More stories

  • in

    The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic

    1.Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G. & Strathmann, R. R. When is dispersal for dispersal? Unifying marine and terrestrial perspectives. Biol. Rev. 91, 867–882 (2016).PubMed 

    Google Scholar 
    2.Cowman, P. F. & Bellwood, D. R. Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proc. R. Soc. B Biol. Sci. 280, 20131541 (2013).
    Google Scholar 
    3.Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    4.Luiz, O. J. et al. Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proc. R. Soc. B Biol. Sci. 279, 1033–1040 (2012).
    Google Scholar 
    5.Rocha, L. A. et al. Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol. Ecol. 14, 3921–3928 (2005).PubMed 

    Google Scholar 
    6.Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: A test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008).CAS 
    PubMed 

    Google Scholar 
    7.Fraser, C. I., Kay, G. M., du Plessis, M. & Ryan, P. G. Breaking down the barrier: Dispersal across the Antarctic Polar Front. Ecography 40, 235–237 (2017).
    Google Scholar 
    8.Thorrold, S. R. & McKinnon, A. D. Response of larval fish assemblages to a riverine plume in coastal waters of the central Great Barrier Reef lagoon. Limnol. Oceanogr. 40, 177–181 (1995).ADS 

    Google Scholar 
    9.Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    10.Lentz, S. J. The Amazon River plume during AmasSeds: Subtidal current variability and the importance of wind forcing. J. Geophys. Res. 100, 2377–2390 (1995).ADS 

    Google Scholar 
    11.Figueiredo, A. G., Allison, M. & Nittrouer, C. A. Amazon Discharge: Internal Report for AMASSEDS Researches. (1991).12.Nittrouer, C. A. & DeMaster, D. J. The Amazon shelf setting: Tropical, energetic, and influenced by a large river. Cont. Shelf Res. 16, 553–573 (1996).ADS 

    Google Scholar 
    13.Jo, Y.-H., Yan, X. H., Dzwonkowski, B. & Liu, W. T. A study of the freshwater discharge from the Amazon River into the tropical Atlantic using multi-sensor data. Geophys. Res. Lett. 32, 1–4 (2005).
    Google Scholar 
    14.Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–11 (2016).
    Google Scholar 
    15.Francini-Filho, R. B. et al. Perspectives on the Great Amazon Reef: Extension, biodiversity, and threats. Front. Mar. Sci. 5, 142 (2018).
    Google Scholar 
    16.Neumann-Leitão, S. et al. Zooplankton from a reef system under the influence of the Amazon River plume. Front. Microbiol. 9, 1–15 (2018).
    Google Scholar 
    17.Targino, A. K. G. & Gomes, P. B. Distribution of sea anemones in the Southwest Atlantic: Biogeographical patterns and environmental drivers. Mar. Biodivers. 50, 80 (2020).
    Google Scholar 
    18.Barroso, C. X., Lotufo, T. M. C. & Matthews-Cascon, H. Biogeography of Brazilian prosobranch gastropods and their Atlantic relationships. J. Biogeogr. 43, 2477–2488 (2016).
    Google Scholar 
    19.Brandini, F. P., Lopes, R. M., Gutseit, K. S. & Sassi, R. Planctonologia na Plataforma Continental do Brasil: Diagnose e Revisão Bibliográfica. (CEMAR/MMA/CIRM/FEMAR, 1997).20.Loder, J. W., Boicourt, W. C. & Simpson, J. H. Western ocean boundary shelves coastal segment (W). Sea 11, 3–27 (1998).
    Google Scholar 
    21.Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 

    Google Scholar 
    22.Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Saeedi, H., Simões, M. & Brandt, A. Endemicity and community composition of marine species along the NW Pacific and the adjacent Arctic Ocean. Prog. Oceanogr. 178, 102199 (2019).
    Google Scholar 
    24.OBIS. Ocean Biogeographic Information System. http://www.iobis.org (2021).25.Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    26.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).
    Google Scholar 
    27.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
    Google Scholar 
    28.Fu, H. et al. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 687, 206–217 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    29.Costello, M. J., Stocks, K., Zhang, Y., Grassle, J. F. & Fautin, D. G. About the Ocean Biogeographic Information System. Vol. 29. (2007).30Miloslavich, P. et al. Marine biodiversity in the Caribbean: Regional estimates and distribution patterns. PLoS ONE 5, e11916 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    31.Boltovskoy, D. & Valentin, J. L. Overview of the history of biological oceanography in the southwestern Atlantic, with emphasis on plankton. in Plankton Ecology of the Southwestern Atlantic (eds. Hoffmeyer, M. S., Sabatini, M. E., Brandini, F. P., Calliari, D. L. & Santinelli, N. H.). 3–34. https://doi.org/10.1007/978-3-319-77869-3_1 (Springer, 2018).32Costello, M. J. et al. A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5, e12110 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    33.Lopes, R. M. Marine zooplankton studies in Brazil: A brief evaluation and perspectives. An. Acad. Bras. Ciênc. 79, 369–379 (2007).PubMed 

    Google Scholar 
    34.Alves-Júnior, F. D. A. et al. Taxonomy of deep-sea shrimps of the superfamily Oplophoroidea Dana 1852 (Decapoda: Caridea) from Southwestern Atlantic. Zootaxa 4613, 401–442 (2019).
    Google Scholar 
    35.Eduardo, L. N. et al. Biodiversity, ecology, fisheries, and use and trade of Tetraodontiformes fishes reveal their socio-ecological significance along the tropical Brazilian continental shelf. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 761–774 (2020).
    Google Scholar 
    36.Tosetto, E. G., Bertrand, A., Neumann-Leitão, S., Costa da Silva, A. & Nogueira Júnior, M. Spatial patterns in planktonic cnidarian distribution in the western boundary current system of the tropical South Atlantic Ocean. J. Plankton Res. 43, 270–287 (2021).
    Google Scholar 
    37.Tosetto, E. G., Neumann-Leitão, S. & Nogueira Júnior, M. New species of Eirenidae (Hydrozoa: Leptothecata) from the Amazonian coast (northern Brazil). Sci. Mar. 84, 421–430 (2020).
    Google Scholar 
    38.Santana, C. S. et al. Amazon river plume influence on planktonic decapods in the tropical Atlantic. J. Mar. Syst. 212, 103428 (2020).
    Google Scholar 
    39.Tosetto, E. G., Neumann-Leitão, S., Bertrand, A. & Júnior, M. N. First record of Cirrholovenia polynema (Hydrozoa: Leptothecata) in the Western Atlantic Ocean. Ocean Coast. Res. 69, e21006 (2021).
    Google Scholar 
    40.Roberts, C. M. et al. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295, 1280–1284 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    41.Bowen, B. W., Muss, A., Rocha, L. A. & Grant, W. S. Shallow mtDNA coalescence in Atlantic Pygmy angelfishes (genus Centropyge) indicates a recent invasion from the Indian Ocean. J. Hered. 97, 1–12 (2005).
    Google Scholar 
    42.Rocha, L. A., Robertson, D. R., Roman, J. & Bowen, B. W. Ecological speciation in tropical reef fishes. Proc. R. Soc. B Biol. Sci. 272, 573–579 (2005).
    Google Scholar 
    43.Rocha, L. A., Rocha, C. R., Robertson, D. R. & Bowen, B. W. Comparative phylogeography of Atlantic reef fishes indicates both origin and accumulation of diversity in the Caribbean. BMC Evol. Biol. 8, 157 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    44.Agard, J. B. R., Hubbard, R. H. & Griffith, J. K. The relation between productivity, disturbance and the biodiversity of Caribbean phytoplankton: Applicability of Huston’s dynamic equilibrium model. J. Exp. Mar. Biol. Ecol. 202, 1–17 (1996).
    Google Scholar 
    45.Toonen, R. J., Bowen, B. W., Iacchei, M. & Briggs, J. C. Biogeography, marine. in Encyclopedia of Evolutionary Biology (ed. Kliman, R. M.). 166–178. https://doi.org/10.1016/B978-0-12-800049-6.00120-7 (Academic Press, 2016).46.Briggs, J. C. & Bowen, B. W. Marine shelf habitat: Biogeography and evolution. J. Biogeogr. 40, 1023–1035 (2013).
    Google Scholar 
    47.Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).
    Google Scholar 
    48.Bartlow, A. W. & Agosta, S. J. Phoresy in animals: Review and synthesis of a common but understudied mode of dispersal. Biol. Rev. 96, 223–246 (2021).PubMed 

