Quantifying the effect of genetic, environmental and individual demographic stochastic variability for population dynamics in Plantago lanceolata
1.Metcalf, C. J. E. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007).PubMed
Google Scholar
2.Lande, R., Engen, S. & Saether, B. Stochastic population dynamics in ecology and conservation. (Oxfor University Press, 2003).3.Roughgarden, J. A simple model for population dynamics in stochastic environments. Am. Nat. 109, 713–736 (1975).
Google Scholar
4.May, R. M. Stability and complexity in model ecosystems (Princeton Univ, 2001).MATH
Google Scholar
5.Engen, S., Bakke, Ø. & Islam, A. Demographic and Environmental Stochasticity-Concepts and Definitions on JSTOR. Biometrics 54, 840–846 (1998).MATH
Google Scholar
6.Melbourne, B. a & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–3 (2008).7.Tuljapurkar, S., Steiner, U. K. & Orzack, S. H. Dynamic heterogeneity in life histories. Ecol. Lett. 12, 93–106 (2009).PubMed
Google Scholar
8.Vindenes, Y. & Engen, S. Demographic stochasticity and temporal autocorrelation in the dynamics of structured populations. Oikos https://doi.org/10.1111/oik.03958 (2017).Article
Google Scholar
9.Caswell, H. Stage, age and individual stochasticity in demography. Oikos 118, 1763–1782 (2009).
Google Scholar
10.Steiner, U. K. & Tuljapurkar, S. Neutral theory for life histories and individual variability in fitness components. Proc. Natl. Acad. Sci. USA 109, 4684–4689 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
11.Vindenes, Y. & Langangen, Ø. Individual heterogeneity in life histories and eco-evolutionary dynamics. Ecol. Lett. 18, 417–432 (2015).PubMed
PubMed Central
Google Scholar
12.Snyder, R. E. & Ellner, S. P. Pluck or Luck: Does Trait Variation or Chance Drive Variation in Lifetime Reproductive Success?. Am. Nat. 191, E90–E107 (2018).PubMed
Google Scholar
13.Steiner, U. K., Tuljapurkar, S. & Orzack, S. H. Dynamic heterogeneity and life history variability in the kittiwake. J. Anim. Ecol. 79, 436–444 (2010).PubMed
PubMed Central
Google Scholar
14.Pennisi, E. The Great Guppy Experiment. Science (80-. ). 337, 904–908 (2012).15.Pajunen, V. I. & Pajunen, I. Long-term dynamics in rock pool Daphnia metapopulations. Ecography (Cop.) 26, 731–738 (2003).
Google Scholar
16.Ozgul, A. et al. The dynamics of phenotypic change and the shrinking sheep of St. Kilda.. Science 325, 464–467 (2009).ADS
CAS
PubMed
PubMed Central
Google Scholar
17.Roach, D. A. & Gampe, J. Age-specific demography in Plantago: uncovering age-dependent mortality in a natural population. Am. Nat. 164, 60–69 (2004).PubMed
Google Scholar
18.Reid, J. M., Nietlisbach, P., Wolak, M. E., Keller, L. F. & Arcese, P. Individuals’ expected genetic contributions to future generations, reproductive value, and short-term metrics of fitness in free-living song sparrows ( Melospiza melodia ). Evol. Lett. 3, 271–285 (2019).PubMed
PubMed Central
Google Scholar
19.Endler, J. A. Natural selection in the wild. Monographs in Population Biology vol. 21 (Princeton University Press, 1986).20.Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010).PubMed
Google Scholar
21.Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).PubMed
PubMed Central
Google Scholar
22.Roach, D. A., Ridley, C. E. & Dudycha, J. L. Longitudinal analysis of Plantago : Age-by-environment interactions reveal aging. Ecology 90, 1427–1433 (2009).PubMed
Google Scholar
23.Roach, D. A. Age, growth and size interact with stress to determine life span and mortality. Exp. Gerontol. 47, 782–786 (2012).PubMed
PubMed Central
Google Scholar
24.Shefferson, R. P. & Roach, D. A. The triple helix of Plantago lanceolata: Genetics and the environment interact to determine population dynamics. Ecology 93, 793–802 (2012).PubMed
Google Scholar
25.Coulson, T., Tuljapurkar, S. & Step, T. The dynamics of a quantitative trait in an age-structured population living in a variable environment. Am. Nat. 172, 599–612 (2008).PubMed
PubMed Central
Google Scholar
26.Coulson, T., Tuljapurkar, S. & Childs, D. Z. Using evolutionary demography to link life history theory, quantitative genetics and population ecology. J. Anim. Ecol. 79, 1226–1240 (2010).PubMed
PubMed Central
Google Scholar
27.Lacey, E. P. et al. Multigenerational effects of flowering and fruiting phenology in Plantago lanceolata. Ecology 84, 2462–2475 (2003).
