More stories

  • in

    Statistical inference, scale and noise in comparative anthropology

    To the Editor — In an insightful Comment Bliege Bird and Codding1 highlight a number of important issues to consider in the analysis of cross-cultural anthropological data. However, a casual reader of the Comment could be forgiven for taking away the message that cross-cultural data in anthropology is inherently flawed, and so is of limited use. We want to emphasize that comparative analysis plays an essential role in all non-experimental sciences, including anthropology and archaeology. This is because when systems cannot be manipulated due to scales of time and space, or issues of logistics or ethics, the only way to evaluate alternative outcomes is by analysing the results of natural experiments. More

  • in

    Drivers of language loss

    1.Nettle, D. Linguistic Diversity (Oxford Univ. Press, USA, 1999).2.Campbell, L. & Belew, A. Cataloguing the World’s Endangered Languages (Routledge, 2018).3.Bromham, L. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01604-y (2021).4.Amano, T. et al. Proc. R. Soc. B 281, 20141574 (2014).Article 

    Google Scholar 
    5.Austin, P. K. & Sallabank, J. The Cambridge Handbook of Endangered Languages (Cambridge Univ. Press, 2011).6.Kandler, A., Unger, R. & Steele, J. Phil. Trans. R. Soc. B 365, 3855–3864 (2010).Article 

    Google Scholar 
    7.Kik, A. et al. Proc. Natl Acad. Sci. USA 118, e2100096118 (2021).CAS 
    Article 

    Google Scholar 
    8.Lewis, M. P., Simons, G. F. & Fennig, C. D. Ethnologue: Languages of the World 17th edn (SIL International, 2013).9.Fischer, S. D. in The Routledge Handbook of Historical Linguistics (ed. Bowern, C. & Evans, B.) Ch. 20, 443–465 (CRC Press, Routledge, 2015).10.Hou, L. & Kusters, A. in The Routledge Handbook of Linguistic Ethnography (ed. Tusting, K.) Ch. 25 (CRC Press, Routledge, 2019).11.Turner, M. K. & McDonald, B. M. J. Iwenhe Tyerrtye: What it Means to be an Aboriginal Person (IAD Press, 2010).12.Hercus, L. A. & Sutton, P. This is What Happened: Historical Narratives by Aborigines (Australian Institute of Aboriginal Studies, 1986).13.Meek, B. A. Annu. Rev. Anthropol. 48, 95–115 (2019).Article 

    Google Scholar  More

  • in

    Publisher Correction: Collective behaviour can stabilize ecosystems

    AffiliationsDepartment of Integrative Biology, Oregon State University, Corvallis, OR, USABenjamin D. Dalziel & Mark NovakDepartment of Mathematics, Oregon State University, Corvallis, OR, USABenjamin D. DalzielCollege of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USAJames R. WatsonDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USAStephen P. EllnerAuthorsBenjamin D. DalzielMark NovakJames R. WatsonStephen P. EllnerCorresponding authorCorrespondence to
    Benjamin D. Dalziel. More

  • in

    DNA barcodes evidence the contact zone of eastern and western caddisfly lineages in the Western Carpathians

    1.Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).Article 

    Google Scholar 
    2.Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R. & Waits, L. P. Landscape genetics: Where are we now?. Mol. Ecol. 19, 3496–3514. https://doi.org/10.1111/j.1365-294X.2010.04691.x (2010).Article 
    PubMed 

    Google Scholar 
    3.Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981. https://doi.org/10.1111/j.1365-2427.2012.02758.x (2012).Article 

    Google Scholar 
    4.Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, 1922 (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248. https://doi.org/10.1111/jzs.12062 (2014).Article 

    Google Scholar 
    5.Mamos, T., Wattier, R., Burzýnski, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).Article 
    PubMed 

    Google Scholar 
    6.Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Copilaş-Ciocianu, D., Zimţa, A. A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372. https://doi.org/10.1111/zsc.12285 (2018).Article 

    Google Scholar 
    8.Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297. https://doi.org/10.1111/jzs.12248 (2019).Article 

    Google Scholar 
    9.Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—A result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Kotlík, P. et al. A northern glacial refugium for bank voles (Clethrionomys glareolus). PNAS 103, 14860–14864. https://doi.org/10.1073/pnas.0603237103 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Theissinger, K. et al. Glacial survival and post-glacial recolonization of an arctic-alpine freshwater insect (Arcynopteryx dichroa, Plecoptera, Perlodidae) in Europe. J. Biogeogr. 40, 236–248. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2012).Article 

    Google Scholar 
    13.Vörös, J., Mikulíček, P., Major, Á., Recuero, E. & Arntzen, J. W. Phylogeographic analysis reveals northern refugia for the riverine amphibian Triturus dobrogicus (Caudata: Salamandridae). Biol. J. Linn. Soc. 119, 974–991. https://doi.org/10.1111/bij.12866 (2016).Article 

    Google Scholar 
    14.Copilaș-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027 (2017).Article 

    Google Scholar 
    15.Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. Holocene 28(4), 583–594. https://doi.org/10.1177/0959683617735592 (2017).ADS 
    Article 

    Google Scholar 
    16.Mamos, T., Jażdżewski, K., Čiamporová-Zaťovičová, Z., Čiampor, F. & Grabowski, M. Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach. Sci. Rep. 11, 21629. https://doi.org/10.1038/s41598-021-00320-8 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Pinceel, J., Jordaens, K., Pfenninger, M. & Backeljau, T. Rangewide phylogeography of a terrestrial slug in Europe: Evidence for Alpine refugia rapid colonization after the Pleistocene glaciations. Mol. Ecol. 14, 1133–1150. https://doi.org/10.1111/j.1365-294X.2005.02479.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence genetic consequences. New Phytol. 171, 199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Jamrichová, E., Potůčková, A. & Horsák, M. Landscape history, calcareous fen development historical events in the Slovak Eastern Carpathians. Veg. Hist. Archaeobot. 23, 497–513. https://doi.org/10.1007/s00334-013-0416-0 (2014).Article 

    Google Scholar 
    20.Jamrichová, E., Petr, L. & Jiménez-Alfaro, B. Pollen-inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. J. Biogeogr. 44, 2386–2397 (2017).Article 

    Google Scholar 
    21.Wielstra, B., Babik, W. & Arntzen, J. W. The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol. J. Linn. Soc. 114, 574–587. https://doi.org/10.1111/bij.12446 (2015).Article 

    Google Scholar 
    22.Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. https://doi.org/10.1111/bij.12918 (2016).Article 

    Google Scholar 
    23.Pauls, S. U., Lumbsch, H. A. T. & Haase, P. Phylogeography of the montane caddisfly Drusus discolor: Evidence for multiple refugia and periglacial survival. Mol. Ecol. 15(8), 2153–2169. https://doi.org/10.1111/j.1365-294X.2006.02916.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Pauls, S. U., Theissinger, K., Ujvarosi, L., Bálint, M. & Haase, P. Patterns of population structure in two closely related, partially sympatric caddisflies in eastern Europe: Historic introgression, limited dispersal, and cryptic diversity. J. N. Am. Benthol. Soc. 28, 517–536. https://doi.org/10.1899/08-100.1 (2009).Article 

    Google Scholar 
    25.Lehrian, S., Pauls, S. U. & Haase, P. Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolor in the Central European highlands. Freshw. Biol. 54, 283–295. https://doi.org/10.1111/j.1365-2427.2008.02107.x (2009).Article 

    Google Scholar 
    26.Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 216, 434–437 (1996).Article 

    Google Scholar 
    27.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    28.Robert, S. & Curtean-Bănăduc, A. Aspects concerning Târnava Mare and Târnava Mică rivers (Transylvania, Romania) caddisfly (Insecta, Trichoptera) larvae communities. Transylv. Rev. Syst. Ecol. Res. 2, 89–98 (2005).
    Google Scholar 
    29.Bálint, M., Ujvárosi, L., Dénes, A. L. & Octavian, P. European phylogeography of Rhyacophila tristis Pictet (Trichoptera: Rhyacophilidae): Preliminary results. Zoosymposia 5, 11–18. https://doi.org/10.11646/zoosymposia.5.1.1 (2011).Article 

