via structure questionnaires completed by agricultural specialists in each country or region (Supplementary Table 6). The collected data included field size, tillage method, crop establishment method, degree of mechanization for each field operation, seeding rate, crop establishment, and harvest dates, nutrient fertilizer rates, manure type, and rate, pesticides (number of applications, products, and rates), irrigation amount (in irrigated systems), energy source for irrigation pumping, labor input, and straw management (Supplementary Tables 4 and 5). Average values for each cropping system reported by country experts were retrieved from survey data available from previous projects (Supplementary Table 7). Rice grain yield was reported at a standard moisture content of 140 g H2O kg−1 grain, separately for each crop cycle, using data from, at least, three recent cropping seasons in each cropping system. In the case of irrigated rice cropping system in Nigeria and Mali, data were only available for one crop cycle in double-season rice. In this case, we assumed management and actual yield to be identical in the two crop cycles.In all cases, and wherever possible, data were cross-validated with other independent datasets (e.g., FAOSTAT, World Bank, IFA, and published journal papers), which gives confidence about the representativeness and accuracy of the survey data. For example, we estimated area-weighted national yield according to actual yield provided for each cropping system and annual rice harvested area in each system for each of the 18 countries. Comparison of these yields against those reported by FAOSTAT2 showed a strong association and agreement between data sources (Supplementary Fig. 10). We also cross-validated actual yield, N fertilizer, labor, and irrigation from our database with those reported by previous studies (published after the year 2000) based on on-farm data collected in ten selected countries. Due to the lack of on-farm data on irrigation, we used published data collected from experiments that follow typical farmer irrigation practices. In the case of irrigation, our cross-validation differentiated between crop seasons (wet versus dry) in the case of irrigated double-season rice cropping systems. In all cases, average yield, N fertilizer, labor, and irrigation from our database fell within (or very close) the range of values reported in previously published studies for those same cropping systems (Supplementary Table 8). Measured daily weather data, including daily solar radiation, minimum and maximum temperatures, and precipitation, were derived from representative weather stations in each region (Supplementary Fig. 2 and Supplementary Table 9). Data on per-capita gross domestic product (GDP) during 2015–2017 were retrieved for each country to explore relationships between yield gap and economic development60 (Supplementary Fig. 9 and Supplementary Table 1).Estimation of yield gapsThe yield gap is defined as the difference between yield potential and average farmer yield. Estimates of yield potential for irrigated rice or water-limited yield potential for rainfed rice were adopted from Global Yield Gap Atlas (GYGA)61 (Supplementary Table 7). Yield potential simulation in GYGA was performed using crop growth and development model ORYZA2000 or ORYZA (v3) (except for APSIM in the case of India) and based on actual data on crop management, soil data, measured daily weather data, and representative rice varieties planted in each region (see details for yield potential simulation in Supplementary Information Text Section 1). Data on yield potential were not available for Australia (AUIS) in GYGA; hence, we used estimates of yield potential from Lacy et al.62. Yield potential (or water-limited yield potential for rainfed rice) and average yields were computed separately for each rice crop in each rice cropping system (Supplementary Fig. 3). The coefficient of variation (CV) of yield potential (or water-limited yield potential) was estimated for each cropping system (Supplementary Fig. 4). In this study, average rice yield was expressed as percentage of the yield potential (or water-limited yield potential for rainfed rice) for each cropping system (Fig. 1 and Supplementary Fig. 5). In those cropping systems where more than one rice crop is grown within a 12-month period, we estimated yield potential and average yield on both per-crop and annual basis by averaging