Google Scholar
28.Jones, O. R. et al. Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol. Lett. 11, 664–673 (2008).PubMed
Google Scholar
29.Fisher, R. The genetical theory of natural selection. (Clarendon, 1930).30.Wright, S. Evolution in Mendelian populations. Genetics 16, 0097–0159 (1931).CAS
Google Scholar
31.Crow, J. F. & Kimura, M. An introduction to population genetics theory. (1970).32.Merilä, J. & Sheldon, B. Lifetime Reproductive Success and Heritability in Nature. Am. Nat. 155, 301–310 (2000).PubMed
Google Scholar
33.Kruuk, L. E. et al. Heritability of fitness in a wild mammal population. Proc. Natl. Acad. Sci. U. S. A. 97, 698–703 (2000).ADS
CAS
PubMed
PubMed Central
Google Scholar
34.Teplitsky, C., Mills, J. a, Yarrall, J. W. & Merilä, J. Heritability of fitness components in a wild bird population. Evolution 63, 716–26 (2009).35.Kruuk, L. E., Merilä, J. & Sheldon, B. C. Phenotypic selection on a heritable size trait revisited. Am. Nat. 158, 557–571 (2001).CAS
PubMed
Google Scholar
36.Sheldon, B. C., Kruuk, L. E. B. & Merilä, J. Natural selection and inheritance of breeding time and clutch size in the collared flycatcher. Evolution 57, 406–420 (2003).CAS
PubMed
Google Scholar
37.Merilä, J. & Sheldon, B. C. Short Review Genetic architecture of fitness and non fitness traits : empirical patterns and development of ideas. Heredity (Edinb). 83, (1999).38.Hartl, D. J. & Clark, A. G. Principles of population genetics. (Sinauer, 2007).39.Charlesworth, B. Evolution in age-structured populations. (Cambridge University Press, 1994).40.Kirkwood, T. B. L. et al. What accounts for the wide variation in life span of genetically identical organisms reared in a constant environment?. Mech. Ageing Dev. 126, 439–443 (2005).PubMed
Google Scholar
41.Finch, C. & Kirkwood, T. B. Chance, Development, and Aging. (Oxford University Press, 2000).42.Schiemer, F. Food Dependence and Energetics of Freeliving Nematodes. II. Life History Parameters of Caenorhabditis briggsae (Nematoda) at Different Levels of Food Supply. Oecologia 54, 122–128 (1982).43.Kennedy, B. K. Daughter cells of Saccharomyces cerevisiae from old mothers display a reduced life span. J. Cell Biol. 127, 1985–1993 (1994).CAS
PubMed
Google Scholar
44.Steiner, U. K. et al. Two stochastic processes shape diverse senescence patterns in a single-cell organism. Evolution (N. Y). 73, 847–857 (2019).45.Jouvet, L., Rodríguez-Rojas, A. & Steiner, U. K. Demographic variability and heterogeneity among individuals within and among clonal bacteria strains. Oikos 127, 728–737 (2018).
Google Scholar
46.Curtsinger, J., Fukui, H., Townsend, D. & Vaupel, J. Demography of genotypes: failure of the limited life-span paradigm in Drosophila melanogaster. Science (80-. ). 258, 461–463 (1992).47.Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).
Google Scholar
48.Edelfeldt, S., Bengtsson, K. & Dahlgren, J. P. Demographic senescence and effects on population dynamics of a perennial plant. Ecology 100, e02742 (2019).49.van Daalen, S. F. & Caswell, H. Variance as a life history outcome: Sensitivity analysis of the contributions of stochasticity and heterogeneity. Ecol. Modell. 417, (2020).50.Caswell, H. & Vindenes, Y. Demographic variance in heterogeneous populations: matrix models and sensitivity analysis. Oikos 127, 648–663 (2018).
