More stories

  • in

    Patterns of livestock depredation and Human–wildlife conflict in Misgar valley of Hunza, Pakistan

    1.Amaja, L. G., Feyssa, D. H. & Gutema, T. M. Assessment of types of damage and causes of Human–wildlife conflict in Gera district, southwestern Ethiopia. J. Ecol. Nat. Environ. 8, 49–54 (2016).Article 

    Google Scholar 
    2.Decker, D. J., Laube, T. B. & Siemer, W. F. Human–Wildlife Conflict Management: A Practitioner’s Guide (Northeastern Wildlife Damage Management Research and Outreach Cooperative, 2002).
    Google Scholar 
    3.Habib, A., Nazir, I., Fazili, M. F. & Bhat, B. A. Human–wildlife conflict-causes, consequences and mitigation measures with special reference to Kashmir. J. Zool. Stud. 2, 26–30 (2015).
    Google Scholar 
    4.Eklund, A., Lopez-Bao, J. V., Tourani, M., Chapron, G. & Frank, J. Author Correction: Limited evidence on the effectiveness of interventions to reduce livestock predation by large carnivores. Sci. Rep. 8, 5770 (2018).ADS 
    Article 

    Google Scholar 
    5.Hussain, S. The status of the snow leopard in Pakistan and its conflict with local farmers. Oryx 37, 26–33 (2003).Article 

    Google Scholar 
    6.Miller, J. R., Jhala, Y. V. & Schmitz, O. J. Human perceptions mirror realities of carnivore attack risk for livestock: Implications for mitigating human-carnivore conflict. PLoS ONE 11, e0162685 (2016).Article 

    Google Scholar 
    7.Aryal, P. et al. Human–carnivore conflict: Ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).Article 

    Google Scholar 
    8.Khan, B. et al. Pastoralist experience and tolerance of snow leopard, wolf and lynx predation in Karakoram Pamir Mountains. J. Biol. Environ. Sci. 5, 214–229 (2014).
    Google Scholar 
    9.Jackson, R. M., Ahlborn, G., Gurung, M. & Ale, S. Reducing livestock depredation losses in the Nepalese Himalaya. In Proc. 17th Vertebrate Pest Conference (eds Timm, R. M. & Crabb, A. C.) 241–247 (University of California, 1996).
    Google Scholar 
    10.Qamar, Q. Z. et al. Human leopard conflict: An emerging issue of common leopard conservation in Machiara National Park, Azad Jammu, and Kashmir, Pakistan. Pak. J. Wildl. 1, 50–56 (2010).
    Google Scholar 
    11.Atickem, A., Williams, S., Bekele, A. & Thirgood, S. Livestock predation in the Bale Mountains, Ethiopia. Afr. J. Ecol. 48, 1076–1082 (2010).Article 

    Google Scholar 
    12.Gittleman, J. L., Funk, S. M., Macdonald, D. W. & Wayne, R. K. Carnivore conservation. Cambridge University Press, Cambridge consequences and mitigation measures with special reference to Kashmir. J. Zool. Stud. 2, 26–30 (2001).
    Google Scholar 
    13.Treves, A. K. & Karanth, K. U. Human–carnivore conflict—Local solutions with global applications (Special section): Introduction. Conserv. Biol. 17, 1489–1490 (2003).Article 

    Google Scholar 
    14.Li, J., Yin, H., Wang, D., Jiagong, Z. & Lu, Z. Human-snow leopard conflicts in the Sanjiangyuan Region of the Tibetan Plateau. Biol. Conserv. 166, 118–123 (2013).Article 

    Google Scholar 
    15.McCarthy, T. M. & Chapron, G. Snow Leopard Survival Strategy (IT and SLN, 2003).
    Google Scholar 
    16.Suryawanshi, K.R. Human carnivore conflicts: Understanding predation ecology and livestock damage by snow leopards. Ph.D. Thesis. Manipal University, India (2013).17.Bocci, A., Lovari, S., Khan, M. Z. & Mori, E. Sympatric snow leopards and Tibetan wolves: coexistence of large carnivores with human-driven potential competition. Eur. J. Wildl. Res. 63, 92 (2017).Article 

    Google Scholar 
    18.Wang, S. W. & Macdonald, D. Livestock predation by carnivores in Jigme Singye Wangchuck National Park, Bhutan. Biol. Conserv. 129, 558–565 (2006).Article 

    Google Scholar 
    19.Khan, M. Z., Khan, B., Awan, M. S. & Begum, F. Livestock depredation by large predators and its implications for conservation and livelihoods in the Karakoram Mountains of Pakistan. Oryx 52, 519–525 (2018).Article 

    Google Scholar 
    20.Ali, H., Younus, M., Din, J. U., Bischof, R. & Nawaz, M. A. Do Marco Polo argali Ovis ammon polii persist in Pakistan?. Oryx 53, 329–333 (2019).Article 

    Google Scholar 
    21.Dar, N. I., Minhas, R. A., Zaman, Q. & Linkie, M. Predicting the patterns, perceptions, and causes of human-carnivore conflict in and around Machiara National Park, Pakistan. Biol. Conserv. 142, 2076 (2009).Article 

    Google Scholar 
    22.RC Team. R: A Language and Environment for Statistical Computing (2013).23.Din, J. U. et al. A Tran’s boundary study of spatiotemporal patterns of livestock predation and prey preferences by snow leopard and wolf in the Pamir. Glob. Ecol. Conserv. 20, e00719 (2019).Article 

    Google Scholar 
    24.Conover, M. R. Resolving Human–Wildlife Conflicts: The Science of Wildlife Damage Management 418 (Lewis Publishers, 2002).
    Google Scholar 
    25.Graham, K., Beckerman, A. P. & Thirgood, S. Human–predator–prey conflicts: Ecological correlates, prey losses and patterns of management. Biol. Conserv. 122, 159–171 (2005).Article 

    Google Scholar 
    26.Li, X., Buzzard, P., Chen, Y. & Jiang, X. Patterns of livestock predation by carnivores: Human–wildlife conflict in Northwest Yunnan, China. Environ. Manage. 52, 1334–1340 (2013).ADS 
    Article 

    Google Scholar 
    27.Dar, N. I., Minhas, R. A., Zaman, Q. & Linkie, M. Predicting the patterns, perceptions and causes of human–carnivore conflict in and around Machiara National Park, Pakistan. Biol. Conserv. 142, 2076–2082 (2009).Article 

