More stories

  • in

    A synthesis and future research directions for tropical mountain ecosystem restoration

    1.Dimitrov, D., Nogués-Bravo, D. & Scharff, N. Why do tropical mountains support exceptionally high biodiversity? The eastern arc mountains and the drivers of saintpaulia diversity. PLoS One 7, e48908 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Spehn, E. & Körner, C. A Global Assessment of Mountain Biodiversity and its Function, vol. 23, 393–400 (2005).3.Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Mengist, W., Soromessa, T. & Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702, 134581 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Gleeson, E. H. et al. Mountains of our future earth: defining priorities for mountain research: A synthesis from the 2015 Perth III conference. Mt. Res. Dev. 36, 537–548 (2016).
    Google Scholar 
    6.Jacob, M. et al. Land use and cover dynamics since 1964 in the Afro-Alpine vegetation belt: Lib Amba Mountain in North Ethiopia. Land Degrad. Dev. 27, 641–653 (2016).
    Google Scholar 
    7.Dhakal, B. et al. Impacts of cardamom cultivation on montane forest ecosystems in Sri Lanka. For. Ecol. Manag. 274, 151–160 (2012).
    Google Scholar 
    8.Thijs, K. W. et al. Contrasting cloud forest restoration potential between plantations of different exotic tree species. Restor. Ecol. 22, 472–479 (2014).
    Google Scholar 
    9.Long, M. S. et al. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biol. Invasions 19, 749–763 (2017).
    Google Scholar 
    10.Elgar, A. T., Freebody, K., Pohlman, C. L., Shoo, L. P. & Catterall, C. P. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Front. Plant Sci. 5, 200 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    11.Rojas-Botero, S., Solorza-Bejarano, J., Kollmann, J. & Teixeira, L. H. Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecol. Eng. 158, 106031 (2020).
    Google Scholar 
    12.Hooper, E., Legendre, P. & Condit, R. Barriers to forest regeneration of deforested and abandoned land in Panama. J. Appl. Ecol. 42, 1165–1174 (2005).
    Google Scholar 
    13.Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2013).ADS 

    Google Scholar 
    14.Soh, M. C. K. et al. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: A systematic map for identifying future research priorities. Front. For. Glob. Change 2, 1–18 (2019).
    Google Scholar 
    15.Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. Diverging responses of tropical andean biomes under future climate conditions. PLoS One 8, e63634 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS One 14, e0213155 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B. & Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142, 2510–2521 (2009).
    Google Scholar 
    18.Christmann, T. & Oliveras, I. Nature of alpine ecosystems in tropical mountains of South America. in Encyclopedia of the World’s Biomes 1–10 (Elsevier Inc., 2020). https://doi.org/10.1016/B978-0-12-409548-9.12481-919.Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).
    Google Scholar 
    20.Young, K. R. & León, B. Tree-line changes along the Andes: Implications of spatial patterns and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 362, 263–272 (2007).
    Google Scholar 
    21.Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 20, 582–596 (2011).
    Google Scholar 
    22.Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol. Process. 25, 465–498 (2011).ADS 

    Google Scholar 
    23.Kessler, M. & Kluge, J. Diversity and endemism in tropical montane forests—From patterns to processes. Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, vol. 2 (2010).24.Aide, T. M. & Grau, H. R. Globalization, migration, and Latin American ecosystems. Science 305, 1915–1917 (2004).PubMed 

    Google Scholar 
    25.Bender, O. Abandoned altitudes? Decrease and expansion of grassland in the Hinterland of Popayán, Southern Colombian Andes. J. Mt. Sci. 12, 123–133 (2015).
    Google Scholar 
    26.Zhang, B., Mo, S., Tan, T., Xiao, F. & Wu, H. Urbanization and De-urbanization in mountain regions of China. Mt. Res. Dev. 24, 206–209 (2004).
    Google Scholar 
    27.Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. https://doi.org/10.1111/gcb.15498 (2021).Article 

    Google Scholar 
    28.International Union for Conservation of Nature. The Bonn Challenge | Bonchallenge. Iucn (2020).29.Society for Ecological Restoration. The SER primer on ecological restoration. Sci. Policy Work. Gr. 2002, 9 (2002).
    Google Scholar 
    30.Holl, K. D. Primer of Ecological Restoration (Island Press, 2020). https://doi.org/10.1007/s13412-020-00621-w.Book 

    Google Scholar 
    31.Chazdon, R. REVIEW: Restoring tropical forests: A practical guide. Ecol. Restor. 33, 118–119 (2015).
    Google Scholar 
    32.Chazdon, R. L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6, 51–71 (2003).
    Google Scholar 
    33.Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).
    Google Scholar 
    34.Meli, P. et al. A global review of past land use, climate, and active vs passive restoration effects on forest recovery. PLoS One 12, 1–17 (2017).
    Google Scholar 
    35.Holl, K. D. Restoration of tropical forests. Restor. Ecol. New Front. https://doi.org/10.1002/9781118223130.ch9 (2012).Article 

    Google Scholar 
    36.Meli, P. Tropical forest restoration. Twenty years of academic research. Interciencia 28, 581 (2003).
    Google Scholar 
    37.Venkatesh, B., Lakshman, N. & Purandara, B. K. Hydrological impacts of afforestation—A review of research in India. J. For. Res. 25, 37–42 (2014).
    Google Scholar 
    38.Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. What is the state of tropical montane cloud forest restoration? Tropical Montane Cloud Forests: science for conservation and management. For. Ecol. Manag. https://doi.org/10.1017/CBO9780511778384.010 (2011).Article 

    Google Scholar 
    39.Guariguata, M. R. Restoring tropical montane forests. Forest Restoration in Landscapes: Beyond Planting Trees (2005). https://doi.org/10.1007/0-387-29112-1_4340.Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).PubMed 

    Google Scholar 
    41.Arasumani, M. et al. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island. PLoS One 13, e0190003 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Raman, T. R. S., Mudappa, D. & Kapoor, V. Restoring rainforest fragments: survival of mixed-native species seedlings under contrasting site conditions in the Western Ghats, India. Restor. Ecol. 17, 137–147 (2009).
    Google Scholar 
    43.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).
    Google Scholar 
    44.Lewin-Koh, N. J. et al. maptools: Tools for reading and handling spatial objects. R package version 0.8-10. http://CRAN.R-project.org/package=maptools (2011).45.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019). https://www.R-project.org/46.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org47.Srinivasan, M. P., Bhatia, S. & Shenoy, K. Vegetation-environment relationships in a South Asian tropical montane grassland ecosystem: Restoration implications. Trop. Ecol. 56, 201–217 (2015).
    Google Scholar 
    48.Le Stradic, S., Buisson, E. & Fernandes, G. W. Restoration of Neotropical grasslands degraded by quarrying using hay transfer. Appl. Veg. Sci. 17, 482–492 (2014).
    Google Scholar 
    49.De De Vasconcelos, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil?. Rev. Bras. Bot. 34, 241–246 (2011).
    Google Scholar 
    50.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.15513 (2021).Article 

    Google Scholar 
    51.Home | Trillion Trees (2020).52.Abadín, J. et al. Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biol. Biochem. 34, 1739–1748 (2002).
    Google Scholar 
    53.Abreu, Z., Llambí, L. D. & Sarmiento, L. Sensitivity of soil restoration indicators during páramo succession in the high tropical andes: Chronosequence and permanent plot approaches. Restor. Ecol. 17, 619–627 (2009).
    Google Scholar 
    54.Bueno, A. & Llambí, L. D. Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl. Veg. Sci. 18, 613–623 (2015).
    Google Scholar 
    55.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 63–74 (2003).
    Google Scholar 
    56.Sarmiento, L., Smith, J. K., Márquez, N., Escalona, A. & Erazo, M. C. Constraints for the restoration of tropical alpine vegetation on degraded slopes of the Venezuelan Andes. Plant Ecol. Divers. 8, 277–291 (2015).
    Google Scholar 
    57.Sarmiento, L. & Bottner, P. Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: Indications for fertility restoration. Appl. Soil Ecol. 19, 79–89 (2002).
    Google Scholar 
    58.Sarmiento, L., Abadín, J., González-Prieto, S. & Carballas, T. Assessing and modeling the role of the native legume Lupinus meridanus in fertility restoration in a heterogeneous mountain environment of the tropical Andes. Agric. Ecosyst. Environ. 159, 29–39 (2012).
    Google Scholar 
    59.Hilário, R. R., Castro, S. A. B., Ker, F. T. O. & Fernandes, G. Unexpected effects of pigeon-peas (Cajanus cajan) in the restoration of rupestrian fields [Efeito Inesperado do Feijão-Guandu (Cajanus cajan) na Restauração de Campos Rupestres]. Planta Daninha 29, 717–723 (2011).
    Google Scholar 
    60.Le Stradic, S., Buisson, E., Negreiros, D., Campagne, P. & Wilson Fernandes, G. The role of native woody species in the restoration of Campos Rupestres in quarries. Appl. Veg. Sci. 17, 109–120 (2014).
    Google Scholar 
    61.Arasumani, M., Bunyan, M. & Robin, V. V. Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands. J. Environ. Manag. 280, 111759 (2020).
    Google Scholar 
    62.Sarmiento, F. O. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24, 14–23 (1997).
    Google Scholar 
    63.Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35–46 (2008).
    Google Scholar 
    64.Middendorp, R. S., Pérez, A. J., Molina, A., Lambin, E. F. & Pérez Castañeda, A. J. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    65.De Guevara, I.H.-L., Rojas-Soto, O. R., López-Barrera, F., Puebla-Olivares, F. & Díaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    66.Lira-Noriega, A., Guevara, S., Laborde, J. & Sanchez-Rios, G. Floristic composition in pastures of Los Tuxtlas, Veracruz, Mexico. ACTA Bot. Mex. 80, 59–87 (2007).
    Google Scholar 
    67.Muniz-Castro, M. A., Williams-Linera, G. & Benayas, J. M. R. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    68.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. in Tropical Montane Cloud Forests: Science for Conservation and Management 584–594 (2011). https://doi.org/10.1017/CBO9780511778384.06369.Violi, H. A. et al. Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For. Ecol. Manag. 254, 276–290 (2008).
    Google Scholar 
    70.Williams-Linera, G., Alvarez-Aquino, C. & Pedraza, R. A. Forest restoration in the tropical montane cloud forest belt of central veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06771.Cole, R. J., Litton, C. M., Koontz, M. J. & Loh, R. K. Vegetation recovery 16 years after feral pig removal from a wet Hawaiian forest. Biotropica 44, 463–471 (2012).
    Google Scholar 
    72.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125–140 (2014).
    Google Scholar 
    73.Gould, R. K., Mooney, H., Nelson, L., Shallenberger, R. & Daily, G. C. Restoring native forest understory: The influence of ferns and light in a Hawaiian experiment. Sustainability 5, 1317–1339 (2013).
    Google Scholar 
    74.Hart, P. J. Tree growth and age in an ancient Hawaiian wet forest: Vegetation dynamics at two spatial scales. J. Trop. Ecol. 26, 1–11 (2010).
    Google Scholar 
    75.Ibanez, T. & Hart, P. J. Spatial patterns of tree recruitment in a montane Hawaiian wet forest after cattle removal and pig population control. Appl. Veg. Sci. 23, 197–209 (2020).
    Google Scholar 
    76.Pinto, J. R., Davis, A. S., Leary, J. J. K. & Aghai, M. M. Stocktype and grass suppression accelerate the restoration trajectory of Acacia koa in Hawaiian montane ecosystems. New For. 46, 855–867 (2015).
    Google Scholar 
    77.Hylander, K. & Nemomissa, S. Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest [Roles complementarios de jardines doḿesticos y plantaciones de ’arboles ex́oticos como h́abitats alternativos para plan. Conserv. Biol. 23, 400–409 (2009).PubMed 

    Google Scholar 
    78.Roose, E. & Ndayizigiye, F. Agroforestry, water and soil fertility management to fight erosion in tropical mountains of Rwanda. Soil Technol. 11, 109–119 (1997).
    Google Scholar 
    79.Uhlig, S. K. Tropical mountain ecology in Ethiopia as a basis for conservation, management and restoration. Trop. For. Transit. https://doi.org/10.1007/978-3-0348-7256-0_8 (1992).Article 

