More stories

  • in

    Impacts of hydropower on the habitat of jaguars and tigers

    1.Winemiller, K. O. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016).CAS 

    Google Scholar 
    2.Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017).CAS 
    PubMed 

    Google Scholar 
    3.ICOLD. International Commission on Large Dams. http://www.icold-cigb.org/ (2016).4.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).
    Google Scholar 
    5.Gibson, L., Wilman, E. N. & Laurance, W. F. How green is ‘green’energy? Trends Ecol. Evol. 32, 922–935 (2017).PubMed 

    Google Scholar 
    6.Wu, H. et al. Effects of dam construction on biodiversity: a review. J. Clean. Prod. 221, 480–489 (2019).
    Google Scholar 
    7.Palmeirim, A. F., Peres, C. A. & Rosas, F. C. Giant otter population responses to habitat expansion and degradation induced by a mega hydroelectric dam. Biol. Conserv. 174, 30–38 (2014).
    Google Scholar 
    8.Fearnside, P. M. Decision making on amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 6, 313–325 (2013).9.Fearnside, P. M. Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environ. Res. Lett. 11, 011002 (2016).
    Google Scholar 
    10.Finer, M. & Jenkins, C. N. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS ONE 7, e35126 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chen, G., Powers, R. P., de Carvalho, L. M. & Mora, B. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectric dam in the Amazon basin. Appl. Geogr. 63, 1–8 (2015).
    Google Scholar 
    12.Hunter, W. C., Anderson, B. W. & Ohmart, R. D. Avian community structure changes in a mature floodplain forest after extensive flooding. J. Wildl. Manag. 51, 495–502 (1987).13.Andriolo, A. et al. Severe population decline of marsh deer, Blastocerus dichotomus (Cetartiodactyla: Cervidae), a threatened species, caused by flooding related to a hydroelectric power plant. Zool. Curitiba 30, 630–638 (2013).
    Google Scholar 
    14.Irving, G. J., Round, P. D., Savini, T., Lynam, A. J. & Gale, G. A. Collapse of a tropical forest bird assemblage surrounding a hydroelectric reservoir. Glob. Ecol. Conserv. 16, e00472 (2018).
    Google Scholar 
    15.Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2276 (2002).CAS 
    PubMed 

    Google Scholar 
    16.Quigley, H. et al. Panthera onca (errata version published in 2018). The IUCN Red List of Threatened Species 2017: e.T15953A123791436 (2017).17.Dinerstein, E. et al. The fate of wild tigers. BioScience 57, 508–514 (2007).
    Google Scholar 
    18.Goodrich, J. et al. Panthera tigris. The IUCN Red List of Threatened Species 2015: e.T15955A50659951 (2015).19.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Roberge, J. & Angelstam, P. Usefulness of the umbrella species concept as a conservation tool. Conserv. Biol. 18, 76–85 (2004).
    Google Scholar 
    21.Jędrzejewski, W. et al. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution—application to the jaguar (Panthera onca). PLoS ONE 13, e0194719 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    22.GTRP. Global Tiger Recovery Program. Glob. Tiger Initiat. Secr. (World Bank, 2010).23.Desbiez, A. L. & de Paula, R. C. Species conservation planning: the jaguar National Action Plan for Brazil. Cat News 7, 4–7 (2012).
    Google Scholar 
    24.Achard, F. et al. Determination of deforestation rates of the world’s humid tropical forests. Science 297, 999–1002 (2002).CAS 
    PubMed 

    Google Scholar 
    25.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 

    Google Scholar 
    26.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926 (2001).CAS 
    PubMed 

    Google Scholar 
    27.Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sollmann, R., Torres, N. M. & Silveira, L. Jaguar conservation in Brazil: the role of protected areas. Cat News 4, 15 (2008).
    Google Scholar 
    29.Cullen Junior, L., Sana, D. A., Lima, F., de Abreu, K. C. & Uezu, A. Selection of habitat by the jaguar, Panthera onca (Carnivora: Felidae), in the upper Paraná River, Brazil. Zool. Curitiba 30, 379–387 (2013).
    Google Scholar 
    30.Eriksson, C. E. et al. Extensive aquatic subsidies lead to territorial breakdown and high density of an apex predator. Ecology https://doi.org/10.1002/ecy.3543 (2021).31.Sanderson, E. W. How many animals do we want to save? The many ways of setting population target levels for conservation. BioScience 56, 911–922 (2006).
    Google Scholar 
    32.Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    33.Wikramanayake, E. et al. A landscape‐based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).
    Google Scholar 
    34.Sunarto, S. et al. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes. PLoS ONE 7, e30859 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Hyde, J. L., Bohlman, S. A. & Valle, D. Transmission lines are an under-acknowledged conservation threat to the Brazilian Amazon. Biol. Conserv. 228, 343–356 (2018).
    Google Scholar 
    36.Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    37.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).
    Google Scholar 
    38.Linkie, M., Haidir, I. A., Nugroho, A. & Dinata, Y. Conserving tigers Panthera tigris in selectively logged Sumatran forests. Biol. Conserv. 141, 2410–2415 (2008).
    Google Scholar 
    39.Sharma, S. et al. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc. R. Soc. B Biol. Sci. 280, 20131506 (2013).
    Google Scholar 
    40.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17, 245–257 (2003).
    Google Scholar 
    41.Ramesh, K. et al. Status of tiger and prey species in Panna Tiger Reserve, Madhya Pradesh: capture-recapture and distance sampling estimates. Technical Report (Wildlife Institute of India, 2013).42.Romero‐Muñoz, A. et al. Habitat loss and overhunting synergistically drive the extirpation of jaguars from the Gran Chaco. Divers. Distrib. 25, 176–190 (2019).
    Google Scholar 
    43.Alho, C. J. Hydropower dams and reservoirs and their impacts on Brazil’s biodiversity and natural habitats: a review. World J. Adv. Res. Rev. 6, 205–215 (2020).
    Google Scholar 
    44.Dobson, A. et al. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915–1924 (2006).PubMed 

    Google Scholar 
    45.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).CAS 