and summing up the estimates for each rice crop, respectively. In the case of per-crop averages, for those cropping systems in which the harvested rice area changed between crop cycles, we weighted the values for each cycles based on the associated harvested rice area. However, for simplicity, the main text reports only the values on a per-crop basis; annual estimates are provided in the Supplementary Information. Normalizing average yield by the yield potential at each site provides a direct comparison of yield gap closure across systems with diverse biophysical backgrounds (e.g., variation in solar radiation, temperature, and water supply). Without this normalization, one might make biased assessment in relation to the available room for improving yield. For example, an actual yield of 8 Mg ha−1 is equivalent to 80% of yield potential in the cropping system of central China, whereas a yield of 8 Mg ha−1 achieved by irrigated rice farmers in Brazil only represents 55% of yield potential (Supplementary Fig. 3).Quantifying resource-use efficiencyWe assessed the performance of rice production by calculating the following metrics: global warming potential (GWP), fossil-fuel energy inputs, water supply (irrigation plus in-season precipitation), number of pesticide applications, nitrogen (N) balance, and labor input, each expressed on an area and yield-scaled basis (Figs. 2, 3 and 4 and Supplementary Figs. 6, 7 and 11). We estimated metrics on both per-crop and annual basis and report the values on a per-crop basis in the main text while the annual estimates are provided in the Supplementary Information. In the case of GWP, it includes CO2, CH4, and N2O emissions (expressed as CO2-eq) from (i) production, packaging, and transportation of agricultural inputs (seed, fertilizer, pesticides, machinery, etc.), (ii) fossil-fuel energy directly used for farm operations (including irrigation pumping), and (iii) CH4 and N2O emission during rice cultivation63. Emissions from agricultural inputs were calculated on application rates and associated GHG emissions factors (see details in Supplementary Information Text Section 2, Supplementary Table 10). In the case of fossil fuel used for field operations, it was calculated based on the number and type of farm operations and associated fuel requirements (Supplementary Table 11). Total N2O emissions were calculated as the sum of direct and indirect N2O emissions. A previous meta-analysis including rice showed that direct soil N2O emissions can be estimated from the magnitude of N-surplus, which was calculated as applied N inputs minus accumulated N in aboveground biomass at physiological maturity21. Therefore, direct soil N2O emissions for a given rice crop cycle were estimated following van Groenigen et al. N-balance approach21. Indirect N2O emissions were estimated based on the Intergovernmental Panel on Climate Change (IPCC) methodology64, assuming indirect N2O emissions represent 20% of direct N2O emissions. The CH4 emissions from rice paddy field were calculated following IPCC65. Following this approach, CH4 emissions are estimated considering the duration of the rice cultivation period, water regime during the cultivation period and during the pre-season before the cultivation period, and type and amount of organic amendment applied (e.g., straw, manure, compost) based on a baseline emission factor. We assumed no net change in soil carbon stocks as soil organic matter is typically at steady state in lowland rice66. We did not attempt to estimate changes on soil C in the upland rice system in Brazil. All emissions were converted to CO2-eq, with GWP for CH4 set at 25 relatives to CO2 and 298 for N2O on a per mass basis over a 100-year time horizon67. For each rice crop cycle in each of the 32 rice systems, GWP was calculated as the sum of CO2, CH4, and N2O emissions expressed as CO2-eq. (Details on N2O and CH4 emissions estimates and GWP calculations are provided in Supplementary Information Text Section 2).Calculation of energy inputs was similar to that of GWP and was based on the reported rates of agricultural inputs and field operations and associated embodied energy (see details for energy input estimates in Supplementary Information Text Section 2, Supplementary Table 12). Human labor was also included in the calculation of energy inputs. There was a strong positive relationship between energy input and GWP on both per-crop (r = 0.81; p  More