    Google Scholar 
    28.Mishra, C., Prins, H. H. T. & van Wieren, S. E. Overstocking in the trans-Himalayan rangelands of India. Environ. Conserv. 28, 279–283 (1997).Article 

    Google Scholar 
    29.Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera Leo). J. Zool. (Lond.) 267(267), 309–322 (2005).Article 

    Google Scholar 
    30.Mc Guinness, S. & Taylor, D. Farmers’ perceptions and actions to decrease crop raiding by forest-dwelling primates around a Rwandan Forest fragment. Hum. Dimens. Wildl. 19, 361–372 (2014).Article 

    Google Scholar 
    31.ICIMOD. Glacial Lakes and Glacial Lake Outburst Floods in Nepal (Gland, 2011).Book 

    Google Scholar 
    32.Distefano, E. Human–Wildlife Conflict Worldwide: Collection of Case Studies, Analysis of Management Strategies and Good Practices (Food and Agricultural Organization of the United Nations (FAO), 2005).
    Google Scholar 
    33.Shedayi, A. A., Xu, M., Naseer, I. & Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 5, 1–14 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Butyrate producing microbiota are reduced in chronic kidney diseases

    PatientsStool samples from a total of 52 patients with varying stages of CKD were collected in this study: CKD3A (n = 12), CKD3B (n = 11), CKD4 (n = 15), CKD5 (n = 4) and ESRD (n = 10) (Table 1). Patients’ characteristics are summarized in Table 1. Among 52 patients, 31 were reported to have Type 2 diabetes mellitus and 7 patients were reported to have human immunodeficiency virus (HIV) infection. As expected, urine protein creatinine ratio, serum creatinine and blood urea nitrogen level increased with progressing stages of CKD (CKD 3A to ESRD). There was no significant difference in fat, protein, carbohydrates, dietary fiber and calorie intake between CKD patients with different stages (Supplementary Table S1).Table 1 Patients’ characteristics.Full size tableAlpha and beta-diversityRichness and Shannon index were not significantly different between different patient groups, meanwhile the CKD5 group showed a significant decrease in Simpson diversity compared with CKD 3A (FDR  More

  • in

    Bolstering fitness via CO2 fixation and organic carbon uptake: mixotrophs in modern groundwater

    1.Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247–60.CAS 
    PubMed 

    Google Scholar 
    2.Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science. 2012;337:1661–5.CAS 
    PubMed 

    Google Scholar 
    3.Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.CAS 
    PubMed 

    Google Scholar 
    4.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.
    Google Scholar 
    5.Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 

    Google Scholar 
    6.Gleeson T, Befus KM, Jasechko S, Luijendijk E, Cardenas MB. The global volume and distribution of modern groundwater. Nat Geosci. 2016;9:161–7.CAS 

    Google Scholar 
    7.Akob DM, Küsel K. Where microorganisms meet rocks in the Earth’s Critical Zone. Biogeosciences. 2011;8:3531–43.CAS 

    Google Scholar 
    8.Griebler C, Lueders T. Microbial biodiversity in groundwater ecosystems. Freshw Biol. 2009;54:649–77.
    Google Scholar 
    9.Bell E, Lamminmäki T, Alneberg J, Andersson AF, Qian C, Xiong WL, et al. Active sulfur cycling in the terrestrial deep subsurface. ISME J. 2020;14:1260–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Einsiedl F, Mayer B. Hydrodynamic and microbial processes controlling nitrate in a fissured-porous karst aquifer of the Franconian Alb, Southern Germany. Environ Sci Technol. 2006;40:6697–702.CAS 
    PubMed 

    Google Scholar 
    11.Schlesinger WH. On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA. 2009;106:203–8.CAS 
    PubMed 

    Google Scholar 
    12.McCollom TM, Seewald JS. Serpentinites, hydrogen, and life. Elements. 2013;9:129–34.CAS 

    Google Scholar 
    13.Emerson JB, Thomas BC, Alvarez W, Banfield JF. Metagenomic analysis of a high carbon dioxide subsurface microbial community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environ Microbiol. 2016;18:1686–703.CAS 
    PubMed 

    Google Scholar 
    14.Probst AJ, Ladd B, Jarett JK, Geller-McGrath DE, Sieber CMK, Emerson JB, et al. Differential depth distribution of microbial function and putative symbionts through sediment- hosted aquifers in the deep terrestrial subsurface. Nat Microbiol. 2018;3:328–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wegner CE, Gaspar M, Geesink P, Herrmann M, Marz M, Küsel K. Biogeochemical regimes in shallow aquifers reflect the metabolic coupling of the elements nitrogen, sulfur, and carbon. Appl Environ Microbiol. 2019;85:1–18.
    Google Scholar 
    17.Herrmann M, Rusznyak A, Akob DM, Schulze I, Opitz S, Totsche KU, et al. Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol. 2015;81:2384–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ Microbiol. 2017;19:459–74.CAS 
    PubMed 

    Google Scholar 
    19.Jewell TNM, Karaoz U, Brodie EL, Williams KH, Beller HR. Metatranscriptomic evidence of pervasive and diverse chemolithoautotrophy relevant to C, S, N and Fe cycling in a shallow alluvial aquifer. ISME J. 2016;10:2106–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Handley KM, Bartels D, O’Loughlin EJ, Williams KH, Trimble WL, Skinner K, et al. The complete genome sequence for putative H2- and S-oxidizer Candidatus Sulfuricurvum sp., assembled de novo from an aquifer-derived metagenome. Environ Microbiol. 2014;16:3443–62.CAS 
    PubMed 

    Google Scholar 
    21.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 

    Google Scholar 
    22.von Bergen M, Jehmlich N, Taubert M, Vogt C, Bastida F, Herbst FA, et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME J. 2013;7:1877–85.
    Google Scholar 
    23.Taubert M, Vogt C, Wubet T, Kleinsteuber S, Tarkka MT, Harms H, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME J. 2012;6:2291–301.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Taubert M, Baumann S, von Bergen M, Seifert J. Exploring the limits of robust detection of incorporation of 13C by mass spectrometry in protein-based stable isotope probing (protein-SIP). Anal Bioanal Chem. 2011;401:1975–82.CAS 
    PubMed 

    Google Scholar 
    25.Rimstidt JD, Vaughan DJ. Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta. 2003;67:873–80.CAS 

    Google Scholar 
    26.Schippers A, Jozsa PG, Sand W. Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol. 1996;62:3424–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Kohlhepp B, Lehmann R, Seeber P, Küsel K, Trumbore SE, Totsche KU. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany. Hydrol Earth Syst Sci. 2017;21:6091–116.CAS 