    Google Scholar 
    46.Fearnside, P. M. Brazil’s Balbina Dam: environment versus the legacy of the pharaohs in Amazonia. Environ. Manag. 13, 401–423 (1989).
    Google Scholar 
    47.Fearnside, P. M. Dams in the Amazon: Belo Monte and Brazil’s hydroelectric development of the Xingu River Basin. Environ. Manag. 38, 16–27 (2006).
    Google Scholar 
    48.Milder, J. C., Scherr, S. J. & Bracer, C. Trends and future potential of payment for ecosystem services to alleviate rural poverty in developing countries. Ecol. Soc. 15, 4 (2010).49.Ceballos, G. et al. Jaguar distribution, biological corridors and protected areas in Mexico: from science to public policies. Landsc. Ecol. https://doi.org/10.1007/s10980-021-01264-0 (2021).50.Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).PubMed 

    Google Scholar 
    51.Sabu, M. M., Pasha, S. V., Reddy, C. S., Singh, R. & Jaishanker, R. The effectiveness of tiger conservation landscapes in decreasing deforestation in South Asia: a remote sensing-based study. Spat. Inf. Res. 1–13, https://doi.org/10.1007/s41324-021-00411-8 (2021).52.Joshi, A. R. et al. Tracking changes and preventing loss in critical tiger habitat. Sci. Adv. 2, e1501675 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    53.Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).
    Google Scholar 
    54.Thompson, J. J. et al. Environmental and anthropogenic factors synergistically affect space use of jaguars. Curr. Biol. 31, 3457–3466 (2021).CAS 
    PubMed 

    Google Scholar 
    55.Food and agriculture organization of the united nations. AQUASTAT – FAO’s global information system on water and agriculture. https://www.fao.org/aquastat/en/databases/dams (2016).56.Tortato, F. R. et al. Infanticide in a jaguar (Panthera onca) population—does the provision of livestock carcasses increase the risk? Acta Ethol. 20, 69–73 (2017).
    Google Scholar 
    57.Chanchani, P., Gerber, B. D. & Noon, B. R. Elevated potential for intraspecific competition in territorial carnivores occupying fragmented landscapes. Biol. Conserv. 227, 275–283 (2018).
    Google Scholar  More

  • in

    Include biodiversity representation indicators in area-based conservation targets

    1.Report of the Open-Ended Working Group on the Post-2020 Global Biodiversity Framework on its Third Meeting (Part I) CBD/WG2020/3/5 (CBD, 2021).2.Maxwell, S. L. et al. Nature 586, 217–227 (2020).CAS 
    Article 

    Google Scholar 
    3.Protected Planet Live Report 2021 (UNEP-WCMC, IUCN, NGS, 2021).4.Díaz, S. et al. Science 366, eaax3100 (2019).Article 

    Google Scholar 
    5.Visconti, P. et al. Science 364, 239–241 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Maron, M. et al. Conserv. Lett. 14, e12816 (2021).Article 

    Google Scholar 
    7.Pressey, R. L. et al. Trends Ecol. Evol. 36, 808–821 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Service (IPBES Secretariat, 2019).9.Living Planet Report 2020 (WWF, 2020).10.Jetz, W. et al. Nat. Ecol. Evol. 3, 539–551 (2019).Article 
    PubMed 

    Google Scholar 
    11.Powers, R. P. & Jetz, W. Nat. Clim. Change 9, 323–329 (2019).Article 

    Google Scholar 
    12.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).13.Sala, E. et al. Nature 592, 397–402 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Rinnan, D. S., Sica, Y., Ranipeta, A., Wilshire, J. & Jetz, W. Preprint at bioRxiv https://doi.org/10.1101/2020.02.05.936047 (2020).15.Beger, M. et al. Nat. Commun. 6, 8208 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Armstrong, C. Conserv. Biol. 33, 554–560 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Post-2020 Global Biodiversity Framework: Scientific and Technical Information to Support the Review of the Updated Goals and Targets, and Related Indicators and Baselines CBD/SBSTTA/24/3 (CBD, 2020).18.Moilanen, A., Wilson, K. A. & Possingham, H. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).19.Jung, M. et al. Nat. Ecol. Evol. 5, 1499–1509 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Navarro, L. M. et al. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).Article 

    Google Scholar 
    21.Jantke, K., Kuempel, C. D., McGowan, J., Chauvenet, A. L. M. & Possingham, H. P. Divers. Distrib. 25, 170–175 (2019).Article 

    Google Scholar 
    22.Bhola, N. et al. Conserv. Biol. 35, 168–178 (2021).Article 
    PubMed 

    Google Scholar 
    23.Hansen, A. J. et al. Conserv. Lett. 14, e12822 (2021).Article 

    Google Scholar 
    24.Measuring Ecosystem Integrity (Goal A) in the Post-2020 Global Biodiversity Framework: The Geo Bon Species Habitat Index CBD/WG2020/3/INF/6 (CBD Secretariat, 2021).25.Rondinini, C. & Visconti, P. Conserv. Biol. 29, 1028–1036 (2015).Article 

    Google Scholar 
    26.McGeoch, M. A. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.08.26.457851 (2021).27.Hoskins, A. J. et al. Environ. Model. Softw. 132, 104806 (2020).Article 

    Google Scholar 
    28.Adams, V. M., Visconti, P., Graham, V. & Possingham, H. P. One Earth 4, 901–906 (2021).Article 

    Google Scholar 
    29.Heiner, M. et al. Conserv. Sci. Pract. 1, e110 (2019).
    Google Scholar  More

  • in

    Global warming and China’s crop pests

    1.Tian, H. et al. Proc. Natl Acad. Sci. USA 108, 14521–14526 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Sugihara, G. Nature 378, 559–560 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Nat. Clim. Change 3, 985–988 (2013).ADS 
    Article 

    Google Scholar 
    4.Bebber, D. P. et al. Glob. Change Biol. 25, 2703–2713 (2019).ADS 
    Article 

    Google Scholar 
    5.Wang, C. et al. Nat. Food https://doi.org/10.1038/s43016-021-00428-0 (2021).6.Pasiecznik, N. M. et al. EPPO Bull. 35, 1–7 (2005).Article 

