Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA
1.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS
CAS
PubMed
Google Scholar
2.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS
PubMed
Google Scholar
3.Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS
PubMed
PubMed Central
Google Scholar
4.Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography (Cop.). 39, 240–252 (2016).
Google Scholar
5.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).ADS
CAS
PubMed
Google Scholar
6.Bakker, E. S., Pagès, J. F., Arthur, R. & Alcoverro, T. Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. Ecography (Cop.). 39, 162–179 (2016).
Google Scholar
7.Brault, M. O., Mysak, L. A., Matthews, H. D. & Simmons, C. T. Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate. Clim 9, 1761–1771 (2013).ADS
Google Scholar
8.Doughty, C. E., Faurby, S. & Svenning, J. C. The impact of the megafauna extinctions on savanna woody cover in South America. Ecography (Cop.). 39, 213–222 (2016).
Google Scholar
9.Doughty, C. E., Wolf, A. & Malhi, Y. The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nat. Geosci. 6, 761–764 (2013).ADS
CAS
Google Scholar
10.Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 1–6 (2015).
Google Scholar
11.Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).ADS
CAS
PubMed
PubMed Central
Google Scholar
12.Smith, F. A. et al. Exploring the influence of ancient and historic megaherbivore extirpations on the global methane budget. Proc. Natl Acad. Sci. USA 113, 201502547 (2015).
Google Scholar
13.le Roux, E., Kerley, G. I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African Savanna Ecosystem. Curr. Biol. 28, 2493–2499.e3 (2018).PubMed
Google Scholar
14.Boulanger, M. T. & Lyman, R. L. Northeastern North American Pleistocene megafauna chronologically overlapped minimally with Paleoindians. Quat. Sci. Rev. 85, 35–46 (2013).ADS
Google Scholar
15.Rozas-Dávila, A., Valencia, B. G. & Bush, M. B. The functional extinction of Andean megafauna. Ecology 97, 2533–2539 (2016).PubMed
Google Scholar
16.Guthrie, R. D. New Carbon Dates Link Climatic Change with Human Colonization and Pleistocene Extinctions. Nature 441, 207–209 (2006).ADS
CAS
PubMed
Google Scholar
17.Meltzer, D. J. Overkill, glacial history, and the extinction of North America’s Ice Age megafauna. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2015032117 (2020).18.Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. Lond. B Biol. Sci. 281, 20133254 (2014).
Google Scholar
19.Martin, P. S. in Quaternary Extinctions: A Prehistoric Revolution (eds. Martin, P. S. & Klein, R. G.) 354–403 (University of Arizona Press, 1984).20.Braje, T. J. & Erlandson, J. M. Human acceleration of animal and plant extinctions: a late Pleistocene, Holocene, and Anthropocene continuum. Anthropocene 4, 14–23 (2013).
Google Scholar
21.Smith, F. A., Smith, R. E. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science. 360, 310–313 (2018).ADS
CAS
PubMed
Google Scholar
22.Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late pleistocene extinctions on the continents. Science 306, 70–75 (2004).ADS
CAS
PubMed
Google Scholar
23.Zimov, S. A. et al. Steppe-Tundra Transition: A Herbivore-Driven Biome Shift at the End of the Pleistocene. Am. Nat. 146, 765–794 (1995).
Google Scholar
24.Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
25.Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. 94, 328–352 (2019).
Google Scholar
26.Zazula, G. D. et al. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change. Proc. Natl Acad. Sci. USA 111, 18460–18465 (2014).ADS
CAS
PubMed
PubMed Central
Google Scholar
27.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 414–433 (2015).
Google Scholar
28.Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).ADS
Google Scholar
29.Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl Acad. Sci. USA 112, 14301–14306 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
30.Rabanus-Wallace, M. T. et al. Megafaunal isotopes reveal role of increased moisture on rangeland during late Pleistocene extinctions. Nat. Ecol. Evol. 1, 1–5 (2017).
Google Scholar
31.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, I. S. Mammoth steppe: a high-productivity phenomenon. Quat. Sci. Rev. 57, 26–45 (2012).ADS
Google Scholar
32.Owen-Smith, N. Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).
Google Scholar
33.Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).ADS
CAS
PubMed
Google Scholar
34.Jackson, S. T. Representation of flora and vegetation in Quaternary fossil assemblages: known and unknown knowns and unknowns. Quat. Sci. Rev. 49, 1–15 (2012).ADS
Google Scholar
35.Froese, D. G. et al. The Klondike goldfields and Pleistocene environments of Beringia. GSA Today 19, 4–10 (2009).