    Google Scholar 
    30.Bielik, M. Geophysical features of the Slovak Western Carpathians. Geol. Q. 43, 251–262. https://doi.org/10.1016/j.quascirev.2008.08.019 (1999).Article 

    Google Scholar 
    31.Céréghino, R., Cugny, P. & Lavandier, P. Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int. Rev. Hydrobiol. 87, 47–60. https://doi.org/10.1002/1522-2632(200201)87:1%3c47::AID-IROH47%3e3.0.CO;2-9 (2002).Article 

    Google Scholar 
    32.Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: The role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. 65, 1028–1046. https://doi.org/10.1111/fwb.13487 (2020).CAS 
    Article 

    Google Scholar 
    33.Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).Article 

    Google Scholar 
    34.Bozáňová, J., Čiamporová-Zaťovičová, Z., Čiampor, F. Jr., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ 8, e10039. https://doi.org/10.7717/peerj.10039 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Jedlička, L., Kúdela, M., Szemes, T. & Celec, P. Population genetic structure of Simulium degrangei (Diptera: Simuliidae) from Western Carpathians. Biologia 67, 777–787. https://doi.org/10.2478/s11756-012-0057-2 (2012).Article 

    Google Scholar 
    36.Hughes, J. M., Bunn, S. E., Hurwood, D. A. & Cleary, C. Dispersal and recruitment of Tasiagma ciliata (Trichoptera: Tasmiidae) in rainforest streams, south-east Queensland, Australia. Freshw. Biol. 41, 1–10 (1998).
    Google Scholar 
    37.Finn, D. S., Theobald, D. M., Black, W. C. & Poff, N. L. Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol. Ecol. 15, 3553–3566 (2006).CAS 
    Article 

    Google Scholar 
    38.Vuataz, L., Rutschmann, S., Monaghan, M. T. & Sartori, M. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae). BMC Evol. Biol. 16, 194. https://doi.org/10.1186/s12862-016-0758-1 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W. & Travis, J. M. J. Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120083. https://doi.org/10.1098/rstb.2012.0083 (2013).Article 

    Google Scholar 
    40.Spielman, D., Brook, B. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. 101, 15261–15264 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    42.Bunn, S. E. & Hughes, J. M. Dispersal and recruitment in streams: Evidence from genetic studies. J. N. Am. Benthol. Soc. 16, 338–346. https://doi.org/10.2307/1468022 (1997).Article 

    Google Scholar 
    43.Barron, E. & Pollard, D. High-resolution climate simulations of oxygen isotope stage 3 in Europe. Quat. Res. 28, 296–309. https://doi.org/10.1006/qres.2002.2374 (2002).Article 

    Google Scholar 
    44.Bennet, K. & Provan, J. What do we mean by “refugia”? Quat. Sci. Rev. 27, 2449–2455 (2008).ADS 
    Article 

    Google Scholar 
    45.Kondracki, J. Karpaty. Wydanie drugie i poprawione [The Carpathians. Ed. 2].—Wydawnictwa Szkolne i Pedagogiczne, Warszawa (1989).46.Grecula, P. (ed.). Geological evolution of the Western Carpathians. Monograph: Mineralia Slovaca (1997).47.Lukniš, M. The course of the last glaciation of the Western Carpathians in the relation to the Alps, to the glaciation of northern Europe, and to the division of the central European Wurm into periods. Geografický Časopis 16, 127–142 (1964).
    Google Scholar 
    48.Lindner, L., Dzierzek, J., Marciniak, B. & Nitychoruk, J. Outline of Quaternary glaciations in the Tatra Mts.: Their development, age and limits. Geol. Q. 47, 269–280 (2003).
    Google Scholar 
    49.Frost, S. Evaluation of kicking technique for sampling stream bottom fauna. Can. J. Zool. 49, 161–173. https://doi.org/10.1016/j.biocon.2005.05.002 (1971).Article 

    Google Scholar 
    50.Sedlák, E. Řád Chrostíci—Trichoptera. In Klíč vodních larev hmyzu (ed. Rozkošný, R.) 163–220 (ČSAV, 1980).
    Google Scholar 
    51.Waringer, J. & Graf, W. Atlas of Central European Trichoptera Larvae: Atlas der Mitteleuropäischen Köcherfliegenlarven (Erik Mauch, 2011).
    Google Scholar 
    52.Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12(1), 136–141. https://doi.org/10.1111/j.1755-0998.2011.03073.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    54.Bálint, M., Botoşaneanu, L., Ujvárosi, L. & Popescu, O. Taxonomic revision of Rhyacophila aquitanica (Trichoptera: Rhyacophilidae), based on molecular and morphological evidence and change of taxon status of Rhyacophila aquitanica ssp. carpathica to Rhyacophila carpathica stat. n. Zootaxa 2148, 39–48. https://doi.org/10.11646/zootaxa.2148.1.3 (2009).Article 

    Google Scholar 
    55.Simon, C. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 
    Article 

    Google Scholar 
    56.Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 

    Google Scholar 
    58.Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21(2), 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    60.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    62.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17(42), 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).Article 

    Google Scholar 
    64.Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. PNAS 91(14), 6491–6495. https://doi.org/10.1073/pnas.91.14.6491 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Miller, M. P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724. https://doi.org/10.1093/jhered/esi119 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS 
    PubMed 

    Google Scholar 
    68.Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    69.Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123(3), 597–601 (1989).CAS 
    Article 

    Google Scholar 
    70.Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2), 915–925 (1997).CAS 
    Article 

    Google Scholar 
    71.Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 14, 693–709 (1993).Article 

    Google Scholar  More

  • in

    Ectoparasitic fungi of Myrmica ants alter the success of parasitic butterflies

    1.Frank, S. A. Models of parasite virulence. Q. Rev. Biol.  https://doi.org/10.1086/419267 (1996).Article 
    PubMed 

    Google Scholar 
    2.Dobson, A. P. The population dynamics of competition between parasites. Parasitology https://doi.org/10.1017/S0031182000057401 (1985).Article 
    PubMed 

    Google Scholar 
    3.Haelewaters, D. et al. Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. PeerJ https://doi.org/10.7717/peerj.10110 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Shapiro-Ilan, D. I., Bruck, D. J. & Lacey, L. A. Principles of Epizootiology and Microbial Control. In Insect Pathology 29–72 (Elsevier, 2012). https://doi.org/10.1016/B978-0-12-384984-7.00003-8.5.Renkema, J. M. & Cuthbertson, A. G. S. Impact of multiple natural enemies on immature Drosophila suzukii in strawberries and blueberries. Biocontrol https://doi.org/10.1007/s10526-018-9874-8 (2018).Article 

    Google Scholar 
    6.Furlong, M. & Pell, J. Interactions between entomopathogenic fungi and other arthropods natural enemies. In Insect-Fungal Associations, Ecology and Evolution (eds Vega, F. & Blackwell, M.) 51–73 (Oxford University Press, 2005).
    Google Scholar 
    7.Lafferty, K. D. Interacting parasites. Science https://doi.org/10.1126/science.1196915 (2010).Article 
    PubMed 

    Google Scholar 
    8.Price, S. L. et al. Recent findings in fungus-growing ants: evolution, ecology, and behavior of a complex microbial symbiosis. In Genes, Behaviors and Evolution of Social Insects (eds Azuma, N. & Higashi, S.) 255–280 (Hokkaido University Press, 2003).
    Google Scholar 
    9.Telfer, S. et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science https://doi.org/10.1126/science.1190333 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Carlson, C. J. et al. A global parasite conservation plan. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108596 (2020).Article 

    Google Scholar 
    11.Colwell, R. K., Dunn, R. R. & Harris, N. C. Coextinction and persistence of dependent species in a changing world. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110411-160304 (2012).Article 

    Google Scholar 
    12.Gagne, R. B. et al. Parasites as conservation tools. Conserv. Biol. https://doi.org/10.1111/cobi.13719 (2021).Article 
    PubMed 