    Google Scholar 
    7.Paini, D. R. et al. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).CAS 
    Article 

    Google Scholar 
    8.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Nat. Clim. Change 11, 710–715 (2021).ADS 
    Article 

    Google Scholar 
    9.Deutsch, C. A. et al. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delgado-Baquerizo, M. et al. Nat. Clim. Change 10, 550–554 (2020).ADS 
    Article 

    Google Scholar 
    11.Wright, B. D. Appl. Econ. Perspect. Policy 33, 32–58 (2011).Article 

    Google Scholar  More

  • in

    Pending bill could devastate Brazil’s Serra do Divisor National Park

    1.Barbosa, L. C., Alves, M. A. S. & Grelle, C. E. V. Land Use Policy 104, 105384 (2021).Article 

    Google Scholar 
    2.PL 6024/2019 (Câmara dos Deputados, 2021); https://go.nature.com/3p8ygLo3.Serra do Divisor National Park. https://go.nature.com/3rcbdSg (UNESCO, 2021).4.F. A. Obermüller et al. Lista de espécies de plantas vasculares do Parque Nacional da Serra do Divisor. Catálogo de Plantas das Unidades de Conservação do Brasil https://go.nature.com/3HTJjAs (Jardim Botânico do Rio de Janeiro, 2020).5.Livro Temático/Recursos naturais: Biodiversidade e ambientes do Acre (ACRE, 2010).6.Hansen, M. C. et al. Sci. Adv. 6, eaax8574 (2020).Article 

    Google Scholar 
    7.Grilli, M. Base de dados do DNIT prevê expansão da BR-364 dentro de unidade de conservação. Revista Globo Rural https://go.nature.com/3DUgQYX (2021).8.Orlando, S. A Estrada do Pacífico no comércio exterior do Acre. ac24horas.com https://go.nature.com/3raofzL (2020).9.Mascarenhas, F. et al. Desenvolv e Meio Ambient 48, 236–262 (2018).Article 

    Google Scholar 
    10.Castro, W. Reserva Extrativista Chico Mendes lidera lista de Áreas Protegidas que mais perdem floresta por desmatamento desde Agosto de 2020. SOS Amazonia https://go.nature.com/3CU5jra (2021).11.Fá, J. E. et al. Front. Ecol. Environ. 18, 135–140 (2020).Article 

    Google Scholar 
    12.Bernard, E., Penna, L. A. & Araújo, E. Conserv. Biol. 28, 939–950 (2014).CAS 
    Article 

    Google Scholar 
    13.Kroner, R. E. G. et al. Science 364, 881–886 (2019).Article 

    Google Scholar 
    14.Ferrante, L. & Fearnside, P. M. Science 369, 634 (2020).Article 

    Google Scholar 
    15.Laurance, W. F. & Balmford, A. Nature 495, 308–309 (2013).CAS 
    Article 

    Google Scholar 
    16.Kehoe, L. et al. One Earth 3, 268–272 (2020).Article 

    Google Scholar  More

  • in

    Geological evidence of an unreported historical Chilean tsunami reveals more frequent inundation