Google Scholar
36.Murchie, T. J. et al. Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set. Quat. Res. 99, 305–328 (2021).CAS
Google Scholar
37.Haile, J. et al. Ancient DNA reveals late survival of mammoth and horse in interior Alaska. Proc. Natl Acad. Sci. USA 106, 22352–22357 (2009).ADS
CAS
PubMed
PubMed Central
Google Scholar
38.Clark, P. U. The last glacial maximum. Science 325, 710–714 (2009).ADS
CAS
PubMed
Google Scholar
39.Zazula, G. D. et al. A middle Holocene steppe bison and paleoenvironments from the versleuce meadows, Whitehorse, Yukon, Canada. Can. J. Earth Sci. 54, 1138–1152 (2017).ADS
Google Scholar
40.Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the Ice Free Corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057–8063 (2016).CAS
PubMed
PubMed Central
Google Scholar
41.Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).CAS
PubMed
PubMed Central
Google Scholar
42.Vartanyan, S. L., Arslanov, K. A., Karhu, J. A., Possnert, G. & Sulerzhitsky, L. D. Collection of radiocarbon dates on the mammoths (Mammuthus primigenius) and other genera of Wrangel Island, northeast Siberia, Russia. Quat. Res. 70, 51–59 (2008).CAS
Google Scholar
43.Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).ADS
CAS
PubMed
PubMed Central
Google Scholar
44.Signor, P. W. & Lipps, J. H. Sampling bias, gradual extinction patterns and catastrophes in the fossil record. GSA Spec. Pap. 190, 291–296 (1982).
Google Scholar
45.Fiedel, S. in American Megafaunal Extinctions at the End of the Pleistocene (ed. Haynes, G.) 21–37 (Springer Netherlands, 2009).46.Graf, K. E. Uncharted Territory: Late Pleistocene Hunter-Gatherer Dispersals in the Siberian Mammoth-Steppe (University of Nevada, 2008).47.Kuzmina, S. A. et al. The late Pleistocene environment of the Eastern West Beringia based on the principal section at the Main River, Chukotka. Quat. Sci. Rev. 30, 2091–2106 (2011).ADS
Google Scholar
48.Hoffecker, J. F., Elias, S. A. & Rourke, D. H. O. Out of Beringia? Science 343, 979–980 (2014).ADS
CAS
PubMed
Google Scholar
49.Zazula, G. D. et al. Ice-age steppe vegetation in East Beringia. Nature 423, 603 (2003).ADS
CAS
PubMed
Google Scholar
50.Guthrie, R. D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quat. Sci. Rev. 20, 549–574 (2001).ADS
Google Scholar
51.Pavelková Řičánková, V., Robovský, J. & Riegert, J. Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium. PLoS ONE 9, e85056 (2014).ADS
PubMed
PubMed Central
Google Scholar
52.Bocherens, H. Isotopic tracking of large carnivore palaeoecology in the mammoth steppe. Quat. Sci. Rev. 117, 42–71 (2015).ADS
Google Scholar
53.Ritchie, J. C. & Cwynar, L. C. in Paleoecology of Beringia (eds. Hopkins, D. M. et al.) 113–126 (Academic Press, 1982).54.Zhu, D. et al. The large mean body size of mammalian herbivores explains the productivity paradox during the Last Glacial Maximum. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0481-y (2018).55.Hopkins, D. M., Matthews, J. V., and Schweger, C. E. eds. Paleoecology of Beringia. (Academic Press, 1982).56.Stivrins, N. et al. Biotic turnover rates during the Pleistocene-Holocene transition. Quat. Sci. Rev. 151, 100–110 (2016).ADS
Google Scholar
57.Bakker, E. S., Ritchie, M. E., Olff, H., Milchunas, D. G. & Knops, J. M. H. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 9, 780–788 (2006).PubMed
Google Scholar
58.Bradshaw, R. H. W., Hannon, G. E. & Lister, A. M. A long-term perspective on ungulate-vegetation interactions. Ecol. Manag. 181, 267–280 (2003).
Google Scholar
59.Gill, J. L. Ecological impacts of the late Quaternary megaherbivore extinctions. N. Phytologist 201, 1163–1169 (2014).
