Water sources aggregate parasites with increasing effects in more arid conditions
1.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 6, 166–171 (2016).ADS
Google Scholar
2.Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).CAS
PubMed
ADS
Google Scholar
3.Nunn, C. L., Thrall, P. H., Leendertz, F. H. & Boesch, C. The spread of fecally transmitted parasites in socially-structured populations. PLoS ONE 6, e21677 (2011).CAS
PubMed
PubMed Central
ADS
Google Scholar
4.Vicente, J., Fernández De Mera, I. G. & Gortazar, C. Epidemiology and risk factors analysis of elaphostrongylosis in red deer (Cervus elaphus) from Spain. Parasitol. Res. 98, 77–85 (2006).PubMed
Google Scholar
5.Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).PubMed
Google Scholar
6.Leach, C. B., Webb, C. T. & Cross P. C. When environmentally persistent pathogens transform good habitat into ecological traps. R. Soc. Open Sci. 3, 160051 (2016).7.Dougherty, E. R., Seidel, D. P., Carlson, C. J., Spiegel, O. & Getz, W. M. Going through the motions: incorporating movement analyses into disease research. Ecol. Lett. 21, 588–604 (2018).PubMed
Google Scholar
8.Valeix, M., Fritz, H., Chamaillé-Jammes, S., Bourgarel, M. & Murindagomo, F. Fluctuations in abundance of large herbivore populations: insights into the influence of dry season rainfall and elephant numbers from long-term data. Anim. Conserv. 11, 391–400 (2008).
Google Scholar
9.Western, D. Water availability and its influence on the structure and dynamics of a savannah large mammal community. Afr. J. Ecol. 13, 265–286 (1975).
Google Scholar
10.Sutherland, K., Ndlovu, M. & Pérez-Rodríguez, A. Use of artificial waterholes by animals in the Southern Region of the Kruger National Park, South Africa. Afr. J. Wildl. Res. 48, 023003 (2018).
Google Scholar
11.Chamaillé-Jammes, S., Fritz, H., Valeix, M., Murindagomo, F. & Clobert, J. Resource variability, aggregation and direct density dependence in an open context: the local regulation of an African elephant population. J. Anim. Ecol. 77, 135–144 (2008).PubMed
Google Scholar
12.Vanderwaal, K., Gilbertson, M., Okanga, S., Allan, B. F. & Craft, M. E. Seasonality and pathogen transmission in pastoral cattle contact networks. R. Soc. Open Sci. 4, 170808 (2017).PubMed
PubMed Central
Google Scholar
13.Hayward, M. W. & Hayward, M. D. Waterhole use by African fauna. South Afr. J. Wildl. Res. 42, 117–127 (2012).
Google Scholar
14.Valeix, M., Fritz, H., Matsika, R., Matsvimbo, F. & Madzikanda, H. The role of water abundance, thermoregulation, perceived predation risk and interference competition in water access by African herbivores. Afr. J. Ecol. 46, 402–410 (2008).
Google Scholar
15.Crosmary, W.-G., Valeix, M., Fritz, H., Madzikanda, H. & Côté, S. D. African ungulates and their drinking problems: hunting and predation risks constrain access to water. Anim. Behav. 83, 145–153 (2012).
Google Scholar
16.Payne, A., Philipon, S., Hars, J., Dufour, B. & Gilot-Fromont, E. Wildlife interactions on baited places and waterholes in a French area infected by bovine tuberculosis. Front. Vet. Sci. 3, 16 (2017).
Google Scholar
17.Wright, A. N. & Gompper, M. E. Altered parasite assemblages in raccoons in response to manipulated resource availability. Oecologia 144, 148–156 (2005).PubMed
ADS
Google Scholar
18.Morgan, E. R., Milner-Gulland, E. J., Torgerson, P. R. & Medley, G. F. Ruminating on complexity: macroparasites of wildlife and livestock. Trends Ecol. Evol. 19, 181–188 (2004).PubMed
Google Scholar
19.Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).
Google Scholar
20.Hudson, P. J., Dobson, A. P. & Lafferty, K. D. Is a healthy ecosystem one that is rich in parasites? Trends Ecol. Evol. 21, 381–385 (2006).PubMed
Google Scholar
21.Charlier, J., van der Voort, M., Kenyon, F., Skuce, P. & Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 30, 361–367 (2014).PubMed
Google Scholar
22.Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 186, 70–78 (2012).PubMed
Google Scholar
23.WHO Expert Committee. Prevention and control of schistosomiasis and soil-transmitted helminthiasis. World Heal. Organ Tech. Rep. Ser. 912, 1–57 (2002).
