Ectoparasitic fungi of Myrmica ants alter the success of parasitic butterflies
1.Frank, S. A. Models of parasite virulence. Q. Rev. Biol. https://doi.org/10.1086/419267 (1996).Article
PubMed
Google Scholar
2.Dobson, A. P. The population dynamics of competition between parasites. Parasitology https://doi.org/10.1017/S0031182000057401 (1985).Article
PubMed
Google Scholar
3.Haelewaters, D. et al. Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. PeerJ https://doi.org/10.7717/peerj.10110 (2020).Article
PubMed
PubMed Central
Google Scholar
4.Shapiro-Ilan, D. I., Bruck, D. J. & Lacey, L. A. Principles of Epizootiology and Microbial Control. In Insect Pathology 29–72 (Elsevier, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00003-8.5.Renkema, J. M. & Cuthbertson, A. G. S. Impact of multiple natural enemies on immature Drosophila suzukii in strawberries and blueberries. Biocontrol https://doi.org/10.1007/s10526-018-9874-8 (2018).Article
Google Scholar
6.Furlong, M. & Pell, J. Interactions between entomopathogenic fungi and other arthropods natural enemies. In Insect-Fungal Associations, Ecology and Evolution (eds Vega, F. & Blackwell, M.) 51–73 (Oxford University Press, 2005).
Google Scholar
7.Lafferty, K. D. Interacting parasites. Science https://doi.org/10.1126/science.1196915 (2010).Article
PubMed
Google Scholar
8.Price, S. L. et al. Recent findings in fungus-growing ants: evolution, ecology, and behavior of a complex microbial symbiosis. In Genes, Behaviors and Evolution of Social Insects (eds Azuma, N. & Higashi, S.) 255–280 (Hokkaido University Press, 2003).
Google Scholar
9.Telfer, S. et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science https://doi.org/10.1126/science.1190333 (2010).Article
PubMed
PubMed Central
Google Scholar
10.Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108596 (2020).Article
Google Scholar
11.Colwell, R. K., Dunn, R. R. & Harris, N. C. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110411-160304 (2012).Article
Google Scholar
12.Gagne, R. B. et al. Parasites as conservation tools. Conserv. Biol. https://doi.org/10.1111/cobi.13719 (2021).Article
PubMed
Google Scholar
13.Csősz, S. & Majoros, G. Ontogenetic origin of mermithogenic Myrmica phenotypes (Hymenoptera, Formicidae). Insectes Soc. https://doi.org/10.1007/s00040-008-1040-3 (2009).Article
Google Scholar
14.Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. https://doi.org/10.1038/srep46323 (2017).Article
PubMed
PubMed Central
Google Scholar
15.Pearson, B. & Raybould, A. F. The effects of antibiotics on the development of larvae and the possible role of bacterial load in caste determination and diapause in Myrmica rubra (Hymenoptera: Formicidae). Sociobiology 31, 77–90 (1998).
Google Scholar
16.Schmid Hempel, P. Evolutionary Parasitology—The Integrated Study of Infections, Immunology, Ecology, and Genetics (Oxford University Press, 2011).
Google Scholar
17.Donisthorpe, J. K. The Guests of British Ants—Their Habits and Life Histories (George Routledge And Sons, Limited, 1927).
Google Scholar
18.Hölldobler, B. E. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book
Google Scholar
19.Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
Google Scholar
20.Quevillon, L. E. The Ecology, Epidemiology, and Evolution of Parasites Infecting Ants (Hymenoptera: Formicidae) (Pennsylvania State University, 2018).