    Google Scholar 
    13.Csősz, S. & Majoros, G. Ontogenetic origin of mermithogenic Myrmica phenotypes (Hymenoptera, Formicidae). Insectes Soc.  https://doi.org/10.1007/s00040-008-1040-3 (2009).Article 

    Google Scholar 
    14.Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. https://doi.org/10.1038/srep46323 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Pearson, B. & Raybould, A. F. The effects of antibiotics on the development of larvae and the possible role of bacterial load in caste determination and diapause in Myrmica rubra (Hymenoptera: Formicidae). Sociobiology 31, 77–90 (1998).
    Google Scholar 
    16.Schmid Hempel, P. Evolutionary Parasitology—The Integrated Study of Infections, Immunology, Ecology, and Genetics (Oxford University Press, 2011).
    Google Scholar 
    17.Donisthorpe, J. K. The Guests of British Ants—Their Habits and Life Histories (George Routledge And Sons, Limited, 1927).
    Google Scholar 
    18.Hölldobler, B. E. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book 

    Google Scholar 
    19.Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    20.Quevillon, L. E. The Ecology, Epidemiology, and Evolution of Parasites Infecting Ants (Hymenoptera: Formicidae) (Pennsylvania State University, 2018).
    Google Scholar 
    21.Quevillon, L. E. & Hughes, D. P. Pathogens, parasites, and parasitoids of ants: a synthesis of parasite biodiversity and epide-miological traits. BioRxiv https://doi.org/10.1101/384495 (2018).Article 

    Google Scholar 
    22.Di Salvo, M. et al. The microbiome of the Maculinea-Myrmica host-parasite interaction. Sci. Rep. https://doi.org/10.1038/s41598-019-44514-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. https://doi.org/10.1007/s00040-014-0362-6 (2014).Article 

    Google Scholar 
    24.Witek, M. et al. Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12074 (2013).Article 

    Google Scholar 
    25.Tartally, A. et al. Patterns of host use by brood parasitic Maculinea butterflies across Europe. Philos. Trans. R Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2018.0202 (2019).Article 

    Google Scholar 
    26.Wardlaw, J. C., Thomas, J. A. & Elmes, G. W. Do Maculinea rebeli caterpillars provide vestigial mutualistic benefits to ants when living as social parasites inside Myrmica ant nests? Entomol. Exp. Appl. https://doi.org/10.1046/j.1570-7458.2000.00646.x (2000).Article 

    Google Scholar 
    27.Thomas, J. A. & Wardlaw, J. C. The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia https://doi.org/10.1007/BF00317247 (1992).Article 
    PubMed 

    Google Scholar 
    28.Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. https://doi.org/10.1007/s00040-018-0628-5 (2018).Article 

    Google Scholar 
    29.Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. https://doi.org/10.1038/s41598-021-93583-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: Changes in host mortality and behavior. Insectes Soc. https://doi.org/10.1007/s00040-014-0349-3 (2014).Article 

    Google Scholar 
    31.Báthori, F., Rádai, Z. & Tartally, A. The effect of Rickia wasmannii (Ascomycota, Laboulbeniales) on the aggression and boldness of Myrmica scabrinodis (Hymenoptera, Formicidae). J. Hymenopt. Res. https://doi.org/10.3897/jhr.58.13253 (2017).Article 

    Google Scholar 
    32.Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. https://doi.org/10.1016/j.jip.2015.01.005 (2015).Article 
    PubMed 

    Google Scholar 
    33.Tartally, A. Myrmecophily of Maculinea Butterflies in the Carpathian Basin (Lepidoptera: Lycaenidae), PhD thesis, https://dea.lib.unideb.hu/dea/handle/2437/78921 (University of Debrecen, Hungary, 2008)
    Google Scholar 
    34.Elmes, G. W., Wardlaw, J. C., Schönrogge, K., Thomas, J. A. & Clarke, R. T. Food stress causes differential survival of socially parasitic caterpillars of Maculinea rebeli integrated in colonies of host and non-host Myrmica ant species. Entomol. Exp. Appl. https://doi.org/10.1111/j.0013-8703.2004.00121.x (2004).Article 

    Google Scholar 
    35.Nash, D. R., Als, T. D. & Boomsma, J. J. Survival and growth of parasitic Maculinea alcon caterpillars (Lepidoptera, Lycaenidae) in laboratory nests of three Myrmica ant species. Insectes Soc. https://doi.org/10.1007/s00040-011-0157-y (2011).Article 

    Google Scholar 
    36.Wilson, K., Grenfell, B. T. & Shaw, D. J. Analysis of aggregated parasite distributions: a comparison of methods. Funct. Ecol. https://doi.org/10.2307/2390169 (1996).Article 

    Google Scholar 
    37.Tartally, A., Nash, D. R., Varga, Z. & Lengyel, S. Changes in host ant communities of Alcon Blue butterflies in abandoned mountain hay meadows. Insect Conserv. Divers. https://doi.org/10.1111/icad.12369 (2019).Article 

    Google Scholar 
    38.Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2017.01.004 (2017).Article 
    PubMed 

    Google Scholar 
    39.Baylis, M. & Pierce, N. E. Lack of compensation by final instar larvae of the myrmecophilous lycaenid butterfly, Jalmenus evagoras, for the loss of nutrients to ants. Physiol. Entomol. https://doi.org/10.1111/j.1365-3032.1992.tb01186.x (1992).Article 

    Google Scholar 
    40.Elgar, M. A. & Pierce, N. E. Mating success and fecundity in an ant-tended lycaenid butterfly. In Reproductive Success: Studies of Individual Variation in Contrasting Breeding Systems 59–75 (Chicago University Press, 1988).41.Thomas, J. A., Elmes, G. W. & Wardlaw, J. C. Contest competition among Maculinea rebeli butterfly larvae in ant nests. Ecol. Entomol. https://doi.org/10.1111/j.1365-2311.1993.tb01082.x (1993).Article 

    Google Scholar 
    42.Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science https://doi.org/10.1126/science.1149180 (2008).Article 
    PubMed 

    Google Scholar 
    43.Schlick-Steiner, B. C. et al. A butterfly’s chemical key to various ant forts: intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften https://doi.org/10.1007/s00114-004-0518-8 (2004).Article 
    PubMed 

    Google Scholar 
    44.Schönrogge, K. et al. Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J. Chem. Ecol.  https://doi.org/10.1023/B:JOEC.0000013184.18176.a9 (2004).Article 
    PubMed 

    Google Scholar 
    45.Als, T. D., Nash, D. R. & Boomsma, J. J. Geographical variation in host-ant specificity of the parasitic butterfly Maculinea alcon in Denmark. Ecol. Entomol. https://doi.org/10.1046/j.1365-2311.2002.00427.x (2002).Article 

    Google Scholar 
    46.Als, T. D., Nash, D. R. & Boomsma, J. J. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera: Lycaenidae) by three Myrmica ant species. Anim. Behav. https://doi.org/10.1006/anbe.2001.1716 (2001).Article 

    Google Scholar 
    47.Tartally, A., Somogyi, A. Á., Révész, T. & Nash, D. R. Host ant change of a socially parasitic butterfly (Phengaris alcon) through host nest take-over. Insects https://doi.org/10.3390/insects11090556 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Thomas, J. A., Elmes, G. W., Schönrogge, K., Simcox, D. J. & Settele, J. Primary hosts, secondary hosts and ‘non-hosts’: common confusions in the interpretation of host specificity in Maculinea butterflies and other social parasites of ants. In Studies on the Ecology and Conservation of Butterflies in Europe (eds. Settele, J., Kühn, E. & Thomas, J. A.) vol. 2 99–104 (Pensoft, 2005).49.Thomas, J. A. et al. Mimetic host shifts in an endangered social parasite of ants. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2012.2336 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Fürst, M. A., Durey, M. & Nash, D. R. Testing the adjustable threshold model for intruder recognition on Myrmica ants in the context of a social parasite. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2011.0581 (2012).Article 