    Google Scholar 
    80.Carilla, J. & Grau, H. R. 150 years of tree establishment, land use and climate change in Montane grasslands, Northwest Argentina. Biotropica 42, 49–58 (2010).
    Google Scholar 
    81.Camelo, O. J., Urrego, L. E. & Orrego, S. A. Environmental and socioeconomic drivers of woody vegetation recovery in a human-modified landscape in the Rio Grande basin (Colombian Andes). Restor. Ecol. 25, 912–921 (2017).
    Google Scholar 
    82.Wilson, S. J., Coomes, O. T. & Dallaire, C. O. The `ecosystem service scarcity path’ to forest recovery: A local forest transition in the Ecuadorian Andes. Reg. Environ. Change 19, 2437–2451 (2019).
    Google Scholar 
    83.Middendorp, R. S., Pérez, A. J., Molina, A. & Lambin, E. F. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    84.Bingli, L., Weide, Z. & Rongyuan, Z. The rebirth of tropical rainforest – ecological restoration planning for Sanda Mountain of Xishuangbanna, China. Landsc. Archit. Front. 8, 108–125 (2020).
    Google Scholar 
    85.Byers, A. C. Alpine habitat conservation and restoration in tropical and sub-tropical high mountains. Routledge Handb. Ecol. Environ. Restor. https://doi.org/10.4324/9781315685977 (2017).Article 

    Google Scholar 
    86.Guariguata, M. R. Restoring tropical montane forests. in Forest Restoration in Landscapes: Beyond Planting Trees 298–302 (2005). https://doi.org/10.1007/0-387-29112-1_4387.González-Espinosa, M. et al. Restoration of forest ecosystems in fragmented landscapes of temperate and montane tropical Latin America. in Biodiversity Loss and Conservation in Fragmented Forest Landscapes: The Forests of Montane Mexico and Temperate South America 335–369 (2007).88.Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. U.S.A. 114, 9635–9640 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Holl, K. D. Research directions in tropical forest restoration. Ann. Mo. Bot. Gard. 102, 237–250 (2017).
    Google Scholar 
    90.Roose, E., Ndayizigiye, F. & Sekayange, L. Agroforestry and land husbandry in Rwanda. How to restore the acid soils productivity in tropical mountains densely populated? [L’agroforesterie et la GCES au Rwanda. Comment restaurer la productivite des terres acides dans une region tropicale de montagn. Cah. ORSTOM Ser. Pedol. 28, 327–349 (1993).
    Google Scholar 
    91.Diego Leon, J., Isabel Gonzalez, M. & Fernando Gallardo, J. Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia. Rev. Biol. Trop. 59, 1883–1894 (2011).
    Google Scholar 
    92.Chazdon, R. L. et al. Erratum: Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002. https://doi.org/10.1088/1748-9326/ab79e6 (2020).Article 
    ADS 

    Google Scholar 
    93.Miranda-Castro, L. & Padrón, S. From the mountains to the sea: Restoring shaded coffee plantations to protect tropical coastal ecosystems. in Proceedings of MTS/IEEE OCEANS, 2005 vol. 2005 662–669 (2005).94.Hakim, L. & Miyakawa, H. Integrating ecosystem restoration and development of recreation sites in degraded tropical mountain areas in East Java, Indonesia. AIP Conf. Proc. 2019 (2018).95.Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).ADS 

    Google Scholar 
    96.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06397.Chen, T.-S., Lin, C.-Y., Ho, S.-H., Lin, C.-Y. & Yang, Y.-L. Evaluation of priority order for the landslide treatment using biodiversity index in a watershed. J. Chin. Soil Water Conserv. 45, 119–127 (2014).
    Google Scholar 
    98.Liu, H., Yi, Y., Blagodatsky, S. & Cadisch, G. Impact of forest cover and conservation agriculture on sediment export: A case study in a montane reserve, south-western China. Sci. Total Environ. 702, 134802 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    99.Crespo, P. et al. Land use change impacts on the hydrology of wet Andean paramo ecosystems. in Status and Perspectives of Hydrology in Small Basins (Proceedings of the Workshop held at Goslar-Hahnenklee, Germany, 30 March–2 April 2009) (IAHS, 2010). doi:https://doi.org/10.13140/2.1.5137.6320100.Muñoz-Villers, L. E. & McDonnell, J. J. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 17, 3543–3560 (2013).ADS 

    Google Scholar 
    101.Calle, Z., Henao-Gallego, N., Giraldo, C. & Armbrecht, I. A comparison of vegetation and ground-dwelling ants in abandoned and restored gullies and landslide surfaces in the Western Colombian Andes. Restor. Ecol. 21, 729–735 (2013).
    Google Scholar 
    102.Posada, J. M., Mitche, T. & Cavelier, J. Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restor. Ecol. 8, 370–379 (2000).
    Google Scholar 
    103.Lemenih, M. & Teketay, D. Changes in soil seed bank composition and density following deforestation and subsequent cultivation of a tropical dry Afromontane forest in Ethiopia. Trop. Ecol. 47, 1–12 (2006).
    Google Scholar 
    104.Galindo, V., Calle, Z., Chará, J. & Armbrecht, I. Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restor. Ecol. 25, 731–737 (2017).
    Google Scholar 
    105.Slocum, M. G., Aide, T. M., Zimmerman, J. K. & Navarro, L. A strategy for restoration of montane forest in anthropogenic fern thickets in the Dominican Republic. Restor. Ecol. 14, 526–536 (2006).
    Google Scholar 
    106.Rurangwa, M. L., Matthews, T. J., Niyigaba, P., Tobias, J. A. & Whittaker, R. J. Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study. For. Ecol. Manag. 10, 118765. https://doi.org/10.1016/j.foreco.2020.118765 (2020).Article 

    Google Scholar 
    107.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala Weerasinghe, H. M. S. P. & Burslem, D. F. R. P. Barriers to tree seedling emergence on human-induced grasslands in Sri Lanka. J. Appl. Ecol. 47, 157–165 (2010).
    Google Scholar 
    108.Le Stradic, S., Fernandes, G. W. & Buisson, E. No recovery of campo rupestre grasslands after gravel extraction: implications for conservation and restoration. Restor. Ecol. 26, S151–S159 (2018).
    Google Scholar 
    109.Sanchez-De Leon, Y., Zou, X., Borges, S. & Ruan, H. Recovery of native earthworms in abandoned tropical pastures. Conserv. Biol. 17, 999–1006 (2003).
    Google Scholar 
    110.Wilms, J. & Kappelle, M. Frugivorous birds, habitat preference and seed dispersal in a fragmented Costa Rican montane oak forest landscape. in Ecology and conservation of neotropical montane oak forests 309–324 (Springer, 2006).111.Shoo, L. P., Storlie, C., Vanderwal, J., Little, J. & Williams, S. E. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186–193 (2011).ADS 

    Google Scholar 
    112.Edwards, D. P., Massam, M. R., Haugaasen, T. & Gilroy, J. J. Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biol. Conserv. 209, 432–439 (2017).
    Google Scholar 
    113.Gutierrez-Chacon, C., Valderrama-A, C. & Klein, A.-M. Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. J. Insect Conserv. 24, 187–197 (2020).
    Google Scholar 
    114.Kattan, G. H., Correa, D., Escobar, F. & Medina, C. Leaf-litter arthropods in restored forests in the Colombian Andes: A comparison between secondary forest and tree plantations. Restor. Ecol. 14, 95–102 (2006).
    Google Scholar 
    115.Davies, R. W., Edwards, D. P. & Edwards, F. A. Secondary tropical forests recover dung beetle functional diversity and trait composition. Anim. Conserv. 23, 617–627 (2020).
    Google Scholar 
    116.Marian, F. et al. Conversion of Andean montane forests into plantations: Effects on soil characteristics, microorganisms, and microarthropods. Biotropica https://doi.org/10.1111/btp.12813 (2020).Article 

    Google Scholar 
    117.Brancalion, P. H. S. & Holl, K. D. Functional composition trajectory: A resolution to the debate between Suganuma, Durigan, and Reid. Restor. Ecol. 24, 1–3 (2016).
    Google Scholar 
    118.Matos, I. S., Eller, C. B., Oliveras, I., Mantuano, D. & Rosado, B. H. P. Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. J. Ecol. https://doi.org/10.1111/1365-2745.13481 (2020).Article 

    Google Scholar 
    119.Eller, C. B., Lima, A. L. & Oliveira, R. S. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489–501 (2016).CAS 
    PubMed 

    Google Scholar 
    120.Barnes, A. D. & Chapman, H. M. Dispersal traits determine passive restoration trajectory of a Nigerian montane forest. Acta Oecol. 56, 32–40 (2014).ADS 

    Google Scholar 
    121.Dimson, M. & Gillespie, T. W. Trends in active restoration of tropical dry forest: Methods, metrics, and outcomes. For. Ecol. Manage. 467, 118150 (2020).
    Google Scholar 
    122.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).
    Google Scholar 
    123.Wilson, S. J. & Rhemtulla, J. M. Acceleration and novelty: Community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecol. Appl. 26, 203–218 (2016).PubMed 

    Google Scholar 
    124.Muñiz-Castro, M. A. et al. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    125.Van Do, T., Osawa, A. & Thang, N. T. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. For. Ecol. Manag. 259, 1650–1659 (2010).
    Google Scholar 
    126.Joshua Atondo-Bueno, E., Bonilla-Moheno, M. & Lopez-Barrera, F. Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. For. Ecol. Manag. 409, 399–406 (2018).
    Google Scholar 
    127.Trujillo-Miranda, A. L., Toledo-Aceves, T., Lopez-Barrera, F. & Guenter, S. Tree diversity and timber productivity in planted forests: Pinus patula versus mixed cloud forest species. New For. https://doi.org/10.1007/s11056-020-09787-1 (2020).Article 

    Google Scholar 
    128.Gallegos, S. C., Hensen, I., Saavedra, F. & Schleuning, M. Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. For. Ecol. Manag. 337, 135–143 (2015).
    Google Scholar 
    129.Peláez-Silva, J. A., León-Peláez, J. D. & Lema-Tapias, A. Conifer tree plantations for land rehabilitation: An ecological-functional evaluation. Restor. Ecol. 27, 607–615 (2019).
    Google Scholar 
    130.Ortega-Pieck, A., López-Barrera, F., Ramírez-Marcial, N. & García-Franco, J. G. Early seedling establishment of two tropical montane cloud forest tree species: The role of native and exotic grasses. For. Ecol. Manag. 261, 1336–1343 (2011).
    Google Scholar 
    131.Muniz-Castro, M.-A. et al. Restoring montane cloud forest: Establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restor. Ecol. 23, 26–33 (2015).
    Google Scholar 
    132.Zhang, Z. H., Hu, G., Zhu, J. D. & Ni, J. Stand structure, woody species richness and composition of subtropical karst forests in Maolan, south-west China. J. Trop. For. Sci. 24, 498–506 (2012).
    Google Scholar 
    133.Garcia-De La Cruz, Y., Lopez-Barrera, F. & MariaRamos-Prado, J. Germination and seedling emergence of four endangered oak species. Madera y Bosques 22, 77–87 (2016).
    Google Scholar 
    134.Bare, M. C. & Ashton, M. S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For. 47, 333–355 (2016).
    Google Scholar 
    135.Borja, P., Molina, A., Govers, G. & Vanacker, V. Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains. CATENA 165, 42–53 (2018).
    Google Scholar 
    136.Gomez-Ruiz, P. A., Saenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine-oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    137.Toledo-Aceves, T. & Del-Val, E. Do plant-herbivore interactions persist in assisted migration plantings? Restor. Ecol. 29, (2020).138.Urgiles, N. et al. Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: A step towards reforestation with native species in the Andes of Ecuador. New For. 38, 229–239 (2009).
    Google Scholar 
    139.Braasch, M., Garcia-Barrios, L., Ramirez-Marcial, N., Huber-Sannwald, E. & Cortina-Villar, S. Can cattle grazing substitute fire for maintaining appreciated pine savannas at the frontier of a montane forest biosphere-reserve?. Agric. Ecosyst. Environ. 250, 59–71 (2017).
    Google Scholar 
    140.Hernandez-Ladron De Guevara, I., Rojas-Soto, O. R., Lopez-Barrera, F., Puebla-Olivares, F. & Diaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    141.Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).
    Google Scholar 
    142.Derroire, G., Coe, R. & Healey, J. R. Isolated trees as nuclei of regeneration in tropical pastures: Testing the importance of niche-based and landscape factors. J. Veg. Sci. 27, 679–691 (2016).
    Google Scholar 
    143.Rhoades, C. C., Eckert, G. E. & Coleman, D. C. Effect of pasture trees on soil nitrogen and organic matter: Implications for tropical montane forest restoration. Restor. Ecol. 6, 262–270 (1998).
    Google Scholar 
    144.Sheldon, K. S. & Nadkarni, N. M. The use of pasture trees by birds in a tropical montane landscape in Monteverde, Costa Rica. J. Trop. Ecol. 29, 459–462 (2013).
    Google Scholar 
    145.Sprenkle-Hyppolite, S. D., Latimer, A. M., Young, T. P. & Rice, K. J. Landscape factors and restoration practices associated with initial reforestation success in Haiti. Ecol. Restor. 34, 306–316 (2016).
    Google Scholar 
    146.Pang, C.-C., Ma, X.K.-K., Hung, T.T.-H. & Hau, B.C.-H. Early ecological succession on landslide trails, Hong Kong, China. Ecoscience 25, 153–161 (2018).
    Google Scholar 
    147.Scowcroft, P. G. & Jeffrey, J. Potential significance of frost, topographic relief, and Acacia koa stands to restoration of mesic Hawaiian forests on abandoned rangeland. For. Ecol. Manag. 114, 447–458 (1999).
    Google Scholar 
    148.Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded areas in the tropics. Restor. Ecol. 13, 92–102 (2005).
    Google Scholar 
    149.Dhakal, B., Pinard, M. A., Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. & Burslem, D. F. R. P. Strategies for restoring tree seedling recruitment in high conservation value tropical montane forests underplanted with cardamom. Appl. Veg. Sci. 18, 121–133 (2015).
    Google Scholar 
    150.Wilson, S. J. & Coomes, O. T. ‘Crisis restoration’ in post-frontier tropical environments: Replanting cloud forests in the Ecuadorian Andes. J. Rural Stud. 67, 152–165 (2019).
    Google Scholar 
    151.Pethiyagoda, R. S. & Manamendra-Arachchi, K. Endangered anurans in a novel forest in the highlands of Sri Lanka. Wildl. Res. 39, 641–648 (2012).
    Google Scholar 
    152.Del Castillo, R. F. & Blanco-Macías, A. Secondary succession under a slash-and-burn regime in a tropical montane cloud forest: soil and vegetation characteristics. Biodivers. loss Conserv. Fragm. For. landscapes. For. Mont. Mex. Temp. South Am. CABI, Wallingford, Oxfordshire, UK 158–180 (2007).153.Bautista-Cruz, A., Del Castillo, R. F., Etchevers-Barra, J. D., Gutiérrez-Castorena, M. D. C. & Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 277, 74–80 (2012).
    Google Scholar 
    154.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 145–156 (2003).
    Google Scholar 
    155.Raman, T. R. S. Effects of habitat structure and adjacent habitats on birds in tropical rainforest fragments and shaded plantations in the Western Ghats, India. Biodivers. Conserv. 15, 1577–1607 (2006).
    Google Scholar 
    156.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala, H. M. S. P. & Burslem, D. F. R. P. Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects. For. Ecol. Manag. 329, 340–350 (2014).
    Google Scholar 
    157.Mendoza-Vega, J., Ku-Quej, V. M., Messing, I. & Pérez-Jiménez, J. C. Effects of native tree planting on soil recovery in tropical montane cloud forests. For. Sci. 66, 700–711 (2020).
    Google Scholar 
    158.Calle, A. & Holl, K. D. Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. For. Ecol. Manag. 452, 117563 (2019).
    Google Scholar 
    159.Holl, K. D. Factors limiting tropical rain forest regeneration in abandoned pasture: Seed rain, seed germination, microclimate, and soil. Biotropica 31, 229–242 (1999).
    Google Scholar 
    160.Mullah, C. J. A., Klanderud, K., Totland, O. & Kigomo, B. Recovery of plant species richness and composition in an abandoned forest settlement area in Kenya. Restor. Ecol. 52, 77–87 (2011).
    Google Scholar 
    161.Liu, X., Lu, Y., Yang, Z. & Zhou, Y. Regeneration and development of native plant species in restored mountain forests, Hainan Island, China. Mt. Res. Dev. 34, 396–404 (2014).CAS 