    Google Scholar 
    28.Grimm F, Franz B, Dahl C. Thiosulfate and sulfur oxidation in purple sulfur bacteria. In: Dahl C, Friedrich CG, editors. Microbial Sulfur Metabolism. Berlin, Heidelberg: Springer; 2008. p. 101–16.29.Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse Bacteria and Archaea. FEMS Microbiol Rev. 2009;33:999–1043.CAS 
    PubMed 

    Google Scholar 
    30.Kumar S, Herrmann M, Blohm A, Hilke I, Frosch T, Trumbore SE, et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol Ecol. 2018;94:fiy141.CAS 

    Google Scholar 
    31.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Core Team; 2019 [cited 2021]; Available from: https://www.R-project.org/.32.Ryabchykov O, Bocklitz T, Ramoji A, Neugebauer U, Foerster M, Kroegel C, et al. Automatization of spike correction in Raman spectra of biological samples. Chemom Intell Lab. 2016;155:1–6.CAS 

    Google Scholar 
    33.Dörfer T, Bocklitz T, Tarcea N, Schmitt M, Popp J. Checking and improving calibration of Raman spectra using chemometric approaches. Z Phys Chem. 2011;225:753–64.
    Google Scholar 
    34.Bocklitz TW, Dörfer T, Heinke R, Schmitt M, Popp J. Spectrometer calibration protocol for Raman spectra recorded with different excitation wavelengths. Spectrochim Acta A. 2015;149:544–9.CAS 

    Google Scholar 
    35.Guo SX, Heinke R, Stöckel S, Rösch P, Bocklitz T, Popp J. Towards an improvement of model transferability for Raman spectroscopy in biological applications. Vib Spectrosc. 2017;91:111–8.CAS 

    Google Scholar 
    36.Liland KH, Almoy T, Mevik BH. Optimal choice of baseline correction for multivariate calibration of spectra. Appl Spectrosc. 2010;64:1007–16.CAS 
    PubMed 

    Google Scholar 
    37.Taubert M, Stöckel S, Geesink P, Girnus S, Jehmlich N, von Bergen M, et al. Tracking active groundwater microbes with D2O labelling to understand their ecosystem function. Environ Microbiol. 2018;20:369–84.CAS 
    PubMed 

    Google Scholar 
    38.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 

    Google Scholar 
    39.Seifert J, Taubert M, Jehmlich N, Schmidt F, Völker U, Vogt C, et al. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. Mass Spectrom Rev. 2012;31:683–97.CAS 
    PubMed 

    Google Scholar 
    40.Taubert M. SIsCA. 2020 [updated 23.10.2020; cited 2021]; Available from: https://github.com/m-taubert/SIsCA.41.MacCoss MJ, Wu CC, Matthews DE, Yates JR. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal Chem. 2005;77:7646–53.CAS 
    PubMed 

    Google Scholar 
    42.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.
    Google Scholar 
    43.Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J. Oxidation of reduced inorganic sulfur compounds by bacteria: Emergence of a common mechanism? Appl Environ Microbiol. 2001;67:2873–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Kelly DP, Shergill JK, Lu WP, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek. 1997;71:95–107.CAS 
    PubMed 

    Google Scholar 
    45.Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol. 2006;188:7005–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardson PM, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitfificans. J Bacteriol. 2006;188:1473–88.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.McKinlay JB, Harwood CS. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc Natl Acad Sci USA. 2010;107:11669–75.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Tabita FR. Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a different perspective. Photosyn Res. 1999;60:1–28.CAS 

    Google Scholar 
    49.Berg IA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol. 2011;77:1925–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Overholt WA, Trumbore S, Xu X, Bornemann TL, Probst AJ, Krüger M, et al. Rates of primary production in groundwater rival those in oligotrophic marine systems. bioRxiv 2021 [Preprint]. 2021. Available from: https://doi.org/10.1101/2021.10.13.464073.51.Alfreider A, Vogt C, Geiger-Kaiser M, Psenner R. Distribution and diversity of autotrophic bacteria in groundwater systems based on the analysis of RubisCO genotypes. Syst Appl Microbiol. 2009;32:140–50.CAS 
    PubMed 

    Google Scholar 
    52.Herrmann M, Geesink P, Yan L, Lehmann R, Totsche KU, Küsel K. Complex food webs coincide with high genetic potential for chemolithoautotrophy in fractured bedrock groundwater. Water Res. 2020;170:115306.CAS 
    PubMed 

    Google Scholar 
    53.Yan LJ, Herrmann M, Kampe B, Lehmann R, Totsche KU, Küsel K. Environmental selection shapes the formation of near-surface groundwater microbiomes. Water Res. 2020;170:115341.CAS 
    PubMed 

    Google Scholar 
    54.Mattes TE, Alexander AK, Richardson PM, Munk AC, Han CS, Stothard P, et al. The genome of Polaromonas sp. strain JS666: Insights into the evolution of a hydrocarbon- and xenobiotic-degrading bacterium, and features of relevance to biotechnology. Appl Environ Microbiol. 2008;74:6405–16.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Salinero KK, Keller K, Feil WS, Feil H, Trong S, Di Bartolo G, et al. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC Genomics. 2009;10:1–23.
    Google Scholar 
    56.Kämpfer P, Schulze R, Jäckel U, Malik KA, Amann R, Spring S. Hydrogenophaga defluvii sp. nov. and Hydrogenophaga atypica sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol. 2005;55:341–4.PubMed 

    Google Scholar 
    57.Jin CZ, Zhuo Y, Wu XW, Ko SR, Li TH, Jin FJ, et al. Genomic and metabolic insights into denitrification, sulfur oxidation, and multidrug efflux pump mechanisms in the bacterium Rhodoferax sediminis sp. nov. Microorganisms. 2020;8:262.CAS 
    PubMed Central 

    Google Scholar 
    58.Geisel N. Constitutive versus responsive gene expression strategies for growth in changing environments. PLoS ONE. 2011;6:e27033.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.CAS 
    PubMed 

    Google Scholar 
    60.Katayama-Fujimura Y, Tsuzaki N, Hirata A, Kuraishi H. Polyhedral inclusion-bodies (Carboxysomes) in Thiobacillus species with reference to the taxonomy of the genus Thiobacillus. J Gen Appl Microbiol. 1984;30:211–22.CAS 