  • in

    Snake escape: imported reptiles gobble an island’s lizards

    .readcube-buybox { display: none !important;}

    Two of the three native reptiles on to Gran Canaria have nearly vanished from some parts of the Spanish island — eaten by an invasive snake species originally imported as a pet1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-03647-4

    References1.Piquet, J. C. & López-Darias, M. Proc. R. Soc. B https://doi.org/10.1098/rspb.2021.1939 (2021).Article 

    Google Scholar 
    Download references

    Subjects

    Conservation biology

    Jobs

    Research Associate (m/f/x)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    PhD Position in Cybersecurity

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Doctoral (PhD) position in Structural Proteomics with EU Training network ALLODD

    Karolinska Institutet, doctoral positions
    Solna, Sweden

    Post-doctoral Fellow

    Luxembourg Institute of Health (LIH)
    Esch Sur Alzette, Luxembourg More

  • in

    Impacts of hydropower on the habitat of jaguars and tigers

    1.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS 

    Google Scholar 
    2.Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).CAS 
    PubMed 

    Google Scholar 
    3.ICOLD. International Commission on Large Dams. http://www.icold-cigb.org/ (2016).4.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
    Google Scholar 
    5.Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy? Trends Ecol. Evol. 32, 922–935 (2017).PubMed 

    Google Scholar 
    6.Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).
    Google Scholar 
    7.Palmeirim, A. F., Peres, C. A. & Rosas, F. C. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol. Conserv. 174, 30–38 (2014).
    Google Scholar 
    8.Fearnside, P. M. Decision making on amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 6, 313–325 (2013).9.Fearnside, P. M. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ. Res. Lett. 11, 011002 (2016).
    Google Scholar 
    10.Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen, G., Powers, R. P., de Carvalho, L. M. & Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 63, 1–8 (2015).
    Google Scholar 
    12.Hunter, W. C., Anderson, B. W. & Ohmart, R. D. Avian community structure changes in a mature floodplain forest after extensive flooding. J. Wildl. Manag. 51, 495–502 (1987).13.Andriolo, A. et al. Severe population decline of marsh deer, Blastocerus dichotomus (Cetartiodactyla: Cervidae), a threatened species, caused by flooding related to a hydroelectric power plant. Zool. Curitiba 30, 630–638 (2013).
    Google Scholar 
    14.Irving, G. J., Round, P. D., Savini, T., Lynam, A. J. & Gale, G. A. Collapse of a tropical forest bird assemblage surrounding a hydroelectric reservoir. Glob. Ecol. Conserv. 16, e00472 (2018).
    Google Scholar 
    15.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).CAS 
    PubMed 

    Google Scholar 
    16.Quigley, H. et al. Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436 (2017).17.Dinerstein, E. et al. The fate of wild tigers. BioScience 57, 508–514 (2007).
    Google Scholar 
    18.Goodrich, J. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015: e.T15955A50659951 (2015).19.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Roberge, J. & Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85 (2004).
    Google Scholar 
    21.Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution—application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    22.GTRP. Global Tiger Recovery Program. Glob. Tiger Initiat. Secr. (World Bank, 2010).23.Desbiez, A. L. & de Paula, R. C. Species conservation planning: the jaguar National Action Plan for Brazil. Cat News 7, 4–7 (2012).
    Google Scholar 
    24.Achard, F. et al. Determination of deforestation rates of the world’s humid tropical forests. Science 297, 999–1002 (2002).CAS 
    PubMed 

    Google Scholar 
    25.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 

    Google Scholar 
    26.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).CAS 
    PubMed 

    Google Scholar 
    27.Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sollmann, R., Torres, N. M. & Silveira, L. Jaguar conservation in Brazil: the role of protected areas. Cat News 4, 15 (2008).
    Google Scholar 
    29.Cullen Junior, L., Sana, D. A., Lima, F., de Abreu, K. C. & Uezu, A. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), in the upper Paraná River, Brazil. Zool. Curitiba 30, 379–387 (2013).
    Google Scholar 
    30.Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology https://doi.org/10.1002/ecy.3543 (2021).31.Sanderson, E. W. How many animals do we want to save? The many ways of setting population target levels for conservation. BioScience 56, 911–922 (2006).
    Google Scholar 
    32.Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    33.Wikramanayake, E. et al. A landscape‐based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).
    Google Scholar 
    34.Sunarto, S. et al. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS ONE 7, e30859 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Hyde, J. L., Bohlman, S. A. & Valle, D. Transmission lines are an under-acknowledged conservation threat to the Brazilian Amazon. Biol. Conserv. 228, 343–356 (2018).
    Google Scholar 
    36.Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    37.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).
    Google Scholar 
    38.Linkie, M., Haidir, I. A., Nugroho, A. & Dinata, Y. Conserving tigers Panthera tigris in selectively logged Sumatran forests. Biol. Conserv. 141, 2410–2415 (2008).
    Google Scholar 
    39.Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 20131506 (2013).
    Google Scholar 
    40.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17, 245–257 (2003).
    Google Scholar 
    41.Ramesh, K. et al. Status of tiger and prey species in Panna Tiger Reserve, Madhya Pradesh: capture-recapture and distance sampling estimates. Technical Report (Wildlife Institute of India, 2013).42.Romero‐Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2019).
    Google Scholar 
    43.Alho, C. J. Hydropower dams and reservoirs and their impacts on Brazil’s biodiversity and natural habitats: a review. World J. Adv. Res. Rev. 6, 205–215 (2020).
    Google Scholar 
    44.Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).PubMed 