Google Scholar
24.Ezenwa, V. O. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int. J. Parasitol. 34, 535–542 (2004).PubMed
Google Scholar
25.Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298 (2019).CAS
PubMed
ADS
Google Scholar
26.Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. 88, 427–442 (2013).PubMed
Google Scholar
27.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed
Google Scholar
28.Mignatti, A., Boag, B. & Cattadori, I. M. Host immunity shapes the impact of climate changes on the dynamics of parasite infections. Proc. Natl Acad. Sci. USA 113, 2970–2975 (2016).CAS
PubMed
PubMed Central
ADS
Google Scholar
29.Anderson, R. C. Nematode Parasites of Vertebrates: Their Development and Transmission, Second Edi (CABI Publishing, 2000).30.Stromberg, B. E. Environmental Factors Influencing Transmission in Veterinary Parasitology 247–264 (Elsevier, 1997).31.Knapp-Lawitzke, F., Küchenmeister, F., Küchenmeister, K., von Samson-Himmelstjerna, G. & Demeler, J. Assessment of the impact of plant species composition and drought stress on survival of strongylid third-stage larvae in a greenhouse experiment. Parasitol. Res. 113, 4123–4131 (2014).PubMed
Google Scholar
32.Nunn, C. L., Thrall, P. H. & Kappeler, P. M. Shared resources and disease dynamics in spatially structured populations. Ecol. Modell. 272, 198–207 (2014).
Google Scholar
33.Ogada, D. L., Torchin, M. E., Kinnaird, M. F. & Ezenwa, V. O. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS
PubMed
Google Scholar
34.Round, M. C. Check List of the Helminth Parasites of African Mammals of the Orders Carnivora, Tubulidentata, Proboscidea, Hyra-coidea, Artiodactyla and Perissodactyla (Farnham Royal, Commonwealth Agricultural Bureaux, 1968).35.Wells, K. et al. Global spread of helminth parasites at the human–domestic animal–wildlife interface. Glob. Chang. Biol. 24, 3254–3265 (2018).PubMed
ADS
Google Scholar
36.VanderWaal, K., Omondi, G. P. & Obanda, V. Mixed-host aggregations and helminth parasite sharing in an East African wildlife-livestock system. Vet. Parasitol. 205, 224–232 (2014).PubMed
Google Scholar
37.Walker, J. G., Plein, M., Morgan, E. R. & Vesk, P. A. Uncertain links in host-parasite networks: lessons for parasite transmission in a multi-host system. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372, 20160095 (2017).PubMed
PubMed Central
Google Scholar
38.Bull, J. J. Virulence. Evolution 48, 1423–1437 (1994).CAS
PubMed
Google Scholar
39.R. W. Ashford, W. Crewe, Parasites of Homo sapiens: An Annotated Checklist of the Protozoa, Helminths, and Arthropods for which We Are Home, 2nd edn (Taylor & Francis, 2003).40.Loarie, S. R., Van Aarde, R. J. & Pimm, S. L. Fences and artificial water affect African savannah elephant movement patterns. Biol. Conserv. 142, 3086–3098 (2009).
Google Scholar
41.Kay, R. N. B. Responses of African livestock and wild herbivores to drought. J. Arid Environ. 37, 683–694 (1997).ADS
Google Scholar
42.Chamaillé-Jammes, S., Mtare, G., Makuwe, E. & Fritz, H. African elephants adjust speed in response to surface-water constraint on foraging during the dry-season. PLoS ONE 8, e59164 (2013).43.Redfern, J. V., Grant, R., Biggs, H. & Getz, W. M. Surface-water constraints on herbivore foraging in the Kruger National Park, South Africa. Ecology 84, 2092–2107 (2003).
Google Scholar
44.Titcomb, G. C., Amooni, G., Mantas, J. N. & Young, H. S. The effects of herbivore aggregations at water sources on savanna plants differ across soil and climate gradients. Ecol. Appl. 31, e02422 (2021).PubMed
Google Scholar
45.Smit, I. P. J., Grant, C. C. & Devereux, B. J. Do artificial waterholes influence the way herbivores use the landscape? Herbivore distribution patterns around rivers and artificial surface water sources in a large African savanna park. Biol. Conserv. 136, 85–99 (2007).
Google Scholar
46.Estes, R. D. The Behavior Guide to African Mammals 1st edn (University of California Press, 2012).47.Ezenwa, V. O. Selective defecation and selective foraging: antiparasite behavior in wild ungulates? Ethology 110, 851–862 (2004).
Google Scholar
48.Valeix, M. et al. How key habitat features influence large terrestrial carnivore movements: Waterholes and African lions in a semi-arid savanna of north-western Zimbabwe. Landsc. Ecol. 25, 337–351 (2010).