    Google Scholar 
    51.Maák, I. et al. Habitat features and colony characteristics influencing ant personality and its fitness consequences. Behav. Ecol. https://doi.org/10.1093/beheco/araa112 (2021).Article 
    PubMed 

    Google Scholar 
    52.Chapman, B. B., Thain, H., Coughlin, J. & Hughes, W. O. H. Behavioural syndromes at multiple scales in Myrmica ants. Anim. Behav. https://doi.org/10.1016/j.anbehav.2011.05.019 (2011).Article 

    Google Scholar 
    53.Martin, S. J., Helanterä, H. & Drijfhout, F. P. Is parasite pressure a driver of chemical cue diversity in ants? Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.1047 (2011).Article 

    Google Scholar 
    54.Nehring, V., Evison, S. E. F., Santorelli, L. A., D’Ettorre, P. & Hughes, W. O. H. Kin-informative recognition cues in ants. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2010.2295 (2011).Article 

    Google Scholar 
    55.Van Zweden, J. S. et al. Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J. Evol. Biol. https://doi.org/10.1111/j.1420-9101.2010.02020.x (2010).Article 
    PubMed 

    Google Scholar 
    56.Nash, D. R. & Andersen, A. Maculinea-sommerfugle og stikmyrer på danske heder—coevolution i tid og rum. Flora og Fauna 121, 133–141 (2015).
    Google Scholar 
    57.Haelewaters, D., Boer, P., Gort, G. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants (II): variation of infection by Rickia wasmannii over habitats and time. Anim. Biol. https://doi.org/10.1163/15707563-00002472 (2015).Article 

    Google Scholar 
    58.Dallas, T. A., Laine, A.-L. & Ovaskainen, O. Detecting parasite associations within multi-species host and parasite communities. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.1109 (2019).Article 

    Google Scholar 
    59.Herczeg, D., Ujszegi, J., Kásler, A., Holly, D. & Hettyey, A. Host–multiparasite interactions in amphibians: a review. Parasit. Vectors https://doi.org/10.1186/s13071-021-04796-1 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. https://doi.org/10.1016/0169-5347(94)90246-1 (1994).Article 
    PubMed 

    Google Scholar 
    61.Zhang, Z., Yan, C. & Zhang, H. Mutualism between antagonists: Its ecological and evolutionary implications. Integr. Zool. https://doi.org/10.1111/1749-4877.12487 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Rogalski, M. A., Stewart Merrill, T., Gowler, C. D., Cáceres, C. E. & Duffy, M. A. Context-dependent host-symbiont interactions: Shifts along the parasitism-mutualism continuum. Am. Nat. https://doi.org/10.1086/716635 (2021).Article 
    PubMed 

    Google Scholar 
    63.Pfliegler, W. P., Báthori, F., Haelewaters, D. & Tartally, A. Studies of Laboulbeniales on Myrmica ants (III): myrmecophilous arthropods as alternative hosts of Rickia wasmannii. Parasite https://doi.org/10.1051/parasite/2016060 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Chouvenc, T., Efstathion, C. A., Elliott, M. L. & Su, N.-Y. Resource competition between two fungal parasites in subterranean termites. Naturwissenschaften https://doi.org/10.1007/s00114-012-0977-2 (2012).Article 
    PubMed 

    Google Scholar 
    65.Lawton, J. H. & Hassell, M. P. Asymmetrical competition in insects. Nature https://doi.org/10.1038/289793a0 (1981).Article 

    Google Scholar 
    66.Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
    Google Scholar 
    67.Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication (eds D’Ettorre, P. & Hughes, D. P.) 55–80 (Oxford University Press, 2008).Chapter 

    Google Scholar 
    68.Tartally, A., Szűcs, B. & Ebsen, J. R. The first records of Rickia wasmannii Cavara, 1899, a myrmecophilous fungus, and its Myrmica Latreille, 1804 host ants in Hungary and Romania (Ascomycetes: Laboulbeniales; Hymenoptera: Formicidae). Myrmecol. News 10, 123 (2007).
    Google Scholar 
    69.Radchenko, A. G. & Elmes, G. W. Myrmica (Hymenoptera: Formicidae) ants of the Old World. vol. 6 (Fauna Mundi 3, 2010).70.Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. News 23, 81–89 (2016).
    Google Scholar 
    71.Haelewaters, D., Boer, P. & Noordijk, J. Studies of Laboulbeniales (Fungi, Ascomycota) on Myrmica ants: Rickia wasmannii in the Netherlands. J. Hymenopt. Res. https://doi.org/10.3897/JHR.44.4951 (2015).Article 

    Google Scholar 
    72.Espadaler, X. & Santamaria, S. Ecto- and endoparasitic fungi on ants from the Holarctic Region. Psyche, 2012, 168478. https://doi.org/10.1155/2012/168478 (2012).Article 

    Google Scholar 
    73.Báthori, F., Pfliegler, W. P., Zimmerman, C.-U. & Tartally, A. Online image databases as multi-purpose resources: discovery of a new host ant of Rickia wasmannii Cavara (Ascomycota, Laboulbeniales) by screening AntWeb.org. J. Hymenopt. Res, 61, 85-94. https://doi.org/10.3897/jhr.61.20255 (2017).Article 

    Google Scholar 
    74.Riddick, E. W. Ectoparasitic mite and fungus on an invasive lady beetle: parasite coexistence and influence on host survival. Bull. Insectol. 63, 13–20 (2010).
    Google Scholar 
    75.Konrad, M., Grasse, A. V, Tragust, S. & Cremer, S. Anti-pathogen protection versus survival costs mediated by an ectosymbiont in an ant host. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2014.197620141976 (2015).76.De Kesel, A., Haelewaters, D. & Dekoninck, W. Myrmecophilous Laboulbeniales Ascomycota in Belgium. Sterbeeckia 34, 3–6 (2016).
    Google Scholar 
    77.Haelewaters, D. The first record of Laboulbeniales (Fungi, Ascomycota) on Ants (Hymenoptera, Formicidae) in The Netherlands. Ascomycete.org 4, 65-69 (2012).78.van Swaay, C. et al. European Red List of Butterflies (Publications Office of the European Union, 2010).
    Google Scholar 
    79.Gergely, P. & Hudák, T. Revision of threatened butterfly species in Hungary (Lepidoptera: Rhopalocera). Lepidopterol. Hungarica https://doi.org/10.24386/lephung.2021.17.1.27 (2021).Article 

    Google Scholar 
    80.Wallis de Vries, M. Code rood voor het gentiaanblauwtje. Vlinders 4, 5–8 (2017).
    Google Scholar 
    81.Barbero, F., Thomas, J. A., Bonelli, S., Balletto, E. & Schönrogge, K. Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science https://doi.org/10.1126/science.1163583 (2009).Article 
    PubMed 

    Google Scholar 
    82.Thomas, J. A., Elmes, G. W., Wardlaw, J. C. & Woyciechowski, M. Host specificity among Maculinea butterflies in Myrmica ant nests. Oecologia https://doi.org/10.1007/BF00378660 (1989).Article 
    PubMed 

    Google Scholar 
    83.Elmes, G. W. et al. The ecology of Myrmica ants in relation to the conservation of Maculinea butterflies. J. Insect Conserv. https://doi.org/10.1023/A:1009696823965 (1998).Article 

    Google Scholar 
    84.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Cammaerts-Tricot, M.-C. Ontogenesis of the defence reactions in the workers of Myrmica rubra L. (Hymenoptera: Formicidae). Anim. Behav. https://doi.org/10.1016/0003-3472(75)90058-5 (1975).Article 

    Google Scholar 
    86.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015). More

  • in

    Relation of hypertension with episodic primary headaches and chronic primary headaches in population of Rafsanjan cohort study

    1.Stovner, L. et al. The global burden of headache: A documentation of headache prevalence and disability worldwide. Cephalalgia 27, 193–210 (2007).PubMed 