    The Chaihuín stratigraphyCore transects (Fig. 2b) reveal three sand layers, intercalated between herbaceous peats, that are laterally extensive over 600 m across the marsh (Fig. 3a). In all cases, the sand layers have sharp lower contacts and transitional upper contacts. Ten accelerator mass spectrometric (AMS) radiocarbon dates modelled using a Bayesian phased sequence model provide the chronology (Fig. 3c and Supplementary Table 1). The age of plant macrofossils immediately beneath the upper layer, sand A, are consistent with burial by the 1960 tsunami. The age model places the deposition of the middle sand B at 1600–1820 and lower layer, sand C, at 1486–1616 CE. The calibrated age ranges for sands B and C are reasonably broad due to plateaux in the radiocarbon calibration curve, which affect dates from the seventeenth to twentieth centuries21.Fig. 3: Geological evidence from Chaihuín.a Stratigraphy of selected coring transects showing three laterally extensive sand sheets. Transect locations X–X’ and Y–Y’ shown on Fig. 2; b sedimentology of sand sheets, including grain size, sorting and clastic composition (%) classified relative to six modern environments established by discriminant analysis (see Supplementary Discussion), with images of sands A and B in CN17/8. Box-and-whisker plots show the statistical parameters measured in sand samples with the horizontal line inside the box representing the median, the box representing the upper and lower quartiles, the whiskers representing the minimum and maximum values excluding any outliers and the crosses the extreme outlier values. The number within each box indicates the number of samples in each group; c probability density functions (95.4%) of radiocarbon dates and modelled ages for the three earthquakes. Full radiocarbon results in Supplementary Table 1.Full size imageThe sedimentology and mineralogical signatures of the sand sheets are described in detail elsewhere based on over 100 hand-driven cores22 and summarised in Supplementary Discussion; here we analyse diatoms in three representative cores and present reconstructions of marsh surface elevation change over time from a diatom-based transfer function (Fig. 4 and Supplementary Data 1). From diatom analysis of the three cores, we identified 170 species indicative of differing tolerances to tidal inundation. Only 14 species were absent from a previously published modern training set that includes 29 samples from Chaihuín20, and 9 of these species constituted 2% of any sample (comprising 4–5% in 2 non-sand samples).Fig. 4: Diatom assemblages and estimates of land-level change derived from a regional south-central Chile transfer function for three cores from Chaihuín.a–c Diatom assemblage summaries and dominant taxa in cores CN14/5 (a), CN17/8 (b) and CN18/11 (c) at elevations of 0.88, 0.89 and 1.10 m above mean sea level (MSL), respectively. Elevation optima of diatom species are classified based on weighted averaging of the modern training set and reported relative to mean higher high water (MHHW). The modern analogue technique was used to calculate the squared chord distance to the closest modern analogue, and the threshold for a fossil sample having a close modern analogue is defined as the 20th percentile of the dissimilarity values (MinDC) for the modern training set44. Reconstructed palaeomarsh surface elevations (PMSE) and coseismic subsidence are shown from the weighted averaging partial least squares (WA-PLS) model only. d Estimates of coseismic subsidence in 1737 from three cores and three different diatom-based transfer function approaches, showing 95.4% uncertainties.Full size imageThe laterally extensive uppermost coarse to medium-grained sand sheet (A) is mid grey, varies in thickness between 1 and 19 cm, has a median grain size of 0.49 mm and is upwards fining (0.27–0.71 mm) in 61 cores (80% of those in which A is preserved, massive in the others). The marsh grades steeply into freshwater scrub, and there is no sand unit in cores just above the high marsh limit. There is an abrupt contact between the sand and dark brown silty herbaceous peat below, which contains plant material including below-ground stems (rhizomes) of Scirpus americanus. In many cores, there are rip-up clasts (~2 cm) of peat encased in the sand sheet, as well as vegetation rooted in the peat below. The peat below the sand sheet contains a diatom assemblage that is almost entirely composed of species found on the contemporary high marsh above mean higher high water (MHHW) (e.g. Eunotia praerupta, Nitzschia acidoclinata), with higher elevation optima than the diatoms found in the herbaceous peat above the sand unit (e.g. Rhopalodia constricta) (Fig. 4a). The overlying peat also contains low, albeit important, percentages (5–24%) of taxa with elevation optima below MHHW. By contrast to the peats, sand A is dominated by species with lower elevation optima (59–72% of the total assemblage have optima below MHHW), including Achnanthes reversa and Planothidium delicatulum.The middle brown-grey to dark grey mica-rich coarse to medium-grained sand sheet (B) is similarly laterally extensive across the entire marsh, varying in thickness between 2 and 32 cm. It has a median grain size of 0.47 mm and is upwards-fining (0.38–0.68 mm) in 31 cores (50% of those in which B is preserved, massive in others), but rip-up clasts of peat were only occasionally observed. In some cases, we observe a 2–4-cm-thick cap of horizontally bedded detrital plant fragments and wood at the top of the sand layer. The sand sheet abruptly overlays a red-brown to dark brown silty herbaceous peat with variable silt content and humification. Humidophila contenta dominates the diatom assemblage in the peat below sand B (up to 37% of the assemblage) and is also present in the peat overlying the sand sheet, which remains dominated by species with elevation optima above MHHW. In the core from the lowest contemporary marsh elevation (CN14/5, Fig. 4a), there is an increase in low marsh diatom species (elevation optima below MHHW) above the sand compared to below (e.g. A. reversa, P. delicatulum). Diatom assemblages are relatively consistent across the five samples from the sand unit, with 54–76% of the assemblages being species with elevation optima below MHHW, including A. reversa, Fallacia tenera and P. delicatulum.A third sand deposit (C) is found in 16 cores at the southern end of the marsh, although still traceable over 200 m and across most cores that penetrated deep enough to potentially sample sand C. The deposit is a dark grey fine to medium-grained massive sand (median grain size 0.25 mm, range 0.22-0.29 mm), with a maximum thickness of 51 cm and contains occasional rip-up clasts from the buried organic unit below encased in the sand. The basal contact is abrupt, with the sand overlying a brown clayey silt with occasional herbaceous plant remains, humified organic matter and woody plant material. The organic horizon below sand C contains more diatom species typically found at lower elevations in the tidal frame than the peats below A and B (Fig. 4a). There is also a change in species composition approaching the top of the peat, with abundances of Opephora pacifica and Pseudostaurosira perminuta decreasing and H. contenta and E. perpusilla increasing from the base to top of the peat below sand C. Also in contrast to the other two buried organic deposits, there is a change in species composition approaching the top of the peat and samples immediately above and below sand unit C have very similar diatom assemblages, dominated by H. contenta and E. perpusilla. Diatom preservation in the sand unit was very poor, and it was not possible to obtain representative counts from this unit.Brown silty herbaceous peats separate the three sand sheets, deposited intertidally on the basis of their diatom composition. In addition to the relative variations in freshwater and brackish diatom composition of peats described above, the peat units also vary in their degree of humification. While peats below sands A and C contain humified organic matter, the peat below sand B is unhumified. Additionally, two layers of highly humified black peat were observed immediately above and below sand A in low marsh cores from the southwest of the marsh, varying in thickness between 1 and 15 cm.Evidence for a locally sourced tsunamiWe interpret all three sand sheets as being deposited by locally sourced tsunamis, rather than far-field tsunamis or non-seismic processes (e.g. storms, river floods or aeolian processes). This is based primarily on coincident land deformation, and also upon their lateral extent, diatom composition, and sedimentological signatures. Dealing first with the latter lines of reasoning, sands A and B are not only dominated by marine sublittoral and epipsammic diatom species but also contain substantial numbers of benthic silty intertidal mudflat and freshwater taxa, which also dominate the underlying peats. This is consistent with mixed diatom assemblages in tsunami deposits worldwide and indicative of tsunamis eroding, transporting and redepositing diatoms from diverse environments as they cross coastal and inland areas23,24,25,26. The presence of marine and tidal flat diatoms excludes deposition of sand by river flooding25,27, and statistical comparison of the sedimentological and mineralogical signatures of the sands with modern depositional environments, reported by Aedo et al.22 and summarised in Supplementary Discussion, further supports a seaward rather fluvial sediment source. We observe a maximum sedimentary contribution of 12% from upstream fluvial sources (Fig. 3b) and do not observe erosional or depositional features characteristic of fluvial flood deposits, such as a high basal mud content reflective of suspended loads during the initial stages of flooding or inverse grading as energy increases28.Meteorologically driven deposition of the sands, either during storm surges or other transient sea-level fluctuation events (e.g. El Niño), is discounted as the diatoms in the overlying organic units demonstrate lasting ecological change27,29. While a non-tsunamigenic earthquake followed closely in time by a large storm surge may impact diatom assemblages in the same way, there are several further characteristics of the