Artefactual depiction of predatorâprey trophic linkages in global soils
1.Wall, D. H., Bardgett, R. D. & Kelly, E. Biodiversity in the dark. Nat. Geosci. 3(5), 297â298 (2010).ADSÂ
CASÂ
Google ScholarÂ
2.Eisenhauer, N., Bonn, A. & Guerra, C. A. Recognizing the quiet extinction of invertebrates. Nat. Commun. 10(1), 1â3 (2019).
Google ScholarÂ
3.Koch, A. et al. Soil security: Solving the global soil crisis. Global Pol. 4(4), 434â441 (2013).
Google ScholarÂ
4.Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528(7580), 69â76 (2015).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
5.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11(1), 1â13 (2020).
Google ScholarÂ
6.Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505â511 (2014).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
7.Zou, K., ThĂ©bault, E., Lacroix, G. & Barot, S. Interactions between the green and brown food web determine ecosystem functioning. Funct. Ecol. 30(8), 1454â1465 (2016).
Google ScholarÂ
8.Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, S3âS15 (2006).
Google ScholarÂ
9.de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. 110(35), 14296â14301 (2013).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
10.Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem servicesâA global review. Geoderma 262, 101â111 (2016).ADSÂ
CASÂ
Google ScholarÂ
11.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33(5), 1187â1192 (2019).PubMedÂ
Google ScholarÂ
12.Phillips, H. R., Heintz-Buschart, A. & Eisenhauer, N. Putting soil invertebrate diversity on the map. Mol. Ecol. 29(4), 655â657 (2020).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
13.El Mujtar, V., Muñoz, N., Mc Cormick, B. P., Pulleman, M. & Tittonell, P. Role and management of soil biodiversity for food security and nutrition; where do we stand?. Glob. Food Sec. 20, 132â144 (2019).
Google ScholarÂ
14.Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9(1), 2989 (2018).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
15.Eisenhauer, N. et al. Priorities for research in soil ecology. Pedobiologia 63, 1â7 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
16.Brose, U. & Scheu, S. Into darkness: Unravelling the structure of soil food webs. Oikos 123(10), 1153â1156 (2014).
Google ScholarÂ
17.Phillips, H. R. et al. Red list of a black box. Nat. Ecol. Evol. 1(4), 1â1 (2017).
Google ScholarÂ
18.Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94(879), 421â425 (1960).
Google ScholarÂ
19.Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21(1), 138â150 (2018).PubMedÂ
Google ScholarÂ
20.Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 111(14), 5266â5270 (2014).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
21.Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536(7617), 456â459 (2016).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
22.Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1â23 (1973).
Google ScholarÂ
23.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483(7388), 205â208 (2012).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
24.Crowther, T. W. et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc. Natl. Acad. Sci. 112(22), 7033â7038 (2015).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
25.Maran, A. M. & Pelini, S. L. Predator contributions to belowground responses to warming. Ecosphere 7(9), e01457 (2016).
Google ScholarÂ
26.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29(19), R1036âR1044 (2019).CASÂ
PubMedÂ
Google ScholarÂ
27.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442(7100), 265â269 (2006).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
28.Murphy, S. M., Lewis, D. & Wimp, G. M. Predator population size structure alters consumption of prey from epigeic and grazing food webs. Oecologia 192(3), 791â799 (2020).ADSÂ
PubMedÂ
Google ScholarÂ
29.Scheu, S. Plants and generalist predators as links between the below-ground and above-ground system. Basic Appl. Ecol. 2, 3â13 (2001).
Google ScholarÂ
30.Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304(5677), 1629â1633 (2004).ADSÂ
CASÂ
PubMedÂ
Google ScholarÂ
31.de Vries, F. T. & Wallenstein, M. D. Below-ground connections underlying above-ground food production: A framework for optimising ecological connections in the rhizosphere. J. Ecol. 105(4), 913â920 (2017).
Google ScholarÂ
32.Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl. Acad. Sci. 108(43), 17720â17725 (2011).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
33.Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47(1), 561â594 (2002).CASÂ
PubMedÂ
Google ScholarÂ
34.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
35.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. Sci. 115(33), E7863âE7870 (2018).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
36.Johnson, S. N. et al. New frontiers in belowground ecology for plant protection from root-feeding insects. Appl. Soil. Ecol. 108, 96â107 (2016).
Google ScholarÂ
37.Veen, C. et al. Applying the aboveground-belowground interaction concept in agriculture: Spatio-temporal scales matter. Front. Ecol. Evol. 7, 300 (2019).
Google ScholarÂ
38.Birkhofer, K., Wise, D. H. & Scheu, S. Subsidy from the detrital food web, but not microhabitat complexity, affects the role of generalist predators in an aboveground herbivore food web. Oikos 117(4), 494â500 (2008).
Google ScholarÂ
39.Birkhofer, K. et al. Organic farming affects the biological control of hemipteran pests and yields in spring barley independent of landscape complexity. Landsc. Ecol. 31(3), 567â579 (2016).
