Ecological changes have driven biotic exchanges across the Indian Ocean
1.Chatterjee, S., Goswami, A. & Scotese, C. R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 23, 238–267 (2013).ADS
Google Scholar
2.Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).ADS
PubMed
Google Scholar
3.Ashwal, L. D., Wiedenbeck, M. & Torsvik, T. H. Archaean zircons in Miocene oceanic hotspot rocks establish ancient continental crust beneath Mauritius. Nat. Commun. 8, 14086 (2017).ADS
PubMed
PubMed Central
CAS
Google Scholar
4.Agnarsson, I. & Kuntner, M. The Generation of a biodiversity hotspot: Biogeography and phylogeography of the Western Indian Ocean islands. In Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems (ed. Anamthawat-Jónsson, K.) 33–82 (InTech, 2012).
Google Scholar
5.Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41 (2012).ADS
Google Scholar
6.Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 66, 1–33 (2013).ADS
Google Scholar
7.Aitchison, J. C., Ali, J. R. & Davis, A. M. When and where did India and Asia collide?. JGR https://doi.org/10.1029/2006JB004706 (2007).Article
Google Scholar
8.Chatterjee, S. & Scotese, C. R. The wandering Indian plate and its changing biogeography during the Late Cretaceous-Early Tertiary period. In New Aspects of Mesozoic Biodiversity (ed. Bandyopadhyay, S.) (Springer-Verlag, 2010).
Google Scholar
9.Gourlan, A. T., Meynadier, L. & Allègre, C. J. Tectonically driven changes in the Indian Ocean circulation over the last 25 Ma: Neodymium isotope evidence. Earth Planet. Sci. Lett. 267, 353–364 (2008).ADS
CAS
Google Scholar
10.Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).ADS
Google Scholar
11.Collier, J. S. et al. Age of Seychelles-India break-up. Earth Planet. Sci. Lett. 272, 264–277 (2008).ADS
CAS
Google Scholar
12.Plummer, Ph. S. & Belle, E. R. Mesozoic tectono-stratigraphic evolution of the Seychelles microcontinent. Sediment. Geol. 96, 73–91 (1995).ADS
Google Scholar
13.Ashalatha, B., Subrahmanyam, C. & Singh, R. N. Origin and compensation of Chagos-Laccadive ridge, Indian ocean, from admittance analysis of gravity and bathymetry data. Earth Planet. Sci. Lett. 105, 47–54 (1991).ADS
Google Scholar
14.de Queiroz, A. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73 (2005).PubMed
Google Scholar
15.Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).PubMed
Google Scholar
16.Verma, O., Khosla, A., Goin, F. J. & Kaur, J. Historical biogeography of the late cretaceous vertebrates of India: Comparison of geophysical and paleontological data. New Mex. Mus. Nat. Hist. Sci. Bull. 71, 317–330 (2016).
Google Scholar
17.Krause, D. W. Washed up in Madagascar. Nature 463, 613 (2010).ADS
PubMed
CAS
Google Scholar
18.Reeves, C. & De Wit, M. Making ends meet in Gondwana: Retracing the transforms of the Indian Ocean and reconnecting continental shear zones. Terra Nova 12, 272–280 (2000).ADS
Google Scholar
19.Pillon, Y. & Buerki, S. How old are island endemics?. Biol. J. Linn. Soc. 121, 469–474 (2017).
Google Scholar
20.Thornton, I. W. B. et al. How important were stepping stones in the colonization of Krakatau?. Biol. J. Linn. Soc. 77, 275–317 (2002).
Google Scholar
21.Crisp, M. D., Trewick, S. A. & Cook, L. G. Hypothesis testing in biogeography. Trends Ecol. Evol. 26, 66–72 (2011).PubMed
Google Scholar
22.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014).PubMed
PubMed Central
Google Scholar
23.Huelsenbeck, J. P., Larget, B. & Alfaro, M. E. Bayesian phylogenetic model selection using reversible jump Markov Chain Monte Carlo. Mol. Biol. Evol. 21, 1123–1133 (2004).PubMed
CAS
Google Scholar
24.Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R. R. Evolutionary rates and HBV: Issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).PubMed
Google Scholar
25.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Meth. 9, 772–772 (2012).CAS
Google Scholar
26.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).PubMed
PubMed Central
CAS
Google Scholar
27.Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536 (1997).
Google Scholar
28.Baele, G., Li, W. L. S., Drummond, A. J., Suchard, M. A. & Lemey, P. Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol. Biol. Evol. 30, 239–243 (2012).PubMed
PubMed Central
Google Scholar
29.Raftery, A. et al. Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. Bayesian Stat. 8, 1–45 (2007).
Google Scholar
30.Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006).CAS
Google Scholar
31.Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772–780 (2013).PubMed
PubMed Central
CAS
Google Scholar
32.Erpenbeck, D. et al. Phylogenetic analyses under secondary structure-specific substitution models outperform traditional approaches: Case studies with diploblast LSU. J. Mol. Evol. 64, 543–557 (2007).ADS
PubMed
CAS
Google Scholar
33.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), 2010 1–8 (2010).34.Yu, Y., Harris, A. J., Blair, C. & He, X. RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49 (2015).PubMed
Google Scholar
35.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 19694 (2013).