    Google Scholar 
    162.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Weerasinghe, H. M. S. P. M. & Burslem, D. F. R. P. Release from root competition promotes tree seedling survival and growth following transplantation into human-induced grasslands in Sri Lanka. For. Ecol. Manag. 262, 229–236 (2011).163.Cole, R. J., Holl, K. D., Keene, C. L. & Zahawi, R. A. Direct seeding of late-successional trees to restore tropical montane forest. For. Ecol. Manag. 261, 1590–1597 (2011).
    Google Scholar 
    164.Alvarez-Aquino, C., Williams-Linera, G. & Newton, A. C. Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restor. Ecol. 12, 412–418 (2004).
    Google Scholar 
    165.Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forest–grassland mosaic; But alien tree invasion and warming can disrupt this balance. J. Ecol. https://doi.org/10.1111/1365-2745.13239 (2019).Article 

    Google Scholar 
    166.Singh, K. P., Mandal, T. N. & Tripathi, S. K. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the Sal forest ecosystem of Nepal Himalaya. Ecol. Eng. 17, 385–401 (2001).
    Google Scholar 
    167.Wilcke, W. et al. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. CATENA 53, 79–95 (2003).
    Google Scholar 
    168.Diaz-Garcia, J. M., Pineda, E., Lopez-Barrera, F. & Moreno, C. E. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodivers. Conserv. 26, 2569–2589 (2017).
    Google Scholar 
    169.Doust, S. J., Erskine, P. D. & Lamb, D. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For. Ecol. Manag. 234, 333–343 (2006).
    Google Scholar 
    170.Howorth, R. T. & Pendry, C. A. Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodivers. Conserv. 15, 693–715 (2006).
    Google Scholar 
    171.Gomes, L. G. L., Oostra, V., Nijman, V., Cleef, A. M. & Kappelle, M. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biol. Conserv. 141, 860–871 (2008).
    Google Scholar 
    172.Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).CAS 
    PubMed 

    Google Scholar 
    173.Pérez-García, O. & del Castillo, R. F. Shifts in swidden agriculture alter the diversity of young fallows: Is the regeneration of cloud forest at stake in southern Mexico?. Agric. Ecosyst. Environ. 248, 162–174 (2017).
    Google Scholar 
    174.Gallegos, S. C. et al. Factors limiting montane forest regeneration in bracken-dominated habitats in the tropics. For. Ecol. Manag. 381, 168–176 (2016).
    Google Scholar 
    175.Riviere, J.-N. et al. Role of tree ferns in flowering plant settlement in the tropical montane rainforests of La Reunion (Mascarene Archipelago, Indian Ocean). Rev. D Ecol. TERRE LA VIE 63, 199–207 (2008).
    Google Scholar 
    176.Mohandass, D., Chhabra, T., Singh Pannu, R. & Beng, K. C. Recruitment of saplings in active tea plantations of the Nilgiri mountains: Implications for restoration ecology. Trop. Ecol. 57, 101–118 (2016).CAS 

    Google Scholar 
    177.Wassie, A., Bongers, F., Sterck, F. J. & Teketay, D. Church forests—relics of dry afromontane forests of Northern Ethiopia: opportunities and challenges for conservation and restauration. Degrad. For. East. Africa Manag. Restor. 123–133 (2010).178.Townsend, P. A. & Masters, K. L. Lattice-work corridors for climate change: A conceptual framework for biodiversity conservation and social-ecological resilience in a tropical elevational gradient. Ecol. Soc. https://doi.org/10.5751/ES-07324-200201 (2015).Article 

    Google Scholar 
    179.Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).
    Google Scholar 
    180.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).ADS 

    Google Scholar 
    181.Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    182.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    183.Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl. Acad. Sci. 112, E6084–E6084 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    184.Gómez-Ruiz, P. A., Sáenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine–oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    185.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS One 4, 1–6 (2009).
    Google Scholar 
    186.von Holle, B., Yelenik, S. & Gornish, E. S. Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Curr. Landsc. Ecol. Rep. 5, 85–97 (2020).
    Google Scholar 
    187.Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. xx, 1–9 (2020).
    Google Scholar 
    188.Monitoring Task Force. Briefing note on the Task Force on Monitoring for the UN Decade on Ecosystem Restoration 2021–2030 (2020).189.Elliott, S. The potential for automating assisted natural regeneration of tropical forest ecosystems. Biotropica 48, 825–833 (2016).
    Google Scholar  More

  • in

    Ecological dependencies make remote reef fish communities most vulnerable to coral loss

    Fish distributionWe rasterized a detailed reef distribution vector map35 at 5 × 5 latitude/longitude degrees (by considering as reef area each cell in the raster intersecting a polygon in the original shapefile). We collected all the occurrences of fish species intersecting the rasterized reef area from both the Ocean Biogeographic Information System36 and the Global Biodiversity Information Facility37. We used taxonomic and biogeographical (i.e., latitudinal/longitudinal extremes for a given species) information from FishBase38 to exclude potential incorrect occurrences (i.e., all the records falling outside the known species ranges). We also restricted the list to all the species for which FishBase provided relevant ecological information (as these were needed to evaluate prey-predator species interactions and identify indirect links between fish species and coral, see below). The filtered list comprises 9143 fish species.For these species, we used occurrence data to generate species ranges. For this, we used the α-hull procedure39, but instead of pre-selecting an α parameter and using it for all species, we developed a procedure to obtain conservative species ranges while including most of the known occurrences. First, we selected a very small α (0.001), to obtain a hull including most of the occurrences. Then, we progressively incremented α in small amounts (0.005) by computing, for each increment, the ratio between the relative reduction in the resulting hull area (in respect to the previous hull), and the relative reduction of occurrences included in the hull (in respect to the total number of available occurrences for the target species). We stopped increasing α when the ratio became 0.97.The random forest predictor was used to assess the probability of trophic interaction between a large list of potential interactions generated by combining all fish species from our reef fish occurrence dataset known to rely mainly or exclusively on fish for their survival (i.e. “true piscivores”, FishBase trophic level  > 3.5), with all the fish in the dataset. The full list included 31,768,450 potential interactions, that we reduced to 6,721,450 interactions by keeping only the interacting pairs identified by the random forest classifier with a probability ≥0.9.(3) If the ecological dependency between two species is actually manifested then the two species must obviously co-occur at some locations, and vice-versa, co-occurrence is a necessary pre-requisite for an ecological dependency. Following this logic, we took a final, additional step to further filter and improve the fish → fish interaction list. In particular, we quantified the tendency for species to co-occur in the same locality as one potential proxy layer for species interactions, complementary to our other approaches. There are various factors that can affect the co-occurrence of two species. In a simplification, this can emerge from stochasticity, shared environmental requirements, shared evolutionary history, and ecological dependencies. We attempted to disentangle the effect of the last factor from the first three.For each target species pair, we computed overlap in distribution as the raw number of reef localities where both target species were found. Then, we compared this number with the null expectation obtained by randomizing the distribution of species occurrences across reef localities. We designed a null model accounting for randomness, species niche and biogeographical history, and hence randomizing the occurrence of species only within areas where they could have possibly occurred according to environmental conditions and biogeographical factors (e.g., in the absence of hard or soft barriers). To implement the null model, we first excluded from the list of potential localities all the areas outside the biogeographical regions where the target species had been recorded, with regions identified according to Spalding et al.49. Then, within the remaining areas, we identified all the reef localities with climate envelopes favourable to target species survival. For this, we identified the min and max of major environmental drivers (mean annual surface temperature, salinity, pH) where the target species occurred, and then we identified all the localities with conditions not exceeding these limits. We generated, for each pairwise species comparison, one thousand randomized sets of species occurrences by rearranging randomly species occurrence within all suitable localities. We quantified co-occurrence between the species pair in each random scenario. Finally, we compared the observed co-occurrence with the random co-occurrences, computing a p-value as the fraction of null models with co-occurrence identical or higher than the observed one. We kept only the pairs with a p-value  More

  • in

    Using a climate attribution statistic to inform judgments about changing fisheries sustainability

    1.Silvy, Y., Guilyardi, E., Sallee, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).ADS 
    CAS 

    Google Scholar 
    2.Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).ADS 

    Google Scholar 
    3.Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).ADS 
    PubMed Central 
    PubMed 

    Google Scholar 
    4.Grothmann, T. & Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Change 15, 199–213 (2005).
    Google Scholar 
    5.Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).
    Google Scholar 
    6.Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).ADS 

    Google Scholar 
    7.van Putten, I. E. et al. Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES J. Mar. Sci. 73, 1306–1318 (2016).
    Google Scholar 
    8.Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. in Advances in Marine Biology (ed. Curry, BE) vol. 74, 1–68 (2016).9.Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
    Google Scholar 
    10.Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl. Acad. Sci. U. S. A. 116, 18378–18383 (2019).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    11.Overland, J. E. et al. Climate controls on marine ecosystems and fish populations. J. Mar. Syst. 79, 305–315 (2010).
    Google Scholar 
    12.Merryfield, W. J. et al. Current and emerging developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. 101, E869–E896 (2020).
    Google Scholar 
    13.Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).ADS 

    Google Scholar 
    14.Palmer, T. N. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl. Acad. Sci. U. S. A. 116, 24390–24395 (2019).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    15.Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).
    Google Scholar 
    16.Myers, R. A. When do environment-recruitment correlations work?. Rev. Fish Biol. Fish. 8, 285–305 (1998).
    Google Scholar 
    17.Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855 (2018).
    Google Scholar 
    18.Deyle, E. R. et al. Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. U. S. A. 110, 6430–6435 (2013).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    19.Planque, B. Projecting the future state of marine ecosystems, ‘la grande illusion’?. ICES J. Mar. Sci. 73, 204–208 (2016).MathSciNet 

