Disturbance and distribution gradients influence resource availability and feeding behaviours in corallivore fishes following a warm-water anomaly
1.Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).PubMed
Google Scholar
2.Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching. Nature 560, 92–96 (2018).ADS
CAS
PubMed
Google Scholar
3.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).ADS
CAS
PubMed
Google Scholar
4.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS
CAS
PubMed
Google Scholar
5.Schwartz, M. W. et al. Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere 6, art121 (2015).
Google Scholar
6.Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun. 9, 4355 (2018).ADS
PubMed
PubMed Central
Google Scholar
7.Giraldo-Ospina, A., Kendrick, G. A. & Hovey, R. K. Depth moderates loss of marine foundation species after an extreme marine heatwave: Could deep temperate reefs act as a refuge?. Proc. R. Soc. B Biol. Sci. 287, 20200709 (2020).
Google Scholar
8.Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).
Google Scholar
9.Stephens, S. L. et al. Wildfire impacts on California spotted owl nesting habitat in the Sierra Nevada. Ecosphere 7, e01478 (2016).
Google Scholar
10.Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).PubMed
PubMed Central
Google Scholar
11.Duckworth, R. A. The role of behavior in evolution: a search for mechanism. Evol. Ecol. 23, 513–531 (2009).
Google Scholar
12.Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).
Google Scholar
13.Schluter, D. Distributions of Galapagos ground finches along an altitudinal gradient: The importance of food supply. Ecology 63, 1504–1517 (1982).
Google Scholar
14.Fryxell, J. M. & Sinclair, A. R. E. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–234 (1988).CAS
PubMed
Google Scholar
15.Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).PubMed
PubMed Central
Google Scholar
16.Fryxell, J. M. & Lundberg, P. Diet choice and predator-prey dynamics. Evol. Ecol. 8, 407–421 (1994).
Google Scholar
17.Heron, S. et al. Impacts of climate change on world heritage coral reefs: Update to the first global scientific assessment. https://apo.org.au/node/193206 (2018).18.Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. 101, 8251–8253 (2004).ADS
CAS
PubMed
PubMed Central
Google Scholar
19.Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).ADS
Google Scholar
20.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS
CAS
PubMed
Google Scholar
21.Pratchett, M. S., Thompson, C. A., Hoey, A. S., Cowman, P. F. & Wilson, S. K. Effects of coral bleaching and coral loss on the structure and function of reef fish assemblages. In Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 265–293 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-75393-5_11.Chapter
Google Scholar
22.Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).ADS
Google Scholar
23.Gintert, B. E. et al. Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing?. Coral Reefs 37, 533–547 (2018).ADS
Google Scholar
24.Gold, Z. & Palumbi, S. R. Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs 37, 267–277 (2018).ADS
Google Scholar
25.Fox, M. D. et al. Limited coral mortality following acute thermal stress and widespread bleaching on Palmyra Atoll, central Pacific. Coral Reefs 38, 701–712 (2019).ADS
Google Scholar
26.Thinesh, T., Meenatchi, R., Jose, P. A., Kiran, G. S. & Selvin, J. Differential bleaching and recovery pattern of southeast Indian coral reef to 2016 global mass bleaching event: Occurrence of stress-tolerant symbiont Durusdinium (Clade D) in corals of Palk Bay. Mar. Pollut. Bull. 145, 287–294 (2019).CAS
PubMed
Google Scholar
27.Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).
Google Scholar
28.Sakai, K., Singh, T. & Iguchi, A. Bleaching and post-bleaching mortality of Acropora corals on a heat-susceptible reef in 2016. PeerJ 7, e8138 (2019).PubMed
PubMed Central
Google Scholar
29.Muir, P. R., Marshall, P. A., Abdulla, A. & Aguirre, J. D. Species identity and depth predict bleaching severity in reef-building corals: shall the deep inherit the reef?. Proc. R. Soc. B Biol. Sci. 284, 20171551 (2017).