    Google Scholar 
    49.South Atlantic Zooplankton. (Backhuys Publishers, 1999).50.Mapstone, G. M. Global diversity and review of Siphonophorae (Cnidaria: Hydrozoa). PLoS ONE 9, 1–37 (2014).
    Google Scholar 
    51.Young, C. M., Sewell, M. A. & Rice, M. E. Atlas of Marine Invertebrate Larvae. Vol. 6. (Academic Press, 2002).52.Strathmann, R. Length of pelagic period in echinoderms with feeding larvae from the Northeast Pacific. J. Exp. Mar. Biol. Ecol. 34, 23–27 (1978).
    Google Scholar 
    53.Haddoock, S. H. D. A golden age of gelata Past and future research on planktonic ctenophores and cnidarians. Hydrobiologia 530–531, 549–556 (2004).
    Google Scholar 
    54Dossa, A. N. et al. Near-surface western boundary circulation off Northeast Brazil. Prog. Oceanogr. 190, 102475 (2021).
    Google Scholar 
    55.Luiz, O., Floeter, S., Rocha, L. & Ferreira, C. Perspectives for the lionfish invasion in the South Atlantic: Are Brazilian reefs protected by the currents?. Mar. Ecol. Prog. Ser. 485, 1–7 (2013).ADS 

    Google Scholar 
    56.Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).
    Google Scholar 
    57.Giangrande, A. Polychaete reproductive patterns, life cycles and life histories: An overview. in Oceanography and Marine Biology. Vol. 35. (eds. Ansell, A., Gibson, R. N. & Barnes, M.) (CRC Press, 1997).58.Nogueira Júnior, M. & Oliveira, V. M. Strategies of plankton occupation by polychaete assemblages in a subtropical estuary (south Brazil). J. Mar. Biol. Assoc. U. K. 97, 1651–1661 (2017).
    Google Scholar 
    59Assunção, R. V. et al. 3D characterisation of the thermohaline structure in the southwestern tropical Atlantic derived from functional data analysis of in situ profiles. Prog. Oceanogr. 187, 102399 (2020).
    Google Scholar 
    60.Molleri, G. S. F., Novo, E. M. L. M. & Kampel, M. Space-time variability of the Amazon River plume based on satellite ocean color. Cont. Shelf Res. 30, 342–352 (2010).ADS 

    Google Scholar 
    61.López, R., López, J. M., Morell, J., Corredor, J. E. & Del Castillo, C. E. Influence of the Orinoco River on the primary production of eastern Caribbean surface waters: Primary Production of Caribbean waters. J. Geophys. Res. Oceans 118, 4617–4632 (2013).ADS 

    Google Scholar 
    62.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: iNterpolation and EXTrapolation for Species Diversity. (2014).63.Clarke, K. R. & Gorley, R. N. PRIMER 6 + PERMANOVA. (2006).64.Larsson, J. et al. Package ‘eulerr’. (2018).65.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar  More

  • in

    Mechanisms of dispersal and colonisation in a wind-borne cereal pest, the haplodiploid wheat curl mite

    1.Hawes, T. C., Worland, M. R., Convey, P. & Bale, J. S. Aerial dispersal of springtails on the Antarctic Peninsula: Implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).ADS 

    Google Scholar 
    2.Benton, T. G. & Bowler, D. E. Linking dispersal to spatial dynamics in Dispersal Ecology and Evolution 251–265 (Oxford University Press, 2013). https://doi.org/10.1093/acprof:oso/9780199608898.003.0020.3.Rochat, E., Manel, S., Deschamps-Cottin, M., Widmer, I. & Joost, S. Persistence of butterfly populations in fragmented habitats along urban density gradients: Motility helps. Heredity (Edinb). 119, 328–338 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Machado, F. P., Roldán-Correa, A. & Schinazi, R. B. Colonization and collapse. ALEA, Lat. Am. J. Probab. Math. Stat. 14, 719–731 (2017)5.Junior, V. V., Machado, F. P. & Roldán-Correa, A. Dispersion as a survival strategy. J. Stat. Phys. 164, 937–951 (2016).MathSciNet 
    MATH 
    ADS 

    Google Scholar 
    6.Saastamoinen, M. et al. Genetics of dispersal. Biol. Rev. 93, 574–599 (2018).PubMed 

    Google Scholar 
    7.Nichols, R. A. & Hewitt, G. M. The genetic consequences of long distance dispersal during colonization. Heredity (Edinb). 72, 312–317 (1994).
    Google Scholar 
    8.Bonte, D. et al. Costs of dispersal. Biol. Rev. 87, 290–312 (2012).PubMed 

    Google Scholar 
    9.Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 

    Google Scholar 
    10.Skelsey, P., With, K. A. & Garrett, K. A. Why dispersal should be maximized at intermediate scales of heterogeneity. Theor. Ecol. 6, 203–211 (2013).PubMed 

    Google Scholar 
    11.Payo-Payo, A. et al. Colonisation in social species: The importance of breeding experience for dispersal in overcoming information barriers. Sci. Rep. 7, 1–7 (2017).ADS 

    Google Scholar 
    12.Newman, D. & Pilson, D. Increased probability of extinction due to decreased genetic effective population size: Experimental populations of Clarkia pulchella. Evolution (N. Y.) 51, 354–362 (1997).
    Google Scholar 
    13.Bijlsma, R., Bundgaard, J. & Boerema, A. C. Does inbreeding affect the extinction risk of small populations? Predictions from Drosophila. J. Evol. Biol. 13, 502–514 (2000).
    Google Scholar 
    14.Reed, D. H., Briscoe, D. A. & Frankham, R. Inbreeding and extinction: The effect of environmental stress and lineage. Conserv. Genet. 3, 301–307 (2002).CAS 

    Google Scholar 
    15.Reed, D. H., Lowe, E. H., Briscoe, D. A. & Frankham, R. Fitness and adaptation in a novel environment: Effect of inbreeding, prior environment, and lineage. Evolution (N. Y.) 57, 1822–1828 (2003).
    Google Scholar 
    16.Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).CAS 
    PubMed 

    Google Scholar 
    17.Szücs, M. et al. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. Proc. Natl. Acad. Sci. USA 114, 13501–13506 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    18.Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).CAS 
    PubMed 

    Google Scholar 
    19.Tien, N. S. H., Sabelis, M. W. & Egas, M. Inbreeding depression and purging in a haplodiploid: Gender-related effects. Heredity (Edinb). 114, 327–332 (2015).CAS 
    PubMed 

    Google Scholar 
    20.Smith, A. L. et al. Dispersal responses override density effects on genetic diversity during post-disturbance succession. Proc. R. Soc. B Biol. Sci. 283, 20152934 (2016).21.Clotuche, G. et al. The formation of collective silk balls in the spider mite Tetranychus urticae Koch. PLoS ONE 6, e18854 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Clotuche, G., Navajas, M., Mailleux, A.-C. & Hance, T. Reaching the ball or missing the flight? Collective dispersal in the two-spotted spider mite Tetranychus urticae. PLoS ONE 8, e77573 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Carew, M., Schiffer, M., Umina, P., Weeks, A. & Hoffmann, A. Molecular markers indicate that the wheat curl mite, Aceria tosichella Keifer, may represent a species complex in Australia. Bull. Entomol. Res. 99, 479–486 (2009).CAS 
    PubMed 

    Google Scholar 
    24.Hein, G. L., French, R., Siriwetwiwat, B. & Amrine, J. W. Genetic characterization of North American populations of the wheat curl mite and dry bulb mite. J. Econ. Entomol. 105, 1801–1808 (2012).CAS 
    PubMed 

    Google Scholar 
    25.Kuczyński, L. et al. A comprehensive and cost-effective approach for investigating passive dispersal in minute invertebrates with case studies of phytophagous eriophyid mites. Exp. Appl. Acarol. 82, 17–31 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    26.Helle, W. & Wysoki, M. 1.3.2 Arrhenotokous parthenogenesis. In World Crop Pests (eds Lindquist, E. E., Sabelis, M. W., Bruin, J.) vol. 6, 169–172 (Elsevier, 1996).27.Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).28.Sabelis, M. W. & Bruin, J. 1.5.3 Evolutionary ecology: Life history patterns, food plant choice and dispersal. World Crop Pests 6, 329–366 (1996).
    Google Scholar 
    29.Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Can your behaviour blow you away? Contextual and phenotypic precursors to passive aerial dispersal in phytophagous mites. Anim. Behav. 155, 141–151 (2019).
    Google Scholar 
    30.Lacy, R. C. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).
    Google Scholar 
    31.Powell, J. R. The effects of founder-flush cycles on ethological isolation in laboratory populations of Drosophila in Genetics. In Speciation and the Founder Principle (eds Giddings, L. V. et al.) 239–251 (Oxford University Press, 1989).
    Google Scholar 
    32.Jamieson, I. G. Efecto fundador, endogamia y pérdida de diversidad genética en cuatro programas de reintroducción de Aves. Conserv. Biol. 25, 115–123 (2011).PubMed 