Google Scholar
60.Gill, J. L., Williams, J. W., Jackson, S. T., Donnelly, J. P. & Schellinger, G. C. Climatic and megaherbivory controls on late-glacial vegetation dynamics: a new, high-resolution, multi-proxy record from Silver Lake, Ohio. Quat. Sci. Rev. 34, 66–80 (2012).ADS
Google Scholar
61.Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).ADS
CAS
PubMed
Google Scholar
62.Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. Biol. Sci. 276, 2509–2519 (2009).CAS
PubMed
PubMed Central
Google Scholar
63.Owen-Smith, N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1992).64.Wright, J. P. & Jones, C. G. The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. Bioscience 56, 203 (2006).
Google Scholar
65.Gutierrez, J. L. & Jones, C. G. Physical ecosystem engineers as agents of biogeochemical heterogeneity. Bioscience 56, 227 (2006).
Google Scholar
66.Berke, S. K. Functional groups of ecosystem engineers: a proposed classification with comments on current issues. Integr. Comp. Biol. 50, 147–157 (2010).PubMed
Google Scholar
67.Ries, L., Fletcher, R. J. J., Battin, J. & Sisk, T. D. Ecological responses to habitat edges: Mechanisms, models, and variability explained. Annu. Rev. Ecol., Evolution, Syst. 35, 491–522 (2004).
Google Scholar
68.Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, 1–16 (2006).
Google Scholar
69.Swift, J. A. et al. Micro methods for Megafauna: novel approaches to late quaternary extinctions and their contributions to faunal conservation in the Anthropocene. Bioscience 69, 877–887 (2019).PubMed
PubMed Central
Google Scholar
70.Andersen, K. et al. Meta-barcoding of ‘dirt’ DNA from soil reflects vertebrate biodiversity. Mol. Ecol. 21, 1966–1979 (2012).CAS
PubMed
Google Scholar
71.Comandini, O. & Rinaldi, A. C. Tracing megafaunal extinctions with dung fungal spores. Mycologist 18, 140–142 (2004).
Google Scholar
72.Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).ADS
PubMed
Google Scholar
73.Courchamp, F., Berec, L. & Gascoigne, J. Allee Effects in Ecology and Conservation. Allee Effects in Ecology and Conservation (Oxford University Press, 2008).74.Allee, W. C. Animal aggregations. Q. Rev. Biol. 2, 367–398 (1927).
Google Scholar
75.Allee, W. C. & Bowen, E. S. Studies in animal aggregations: mass protection against colloidal silver among goldfishes. J. Exp. Zool. 61, 185–207 (1932).CAS
Google Scholar
76.Taberlet, P., Bonin, A., Zinger, L. & Coissac, E. Environmental DNA: For Biodiversity Research and Monitoring. (Oxford University Press, 2018).77.Edwards, M. E. et al. Metabarcoding of modern soil DNA gives a highly local vegetation signal in Svalbard tundra. Holocene 28, 2006–2016 (2018).ADS
Google Scholar
78.Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).ADS
CAS
PubMed
Google Scholar
79.Anderson-Carpenter, L. L. et al. Ancient DNA from lake sediments: bridging the gap between paleoecology and genetics. BMC Evol. Biol. 11, 1–15 (2011).
Google Scholar
80.Bellemain, E. et al. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ. Microbiol. 15, 1176–1189 (2013).CAS
PubMed
Google Scholar
81.Ahmed, E. et al. Archaeal community changes in Lateglacial lake sediments: evidence from ancient DNA. Quat. Sci. Rev. 181, 19–29 (2018).ADS
Google Scholar
82.Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).CAS
PubMed
Google Scholar
83.Rawlence, N. J. et al. Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. J. Quat. Sci. 29, 610–626 (2014).
