Camera trap placement for evaluating species richness, abundance, and activity
1.Gese E. M. Monitoring of terrestrial carnivore populations. Carnivore Conservation. (2001).2.Oconnell, A. F. et al. (eds) Camera Traps in Animal Ecology: Methods and Analyses (Springer Science & Business Media, 2010).
Google Scholar
3.Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).
Google Scholar
4.MacKenzie D. I., Nichols J. D., Royle J. A., Pollock K. H., Bailey L. A., Hines J. E. Occupancy Modeling and Estimation (2017).5.Carbone, C. et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4(1), 75–79 (2001).
Google Scholar
6.Rowcliffe, J. M., Field, J., Turvey, S. T. & Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 1, 1228–1236 (2008).
Google Scholar
7.Karanth, K. U. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 71(3), 333–338 (1995).
Google Scholar
8.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2), 148–154 (2004).
Google Scholar
9.Jhala, Y., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48(1), 14–24 (2011).
Google Scholar
10.Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 144(3), 1017–1024 (2011).
Google Scholar
11.Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5(11), 1170–1179 (2014).
Google Scholar
12.Roy, M. et al. Demystifying the Sundarban tiger: Novel application of conventional population estimation methods in a unique ecosystem. Popul. Ecol. 58(1), 81–89 (2016).
Google Scholar
13.Howe, E. J., Buckland, S. T., Després-Einspenner, M. L. & Kühl, H. S. Distance sampling with camera traps. Methods Ecol. Evol. 8(11), 1558–1565 (2017).
Google Scholar
14.Bridges, A. S., Vaughan, M. R. & Klenzendorf, S. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography. Wildl. Biol. 10(1), 277–284 (2004).
Google Scholar
15.Beck, H. & Terborgh, J. Groves versus isolates: How spatial aggregation of Astrocaryum murumuru palms affects seed removal. J. Trop. Ecol. 1, 275–288 (2002).
Google Scholar
16.Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17(1), 245–257 (2003).
Google Scholar
17.MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255 (2002).
Google Scholar
18.Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52(3), 675–685 (2015).
Google Scholar
19.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6(2), 131–139 (2003).
Google Scholar
20.Datta, A., Anand, M. O. & Naniwadekar, R. Empty forests: Large carnivore and prey abundance in Namdapha National Park, north-east India. Biol. Cons. 141(5), 1429–1435 (2008).
Google Scholar
21.Weckel, M., Giuliano, W. & Silver, S. Jaguar (Panthera onca) feeding ecology: Distribution of predator and prey through time and space. J. Zool. 270(1), 25–30 (2006).
Google Scholar
22.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 287(4), 269–275 (2012).
Google Scholar
23.Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budgets of mammals in the Western Ghats of India. J. Trop. Ecol. 32, 315–323 (2015).
Google Scholar
24.Edwards, S. et al. Making the most of by-catch data: Assessing the feasibility of utilising non-target camera trap data for occupancy modelling of a large felid. Afr. J. Ecol. 56(4), 885–894 (2018).
Google Scholar
25.Harmsen, B. J., Foster, R. J., Silver, S., Ostro, L. & Doncaster, C. P. Differential use of trails by forest mammals and the implications for camera-trap studies: A case study from Belize. Biotropica 42(1), 126–133 (2010).
Google Scholar
26.Di Bitetti M. S., Paviolo A. J. & de Angelo C. D. Camera Trap Photographic Rates on Roads vs. Off Roads: Location Does Matter, Vol. 21, 37–46 (2014).27.Blake, J. G. & Mosquera, D. Camera trapping on and off trails in lowland forest of eastern Ecuador: Does location matter?. Mastozool. Neotrop. 21(1), 17–26 (2014).
Google Scholar
28.Cusack, J. J. et al. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10(5), e0126373 (2015).PubMed
PubMed Central
Google Scholar
29.Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12(10), e0186679 (2017).PubMed
PubMed Central
Google Scholar
30.Srbek-Araujo, A. C. & Chiarello, A. G. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota. Neotrop. 13(2), 51–62 (2013).
Google Scholar
31.Wearn, O. R., Rowcliffe, J. M., Carbone, C., Bernard, H. & Ewers, R. M. Assessing the status of wild felids in a highly-disturbed commercial forest reserve in Borneo and the implications for camera trap survey design. PLoS ONE 8(11), e77598 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
32.Sadhu, A. et al. Demography of a small, isolated tiger population in a semi-arid region of western India. BMC Zool. 2(1), 1–13 (2017).
Google Scholar
33.Sunquist, M. What is a tiger? Ecology and behavior. In Tigers of the World 19–33 (William Andrew Publishing, 2010).
Google Scholar
34.Gotelli, N. J. & Colwell, R. K. Estimating species richness. Biol. Divers. Front. Meas. Assess. 12, 39–54 (2011).
Google Scholar
35.Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10), 2717–2727 (2004).
Google Scholar
36.Rovero, F. & Marshall, A. R. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46(5), 1011–1017 (2009).
Google Scholar
37.Jhala, Y. V., Qureshi, Q., Nayak, A. K. Status of tigers, copredators and prey in India, 2018. ISBN No. 81-85496-50-1 https://wii.gov.in/tiger_reports (National Tiger Conservation Authority, Government of India and Wildlife Institute of India, 2020).38.Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45(5), 1321–1329 (2008).
Google Scholar
39.Hines J. E. PRESENCE 3.1 Software to estimate patch occupancy and related parameters. http://www.mbr-pwrc.usgs.gov/software/presence.html. (2006).40.Meredith, M., & Ridout, M. Overview of the overlap package. R. Project. 1–9 (2014).41.Rowcliffe M, Rowcliffe M. M. Package ‘activity’. Animal activity statistics R Package Version. 1 (2016).42.Soberón, M. J. & Llorente, B. J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 7(3), 480–488 (1993).
Google Scholar
43.Broadley, K., Burton, A. C., Avgar, T. & Boutin, S. Density-dependent space use affects interpretation of camera trap detection rates. Ecol. Evol. 9(24), 14031–14041 (2019).PubMed
PubMed Central
Google Scholar
44.Bunnell, F. L. & Gillingham, M. P. Foraging behavior: Dynamics of dining out. Bioenerget. Wild herbiv. 1, 53–79 (1985).
Google Scholar
45.Mishra H. R. The ecology and behaviour of chital (Axis axis) in the Royal Chitwan National Park, Nepal: with comparative studies of hog deer (Axis porcinus), sambar (Cervus unicolor) and barking deer (Muntiacus muntjak) (Doctoral dissertation, University of Edinburgh). 1982.46.Raman, T. S. Factors influencing seasonal and monthly changes in the group size of chital or axis deer in southern India. J. Biosci. 22(2), 203–218 (1997).
Google Scholar
47.Karanth, K. U. & Sunquist, M. E. Behavioral correlates of predation by tiger, leopard and dhole in Nagarhole National Park. India. J Zool. 250(2), 255–265 (2000).
Google Scholar
48.Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. & Doncaster, C. P. Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. J. Mammal. 90(3), 612–620 (2009).
Google Scholar
49.Nichols, J. D., Karanth, K. U. & O’Connell, A. F. Science, conservation, and camera traps. In Camera Traps in Animal Ecology 45–56 (Springer, 2011).
Google Scholar More