    Google Scholar 
    33.Montero-Pau, J., Gómez, A. & Serra, M. Founder effects drive the genetic structure of passively dispersed aquatic invertebrates. PeerJ 6, e6094 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    34.Perrin, N. & Mazalov, V. Dispersal and inbreeding avoidance. Am. Nat. 154, 282–292 (1999).PubMed 

    Google Scholar 
    35.Aguilera-Olivares, D., Flores-Prado, L., Véliz, D. & Niemeyer, H. M. Mechanisms of inbreeding avoidance in the one-piece drywood termite Neotermes chilensis. Insectes Soc. 62, 237–245 (2015).
    Google Scholar 
    36.Tabadkani, S. M., Nozari, J. & Lihoreau, M. Inbreeding and the evolution of sociality in arthropods. Naturwissenschaften 99, 779–788 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    37.Yearsley, J. M., Viard, F. & Broquet, T. The effect of collective dispersal on the genetic structure of a subdivided population. Evolution (N. Y.) 67, 1649–1659 (2013).
    Google Scholar 
    38.van der Kooi, C. J., Matthey-Doret, C. & Schwander, T. Evolution and comparative ecology of parthenogenesis in haplodiploid arthropods. Evol. Lett. 1, 304–316 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    39.Li, X.-Y. & Kokko, H. Sex-biased dispersal: A review of the theory. Biol. Rev. 94, 721–736 (2019).PubMed 

    Google Scholar 
    40.Nault, L. R. & Styer, W. E. The dispersal of Aceria tulipae and three other grass-infesting Eriophyid mites in Ohio. Ann. Entomol. Soc. Am. 62, 1446–1455 (1969).
    Google Scholar 
    41.Southwood, T. R. E., May, R. M., Hassell, M. P. & Conway, G. R. Ecological strategies and population parameters. Am. Nat. 108, 791–804 (1974).
    Google Scholar 
    42.Frost, W. E. Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae), and implications for migratory fitness. Physiol. Entomol. 22, 37–46 (1997).
    Google Scholar 
    43.Ronce, O. & Clobert, J. Dispersal syndromes in Dispersal Ecology and Evolution (eds Baguette, M., Benton, T. G., Bullock, J. M.) vol. 1, 119–138 (Oxford University Press, 2012).44.Laska A. et al. A sink host allows a specialist herbivore to persist in a seasonal source. Proc. Roy. Soc. B, accepted for publication (2021).45.Skoracka, A. et al. Cryptic species within the wheat curl mite Aceria tosichella (Keifer) (Acari: Eriophyoidea), revealed by mitochondrial, nuclear and morphometric data. Invertebr. Syst. 26, 417 (2012).
    Google Scholar 
    46.Miller, A. D., Umina, P. A., Weeks, A. R. & Hoffmann, A. A. Population genetics of the wheat curl mite (Aceria tosichella Keifer) in Australia: Implications for the management of wheat pathogens. Bull. Entomol. Res. 102, 199–212 (2012).CAS 
    PubMed 

    Google Scholar 
    47.Karpicka-Ignatowska, K. et al. A novel experimental approach for studying life-history traits of phytophagous arthropods utilizing an artificial culture medium. Sci. Rep. 9, (2019).48.Karpicka-Ignatowska, K., Laska, A., Rector, B. G., Skoracka, A. & Kuczyński, L. Temperature-dependent development and survival of an invasive genotype of wheat curl mite, Aceria tosichella. Exp. Appl. Acarol. 83, 513–525 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    49.Amrine, J. W. & Manson, D. C. M. Preparation, mounting and descriptive study of eriophyoid mites. In Eriophyoid Mites—Their Biology, Natural Enemies and Control Vol. 6 (eds Lindquist, E. E. & Bruin, M. W.) 383–396 (Elsevier, 1996).
    Google Scholar 
    50.de Lillo, E., Craemer, C., Amrine, J. W. & Nuzzaci, G. Recommended procedures and techniques for morphological studies of Eriophyoidea (Acari: Prostigmata). Exp. Appl. Acarol. 51, 283–307 (2010).PubMed 

    Google Scholar 
    51.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2020). https://www.R-project.org/. Accessed 24 Apr 2020.52.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 

    Google Scholar 
    53.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    54.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    55.Wood, S. N. Generalized Additive Models (Chapman and Hall/CRC, 2017). https://doi.org/10.1201/9781315370279.Book 
    MATH 

    Google Scholar 
    56.Lenth R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8. https://CRAN.R-project.org/package=emmeans More

  • in

    Effects of water saving and nitrogen reduction on the yield, quality, water and nitrogen use efficiency of Isatis indigotica in Hexi Oasis

    Effects of water and nitrogen treatments on the yield of Isatis indigotica
    As shown in Table 3, in the two-year experiment, both the water input and the nitrogen application rate had significant effects on the yield of Isatis indigotica.Table 3 Variance analysis of traits on the yield of Isatis indigotica.Full size tableAs shown in Fig. 4, with increasing water and nitrogen, the yield first increased and then decreased. The interaction between the water input and the nitrogen application rate reached a significant level (P  N1. At the levels of W1, W2, and W3, the yield of the N2 treatment increased by 5.3–7.9%, 6.5–6.9%, and 5.0–9.0% compared with those of the N3 treatment, respectively, and the yield of the N3 treatment increased by 1.4–1.9%, 1.5%-4.5%, and 1.7–3.5% compared with those of the N1 treatment, respectively. At the same nitrogen application level, the yield performance was W2  > W1  > W3. At the levels of N1, N2, and N3, the yield of the W2 treatment increased by 6.9–12.4%, 8.3–11.3%, and 6.8–13.5% compared with those of the W3 treatment, respectively, and the yield of the W3 treatment decreased by 1.6–3.9%, 1.5–1.6%, and 1.3–2.4% compared with those of the W1 treatment, respectively.Effects of the water and nitrogen treatments on the quality of Isatis indigotica
    As shown in Table 4, in the two-year experiment, the water input and nitrogen application rate had significant impacts on the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in Isatis indigotica.Table 4 Variance analysis of traits the quality of Isatis indigotica.Full size tableAs shown in Fig. 5, The impacts decreased with increasing irrigation amount and nitrogen application rate. Compared with those in the W3N3 treatment, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in the W2N2 treatment increased by 4.5–5.9%, 2.7–3.1%, 5.2–6.0% and 1.8–2.1%, respectively. At the same irrigation level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides all decreased in the order N1  > N2  > N3. At the W2 level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in the N1 treatment increased by 0.5–1.7%, 0.8–0.9%, 0.8–1.1% and 0.1–0.4%, respectively, compared with those in the N2 treatment. Compared with those in the N3 treatment, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharide in the N2 treatment increased by 1.9–2.1%, 1.5–2.2%, 2.1–2.2% and 0.6–1.1%, respectively.Figure 5The effects of the different treatments on the quality index of Isatis indigotica. The values shown are the mean ± SD, n = 3. Asterisks indicate a significant difference at the P ≤ 0.05 level.Full size imageAt the same nitrogen level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides all decreased in the order W1  > W2  > W3. At the N2 level, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides in the W1 treatment increased by 1.5–2.0%, 1.8–2.1%, 3.0–3.1% and 0.4–0.9% compared with those in the W2 treatment, respectively. Compared with those in the W3 treatment, the contents of indigo, indirubin, (R,S)-epigoitrin and polysaccharides of the W2 treatment increased by 2.3–3.5%, 1.8–2.3%, 2.0–4.0% and 1.0–1.4%, respectively.Effects of the water and nitrogen treatments on the WUE of Isatis indigotica
    As shown in Table 5, in the two-year experiment, the water input and nitrogen application rate had significant impacts on the WUE of Isatis indigotica (P  N3  > N1. At the W1, W2, and W3 levels, the WUE of the N2 treatment increased by 6.5–8.6%, 7.8–8.1%, and 7.4–10.4% compared with that of the N3 treatment, respectively, and the WUE of the N3 treatment increased by 2.9–3.1%, 3.9–6.0%, and 4.5–5.3% compared with that of the N1 treatment, respectively. Under the same nitrogen application rate level, the WUE performance was W1  > W2  > W3. At the N1, N2, and N3 levels, the WUE of the W1 treatment increased by 5.0–11.7%, 2.8–9.2%, and 2.0–10.9% compared with that of the W2 treatment, respectively, and the WUE of the W2 treatment increased by 24.2–29.5%, 24.3 -27.2%, and 23.5–30.3% compared with that of the W3 treatment, respectively.Effects of water and nitrogen treatments on NUE of Isatis indigotica
    As shown in Table 6, in the two-year experiment, the water input and nitrogen application rate had significant impacts on the nitrogen fertilizer use efficiency (NUE) of Isatis indigotica (P  N2  > N3. At the levels of W1, W2, and W3, the NUE of the N1 treatment increased by 9.9–11.8%, 9.6–13.0%, and 6.3–11.6% compared with that of the N2 treatment, respectively, and the NUE of the N2 treatment increased by 31.0–37.6%, 28.8–29.2%, and 28.3–28.6% compared with that of the N3 treatment, respectively. At the same nitrogen application level, the NUE performance was W2  > W3  > W1. At the N1, N2, and N3 levels, the NUE of the W2 treatment increased by 5.7–6.1%, 2.5–4.8%, and 2.3–4.1% compared with that of the W3 treatment, respectively, and the NUE of the W3 treatment decreased by 3.4–8.0%, 6.9–8.2%, and 10.5–14.5% compared with that of the W1 treatment, respectively.Ethical guidelineThe authors confirm that relevant ethical guidelines were followed for plant usage.Land permit statementThe experimental land belongs to the Yimin Irrigation Experimental Station, in Minle County, Gansu Province, China. More