Google ScholarÂ
40.van der Putten, W. H. et al. Empirical and theoretical challenges in abovegroundâbelowground ecology. Oecologia 161(1), 1â14 (2009).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
41.Kleijn, D. et al. Ecological intensification: Bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154â166 (2019).PubMedÂ
Google ScholarÂ
42.Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31(6), 440â452 (2016).PubMedÂ
Google ScholarÂ
43.Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20(11), 1427â1436 (2017).PubMedÂ
Google ScholarÂ
44.Briones, M. J. The serendipitous value of soil fauna in ecosystem functioning: The unexplained explained. Front. Environ. Sci. 6, 149 (2018).
Google ScholarÂ
45.Kaya, H. K. & Gaugler, R. Entomopathogenic nematodes. Annu. Rev. Entomol. 38(1), 181â206 (1993).
Google ScholarÂ
46.Ferris, H. & Tuomisto, H. Unearthing the role of biological diversity in soil health. Soil Biol. Biochem. 85, 101â109 (2015).CASÂ
Google ScholarÂ
47.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973â985 (2015).ADSÂ
Google ScholarÂ
48.Bender, S. F. & van der Heijden, M. G. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52(1), 228â239 (2015).CASÂ
Google ScholarÂ
49.De Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nat. Clim. Change 2, 276â280 (2012).ADSÂ
Google ScholarÂ
50.Bastida, F. et al. Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Mol. Ecol. 29(4), 752â761 (2020).PubMedÂ
Google ScholarÂ
51.Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25â50 (2012).
Google ScholarÂ
52.Polis, G. A. Complex trophic interactions in deserts: An empirical critique of food-web theory. Am. Nat. 138(1), 123â155 (1991).
Google ScholarÂ
53.Polis, G. A. & Strong, D. R. Food web complexity and community dynamics. Am. Nat. 147(5), 813â846 (1996).
Google ScholarÂ
54.Lavelle, P. et al. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Sci. 181(3/4), 91â109 (2016).ADSÂ
CASÂ
Google ScholarÂ
55.Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: The role of small-scale heterogeneity. PLoS ONE 5(7), e11567 (2010).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
56.Heinen, R., van der Sluijs, M., Biere, A., Harvey, J. A. & Bezemer, T. M. Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. J. Ecol. 106(3), 1217â1229 (2018).
Google ScholarÂ
57.Ramirez, K. S., Geisen, S., MorriĂ«n, E., Snoek, B. L. & van der Putten, W. H. Network analyses can advance above-belowground ecology. Trends Plant Sci. 23(9), 759â768 (2018).CASÂ
PubMedÂ
Google ScholarÂ
58.Boyer, S., Snyder, W. E. & Wratten, S. D. Molecular and isotopic approaches to food webs in agroecosystems. Food Webs 9, 1â3 (2016).
Google ScholarÂ
59.Casey, J. M. et al. Reconstructing hyperdiverse food webs: Gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10(8), 1157â1170 (2019).
Google ScholarÂ
60.Choate, B. A. & Lundgren, J. G. Invertebrate communities in spring wheat and the identification of cereal aphid predators through molecular gut content analysis. Crop Prot. 77, 110â118 (2015).
Google ScholarÂ
61.Furlong, M. J. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Insect Sci. 22(1), 6â19 (2015).PubMedÂ
Google ScholarÂ
62.Eitzinger, B., Rall, B. C., Traugott, M. & Scheu, S. Testing the validity of functional response models using molecular gut content analysis for prey choice in soil predators. Oikos 127(7), 915â926 (2018).
Google ScholarÂ
63.BarberĂĄn, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6(2), 343â351 (2012).PubMedÂ
Google ScholarÂ
64.MorriĂ«n, E. Understanding soil food web dynamics, how close do we get?. Soil Biol. Biochem. 102, 10â13 (2016).
Google ScholarÂ
65.Digel, C., Curtsdotter, A., Riede, J., Klarner, B. & Brose, U. Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos 123(10), 1157â1172 (2014).
Google ScholarÂ
66.Toscano, B. J., Hin, V. & Rudolf, V. H. Cannibalism and intraguild predation community dynamics: Coexistence, competitive exclusion, and the loss of alternative stable states. Am. Nat. 190(5), 617â630 (2017).PubMedÂ
Google ScholarÂ
67.Coleman, D. C. & Wall, D. H. Soil fauna: Occurrence, biodiversity, and roles in ecosystem function. Soil Microbiol. Ecol. Biochem. 4, 111â149 (2015).
Google ScholarÂ
68.Brussaard, L. Biodiversity and ecosystem functioning in soil. Ambio 26, 563â570 (1997).
Google ScholarÂ
69.Briar, S. S. et al. The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems. Soil Biol. Biochem. 43, 905â914 (2011).CASÂ
Google ScholarÂ
70.Oelbermann, K. & Scheu, S. Trophic guilds of generalist feeders in soil animal communities as indicated by stable isotope analysis (15N/14N). Bull. Entomol. Res. 100(5), 511 (2010).CASÂ
PubMedÂ
Google ScholarÂ
71.Cohen, J. E., Pimm, S. L., Yodzis, P. & Saldaña, J. Body sizes of animal predators and animal prey in food webs. J. Anim. Ecol. 62, 67â78 (1993).