    Google Scholar 
    61.Küsel K, Totsche KU, Trumbore SE, Lehmann R, Steinhäuser C, Herrmann M. How deep can surface signals be traced in the Critical Zone? Merging biodiversity with biogeochemistry research in a Central German Muschelkalk landscape. Front Earth Sci. 2016;4:32.
    Google Scholar 
    62.Roth VN, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat Geosci. 2019;12:755–61.CAS 

    Google Scholar 
    63.Herrmann M, Wegner CE, Taubert M, Geesink P, Lehmann K, Yan LJ, et al. Predominance of Cand. Patescibacteria in groundwater is caused by their preferential mobilization from soils and flourishing under oligotrophic conditions. Front Microbiol. 2019;10:1407.PubMed 
    PubMed Central 

    Google Scholar 
    64.Gray CM, Monson RK, Fierer N. Emissions of volatile organic compounds during the decomposition of plant litter. J Geophys Res Biogeosci. 2010;115:G03015.
    Google Scholar 
    65.Benk SA, Yan LJ, Lehmann R, Roth VN, Schwab VF, Totsche KU, et al. Fueling diversity in the subsurface: composition and age of dissolved organic matter in the Critical Zone. Front Earth Sci. 2019;7:296.
    Google Scholar 
    66.Schwab VF, Nowak ME, Elder CD, Trumbore SE, Xu XM, Gleixner G, et al. 14C-free carbon is a major contributor to cellular biomass in geochemically distinct groundwater of shallow sedimentary bedrock aquifers. Water Resour Res. 2019;55:2104–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Eiler A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: Implications and consequences. Appl Environ Microbiol. 2006;72:7431–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Hansson TH, Grossart HP, del Giorgio PA, St-Gelais NF, Beisner BE. Environmental drivers of mixotrophs in boreal lakes. Limnol Oceanogr. 2019;64:1688–705.CAS 

    Google Scholar 
    69.Perez-Riverol Y, Csordas A, Bai JW, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D50.CAS 
    PubMed 

    Google Scholar  More

  • in

    Glacier retreat creating new Pacific salmon habitat in western North America

    Sub-regionsThe study region focuses on 18 sub-regions within the Pacific mountain ranges of North American overlapping with the range of Pacific Salmon with >1.5% glacier cover (Figs. 1 and 2). The term “sub-region” here refers to either a single major salmon watershed or aggregates of small coastal watersheds, which range in area from ~13,000 to ~68,000 km2. For sub-regions within Alaska, USA, we accessed boundary data from the Watershed Boundary Database at the USGS (https://www.usgs.gov/). For sub-regions within British Columbia, Canada, we accessed boundary data from the Freshwater Atlas of British Columbia (https://catalogue.data.gov.bc.ca/). Pacific salmon range data were from the National Center for Ecological Analysis and Synthesis (Fig. 1). The study region covers ~623,000 km2 across British Columbia, Canada and Alaska, USA and ~20% of the total North American range of Pacific salmon.Glacier outlinesOutlines for the 45,963 glaciers within the study region were obtained from the Randolph Glacier Inventory v6.0 (https://www.glims.org/RGI/; RGI v6.0), which provides a globally complete data set of glacier outlines outside of Greenland and Antarctic ice sheets17. These glaciers cover a total area of ~81,000 km2, which corresponds to 80% of the total glacier area in the Pacific mountain ranges within North America. The glacier outlines refer roughly to the years 2009 ± 2 for Alaska, and 2004 ± 5 for Western Canada17,53. Glacierization for each of 18 sub-regions ranges from 1.5 to 52%.Present-day streamsSynthetic stream networks were constructed from Digital Elevation Models (DEMs) for each of the 18 sub-regions using Geographic Information Systems (GIS; ArcGIS 10.6 and QGIS 2.18) hydrology tools to represent present-day streams throughout the study region. Specifically, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global DEMs v2.0 with a spatial resolution of ~30 m54. Open access synthetic stream network datasets such as the National Hydrography Dataset (NHD) from the USGS and the Freshwater Atlas from the British Columbia government are available but were not used due to inconsistencies in spatial resolution across the study region. From our synthetic stream networks, we eliminated all stream segments that overlapped with the RGI glacier outlines because the ASTER global DEMs used to create the synthetic stream networks represent glacier surface elevation rather than estimated deglaciated terrain. All present-day streams within our study region are void of any major dams that inhibit salmon movement based on existing databases of dams55. To summarize present-day stream kms, and all subsequent analyses, we used rstudio: 1.4.1103-4, R: ‘Mirrors’.Identifying and verifying stream gradient thresholds for migrating salmon and for determining accessible glaciersWe used stream gradient-based thresholds the determine constraints in salmon migration and the number of glaciers that would be accessible and create future streams for migrating adult salmon. Based on the large body of literature suggesting stream gradients (e.g., ranging from More

  • in

    Fishing intensification as response to Late Holocene socio-ecological instability in southeastern South America