    Google Scholar 
    2.Tension-type headache. Nat. Rev. Dis. Primers 7, 23. https://doi.org/10.1038/s41572-021-00263-4 (2021).3.Bigal, M. et al. Migraine and cardiovascular disease: A population-based study. Neurology 74, 628–635 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Matei, D. et al. Autonomic impairment in patients with migraine. Eur. Rev. Med. Pharmacol. Sci. 19, 3922–3927 (2015).CAS 
    PubMed 

    Google Scholar 
    5.Stovner, L. J. et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 954–976 (2018).
    Google Scholar 
    6.Lee, H. J., Lee, J. H., Cho, E. Y., Kim, S. M. & Yoon, S. Efficacy of psychological treatment for headache disorder: A systematic review and meta-analysis. J. Headache Pain 20, 1–16 (2019).
    Google Scholar 
    7.Pascual, J., Colás, R. & Castillo, J. Epidemiology of chronic daily headache. Curr. Pain Headache Rep. 5, 529–536 (2001).CAS 
    PubMed 

    Google Scholar 
    8.Buse, D. C. et al. Chronic migraine prevalence, disability, and sociodemographic factors: Results from the American migraine prevalence and prevention study. Headache J. Head Face Pain 52, 1456–1470 (2012).
    Google Scholar 
    9.Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380, 2163–2196 (2012).
    Google Scholar 
    10.Peng, K. P. & Wang, S. J. Epidemiology of headache disorders in the Asia-Pacific region. Headache J. Head Face Pain 54, 610–618 (2014).
    Google Scholar 
    11.Stovner, L. J., Zwart, J. A., Hagen, K., Terwindt, G. & Pascual, J. Epidemiology of headache in Europe. Eur. J. Neurol. 13, 333–345 (2006).CAS 
    PubMed 

    Google Scholar 
    12.Jensen, R. & Stovner, L. J. Epidemiology and comorbidity of headache. Lancet Neurol. 7, 354–361 (2008).PubMed 

    Google Scholar 
    13.Lipton, R. B. & Bigal, M. E. The epidemiology of migraine. Am. J. Med. Suppl. 118, 3–10 (2005).
    Google Scholar 
    14.Bigal, M. E., Rapoport, A. M., Lipton, R. B., Tepper, S. J. & Sheftell, F. D. Assessment of migraine disability using the migraine disability assessment (MIDAS) questionnaire: A comparison of chronic migraine with episodic migraine. Headache J. Head Face Pain 43, 336–342 (2003).
    Google Scholar 
    15.Murphy, C. & Hameed, S. Chronic Headaches (StatPearls, 2021).
    Google Scholar 
    16.Green, M. W. Medication overuse headache. Curr. Opin. Neurol. 34, 378–383 (2021).CAS 
    PubMed 

    Google Scholar 
    17.Bigal, M. E., Sheftell, F. D., Rapoport, A. M., Tepper, S. J. & Lipton, R. B. Chronic daily headache: Identification of factors associated with induction and transformation. Headache J. Head Face Pain 42, 575–581 (2002).
    Google Scholar 
    18.Patel, U. K. et al. Fibromyalgia and myositis linked to higher burden and disability in patients with migraine. SN Compr. Clin. Med. 1, 882–890 (2019).CAS 

    Google Scholar 
    19.Tiseo, C. et al. Migraine and sleep disorders: A systematic review. J. Headache Pain 21, 1–13 (2020).
    Google Scholar 
    20.Dresler, T. et al. Understanding the nature of psychiatric comorbidity in migraine: A systematic review focused on interactions and treatment implications. J. Headache Pain 20, 51 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    21.Wang, Y.-F. & Wang, S.-J. Hypertension and migraine: Time to revisit the evidence. Curr. Pain Headache Rep. 25, 1–9 (2021).
    Google Scholar 
    22.Friedman, B. W., Mistry, B., West, J. R. & Wollowitz, A. The association between headache and elevated blood pressure among patients presenting to an ED. Am. J. Emerg. Med. 32, 976–981 (2014).PubMed 

    Google Scholar 
    23.Arnold, M. Headache classification committee of the international headache society (IHS) the international classification of headache disorders. Cephalalgia 38, 1–211 (2018).
    Google Scholar 
    24.Kuo, C.-Y. et al. Increased risk of hemorrhagic stroke in patients with migraine: A population-based cohort study. PLoS ONE 8, e55253 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Wang, Y.-C., Lin, C.-W., Ho, Y.-T., Huang, Y.-P. & Pan, S.-L. Increased risk of ischemic heart disease in young patients with migraine: A population-based, propensity score-matched, longitudinal follow-up study. Int. J. Cardiol. 172, 213–216 (2014).PubMed 

    Google Scholar 
    26.Gardener, H. et al. Hypertension and migraine in the Northern Manhattan Study. Ethn. Dis. 26, 323 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Rapsomaniki, E. et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. The Lancet 383, 1899–1911 (2014).
    Google Scholar 
    28.Shnayder, N. A. et al. The role of single-nucleotide variants of NOS1, NOS2, and NOS3 genes in the comorbidity of arterial hypertension and tension-type headache. Molecules 26, 1556 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Petrova, M., Moskaleva, P., Shnayder, N. & Nasyrova, R. Comorbidity of arterial hyperten-sion and tension-type headache. Kardiologiia 60, 132–140 (2020).CAS 
    PubMed 

    Google Scholar 
    30.Adney, J., Koehler, S., Tian, L. & Maliakkal, J. Headache and hypertension in a 9-year-old girl. Pediatr. Rev. 42, 383–386 (2021).PubMed 

    Google Scholar 
    31.Organization, W. H. Atlas of Headache Disorders and Resources in the World 2011 (World Health Organisation, 2011).
    Google Scholar 
    32.Saylor, D. & Steiner, T. J. Seminars in Neurology 182–190 (Thieme Medical Publishers, 2021).
    Google Scholar 
    33.Silberstein, S. D., Lipton, R. B., Solomon, S. & Mathew, N. T. Classification of daily and near-daily headaches: Proposed revisions to the IHS criteria. Headache J. Head Face Pain 34, 1–7 (1994).
    Google Scholar 
    34.Caponnetto, V. et al. Comorbidities of primary headache disorders: A literature review with meta-analysis. J. Headache Pain 22, 1–18 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    35.Blumenfeld, A. et al. Disability, HRQoL and resource use among chronic and episodic migraineurs: Results from the International Burden of Migraine Study (IBMS). Cephalalgia 31, 301–315 (2011).CAS 
    PubMed 

    Google Scholar 
    36.Buse, D., Manack, A., Serrano, D., Turkel, C. & Lipton, R. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J. Neurol. Neurosurg. Psychiatry 81, 428–432 (2010).CAS 
    PubMed 

    Google Scholar 
    37.Bigal, M. E., Serrano, D., Reed, M. & Lipton, R. B. Chronic migraine in the population: Burden, diagnosis, and satisfaction with treatment. Neurology 71, 559–566 (2008).PubMed 

    Google Scholar 
    38.Katsarava, Z. et al. Chronic migraine: Classification and comparisons. Cephalalgia 31, 520–529 (2011).CAS 
    PubMed 

    Google Scholar 
    39.Hakimi, H. et al. The profile of Rafsanjan cohort study. Eur. J. Epidemiol. 36, 243–252 (2021).CAS 
    PubMed 

    Google Scholar 
    40.Poustchi, H. et al. Prospective epidemiological research studies in Iran (the PERSIAN Cohort Study): Rationale, objectives, and design. Am. J. Epidemiol. 187, 647–655 (2018).PubMed 