    Google Scholar 
    20.Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).ADS 
    CAS 

    Google Scholar 
    21.Maguire, K. C., Nieto-Lugilde, D., Fitzpatrick, M. C., Williams, J. W. & Blois, J. L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 46, 343–368 (2015).
    Google Scholar 
    22.Glaser, S. M. et al. Complex dynamics may limit prediction in marine fisheries. Fish Fish. 15, 616–633 (2014).
    Google Scholar 
    23.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 

    Google Scholar 
    24.Palmer, M. C., Deroba, J. J., Legault, C. M. & Brooks, E. N. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).ADS 
    CAS 

    Google Scholar 
    25.Swain, D. P., Benoit, H. P., Cox, S. P. & Cadigan, N. G. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).ADS 
    CAS 

    Google Scholar 
    26.Pershing, A. J. et al. Response to comments on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).CAS 

    Google Scholar 
    27.Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).ADS 
    CAS 

    Google Scholar 
    28.Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change 7, 23–41 (2016).
    Google Scholar 
    29.Walsh, J. E. et al. The high latitude heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 99, S39–S43 (2018).
    Google Scholar 
    30.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP85 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 117, 19656–19657 (2020).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    31.Dorn, M. W. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-walleye-pollock-stock-gulf-alaska (2020).32.Barbeaux, S. J. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-pacific-cod-stock-gulf-alaska (2020).33.Litzow, M. A. et al. Evaluating ecosystem change as Gulf of Alaska temperature exceeds the limits of preindustrial variability. Prog. Oceanogr. 186, 102393 (2020).
    Google Scholar 
    34.Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).
    Google Scholar 
    35.Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020).
    Google Scholar 
    36.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087 (2020).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    37.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 

    Google Scholar 
    38.Hsieh, C.-H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).ADS 
    CAS 

    Google Scholar 
    39.Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650 (2020).
    Google Scholar 
    40.Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).
    Google Scholar 
    41.Rogers, L. A., Wilson, M. T., Duffy-Anderson, J. T., Kimmel, D. G. & Lamb, J. F. Pollock and “the Blob”: Impacts of a marine heatwave on walleye pollock early life stages. Fish. Oceanogr. 30, 142–158 (2021).
    Google Scholar 
    42.Filbee-Dexter, K. et al. Quantifying ecological and social drivers of ecological surprise. J. Appl. Ecol. 55, 2135–2146 (2018).
    Google Scholar 
    43.Allen, M. Liability for climate change. Nature 421, 891–892 (2003).ADS 
    CAS 

    Google Scholar 
    44.Lloyd, E. A. & Oreskes, N. Climate change attribution: When is it appropriate to accept new methods?. Earths Future 6, 311–325 (2018).ADS 

    Google Scholar 
    45.Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).ADS 

    Google Scholar 
    46.Frame, D. J. et al. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Change 162, 781–797 (2020).ADS 

    Google Scholar 
    47.Frame, D. J., Wehner, M. F., Noy, I. & Rosier, S. M. The economic costs of Hurricane Harvey attributable to climate change. Clim. Change 160, 271–281 (2020).ADS 

    Google Scholar 
    48.Winkler, A. J. et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).ADS 

    Google Scholar 
    49.Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190013 (2019).ADS 

    Google Scholar 
    50.Litzow, M. A. et al. Quantifying a novel climate through changes in PDO-climate and PDO-salmon relationships. Geophys. Res. Lett. 47, 2020GL087972 (2020).ADS 

    Google Scholar 
    51.Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. 193, 102555 (2021).
    Google Scholar 
    52.Bailey, K. M. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Mar. Ecol. Prog. Ser. 198, 215–224 (2000).ADS 

    Google Scholar 
    53.Jutfelt, F. Metabolic adaptation to warm water in fish. Funct. Ecol. 34, 1138–1141 (2020).
    Google Scholar 
    54.Walsh, J. E. et al. Downscaling of climate model output for Alaskan stakeholders. Environ. Model. Softw. 110, 38–51 (2018).
    Google Scholar 
    55.Lott, F. C. & Stott, P. A. Evaluating simulated fraction of attributable risk using climate observations. J. Clim. 29, 4565–4575 (2016).ADS 

    Google Scholar 
    56.Freeland, H. & Ross, T. `The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014–2018?. Deep-Sea Res. I: Oceanogr. Res. Pap. 150, 103061 (2019).
    Google Scholar 
    57.Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).ADS 

    Google Scholar 
    58.Adamson, M. W. & Hilker, F. M. Resource-harvester cycles caused by delayed knowledge of the harvested population state can be dampened by harvester forecasting. Theor. Ecol. 13, 425–434 (2020).
    Google Scholar 
    59.Dorn, M. W. & Zador, S. G. A risk table to address concerns external to stock assessments when developing fisheries harvest recommendations. Ecosyst. Heal. Sustain. 6, 2 (2020).
    Google Scholar 
    60.Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. Deep-Sea Res. I: Oceanogr Res. Pap. 50, 691–699 (2003).ADS 

    Google Scholar 
    61.Lauffenburger, N., Williams, K. & Jones, D. Results of the acoustic-trawl surveys of walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska, March 2019. https://repository.library.noaa.gov/view/noaa/23711/ (2019).62.Stone, D. A., Rosier, S. M. & Frame, D. J. The question of life, the universe and event attribution. Nat. Clim. Change 11, 276–278 (2021).ADS 

    Google Scholar 
    63.Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552 (2003).
    Google Scholar 
    64.Holmes, E. E., Ward, E. J. & Wills, K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).
    Google Scholar 
    65.Yau, K. K. W., Wang, K. & Lee, A. H. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).MathSciNet 
    MATH 

    Google Scholar 
    66.Zuur, A. F., Ieno, N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 

    Google Scholar 
    67.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Series B Stat. Methodol. 65, 95–114 (2003).MathSciNet 
    MATH 

    Google Scholar 
    68.Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–29 (2017).
    Google Scholar 
    69.R Core Team. R: A language and environment for statistical computing. v4.0.2. http://www.r-project.org/ (2020).70.Buerkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    71.Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Series Stat. Soc. 182, 389–402 (2019).MathSciNet 

    Google Scholar  More

  • in

    Multi-centennial phase-locking between reproduction of a South American conifer and large-scale drivers of climate

    1.Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).CAS 
    PubMed 

    Google Scholar 
    2.Janzen, D. H. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465–492 (1971).
    Google Scholar 
    3.Silvertown, J. W. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14, 235–250 (1980).
    Google Scholar 
    4.Koenig, W. D. Global patterns of environmental synchrony and the Moran effect. Ecography 25, 283–288 (2002).
    Google Scholar 
    5.Moran, P. A. P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).
    Google Scholar 
    6.Ranta, E., Veijo, K. & Lindströom, J. Spatially autocorrelated disturbances and patterns in population synchrony. Proc. R. Soc. Lond. B 266, 1851–1856 (1999).
    Google Scholar 
    7.Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).
    Google Scholar 
    8.Sanguinetti, J. Producción y Predación de Semillas, Efectos de Corto y Largo Plazo Sobre el Reclutamiento de Plántulas. Caso de Estudio: Araucaria araucana (Universidad Nacional del Comahue, 2008).9.Schauber, E. M. et al. Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83, 1214–1225 (2002).
    Google Scholar 
    10.Fletcher, M.-S. Mast seeding and the El Niño-Southern Oscillation: a long-term relationship? Plant Ecol. 216, 527–533 (2015).
    Google Scholar 
    11.Koenig, W. D. & Knops, J. M. H. Scale of mast-seeding and tree-ring growth. Nature 396, 225 (1998).CAS 

    Google Scholar 
    12.Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Hadad, M. A., Roig, F. A., Arco Molina, J. G. & Hacket-Pain, A. Growth of male and female Araucaria araucana trees respond differently to regional mast events, creating sex-specific patterns in their tree-ring chronologies. Ecol. Indic. 122, 107245 (2021).
    Google Scholar 
    14.Thompson, D. W. J., Wallace, J. M. & Hegerl, G. C. Annular modes in the extratropical circulation. Part II: trends. J. Clim. 13, 1018–1036 (2000).
    Google Scholar 
    15.Holz, A., Kitzberger, T., Paritsis, J. & Veblen, T. T. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 3, 1–25 (2012).
    Google Scholar 
    16.Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R. & Barrera, M. D. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int. J. Wildland Fire 22, 194–206 (2013).
    Google Scholar 
    17.Mundo, I. A., Roig Juñent, F. A., Villalba, R., Kitzberger, T. & Barrera, M. D. Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees-Struct. Funct. 26, 443–458 (2012).
    Google Scholar 
    18.Veblen, T. T., Kitzberger, T., Villalba, R. & Donnegan, J. Fire history in Northern Patagonia: the roles of humans and climatic variation. Ecol. Monogr. 69, 47–67 (1999).
    Google Scholar 
    19.Sanguinetti, J. & Kitzberger, T. Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer Araucaria araucana. Austral Ecol. 33, 78–87 (2008).
    Google Scholar 
    20.Wigley, T. M. L., Briffa, K. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).
    Google Scholar 
    21.Swetnam, T. W. & Lynch, A. M. Multicentury, regional-scale patterns of Western Spruce budworm outbreaks. Ecol. Monogr. 63, 399–424 (1993).
    Google Scholar 
    22.Kitzberger, T., Veblen, T. T. & Villalba, R. Tectonic influences on tree growth in northern Patagonia, Argentina: the roles of substrate stability and climatic variation. Can. J. Res. 25, 1684–1696 (1995).
    Google Scholar 
    23.Mundo, I. A. et al. Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina. Trees Struct. Funct. 24, 561–570 (2010).
    Google Scholar 
    24.Rozas, V. et al. Climatic cues for secondary growth and cone production are sex-dependent in the long-lived dioecious conifer Araucaria araucana. Agric. Meteorol. 274, 132–143 (2019).
    Google Scholar 
    25.Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).CAS 
    PubMed 

    Google Scholar 
    26.Sanguinetti, J. & Kitzberger, T. Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biol. Invasions 12, 689–706 (2010).
    Google Scholar 
    27.Sanguinetti, J. & Kitzberger, T. Efectos de la producción de semillas y de la heterogeneidad vegetal sobre la supervivencia de semillas y el patrón espacio-temporal de establecimiento de plántulas en Araucaria araucana. Rev. Chil. Hist. Nat. 82, 319–335 (2009).
    Google Scholar 
    28.Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).PubMed 

    Google Scholar 
    29.Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).CAS 
    PubMed 

    Google Scholar 
    30.Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R. & Mohren, G. M. J. El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol. 16, 89–94 (2001).CAS 
    PubMed 

    Google Scholar 
    31.Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. J. Clim. 11, 3128–3147 (1998).
    Google Scholar 
    32.Kitzberger, T., Swetnam, T. W. & Veblen, T. T. Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Glob. Ecol. Biogeogr. 10, 315–326 (2001).
    Google Scholar 
    33.Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).
    Google Scholar 
    34.Silvestri, G. E. & Vera, C. S. Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 30, 2115 (2003).
    Google Scholar 
    35.Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).
    Google Scholar 
    36.Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79, 1039–1047 (2001).
    Google Scholar 
    37.Drobyshev, I., Niklasson, M., Mazerolle, M. J. & Bergeron, Y. Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric. Meteorol. 192–193, 9–17 (2014).
    Google Scholar 
    38.Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The North Atlantic Oscillation synchronises fruit production in western European forests. Ecography 40, 864–874 (2017).
    Google Scholar 
    39.Ascoli, D. et al. Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology 98, 1473 (2017).PubMed 

    Google Scholar 
    40.Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).CAS 