Google Scholar
21.Quevillon, L. E. & Hughes, D. P. Pathogens, parasites, and parasitoids of ants: a synthesis of parasite biodiversity and epide-miological traits. BioRxiv https://doi.org/10.1101/384495 (2018).Article
Google Scholar
22.Di Salvo, M. et al. The microbiome of the Maculinea-Myrmica host-parasite interaction. Sci. Rep. https://doi.org/10.1038/s41598-019-44514-7 (2019).Article
PubMed
PubMed Central
Google Scholar
23.Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. https://doi.org/10.1007/s00040-014-0362-6 (2014).Article
Google Scholar
24.Witek, M. et al. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12074 (2013).Article
Google Scholar
25.Tartally, A. et al. Patterns of host use by brood parasitic Maculinea butterflies across Europe. Philos. Trans. R Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2018.0202 (2019).Article
Google Scholar
26.Wardlaw, J. C., Thomas, J. A. & Elmes, G. W. Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol. Exp. Appl. https://doi.org/10.1046/j.1570-7458.2000.00646.x (2000).Article
Google Scholar
27.Thomas, J. A. & Wardlaw, J. C. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia https://doi.org/10.1007/BF00317247 (1992).Article
PubMed
Google Scholar
28.Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. https://doi.org/10.1007/s00040-018-0628-5 (2018).Article
Google Scholar
29.Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. https://doi.org/10.1038/s41598-021-93583-0 (2021).Article
PubMed
PubMed Central
Google Scholar
30.Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: Changes in host mortality and behavior. Insectes Soc. https://doi.org/10.1007/s00040-014-0349-3 (2014).Article
Google Scholar
31.Báthori, F., Rádai, Z. & Tartally, A. The effect of Rickia wasmannii (Ascomycota, Laboulbeniales) on the aggression and boldness of Myrmica scabrinodis (Hymenoptera, Formicidae). J. Hymenopt. Res. https://doi.org/10.3897/jhr.58.13253 (2017).Article
Google Scholar
32.Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. https://doi.org/10.1016/j.jip.2015.01.005 (2015).Article
PubMed
Google Scholar
33.Tartally, A. Myrmecophily of Maculinea Butterflies in the Carpathian Basin (Lepidoptera: Lycaenidae), PhD thesis, https://dea.lib.unideb.hu/dea/handle/2437/78921 (University of Debrecen, Hungary, 2008)
Google Scholar
34.Elmes, G. W., Wardlaw, J. C., Schönrogge, K., Thomas, J. A. & Clarke, R. T. Food stress causes differential survival of socially parasitic caterpillars of Maculinea rebeli integrated in colonies of host and non-host Myrmica ant species. Entomol. Exp. Appl. https://doi.org/10.1111/j.0013-8703.2004.00121.x (2004).Article
Google Scholar
35.Nash, D. R., Als, T. D. & Boomsma, J. J. Survival and growth of parasitic Maculinea alcon caterpillars (Lepidoptera, Lycaenidae) in laboratory nests of three Myrmica ant species. Insectes Soc. https://doi.org/10.1007/s00040-011-0157-y (2011).Article
Google Scholar
36.Wilson, K., Grenfell, B. T. & Shaw, D. J. Analysis of aggregated parasite distributions: a comparison of methods. Funct. Ecol. https://doi.org/10.2307/2390169 (1996).Article
Google Scholar
37.Tartally, A., Nash, D. R., Varga, Z. & Lengyel, S. Changes in host ant communities of Alcon Blue butterflies in abandoned mountain hay meadows. Insect Conserv. Divers. https://doi.org/10.1111/icad.12369 (2019).Article
Google Scholar
38.Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2017.01.004 (2017).Article
PubMed
Google Scholar
39.Baylis, M. & Pierce, N. E. Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for the loss of nutrients to ants. Physiol. Entomol. https://doi.org/10.1111/j.1365-3032.1992.tb01186.x (1992).Article
Google Scholar
40.Elgar, M. A. & Pierce, N. E. Mating success and fecundity in an ant-tended lycaenid butterfly. In Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems 59–75 (Chicago University Press, 1988).41.Thomas, J. A., Elmes, G. W. & Wardlaw, J. C. Contest competition among Maculinea rebeli butterfly larvae in ant nests. Ecol. Entomol. https://doi.org/10.1111/j.1365-2311.1993.tb01082.x (1993).Article
Google Scholar
42.Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science https://doi.org/10.1126/science.1149180 (2008).Article
PubMed
Google Scholar
43.Schlick-Steiner, B. C. et al. A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften https://doi.org/10.1007/s00114-004-0518-8 (2004).Article
PubMed
Google Scholar
44.Schönrogge, K. et al. Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J. Chem. Ecol. https://doi.org/10.1023/B:JOEC.0000013184.18176.a9 (2004).Article
PubMed
Google Scholar
45.Als, T. D., Nash, D. R. & Boomsma, J. J. Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol. Entomol. https://doi.org/10.1046/j.1365-2311.2002.00427.x (2002).Article