Google Scholar
84.Blum, S. A. E., Lorenz, M. G. & Wackernagel, W. Mechanism of retarded DNA degradation and prokaryotic origin of DNases in nonsterile soils. Syst. Appl. Microbiol. 20, 513–521 (1997).CAS
Google Scholar
85.Greaves, M. P. & Wilson, M. J. The degradation of nucleic acids and montmorillonite-nucleic-acid complexes by soil microorganisms. Soil Biol. Biochem. 2, 257–268 (1970).CAS
Google Scholar
86.Gardner, C. M. & Gunsch, C. K. Adsorption capacity of multiple DNA sources to clay minerals and environmental soil matrices less than previously estimated. Chemosphere 175, 45–51 (2017).ADS
CAS
PubMed
Google Scholar
87.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl. Environ. Microbiol. 53, 2948–2952 (1987).ADS
CAS
PubMed
PubMed Central
Google Scholar
88.Ogram, A., Sayler, G., Gustin, D. & Lewis, R. DNA adsorption to soils and sediments. Environ. Sci. Technol. 22, 982–984 (1988).ADS
CAS
PubMed
Google Scholar
89.Lorenz, M. G. & Wackernagel, W. Adsorption of DNA to sand and variable degradation of adsorbed DNA. Appl. Environ. Microbiol. 53, 2948–2952 (1987).ADS
CAS
PubMed
PubMed Central
Google Scholar
90.Morrissey, E. M. et al. Dynamics of extracellular DNA decomposition and bacterial community composition in soil. Soil Biol. Biochem. 86, 42–49 (2015).CAS
Google Scholar
91.Arnold, L. J. et al. Paper II – Dirt, dates and DNA: OSL and radiocarbon chronologies of perennially frozen sediments in Siberia, and their implications for sedimentary ancient DNA studies. Boreas 40, 417–445 (2011).
Google Scholar
92.Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.1745 (2012).93.Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).CAS
PubMed
PubMed Central
Google Scholar
94.Cribdon, B., Ware, R., Smith, O., Gaffney, V. & Allaby, R. G. PIA: more accurate taxonomic assignment of metagenomic data demonstrated on sedaDNA from the North Sea. Front. Ecol. Evol. 8, 1–12 (2020).
Google Scholar
95.Yoccoz, N. G. et al. DNA from soil mirrors plant taxonomic and growth form diversity. Mol. Ecol. 21, 3647–3655 (2012).CAS
PubMed
Google Scholar
96.Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).CAS
Google Scholar
97.Burn, C. R., Michel, F. A. & Smith, M. W. Stratigraphic, isotopic, and mineralogical evidence for an early Holocene thaw unconformity at Mayo, Yukon Territory. Can. J. Earth Sci. 23, 794–803 (1986).ADS
CAS
Google Scholar
98.Kotler, E. & Burn, C. R. Cryostratigraphy of the Klondike ‘muck’ deposits, west-central Yukon Territory. Can. J. Earth Sci. 37, 849–861 (2000).ADS
CAS
Google Scholar
99.Fraser, T. A. & Burn, C. R. On the nature and origin of ‘muck’ deposits in the Klondike area, Yukon Territory. Can. J. Earth Sci. 34, 1333–1344 (1997).ADS
Google Scholar
100.Mahony, M. E. 50,000 years of paleoenvironmental change recorded in meteoric waters and coeval paleoecological and cryostratigraphic indicators from the Klondike goldfields, Yukon, Canada. (University of Alberta, 2015). https://doi.org/10.7939/R34T6FF58.101.Lydolph, M. C. et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA. Appl. Environ. Microbiol. 71, 1012–1017 (2005).ADS
CAS
PubMed
PubMed Central
Google Scholar
102.Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).ADS
CAS
PubMed
Google Scholar
103.Haile, J. et al. Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible and is DNA leaching a factor? Mol. Biol. Evol. 24, 982–989 (2007).CAS
PubMed
Google Scholar
104.Willerslev, E., Hansen, A. J. & Poinar, H. N. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol. Evol. 19, 141–147 (2004).PubMed
Google Scholar
105.Hansen, A. J. et al. Crosslinks rather than strand breaks determine access to ancient DNA sequences from frozen sediments. Genetics 173, 1175–1179 (2006).CAS
PubMed
PubMed Central
Google Scholar
106.D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).ADS
PubMed
Google Scholar
107.Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).ADS
CAS
PubMed
PubMed Central
Google Scholar
108.Hebsgaard, M. B. et al. ‘The Farm Beneath the Sand’- an archaeological case study on ancient ‘dirt’ DNA. Antiquity 83, 430–444 (2009).