    1.Gremillion, K. J., Barton, L. & Piperno, D. R. Particularism and the retreat from theory in the archaeology of agricultural origins. Proc. Natl. Acad. Sci. U.S.A. 111, 6171–6177 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Piperno, D. R., Ranere, A. J., Dickau, R. & Aceituno, F. Niche construction and optimal foraging theory in Neotropical agricultural origins: A re-evaluation in consideration of the empirical evidence. J. Archaeol. Sci. 78, 214–220 (2017).
    Google Scholar 
    3.Piperno, D. R. The origins of plant cultivation and domestication in the Neotropics: A behavioral ecological perspective. In Behavioral Ecology and the Transition to Agriculture (eds Kennett, D. J. & Winterhalder, B.) 137–166 (University of California Press, 2006).
    Google Scholar 
    4.Zeder, M. A. Core questions in domestication research. Proc. Natl. Acad. Sci. U.S.A. 112, 3191–3198 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Riris, P. & Arroyo-Kalin, M. Widespread population decline in South America correlates with mid-Holocene climate change. Sci. Rep. 9, 6850 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.de Souza, J. G. & Riris, P. Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. J. Archaeol. Sci. 125, 105293 (2021).
    Google Scholar 
    8.Bocquet-Appel, J.-P. When the world’s population took off: The springboard of the Neolithic demographic transition. Science 333, 560–561 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    9.Bonomo, M., Politis, G. & Gianotti, C. Montículos, Jerarquía Social y Horticultura en Las Sociedades Indígenas Del Delta Del Río Paraná (Argentina). Latin Am. Antiq. 22, 297–333 (2011).
    Google Scholar 
    10.Milheira, R. G., Attorre, T. & Borges, C. Construtores de cerritos na Laguna Dos Patos, Pontal da Barra, sul do Brasil: Lugar persistente, território e ambiente construído no Holoceno recente. Latin Am. Antiq. 30, 35–54 (2019).
    Google Scholar 
    11.Gaspar, M. D. Considerations of the sambaquis of the Brazilian coast. Antiquity 72, 592–615 (1998).
    Google Scholar 
    12.De Blasis, P., Fish, S. K., Gaspar, M. D. & Fish, P. R. Some references for discussion of complexity among the Sambaqui moundbuilders from the southern shores of Brazil. Rev. Arqueol. Am. 15, 75–105 (1998).
    Google Scholar 
    13.Schaan, D. Long-term human induced impacts on Marajó Island Landscapes, Amazon Estuary. Diversity 2, 182–206 (2010).
    Google Scholar 
    14.Chanca, I. et al. Food and diet of the pre-Columbian mound builders of the Patos Lagoon region in southern Brazil with stable isotope analysis. J. Archaeol. Sci. 133, 105439 (2021).
    Google Scholar 
    15.Lima, T. A. Em busca dos frutos do mar: Os pescadores-coletores do litoral centro-sul do Brasil. Rev. Usp 44, 270–327 (2000).
    Google Scholar 
    16.Prous, A. Arqueologia brasileira (Editora Universidade de Brasília Brasília, 1991).
    Google Scholar 
    17.Rohr, J. A. Sítios Arqueológicos de Santa Catarina. Anais do Museu de Antropol. UFSC XVI, 77–167 (1984).
    Google Scholar 
    18.Schmitz, P. I. Considerações sobre a ocupação pré-histórica do litoral meridional do Brasil. Pesqui. Antropol. 63, 355–364 (2006).
    Google Scholar 
    19.Schmitz, P. I. Visão de conjunto dos sítios da Tapera, Armação do Sul, Laranjeiras I e II, Pântano do Sul e Cabeçudas. Pesqui. Antropol. 53, 183–190 (1996).
    Google Scholar 
    20.Fish, S. K., De Blasis, P., Gaspar, M. D. & Fish, P. R. Incremental events in the construction of sambaquis, southeastern Santa Catarina. Rev. Mus. Arqueol. Etnol. 1, 69–87 (2000).
    Google Scholar 
    21.Tenorio, M. C. Abandonment of Brazilian coastal sites: Why leave the Eden. In Explorations in American archaeology. Essays in Honor of Wesley R. Hurt (ed. Hurt, W. R.) 221–257 (University Press of America, 1998).
    Google Scholar 
    22.Fossile, T. et al. Pre-Columbian fisheries catch reconstruction for a subtropical estuary in South America. Fish Fish 47, 67 (2019).
    Google Scholar 
    23.Villagran, X. S., Klokler, D., Peixoto, S., DeBlasis, P. & Giannini, P. C. F. Building coastal landscapes: Zooarchaeology and geoarchaeology of Brazilian shell mounds. J. Island Coast. Archaeol. 6, 211–234 (2011).
    Google Scholar 
    24.Fish, P. R. et al. Monumental shell mounds as persistent places in southern coastal Brazil. In The Archaeology and Historical Ecology of Small Scale Economies 120–140 (2013).25.Villagran, X. S. A redefinition of waste: Deconstructing shell and fish mound formation among coastal groups of southern Brazil. J. Anthropol. Archaeol. 36, 211–227 (2014).
    Google Scholar 
    26.Schmitz, P. I. Acampamentos litorâneos em Içara, SC. Um exercício em padrão de assentamento. Clio 35, 99–118 (1996).
    Google Scholar 
    27.Kneip, A., Farias, D. & DeBlasis, P. Longa duração e territorialidade da ocupação sambaquieira na laguna de Santa Marta, Santa Catarina. Rev. Arqueol. 31, 25–51 (2018).
    Google Scholar 
    28.DeBlasis, P., Farias, D. S. & Kneip, A. Velhas tradições e gente nova no pedaço: Perspectivas longevas de arquitetura funerária na paisagem do litoral sul catarinense. Rev. Mus. Arqueol. Etnol. 24, 109 (2014).
    Google Scholar 
    29.Bandeira, D. R. Ceramistas Pre-coloniais da Baia da Babitonga, SC: Arqueologia e Etnicidade (Universidade Estadual de Campinas, 2004).
    Google Scholar 
    30.Colonese, A. C. et al. Long-term resilience of late Holocene coastal subsistence system in Southeastern South America. PLoS ONE 9, e93854 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Pezo-Lanfranco, L. et al. Middle Holocene plant cultivation on the Atlantic Forest coast of Brazil?. R. Soc. Open Sci. 5, 180432 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Bastos, M. Q. R. et al. Isotopic evidences regarding migration at the archeological site of Praia da Tapera: New data to an old matter. J. Archaeol. Sci. Rep. 4, 588–595 (2015).
    Google Scholar 
    33.Bastos, M. Q. R., Lessa, A., Rodrigues-Carvalho, C., Tykot, R. H. & Santos, R. V. Carbon and nitrogen isotope analysis: Diet before and after the arrival of ceramic at Forte Marechal Luz Site. Re. Mus. Arqueol. Etnol. 24, 137–151 (2014).
    Google Scholar 
    34.Pezo-Lanfranco, L., DeBlasis, P. & Eggers, S. Weaning process and subadult diets in a monumental Brazilian shellmound. J. Archaeol. Sci. Rep. 22, 452–469 (2018).
    Google Scholar 
    35.De Masi, M. A. N. Aplicações de isótopos estáveis de O, C e N em estudos de sazonalidade, mobilidade e dieta de populações pré-históricas no sul do Brasil. Rev. Arqueol. 22, 55–76 (2009).
    Google Scholar 
    36.De Masi, M. Pescadores coletores da costa sul do Brasil. Pesquisas 57, 1–136 (2001).
    Google Scholar 
    37.Oppitz, G. et al. Pensando sobre mobilidade, dieta e mudança cultural: Análises isotópicas no sítio Armação do Sul, Florianópolis/SC. Cadernos do LEPAARQ (UFPEL) 15, 237–266 (2018).
    Google Scholar 
    38.Figuti, L. et al. Investigações arqueológicas e geofísicas dos sambaquis fluviais do vale do Ribeira de Iguape, Estado de São Paulo. In Museu de Arqueologia e Etnologia, USP. Relatório Final de Atividades de Projeto Temático, Processo FAPESP. 2 (2004).39.Figuti, L. Construindo o sambaqui: A ocupação e os processos de construção de sitio na bacia do Canal do Palmital, Santa Catarina. São Paulo: MAE/USP, 2009. Relatório. Processo FAPESP 08/01285-0 (2009).40.Crouch, M. S. P. Testing the Subsistence Model for the Adoption of Ceramic Technology Among Coastal Sambaqui Foragers of Southern Brazil (2013).41.Scheel-Ybert, R. & Boyadjian, C. Gardens on the coast: Considerations on food production by Brazilian shellmound builders. J. Anthropol. Archaeol. 60, 101211 (2020).
    Google Scholar 
    42.Pezo-Lanfranco, L. Evidence of variability in carbohydrate consumption in prehistoric fisher–hunter–gatherers of Southeastern Brazil: Spatiotemporal trends of oral health markers. Am. J. Phys. Anthropol. 167, 507–523 (2018).PubMed 