three sand sheets which are consistent with a tsunami origin, even though these, in themselves, are not diagnostic. These include the lateral extent (traceable across 230 m), upwards-fining grain size of sand sheets A and B, and clasts of underlying peats observed within sands A and C and occasionally within B. The absence of extreme climatic phenomena, such as hurricanes and tropical storms, in the Chaihuín area during the historic period also minimises the possibility of finding storm deposits. However, while it is recognised that the above criteria cannot be used individually to confirm tsunami deposition, it is the combination of all sedimentological and diatom evidence that we use here in support of the most compelling evidence for tsunami deposition, which comes from the accompanying abrupt land-level change. The latter rules out deposition by tsunamis sourced in the far-field, storms or aeolian processes.Evidence for coseismic land-level changeFollowing established criteria30,31, we use the sedimentary and diatom evidence to propose that the Chaihuín sequence records three earthquake events, associated with vertical coseismic deformation and tsunami deposition. Diatom assemblages from immediately below sand layers A and B are characterised by species with higher elevation preferences than those found immediately above the sands, suggesting decreases in marsh surface elevation consistent with coseismic subsidence (Fig. 4). Diatom assemblages show minimal change across sand layer C; instead a transition occurs prior to event C whereby species with lower elevation preferences are replaced by those with higher elevation preferences, indicating net emergence prior to event C followed by minimal coseismic subsidence.The transfer function reconstructs 0.35 ± 0.42 m of subsidence occurred in event A, which local testimony and radiocarbon dating confirm to be the 1960 earthquake. Compared to our previous estimate for this event20, refining the transfer function method and expanding the modern training set here, reduces the uncertainty by 0.26 m. Reconstructed subsidence agrees with observations of 0.7 ± 0.4 m19. By contrast, the transfer function reconstructs very minor subsidence of 0.10 ± 0.36 m occurred in event C, but this needs confirmation from analyses of additional cores.The transfer function predicts that coseismic subsidence occurred in event B, with reconstructions varying between 0.10 ± 0.33 and 0.52 ± 0.39 m, and averaging 0.22 ± 0.38 m (Fig. 4d). While this is close to the detection limit of coseismic land-level change30 and the error term is large compared to the amount of deformation, we interpret event B as being associated with net submergence for two reasons. First, changes in diatom-inferred marsh elevations between pre- and post-earthquake samples are greater than other sample-to-sample changes. Second, all nine reconstructions, regardless of core location or transfer function approach, indicate submergence rather than a mixture of submergence and emergence (Fig. 4d).Linking the geologic and historical recordsDespite the broad modelled age ranges for events B and C of 1600–1820 and 1486–1616 CE, respectively, each range only includes one historically reported earthquake. If the historical catalogue is complete, sands B and C represent tsunamis accompanying the 1737 and 1575 earthquakes, respectively. Although other great tsunamigenic earthquakes occurred in the time range of event B (1657, 1730, 1751), their rupture areas have been placed much further north8,32 and therefore are very unlikely sources for the observed deformation. Age ranges do not include 1837; therefore, absence of evidence for this earthquake at Chaihuín supports the chronicle-based interpretation that the 1837 rupture area lies further south11,16. The preservation of turbidites from 1837 at sites to the north of Chaihuín14 is consistent with observations of earthquake-triggered turbidites some distance outside the rupture zone, as observed for the Mw 8.8 2010 Maule earthquake14.Implications for the rupture depth in 1737The Chaihuín record provides the first evidence for crustal deformation during the 1737 earthquake and the first evidence for the earthquake being tsunamigenic. While the nearshore bathymetry and orientation of the coastline may amplify tsunami inundation and the abundant sediment source may enhance the potential for evidence creation during even moderate tsunamis, the direction of land-level change at Chaihuín (subsidence) calls for reconsideration of the associated rupture depth. While correlation with evidence of shaking-induced turbidites from Calafquén and Riñihue lakes14, along with the absence of a 1737 event in sedimentary records from Río Maullín and Chucalén to the south9,11, supports the hypothesis that a smaller section of the plate interface ruptured in 1737 (between 39 and 41°S) than in 1960 and 157514, the Chaihuín record also forms an important constraint on the depth of local slip in 1737.By combining deformation and tsunami modelling, we show that our evidence of coastal subsidence and tsunami inundation at Chaihuín is better explained by offshore, shallow megathrust slip rather than by deeper slip below land as previously suggested16 (Fig. 5 and Supplementary Fig. 1). This is demonstrated by a simple numerical experiment designed to find the most likely depth range of the causative earthquake rupture that can explain the coastal subsidence inferred at Chaihuín and also the tsunami inundation.Fig. 5: Results of model tests to show that the 1737 rupture must have been confined to the offshore region at shallower fault depths than previously proposed.a The lower panel shows the trench-normal section of the megathrust and seafloor geometry at the latitude of Chaihuín used in the modelling experiment. The upper panel shows the bell-shaped slip distributions for a suite of eight earthquake ruptures and the middle panel shows the modelled vertical surface deformations using an elastic dislocation model (see “Methods”). The red and blue curves are the deep and shallow ruptures used as illustrative examples in the text. In this suite of models, the rupture width and peak slip are fixed at 100 km and 1 m, respectively, and the rupture location is systematically shifted horizontally in the trench-normal direction to represent ruptures at different depths. b Summary plot showing the modelled coastal uplift (left vertical axis) and tsunami runup (right vertical axis) predicted by the suite of models. Note that coastal subsidence can only be produced by offshore ruptures, with slip shallower than ~20 km. Ruptures deeper than this produce uplift at the coast. This opposing pattern of coastal deformation between shallow versus deeper ruptures is insensitive to how much slip is prescribed at the fault. Supplementary Fig. 1 shows the results for two different suite of models, in which the rupture width varies by fixing the updip (Supplementary Fig. 1a) and downdip (Supplementary Fig. 1b) limits.Full size imageOur numerical approach (see also “Methods”) leverages the sensitivity of the deformation sign (uplift or subsidence) and tsunami size at the Chaihuín coast to the depth of megathrust slip33 (Fig. 5). An earthquake rupture with maximum slip at 33 km fault depth (Fig. 5a, red model), as previously inferred from historical records16, will result in coastal uplift and a relatively small tsunami. Instead, if the rupture occurs offshore (Fig. 5a, blue model), the deformation will result in coastal subsidence and a much larger tsunami. From a systematic analysis in which the hypothetical rupture models are shifted horizontally in the trench-normal direction or vertically in the depth direction (Fig. 5a, upper panel), we conclude that subsidence at the Chaihuín coast could only be produced by ruptures placed mainly offshore, at average megathrust depths shallower than 20 km (Fig. 5b, downward triangles). Deeper ruptures will produce coastal uplift and consequent smaller tsunamis (Fig. 5b). The same conclusion is reached by varying the rupture width with fixed updip and downdip limits (Supplementary Fig. 1).Our conclusions are independent of the use of a normalised unit displacement in all models (i.e. 1 m at the centre of its corresponding bell-shaped rupture) because the opposing effects of deep versus shallow ruptures at Chaihuín are insensitive to the magnitude of slip involved and depend on its locus. The amount of slip determines the magnitude of deformation but not its sign due to the elastic response of the crust during earthquakes34. However, with evidence at only one location we only feel confident to constrain the depth range but not the magnitude nor along-strike extent of the causative slip. Therefore, from our numerical experiment we conclude that to produce subsidence at the Chaihuín coast, an offshore rupture likely shallower than 20 km is required as a deeper source would result in coastal uplift. This is also consistent with the inferred tsunami heights (Fig. 5b), which are larger for a shallower rupture and therefore more likely to produce inundation on land independent of the local topography. This geologically-based inference of an offshore rupture (blue curve in Fig. 5b) contrasts with the deeper rupture below land (red curve in Fig. 5b) previously inferred from historical observations alone16.Implications for tsunami recurrence intervalsThe average interval between the three events preserved at Chaihuín, 193 years, is shorter than the interval proposed for full segment 1960-style ruptures of 270-280 years9,11,14. This supports the notion that the Chilean subduction zone displays a variable rupture mode, in which the size, depth, tsunamigenic potential and recurrence interval vary between earthquakes10. Of greatest importance, however, is the shorter average recurrence interval of tsunami inundation than previously reported. With the addition of the 1737 tsunami alongside previously known events in 1960, 1837 and 1575, the historical recurrence interval for tsunamis generated anywhere along the Valdivia segment of the Chilean subduction zone is reduced to 130 years. This holds even if the inferred tsunami inundation is not associated with the 1737 earthquake, but with another earthquake of similar age missed in the historical catalogue. More