Google Scholar
46.Als, T. D., Nash, D. R. & Boomsma, J. J. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim. Behav. https://doi.org/10.1006/anbe.2001.1716 (2001).Article
Google Scholar
47.Tartally, A., Somogyi, A. Á., Révész, T. & Nash, D. R. Host ant change of a socially parasitic butterfly (Phengaris alcon) through host nest take-over. Insects https://doi.org/10.3390/insects11090556 (2020).Article
PubMed
PubMed Central
Google Scholar
48.Thomas, J. A., Elmes, G. W., Schönrogge, K., Simcox, D. J. & Settele, J. Primary hosts, secondary hosts and ‘non-hosts’: common confusions in the interpretation of host specificity in Maculinea butterflies and other social parasites of ants. In Studies on the Ecology and Conservation of Butterflies in Europe (eds. Settele, J., Kühn, E. & Thomas, J. A.) vol. 2 99–104 (Pensoft, 2005).49.Thomas, J. A. et al. Mimetic host shifts in an endangered social parasite of ants. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2012.2336 (2013).Article
PubMed
PubMed Central
Google Scholar
50.Fürst, M. A., Durey, M. & Nash, D. R. Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2011.0581 (2012).Article
Google Scholar
51.Maák, I. et al. Habitat features and colony characteristics influencing ant personality and its fitness consequences. Behav. Ecol. https://doi.org/10.1093/beheco/araa112 (2021).Article
PubMed
Google Scholar
52.Chapman, B. B., Thain, H., Coughlin, J. & Hughes, W. O. H. Behavioural syndromes at multiple scales in Myrmica ants. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.05.019 (2011).Article
Google Scholar
53.Martin, S. J., Helanterä, H. & Drijfhout, F. P. Is parasite pressure a driver of chemical cue diversity in ants? Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.1047 (2011).Article
Google Scholar
54.Nehring, V., Evison, S. E. F., Santorelli, L. A., D’Ettorre, P. & Hughes, W. O. H. Kin-informative recognition cues in ants. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.2295 (2011).Article
Google Scholar
55.Van Zweden, J. S. et al. Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J. Evol. Biol. https://doi.org/10.1111/j.1420-9101.2010.02020.x (2010).Article
PubMed
Google Scholar
56.Nash, D. R. & Andersen, A. Maculinea-sommerfugle og stikmyrer på danske heder—coevolution i tid og rum. Flora og Fauna 121, 133–141 (2015).
Google Scholar
57.Haelewaters, D., Boer, P., Gort, G. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants (II): variation of infection by Rickia wasmannii over habitats and time. Anim. Biol. https://doi.org/10.1163/15707563-00002472 (2015).Article
Google Scholar
58.Dallas, T. A., Laine, A.-L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.1109 (2019).Article
Google Scholar
59.Herczeg, D., Ujszegi, J., Kásler, A., Holly, D. & Hettyey, A. Host–multiparasite interactions in amphibians: a review. Parasit. Vectors https://doi.org/10.1186/s13071-021-04796-1 (2021).Article
PubMed
PubMed Central
Google Scholar
60.Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. https://doi.org/10.1016/0169-5347(94)90246-1 (1994).Article
PubMed
Google Scholar
61.Zhang, Z., Yan, C. & Zhang, H. Mutualism between antagonists: Its ecological and evolutionary implications. Integr. Zool. https://doi.org/10.1111/1749-4877.12487 (2021).Article
PubMed
PubMed Central
Google Scholar
62.Rogalski, M. A., Stewart Merrill, T., Gowler, C. D., Cáceres, C. E. & Duffy, M. A. Context-dependent host-symbiont interactions: Shifts along the parasitism-mutualism continuum. Am. Nat. https://doi.org/10.1086/716635 (2021).Article
PubMed
Google Scholar
63.Pfliegler, W. P., Báthori, F., Haelewaters, D. & Tartally, A. Studies of Laboulbeniales on Myrmica ants (III): myrmecophilous arthropods as alternative hosts of Rickia wasmannii. Parasite https://doi.org/10.1051/parasite/2016060 (2016).Article
PubMed
PubMed Central
Google Scholar
64.Chouvenc, T., Efstathion, C. A., Elliott, M. L. & Su, N.-Y. Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften https://doi.org/10.1007/s00114-012-0977-2 (2012).Article
PubMed
Google Scholar
65.Lawton, J. H. & Hassell, M. P. Asymmetrical competition in insects. Nature https://doi.org/10.1038/289793a0 (1981).Article
Google Scholar
66.Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
Google Scholar
67.Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication (eds D’Ettorre, P. & Hughes, D. P.) 55–80 (Oxford University Press, 2008).Chapter
Google Scholar
68.Tartally, A., Szűcs, B. & Ebsen, J. R. The first records of Rickia wasmannii Cavara, 1899, a myrmecophilous fungus, and its Myrmica Latreille, 1804 host ants in Hungary and Romania (Ascomycetes: Laboulbeniales; Hymenoptera: Formicidae). Myrmecol. News 10, 123 (2007).