  • in

    Interannual temperature variability is a principal driver of low-frequency fluctuations in marine fish populations

    1.Caddy, J. F. & Gulland, J. A. Historical patterns of fish stocks. Mar. Policy 7, 267–278 (1983).
    Google Scholar 
    2.Steele, J. H. & Henderson, E. W. Coupling between physical and biological scales. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. 343, 5–9 (1994).
    Google Scholar 
    3.Bjornstad, O. N., Fromentin, J. M., Stenseth, N. C. & Gjosaeter, J. Cycles and trends in cod populations. Proc. Natl Acad. Sci. USA 96, 5066–5071 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15, e0226087 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Oremus, K. L. Climate variability reduces employment in New England fisheries. Proc. Natl Acad. Sci. USA 16, 26444–26449 (2018).
    Google Scholar 
    6.Shelton, A. O. & Mangel, M. Fluctuations of fish populations and the magnifying effect of fishing. Proc. Natl Acad. Sci. USA 108, 7075–7080 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Essington, T. E. et al. Fishing amplifies forage fish population collapses. Proc. Natl Acad. Sci. USA 112, 6648–6652 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Memarzadeha, M., Britten, G. L., Wormd, B. & Boettigere, C. Rebuilding global fisheries under uncertainty. Proc. Natl Acad. Sci. USA 116, 15985–15990 (2019).
    Google Scholar 
    9.Pauly, D. & Zeller, D. Sea Around Us Concepts, Design and Data (seaaroundus.org) (2015).10.Bjornstad, O. N., Nisbet, R. M. & Fromentin, J. M. Trends and cohort resonant effects in age-structured populations. J. Anim. Ecol. 73, 1157–1167 (2004).
    Google Scholar 
    11.Botsford, L. W., Holland, M. D., Field, J. C. & Hastings, A. Cohort resonance: a significant component of fluctuations in recruitment, egg production, and catch of fished populations. ICES J. Mar. Sci. 71, 2158–2170 (2014).
    Google Scholar 
    12.Di Lorenzo, E. & Ohman, M. D. A double-integration hypothesis to explain ocean ecosystem response to climate forcing. Proc. Natl Acad. Sci. USA 110, 2496–2499 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    13.Bjorkvoll, E. et al. Stochastic population dynamics and life-history variation in marine fish species. Am. Naturalist 180, 372–387 (2012).
    Google Scholar 
    14.Hsieh, C. H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).CAS 
    PubMed 

    Google Scholar 
    15.Beamish, R. J., McFarlane, G. A. & Benson, A. Longevity overfishing. Prog. Oceanogr. 68, 289–302 (2006).
    Google Scholar 
    16.Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).CAS 
    PubMed 

    Google Scholar 
    17.Hutchings, J. A. & Myers, R. A. Effect of age on the seasonality of maturation and spawning of Atlantic cod, Gadus morhua, in the northwest Atlantic. Can. J. Fish. Aquat. Sci. 50, 2468–2474 (1993).
    Google Scholar 
    18.Bobko, S. J. & Berkeley, S. A. Maturity, ovarian cycle, fecundity, and age-specific parturition of black rockfish (Sebastes melanops). Fish. Bull. 102, 418–429 (2004).
    Google Scholar 
    19.Berkeley, S. A., Chapman, C. & Sogard, S. M. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85, 1258–1264 (2004).
    Google Scholar 
    20.Longhurst, A. Murphy’s law revisited: longevity as a factor in recruitment to fish populations. Fish. Res. 56, 125–131 (2002).
    Google Scholar 
    21.Stawitz, C. C. & Essington, T. E. Somatic growth contributes to population variation in marine fishes. J. Anim. Ecol. 88, 315–329 (2019).PubMed 

    Google Scholar 
    22.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 
    PubMed 

    Google Scholar 
    23.Hollowed, A. B., Hare, S. R. & Wooster, W. S. Pacific basin climate variability and patterns of Northeast Pacific marine fish production. Prog. Oceanogr. 49, 257–282 (2001).
    Google Scholar 
    24.Holsman, K. K., Aydin, K., Sullivan, J., Hurst, T. & Kruse, G. H. Climate effects and bottom-up controls on growth and size-at-age of Pacific halibut (Hippoglossus stenolepis) in Alaska (USA). Fish. Oceanogr. 28, 345–358 (2019).
    Google Scholar 
    25.Whitten, A. R., Klaer, N. L., Tuck, G. N. & Day, R. W. Accounting for cohort-specific variable growth in fisheries stock assessments: A case study from south-eastern Australia. Fish. Res. 142, 27–36 (2013).
    Google Scholar 
    26.Heessen, H. J. L., Daan, N. & Ellis, J. R. Fish atlas of the Cebtic Sea, North Sea, and Baltic Sea (KNNV Publishing and Wageningen Academic Publishers, 2015).27.Froese, R. & Pauly, D. FishBase, version (01/2021) https://www.fishbase.org (2021).28.Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl Acad. Sci. USA 106, 13860–13864 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Beukhof, E. et al. Marine fish traits follow fast-slow continuum across oceans. Sci. Rep. 9, 17878 (2019).30.Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. J. Cons. int. Explor. Mer. 39, 175–192 (1980).
    Google Scholar 
    31.Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 1–6 (2020).
    Google Scholar 
    32.Audzijonyte, A. et al. Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms? Glob. Ecol. Biogeogr. 28, 64–77 (2019).
    Google Scholar 
    33.Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl Acad. Sci. USA 109, 19310–19314 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 

    Google Scholar 
    35.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).CAS 

    Google Scholar 
    36.Ives, A. R. Measuring resilience in stochastic-systems. Ecol. Monogr. 65, 217–233 (1995).
    Google Scholar 
    37.Alheit, J. & Niquen, M. Regime shifts in the Humboldt Current ecosystem. Prog. Oceanogr. 60, 201–222 (2004).
    Google Scholar 
    38.Pinsky, M. L., Jensen, O. P., Ricard, D. & Palumbi, S. R. Unexpected patterns of fisheries collapse in the world’s oceans. Proc. Natl Acad. Sci. USA 108, 8317–8322 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Spencer, P. D. & Collie, J. S. Patterns of population variability in marine fish stocks. Fish. Oceanogr. 6, 188–204 (1997).
    Google Scholar 
    40.FAO. The State of World Fisheries and Aquaculture 2018 – Meeting the Sustainable Development Goals. (Food and Agriculture Organization of the United Nations, Rome, 2018).41.Barnett, L. A. K., Branch, T. A., Ranasinghe, R. A. & Essington, T. E. Old-growth fishes become scarce under fishing. Curr. Biol. 27, 2843–2848 (2017).CAS 
    PubMed 

    Google Scholar 
    42.Rouyer, T. et al. Shifting dynamic forces in fish stock fluctuations triggered by age truncation? Glob. Change Biol. 17, 3046–3057 (2011).
    Google Scholar 
    43.Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).
    Google Scholar 
    44.Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).CAS 
    PubMed 

    Google Scholar 
    45.Portner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish. Biol. 77, 1745–1779 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).CAS 
    PubMed 