    Google Scholar 
    41.Jacques-Coper, M., Brönnimann, S., Martius, O., Vera, C. & Cerne, B. Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int. J. Climatol. 36, 1359–1374 (2016).
    Google Scholar 
    42.Estudio de la Variabilidad Climáticas en Chile para el Siglo XXI (CONAMA, 2006).43.Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).
    Google Scholar 
    44.Tortorelli, L. A. La explotación racional de los bosques de Araucaria de Neuquén. Su importancia económica. Servir (separata) VI, 1–74 (1942).45.Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A. & Villalba, R. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S) 120–155 (Melbourne Univ. Press, 1995).46.Lara, A. et al. Mapeo de la Ecoregión de los Bosques Valdivianos de Argentina y Chile, en escala 1:500.000 (Fundación Vida Silvestre Aregentina, 1999).47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).48.Cook, E. R., Briffa, K., Shiyatov, S. & Mazepa, V. in Methods of Dendrochronology—Applications in the Environmental Sciences (eds Cook, E. & Kairiukstis, L. A.) 104–132 (Kluwer Academic Publishers, 1990).49.Yamaguchi, D. K. A simple method for cross-dating increment cores from living trees. Can. J. Res. 21, 414–416 (1991).
    Google Scholar 
    50.Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    51.Visser, H. Note on the relation between ring widths and basal area increments. Forest Sci. 41, 297–304 (1995).52.Pedersen, B. S. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79, 79–93 (1998).
    Google Scholar 
    53.Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (University of Arizona, School of Renewable Natural Resources, 1985).54.Melvin, T. M., Briffa, K. R., Nicolussi, K. & Grabner, M. Time-varying-response smoothing. Dendrochronologia 25, 65–69 (2007).
    Google Scholar 
    55.Biondi, F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 9, 216–227 (1999).
    Google Scholar 
    56.Battipaglia, G. et al. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest. PLoS ONE 10, e0120962 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Blasing, T. J., Solomon, A. M. & Duvick, D. N. Response function revisited. Tree-Ring Bull. 44, 1–15 (1984).
    Google Scholar 
    58.Sanguinetti, J. Producción de semillas de Araucaria araucana (Molina) K. Koch durante 15 años en diferentes poblaciones del Parque Nacional Lanín (Neuquén-Argentina). Ecol. Austral 24, 265–275 (2014).
    Google Scholar 
    59.Ficha de Valorización de Resultados. Proyecto Producción, Técnicas de Poscosecha y Desarrollo de Productos a partir del Piñón (FIA, 2011).60.Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).
    Google Scholar 
    61.Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012).CAS 

    Google Scholar 
    62.Grissino-Mayer, H. D. Tree-ring Reconstructions of Climate and Fire at El Malpais National Monument, New Mexico (Univ. of Arizona, 1995).63.Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
    Google Scholar 
    64.Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).
    Google Scholar 
    65.Gouhier, T., Grinsted, A. & Simko, V. Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. R package version 0.20.19 https://github.com/tgouhier/biwavelet (2019).66.Mundo, I. A. Historia de incendios en bosques de Araucaria araucana (Molina) K. Koch de Argentina a través de un análisis dendroecológico (Universidad Nacional de La Plata, 2011).67.Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating Central Equatorial Pacific SST variability over the past millennium. Part I: methodology and validation. J. Clim. 26, 2302–2328 (2013).
    Google Scholar 
    68.Mundo, I. A. et al. Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina. Clim. Past 8, 815–829 (2012).
    Google Scholar  More

  • in

    Strategic Forest Reserves can protect biodiversity in the western United States and mitigate climate change

    1.Ripple, W. J. et al. World Scientists’ Warning of a Climate Emergency 2021. BioScience. https://doi.org/10.1093/biosci/biab079 (2021).2.Liu, P. R. & Raftery, A. E. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 C target. Commun. Earth Environ. 2, 1–10 (2021).
    Google Scholar 
    3.IPBES. (eds Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) 56 (IPBES, 2019).4.CBD Secretariat. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets Vol. Document UNEP/CBD/COP/DEC/X/2 (Secretariat of the Convention on Biological Diversity, 2010).5.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 

    Google Scholar 
    6.United State of America. The United States of America Nationally Determined Contribution- Reducing Greenhouse Gases in the United States: A 2030 Emissions Target. 24 (Submitted to the UNFCCC Secretariat under the Paris Agreement; https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf, 2021).7.Nelson, M. D. et al. Defining the United States land base: a technical document supporting the USDA Forest Service 2020 RPA assessment. Gen. Tech. Rep. NRS-191. 191, 1–70 (2020).
    Google Scholar 
    8.Pörtner, H. O. & et al. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. (IPBES and IPCC, https://doi.org/10.5281/zenodo.4782538, 2021).9.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).
    Google Scholar 
    10.Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).
    Google Scholar 
    11.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    Google Scholar 
    12.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. 114, 11645–11650 (2017).CAS 

    Google Scholar 
    13.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    14.Sexton, J. O. et al. Conservation policy and the measurement of forests. Nat. Clim. Chang. 6, 192–196 (2016).
    Google Scholar 
    15.Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).CAS 

    Google Scholar 
    16.Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03 (2009).
    Google Scholar 
    17.Mackey, B. et al. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Chang. 25, 763–787 (2020).
    Google Scholar 
    18.Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co‐benefits of preserving forests in the western United States. Ecol. Appl.30, e02039 (2020).
    Google Scholar 
    19.Ruefenacht, B. et al. Conterminous US and Alaska forest type mapping using forest inventory and analysis data. Photogramm. Eng. Remote Sensing 74, 1379–1388 (2008).
    Google Scholar 
    20.USGS GAP. Protected Areas Database of the United States (PAD-US) 2.1: U.S. Geological Survey data release, https://doi.org/10.5066/P92QM3NT (2020).21.USGS. Gap Analysis Project Species Habitat Maps CONUS_2001. U.S. Geological Survey, https://doi.org/10.5066/F7V122T2 (2018).22.Wilson, B. T., Lister, A. J., Riemann, R. I. & Griffith, D. M. Live tree species basal area of the contiguous United States (2000-2009). (USDA Forest Service, Rocky Mountain Research Station, 2013).23.Wilson, B. T., Woodall, C. & Griffith, D. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Management 8, 1–15 (2013).
    Google Scholar 
    24.Oleson, K. et al. Technical Descriptioin of Version 4.5 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).25.Buotte, P. C. et al. Near‐future forest vulnerability to drought and fire varies across the western United States. Glob. Chang. Biol. 25, 290–303 (2019).
    Google Scholar 
    26.Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).
    Google Scholar 
    27.Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc. Natl Acad. Sci. 95, 14839–14842 (1998).CAS 

    Google Scholar 
    28.Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Google Scholar 
    29.Lecina‐Diaz, J. et al. The positive carbon stocks–biodiversity relationship in forests: co‐occurrence and drivers across five subclimates. Ecol. Appl. 28, 1481–1493 (2018).
    Google Scholar 
    30.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
    Google Scholar 
    31.Glaser, C., Romaniello, C. & Moskowitz, K. Costs and consequences: the real price of livestock grazing on America’s public lands. Tucson, AZ: Center for Biological Diversity (2015).32.Flather, C. H. Species endangerment patterns in the United States. Vol. 241 (US Department of Agriculture, Forest Service, Rocky Mountain Forest and …, 1994).33.Beschta, R. L. et al. Adapting to climate change on western public lands: addressing the ecological effects of domestic, wild, and feral ungulates. Environ. Manag. 51, 474–491 (2013).
    Google Scholar 
    34.Betts, M. G., Gutiérrez Illán, J., Yang, Z., Shirley, S. M. & Thomas, C. D. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00186 (2019).35.Berner, L. T., Law, B. E., Meddens, A. J. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).
    Google Scholar 
    36.Law, B. E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl Acad. Sci. 115, 3663 (2018).CAS 

    Google Scholar 
    37.Ouren, D. S. et al. Environmental effects of off-highway vehicles on Bureau of land management lands: a literature synthesis, annotated bibliographies, extensive bibliographies, and internet resources. US Geol. Survey Open-File Rep. 1353, 225 (2007).
    Google Scholar 
    38.Talty, M. J., Mott Lacroix, K., Aplet, G. H. & Belote, R. T. Conservation value of national forest roadless areas. Conserv. Sci. Pract. 2, e288 (2020).
    Google Scholar 
    39.Belote, R. T. & Wilson, M. B. Delineating greater ecosystems around protected areas to guide conservation. Conserv. Sci. Pract. 2, e196 (2020).
    Google Scholar 
    40.DellaSala, D. A., Karr, J. R. & Olson, D. M. Roadless areas and clean water. J. Soil Water Conserv. 66, 78–84 (2011).
    Google Scholar 
    41.McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B. & Markusson, N. O. Beyond “net-zero”: a case for separate targets for emissions reduction and negative emissions. Front. Clim. 1, 4 (2019).
    Google Scholar 
    42.Mildrexler, D. J., Berner, L. T., Law, B. E., Birdsey, R. A. & Moomaw, W. R. Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Chang. 3, https://doi.org/10.3389/ffgc.2020.594274 (2020).43.Hudiburg, T. W., Luyssaert, S., Thornton, P. E. & Law, B. E. Interactive effects of environmental change and management strategies on regional forest carbon emissions. Environ. Sci. Tech. 47, 13132–13140 (2013).CAS 

    Google Scholar 
    44.Noss, R. F. & Daly, K. M. In Connectivity Conservation (eds K. Crooks & M. Sanjayan) 587–619 (Cambridge Univ. Press, 2010).45.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Google Scholar 
    46.Omernik, J. M. Perspectives on the nature and definition of ecological regions. Environ. Manag. 34, S27–S38 (2004).
    Google Scholar 
    47.Hudiburg, T. et al. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 19, 163–180 (2009).
    Google Scholar 
    48.Leu, M., Hanser, S. E. & Knick, S. T. The human footprint in the west: a large‐scale analysis of anthropogenic impacts. Ecol. Appl. 18, 1119–1139 (2008).
    Google Scholar 
    49.Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).
    Google Scholar 
    50.Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Chang. Biol. 17, 1022–1035 (2011).
    Google Scholar 
    51.Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Chang. 4, 138–142 (2014).CAS 

    Google Scholar 
    52.McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. 105, 16988–16993 (2008).CAS 

    Google Scholar 
    53.Scott, J. M. et al. Recovery of imperiled species under the Endangered Species Act: the need for a new approach. Front. Ecol. Environ. 3, 383–389 (2005).
    Google Scholar 
    54.Miller, S. L. et al. Recent population decline of the Marbled Murrelet in the Pacific Northwest. Condor 114, 771–781 (2012).
    Google Scholar 
    55.Noon, B. R. & McKelvey, K. S. Management of the spotted owl: a case history in conservation biology. Annu. Rev. Ecol. System. 27, 135–162 (1996).
    Google Scholar 
    56.Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Chang. 4, 2–5 (2014).CAS 

    Google Scholar 
    57.King, T. W. et al. Will Lynx lose their edge? Canada Lynx occupancy in Washington. J. Wildl. Manag. 84, 705–725 (2020).
    Google Scholar 
    58.Cayan, D. R. et al. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. 107, 21271–21276 (2010).CAS 

    Google Scholar 
    59.Rhoades, A. M., Ullrich, P. A. & Zarzycki, C. M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 50, 261–288 (2018).
    Google Scholar 
    60.Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314 (2020).CAS 

    Google Scholar 
    61.Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining mountain snowpack in western north America. Bull. Am. Meteorol. Soc. 86, 39–49 (2005).
    Google Scholar 
    62.Cook, B. et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth’s Futur. 8, e2019EF001461 (2020).
    Google Scholar 
    63.Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
    Google Scholar 
    64.Johnson, Z. C., Leibowitz, S. G. & Hill, R. A. Revising the index of watershed integrity national maps. Sci. Total Environ. 651, 2615–2630 (2019).CAS 

    Google Scholar 
    65.Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS 

    Google Scholar 
    66.Buotte, P., Levis, S. & Law, B. E. NACP forest carbon stocks, fluxes, and productivity estimates, Western USA, 1979-2099. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1662 (2019).67.Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2012).
    Google Scholar 
    68.McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2015).
    Google Scholar 
    69.Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2014).
    Google Scholar 
    70.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).CAS 

    Google Scholar 
    71.Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    Google Scholar 
    72.Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. 114, 2946–2951 (2017).CAS 

    Google Scholar 
    73.Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. 114, 4582–4590 (2017).CAS 

    Google Scholar 
    74.Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Management 355, 4–14 (2015).
    Google Scholar 
    75.Donato, D. C., Campbell, J. L. & Franklin, J. F. Multiple successional pathways and precocity in forest development: can some forests be born complex? J. Veg. Sci. 23, 576–584 (2012).
    Google Scholar 
    76.Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).
    Google Scholar 
    77.Harris, N. et al. Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. Carbon Balanc. Management 11, 24 (2016).CAS 

    Google Scholar 
    78.Ghimire, B. et al. Large carbon release legacy from bark beetle outbreaks across Western United States. Glob. Chang. Biol. 21, 3087–3101 (2015).
    Google Scholar 
    79.Mitchell, S. R., Harmon, M. E. & O’connell, K. E. Forest fuel reduction alters fire severity and long‐term carbon storage in three Pacific Northwest ecosystems. Ecol. Appl. 19, 643–655 (2009).
    Google Scholar 
    80.Rhodes, J. J. & Baker, W. L. Fire probability, fuel treatment effectiveness and ecological tradeoffs in western US public forests. Open For. Sci. J. 1, 1–7 (2008).
    Google Scholar 
    81.Law, B. E. & Harmon, M. E. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Management 2, 73–84 (2011).
    Google Scholar 
    82.Hudiburg, T. W., Law, B. E., Wirth, C. & Luyssaert, S. Regional carbon dioxide implications of forest bioenergy production. Nat. Clim. Chang. 1, 419–423 (2011).CAS 