Google Scholar
51.Jenouvrier, S., Aubry, L. M., Barbraud, C., Weimerskirch, H. & Caswell, H. Interacting effects of unobserved heterogeneity and individual stochasticity in the life history of the southern fulmar. J. Anim. Ecol. 87, 212–222 (2018).PubMed
Google Scholar
52.Balázsi, G., Van Oudenaarden, A. & Collins, J. J. Cellular decision making and biological noise: from microbes to mammals. Cell 144, 910–925 (2011).PubMed
PubMed Central
Google Scholar
53.Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science (80-. ). 297, 1183–1186 (2002).54.Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005).PubMed
Google Scholar
55.Vera, M., Biswas, J., Senecal, A., Singer, R. H. & Park, H. Y. Single-Cell and Single-Molecule Analysis of Gene Expression Regulation. Annu. Rev. Genet. 50, 267–291 (2016).CAS
PubMed
PubMed Central
Google Scholar
56.Norman, T. M., Lord, N. D., Paulsson, J. & Losick, R. Stochastic Switching of Cell Fate in Microbes. Annu. Rev. Microbiol. 69, 381–403 (2015).CAS
PubMed
Google Scholar
57.Ballouz, S., Pena, M., Knight, F., Adams, L. & Gillis, J. The transcriptional legacy of developmental stochasticity. bioRxiv 2019.12.11.873265 (2019) https://doi.org/10.1101/2019.12.11.873265.58.Vogt, G. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences. J. Biosci. 40, 159–204 (2015).PubMed
Google Scholar
59.Hill, W. G. Effective size of populations with overlapping generations. Theor. Popul. Biol. 3, 278–289 (1972).CAS
PubMed
Google Scholar
60.Engen, S., Lande, R. & Saether, B.-E. Effective Size of a Fluctuating Age-Structured Population. Genetics 170, 941–954 (2005).PubMed
PubMed Central
Google Scholar
61.Vindenes, Y., Engen, S. & Saether, B.-E. Individual heterogeneity in vital parameters and demographic stochasticity. Am. Nat. 171, 455–467 (2008).PubMed
Google Scholar
62.Engen, S., Lande, R., aether, B.-E. & Weimerskirch, H. Extinction in relation to demographic and environmental stochasticity in age-structured models. Math. Biosci. 195, 210–27 (2005).63.Stearns, S. C. The evolution of life-histories. (Oxford University Press, 1992).64.Kendall, B. E. & Fox, G. a. Variation among Individuals and Reduced Demographic Stochasticity. Conserv. Biol. 16, 109–116 (2002).65.Fox, G. A. & Kendall, B. E. Demographic stochasticity and the variance reduction effect. Ecology 83, 1928–1934 (2002).
Google Scholar
66.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed
PubMed Central
Google Scholar
67.Hartemink, N. & Caswell, H. Variance in animal longevity: contributions of heterogeneity and stochasticity. Popul. Ecol. 60, 89–99 (2018).PubMed
PubMed Central
Google Scholar
68.Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends Ecol. Evol. 21, 451–457 (2006).PubMed
Google Scholar
69.Ohta, T. & Gillespie, J. Development of Neutral and Nearly Neutral Theories. Theor. Popul. Biol. 49, 128–142 (1996).CAS
PubMed
MATH
Google Scholar
70.Hughes, A. L. Near neutrality: leading edge of the neutral theory of molecular evolution. Ann. N. Y. Acad. Sci. 1133, 162–179 (2008).ADS
PubMed
PubMed Central
Google Scholar
71.Comstock, R. E. & Robinson, H. F. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 254–266 (1948).72.Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).PubMed
Google Scholar
73.Steiner, U. K., Tuljapurkar, S., Coulson, T. & Horvitz, C. Trading stages: life expectancies in structured populations. Exp. Gerontol. 47, 773–781 (2012).PubMed
PubMed Central
Google Scholar
74.R Core Team, R. A. language and environment for statistical computing. R: A language and environment for statistical computing. R Foundation for Statistical Computing vol. 1 409 (2016).75.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
Google Scholar
76.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
Google Scholar More