  • in

    Occurrence of crop pests and diseases has largely increased in China since 1970

    1.Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 

    Google Scholar 
    2.The Future of Food and Agriculture—Alternative Pathways to 2050 (Food and Agriculture Organization of the United Nations, 2018).3.Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS 
    CAS 

    Google Scholar 
    5.Zhang, W. et al. Closing yield gaps in China by empowering smallholder farmers. Nature 537, 671–674 (2016).ADS 
    CAS 

    Google Scholar 
    6.Chakraborty, S. & Newton, A. C. Climate change, plant diseases and food security: an overview. Plant Pathol. 60, 2–14 (2011).
    Google Scholar 
    7.Oerke, E. C. Crop losses to pests. J. Agri. Sci. 144, 31–43 (2005).
    Google Scholar 
    8.Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nat. Clim. Change 3, 985–988 (2013).ADS 

    Google Scholar 
    9.Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Delcour, I., Spanoghe, P. & Uyttendaele, M. Literature review: impact of climate change on pesticide use. Food Res. Int. 68, 7–15 (2015).
    Google Scholar 
    11.Ziska, L. H. Increasing minimum daily temperatures are associated with enhanced pesticide use in cultivated soybean along a latitudinal gradient in the mid-western United States. PLoS ONE 9, e98516 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Lamichhane, J. R. et al. Robust cropping systems to tackle pests under climate change. A review. Agron. Sustain. Dev. 35, 443–459 (2014).
    Google Scholar 
    13.Bebber, D. P. et al. Many unreported crop pests and pathogens are probably already present. Glob. Change Biol. 25, 2703–2713 (2019).ADS 

    Google Scholar 
    14.Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 

    Google Scholar 
    15.Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N. & Travers, S. E. Climate change effects on plant disease: genomes to ecosystems. Annu. Rev. Phytopathol. 44, 489–509 (2006).CAS 

    Google Scholar 
    16.Hruska, A. J. Fall armyworm (Spodoptera frugiperda) management by smallholders. CAB Rev. 14, 1–11 (2019).
    Google Scholar 
    17.Sutherst, R. W. et al. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdiscip. Rev. Clim. Change 2, 220–237 (2011).
    Google Scholar 
    18.Donatelli, M. et al. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 155, 213–224 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Jones, J. W. et al. Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric. Syst. 155, 269–288 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    20.Miller, S. A., Beed, F. D. & Harmon, C. L. Plant disease diagnostic capabilities and networks. Annu. Rev. Phytopathol. 47, 15–38 (2009).CAS 

    Google Scholar 
    21.Bebber, D. P., Holmes, T., Smith, D. & Gurr, S. J. Economic and physical determinants of the global distributions of crop pests and pathogens. New Phytol. 202, 901–910 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    22.Savary, S. et al. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019).
    Google Scholar 
    23.An early warning news about the mirgating condition of Fall Armyworm in China from National Agro-Tech Extension and Service Center https://www.natesc.org.cn/News/des?id=eaf064ae-6582-47c1-a9f3-a58969fd47b3&kind=HYTX (in Chinese, available in Nov.2021).24.Piao, S. et al. The impacts of climate change on water resources and agriculture in China. Nature 467, 43–51 (2010).ADS 
    CAS 

    Google Scholar 
    25.Chown, S. L., Sorensen, J. G. & Terblanche, J. S. Water loss in insects: an environmental change perspective. J. Insect Physiol. 57, 1070–1084 (2011).CAS 

    Google Scholar 
    26.Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 

    Google Scholar 
    27.National Agricultural Technology Extension and Service Center. Technical Specification Manual of Major Crop Pest and Disease Observation and Forecast in China (China Agriculture Press, 2010).28.Olfert, O., Weiss, R. M. & Elliott, R. H. Bioclimatic approach to assessing the potential impact of climate change on wheat midge (Diptera: Cecidomyiidae) in North America. Can. Entomol. 148, 52–67 (2015).
    Google Scholar 
    29.Savary, S., Teng, P. S., Willocquet, L. & Nutter, F. W. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89–112 (2006).CAS 