    Google Scholar 
    83.Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).
    Google Scholar 
    84.Law, B. E. Regional analysis of drought and heat impacts on forests: current and future science directions. Glob. Chang. Biol. 20, 3595–3599 (2014).
    Google Scholar 
    85.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).
    Google Scholar 
    86.Kullberg, P. & Moilanen, A. How do recent spatial biodiversity analyses support the convention on biological diversity in the expansion of the global conservation area network? Natureza Conservacao 12, 3–10 (2014).
    Google Scholar 
    87.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).88.Hijmans, R. J. raster: Geographic Analysis and Modeling. R package version 3.0-12. http://CRAN.R-project.org/package=raster (2019).89.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4-8. https://CRAN.R-project.org/package=rgdal (2019).90.O’Brien, J. gdalUtilities: Wrappers for ‘GDAL’ Utilities Executables. R package version 1. https://CRAN.R-project.org/package=gdalUtilities (2019).91.Dawle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.8. https://CRAN.R-project.org/package=data.table. (2019).92.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlang New York, 2016).93.Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
    Google Scholar 
    94.Conservation Biology Institute. Protected Areas Database of the United States, CBI Edition Version 2. http://consbio.org/products/projects/pad-us-cbi-edition (2012).95.USDA Forest Service. Forests to Faucets 2.0 [spatial data set]. Retrieved from https://usfs-public.app.box.com/v/Forests2Faucets[Sept 21, 2021] (2019). More

  • in

    Artefactual depiction of predator–prey trophic linkages in global soils

    1.Wall, D. H., Bardgett, R. D. & Kelly, E. Biodiversity in the dark. Nat. Geosci. 3(5), 297–298 (2010).ADS 
    CAS 

    Google Scholar 
    2.Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10(1), 1–3 (2019).
    Google Scholar 
    3.Koch, A. et al. Soil security: Solving the global soil crisis. Global Pol. 4(4), 434–441 (2013).
    Google Scholar 
    4.Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528(7580), 69–76 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    5.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11(1), 1–13 (2020).
    Google Scholar 
    6.Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Zou, K., Thébault, E., Lacroix, G. & Barot, S. Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol. 30(8), 1454–1465 (2016).
    Google Scholar 
    8.Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3–S15 (2006).
    Google Scholar 
    9.de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. 110(35), 14296–14301 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—A global review. Geoderma 262, 101–111 (2016).ADS 
    CAS 

    Google Scholar 
    11.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33(5), 1187–1192 (2019).PubMed 

    Google Scholar 
    12.Phillips, H. R., Heintz-Buschart, A. & Eisenhauer, N. Putting soil invertebrate diversity on the map. Mol. Ecol. 29(4), 655–657 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    13.El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Sec. 20, 132–144 (2019).
    Google Scholar 
    14.Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9(1), 2989 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Eisenhauer, N. et al. Priorities for research in soil ecology. Pedobiologia 63, 1–7 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    16.Brose, U. & Scheu, S. Into darkness: Unravelling the structure of soil food webs. Oikos 123(10), 1153–1156 (2014).
    Google Scholar 
    17.Phillips, H. R. et al. Red list of a black box. Nat. Ecol. Evol. 1(4), 1–1 (2017).
    Google Scholar 
    18.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94(879), 421–425 (1960).
    Google Scholar 
    19.Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21(1), 138–150 (2018).PubMed 

    Google Scholar 
    20.Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 111(14), 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536(7617), 456–459 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    22.Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1–23 (1973).
    Google Scholar 
    23.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483(7388), 205–208 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl. Acad. Sci. 112(22), 7033–7038 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Maran, A. M. & Pelini, S. L. Predator contributions to belowground responses to warming. Ecosphere 7(9), e01457 (2016).
    Google Scholar 
    26.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29(19), R1036–R1044 (2019).CAS 
    PubMed 

    Google Scholar 
    27.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442(7100), 265–269 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    28.Murphy, S. M., Lewis, D. & Wimp, G. M. Predator population size structure alters consumption of prey from epigeic and grazing food webs. Oecologia 192(3), 791–799 (2020).ADS 
    PubMed 

    Google Scholar 
    29.Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3–13 (2001).
    Google Scholar 
    30.Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304(5677), 1629–1633 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    31.de Vries, F. T. & Wallenstein, M. D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 105(4), 913–920 (2017).
    Google Scholar 
    32.Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl. Acad. Sci. 108(43), 17720–17725 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47(1), 561–594 (2002).CAS 
    PubMed 

    Google Scholar 
    34.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115(33), E7863–E7870 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Johnson, S. N. et al. New frontiers in belowground ecology for plant protection from root-feeding insects. Appl. Soil. Ecol. 108, 96–107 (2016).
    Google Scholar 
    37.Veen, C. et al. Applying the aboveground-belowground interaction concept in agriculture: Spatio-temporal scales matter. Front. Ecol. Evol. 7, 300 (2019).
    Google Scholar 
    38.Birkhofer, K., Wise, D. H. & Scheu, S. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117(4), 494–500 (2008).
    Google Scholar 
    39.Birkhofer, K. et al. Organic farming affects the biological control of hemipteran pests and yields in spring barley independent of landscape complexity. Landsc. Ecol. 31(3), 567–579 (2016).
    Google Scholar 
    40.van der Putten, W. H. et al. Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia 161(1), 1–14 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Kleijn, D. et al. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).PubMed 

    Google Scholar 
    42.Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31(6), 440–452 (2016).PubMed 

    Google Scholar 
    43.Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20(11), 1427–1436 (2017).PubMed 

    Google Scholar 
    44.Briones, M. J. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 6, 149 (2018).
    Google Scholar 
    45.Kaya, H. K. & Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 38(1), 181–206 (1993).
    Google Scholar 
    46.Ferris, H. & Tuomisto, H. Unearthing the role of biological diversity in soil health. Soil Biol. Biochem. 85, 101–109 (2015).CAS 

    Google Scholar 
    47.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).ADS 

    Google Scholar 
    48.Bender, S. F. & van der Heijden, M. G. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52(1), 228–239 (2015).CAS 

    Google Scholar 
    49.De Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276–280 (2012).ADS 

    Google Scholar 
    50.Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29(4), 752–761 (2020).PubMed 

    Google Scholar 
    51.Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).
    Google Scholar 
    52.Polis, G. A. Complex trophic interactions in deserts: An empirical critique of food-web theory. Am. Nat. 138(1), 123–155 (1991).
    Google Scholar 
    53.Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147(5), 813–846 (1996).
    Google Scholar 
    54.Lavelle, P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. 181(3/4), 91–109 (2016).ADS 
    CAS 

    Google Scholar 
    55.Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PLoS ONE 5(7), e11567 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Heinen, R., van der Sluijs, M., Biere, A., Harvey, J. A. & Bezemer, T. M. Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. J. Ecol. 106(3), 1217–1229 (2018).
    Google Scholar 
    57.Ramirez, K. S., Geisen, S., Morriën, E., Snoek, B. L. & van der Putten, W. H. Network analyses can advance above-belowground ecology. Trends Plant Sci. 23(9), 759–768 (2018).CAS 
    PubMed 

    Google Scholar 
    58.Boyer, S., Snyder, W. E. & Wratten, S. D. Molecular and isotopic approaches to food webs in agroecosystems. Food Webs 9, 1–3 (2016).
    Google Scholar 
    59.Casey, J. M. et al. Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10(8), 1157–1170 (2019).
    Google Scholar 
    60.Choate, B. A. & Lundgren, J. G. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis. Crop Prot. 77, 110–118 (2015).
    Google Scholar 
    61.Furlong, M. J. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci. 22(1), 6–19 (2015).PubMed 

    Google Scholar 
    62.Eitzinger, B., Rall, B. C., Traugott, M. & Scheu, S. Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos 127(7), 915–926 (2018).
    Google Scholar 
    63.Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6(2), 343–351 (2012).PubMed 

    Google Scholar 
    64.Morriën, E. Understanding soil food web dynamics, how close do we get?. Soil Biol. Biochem. 102, 10–13 (2016).
    Google Scholar 
    65.Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos 123(10), 1157–1172 (2014).
    Google Scholar 
    66.Toscano, B. J., Hin, V. & Rudolf, V. H. Cannibalism and intraguild predation community dynamics: Coexistence, competitive exclusion, and the loss of alternative stable states. Am. Nat. 190(5), 617–630 (2017).PubMed 

    Google Scholar 
    67.Coleman, D. C. & Wall, D. H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiol. Ecol. Biochem. 4, 111–149 (2015).
    Google Scholar 
    68.Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).
    Google Scholar 
    69.Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905–914 (2011).CAS 

    Google Scholar 
    70.Oelbermann, K. & Scheu, S. Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N). Bull. Entomol. Res. 100(5), 511 (2010).CAS 
    PubMed 

    Google Scholar 
    71.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67–78 (1993).
    Google Scholar 
    72.Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).
    Google Scholar 
    73.Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6(1), 1–10 (2015).
    Google Scholar 
    74.Ruf, A. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil. Ecol. 9(1–3), 447–452 (1998).
    Google Scholar 
    75.Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links?. Ecology 84(8), 2042–2050 (2003).
    Google Scholar 
    76.Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169(4), 587–596 (2017).CAS 
    PubMed 

    Google Scholar 
    77.Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33(3), 186–197 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    78.Heinen, R., Biere, A., Harvey, J. A. & Bezemer, T. M. Effects of soil organisms on aboveground plant-insect interactions in the field: Patterns, mechanisms and the role of methodology. Front. Ecol. Evol. 6, 106 (2018).
    Google Scholar 
    79.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366(6467), 886–890 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Wardle, D. A., Hyodo, F., Bardgett, R. D., Yeates, G. W. & Nilsson, M. C. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92(3), 645–656 (2011).PubMed 

    Google Scholar 
    81.Preisser, E. L. & Strong, D. R. Climate affects predator control of an herbivore outbreak. Am. Nat. 163(5), 754–762 (2004).PubMed 

    Google Scholar 
    82.Hamilton, J. et al. Elevated atmospheric CO2 alters the arthropod community in a forest understory. Acta Oecol. 43, 80–85 (2012).ADS 

    Google Scholar 
    83.Zaller, J. G. et al. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Front. Environ. Sci. 2, 44 (2014).
    Google Scholar 
    84.Koltz, A. M., Classen, A. T. & Wright, J. P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. Proc. Natl. Acad. Sci. 115(32), E7541–E7549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105(3), 801–815 (2017).
    Google Scholar 
    86.Garratt, M. P. et al. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21(7), 1404–1415 (2018).CAS 

    Google Scholar 
    87.Smith-Ramesh, L. M. Predators in the plant–soil feedback loop: Aboveground plant-associated predators may alter the outcome of plant–soil interactions. Ecol. Lett. 21(5), 646–654 (2018).PubMed 

    Google Scholar 
    88.Gurr, G. M., Wratten, S. D., Landis, D. A. & You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 62, 91–109 (2017).CAS 
    PubMed 

    Google Scholar 
    89.Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371–377 (1999).
    Google Scholar 
    90.Von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia 163(4), 1033–1042 (2010).ADS 

    Google Scholar 
    91.Rowen, E., Tooker, J. F. & Blubaugh, C. K. Managing fertility with animal waste to promote arthropod pest suppression. Biol. Control 134, 130–140 (2019).
    Google Scholar 
    92.Perović, D. J. et al. Managing biological control services through multi-trophic trait interactions: Review and guidelines for implementation at local and landscape scales. Biol. Rev. 93(1), 306–321 (2018).PubMed 

    Google Scholar 
    93.Roger-Estrade, J., Anger, C., Bertrand, M. & Richard, G. Tillage and soil ecology: Partners for sustainable agriculture. Soil Tillage Res. 111(1), 33–40 (2010).
    Google Scholar 
    94.Dias, T., Dukes, A. & Antunes, P. M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95(3), 447–454 (2015).CAS 
    PubMed 

    Google Scholar 
    95.Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53(1), 233–241 (2016).
    Google Scholar 
    96.Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1(8), 441–446 (2018).
    Google Scholar 
    97.Swift, M. J., Heal, O. W., Anderson, J. M. & Anderson, J. M. Decomposition in Terrestrial Ecosystems Vol. 5 (University of California Press, 1979).
    Google Scholar 
    98.van Straalen, N. M., Butovsky, R. O., Pokarzhevskii, A. D., Zaitsev, A. S. & Verhoef, S. C. Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45(5), 451–466 (2001).
    Google Scholar 
    99.Birkhofer, K. et al. Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecol. Evol. 7(6), 1942–1953 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    100.Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94(1), 37–59 (2019).
    Google Scholar  More