    Google Scholar 
    41.Ahmadi, M., Nasehi, M. M., Kheradmand, M. & Moosazadeh, M. Chronic headache in tabari cohort population: Prevalence and its related risk factors. Clin. Epidemiol. Glob. Health 8, 101–104 (2020).
    Google Scholar 
    42.Azizi, M. Meta-analysis of psychological factors of migraines in Iran. Q. J. Health Psychol. 6, 88–100 (2017).
    Google Scholar 
    43.Zarea, K., Rahmani, M., Hassani, F. & Hakim, A. Epidemiology and associated factors of migraine headache among Iranian medical students: A descriptive-analytical study. Clin. Epidemiol. Glob. Health 6, 109–114 (2018).
    Google Scholar 
    44.Huang, Q. et al. Elevated blood pressure and analgesic overuse in chronic daily headache: An outpatient clinic-based study from China. J. Headache Pain 14, 1–8 (2013).
    Google Scholar 
    45.Pietrini, U., De Luca, M. & De Santis, G. Hypertension in headache patients? A clinical study. Acta Neurol. Scand. 112, 259–264 (2005).CAS 
    PubMed 

    Google Scholar 
    46.Jensen, R. & Bendtsen, L. Is chronic daily headache a useful diagnosis? J. Headache Pain 5, 87–93 (2004).PubMed Central 

    Google Scholar 
    47.Gipponi, S., Venturelli, E., Rao, R., Liberini, P. & Padovani, A. Hypertension is a factor associated with chronic daily headache. Neurol. Sci. 31, 171–173 (2010).
    Google Scholar 
    48.Prudenzano, M. P. et al. The comorbidity of migraine and hypertension. A study in a tertiary care headache centre. J. Headache Pain 6, 220–222 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    49.Rist, P. M., Winter, A. C., Buring, J. E., Sesso, H. D. & Kurth, T. Migraine and the risk of incident hypertension among women. Cephalalgia 38, 1817–1824 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    50.Wang, J.-G. Chinese hypertension guidelines. Pulse 3, 14–20 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    51.Hagen, K. et al. Blood pressure and risk of headache: A prospective study of 22 685 adults in Norway. J. Neurol. Neurosurg. Psychiatry 72, 463–466 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Towards the biogeography of prokaryotic genes

    1.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 

    Google Scholar 
    2.Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Mohammad, B. F. et al. Structure and function of the global topsoil microbiome. Nature 560 233–237 (2018).4.Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Xiao, L. et al. A catalog of the mouse gut metagenome. Nat. Biotechnol. 33, 1103–1108 (2015).CAS 
    PubMed 

    Google Scholar 
    6.Coelho, L. P. et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6, 72 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    7.Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e20 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, (2018).9.Mende, D. R. et al. ProGenomes2: An improved database for accurate and consistent habitat, taxonomic and functional annotations of prokaryotic genomes. Nucleic Acids Res. 48, D621–D625 (2020).CAS 
    PubMed 

    Google Scholar 
    10.Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Daniel H. et al. RefSeq: an update on prokaryotic genome annotation and curation. Nuc. Acids Res. 46, D851–D860 (2018).13.Mering, C. von et al. Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315, 1126–1130 (2007).ADS 

    Google Scholar 
    14.Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    15.Nielsen, H. B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).CAS 
    PubMed 

    Google Scholar 
    16.Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).CAS 
    PubMed 

    Google Scholar 
    17.Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 

    Google Scholar 
    19.Maistrenko, O. M. et al. Disentangling the impact of environmental and phylogenetic constraints on prokaryotic within-species diversity. ISME J. 14, 1247–1259 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    20.Baumdicker, F., Hess, W. R. & Pfaffelhuber, P. The diversity of a distributed genome in bacterial populations. Ann. Appl. Probab. 20, 1567–1606 (2010).MathSciNet 
    MATH 

    Google Scholar 
    21.Sela, I., Wolf, Y. I. & Koonin, E. V. Theory of prokaryotic genome evolution. Proc. Natl Acad. Sci. USA 113, 11399–11407 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Dandekar, T., Snel, B., Huynen, M. & Bork, P. Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328 (1998).CAS 
    PubMed 

    Google Scholar 
    23.Nei, M., Suzuki, Y. & Nozawa, M. The neutral theory of molecular evolution in the genomic era. Annu. Rev. Genomics Hum. Genet. 11, 265–289 (2010).CAS 
    PubMed 

    Google Scholar 
    24.Iranzo, J., Cuesta, J. A., Manrubia, S., Katsnelson, M. I. & Koonin, E. V. Disentangling the effects of selection and loss bias on gene dynamics. Proc. Natl Acad. Sci. USA 114, E5616–E5624 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Wolf, Y. I., Makarova, K. S., Lobkovsky, A. E. & Koonin, E. V. Two fundamentally different classes of microbial genes. Nat. Microbiol. 2, 16208 (2016).CAS 
    PubMed 

    Google Scholar 
    26.Rasko, D. A. et al. The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J. Bacteriol. 190, 6881–6893 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Koskella, B., Hall, L. J. & Metcalf, C. J. E. The microbiome beyond the horizon of ecological and evolutionary theory. Nat. Ecol. Evol. 1, 1606–1615 (2017).PubMed 

    Google Scholar 
    28.Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).CAS 
    PubMed 

    Google Scholar 
    29.Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2015).ADS 
    PubMed 

    Google Scholar 
    30.Vincent, C. et al. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection. Microbiome 4, 12 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    31.Zeller, G. et al. Potential of fecal microbiota for early‐stage detection of colorectal cancer. Mol. Syst. Biol. 10, 766 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    32.Gibson, M. K. et al. Developmental dynamics of the preterm infant gut microbiota and antibiotic resistome. Nat. Microbiol. 1, 16024 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).CAS 
    PubMed 

    Google Scholar 
    34.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 842–853 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Hannigan, G. D. et al. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. MBio 6, e01578-15 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Taft, D. H. et al. Intestinal microbiota of preterm infants differ over time and between hospitals. Microbiome 2, 36 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    39.Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).CAS 
    PubMed 

    Google Scholar 
    40.Wilhelm, R. C. et al. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J. 11, 2552–2568 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    41.Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572–584.e3 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.The MetaSUB International Consortium. The metagenomics and metadesign of the subways and urban biomes (metasub) international consortium inaugural meeting report. Microbiome 4, 24 (2016).
    Google Scholar 
    43.Chatelier, E. L. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).PubMed 

    Google Scholar 
    44.Li, J. et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5, (2017).45.Pehrsson, E. C. et al. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533, 212–216 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).CAS 
    PubMed 

    Google Scholar 
    47.Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    48.Gu, Y. et al. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat. Commun. 8, 1785 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Karlsson, F. H. et al. Gut metagenome in european women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    50.Yu, J. et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 66, 70–78 (2017).CAS 
    PubMed 

    Google Scholar 
    51.Youngster, I. et al. Fecal microbiota transplant for relapsing clostridium difficile infection using a frozen inoculum from unrelated donors: a randomized, open-label, controlled pilot study. Clin. Infect. Dis. 58, 1515–1522 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    52.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nat. Commun. 10, 512 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Vogtmann, E. et al. Colorectal cancer and the human gut microbiome: reproducibility with whole-genome shotgun sequencing. PLoS ONE 11, e0155362 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Chng, K. R. et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 1, 16106 (2016).CAS 
    PubMed 

    Google Scholar 
    55.Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Van Rossum, T. et al. Spatiotemporal dynamics of river viruses, bacteria and microeukaryotes. Preprint at https://doi.org/10.1101/259861 (2018).57.Feng, Q. et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci. Rep. 6, 22525 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Oh, J., Byrd, A. L., Park, M., Kong, H. H. & Segre, J. A. Temporal stability of the human skin microbiome. Cell 165, 854–866 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Xiao, L. et al. A reference gene catalogue of the pig gut microbiome. Nat. Microbiol. 1, 16161 (2016).CAS 
    PubMed 

    Google Scholar 
    60.R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2014).61.Coelho, L. P. et al. NG-meta-profiler: Fast processing of metagenomes using ngless, a domain-specific language. Microbiome 7, 84 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    62.Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct De Bruijn graph. Bioinformatics 31, 1674–1676 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Besemer, J. & Borodovsky, M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 33, W451–W454 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Coelho, L. P. Jug: Software for parallel reproducible computation in Python. J. Open Res. Softw. 5, 30 (2017).
    Google Scholar 
    65.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using diamond. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 