Google Scholar
49.Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290 (2003).CAS
PubMed
ADS
Google Scholar
50.Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).CAS
PubMed
ADS
Google Scholar
51.Thrash, I. & Derry, J. F. Review of literature on the nature and modelling of piospheres. Koedoe 42, 73–94 (1999).
Google Scholar
52.Rohr, J. R. et al. Frontiers in climate change-disease research. Trends Ecol. Evol. 26, 270–277 (2011).PubMed
PubMed Central
Google Scholar
53.Ogutu, J. O. et al. Extreme wildlife declines and concurrent increase in livestock numbers in Kenya: what are the causes? PLoS ONE 11, e0163249 (2016).PubMed
PubMed Central
Google Scholar
54.Adhikari, U., Nejadhashemi, A. & Matthew, R. A review of climate change impacts on water resources in east. Afr. Trans. Am. Soc. Agric. Biol. Eng. 58, 1493–1507 (2015).
Google Scholar
55.Funk, C. et al. Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc. Natl Acad. Sci. USA 105, 11081–11086 (2008).CAS
PubMed
PubMed Central
ADS
Google Scholar
56.IPCC. In Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Pachauri, R., Meyer, L.) (IPCC, 2014).57.de Wit, M. & Stankiewicz, J. Changes in surface water supply across africa with predicted climate change. Science 311, 1917–1921 (2006).PubMed
ADS
Google Scholar
58.Obanda, V., Iwaki, T., Mutinda, N. M. & Gakuya, F. Gastrointestinal parasites and associated pathological lesions in starving free-ranging african elephants. South Afr. J. Wildl. Res. 41, 167–172 (2011).
Google Scholar
59.Hawkins, J. A. Economic benefits of parasite control in cattle. Vet. Parasitol. 46, 159–173 (1993).CAS
PubMed
Google Scholar
60.Weinstein, S. B., Buck, J. C. & Young, H. S. A landscape of disgust. Science 359, 1213–1214 (2018).CAS
PubMed
ADS
Google Scholar
61.Buck, J. C., Weinstein, S. B. & Young, H. S. Ecological and evolutionary consequences of parasite avoidance. Trends Ecol. Evol. 33, 619–632 (2018).CAS
PubMed
Google Scholar
62.Ndlovu, M. et al. Water for African elephants (Loxodonta africana): faecal microbial loads affect use of artificial waterholes. Biol. Lett. 14, 20180360 (2018).PubMed
PubMed Central
Google Scholar
63.Amoroso, C. R., Kappeler, P. M., Fichtel, C. & Nunn, C. L. Fecal contamination, parasite risk, and waterhole use by wild animals in a dry deciduous forest. Behav. Ecol. Sociobiol. 73, 1–11 (2019).
Google Scholar
64.Thurber, M. I. et al. Effects of rainfall, host demography, and musth on strongyle fecal egg counts in African elephants (Loxodonta Africana) in Namibia. J. Wildl. Dis. 47, 172–181 (2011).CAS
PubMed
Google Scholar
65.Cizauskas, C. A., Turner, W. C., Pitts, N. & Getz, W. M. Seasonal patterns of hormones, macroparasites, and microparasites in wild African ungulates: the interplay among stress, reproduction, and disease. PLoS ONE 10, e0120800 (2015).PubMed
PubMed Central
Google Scholar
66.Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000-2050. Proc. Natl Acad. Sci. USA 107, 18371–18374 (2010).CAS
PubMed
PubMed Central
ADS
Google Scholar
67.Shorrocks, B. The Biology of African Savannahs (Oxford University Press Inc., 2007).68.Barda, B. D. et al. Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl. Trop. Dis. 7, e2344 (2013).PubMed
PubMed Central
Google Scholar
69.Azian, M. Y. et al. Detection of helminth infections in dogs and soil contamination in rural and urban areas. Southeast Asian J. Trop. Med. Public Health 39, 205–212 (2008).PubMed
Google Scholar
70.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020).71.Anderson, R. M. & May, R. M. Infectious Disease of Humans: Dynamics and Control (Oxford University Press, 1991).72.Franz, T. E., Caylor, K. K., Nordbotten, J. M., Rodríguez-Iturbe, I. & Celia, M. A. An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems. Adv. Water Resour. 33, 215–230 (2010).ADS
Google Scholar
73.K. K. Caylor, J. Gitonga, D. J. Martins, Mpala Research Centre Meterorological and Hydrological Dataset (2017).74.R Core Team. R: A Language and Environment for Statistical Computing (2016).75.Titcomb, G. Herbivore dung and parasite counts, Ol Pejeta Conservancy and Mpala Research Centre, Kenya (2015–2018). Environ. Data Initiat. https://doi.org/10.6073/pasta/2728d61f10b767814b5d95fbd69137fa (2021). More