Google ScholarÂ
72.Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63â90 (2015).
Google ScholarÂ
73.Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6(1), 1â10 (2015).
Google ScholarÂ
74.Ruf, A. A maturity index for predatory soil mites (Mesostigmata: Gamasina) as an indicator of environmental impacts of pollution on forest soils. Appl. Soil. Ecol. 9(1â3), 447â452 (1998).
Google ScholarÂ
75.Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: Are there any links?. Ecology 84(8), 2042â2050 (2003).
Google ScholarÂ
76.Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytobiome. Cell 169(4), 587â596 (2017).CASÂ
PubMedÂ
Google ScholarÂ
77.Barnes, A. D. et al. Energy flux: The link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33(3), 186â197 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
78.Heinen, R., Biere, A., Harvey, J. A. & Bezemer, T. M. Effects of soil organisms on aboveground plant-insect interactions in the field: Patterns, mechanisms and the role of methodology. Front. Ecol. Evol. 6, 106 (2018).
Google ScholarÂ
79.Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366(6467), 886â890 (2019).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
80.Wardle, D. A., Hyodo, F., Bardgett, R. D., Yeates, G. W. & Nilsson, M. C. Long-term aboveground and belowground consequences of red wood ant exclusion in boreal forest. Ecology 92(3), 645â656 (2011).PubMedÂ
Google ScholarÂ
81.Preisser, E. L. & Strong, D. R. Climate affects predator control of an herbivore outbreak. Am. Nat. 163(5), 754â762 (2004).PubMedÂ
Google ScholarÂ
82.Hamilton, J. et al. Elevated atmospheric CO2 alters the arthropod community in a forest understory. Acta Oecol. 43, 80â85 (2012).ADSÂ
Google ScholarÂ
83.Zaller, J. G. et al. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Front. Environ. Sci. 2, 44 (2014).
Google ScholarÂ
84.Koltz, A. M., Classen, A. T. & Wright, J. P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra. Proc. Natl. Acad. Sci. 115(32), E7541âE7549 (2018).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
85.Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105(3), 801â815 (2017).
Google ScholarÂ
86.Garratt, M. P. et al. Enhancing soil organic matter as a route to the ecological intensification of European arable systems. Ecosystems 21(7), 1404â1415 (2018).CASÂ
Google ScholarÂ
87.Smith-Ramesh, L. M. Predators in the plantâsoil feedback loop: Aboveground plant-associated predators may alter the outcome of plantâsoil interactions. Ecol. Lett. 21(5), 646â654 (2018).PubMedÂ
Google ScholarÂ
88.Gurr, G. M., Wratten, S. D., Landis, D. A. & You, M. Habitat management to suppress pest populations: Progress and prospects. Annu. Rev. Entomol. 62, 91â109 (2017).CASÂ
PubMedÂ
Google ScholarÂ
89.Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27, 371â377 (1999).
Google ScholarÂ
90.Von Berg, K., Thies, C., Tscharntke, T. & Scheu, S. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia 163(4), 1033â1042 (2010).ADSÂ
Google ScholarÂ
91.Rowen, E., Tooker, J. F. & Blubaugh, C. K. Managing fertility with animal waste to promote arthropod pest suppression. Biol. Control 134, 130â140 (2019).
Google ScholarÂ
92.PeroviÄ, D. J. et al. Managing biological control services through multi-trophic trait interactions: Review and guidelines for implementation at local and landscape scales. Biol. Rev. 93(1), 306â321 (2018).PubMedÂ
Google ScholarÂ
93.Roger-Estrade, J., Anger, C., Bertrand, M. & Richard, G. Tillage and soil ecology: Partners for sustainable agriculture. Soil Tillage Res. 111(1), 33â40 (2010).
Google ScholarÂ
94.Dias, T., Dukes, A. & Antunes, P. M. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95(3), 447â454 (2015).CASÂ
PubMedÂ
Google ScholarÂ
95.Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53(1), 233â241 (2016).
Google ScholarÂ
96.Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1(8), 441â446 (2018).
Google ScholarÂ
97.Swift, M. J., Heal, O. W., Anderson, J. M. & Anderson, J. M. Decomposition in Terrestrial Ecosystems Vol. 5 (University of California Press, 1979).
Google ScholarÂ
98.van Straalen, N. M., Butovsky, R. O., Pokarzhevskii, A. D., Zaitsev, A. S. & Verhoef, S. C. Metal concentrations in soil and invertebrates in the vicinity of a metallurgical factory near Tula (Russia). Pedobiologia 45(5), 451â466 (2001).
Google ScholarÂ
99.Birkhofer, K. et al. Methods to identify the prey of invertebrate predators in terrestrial field studies. Ecol. Evol. 7(6), 1942â1953 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
100.Potapov, A. M., Tiunov, A. V. & Scheu, S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94(1), 37â59 (2019).
Google Scholar More