Google Scholar
109.Sadoway, T. R. A Metagenomic Analysis of Ancient Sedimentary DNA Across the Pleistocene-Holocene Transition (McMaster University, 2014).110.Bronk Ramsey, C. Deposition models for chronological records. Quat. Sci. Rev. 27, 42–60 (2008).ADS
Google Scholar
111.Reimer, P. J. et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS
Google Scholar
112.Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 18, 927–939 (2018).CAS
Google Scholar
113.Wei, N., Nakajima, F. & Tobino, T. A microcosm study of surface sediment environmental DNA: decay observation, abundance estimation, and fragment length comparison. Environ. Sci. Technol. 52, 12428–12435 (2018).ADS
CAS
PubMed
Google Scholar
114.Matesanz, S. et al. Estimating belowground plant abundance with DNA metabarcoding. Mol. Ecol. Resour. 19, 1265–1277 (2019).CAS
PubMed
Google Scholar
115.Takahara, T., Minamoto, T., Yamanaka, H., Doi, H. & Kawabata, Z. Estimation of fish biomass using environmental DNA. PLoS ONE 7, 3–10 (2012).
Google Scholar
116.Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS ONE 10, 1–11 (2015).
Google Scholar
117.Debruyne, R. et al. Out of America: ancient DNA evidence for a new world origin of late Quaternary Woolly Mammoths. Curr. Biol. 18, 1320–1326 (2008).CAS
PubMed
Google Scholar
118.Metcalfe, J. Z., Longstaffe, F. J. & Zazula, G. D. Nursing, weaning, and tooth development in woolly mammoths from Old Crow, Yukon, Canada: Implications for Pleistocene extinctions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 298, 257–270 (2010).
Google Scholar
119.Shapiro, B. et al. Rise and fall of the Beringian steppe bison. Science 306, 1561–1565 (2004).ADS
CAS
PubMed
Google Scholar
120.Sinclair, P. H., Nixon, W. A., Eckert C. D. & Hughes, N. L.Hughes, eds. Birds of the Yukon Territory. (UBC Press, 2003).121.Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African Savanna. Bioscience 64, 487–495 (2014).
Google Scholar
122.Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14 (2007).PubMed
Google Scholar
123.Chevalier, M. et al. Pollen-based climate reconstruction techniques for late Quaternary studies. Earth-Sci. Rev. 210, 103384 (2020).
Google Scholar
124.Wang, X.-C. & Geurts, M.-A. Post-glacial vegetation history of the Ittlemit Lake basin, southwest Yukon Territory. Arctic 44, 23–30 (1991).
Google Scholar
125.Wang, X.-C. & Geurts, M.-A. Late Quaternary pollen records and vegetation history of the southwest Yukon Territory: a review. Geogr. Phys. Quat. 45, 175–193 (1991).
Google Scholar
126.Rainville, R. A. & Gajewski, K. Holocene environmental history of the Aishihik region, Yukon, Canada. Can. J. Earth Sci. 50, 397–405 (2013).ADS
CAS
Google Scholar
127.Lacourse, T. & Gajewski, K. Late Quaternary vegetation history of Sulphur Lake, southwest Yukon Territory, Canada. Arctic 53, 27–35 (2000).
Google Scholar
128.Bunbury, J. & Gajewski, K. Postglacial climates inferred from a lake at treeline, southwest Yukon Territory, Canada. Quat. Sci. Rev. 28, 354–369 (2009).ADS
Google Scholar
129.Gajewski, K., Bunbury, J., Vetter, M., Kroeker, N. & Khan, A. H. Paleoenvironmental studies in Southwestern Yukon. Arctic 67, 58–70 (2014).
Google Scholar
130.Schofield, E. J., Edwards, K. J. & McMullen, A. J. Modern Pollen-Vegetation Relationships in Subarctic Southern Greenland and the Interpretation of Fossil Pollen Data from the Norse landnám. J. Biogeogr. 34, 473–488 (2007).
Google Scholar
131.Pennington, W. & Tutin, T. G. Modern pollen samples from west greenland and the interpretation of pollen data from the british late-glacial (late Devesian). N. Phytol. 84, 171–201 (1980).
Google Scholar
132.Bradshaw, R. H. W. Modern pollen-representation factors for Woods in South-East England. J. Ecol. 69, 45 (1981).
Google Scholar
133.Roy, I. et al. Over-representation of some taxa in surface pollen analysis misleads the interpretation of fossil pollen spectra in terms of extant vegetation. Trop. Ecol. 59, 339–350 (2018).
Google Scholar
134.Bryant, J. P. et al. Biogeographic evidence for the evolution of chemical defense by boreal birch and willow against mammalian browsing. Am. Nat. 134, 20–34 (1979).