    Google Scholar 
    30.Chakraborty, S. Migrate or evolve: options for plant pathogens under climate change. Glob. Change Biol. 19, 1985–2000 (2013).ADS 

    Google Scholar 
    31.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Chaloner, T. M., Gurr, S. J. & Bebber, D. P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 11, 710–715 (2021).ADS 

    Google Scholar 
    33.Carvalho, J. L. N. et al. Agronomic and environmental implications of sugarcane straw removal: a major review. Glob. Change Biol. Bioenergy 9, 1181–1195 (2017).CAS 

    Google Scholar 
    34.Savary, S., Horgan, F., Willocquet, L. & Heong, K. L. A review of principles for sustainable pest management in rice. Crop Prot. 32, 54–63 (2012).
    Google Scholar 
    35.Frolking, S. et al. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 16, 38-31–38-10 (2002).
    Google Scholar 
    36.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    37.Harvell, C. D. et al. Climate warming and disease risks for terrestrial and marine biota. Science 296, 2158–2162 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Scherm, H. Climate change: can we predict the impacts on plant pathology and pest management? Can. J. Plant Pathol. 26, 267–273 (2004).
    Google Scholar 
    39.Cheke, R. A. & Tratalos, J. A. Migration, patchiness, and population processes illustrated by two migrant pests. Bioscience 57, 145–154 (2007).
    Google Scholar 
    40.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).ADS 

    Google Scholar 
    41.O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS 

    Google Scholar 
    42.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).ADS 

    Google Scholar 
    43.Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019).ADS 

    Google Scholar 
    44.Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).CAS 

    Google Scholar 
    45.Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements FAO irrigation and drainage paper 56 (FAO, 1998).46.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    47.Kahiluoto, H. et al. Decline in climate resilience of European wheat. Proc. Natl Acad. Sci. USA 116, 123–128 (2019).CAS 

    Google Scholar 
    48.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).
    Google Scholar 
    49.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 

    Google Scholar 
    50.Clark, J. S. Why environmental scientists are becoming Bayesians. Ecol. Lett. 8, 2–14 (2005).
    Google Scholar 
    51.Clark, J. S. & Gelfand, A. E. A future for models and data in environmental science. Trends Ecol. Evol. 21, 375–380 (2006).
    Google Scholar 
    52.Gelfand, A. E. & Smith, A. F. M. Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990).MathSciNet 
    MATH 

    Google Scholar 
    53.Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. The BUGS project: evolution, critique and future directions. Stat. Med. 28, 3049–3067 (2009).MathSciNet 

    Google Scholar 
    54.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar  More

  • in

    The UN must get on with appointing its new science board

    EDITORIAL
    08 December 2021

    The UN must get on with appointing its new science board

    The decision to appoint a board of advisors is welcome — and urgent, given the twin challenges of COVID and climate change.

    Twitter

    Facebook

    Email

    Download PDF

    UN secretary-general António Guterres announced plans for a new science board in September, but is yet to release further details.Credit: Juancho Torres/Anadolu Agency/Getty

    Scientists helped to create the United Nations system. Today, people look to UN agencies — such as the UN Environment Programme or the World Health Organization — for reliable data and evidence on, say, climate change or the pandemic. And yet, shockingly, the UN leader’s office has not had a department for science advice for most of its 76-year history. That is about to change.UN secretary-general António Guterres is planning to appoint a board of scientific advisers, reporting to his office. The decision was announced in September in Our Common Agenda (see go.nature.com/3y1g3hp), which lays out the organization’s vision for the next 25 years, but few other details have been released.Representatives of the scientific community are excited about the potential for science to have a position at the centre of the UN, but are rightly anxious for rapid action, given the twin challenges of COVID-19 and climate change, which should be urgent priorities for the board. The International Science Council (ISC), the Paris-based non-governmental body representing many of the world’s scientists, recommended such a board in its own report on science and the intergovernmental system, published last week (see go.nature.com/3rjdjos). Council president Peter Gluckman, former chief science adviser to New Zealand’s prime minister, has written to Guterres to say the ISC is ready to help.
    COP26 didn’t solve everything — but researchers must stay engaged
    But it’s been more than two months since the announcement, and the UN has not yet revealed the names of the board members. Nature spoke to a number of serving and former UN science advisers who said they know little about the UN chief’s plans. So far, there are no terms of reference and there is no timeline.Nature understands that the idea is still being developed, and that Guterres is leaning towards creating a board that would draw on UN agencies’ existing science networks. Guterres is also aware of the need to take into account that both the UN and the world have changed since the last such board was put in place. All the same, the UN chief needs to end the suspense and set out his plans. Time is of the essence.Guterres’s predecessor, Ban Ki-moon, had a science advisory board between 2014 and 2016. Its members were tasked with providing advice to the secretary-general on science, technology and innovation for sustainable development. But COVID-19 and climate change have pushed science much higher up the international agenda. Moreover, global challenges are worsening — the pandemic has put back progress towards the UN’s flagship Sustainable Development Goals (SDGs), a plan to end poverty and achieve sustainability by 2030. There is now widespread recognition that science has an important part to play in addressing these and other challenges.
    How science can put the Sustainable Development Goals back on track
    Research underpins almost everything we know about the nature of the virus SARS-CoV-2 and the disease it causes. All countries have access to similar sets of findings, but many are coming to different decisions on how to act on those data — for example, when to mandate mask-wearing or introduce travel restrictions. The UN’s central office needs advice that takes this socio-cultural-political dimension of science into account. It needs advice from experts who study how science is applied and perceived by different constituencies and in different regions.Science advice from the heart of the UN system could also help with another problem highlighted by the pandemic — how to reinvigorate the idea that it is essential for countries to cooperate on solving global problems.Climate change is one example. Advice given by the Intergovernmental Panel on Climate Change (IPCC) is being read and applied in most countries, albeit to varying degrees. But climate is also an area in which states are at odds. Despite Guterres’s calls for solidarity, there were times during last month’s climate conference in Glasgow when the atmosphere was combative. Science advisers could help the secretary-general’s office to find innovative ways to encourage cooperation between countries in efforts to meet the targets of the 2015 Paris climate agreement.
    Reset Sustainable Development Goals for a pandemic world
    The SDGs are also, to some extent, impeded by competition within the UN system. To tackle climate change, manage land and forests, and protect biodiversity, researchers and policymakers need to work collegially. But the UN’s scientific bodies, such as the IPCC, are set up along disciplinary lines with their own objectives, work programmes and rules, all guided by their own institutional histories. The IPCC and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), for example, have only begun to collaborate in the past few years .Independence will be key for an advisory role to be credible. Guterres needs to consider an organizational architecture through which UN agencies are represented, and funding could come from outside the UN. But all of those involved would have to accept that their contributions were for common goals — not to promote their own organization’s interests.Leadership matters, as do communication and support. Guterres should ensure that his scientific advisers are chosen carefully to represent individuals from diverse disciplines and across career stages, and to ensure good representation from low-income countries. The board needs to be well staffed and have a direct line to his office. And it will need a decent budget. Guterres should quickly publish the terms of reference so that the research community has time to provide input and critique.At its most ambitious, a scientific advisory board to the secretary-general could help to break the culture of individualism that beleaguers efforts to reach collective, global goals, and bring some coherence to the current marketplace of disciplines, ideas and outcomes. This will be a monumental task, requiring significant resources and the will to change. But if the advisers succeed, there will also be valuable lessons for the practice of science, which, as we know all too well, still largely rewards individual effort.