    Google Scholar 
    47.de Gee, A. & Kikkert, A. H. Analysis of the grey gurnard (Eutrigla gurnardus) samples collected during the 1991 international stomach sample project. ICES Document CM 1993/G:14, 25 (1993).48.Sparholt, H. In Fish Atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 377–381 (KNNV Publishiing and Wageningen Academic Publishers, 2015).49.Arnott, S. A. & Ruxton, G. D. Sandeel recruitment in the North Sea: demographic, climate and trophic effects. Mar. Ecol. Prog. Ser. 238, 199–210 (2002).
    Google Scholar 
    50.van Deurs, M., van Hal, R., Tomczak, M. T., Jonasdottir, S. H. & Dolmer, P. Recruitment of lesser sandeel Ammodytes marinus in relation to density dependence and zooplakton composition. Mar. Ecol. Prog. Ser. 381, 249–258 (2009).
    Google Scholar 
    51.Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. Change Biol. 24, E352–E364 (2018).
    Google Scholar 
    52.Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. D: Atmospheres 108, ACL 2-1–ACL 2–29 (2003).
    Google Scholar 
    53.Papworth, D. J., Marini, S. & Conversi, A. Novel, unbiased analysis approach for investigating population dynamics: A case study on Calanus finmarchicus and its decline in the North Sea. PLoS One 11, e0158230 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    54.Bergstad, O. A., Hoines, A. S. & Jorgensen, T. Growth of sandeel Ammodytes marinus, in the northern North Sea and Norwegian coastal waters. Fish. Res. 56, 9–23 (2002).
    Google Scholar 
    55.Wright, P. J. Otolith microstructure of the lesser sandeel, Ammodytes marinus. J. Mar. Biol. Assoc. U.K. 73, 245–248 (1993).
    Google Scholar 
    56.Sell, A. & Heessen, H. in Fish atlas of the Celtic Sea, North Sea, and Baltic Sea (eds Heessen, H., Daan, N., & Ellis, J. R.) 295−299 (KNNV Publishing and Wageningen Academic Publishers, 2015).57.Bergstad, O. A., Hoines, A. S. & Kruger-Johnsen, E. M. Spawning time, age and size at maturity, and fecundity of sandeel, Ammodytes marinus, in the north-eastern North Sea and in unfished coastal waters off Norway. Aquat. Living Resour. 14, 293–301 (2001).
    Google Scholar 
    58.Pyper, B. J. & Peterman, R. M. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Can. J. Fish. Aquat. Sci. 55, 2127–2140 (1998).
    Google Scholar 
    59.van der Sleen, P. et al. Non-stationary responses in anchovy (Engraulis encrasicolus) recruitment to coastal upwelling in the Southern Benguela. Mar. Ecol. Prog. Ser. 596, 155–164 (2018).
    Google Scholar 
    60.Cushing, D. H. Upwelling and production on fish. Adv. Mar. Biol. 9, 255–334 (1971).
    Google Scholar 
    61.Pauly, D. & Lam, V. W. Y. In Large marine ecosystems: Status and Trends (eds IOC-UNESCO and UNEP) 113–137 (United Nations Environmental Programme, 2016). More

  • in

    A novel molecular diagnostic method for the gut content analysis of Philaenus DNA

    1.Rodrigues, A. S. B. et al. New mitochondrial and nuclear evidences support recent demographic expansion and an atypical phylogeographic pattern in the spittlebug Philaenus spumarius (Hemiptera, Aphrophoridae). PLoS ONE 9, 1–12. https://doi.org/10.1371/journal.pone.0098375 (2014).CAS 
    Article 

    Google Scholar 
    2.Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95, 659–668. https://doi.org/10.4454/JPP.V95I3.034 (2013).Article 

    Google Scholar 
    3.Saponari, M. et al. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia Italy. J. Econ. Entomol. 107, 1316–1319. https://doi.org/10.1603/EC14142 (2014).Article 
    PubMed 

    Google Scholar 
    4.Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in apulia: Where we stand. Phytopathology 109, 175–186. https://doi.org/10.1094/PHYTO-08-18-0319-FI (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Cavalieri, V. et al. Transmission of Xylella fastidiosa subspecies pauca sequence type 53 by different insect species. Insects 10, 324. https://doi.org/10.3390/insects10100324 (2019).Article 
    PubMed Central 

    Google Scholar 
    6.Almeida, R. P. P., Blua, M. J., Lopes, J. R. S. & Purcell, A. H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Entomol. Soc. Am. 98, 775–786. https://doi.org/10.1603/0013-8746(2005)098[0775:vtoxfa]2.0.co;2 (2005).Article 

    Google Scholar 
    7.Schneider, K. et al. Impact of Xylella fastidiosa subspecies pauca in European olives. Proc. Natl. Acad. Sci. U. S. A. 117, 9250–9259. https://doi.org/10.1073/pnas.1912206117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Dongiovanni, C. et al. Evaluation of insecticides for the control of juveniles of Philaenus spumarius L., 2015–2017. Arthropod Manag. Tests 43, 2015–2017. https://doi.org/10.1093/amt/tsy073 (2018).Article 

    Google Scholar 
    9.Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 1–14. https://doi.org/10.1038/s41598-019-44997-4 (2019).CAS 
    Article 

    Google Scholar 
    10.Nyffeler, M. & Benz, G. Spiders in natural pest control: A review. J. Appl. Entomol. 103, 321–339. https://doi.org/10.1111/j.1439-0418.1987.tb00992.x (1987).Article 

    Google Scholar 
    11Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Sci. Nat. https://doi.org/10.1007/s00114-017-1440-1 (2017).Article 

    Google Scholar 
    12.Nyffeler, M. Ecological impact of spider predation: A critical assessment of Bristowe’s and Turnbull’s estimates. Bull. Br. Arachnol. Soc. 11, 367–373 (2000).
    Google Scholar 
    13.Phillipson, J. A contribution to the feeding biology of Mitopus morio (F) (Phalangida). J. Anim. Ecol. 29, 35–43. https://doi.org/10.2307/2269 (1960).Article 

    Google Scholar 
    14Harper, G. & Whittaker, J. The role of natural enemies in the colour polymorphism of Philaenus spumarius (L.). J. Anim. Ecol. 45, 91–104. https://doi.org/10.2307/3769 (1976).Article 

    Google Scholar 
    15.Benhadi-Marín, J. et al. A guild-based protocol to target potential natural enemies of Philaenus spumarius (Hemiptera: Aphrophoridae), a vector of Xylella fastidiosa (Xanthomonadaceae): A case study with spiders in the olive grove. Insects 11, 100. https://doi.org/10.3390/insects11020100 (2020).Article 
    PubMed Central 

    Google Scholar 
    16.King, R. A., Read, D. S., Traugott, M. & Symondson, W. O. C. Molecular analysis of predation: A review of best practice for DNA-based approaches. Mol. Ecol. 17, 947–963. https://doi.org/10.1111/j.1365-294X.2007.03613.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Sint, D., Raso, L., Kaufmann, R. & Traugott, M. Optimizing methods for PCR-based analysis of predation. Mol. Ecol. Resour. 11, 795–801. https://doi.org/10.1111/j.1755-0998.2011.03018.x (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Rejili, M. et al. A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bull. Entomol. Res. 106, 695–699. https://doi.org/10.1017/S000748531600050X (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    19Albertini, A. et al. Detection of Bactrocera oleae (Diptera: Tephritidae) DNA in the gut of the soil species Pseudoophonus rufipes (coleoptera: Carabidae). Span. J. Agric. Res. https://doi.org/10.5424/sjar/2018163-12860 (2018).Article 

    Google Scholar 
    20.Symondson, W. O. C. Molecular identification of prey in predator diets. Mol. Ecol. 11, 627–641. https://doi.org/10.1046/j.1365-294X.2002.01471.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Sousa, L. L., Silva, S. M. & Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environ. DNA 1, 199–214. https://doi.org/10.1002/edn3.27 (2019).Article 

    Google Scholar 
    22.Juen, A. & Traugott, M. Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biol. Biochem. 38, 1872–1879. https://doi.org/10.1016/j.soilbio.2005.11.034 (2006).CAS 
    Article 

    Google Scholar 
    23.Monzó, C., Sabater-Muñoz, B., Urbaneja, A. & Castańera, P. Tracking medfly predation by the wolf spider, Pardosa cribata Simon, in citrus orchards using PCR-based gut-content analysis. Bull. Entomol. Res. 100, 145–152. https://doi.org/10.1017/S0007485309006920 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Lantero, E., Matallanas, B., Pascual, S. & Callejas, C. PCR species-specific primers for molecular gut content analysis to determine the contribution of generalist predators to the biological control of the vector of Xylella fastidiosa. Sustainability 10, 4–11. https://doi.org/10.3390/su10072207 (2018).CAS 
    Article 