Google Scholar
135.Christie, K. S. et al. The role of vertebrate herbivores in regulating shrub expansion in the Arctic: a synthesis. Bioscience 65, 1123 (2015).
Google Scholar
136.Bryant, J. P. et al. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra? Ecography (Cop.). 37, 204–211 (2014).137.Bryant, J. P. & Kuropat, P. J. Selection of winter forage by subarctic browsing vertebrates: the role of plant chemistry. Annu. Rev. Ecol. Syst. 11, 261–285 (1980).CAS
Google Scholar
138.Fox-Dobbs, K., Leonard, J. A. & Koch, P. L. Pleistocene megafauna from eastern Beringia: Paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 261, 30–46 (2008).
Google Scholar
139.Gardner, C., Berger, M. & Taras, M. Habitat assessment of potential wood bison relocation sites in Alaska. Arctic 1–30 (2007).140.Jiménez-Hidalgo, E. et al. Species diversity and paleoecology of late pleistocene horses from Southern Mexico. Front. Ecol. Evol. 7, 1–18 (2019).
Google Scholar
141.van Geel, B. et al. The ecological implications of a Yakutian mammoth’s last meal. Quat. Res. 69, 361–376 (2008).
Google Scholar
142.van Geel, B. et al. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia). Quat. Sci. Rev. 30, 3935–3946 (2011).ADS
Google Scholar
143.Guthrie, R. D. Rapid body size decline in Alaskan Pleistocene horses before extinction. Nature 426, 169–171 (2003).ADS
PubMed
Google Scholar
144.Bourgeon, L. Bluefish Cave II (Yukon Territory, Canada): Taphonomic Study of a Bone Assemblage. PaleoAmerica 1, 105–108 (2015).
Google Scholar
145.Bourgeon, L., Burke, A. & Higham, T. Earliest human presence in North America dated to the last glacial maximum: new radiocarbon dates from Bluefish Caves, Canada. PLoS ONE 12, e0169486 (2017).PubMed
PubMed Central
Google Scholar
146.Bourgeon, L. Revisiting the mammoth bone modifications from Bluefish Caves (YT, Canada). J. Archaeol. Sci. Rep. 37, 102969 (2021).147.Bourgeon, L. & Burke, A. Horse exploitation by Beringian hunters during the Last Glacial Maximum. Quat. Sci. Rev. 261, (2021).148.Vachula, R. S., Sae-Lim, J. & Russell, J. M. Sedimentary charcoal proxy records of fire in Alaskan tundra ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109564 (2020).149.Vachula, R. S. Alaskan lake sediment records and their implications for the Beringian standstill hypothesis. PaleoAmerica 6, 303–307 (2020).
Google Scholar
150.Vachula, R. S. et al. Evidence of Ice Age humans in eastern Beringia suggests early migration to North America. Quat. Sci. Rev. 205, 35–44 (2019).ADS
Google Scholar
151.Vachula, R. S. et al. Sedimentary biomarkers reaffirm human impacts on northern Beringian ecosystems during the Last Glacial period. Boreas 49, 514–525 (2020).
Google Scholar
152.Abramova, Z. A. in Paleolit Kavkaza i Severnoi Azii (ed. Boriskovskii, P. I.) 145–243 (Nauka, 1989).153.Abramova, Z. A., Astakhov, S. N., Vasil’ev, S. A., Ermolva, N. M. & Lisitsyn, N. F. Paleolit Eniseya. (Nauka, 1991).154.Goebel, T. in Encyclopedia of prehistory. Vol 2: Arctic and Subarctic (eds. Peregrine, P. N. & Ember, M.) 192–196 (Kluwer Academic Publishers, 2002).155.Ermolova, N. M. Teriofauna doliny Angary v pozdem antropogene. (Nauka, 1978).156.Hoffecker, J. F. & Elias, S. A. Human Ecology of Beringia. (Columbia University Press, 2007).157.Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. Biol. Sci. 269, 2221–2227 (2002).CAS
PubMed
PubMed Central
Google Scholar
158.Laland, K. N. & O’Brien, M. J. Niche Construction Theory and Archaeology. J. Archaeol. Method Theory 17, 303–322 (2010).
Google Scholar
159.Riede, F. Adaptation and niche construction in human prehistory: a case study from the southern Scandinavian Late Glacial. Philos. Trans. R. Soc. Lond. 366, 793–808 (2011).