    Google Scholar 
    43.Boyadjian, C. H. C., Eggers, S., Reinhard, K. J. & Scheel-Ybert, R. Dieta no sambaqui Jabuticabeira-II (SC): Consumo de plantas revelado por microvestígios provenientes de cálculo dentário. Cadernos do LEPAARQ (UFPEL) 13, 131–161 (2016).
    Google Scholar 
    44.Merencio, F. T. & DeBlasis, P. Análises de mobilidade no litoral sul de Santa Catarina entre 2000–500 cal AP. Rev. Mus. Arqueol. Etnol. 36, 57–91 (2021).
    Google Scholar 
    45.Angulo, R. J., Lessa, G. C. & de Souza, M. C. A critical review of mid- to late-Holocene sea-level fluctuations on the eastern Brazilian coastline. Quat. Sci. Rev. 25, 486–506 (2006).ADS 

    Google Scholar 
    46.DeBlasis, P., Gaspar, M. & Kneip, A. Sambaquis from the Southern Brazilian coast: Landscape building and enduring heterarchical societies throughout the Holocene. Land 10, 757 (2021).
    Google Scholar 
    47.Wesolowski, V., Ferraz Mendonça de Souza, S. M., Reinhard, K. J. & Ceccantini, G. Evaluating microfossil content of dental calculus from Brazilian sambaquis. J. Archaeol. Sci. 37, 1326–1338 (2010).
    Google Scholar 
    48.da Rocha Bandeira, D. The use of wildlife by sambaquianos in prehistoric Babitonga Bay, North coast of Santa Catarina. Brazil. Rev. Chil. Antropol. https://doi.org/10.5354/0719-1472.2016.40613 (2015).Article 

    Google Scholar 
    49.Fossile, T., Ferreira, J., Bandeira, D. R., Dias-da-Silva, S. & Colonese, A. C. Integrating zooarchaeology in the conservation of coastal-marine ecosystems in Brazil. Quat. Int. https://doi.org/10.1016/j.quaint.2019.04.022 (2019).Article 

    Google Scholar 
    50.Ramsey, C. B. Methods for summarizing radiocarbon datasets. Radiocarbon 59, 1809–1833 (2017).CAS 

    Google Scholar 
    51.Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).CAS 

    Google Scholar 
    52.Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 2486 (2013).ADS 
    PubMed 

    Google Scholar 
    53.Toniolo, T. F. et al. Sea-level fall and coastal water cooling during the Late Holocene in Southeastern Brazil based on vermetid bioconstructions. Mar. Geol. 428, 106281 (2020).ADS 
    CAS 

    Google Scholar 
    54.Cruz, F. W. et al. Orbitally driven east–west antiphasing of South American precipitation. Nat. Geosci. 2, 210–214 (2009).ADS 
    CAS 

    Google Scholar 
    55.Carvalho do Amaral, P. G., Fonseca Giannini, P. C., Sylvestre, F. & Ruiz Pessenda, L. C. Paleoenvironmental reconstruction of a Late Quaternary lagoon system in southern Brazil (Jaguaruna region, Santa Catarina state) based on multi-proxy analysis. J. Quat. Sci. 27, 181–191 (2012).
    Google Scholar 
    56.Zular, A. et al. Late Holocene intensification of colds fronts in southern Brazil as indicated by dune development and provenance changes in the São Francisco do Sul coastal barrier. Mar. Geol. 335, 64–77 (2013).ADS 

    Google Scholar 
    57.Robinson, M. et al. Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil. Sci. Rep. 8, 7800 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bryan, A. L. & Gruhn, R. The Sambaqui at Forte Marechal Luz, State of Santa Catarina, Brazil: Archaeological Research at Six Cave Or Rockshelter Sites in Interior Bahia, Brazil (Oregon State University, 1993).
    Google Scholar 
    59.Oppitz, G. Coisas que mudam: Os processos de mudança nos sítios conchíferos catarinenses e um olhar isotópico sobre o caso do sítio Armação do Sul, Florianópolis/SC (Universidade de São Paulo, 2015). https://doi.org/10.11606/D.71.2015.tde-11112015-105226.Book 

    Google Scholar 
    60.Garcia, A. M., Hoeinghaus, D. J., Vieira, J. P. & Winemiller, K. O. Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon. Estuar. Coast. Shelf Sci. 73, 399–408 (2007).ADS 

    Google Scholar 
    61.Stuthmann, L. E. & Castellanos-Galindo, G. A. Trophic position and isotopic niche of mangrove fish assemblages at both sides of the Isthmus of Panama. Bull. Mar. Sci. 96, 449–468 (2020).
    Google Scholar 
    62.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes: Trophic level and body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).
    Google Scholar 
    63.Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Front. Ecol. Evol. 7, 313 (2019).
    Google Scholar 
    64.Gu, B. Variations and controls of nitrogen stable isotopes in particulate organic matter of lakes. Oecologia 160, 421–431 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Kendall, C. Tracing nitrogen sources and cycling in catchments. In Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) 519–576 (Elsevier, 1998).
    Google Scholar 
    66.Alves-Costa, C. P., da Fonseca, G. A. B. & Christófaro, C. Variation in the diet of the brown-nosed coati (Nasua nasua) in Southeastern Brazil. J. Mammal. 85, 478–482 (2004).
    Google Scholar 
    67.Beisiegel, B. M. Notes on the coati, Nasua nasua (Carnivora: Procyonidae) in an Atlantic forest area. Braz. J. Biol. 61, 689–692 (2001).CAS 
    PubMed 