    Google Scholar 
    45.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 

    Google Scholar 
    46.Fearnside, P. M. Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ. Manag. 13, 401–423 (1989).
    Google Scholar 
    47.Fearnside, P. M. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River Basin. Environ. Manag. 38, 16–27 (2006).
    Google Scholar 
    48.Milder, J. C., Scherr, S. J. & Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 15, 4 (2010).49.Ceballos, G. et al. Jaguar distribution, biological corridors and protected areas in Mexico: from science to public policies. Landsc. Ecol. https://doi.org/10.1007/s10980-021-01264-0 (2021).50.Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).PubMed 

    Google Scholar 
    51.Sabu, M. M., Pasha, S. V., Reddy, C. S., Singh, R. & Jaishanker, R. The effectiveness of tiger conservation landscapes in decreasing deforestation in South Asia: a remote sensing-based study. Spat. Inf. Res. 1–13, https://doi.org/10.1007/s41324-021-00411-8 (2021).52.Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    53.Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).
    Google Scholar 
    54.Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457–3466 (2021).CAS 
    PubMed 

    Google Scholar 
    55.Food and agriculture organization of the united nations. AQUASTAT – FAO’s global information system on water and agriculture. https://www.fao.org/aquastat/en/databases/dams (2016).56.Tortato, F. R. et al. Infanticide in a jaguar (Panthera onca) population—does the provision of livestock carcasses increase the risk? Acta Ethol. 20, 69–73 (2017).
    Google Scholar 
    57.Chanchani, P., Gerber, B. D. & Noon, B. R. Elevated potential for intraspecific competition in territorial carnivores occupying fragmented landscapes. Biol. Conserv. 227, 275–283 (2018).
    Google Scholar  More

  • in

    Include biodiversity representation indicators in area-based conservation targets

    1.Report of the Open-Ended Working Group on the Post-2020 Global Biodiversity Framework on its Third Meeting (Part I) CBD/WG2020/3/5 (CBD, 2021).2.Maxwell, S. L. et al. Nature 586, 217–227 (2020).CAS 
    Article 

    Google Scholar 
    3.Protected Planet Live Report 2021 (UNEP-WCMC, IUCN, NGS, 2021).4.Díaz, S. et al. Science 366, eaax3100 (2019).Article 

    Google Scholar 
    5.Visconti, P. et al. Science 364, 239–241 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Maron, M. et al. Conserv. Lett. 14, e12816 (2021).Article 

    Google Scholar 
    7.Pressey, R. L. et al. Trends Ecol. Evol. 36, 808–821 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Service (IPBES Secretariat, 2019).9.Living Planet Report 2020 (WWF, 2020).10.Jetz, W. et al. Nat. Ecol. Evol. 3, 539–551 (2019).Article 
    PubMed 

    Google Scholar 
    11.Powers, R. P. & Jetz, W. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    12.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).13.Sala, E. et al. Nature 592, 397–402 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Rinnan, D. S., Sica, Y., Ranipeta, A., Wilshire, J. & Jetz, W. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).15.Beger, M. et al. Nat. Commun. 6, 8208 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Armstrong, C. Conserv. Biol. 33, 554–560 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines CBD/SBSTTA/24/3 (CBD, 2020).18.Moilanen, A., Wilson, K. A. & Possingham, H. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).19.Jung, M. et al. Nat. Ecol. Evol. 5, 1499–1509 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Navarro, L. M. et al. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).Article 

    Google Scholar 
    21.Jantke, K., Kuempel, C. D., McGowan, J., Chauvenet, A. L. M. & Possingham, H. P. Divers. Distrib. 25, 170–175 (2019).Article 

    Google Scholar 
    22.Bhola, N. et al. Conserv. Biol. 35, 168–178 (2021).Article 
    PubMed 

    Google Scholar 
    23.Hansen, A. J. et al. Conserv. Lett. 14, e12822 (2021).Article 