    Google Scholar 
    66.Eberhardt, R. Y. et al. AntiFam: A tool to help identify spurious ORFs in protein annotation. Database 2012, bas003 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    67.Kang, D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    68.Li, H. Aligning sequence reads, clone sequences and assembly contigs with bwa-mem. Preprint at https://arxiv.org/abs/1303.3997 (2013).69.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Zhou, W., Gay, N. & Oh, J. ReprDB and panDB: minimalist databases with maximal microbial representation. Microbiome 6, 15 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    72.Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in tara oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 

    Google Scholar 
    74.Huerta-Cepas, J. et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    75.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Smyshlyaev, G., Barabas, O. & Bateman, A. Sequence analysis allows functional annotation of tyrosine recombinases in prokaryotic genomes. Mol. Syst. Biol. 17, e9880 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Jia, B. et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45, D566–D573 (2017).CAS 
    PubMed 

    Google Scholar 
    78.Gibson, M. K., Forsberg, K. J. & Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 9, 207–216 (2015).CAS 
    PubMed 

    Google Scholar 
    79.Li, T., Fan, K., Wang, J. & Wang, W. Reduction of protein sequence complexity by residue grouping. Protein Eng. 16, 323–330 (2003).CAS 
    PubMed 

    Google Scholar 
    80.Zhao, M., Lee, W.-P., Garrison, E. P. & Marth, G. T. SSW library: an SIMD Smith–Waterman C/C++ library for use in genomic applications. PLoS ONE 8, e82138 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2017).
    Google Scholar 
    82.Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    84.Kumar, R., Acharya, V., Singh, D. & Kumar, S. Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01. Stand. Genomic Sci. 13, 11 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Patijanasoontorn, B. et al. Hospital acquired Janthinobacterium lividum septicemia in srinagarind hospital. J. Med. Assoc. Thai. 75 Suppl 2, 6–10 (1992).PubMed 

    Google Scholar 
    86.Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet 
    MATH 

    Google Scholar 
    89.Collins, R. E. & Higgs, P. G. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol. Biol. Evol. 29, 3413–3425 (2012).CAS 
    PubMed 

    Google Scholar 
    90.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using clustal omega. Mol. Syst. Biol. 7, 539 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    91.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–12 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Murrell, B. et al. FUBAR: a fast, unconstrained Bayesian approximation for inferring selection. Mol. Biol. Evol. 30, 1196–1205 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Smith, M. D. et al. Less is more: an adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Mol. Biol. Evol. 32, 1342–1353 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Washietl, S. et al. RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA 17, 578–594 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Experimental evidence for recovery of mercury-contaminated fish populations