    Google Scholar 
    68.Norton, M. The chicken or the Iegue: Human–animal relationships and the Columbian exchange. Am. Hist. Rev. 120, 28–60 (2015).
    Google Scholar 
    69.Métraux, A. La Civilisation Matérielle Des Tribus Tupi-Guarani (Librairie Orientaliste Paul Geuthner, 1928).
    Google Scholar 
    70.de Azevedo, A. Q. et al. Hydrological influence on the evolution of a subtropical mangrove ecosystem during the late Holocene from Babitonga Bay, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 574, 110 (2021).
    Google Scholar 
    71.França, M. C. et al. Late-Holocene subtropical mangrove dynamics in response to climate change during the last millennium. Holocene 29, 445–456 (2019).ADS 

    Google Scholar 
    72.Behling, H. & Negrelle, R. R. B. Tropical rain forest and climate dynamics of the Atlantic Lowland, Southern Brazil, during the late quaternary. Quat. Res. 56, 383–389 (2001).
    Google Scholar 
    73.Gaspar, M., DeBlasis, P., Fish, S. K. & Fish, P. R. Sambaquis (shell mound) societies of coastal Brazil. In Handbook of South American Archaeology (eds Silverman, H. & Isbell, W.) 319–335 (Springer, 2008).
    Google Scholar 
    74.Posth, C. et al. Reconstructing the deep population history of central and south America. Cell 175, 1185-1197.e22 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Fidalgo, D., Hubbe, M. & Wesolowski, V. Population history of Brazilian south and southeast shellmound builders inferred through dental morphology. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24342 (2021).Article 
    PubMed 

    Google Scholar 
    76.Hubbe, M., Okumura, M., Bernardo, D. V. & Neves, W. A. Cranial morphological diversity of early, middle, and late Holocene Brazilian groups: Implications for human dispersion in Brazil. Am. J. Phys. Anthropol. 155, 546–558 (2014).PubMed 

    Google Scholar 
    77.Morgan, C. Is it intensification yet? Current archaeological perspectives on the evolution of hunter–gatherer economies. J. Archaeol. Res. 23, 163–213 (2015).
    Google Scholar 
    78.Zeder, M. A. The broad spectrum revolution at 40: Resource diversity, intensification, and an alternative to optimal foraging explanations. J. Anthropol. Archaeol. 31, 241–264 (2012).
    Google Scholar 
    79.Schmitz, P. E., Verardi, I., de Masi, M. A., Rogge, J. H. & Jacobus, A. L. Escavações Arqueológicas do Pe. João Alfredo Rohr. O Sítio da Praia das Laranjeiras II. Uma Aldeia de Tradição Ceramista Itararé. Pesqui. Antropol. 49, 181 (1993).
    Google Scholar 
    80.Tiburtius, G. & Bigarella, I. K. Nota sobre os anzóis de osso da jazida páleo-etnográfica de Itacoara, Santa Catarina. Rev. Mus. Paul. Nova Série 7, 381–387 (1953).
    Google Scholar 
    81.Lessa, A. & Medeiros, J. C. D. Preliminary thoughts about the occurence of violence among the Brazilian shellmound builders: Analysis of the skeletons from Cabeçuda (Santa Catarina) and Arapuan (Rio de Janeiro) sites. Rev. Mus. Arqueol. Etnol. 11, 77 (2001).
    Google Scholar 
    82.Lessa, A. Reflexões preliminares sobre paleoepidemiologia da violência em grupos ceramistas litorâneos: (I) Sítio Praia da Tapera—SC. Rev. Mus. Arqueol. Etnol. https://doi.org/10.11606/issn.2448-1750.revmae.2001.109411 (2006).Article 

    Google Scholar 
    83.García-Escárzaga, A. & Gutiérrez-Zugasti, I. The role of shellfish in human subsistence during the Mesolithic of Atlantic Europe: An approach from meat yield estimations. Quat. Int. 584, 9–19 (2021).
    Google Scholar 
    84.Erlandson, J. M. The role of shellfish in prehistoric economies: A protein perspective. Am. Antiq. 53, 102–109 (1988).
    Google Scholar 
    85.Bandeira, D. R. Ceramistas Pré-coloniais da Baía da Babitonga—Arqueologia e Etnicidade (Universidade Estadual de Campinas, 2004).
    Google Scholar 
    86.Gilson, S.-P. & Lessa, A. Arqueozoologia do sítio Rio do Meio (SC). rsab 34, 217–248 (2021).
    Google Scholar 
    87.Gilson, S.-P. & Lessa, A. Capture, processing and utilization of sharks in archaeological context: Its importance among fisher–hunter–gatherers from southern Brazil. J. Archaeol. Sci. Rep. 35, 102693 (2021).
    Google Scholar 
    88.Hayden, B. Nimrods, piscators, pluckers, and planters: The emergence of food production. J. Anthropol. Archaeol. 9, 31–69 (1990).
    Google Scholar 
    89.Figuti, L. & Klokler, D. Resultados preliminares dos vestígios zooarqueológicos do sambaqui Espinheiros II (Joinville, SC). Rev. Mus. Arqueol. Etnol. 6, 169–187 (1996).
    Google Scholar 
    90.Benz, D. M. Levantamento preliminar de algumas espécies de vertebrados pretéritos do sítio arqueológico Ilha dos Espinheiros II Joinville—SC (Universidade da Região de Joinville, 2000).
    Google Scholar 
    91.Gilson, S.-P. & Lessa, A. Ocupação tardia do litoral norte e central catarinense por grupos pescadores-caçadores-coletores. rsab 33, 55–77 (2020).
    Google Scholar 
    92.Silva, S. B., Schmitz, P. I., Rogge, J. H., de Masi, M. A. N. & Jacobus, A. L. Escavações arqueológicas do pe. João Alfredo Rohr, S. J. o sítio arqueológico da Praia da Tapera: Um assentamento Itararé e Tupiguarani (Pesquisas, 1990).
    Google Scholar 
    93.Cardoso, J. M. O sítio Costeiro Galheta IV: Uma Perspectiva Zooarqueológica (Museu de Arqueologia e Etnologia, 2019). https://doi.org/10.11606/d.71.2019.tde-27112018-142710.Book 