    Google Scholar 
    24.Measuring Ecosystem Integrity (Goal A) in the Post-2020 Global Biodiversity Framework: The Geo Bon Species Habitat Index CBD/WG2020/3/INF/6 (CBD Secretariat, 2021).25.Rondinini, C. & Visconti, P. Conserv. Biol. 29, 1028–1036 (2015).Article 

    Google Scholar 
    26.McGeoch, M. A. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.08.26.457851 (2021).27.Hoskins, A. J. et al. Environ. Model. Softw. 132, 104806 (2020).Article 

    Google Scholar 
    28.Adams, V. M., Visconti, P., Graham, V. & Possingham, H. P. One Earth 4, 901–906 (2021).Article 

    Google Scholar 
    29.Heiner, M. et al. Conserv. Sci. Pract. 1, e110 (2019).
    Google Scholar  More

  • in

    Global warming and China’s crop pests

    1.Tian, H. et al. Proc. Natl Acad. Sci. USA 108, 14521–14526 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Sugihara, G. Nature 378, 559–560 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    4.Bebber, D. P. et al. Glob. Change Biol. 25, 2703–2713 (2019).ADS 
    Article 

    Google Scholar 
    5.Wang, C. et al. Nat. Food https://doi.org/10.1038/s43016-021-00428-0 (2021).6.Pasiecznik, N. M. et al. EPPO Bull. 35, 1–7 (2005).Article 

    Google Scholar 
    7.Paini, D. R. et al. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).CAS 
    Article 

    Google Scholar 
    8.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Nat. Clim. Change 11, 710–715 (2021).ADS 
    Article 

    Google Scholar 
    9.Deutsch, C. A. et al. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delgado-Baquerizo, M. et al. Nat. Clim. Change 10, 550–554 (2020).ADS 
    Article 

    Google Scholar 
    11.Wright, B. D. Appl. Econ. Perspect. Policy 33, 32–58 (2011).Article 

    Google Scholar  More

  • in

    Pending bill could devastate Brazil’s Serra do Divisor National Park

    1.Barbosa, L. C., Alves, M. A. S. & Grelle, C. E. V. Land Use Policy 104, 105384 (2021).Article 

    Google Scholar 
    2.PL 6024/2019 (Câmara dos Deputados, 2021); https://go.nature.com/3p8ygLo3.Serra do Divisor National Park. https://go.nature.com/3rcbdSg (UNESCO, 2021).4.F. A. Obermüller et al. Lista de espécies de plantas vasculares do Parque Nacional da Serra do Divisor. Catálogo de Plantas das Unidades de Conservação do Brasil https://go.nature.com/3HTJjAs (Jardim Botânico do Rio de Janeiro, 2020).5.Livro Temático/Recursos naturais: Biodiversidade e ambientes do Acre (ACRE, 2010).6.Hansen, M. C. et al. Sci. Adv. 6, eaax8574 (2020).Article 

    Google Scholar 
    7.Grilli, M. Base de dados do DNIT prevê expansão da BR-364 dentro de unidade de conservação. Revista Globo Rural https://go.nature.com/3DUgQYX (2021).8.Orlando, S. A Estrada do Pacífico no comércio exterior do Acre. ac24horas.com https://go.nature.com/3raofzL (2020).9.Mascarenhas, F. et al. Desenvolv e Meio Ambient 48, 236–262 (2018).Article 

    Google Scholar 
    10.Castro, W. Reserva Extrativista Chico Mendes lidera lista de Áreas Protegidas que mais perdem floresta por desmatamento desde Agosto de 2020. SOS Amazonia https://go.nature.com/3CU5jra (2021).11.Fá, J. E. et al. Front. Ecol. Environ. 18, 135–140 (2020).Article 

    Google Scholar 
    12.Bernard, E., Penna, L. A. & Araújo, E. Conserv. Biol. 28, 939–950 (2014).CAS 
    Article 

    Google Scholar 
    13.Kroner, R. E. G. et al. Science 364, 881–886 (2019).Article 

    Google Scholar 
    14.Ferrante, L. & Fearnside, P. M. Science 369, 634 (2020).Article 

    Google Scholar 
    15.Laurance, W. F. & Balmford, A. Nature 495, 308–309 (2013).CAS 
    Article 