    Google Scholar 
    25.Cohen, A. C. Extra-oral digestion in predaceous terrestrial Arthropoda. Annu Rev Entomol. 40, 85–103. https://doi.org/10.1146/annurev.en.40.010195.000505 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Krehenwinkel, H., Rödder, N. & Tautz, D. Eco-genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture. Glob. Chang. Biol 21, 4320–4332. https://doi.org/10.1111/gcb.13042 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    27.Kennedy, S. R. et al. High-throughput sequencing for community analysis: the promise of DNA barcoding to uncover diversity, relatedness, abundances and interactions in spider communities. Dev. Genes Evol. 230, 185–201. https://doi.org/10.1007/s00427-020-00652-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Hoogendoorn, M. & Heimpel, G. E. PCR-based gut content analysis of insect predators: Using ribosomal ITS-1 fragments from prey to estimate predation frequency. Mol. Ecol. 10, 2059–2067. https://doi.org/10.1046/j.1365-294X.2001.01316.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Eitzinger, B., Unger, E. M., Traugott, M. & Scheu, S. Effects of prey quality and predator body size on prey DNA detection success in a centipede predator. Mol. Ecol. 23, 3767–3776. https://doi.org/10.1111/mec.12654 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Unruh, T. R. et al. Gut content analysis of arthropod predators of codling moth in Washington apple orchards. Biol. Control. 102, 85–92. https://doi.org/10.1016/j.biocontrol.2016.05.014 (2016).Article 

    Google Scholar 
    31.Rowley, C. et al. PCR-based gut content analysis to identify arthropod predators of Haplodiplosis marginata. Biol. Control 115, 112–118. https://doi.org/10.1016/j.biocontrol.2017.10.003 (2017).CAS 
    Article 

    Google Scholar 
    32.Macías-Hernández, N. et al. Molecular gut content analysis of different spider body parts. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0196589 (2018).CAS 
    Article 

    Google Scholar 
    33.Troedsson, C., Simonelli, P., Nägele, V., Nejstgaard, J. C. & Frischer, M. E. Quantification of copepod gut content by differential length amplification quantitative PCR (dla-qPCR). Mar. Biol. 156, 253–259. https://doi.org/10.1007/s00227-008-1079-8 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Agustí, N., De Vicente, M. C. & Gabarra, R. Development of sequence amplified characterized region (SCAR) markers of Helicoverpa armigera: A new polymerase chain reaction-based technique for predator gut analysis. Mol. Ecol. 8, 1467–1474. https://doi.org/10.1046/j.1365-294X.1999.00717.x (1999).Article 
    PubMed 

    Google Scholar 
    35.Agustí, N., Unruh, T. R. & Welter, S. C. Detecting Cacopsylla pyricola (Hemiptera: Psyllidae) in predator guts using COI mitochondrial markers. Bull. Entomol. Res. 93, 179–185. https://doi.org/10.1079/ber2003236 (2003).Article 
    PubMed 

    Google Scholar 
    36.Aebi, A. et al. Detecting arthropod intraguild predation in the field. Biocontrol 56, 429–440. https://doi.org/10.1007/s10526-011-9378-2 (2011).Article 

    Google Scholar 
    37.Hosseini, R., Schmidt, O. & Keller, M. A. Factors affecting detectability of prey DNA in the gut contents of invertebrate predators: A polymerase chain reaction-based method. Entomol. Exp. Appl. 126, 194–202. https://doi.org/10.1111/j.1570-7458.2007.00657.x (2008).CAS 
    Article 

    Google Scholar 
    38.Agustí, N. et al. Collembola as alternative prey sustaining spiders in arable ecosystems: Prey detection within predators using molecular markers. Mol Ecol. 12, 3467–3475. https://doi.org/10.1046/j.1365-294X.2003.02014.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Greenstone, M. H., Tillman, P. G. & Hu, J. S. Predation of the newly invasive pest Megacopta cribraria (Hemiptera: Plataspidae) in soybean habitats adjacent to cotton by a complex of predators. J Econ Entomol. 107, 947–954. https://doi.org/10.1603/EC13356 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Welch, K. D., Whitney, T. D. & Harwood, J. D. Non-pest prey do not disrupt aphid predation by a web-building spider. Bull. Entomol. Res. 106, 91–98. https://doi.org/10.1017/S0007485315000875 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Vincent, J. F. V. Arthropod cuticle: A natural composite shell system. Compos. Part A Appl. Sci. Manuf. 33, 1311–1315. https://doi.org/10.1016/S1359-835X(02)00167-7 (2002).Article 

    Google Scholar 
    42.Cardoso, P. et al. Rapid biodiversity assessment of spiders (Araneae) using semi-quantitative sampling: A case study in a Mediterranean forest. Insect Conserv. Divers. 1, 71–84. https://doi.org/10.1111/j.1752-4598.2007.00008.x (2008).Article 

    Google Scholar 
    43.Harwood, J. D., Phillips, S. W., Sunderland, K. D. & Symondson, W. O. C. Secondary predation: Quantification of food chain errors in an aphid-spider-carabid system using monoclonal antibodies. Mol. Ecol. 10, 2049–2057. https://doi.org/10.1046/j.0962-1083.2001.01349.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Seabra, S. G. et al. Corrigendum to “Molecular phylogeny and DNA barcoding in the meadow-spittlebug Philaenus spumarius (Hemiptera, Cercopidae) and its related species” [Mol. Phylogenet. Evol. 56 (2010) 462–467]. Mol. Phylogenet. Evol. 152, 106888. https://doi.org/10.1016/j.ympev.2020.106888 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, 1–12. https://doi.org/10.1093/nar/gks596 (2012).CAS 
    Article 

    Google Scholar 
    48.Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).CAS 
    Article 

    Google Scholar 
    49.Morente, M. et al. Distribution and relative abundance of insect vectors of Xylella fastidiosa in olive groves of the Iberian Peninsula. Insects 9, 175. https://doi.org/10.3390/insects9040175 (2018).Article 
    PubMed Central 

    Google Scholar  More

  • in

    Potential distribution of fall armyworm in Africa and beyond, considering climate change and irrigation patterns

    Research model and softwareCLIMEX modelFAW growth and development are primarily related to climate conditions, especially temperature patterns17. The current study used CLIMEX (version 4)42, a semi-mechanistic niche modeling platform, to project FAW distribution in relation to climate. The model parameters that describe the species’ response to climate were overlaid onto FAW occurrence data and climate data to project the species’ potential global distribution. Briefly, the annual growth index (GI) was used to describe the potential for FAW population growth during favorable climatic conditions, while stress indices (SI: cold, wet, hot, and dry) and interaction stresses (SX: hot-dry, hot-wet, cold-dry, and cold-wet) (Table 1) were applied to describe the probability that FAW populations could survive unfavorable conditions. The Ecoclimatic index (EI) was derived from a combination of GI, SI, and SX indices to provide an overall annual index of climatic suitability on a scale of 0–10042. An EI value of 0 indicates that the location is not suitable for the long-term survival of the species, whereas an EI value of 100 indicates maximum climatic suitability comparable to conditions in incubators. EI values of more than 30 indicate the optimal climate for a species. In this study, the climatic suitability was classified into four arbitrary categories; unsuitable for EI = 0, marginal for 0  More

  • in

    Do the total mercury concentrations detected in fish from Czech ponds represent a risk for consumers?