    Nature 600, 189-190 (2021)
    doi: https://doi.org/10.1038/d41586-021-03615-y

    Related Articles

    COP26 didn’t solve everything — but researchers must stay engaged

    Ending Hunger: Science must stop neglecting smallholder farmers

    Reset Sustainable Development Goals for a pandemic world

    How science can put the Sustainable Development Goals back on track

    Subjects

    Sustainability

    Biodiversity

    Climate change

    Government

    Latest on:

    Sustainability

    Battery-powered trains offer a cost-effective ride to a cleaner world
    Research Highlight 22 NOV 21

    All aboard the climate train! Scientists join activists for COP26 trip
    News 02 NOV 21

    Machine learning enables global solar-panel detection
    News & Views 27 OCT 21

    Biodiversity

    Link knowledge and action networks to tackle disasters
    Correspondence 16 NOV 21

    COP26 climate pledges: What scientists think so far
    News 05 NOV 21

    The answer to the biodiversity crisis is not more debt
    Editorial 26 OCT 21

    Climate change

    An IPCC reviewer shares his thoughts on the climate debate
    Career Q&A 08 DEC 21

    Brazil is in water crisis — it needs a drought plan
    Comment 08 DEC 21

    Build solar-energy systems to last — save billions
    Comment 07 DEC 21

    Jobs

    Postdoc in Formulation Development for Gene Delivery Therapies

    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    ​​​​​​​Postdoc in Molecular Biology for Gene Delivery Project

    Technical University of Denmark (DTU)
    2800 Kgs. Lyngby, Denmark

    Post-doctoral Research Fellows

    Brigham and Women’s Hospital (BWH)
    Boston, MA, United States

    HPC/Research Computing Engineer

    Francis Crick Institute
    London, United Kingdom More

  • in

    Fish predators control outbreaks of Crown-of-Thorns Starfish

    Large-scale, long-term field data from the GBR Marine ParkThe field data for CoTS, hard coral cover (here referred to as coral cover) and coral reef fish were obtained from the Australian Institute of Marine Science’s (AIMS) Long-Term Monitoring Programme (LTMP), while fisheries retained catch data were supplied by the Queensland Department of Agriculture and Fisheries (QDAF). The LTMP has been surveying CoTS populations and coral cover at reefs across the length and breadth of the GBR Marine Park since 198350 and has quantified the status and trend of benthic and reef fish assemblages since 1995. Specific examination of the effectiveness of zoning within the GBR Marine Park has also been undertaken24. The surveyed reefs are located within zones open to fishing (i.e. General Use, Habitat Protection and Conservation Park) and zones closed to fishing (i.e. Marine National Park Zones, Preservation and Scientific Research Zones) (Supplementary Table 1). The QDAF fisheries data comprise annual retained catch data from the Coral Reef Fin Fish Fishery including commercial, recreational (including charters) and Indigenous fisheries, as well as the Marine Aquarium Fish Fishery (Supplementary Data 1–3). Monthly catch return logbooks became compulsory for all trawlers and line fisheries on 1 January 198830. Retained catch data from each of these fisheries is collected separately and differently by QDAF (please see details below). Use of these data is by courtesy of the State of Queensland, Australia, through the Department of Agriculture and Fisheries.For both the LTMP and QDAF data, the data sets are chronologically divided into report (LTMP) or financial (QDAF) years, respectively, from 01 July to 30 June. This means that, for instance, the second semester of 2017 belongs to the 2018 report or financial year. Hereafter we will refer to report or financial year as simply year. Below we explain each of these data sets in more detail.LTMP CoTS and coral cover dataLTMP CoTS and coral cover data are available from 1983 to 2020. Both observed CoTS and coral cover data are based on field observations that employ manta tow surveys around the perimeter of each reef following AIMS’ Standard Operational Procedure51. Within this period, manta tows were conducted once per year but not all reefs were sampled every year. Briefly, manta tow surveys are a broad-scale technique that covers large areas of reef quickly and provides an assessment of broad changes in the distribution and abundance of corals and CoTS. During surveys, two boats each tow an observer clockwise and anti-clockwise around reef perimeters in a series of 2-min tows until they meet at the other end of the reef. Each observer records categorical coral cover (Supplementary Table 8) and the number and size of any CoTS observed (Supplementary Table 9) at the end of each 2-min tow51. Manta tow surveys are a non-targeting, rapid assessment method, and therefore it under-samples CoTS individuals that are More