Google Scholar
30.Baird, A. H. et al. A decline in bleaching suggests that depth can provide a refuge from global warming in most coral taxa. Mar. Ecol. Prog. Ser. 603, 257–264 (2018).ADS
Google Scholar
31.Frade, P. R. et al. Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat. Commun. 9, 3447 (2018).ADS
PubMed
PubMed Central
Google Scholar
32.Crosbie, A., Bridge, T., Jones, G. & Baird, A. Response of reef corals and fish at Osprey Reef to a thermal anomaly across a 30 m depth gradient. Mar. Ecol. Prog. Ser. 622, 93–102 (2019).ADS
Google Scholar
33.Harrison, H. B. et al. Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs 38, 713–719 (2019).ADS
Google Scholar
34.Sheppard, C., Sheppard, A. & Fenner, D. Coral mass mortalities in the Chagos Archipelago over 40 years: Regional species and assemblage extinctions and indications of positive feedbacks. Mar. Pollut. Bull. 154, 111075 (2020).CAS
PubMed
Google Scholar
35.Berumen, M. L., Pratchett, M. S. & McCormick, M. I. Within-reef differences in diet and body condition of coral-feeding butterflyfishes (Chaetodontidae). Mar. Ecol. Prog. Ser. 287, 217–227 (2005).ADS
Google Scholar
36.Coker, D. J., Pratchett, M. S. & Munday, P. L. Coral bleaching and habitat degradation increase susceptibility to predation for coral-dwelling fishes. Behav. Ecol. 20, 1204–1210 (2009).
Google Scholar
37.Glynn, P. W. Corallivore population sizes and feeding effects following El Niño (1982–1983) associated coral mortality in Panama. in Proceedings of the 5th International Coral Reef Congress Symposium vol. 4, 183–188 (1985).38.Gates, R. D. Seawater temperature and sublethal coral bleaching in Jamaica. Coral Reefs 8, 193–197 (1990).ADS
Google Scholar
39.Cole, A. J., Pratchett, M. S. & Jones, G. P. Effects of coral bleaching on the feeding response of two species of coral-feeding fish. J. Exp. Mar. Biol. Ecol. 373, 11–15 (2009).
Google Scholar
40.Pisapia, C., Cole, A. J. & Pratchett, M. S. Changing feeding preferences of butterflyfishes following coral bleaching. in Proceedings of the 12th International Coral Reef Symposium 5 (2012).41.Brooker, R. M., Munday, P. L., Brandl, S. J. & Jones, G. P. Local extinction of a coral reef fish explained by inflexible prey choice. Coral Reefs 33, 891–896 (2014).ADS
Google Scholar
42.Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).ADS
CAS
PubMed
Google Scholar
43.Loya, Y., Puglise, K. A. & Bridge, T. C. L. Mesophotic Coral Ecosystems (Springer, 2019).
Google Scholar
44.Goldstein, E. D., D’Alessandro, E. K. & Sponaugle, S. Fitness consequences of habitat variability, trophic position, and energy allocation across the depth distribution of a coral-reef fish. Coral Reefs 36, 957–968 (2017).ADS
Google Scholar
45.MacDonald, C., Jones, G. P. & Bridge, T. Marginal sinks or potential refuges? Costs and benefits for coral-obligate reef fishes at deep range margins. Proc. R. Soc. B Biol. Sci. 285, 20181545 (2018).
Google Scholar
46.MacDonald, C., Bridge, T. C. L., McMahon, K. W. & Jones, G. P. Alternative functional strategies and altered carbon pathways facilitate broad depth ranges in coral-obligate reef fishes. Funct. Ecol. 33, 1962–1972 (2019).
Google Scholar
47.MacDonald, C. Depth as Refuge: Depth Gradients in Ecological Pattern, Process, and Risk Mitigation Among Coral Reef Fishes (James Cook University, 2018).
Google Scholar
48.MacDonald, C., Tauati, M. I. & Jones, G. P. Depth patterns in microhabitat versatility and selectivity in coral reef damselfishes. Mar. Biol. 165, 138 (2018).
Google Scholar
49.MacDonald, C., Bridge, T. & Jones, G. Depth, bay position and habitat structure as determinants of coral reef fish distributions: Are deep reefs a potential refuge?. Mar. Ecol. Prog. Ser. 561, 217–231 (2016).ADS
Google Scholar
50.Keith, S. A. et al. Synchronous behavioural shifts in reef fishes linked to mass coral bleaching. Nat. Clim. Change 8, 986–991 (2018).ADS
Google Scholar
51.Tricas, T. C. Determinants of feeding territory size in the corallivorous butterflyfish, Chaetodon multicinctus. Anim. Behav. 37, 830–841 (1989).