  • in

    Comparative quantification of local climate regulation by green and blue urban areas in cities across Europe

    Climate change and the urban heat island effect threaten the sustainability of rapidly growing urban settlements and urban population worldwide1. Such threats may be ameliorated by the ecosystem service of local climate regulation provided by green–blue urban areas (natural, restored, or (re)constructed ecosystems, such as forested land, wetlands, parks)2,3,4. The spatiotemporal relationships existing between natural ecosystems and human societies form the basis of the ecosystem service framework, used to represent such benefits from nature to human well-being5,6. Areas of ecosystem service provision (nature contribution of some supply) and ecosystem service use (human beneficiaries with some ecosystem service demand) in a landscape are then often connected by some form of carrier flow, which can be natural (air and water movement) or depend on human-made infrastructure (e.g., pipelines for water, road network and vehicles for human movement)7,8. Additionally, ecosystem service relevance is scale-dependent, e.g., with carbon sequestration being globally relevant, while recreational areas provide mostly local and regional benefits9,10,11. Over each scale of relevance, it is essential to distinguish the supply and demand sides of spatial ecosystem services relationships2, and the degree to which potential supply (left, Fig. 1) can actually reach and fulfill some actual demand (right, Fig. 1). This may be referred to as the degree of realization of ecosystem service supply and demand12. Conceptually, we define a potential as the hypothetical maximum capacity for a service (supply) or need (demand). In contrast, a realized service quantifies the actual ecosystem service, after consideration of proper spatial flow connections between natural ecosystems and humans. For example, for a city, only part of its total potential ecosystem service demand (Pd) may be actually fulfilled (referred to as the realized ecosystem service demand, Rd, right in Fig. 1) by only part (the realized supply part, Rs, left in Fig. 1) of the city’s total potential ecosystem service supply (Ps). Thus, Rd measures the part of the human demand (for the ecosystem service) actually fulfilled, while Rd quantify the part of the supply used to provide the ecosystem service. The Methods section describes and discusses in further detail this and other term definitions used in the analysis, the relationships between terms, and the calculation methods employed to quantify them.Figure 1Spatial flow dependence of ecosystem services and studied city locations. Schematic of potential and realized supply and demand of flow-dependent ecosystem service (for explanation, see “Methods”).Full size imageIn practice, implementing the concept of ecosystem services into urban landscape management and decision making is still problematic5, with one reason being the challenge to link spatially disaggregated areas of service provision with the human beneficiaries13. In addition, considerable ambiguity still remains, conceptually and in practice, regarding the distinction and quantification of potential and realized ecosystem services supply and demand14. For example, without consideration of the spatial relationship between supply and demand (implicitly or explicitly), it becomes difficult to determine or quantify, in practice, if an actual ecosystem service exists. To contribute to its resolution, we here investigate the degree of supply and demand realization for the urban ecosystem service of local climate regulation using comparative quantitative indicators in and across 660 cities of different sizes and in different parts of Europe (Fig. 2).Figure 2Studied city locations. Map of the European study region and locations of the cities studied. See Supplementary Table 1 for further city data.Full size imageThe potential of green–blue urban areas for cooling cities is generally well established, and has been studied using direct observations15,16, remote sensing17 or modelling based approaches18,19. The regulation of local urban air temperatures by such areas can increase thermal comfort and decrease health risks related to urban heat island (UHI) effects20,21 for urban populations. The UHI effects relate to often-observed higher ambient air temperatures in urban environments compared to their close surroundings20,21. The spatial extents of cities in this study are then considered according to their respective administrative unit definitions.The investigation focuses on urban realization of this ecosystem service because the proportion of the global human population living in urban areas is steadily rising22, and cities are critical for both climate change mitigation and societal adaptation to warming23,24. For adaptation, cities need to handle exacerbated urban warming by UHI effects and provide livable environments for their residents while avoiding detrimental consequences from competing development interests25,26. The UHI effects emphasize the importance of local climate regulation as an essential urban ecosystem service, the actual realization of which depends on city function and form, with the latter including the spatial distribution of green–blue urban areas, as well as temporal changes in this by growing urbanization. The degree to which such growth leads to replacement of moist soils and vegetative cover with paved and impervious surfaces also affects urban surface energy and radiation balances27, and associated land surface temperatures at local human scale, although the relationship with air temperature is complex27. For example the proportion of vegetation in a particular area will regulate the resulting ratio of sensitive to latent heat flux (known as Bowen ratio), which will in turn affect properties of the urban climate27.In reality, a city’s climate consists of a variety of smaller-scale microclimates, which can be modified and leveraged through deliberate design20. This emphasizes the importance of good city planning28, including for conservation, restoration, and construction of new urban green–blue areas29,30. Such areas can provide various services to urban populations, e.g., urban flood mitigation12 and more general health31 and well-being32 benefits, including cooling required to mitigate UHI effects. The latter can be achieved, e.g., by enhanced latent heat flux associated with higher evapotranspiration from green areas and evaporation from blue areas. Through the flow of air and its lateral heat advection, green–blue urban areas can also cool surrounding built parts of the city that would commonly have a demand for such ecosystem service of local climate regulation2. How to measure and predictively quantify the zones of influence of such air cooling by green–blue areas is still a challenging research question, but such zones are reported to be in the range of several hundred meters29,33,34.The aim of the indicators developed and used in this study is to quantify actual realized urban ecosystem service supply in terms of its fulfillment of some actual demand for that ecosystem service of the urban human population. Over each city, such realization and associated indicator values depend both on local conditions (such as natural land-cover areas that can supply the considered ecosystem service) and overall urban form and spatial configuration of the natural and built areas in the urban landscape. At larger scales spanned by multiple cities (such as those over Europe studied in this paper, Fig. 2), the quantitative indicators can be used to detect main ecosystem service realization patterns, similarities and differences among cities. This is done by quantifying indicator statistics across the cities, and assessing ecosystem service realization patterns in terms of how these statistics depend on city characteristics, or associated country or sub-region characteristics, such as population density or socio-economic measures like Human Development Index (HDI) and GDP per capita.A few studies have evaluated spatial dependencies of ecosystem services35,36 and mostly focused on multiple services in a specific study area. Our comparative multi-city study aims instead at revealing possible overarching statistical patterns of the spatially dependent ecosystem service of local climate regulation, and its realization in and across European urban systems. While this urban ecosystem service is important per se, the dependence of its realization on spatial proximity to green–blue areas may also provide useful guidance for further study of other urban ecosystem services that depend on the spatial distribution of green–blue areas and their proximity to human needs within cities2,12,32.Previous multi-city explorations of urban socio-economic growth and human-made infrastructure have revealed and quantified various statistical cross-city patterns37,38,39. Our study hypothesizes that such patterns may also emerge in the cross-city statistics of ecosystem service realization indicators related to green–blue city areas and their provision to urban populations. Identification of such quantitative ecosystem service indicator patterns can increase fundamental understanding of urban ecosystem service conditions, as well as projection capabilities for changes in these conditions under city growth, e.g., in terms of population density, HDI, and GDP per capita.To explore and test the main study hypothesis, we compile and synthesize for all 660 European cities (Fig. 2) high-resolution datasets for city morphology (e.g., land cover) and bio-physical characteristics (e.g. degree of imperviousness, vegetation type and vegetation density), based on previous study reports of the relevance of these parameters for the ecosystem service of local climate regulation2,12, along with city-scale measures of human population, city area, and resulting population density ratio (Supplementary Table 1). Using these data, we evaluate and map total potential ecosystem service supply and demand in each city (Figs. 1, 2, Supplementary Figures 1–3, Methods), and further apply a model of radially decaying ecosystem service supply and demand realization at 20 m resolution (Supplementary Figure 2–3, Methods) to also account for the spatial influence reach of local climate regulation from each location in the city. Furthermore, for comparative multi-city analysis, we quantify a set of directly comparable ecosystem service realization indicators for each city (explained further below) and their resulting statistics across all 660 cities over Europe, and comparatively for cities in different European countries and sub-regions.Indicator definitions and calculationsFor each of the 660 cities, we consider and calculate two basic metrics of urban ecosystem service realization: the ratio of realized to potential ecosystem service supply (Rs/Ps), and the ratio of realized to potential ecosystem service demand (Rd/Pd). For each discretized city pixel within a city, we first calculate its local net potential ecosystem service supply (Ps) or demand (Pd) directly from the urban morphology and bio-physical data (Supplementary Figure 1). For each net supply pixel, we further calculate (as illustrated bottom right in Supplementary Figure 2) that pixel’s ecosystem service realized supply contributions to the surrounding net demand pixels within its spatial influence radius (top, Supplementary Figure 2). Analogously, for each net demand pixel, we calculate the contributions to fulfilling (realizing) its ecosystem service demand from the surrounding net supply pixels that have that net demand pixel within their spatial influence radius. For each pixel of any type, we thus calculate its realized ecosystem service supply Rs or demand Rd in relation to its potential net local supply Ps or demand Pd, respectively (Supplementary Figure 2; see also Supplementary Figure 3 and Supplementary Information for further calculation and mapping details). We further calculate comparative indicators of city-average relative realized ecosystem service supply and demand, Rs/Ps and Rd/Pd, respectively, from the sums of local Rs, Rd, Ps and Pd over all pixels in the city. The city-average supply indicator Rs/Ps thus quantifies the average degree of realized (actually used) ecosystem service supply from all green–blue areas over the whole city (left in Fig. 1). Analogously, the city-average demand indicator Rd/Pd quantifies the average degree of realized (actually fulfilled) ecosystem service demand over each city (right in Fig. 1). For further cross-city comparison, we also calculate indicators for how large area fraction of total city area has a relatively high degree of ecosystem service supply and demand realization, respectively. Local Rs/Ps ≥ 0.5 and Rd/Pd ≥ 0.5 are then selected as illustrative thresholds for such relatively high degree of ecosystem service supply and demand realization, respectively, with the area fractions calculated from the number of pixels with Rs/Ps ≥ 0.5 or Rd/Pd ≥ 0.5 relative to the total number of pixels in each city.Based on the power-law relationships with population density results found for both previous city-average and city-fraction indicators of ecosystem service realization, we also have an opportunity to project indicator values for future scenarios of changed population density, as$$r_{i} = frac{Ri}{{Pi}} = Ai cdot left( {PD} right)^{beta i} le 1$$
    (1)
    where index i = d represents demand and i = s supply. Furthermore, for city-average indicators, Ri and Pi represent realized and potential ecosystem service, respectively, while for area-fraction indicators, they represent city area with high degree of ecosystem service realization (≥ 0.5) and total city area, respectively. The constraint of (r_{i} le 1) is due to the upper limit of Ri ≤ Pi for both indicator types, with Ai the scale factor and βi the exponent of a power law relationship ri with population density (denoted PD). Based on Eq. (1), a relative measure of ecosystem service realization effectiveness can be estimated from the demand fulfillment ((r_{d})) relative to the supply use ((r_{s})), as:$$Effectiveness = frac{{r_{d} }}{{r_{s} }} = frac{{Ad cdot left( {PD} right)^{beta d} }}{{As cdot left( {PD} right)^{beta s} }} = frac{Ad}{{As}}PD^{{left( {beta d – beta s} right)}}$$
    (2a)
    with$$r_{d} = Ad cdot left( {PD} right)^{beta d} quad ifquad r_{d} le 1,,,,,r_{d} = 1quad otherwise$$
    (2b)
    $$r_{s} = As cdot left( {PD} right)^{beta s} quad if,r_{s} le 1,,,,r_{s} = 1quad otherwise.$$
    (2c) More

  • in

    Mammalian gut metabolomes mirror microbiome composition and host phylogeny

    1.Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, et al. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Song SJ, Sanders JG, Delsuc F, Metcalf J, Amato K, Taylor MW, et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio. 2020;11:e02901–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Godon J-J, Arulazhagan P, Steyer J-P, Hamelin J. Vertebrate bacterial gut diversity: size also matters. BMC Ecol. 2016;16:12.PubMed 
    PubMed Central 

    Google Scholar 
    4.Lutz HL, Jackson EW, Webala PW, Babyesiza WS, Kerbis Peterhans JC, Demos TC, et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. mSystems. 2019;4:e00511–19.PubMed 
    PubMed Central 

    Google Scholar 
    5.Nishida AH, Ochman H. Rates of gut microbiome divergence in mammals. Mol Ecol. 2018;27:1884–97.PubMed 
    PubMed Central 

    Google Scholar 
    6.Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Lim SJ, Bordenstein SR. An introduction to phylosymbiosis. Proc Biol Sci. 2020;287:20192900.PubMed 
    PubMed Central 