    Mercury additions to the study catchmentMETAALICUS was conducted on the Lake 658 catchment at the Experimental Lakes Area (ELA; now IISD-ELA), a remote area in the Precambrian Shield of northwestern Ontario, Canada (49° 43′ 95″ N, 93° 44′ 20″ W) set aside for whole-ecosystem research31. The Lake 658 catchment includes upland (41.2 ha), wetland (1.7 ha) and lake surface (8.4 ha) areas. Lake 658 is a double basin (13 m depth), circumneutral, headwater lake, with a fish community consisting of forage (yellow perch (P. flavescens) and blacknose shiner (Notropis heterolepis)), benthivorous (lake whitefish (C. clupeaformis) and white sucker (Catostomus commersonii)), and piscivorous (northern pike (E. lucius)) fishes. The lake is closed to fishing.Hg addition methods used in METAALICUS have been described in detail elsewhere19,32,33. In brief, three Hg spikes, each enriched with a different stable Hg isotope, were applied separately to the lake surface, upland and wetland areas. Upland and wetland spikes were applied once per year (when possible; Fig. 1a) by fixed-wing aircraft (Cessna 188 AGtruck). Mercury spikes (as HgNO3) were diluted in acidified water (pH 4) in a 500 l fiberglass tank and sprayed with a stainless-steel boom on upland (approximately 79.9% 200Hg) and wetland (approximately 90.1% 198Hg) areas. Spraying was completed during or immediately before a rain event, with wind speeds less than 15 km h−1 to minimize drift of spike Hg outside of target areas. Aerial spraying of upland and wetland areas left a 20-m buffer to the shoreline, which was sprayed by hand with a gas-powered pump and fire hose to within about 5 m of the lake32. Average net application rates of isotopically labelled Hg to the upland and wetland areas were 18.5 μg m−2 yr−1 and 17.8 μg m−2 yr−1, respectively.The average net application rate for lake spike Hg was 22.0 μg m−2 yr−1. For each lake addition, inorganic Hg enriched with approximately 89.7% 202Hg was added as HgNO3 from four 20-l carboys filled with acidified lake water (pH 4). Nine lake additions were conducted bi-weekly at dusk over an 18-week (wk) period during the open-water season of each year (2001–2007) by injecting at 70-cm depth into the propeller wash of trolling electric motors of two boats crisscrossing each basin of the lake32,33. It was previously demonstrated with 14C additions to an ELA lake that this approach evenly distributed spike added in the evening by the next morning34.We did not attempt to simulate Hg in rainfall for isotopic lake additions because it is impossible to simulate natural rainfall concentrations (about 10 ng l−1) in the 20-l carboys used for additions. Instead, our starting point for the experiment was to ensure that the spike was behaving as closely as possible to ambient surface water Hg very soon after it entered the lake. Several factors support this assertion. By the next morning each spike addition had increased epilimnetic Hg concentrations by only 1 ng l−1 202Hg. Average ambient concentrations were 2 ng l−1. Thus, while the Hg concentrations in the carboys were high (2.6 mg l−1), the receiving waters were soon at trace levels. Furthermore, we investigated if the additions altered the degree of bioavailability or photoreactivity of Hg(ii) in the receiving surface water. We examined the bioavailability of spike Hg(ii) as compared to ambient Hg in the lake itself using a genetically engineered bioreporter bacterium35. On seven occasions, epilimnetic samples were collected on the day before and within 12 h of spike additions. The spike was added to the lake as Hg(NO3)2, which is bioavailable to the bioreporter bacterium (detection limit = 0.1 ng Hg(ii) l−1), but we never saw bioavailable ambient or spike Hg(ii) in the lake, presumably because it was quickly bound to dissolved organic carbon (DOC). This indicates that, in terms of bioavailability, the spike Hg was behaving like ambient Hg soon after additions. Photoreactivity in the surface water was examined on seven occasions, by measuring the % of total Hg(ii) that was dissolved gaseous Hg for spike and ambient Hg, either 24 h or 48 h after the lake was spiked36. There was no significant difference (paired t-test, P > 0.05), demonstrating that by then the lake spike was behaving in the same way as ambient Hg during gaseous Hg production.Lake, food web and fish samplingWater samples were collected from May to October every four weeks at the deepest point of Lake 658. Water was pumped from six depths through acid-cleaned Teflon tubing into acid-cleaned Teflon or glass bottles. Water samples were filtered in-line using pre-ashed quartz fibre filters (Whatman GFQ, 0.7 µm). Subsequently, Hg species were measured in the filtered water samples (dissolved Hg and MeHg) and in particles collected on the quartz fibre filter (particulate Hg and MeHg).From 2001 to 2012, Lake 658 sediments were sampled at 4 fixed sites up to 5 times per year. Sampling frequency was highest in 2001, with monthly sampling from May to September, and declined over the course of the study. Fixed sites were located at depths of 0.5, 2, 3 and 7 m. A sediment survey of up to 12 additional sites was also conducted once or twice each year. Survey sites were selected to represent the full range of water depths in both basins. Cores were collected by hand by divers, or by subsampling sediments collected using a small box corer. Cores were capped and returned to the field station for processing within a few hours. For each site, three separate cores were sectioned and composited in zipper lock bags for a 0- to 2-cm depth sampling horizon, and then frozen at −20 °C.Bulk zooplankton and Chaoborus samples were collected from Lake 658 for MeHg analysis. Zooplankton were collected during the day from May to October (bi-weekly: 2001–2007; monthly: 2008–2015). A plankton net (150 μm, 0.5 m diameter) was towed vertically through the water column from 1 m above the lake bottom at the deepest point to the surface of the lake. Samples were frozen in plastic Whirl-Pak bags after removal of any Chaoborus using acid-washed tweezers. Dominant zooplankton taxa in Lake 658 included calanoid copepods (Diaptomus oregonensis) and Cladocera (Holopedium glacialis, Daphnia pulicaria and Daphnia mendotae). Chaoborus samples were collected monthly in the same manner at least 1 h after sunset. After collection, Chaoborus were picked from the sample using forceps and frozen in Whirl-Pak bags. Chaoborus were not separated by species for MeHg analyses, but both C. flavicans and C. punctipennis occur in the lake. Profundal chironomids were sampled at the deepest part of the lake using a standard Ekman grab sampler. Grab material was washed using water from a nearby lake and individual chironomids were picked by hand.All work with vertebrate animals was approved by Animal Care Committees (ACC) through the Canadian Council on Animal Care (Freshwater Institute ACC for Fisheries and Oceans Canada, 2001–2013; University of Manitoba ACC for IISD-ELA, 2014–2015). Licenses to Collect Fish for Scientific Purposes were granted annually by the Ontario Ministry of Natural Resources and Forestry. Prior to any Hg additions, a small-mesh fence was installed at the outlet of Lake 658 to the downstream lake to prevent movement of fish between lakes. Sampling for determination of MeHg concentrations (measured as total mercury (THg), see below) occurred each autumn (August–October; that is, the end of the growing season in north temperate lakes) for all fish species in Lake 658, and for northern pike and yellow perch in nearby reference Lake 240 (Extended Data Tables 2, 3). Fish collections occurred randomly throughout the lakes. Forage fish (YOY and 1+ yellow perch, and blacknose shiner) were captured using small mesh gillnets (6–10 mm) set for 90% of the Hg in muscle tissue from yellow perch in Lake 658 is MeHg40,41, here we report fish mercury data as MeHg.THg concentrations (ambient, lake spike, upland spike and wetland spike) in fish muscle samples were quantified by ICP-MS39. Samples were digested with HNO3/H2SO4 (7:3 v/v) and heated at 80 °C until brown NOx gases no longer formed. The THg in sample digests was reduced by SnCl2 to Hg0 which was then quantified by ICP-MS (Thermo-Finnigan Element2) using a continuous flow cold vapour generation technique41. To correct for procedural recoveries, all samples were spiked with 201HgCl2 prior to sample analysis. Samples of CRMs (DORM2 (2001–2011), DORM3 (2012–2013), DORM4 (2014–2015); National Research Council of Canada) were submitted to the same procedures; measured THg concentrations in the reference materials were not statistically different from certified values (P > 0.05). Detection limit for each of the spikes was 0.5% of ambient Hg.Calculations and statistical methodsAnalyses were completed with Statistica (6.1, Statsoft) and Sigmaplot (11.0, Systat Software). We present wet weight (w.w.) MeHg concentrations for all samples, except sediments which are dry weight (d.w.) concentrations. For zooplankton, Chaoborus, and profundal chironomids, d.w. MeHg concentrations were multiplied by a standard proportion (0.15) to yield w.w. concentrations for each sample42. The resulting w.w. concentrations were averaged over each open water season to determine annual means. For fish muscle biopsies, d.w. MeHg concentrations were multiplied by individual d.w. proportions to yield w.w. MeHg concentrations for each sample. To avoid any size-related biases, we calculated standardized annual MeHg concentrations (ambient and lake spike) for northern pike and lake whitefish by determining best-fit relationships between FL and MeHg concentrations for each year (quadratic polynomial, except for a linear fit for lake whitefish in 2004), and using the resulting regression equations to estimate MeHg concentrations at a standard FL43 (the mean FL of all fish sampled for each species: northern pike, 475 mm; lake whitefish, 530 mm). Square root transformation of raw northern pike data was required to satisfy assumptions of normality and homoscedasticity prior to standardization. The resulting data represent standardized concentrations of lake spike and ambient MeHg for each species each year.We used the ratio of lake spike and ambient Hg in each sample as a measure of the amount by which Hg concentrations were changed with the addition of isotopically enriched Hg:$${rm{P}}{rm{e}}{rm{r}}{rm{c}}{rm{e}}{rm{n}}{rm{t}},{rm{i}}{rm{n}}{rm{c}}{rm{r}}{rm{e}}{rm{a}}{rm{s}}{rm{e}}={[{rm{l}}{rm{a}}{rm{k}}{rm{e}}{rm{s}}{rm{p}}{rm{i}}{rm{k}}{rm{e}}{rm{H}}{rm{g}}]}_{i}/{[{rm{a}}{rm{m}}{rm{b}}{rm{i}}{rm{e}}{rm{n}}{rm{t}}{rm{H}}{rm{g}}]}_{i}times 100$$
    (1)
    where [lake spike Hg]i is the concentration of lake spike MeHg in sample i, and [ambient Hg]i is the concentration of ambient MeHg in sample i. For northern pike and lake whitefish, we calculated the mean annual relative increase from all individuals (not the size-standardized concentration data).Biomagnification factors (BMF) were calculated to describe differences in Hg concentrations between predator and prey5:$${rm{BMF}}={log }_{10}({[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{d}}{rm{a}}{rm{t}}{rm{o}}{rm{r}}}/{[{rm{MeHg}}]}_{{rm{p}}{rm{r}}{rm{e}}{rm{y}}})$$
    (2)
    where [MeHg]predator is the mean (forage fish) or standardized (large-bodied fish) concentration of MeHg in the predator (ng g−1 w.w.) and [MeHg]prey is the mean concentration of MeHg in the prey (ng g−1 w.w.). MeHg concentration of prey items were averaged from samples collected throughout the open-water season immediately prior to autumn sampling of fish species to represent an integrated exposure for calculation of BMF. We used a dominant prey item to represent the diet of each fish species. For age 1+ yellow perch, northern pike, and lake whitefish, dominant prey items were zooplankton, forage fishes (YOY and 1+ yellow perch, and blacknose shiner) and Chaoborus, respectively.To assess loss of lake spike MeHg by northern pike during the recovery period (2008–2015), we calculated28 whole body burdens (in μg) of lake spike MeHg for the standardized population and for individuals that had been sampled in autumn 2007 (t0 is the final time spike Hg was added to the lake) and again in at least one subsequent year during annual autumn sampling (n = 16 fish, of which 1–9 individuals were recaptured annually from 2008–2015). This calculation of MeHg burden is a relative measure of whole fish Hg content because MeHg is higher in muscle tissue than in other tissue types28,40. For the standardized population data, we used best-fit relationships between FL (in mm) and body weight (in g; quadratic polynomial) to determine body weight at the standard FL. We multiplied this body weight by standard ambient and spike MeHg concentrations (in ng g−1 w.w.) in muscle tissue for each year to determine body burdens over time (in ng). For individual fish, we multiplied spike MeHg concentration (in ng g−1 w.w.) by body weight (in g) to yield individual body burdens (in ng). To account for differences among individuals and between individuals and the population, we normalized the data to examine the mean proportion of original (t0) lake spike MeHg burden present in northern pike each year of the recovery period (2008–2015).$${rm{change}},{rm{in}},{rm{burden}},{rm{from}},{t}_{0}={{rm{burden}}}_{{rm{tx}}}/{{rm{burden}}}_{{rm{t}}0}$$
    (3)
    We used a best fit regression (exponential decay, beginning in the second year of recovery) to estimate the half-life (50% of original burden) of lake spike MeHg for the population.Northern pike and lake whitefish ages were determined by cleithra and otoliths, respectively, if mortality had occurred, but most ages were quantified using fin rays collected from live fish44 (K. H. Mills, DFO or North/South Consultants). Northern pike of the sizes selected for biopsy sampling had a median age of 3 years (range: 2–12 years; n = 305); the median age of lake whitefish was 17 years (range: 3–38 years; n = 86).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More