Occurrence of crop pests and diseases has largely increased in China since 1970
1.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS
CAS
Google Scholar
2.The Future of Food and Agriculture—Alternative Pathways to 2050 (Food and Agriculture Organization of the United Nations, 2018).3.Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
4.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS
CAS
Google Scholar
5.Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).ADS
CAS
Google Scholar
6.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).
Google Scholar
7.Oerke, E. C. Crop losses to pests. J. Agri. Sci. 144, 31–43 (2005).
Google Scholar
8.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS
Google Scholar
9.Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).ADS
CAS
Article
Google Scholar
10.Delcour, I., Spanoghe, P. & Uyttendaele, M. Literature review: impact of climate change on pesticide use. Food Res. Int. 68, 7–15 (2015).
Google Scholar
11.Ziska, L. H. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States. PLoS ONE 9, e98516 (2014).ADS
PubMed
PubMed Central
Google Scholar
12.Lamichhane, J. R. et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35, 443–459 (2014).
Google Scholar
13.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).ADS
Google Scholar
14.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS
Google Scholar
15.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS
Google Scholar
16.Hruska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 1–11 (2019).
Google Scholar
17.Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2, 220–237 (2011).
Google Scholar
18.Donatelli, M. et al. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017).CAS
PubMed
PubMed Central
Google Scholar
19.Jones, J. W. et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155, 269–288 (2017).PubMed
PubMed Central
Google Scholar
20.Miller, S. A., Beed, F. D. & Harmon, C. L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009).CAS
Google Scholar
21.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202, 901–910 (2014).PubMed
PubMed Central
Google Scholar
22.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).
Google Scholar
23.An early warning news about the mirgating condition of Fall Armyworm in China from National Agro-Tech Extension and Service Center https://www.natesc.org.cn/News/des?id=eaf064ae-6582-47c1-a9f3-a58969fd47b3&kind=HYTX (in Chinese, available in Nov.2021).24.Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).ADS
CAS
Google Scholar
25.Chown, S. L., Sorensen, J. G. & Terblanche, J. S. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).CAS
Google Scholar
26.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS
CAS
Google Scholar
27.National Agricultural Technology Extension and Service Center. Technical Specification Manual of Major Crop Pest and Disease Observation and Forecast in China (China Agriculture Press, 2010).28.Olfert, O., Weiss, R. M. & Elliott, R. H. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. Can. Entomol. 148, 52–67 (2015).
Google Scholar
29.Savary, S., Teng, P. S., Willocquet, L. & Nutter, F. W. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89–112 (2006).CAS
Google Scholar
30.Chakraborty, S. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19, 1985–2000 (2013).ADS
Google Scholar
31.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
32.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).ADS
Google Scholar
33.Carvalho, J. L. N. et al. Agronomic and environmental implications of sugarcane straw removal: a major review. Glob. Change Biol. Bioenergy 9, 1181–1195 (2017).CAS
Google Scholar
34.Savary, S., Horgan, F., Willocquet, L. & Heong, K. L. A review of principles for sustainable pest management in rice. Crop Prot. 32, 54–63 (2012).
Google Scholar
35.Frolking, S. et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 16, 38-31–38-10 (2002).
Google Scholar
36.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
Google Scholar
37.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS
CAS
PubMed
PubMed Central
Google Scholar
38.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).
Google Scholar
39.Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).
Google Scholar
40.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS
Google Scholar
41.O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS
Google Scholar
42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).ADS
Google Scholar
43.Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).ADS
Google Scholar
44.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).CAS
Google Scholar
45.Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO irrigation and drainage paper 56 (FAO, 1998).46.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed
PubMed Central
Google Scholar
47.Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl Acad. Sci. USA 116, 123–128 (2019).CAS
Google Scholar
48.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
Google Scholar
49.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS
CAS
Google Scholar
50.Clark, J. S. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14 (2005).
Google Scholar
51.Clark, J. S. & Gelfand, A. E. A future for models and data in environmental science. Trends Ecol. Evol. 21, 375–380 (2006).
Google Scholar
52.Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).MathSciNet
MATH
Google Scholar
53.Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. The BUGS project: evolution, critique and future directions. Stat. Med. 28, 3049–3067 (2009).MathSciNet
Google Scholar
54.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet
Google Scholar More