    Google Scholar 
    8.Ross AA, Müller KM, Weese JS, Neufeld JD. Comprehensive skin microbiome analysis reveals the uniqueness of human skin and evidence for phylosymbiosis within the class Mammalia. Proc Natl Acad Sci USA. 2018;115:E5786–E5795.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Ochman H, Worobey M, Kuo C-H, Ndjango J-BN, Peeters M, Hahn BH, et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 2010;8:e1000546.PubMed 
    PubMed Central 

    Google Scholar 
    10.Amato KR, G Sanders J, Song SJ, Nute M, Metcalf JL, Thompson LR, et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 2018;13:576–87.PubMed 
    PubMed Central 

    Google Scholar 
    11.Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Brooks AW, Kohl KD, Brucker RM, van Opstal EJ, Bordenstein SR. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 2016;14:e2000225.PubMed 
    PubMed Central 

    Google Scholar 
    13.Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A, Knight R. Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol. 2014;23:1301–17.CAS 
    PubMed 

    Google Scholar 
    14.Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.
    Google Scholar 
    17.Weimer PJ. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations. Front Microbiol. 2015;6:296.PubMed 
    PubMed Central 

    Google Scholar 
    18.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 

    Google Scholar 
    19.Nelson MB, Martiny AC, Martiny JBH. Global biogeography of microbial nitrogen-cycling traits in soil. Proc Natl Acad Sci USA. 2016;113:8033–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 

    Google Scholar 
    21.Inkpen SA, Andrew Inkpen S, Douglas GM, Brunet TDP, Leuschen K, Ford Doolittle W, et al. The coupling of taxonomy and function in microbiomes. Biol Philos. 2017;32:1225–43.
    Google Scholar 
    22.Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19:77–94.CAS 
    PubMed 

    Google Scholar 
    23.Turnbaugh PJ, Gordon JI. An invitation to the marriage of metagenomics and metabolomics. Cell. 2008;134:708–13.CAS 
    PubMed 

    Google Scholar 
    24.Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends Microbiol. 2016;24:402–13.CAS 
    PubMed 

    Google Scholar 
    25.Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828–37.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Wilson DE, Reeder DM Mammal species of the world: a taxonomic and geographic reference. 2005. JHU Press.27.Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013;7:1069–79.PubMed 
    PubMed Central 

    Google Scholar 
    28.Stevenson DM, Weimer PJ. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol. 2007;75:165–74.CAS 
    PubMed 

    Google Scholar 
    29.Caporaso JG, Gregory Caporaso J, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    32.Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Gawlik-Dziki U, Dziki D, Baraniak B, Lin R. The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT. 2009;42:137–43.CAS 

    Google Scholar 
    34.Melnik AV, da Silva RR, Hyde ER, Aksenov AA, Vargas F, Bouslimani A, et al. Coupling targeted and untargeted mass spectrometry for metabolome-microbiome-wide association studies of human fecal samples. Anal Chem. 2017;89:7549–59.CAS 
    PubMed 

    Google Scholar 
    35.Giavalisco P, Li Y, Matthes A, Eckhardt A, Hubberten H-M, Hesse H, et al. Elemental formula annotation of polar and lipophilic metabolites using 13C, 15N and 34S isotope labelling, in combination with high-resolution mass spectrometry. Plant J. 2011;68:364–76.CAS 
    PubMed 

    Google Scholar 
    36.Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat Protoc. 2006;1:387–96.CAS 
    PubMed 

    Google Scholar 
    37.Hochberg U, Degu A, Toubiana D, Gendler T, Nikoloski Z, Rachmilevitch S, et al. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response. BMC Plant Biol. 2013;13:184.PubMed 
    PubMed Central 

    Google Scholar 
    38.Shabat SKB, Sasson G, Doron-Faigenboim A, Durman T, Yaacoby S, Berg Miller ME, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016;10:2958–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Pluskal T, Castillo S, Villar-Briones A, Orešič M MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics. 2010;11;1–11.40.Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.da Silva RR, Wang M, Nothias L-F, van der Hooft JJJ, Caraballo-Rodríguez AM, Fox E, et al. Propagating annotations of molecular networks using in silico fragmentation. PLoS Comput Biol. 2018;14:e1006089.PubMed 
    PubMed Central 

    Google Scholar 
    42.Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias L-F, Wandy J, Chen C, et al. MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Metabolites. 2019;9:144.CAS 
    PubMed Central 

    Google Scholar 
    43.Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:61.PubMed 
    PubMed Central 

    Google Scholar 
    44.Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Kessner D, Chambers M, Burke R, Agus D, Mallick P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics. 2008;24:2534–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Aksenov AA, Laponogov I, Zhang Z, Doran SLF, Belluomo I, Veselkov D, et al. Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nat Biotechnol. 2021;39:169–73.CAS 
    PubMed 

    Google Scholar 
    47.Kiela PR, Ghishan FK. Physiology of intestinal absorption and secretion. Best Pr Res Clin Gastroenterol. 2016;30:145–59.CAS 

    Google Scholar 
    48.Karasov WH, Diamond JM. Interplay between physiology and ecology in digestion. Bioscience. 1988;38:602–11.CAS 

    Google Scholar 
    49.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
    Google Scholar 
    51.Wickham H, ggplot2: elegant graphics for data analysis. Springer; 2016.52.Hulsen T, de Vlieg J, Alkema W. BioVenn—a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics. 2008;9:488.PubMed 
    PubMed Central 

    Google Scholar 
    53.Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
    Google Scholar 
    54.Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.
    Google Scholar 
    55.Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31:3718–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22:2971–2.CAS 
    PubMed 

    Google Scholar 
    58.Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 2017;34:1812–9.CAS 
    PubMed 

    Google Scholar 
    59.Baker FB. Stability of two hierarchical grouping techniques case I: sensitivity to data errors. J Am Stat Assoc. 1974;69:440–5.
    Google Scholar 
    60.De Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.
    Google Scholar 
    61.Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3:211–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Jarmusch AK, Wang M, Aceves CM, Advani RS, Aguirre S, Aksenov AA, et al. ReDU: a framework to find and reanalyze public mass spectrometry data. Nat Methods. 2020;17:901–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Ridlon JM, Kang D-J, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–59.CAS 
    PubMed 

    Google Scholar 
    64.Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2019;11:1–14.65.Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Haslewood GA. Bile salt evolution. J Lipid Res. 1967;8:535–50.CAS 
    PubMed 

    Google Scholar 
    67.Hofmann AF, Hagey LR, Krasowski MD. Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res. 2010;51:226–46.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hofmann AF. Bile acids: the good, the bad, and the ugly. N. Physiol Sci. 1999;14:24–29.CAS 

    Google Scholar 
    69.Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–90.CAS 
    PubMed 

    Google Scholar 
    70.Engelhardt W von, Rechkemmer G. The physiological effects of short-chain fatty acids in the hind gut. Fibre in human and animal nutrition. 1983. The Royal Society of New Zealand, Palmerston North, New Zealand, pp 149-55.71.Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8:1323–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Clemens ET, Stevens CE. Sites of organic acid production and patterns of digesta movement in the gastro-intestinal tract of the raccoon. J Nutr. 1979;109:1110–6.CAS 
    PubMed 

    Google Scholar 
    73.Schwab C, Cristescu B, Boyce MS, Stenhouse GB, Gänzle M. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears. Can J Microbiol. 2009;55:1335–46.CAS 
    PubMed 

    Google Scholar 
    74.Schwab C, Gänzle M. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears. Can J Microbiol. 2011;57:177–85.CAS 
    PubMed 

    Google Scholar 
    75.Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Tofalo R, Cocchi S, Suzzi G. Polyamines and gut microbiota. Front Nutr. 2019;6:16.PubMed 
    PubMed Central 

    Google Scholar 
    77.Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, et al. Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep. 2012;2:233.PubMed 
    PubMed Central 

    Google Scholar 
    78.Pugin B, Barcik W, Westermann P, Heider A, Wawrzyniak M, Hellings P, et al. A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Micro Ecol Health Dis. 2017;28:1353881.
    Google Scholar 
    79.Nakamura A, Ooga T, Matsumoto M. Intestinal luminal putrescine is produced by collective biosynthetic pathways of the commensal microbiome. Gut Microbes. 2019;10:159–71.CAS 
    PubMed 

    Google Scholar 
    80.Aura A-M, O’Leary KA, Williamson G, Ojala M, Bailey M, Puupponen-Pimiä R, et al. Quercetin derivatives are deconjugated and converted to hydroxyphenylacetic acids but not methylated by human fecal flora in vitro. J Agric Food Chem. 2002;50:1725–30.CAS 
    PubMed 

    Google Scholar 
    81.Booth AN, Deeds F, Jones FT, Murray CW. The metabolic fate of rutin and quercetin in the animal body. J Biol Chem. 1956;223:251–7.CAS 
    PubMed 

    Google Scholar 
    82.Jaganath IB, Mullen W, Edwards CA, Crozier A. The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radic Res. 2006;40:1035–46.CAS 
    PubMed 

    Google Scholar 
    83.Mena P, Calani L, Bruni R, Del Rio D. Bioactivation of high-molecular-weight polyphenols by the gut microbiome. Diet-Microbe Interactions in the Gut. Academic Press; 2015. pp 73–101.84.Serra A, Macià A, Romero M-P, Reguant J, Ortega N, Motilva M-J. Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem. 2012;130:383–93.CAS 

    Google Scholar 
    85.Peng X, Zhang Z, Zhang N, Liu L, Li S, Wei H. In vitro catabolism of quercetin by human fecal bacteria and the antioxidant capacity of its catabolites. Food Nutr Res. 2014;58:23406.86.Feng X, Li Y, Brobbey Oppong M, Qiu F. Insights into the intestinal bacterial metabolism of flavonoids and the bioactivities of their microbe-derived ring cleavage metabolites. Drug Metab Rev. 2018;50:343–56.CAS 
    PubMed 

    Google Scholar 
    87.Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019;364:1055.
    Google Scholar 
    88.Maini Rekdal V, Nol Bernadino P, Luescher MU, Kiamehr S, Le C, Bisanz JE, et al. A widely distributed metalloenzyme class enables gut microbial metabolism of host- and diet-derived catechols. Elife. 2020;9:e50845.PubMed 
    PubMed Central 

    Google Scholar 
    89.Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol. 2017;15:127.PubMed 
    PubMed Central 

    Google Scholar 
    90.Steiner CC, Ryder OA. Molecular phylogeny and evolution of the Perissodactyla. Zool J Linn Soc. 2011;163:1289–303.
    Google Scholar 
    91.McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM, et al. The effects of captivity on the mammalian gut microbiome. Integr Comp Biol. 2017;57:690–704.PubMed 
    PubMed Central 

    Google Scholar 
    92.Frankel JS, Mallott EK, Hopper LM, Ross SR, Amato KR. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am J Primatol. 2019;81:e23061.PubMed 

    Google Scholar 
    93.Dührkop K, Nothias L-F, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol. 2021;39:462–71.PubMed 

    Google Scholar 
    94.Tripathi A, Vázquez-Baeza Y, Gauglitz JM, Wang M, Dührkop K, Nothias-Esposito M, et al. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat Chem Biol. 2021;17:146–51.CAS 
    PubMed 

    Google Scholar 
    95.Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.CAS 
    PubMed 

    Google Scholar 
    96.Pudlo NA, Pereira GV, Parnami J, Cid M, Markert S, Tingley JP, et al. Extensive transfer of genes for edible seaweed digestion from marine to human gut bacteria. bioRxiv. 2020. https://doi.org/10.1101/2020.06.09.142968.97.Scheline RR Metabolism of higher terpenoids. CRC Handbook of Mammalian Metabolism of Plant Compounds. CRC Press; 1991. pp 197–241.98.Saha JR, Butler VP Jr, Neu HC, Lindenbaum J. Digoxin-inactivating bacteria: identification in human gut flora. Science. 1983;220:325–7.CAS 
    PubMed 

    Google Scholar 
    99.Koppel N, Bisanz JE, Pandelia M-E, Turnbaugh PJ, Balskus EP. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. Elife. 2018;7:e33953.PubMed 
    PubMed Central 

    Google Scholar 
    100.Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 2017;19:29–41.CAS 
    PubMed 

    Google Scholar 
    101.Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. Bile acids and the gut microbiome. Curr Opin Gastroenterol. 2014;30:332–8.PubMed 
    PubMed Central 

    Google Scholar 
    102.Begley M, Gahan CGM, Hill C. The interaction between bacteria and bile. FEMS Microbiol Rev. 2005;29:625–51.CAS 
    PubMed 

    Google Scholar 
    103.Lee M-T, Le HH, Johnson EL. Dietary sphinganine is selectively assimilated by members of the mammalian gut microbiome. J Lipid Res. 2021;62:100034.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    104.Johnson EL, Heaver SL, Waters JL, Kim BI, Bretin A, Goodman AL, et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun. 2020;11:2471.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More