Google Scholar
52.Coker, D. J., Pratchett, M. S. & Munday, P. L. Influence of coral bleaching, coral mortality and conspecific aggression on movement and distribution of coral-dwelling fish. J. Exp. Mar. Biol. Ecol. 414–415, 62–68 (2012).
Google Scholar
53.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS
CAS
PubMed
Google Scholar
54.Berumen, M. L. & Pratchett, M. S. Trade-offs associated with dietary specialization in corallivorous butterflyfishes (Chaetodontidae: Chaetodon). Behav. Ecol. Sociobiol. 62, 989–994 (2008).
Google Scholar
55.Brooker, R. M., Jones, G. P. & Munday, P. L. Prey selectivity affects reproductive success of a corallivorous reef fish. Oecologia 172, 409–416 (2013).ADS
PubMed
Google Scholar
56.Burns, C. E. Behavioral ecology of disturbed landscapes: the response of territorial animals to relocation. Behav. Ecol. 16, 898–905 (2005).
Google Scholar
57.Blowes, S. A., Pratchett, M. S. & Connolly, S. R. Heterospecific aggression and dominance in a guild of coral-feeding fishes: the roles of dietary ecology and phylogeny. Am. Nat. 182, 157–168 (2013).PubMed
Google Scholar
58.Pratchett, M. S. Feeding preferences and dietary specialization among obligate coral-feeding butterflyfishes. Biol. Butterflyfishes CRC Press Boca Raton USA 140–179 (2013).59.Penin, L., Vidal-Dupiol, J. & Adjeroud, M. Response of coral assemblages to thermal stress: Are bleaching intensity and spatial patterns consistent between events?. Environ. Monit. Assess. 185, 5031–5042 (2013).
Google Scholar
60.Wyatt, A. S. J. et al. Heat accumulation on coral reefs mitigated by internal waves. Nat. Geosci. 13, 28–34 (2020).ADS
CAS
Google Scholar
61.Bloomberg, J. & Holstein, D. M. Mesophotic coral refuges following multiple disturbances. Coral Reefs 40, 821–834 (2021).
Google Scholar
62.Bridge, T. C. L. et al. Variable responses of benthic communities to anomalously warm sea temperatures on a high-latitude coral reef. PLoS One 9, e113079 (2014).ADS
PubMed
PubMed Central
Google Scholar
63.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Change Biol. 20, 3823–3833 (2014).ADS
Google Scholar
64.Hoogenboom, M. O. et al. Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly. Front. Mar. Sci. 4, 376 (2017).
Google Scholar
65.Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob. Change Biol. 26, 68–79 (2020).ADS
Google Scholar
66.Starbuck, C. A., Considine, E. S. & Chambers, C. L. Water and elevation are more important than burn severity in predicting bat activity at multiple scales in a post-wildfire landscape. PLoS One 15, e0231170 (2020).CAS
PubMed
PubMed Central
Google Scholar
67.Bond, M. L., Bradley, C. & Lee, D. E. Foraging habitat selection by California spotted owls after fire: Spotted Owls and Fire. J. Wildl. Manag. 80, 1290–1300 (2016).
Google Scholar
68.NOAA. Kaplan SST V2 data provided by the NOAA/OAR/ESRL PSL. https://psl.noaa.gov/ (2020).69.Pinheiro, H. T. et al. Upper and lower mesophotic coral reef fish communities evaluated by underwater visual censuses in two Caribbean locations. Coral Reefs 35, 139–151 (2016).ADS
Google Scholar
70.Yabuta, S. & Berumen, M. L. Social structure and spawning behavior of Chaetodon butterflyfishes. in The Biology of Butterflyfishes (CRC Press, 2013).71.Pearl, J., Glymour, M. & Jewell, N. P. Causal Inference in Statistics: A Primer (Wiley, 2016).MATH
Google Scholar
72.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (Chapman and Hall/CRC, 2020). https://doi.org/10.1201/9780429029608.Book
Google Scholar
73.Manly, B. F., McDonald, L., Thomas, D. L., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2007).
Google Scholar More