Google Scholar
160.Roos, C. I., Zedeño, M. N., Hollenback, K. L. & Erlick, M. M. H. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1805259115 (2018).161.Pinter, N., Fiedel, S. & Keeley, J. E. Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. Quat. Sci. Rev. 30, 269–272 (2011).ADS
Google Scholar
162.Haynes, G. Extinctions in North America’s Late Glacial landscapes. Quat. Int. 285, 89–98 (2013).
Google Scholar
163.Graf, K. E. in Paleoamerican Odyssey (eds. Graf, K. E., Ketron, C. V. & Waters, M. R.) 65–80 (Texas A&M University Press, 2014).164.Pečnerová, P. et al. Mitogenome evolution in the last surviving woolly mammoth population reveals neutral and functional consequences of small population size. Evol. Lett. 1, 292–303 (2017).165.Conroy, K. J. et al. Tracking late-Quaternary extinctions in interior Alaska using megaherbivore bone remains and dung fungal spores. Quat. Res. https://doi.org/10.1017/qua.2020.19 (2020).166.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).ADS
CAS
PubMed
Google Scholar
167.Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
168.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 5, pdb.prot5448 (2010).169.Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, 1–8 (2012).
Google Scholar
170.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS
PubMed
Google Scholar
171.Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).CAS
Google Scholar
172.Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).173.Huson, D. H. et al. MEGAN Community Edition – Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed
PubMed Central
Google Scholar
174.Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007).CAS
PubMed
PubMed Central
Google Scholar
175.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).PubMed
PubMed Central
Google Scholar
176.Bronk Ramsey, C. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).
Google Scholar
177.Bronk Ramsey, C. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).
Google Scholar
178.Davies, L. J., Jensen, B. J. L., Froese, D. G. & Wallace, K. L. Late Pleistocene and Holocene tephrostratigraphy of interior Alaska and Yukon: key beds and chronologies over the past 30,000 years. Quat. Sci. Rev. 146, 28–53 (2016).ADS
Google Scholar
179.Westgate, J. A., Preece, S. J., Kotler, E. & Hall, S. Dawson tephra: a prominent stratigraphic marker of Late Wisconsinan age in west-central Yukon, Canada. Can. J. Earth Sci. 37, 621–627 (2000).ADS
CAS
Google Scholar
180.Froese, D., Westgate, J., Preece, S. & Storer, J. Age and significance of the Late Pleistocene Dawson tephra in eastern Beringia. Quat. Sci. Rev. 21, 2137–2142 (2002).ADS
Google Scholar
181.Zazula, G. D. et al. Vegetation buried under Dawson tephra (25,300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 242, 253–286 (2006).
Google Scholar
182.Froese, D. G., Zazula, G. D. & Reyes, A. V. Seasonality of the late Pleistocene Dawson tephra and exceptional preservation of a buried riparian surface in central Yukon Territory, Canada. Quat. Sci. Rev. 25, 1542–1551 (2006).ADS
Google Scholar
183.Klunk, J. et al. Genetic resiliency and the Black Death: no apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark. Am. J. Phys. Anthropol. 169, 240–252 (2019).PubMed
Google Scholar
184.Renaud, G., Stenzel, U. & Kelso, J. LeeHom: Adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res 42, e141 (2014).PubMed
PubMed Central
Google Scholar
185.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS
PubMed
PubMed Central
Google Scholar
186.Adobe Inc. Adobe Illustrator. (2020). https://adobe.com/products/illustrator.187.Lebart, L., Morineau, A. & Tabard, N. Techniques De La Description Statistique Méthodes Et Logiciels Pour L’analyse Des Grands Tableaux. (Dunod, 1977).188.Potter, B. A. et al. Current evidence allows multiple models for the peopling of the Americas. Sci. Adv. 4, 1–9 (2018).
Google Scholar
189.Grootes, P. M. & Stuiver, M. Oxygen 18/16 variability in Greenland snow and ice with 10-3- to 105-year time resolution. J. Geophys. Res. Ocean. 102, 26455–26470 (1997).ADS
CAS
Google Scholar
190.Wolbach, W. S. et al. Extraordinary Biomass-Burning Episode and Impact Winter Triggered by the Younger Dryas Cosmic Impact ∼12,800 Years Ago. 2. Lake, Marine, and Terrestrial Sediments. J. Geol. 126, 185–205 (2018).ADS
CAS
Google Scholar More