Google Scholar
36.Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).PubMed
Google Scholar
37.Landis, M. J., Matzke, N. J., Moore, B. R. & Huelsenbeck, J. P. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789–804 (2013).PubMed
PubMed Central
Google Scholar
38.Warren, B. H., Strasberg, D., Bruggemann, J. H., Prys-Jones, R. P. & Thébaud, C. Why does the biota of the Madagascar region have such a strong Asiatic flavour?. Cladistics 26, 526–538 (2010).
Google Scholar
39.Huber, B. T., Hodell, D. A. & Hamilton, C. P. Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients. GSA Bull. 107, 1164–1191 (1995).
Google Scholar
40.Yoder, A. D. & Nowak, M. D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 37, 405–431 (2006).
Google Scholar
41.Crottini, A. et al. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar. PNAS 109, 5358–5363 (2012).ADS
PubMed
PubMed Central
CAS
Google Scholar
42.Ali, J. R. & Krause, D. W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: Refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 38, 1855–1872 (2011).
Google Scholar
43.Kocsis, Á. T. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth-Sci. Rev. 213, 103463 (2021).
Google Scholar
44.Hay, W. W. Cretaceous oceans and ocean modeling. In Cretaceous Oceanic Red Beds: Stratigraphy, Composition, Origins and Paleoceanographic and Paleoclimatic Significance (eds Hu, X. et al.) 244–271 (Sepm Society for Sedimentary, 2009).
Google Scholar
45.Sereno, P. C., Wilson, J. A. & Conrad, J. L. New dinosaurs link southern landmasses in the Mid-Cretaceous. Proc. R. Soc. Lond. B 271, 1325–1330 (2004).
Google Scholar
46.Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234 (2018).
Google Scholar
47.Speijer, R. P. & Morsi, A.-M.M. Ostracode turnover and sea-level changes associated with the Paleocene-Eocene thermal maximum. Geology 30, 23–26 (2002).ADS
Google Scholar
48.McInerney, F. A. & Wing, S. L. The paleocene-eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).ADS
CAS
Google Scholar
49.Henehan, M. J. et al. Revisiting the middle eocene climatic optimum “Carbon Cycle Conundrum” with new estimates of atmospheric pCO2 from boron isotopes. Palaeogeogr. Palaeoclimatol. 35, e2019PA003713 (2020).
Google Scholar
50.Legendre, S. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale: Structures, milieux et évolution. Münchner Geowiss. Abh. 16, 1–110 (1989).
Google Scholar
51.Hartenberger, J.-L. Palaeontology: An Asian Grande Coupure. Nature 394, 321 (1998).ADS
CAS
Google Scholar
52.Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS
PubMed
CAS
Google Scholar
53.Lohman, D. J. et al. Biogeography of the Indo-Australian Archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).
Google Scholar
54.Fernández, D. A., Palazzesi, L., González Estebenet, M. S., Tellería, M. C. & Barreda, V. D. Impact of mid Eocene greenhouse warming on America’s southernmost floras. Commun. Biol. 4, 1–9 (2021).
Google Scholar
55.Ivany, L. C., Patterson, W. P. & Lohmann, K. C. Cooler winters as a possible cause of mass extinctions at the Eocene/Oligocene boundary. Nature 407, 887–890 (2000).ADS
PubMed
CAS
Google Scholar
56.Masters, J. C. et al. Biogeographic mechanisms involved in the colonization of Madagascar by African vertebrates: Rifting, rafting and runways. J. Biogeogr. 48, 492–510 (2021).
Google Scholar
57.Ali, J. R. & Huber, M. Mammalian biodiversity on Madagascar controlled by ocean currents. Nature 463, 653–656 (2010).ADS
PubMed
CAS
Google Scholar
58.Ohba, M., Samonds, K. E., LaFleur, M., Ali, J. R. & Godfrey, L. R. Madagascar’s climate at the K/P boundary and its impact on the island’s biotic suite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 688–695 (2016).
Google Scholar
59.Godfrey, L. R. et al. Mid-Cenozoic climate change, extinction, and faunal turnover in Madagascar, and their bearing on the evolution of lemurs. BMC Evol. Biol. 20, 97 (2020).PubMed
PubMed Central
Google Scholar
60.Behrensmeyer, A. K. et al. Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (University of Chicago Press, 1992).
Google Scholar
61.Ali, J. R. & Aitchison, J. C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci. Rev. 88, 145–166 (2008).ADS
Google Scholar
62.Klaus, S., Morley, R. J., Plath, M., Zhang, Y.-P. & Li, J.-T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 7, 12132 (2016).ADS
PubMed
PubMed Central
CAS
Google Scholar
63.Le Houedec, S., Meynadier, L., Cogné, J.-P., Allègre, C. J. & Gourlan, A. T. Oceanwide imprint of large tectonic and oceanic events on seawater Nd isotope composition in the Indian Ocean from 90 to 40 Ma. Geochem. Geophys. 13, 6. https://doi.org/10.1029/2011GC003963 (2012).Article
CAS
Google Scholar
64.Datta-Roy, A. & Karanth, K. P. The Out-of-India hypothesis: What do molecules suggest?. J. Biosci. 34, 687–697 (2009).PubMed
Google Scholar
65.Kayaalp, P., Stevens, M. I. & Schwarz, M. P. ‘Back to Africa’: Increased taxon sampling confirms a problematic Australia-to-Africa bee dispersal event in the Eocene. Syst. Entomol. 42, 724–733 (2017).
Google Scholar
66.Gillespie, R. G. et al. Long-distance dispersal: A framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).PubMed
Google Scholar More