Google Scholar
69.Radchenko, A. G. & Elmes, G. W. Myrmica (Hymenoptera: Formicidae) ants of the Old World. vol. 6 (Fauna Mundi 3, 2010).70.Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. News 23, 81–89 (2016).
Google Scholar
71.Haelewaters, D., Boer, P. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants: Rickia wasmannii in the Netherlands. J. Hymenopt. Res. https://doi.org/10.3897/JHR.44.4951 (2015).Article
Google Scholar
72.Espadaler, X. & Santamaria, S. Ecto- and endoparasitic fungi on ants from the Holarctic Region. Psyche, 2012, 168478. https://doi.org/10.1155/2012/168478 (2012).Article
Google Scholar
73.Báthori, F., Pfliegler, W. P., Zimmerman, C.-U. & Tartally, A. Online image databases as multi-purpose resources: discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. J. Hymenopt. Res, 61, 85-94. https://doi.org/10.3897/jhr.61.20255 (2017).Article
Google Scholar
74.Riddick, E. W. Ectoparasitic mite and fungus on an invasive lady beetle: parasite coexistence and influence on host survival. Bull. Insectol. 63, 13–20 (2010).
Google Scholar
75.Konrad, M., Grasse, A. V, Tragust, S. & Cremer, S. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2014.197620141976 (2015).76.De Kesel, A., Haelewaters, D. & Dekoninck, W. Myrmecophilous Laboulbeniales Ascomycota in Belgium. Sterbeeckia 34, 3–6 (2016).
Google Scholar
77.Haelewaters, D. The first record of Laboulbeniales (Fungi, Ascomycota) on Ants (Hymenoptera, Formicidae) in The Netherlands. Ascomycete.org 4, 65-69 (2012).78.van Swaay, C. et al. European Red List of Butterflies (Publications Office of the European Union, 2010).
Google Scholar
79.Gergely, P. & Hudák, T. Revision of threatened butterfly species in Hungary (Lepidoptera: Rhopalocera). Lepidopterol. Hungarica https://doi.org/10.24386/lephung.2021.17.1.27 (2021).Article
Google Scholar
80.Wallis de Vries, M. Code rood voor het gentiaanblauwtje. Vlinders 4, 5–8 (2017).
Google Scholar
81.Barbero, F., Thomas, J. A., Bonelli, S., Balletto, E. & Schönrogge, K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science https://doi.org/10.1126/science.1163583 (2009).Article
PubMed
Google Scholar
82.Thomas, J. A., Elmes, G. W., Wardlaw, J. C. & Woyciechowski, M. Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia https://doi.org/10.1007/BF00378660 (1989).Article
PubMed
Google Scholar
83.Elmes, G. W. et al. The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J. Insect Conserv. https://doi.org/10.1023/A:1009696823965 (1998).Article
Google Scholar
84.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).Article
PubMed
PubMed Central
Google Scholar
85.Cammaerts-Tricot, M.-C. Ontogenesis of the defence reactions in the workers of Myrmica rubra L. (Hymenoptera: Formicidae). Anim. Behav. https://doi.org/10.1016/0003-3472(75)90058-5 (1975).Article
Google Scholar
86.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015). More