    Google Scholar 
    16.Kehoe, L. et al. One Earth 3, 268–272 (2020).Article 

    Google Scholar  More

  • in

    Occurrence of crop pests and diseases has largely increased in China since 1970

    1.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 

    Google Scholar 
    2.The Future of Food and Agriculture—Alternative Pathways to 2050 (Food and Agriculture Organization of the United Nations, 2018).3.Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS 
    CAS 

    Google Scholar 
    5.Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).ADS 
    CAS 

    Google Scholar 
    6.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).
    Google Scholar 
    7.Oerke, E. C. Crop losses to pests. J. Agri. Sci. 144, 31–43 (2005).
    Google Scholar 
    8.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 

    Google Scholar 
    9.Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delcour, I., Spanoghe, P. & Uyttendaele, M. Literature review: impact of climate change on pesticide use. Food Res. Int. 68, 7–15 (2015).
    Google Scholar 
    11.Ziska, L. H. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States. PLoS ONE 9, e98516 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Lamichhane, J. R. et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35, 443–459 (2014).
    Google Scholar 
    13.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).ADS 

    Google Scholar 
    14.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 

    Google Scholar 
    15.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS 

    Google Scholar 
    16.Hruska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 1–11 (2019).
    Google Scholar 
    17.Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2, 220–237 (2011).
    Google Scholar 
    18.Donatelli, M. et al. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Jones, J. W. et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155, 269–288 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Miller, S. A., Beed, F. D. & Harmon, C. L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009).CAS 

    Google Scholar 
    21.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202, 901–910 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    22.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).
    Google Scholar 
    23.An early warning news about the mirgating condition of Fall Armyworm in China from National Agro-Tech Extension and Service Center https://www.natesc.org.cn/News/des?id=eaf064ae-6582-47c1-a9f3-a58969fd47b3&kind=HYTX (in Chinese, available in Nov.2021).24.Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).ADS 
    CAS 

    Google Scholar 
    25.Chown, S. L., Sorensen, J. G. & Terblanche, J. S. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).CAS 

    Google Scholar 
    26.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 

    Google Scholar 
    27.National Agricultural Technology Extension and Service Center. Technical Specification Manual of Major Crop Pest and Disease Observation and Forecast in China (China Agriculture Press, 2010).28.Olfert, O., Weiss, R. M. & Elliott, R. H. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. Can. Entomol. 148, 52–67 (2015).
    Google Scholar 
    29.Savary, S., Teng, P. S., Willocquet, L. & Nutter, F. W. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89–112 (2006).CAS 

    Google Scholar 
    30.Chakraborty, S. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19, 1985–2000 (2013).ADS 

    Google Scholar 
    31.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).ADS 

    Google Scholar 
    33.Carvalho, J. L. N. et al. Agronomic and environmental implications of sugarcane straw removal: a major review. Glob. Change Biol. Bioenergy 9, 1181–1195 (2017).CAS 

    Google Scholar 
    34.Savary, S., Horgan, F., Willocquet, L. & Heong, K. L. A review of principles for sustainable pest management in rice. Crop Prot. 32, 54–63 (2012).
    Google Scholar 
    35.Frolking, S. et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 16, 38-31–38-10 (2002).
    Google Scholar 
    36.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    37.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).
    Google Scholar 
    39.Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).
    Google Scholar 
    40.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 

    Google Scholar 
    41.O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS 

    Google Scholar 
    42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).ADS 

    Google Scholar 
    43.Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).ADS 

    Google Scholar 
    44.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).CAS 

    Google Scholar 
    45.Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO irrigation and drainage paper 56 (FAO, 1998).46.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    47.Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl Acad. Sci. USA 116, 123–128 (2019).CAS 

    Google Scholar 
    48.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
    Google Scholar 
    49.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 

    Google Scholar 
    50.Clark, J. S. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14 (2005).
    Google Scholar 
    51.Clark, J. S. & Gelfand, A. E. A future for models and data in environmental science. Trends Ecol. Evol. 21, 375–380 (2006).
    Google Scholar 
    52.Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).MathSciNet 
    MATH 

    Google Scholar 
    53.Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. The BUGS project: evolution, critique and future directions. Stat. Med. 28, 3049–3067 (2009).MathSciNet 

    Google Scholar 
    54.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar  More