    1.Stein, E. D., Cohen, Y. & Winer, A. M. Environmental distribution and transformation of mercury compounds. Crit. Rev. Environ. Sci. Technol. 26, 1–43 (1996).CAS 
    Article 

    Google Scholar 
    2.Ciccarelli, C. et al. Assessment of sampling methods about level of mercury in fish. Ital. J. Food Saf. 8, 153–157 (2019).
    Google Scholar 
    3.Ditri, F. M. Mercury contamination: What we have learned since Minamata. Environ. Monit. Assess. 19, 165–182 (1991).CAS 
    Article 

    Google Scholar 
    4.Monteiro, L. R. & Furness, R. W. Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut. 80, 851–870 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    5.Pitter, P. In Hydrochemie 5th edn (ed. Pitter, P.) (VSCHT Praha, 2015).
    Google Scholar 
    6.Hylander, L. D. & Meili, M. 500 years of mercury production: Global annual inventory by region until 2000 and associated emissions. Sci. Total. Environ. 304, 13–27 (2003).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Pacyna, E. G. et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmos. Environ. 44, 2487–2499 (2010).CAS 
    Article 
    ADS 

    Google Scholar 
    8.Pai, P., Niemi, D. & Powers, B. A North American inventory of anthropogenic mercury emissions. Fuel Process. Technol. 65, 101–115 (2000).Article 

    Google Scholar 
    9.Wang, Q. R., Kim, D., Dionysiou, D. D., Sorial, G. A. & Timberlake, D. Sources and remediation for mercury contamination in aquatic systems: A literature review. Environ. Pollut. 131, 323–336 (2004).Article 

    Google Scholar 
    10.Buck, D. G. et al. A global-scale assessment of fish mercury concentrations and the identification of biological hotspots. Sci. Total Environ. 687, 956–966 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Gentes, S. et al. Application of European water framework directive: Identification reference sites and bioindicator fish species for mercury in tropical freshwater ecosystems (French Guiana). Ecol. Indic. 106, 105468. https://doi.org/10.1016/j.ecolind.2019.105468 (2019).CAS 
    Article 

    Google Scholar 
    12.Thomas, S. M. et al. Climate and landscape conditions indirectly affect fish mercury levels by altering lake water chemistry and fish size. Environ. Res. 188, 109750. https://doi.org/10.1016/j.envres.2020.109750 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Zupo, V. et al. Mercury accumulation in freshwater and marine fish from the wild and from aquaculture ponds. Environ. Pollut. 255, 112975. https://doi.org/10.1016/j.envpol.2019.112975 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Zhang, J. L. et al. Health risk assessment of heavy metals in Cyprinus carpio (Cyprinidae) from the upper Mekong river. Environ. Sci. Pollut. Res. 26, 9490–9499 (2019).CAS 
    Article 

    Google Scholar 
    15.Cerna, M. Opatreni mezinarodnich instituci a Ceske republiky k omezovani rizika znecistovani zivotniho prostredi rtuti. Chem. Listy. 98, 916–921 (2004) ((Article in Czech)).CAS 

    Google Scholar 
    16.Janouskova, D. & Svehla, J. Mercury concentrations in fish tissues in the water reservoir Rimov, South Bohemia. Crop Sci. 19, 43–48 (2002).
    Google Scholar 
    17.Purba, J. S., Silalahi, J. & Haro, G. Analysis of mercury in fish, North Sumatera, Indonesia by atomic absorption spectrophotometer. Asian J. Pharm. 8, 21–25 (2020).CAS 
    Article 

    Google Scholar 
    18.Willacker, J. J., Eagles-Smith, C. A. & Blazer, V. S. Mercury bioaccumulation in freshwater fishes of the Chesapeake Bay watershed. Ecotoxicology 29, 459484 (2020).Article 

    Google Scholar 
    19.Regulation (EU) 2017/852 of European Parliament and of the council of 17 May 2017 on mercury, and repealing Regulation (EC) No 1102/2008. Official Journal of the European Union.20.European Commission. The EU Fish Market. https://www.eumofa.eu/documents/20178/415635/EN_The+EU+fish+market_2020.pdf (2020).21.Nebesky, V., Policar, T., Blecha, M., Kristan, J. & Svacina, P. Trends in import and export of fishery products in the Czech Republic during 2010–2015. Aquacult. Int. 24, 1657–1668 (2016).Article 

    Google Scholar 
    22.FAO. Fisheries & Aquaculture—National Aquaculture Sector Overview—Czech Republic. http://www.fao.org/fishery/countrysector/naso_czechrepublic/en (accessed April 24 April 2021) (2021).23.Rakmanikhah, Z., Esmaili-Sari, A. & Bahramifar, N. Total mercury and methylmercury concentrations in native and invasive fish species in Shadegan International Wetland, Iran, and health risk assessment. Environ. Sci. Pollut. Res. 27, 6765–6773 (2020).Article 

    Google Scholar 
    24.Celechovska, O., Svobodova, Z., Zlabek, V. & Macharackova, B. Distribution of metals in tissues of the common carp (Cyprinus carpio L.). Acta Vet. Brno 76, 93–100 (2007).Article 

    Google Scholar 
    25.Cerveny, D. et al. Fish fin-clips as non-lethal approach for biomonitoring of mercury contamination in aquatic environments and human health risk assessment. Chemosphere 163, 290–295 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    26.WHO. Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). https://apps.who.int/food-additives-contaminants-jecfa-database/search.aspx.27.Kannan, K. et al. Distribution of total mercury and methyl mercury in water, sediment, and fish from south Florida estuaries. Arch. Environ. Con. Tox. 34, 109–118 (1998).CAS 
    Article 

    Google Scholar 
    28.US EPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories Documents. Volume 2: Risk Assessment and Fish Consumption Limits, Third Edition. https://www.epa.gov/fish-tech/guidance-assessing-chemical-contaminant-data-use-fish-advisories-documents (accessed 8 May 2021) (2000).29.Ministry of Agriculture of the Czech Republic. Situacni a vyhledova zprava—Ryby. http://eagri.cz/public/web/file/666957/Ryby_2020_web.pdf (accessed 8 May 2021, in Czech) (2020).30.Novotna, K., Svobodova, Z., Harustiakova, D. & Mikula, P. Spatial and temporal trends in contamination of the Czech part of the Elbe River by mercury between 1991 and 2016. Bull. Environ. Contam. Toxicol. 105, 750–757 (2020).CAS 
    Article 

    Google Scholar 
    31.Raldua, D., Diez, S., Bayona, J. M. & Barcelo, D. Mercury levels and liver pathology in feral fish living in the vicinity of a mercury cell chlor-alkali factory. Chemosphere 66, 1217–1225 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    32.Squadrone, S. et al. Heavy metals distribution in muscle, liver, kidney and gill of European catfish (Silurus glanis) from Italian rivers. Chemosphere 90, 358–365 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    33.Cerveny, D. et al. Contamination of fish in important fishing grounds of the Czech Republic. Ecotoxicol. Environ. Saf. 109, 101–109 (2014).CAS 
    Article 

    Google Scholar 
    34.Marsalek, P., Svobodova, Z. & Randak, T. The content of total mercury and methylmercury in common carp from selected Czech ponds. Aquac. Int. 15, 299–304 (2007).CAS 
    Article 

    Google Scholar 
    35.Vicarova, P., Docekalova, H., Ridoskova, A. & Pelcova, P. Heavy metals in the common carp (Cyprinus carpio L.) from three reservoirs in the Czech Republic. Czech J. Food Sci. 34, 422–428 (2016).CAS 
    Article 

    Google Scholar 
    36.Akerblom, S., Bignert, A., Meili, M., Sonesten, L. & Sundbom, M. Half a century of changing mercury levels in Swedish freshwater fish. Ambio 43, 91–103 (2014).Article 

    Google Scholar 
    37.Dvorak, P., Andreji, J., Mraz, J. & Dvorakova Liskova, Z. Concentration of heavy and toxic metals in fish and sediments from the Morava river basin, Czech Republic. Neuroendocrinol. Lett. 36, 126–132 (2015).CAS 
    PubMed 

    Google Scholar 
    38.Dusek, L. et al. Bioaccumulation of mercury in muscle tissue of fish in the Elbe River (Czech Republic): Maultispecies monitoring study 1991–1996. Ecotoxicol. Environ. Saf. 61, 256–267 (2005).CAS 
    Article 

    Google Scholar 
    39.Marsalek, P., Svobodova, Z. & Randak, T. Total mercury and methylmercury contamination in fish from various sites along the Elbe River. Acta Vet. Brno. 75, 579–585 (2006).CAS 
    Article 

    Google Scholar 
    40.Wang, X. & Wang, W. X. The three ‘B’ of mercury in China: Bioaccumulation, biodynamics and biotransformation. Environ. Pollut. 250, 216–232 (2019).CAS 
    Article 

    Google Scholar 
    41.Jankovska, I. et al. Importance of fish gender as a factor in environmental monitoring of mercury. Environ. Sci. Pollut. Res. 21, 6239–6242 (2014).CAS 
    Article 

    Google Scholar 
    42.Carrasco, L. et al. Patterns of mercury and methylmercury bioaccumulation in fish species downstream of a long-term mercury-contaminated site in the lower Ebro River (NE Spain). Chemosphere 84, 1642–1649 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    43.Havelkova, M., Dusek, L., Nemethova, D., Poleszczuk, G. & Svobodova, Z. Comparison of mercury distribution between liver and muscle: A biomonitoring of fish from lightly and heavily contaminated localities. Sensors. 8, 4095–4109 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    44.Kruzikova, K. et al. The correlation between fish mercury liver/muscle ratio and high and low levels of mercury contamination in Czech localities. Int. J. Electrochem. Sc. 8, 45–56 (2013).CAS 

    Google Scholar 
    45.Kensova, R., Kruzikova, K. & Svobodova, Z. Mercury speciation and safety of fish from important fishing locations in the Czech Republic. Czech J. Food Sci. 30, 276–284 (2012).CAS 
    Article 

    Google Scholar 
    46.European Commission. Commission Regulation 1881/2006 Setting Maximum Levels of Certain Contaminants in Foodstuffs. https://eur-lex.europa.eu/ (accessed 2 May 2021) (2006). More

  • in

    Apparent stability masks underlying change in a mule deer herd with unmanaged chronic wasting disease

    Deer capture and samplingWe captured 100 mule deer (54 females, 46 males) during November 2018–February 2019, avoiding capture and sampling of juveniles. We attempted to distribute captures throughout the ~23 km2 study area described by Miller et al.5 to minimize spatial disparities in comparing contemporary and past data, and to assure marks were widely distributed for December ground counts to estimate deer abundance5,35,36. Field and sampling methods generally followed those used elsewhere5,31,37. Field procedures were reviewed and approved by the CPW Animal Care and Use Committee (file 14–2018).We pursued deer on foot and darted them opportunistically, delivering sedative combinations intramuscularly via projectile syringe. Premixed immobilization drug combinations included either nalbuphine (N; 0.9 mg/kg) or butorphanol (B; 0.5 mg/kg) combined with azaperone (A; 0.2 mg/kg) and medetomidine (M; 0.2 mg/kg)38, with standard total doses for respective combinations based on an estimated mass of 70 kg (average drug volume per animal was 1.3 ml NMA, 1.4 ml BAM). We collected rectal mucosa biopsies to determine CWD infection status37. We also collected whole blood and marked all deer with individually identifiable ear tags and some with telemetry (n = 51) or visual identification (n = 12) collars. Ages were estimated to the nearest year via tooth replacement and wear patterns39; observers used a pocket reference guide in the field to help assure consistency. To antagonize sedation upon completion of handling and sampling, each deer received 5 mg atipamezole/mg M administered, injected intramuscularly.Prion diagnosticsFormalin-fixed tissue biopsies were processed and analyzed by immunohistochemistry (IHC) at the Colorado State University Veterinary Diagnostic Laboratory (Fort Collins, Colorado USA; CSUVDL) for evidence of CWD-associated prion (PrPCWD) accumulations using monoclonal antibody F99/97.6.1 (VMRD Inc., Pullman, Washington, USA)40 and standard IHC methods24,37,41, except that the CSUVDL’s IHC staining machine (Leica Microsystems Inc., Buffalo Grove, Illinois, USA) was different from that used in earlier studies (Ventana Medical Systems, Oro Valley, Arizona, USA). Biopsies were evaluated microscopically and classified as positive (infected) or not detected (negative) based on PrPCWD presence or absence; the same pathologist (T. R. Spraker) read biopsies for both the current and prior5 studies.We included only data from deer with biopsies providing ≥3 lymphoid follicles in analyses involving infection status in order to maintain a relatively high (≥90%) probability of detecting infected individuals24. Two animals with low follicle counts that died shortly after capture were excepted by substituting postmortem IHC results. Limiting the acceptable follicle count excluded seven females (two 225SS, five 225SF) and two males (one 225SS, one 225SF) from some analyses. One male deer was 225FF and one female deer was missing a blood sample and thus not assigned to a PRNP gene group; these two individuals also were excluded from some analyses (e.g., Table 1).
    PRNP genotypingWe used DNA extracted from whole blood buffy coat aliquots (n = 99) to screen for the presence of sequences at PRNP gene codon 225 that encode for serine (S) and/or phenylalanine (F) in the mature prion polypeptide, classifying individuals as 225SS, 225SF, or 225FF16,36,42. Methods generally followed those described by Jewell et al.16. Briefly, we extracted DNA using the DNeasy® blood and tissue kit (Qiagen, Valenica, California, USA). We amplified the complete open reading frame (ORF) plus 25 bp of 5′ flanking sequences and 53 bp of 3′ flanking sequences in the PRNP coding region using polymerase chain reaction (PCR). Purified DNA was combined in a 0.2 ml PCR tube containing a puReTag Ready-To-Go PCR bead (illustra™, GE Healthcare Bio-Sciences Corp, Piscataway, New Jersey, USA). Each PCR bead contained 2.5 units puReTag DNA polymerase, 10 mM Tris-HCI, 50 mM KCl, 1.5 mM MgCl2, 200 µM of each deoxynucleoside triphosphate, and stabilizers, including bovine serum albumin. For each PCR assay, 1 μL of each primer at 200 nM, 22 μL of RNase-free water and 1 μL of approximately 100 ng total genomic DNA was added for a final volume of 25 μL. Primers used for amplification were forward (MD582F, 5′-ACATGGGCATATGATGCTGACACC-3′) and reverse (MD1479RC, 5′-ACTACAGGGCTGCAGGTAGATACT-3′) described by Jewell et al.16. Reactions were thermal-cycled in a PTC 100 (MJ Research) at 94 C for 5 min and then 32 cycles of 94 C for 7 s, 62 C for 15 s, 72 C for 30 s and a final cycle of 72 C for 5 min, and kept at 4 C until inspected for successful amplification by agarose gel electrophoresis. As confirmed by LaCava et al.19, the MD582F and MD1479RC primers developed by Jewell et al.16 specifically amplify the functional PRNP gene ORF, thereby excluding confounding effects that could arise from the presence of a processed pseudogene that occurs in a majority of deer (Odocoileus spp.)42.We used EcoRI restriction digestion of the PCR-amplified PRNP region16—a validated assay targeting the singular polymorphism at codon 225 in mule deer—to screen all 99 samples for presence of S or F codons. Aliquots (10 μl) of completed PCR reactions were incubated with 10 U EcoRI (New England Biolabs) in a total volume of 12 μl containing 50 mM NaCl, 100 mM Tris/HCl, 10 mM MgCl2, 0.025% Triton X-100 (pH 7.5) at 37 C for 2–16 h followed by the addition of 2.5 μl 6× concentrate gel loading solution (Sigma- Aldrich) per sample, and the inspection of products by agarose gel electrophoresis for the presence of one 897bp-sized band for 225SS, two bands—one 897 bp and one 719 bp—for 225SF, or one 719 bp-sized band for 225FF. As noted by Jewell et al.16, occurrence of TTC (the F codon) at position 225 creates an EcoRI recognition DNA sequence and cleavage site GAATTC from codons 224–225, whereas TCC (the S codon) creates the sequence GAATCC, which is not cut by EcoRI. When incubated with EcoRI, PCR products with a TTC codon at position 225 yielded cleavage fragments of the predictable sizes listed16. Because no other sites within the PRNP ORF DNA sequence are potentially transformable to GAATTC with one base change, this represents a specific genotyping method for assessing the S225F polymorphism in mule deer16.To confirm findings from EcoRI screening, we examined sequences of the complete PRNP ORF from 20 samples that showed evidence of cleavage indicating 225*F and 6 samples without cleavage identified as 225SS. For DNA sequencing, we used primers 245 (5′-GGTGGTGACTGACTGTGTGTTGCTTGA-3′), 12 (5′-TGGTGGTGACTGTGTGTTGCTTGA-3′) and 3FL1 (5′-GATTAAGAAGATAATGAAAACAGGAAGG-3′; Integrated DNA Technologies). Sanger sequencing was done on purified PCR product by Eurofins Genomics (Louisville, Kentucky, USA). Sequence chromatograms were viewed and DNA sequence alignments and comparisons were made using the MAFFT multiple sequence alignment program v7.450 module, software platform v2020.2.3 of Geneious Prime. Sequencing confirmed the presence of coding for F in all samples identified as 225*F by EcoRI digestion, as well as the absence of such coding in samples identified by EcoRI digestion as 225SS. Moreover, presence of AGC at codon 138 in all sequenced samples reconfirmed that the primers we used had amplified the functional PRNP gene42.Statistics and reproducibilityFor analyses, we tabulated IHC-positive and -negative results to estimate apparent prevalence of prion infection. We also tabulated the number of individuals assigned to PRNP genotypes and to age groupings as described. Age groupings were selected based on relevance to CWD epidemiology in mule deer1,5,8,12,16,17,18,20,24,31,37. Assuming a ~2-year disease course5,8,17 and relative scarcity of end-stage disease in 225SS deer More