    Google Scholar 
    94.Allen, M. W., Bettinger, R. L., Codding, B. F., Jones, T. L. & Schwitalla, A. W. Resource scarcity drives lethal aggression among prehistoric hunter-gatherers in central California. Proc. Natl. Acad. Sci. U.S.A. 113, 12120–12125 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Kelly, R. L. The Lifeways of Hunter–Gatherers: The Foraging Spectrum (Cambridge University Press, 2013).
    Google Scholar 
    96.Hansel, F. A. & Evershed, R. P. Formation of dihydroxy acids from Z-monounsaturated alkenoic acids and their use as biomarkers for the processing of marine commodities in archaeological pottery vessels. Tetrahedron Lett. 50, 5562–5564 (2009).CAS 

    Google Scholar 
    97.Hansel, F. A., Bull, I. D. & Evershed, R. P. Gas chromatographic mass spectrometric detection of dihydroxy fatty acids preserved in the ‘bound’ phase of organic residues of archaeological pottery vessels. Rapid Commun. Mass Spectrom. 25, 1893–1898 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    98.Hansel, F. A. & Schmitz, P. I. Classificação e interpretação dos resíduos orgânicos preservados em fragmentos de cerâmica arqueológica por cromatografia gasosa e cromatografia gasosa-espectrometria de massas. Pesqui. Antropol. 63, 81–112 (2006).
    Google Scholar 
    99.Bueno, L., & Gilson, S. Brazilian Radiocarbon Database. Brazilian Radiocarbon Database. https://brc14database.com.br/?page_id=32 (2021).100.Prous, A. As esculturas de pedra (zoólitos) e de osso dos sambaquis do Brasil meridional e do Uruguay. Rev. Mem. 5, 197–217 (2018).
    Google Scholar 
    101.Prous, A. Les sculptures préhistoriques du Sud-Brésilien. bspf 71, 210–217 (1974).
    Google Scholar 
    102.Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).CAS 

    Google Scholar 
    103.Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: Problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 31, 630–643 (2021).ADS 

    Google Scholar 
    104.Hogg, A. G. et al. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759–778 (2020).CAS 

    Google Scholar 
    105.Heaton, T. J. et al. Marine20—The marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).CAS 

    Google Scholar 
    106.Angulo, R. J., de Souza, M. C., Reimer, P. J. & Sasaoka, S. K. Reservoir effect of the southern and southeastern Brazilian coast. Radiocarbon 47, 67–73 (2008).
    Google Scholar 
    107.Alves, E. et al. Radiocarbon reservoir corrections on the Brazilian coast from pre-bomb marine shells. Quat. Geochronol. 29, 30–35 (2015).
    Google Scholar 
    108.De Masi, M. A. N. Prehistoric Hunter–Gatherer Mobility on the Southern Brazilian Coast: Santa Catarina Island (Unpublished PhD dissertation. Stanford University, 1999).109.DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806 (1985).ADS 
    CAS 

    Google Scholar 
    110.Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
    Google Scholar 
    111.van Klinken, G. J. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J. Archaeol. Sci. 26, 687–695 (1999).
    Google Scholar 
    112.Szpak, P., Buckley, M., Darwent, C. M. & Richards, M. P. Long-term ecological changes in marine mammals driven by recent warming in northwestern Alaska. Glob. Change Biol. 24, 490–503 (2018).ADS 

    Google Scholar 
    113.Garcia, A. M., Vieira, J. P. & Winemiller, K. O. Effects of 1997–1998 El Niño on the dynamics of the shallow-water fish assemblage of the Patos Lagoon Estuary (Brazil). Estuar. Coast. Shelf Sci. 57, 489–500 (2003).ADS 

    Google Scholar 
    114.Wiley, A. E. et al. Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs. Proc. Natl. Acad. Sci. U.S.A. 110, 8972–8977 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    115.Buckley, M., Collins, M., Thomas-Oates, J. & Wilson, J. C. Species identification by analysis of bone collagen using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3843–3854 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    116.Strohalm, M., Hassman, M., Kosata, B. & Kodícek, M. mMass data miner: An open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 22, 905–908 (2008).ADS 
    PubMed 

    Google Scholar 
    117.Buckley, M. et al. Species identification of archaeological marine mammals using collagen fingerprinting. J. Archaeol. Sci. 41, 631–641 (2014).CAS 

    Google Scholar 
    118.Kirby, D. P., Buckley, M., Promise, E., Trauger, S. A. & Holdcraft, T. R. Identification of collagen-based materials in cultural heritage. Analyst 138, 4849–4858 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    119.Brown, T. A., Nelson, E. E., Vogel, S. J. & Southon, J. R. Improved collagen extraction by modified longin method. Radiocarbon 30, 171–177 (1988).CAS 

    Google Scholar 
    120.Craig, O. E. et al. Stable isotope analysis of Late Upper Palaeolithic human and faunal remains from Grotta del Romito (Cosenza), Italy. J. Archaeol. Sci. 37, 2504–2512 (2010).
    Google Scholar 
    121.Kragten, J. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 119, 2161–2166 (1994).ADS 
    CAS 

    Google Scholar 
    122.Good Practice Guide for Isotope Ratio Mass Spectrometry (FIRMS, 2018).123.Guiry, E. J. & Szpak, P. Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J. Archaeol. Sci. 132, 105416 (2021).CAS 

    Google Scholar 
    124.Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).
    Google Scholar 
    125.Fernandes, R., Grootes, P., Nadeau, M.-J. & Nehlich, O. Quantitative diet reconstruction of a Neolithic population using a Bayesian mixing model (FRUITS): The case study of Ostorf (Germany). Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.22788 (2015).Article 
    PubMed 

    Google Scholar 
    126.Jim, S., Jones, V., Ambrose, S. H. & Evershed, R. P. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br. J. Nutr. 95, 1055–1062 (2006).CAS 
    PubMed 

    Google Scholar 
    127.Colonese, A. C. et al. Stable isotope evidence for dietary diversification in the pre-Columbian Amazon. Sci. Rep. 10, 1–11 (2020).
    Google Scholar 
    128.Fernandes, R., Nadeau, M.-J. & Grootes, P. M. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 4, 291–301 (2012).
    Google Scholar 
    129.Galetti, M., Rodarte, R. R., Neves, C. L., Moreira, M. & Costa-Pereira, R. Trophic niche differentiation in rodents and marsupials revealed by stable isotopes. PLoS ONE 11, e0152494 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    130.Hellevang, H. & Aagaard, P. Constraints on natural global atmospheric CO2 fluxes from 1860 to 2010 using a simplified explicit forward model. Sci. Rep. 5, 17352 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    131.Fernandes, R. A Simple(R) model to predict the source of dietary carbon in individual consumers. Archaeometry 58, 500–512 (2016).CAS 

    Google Scholar 
    132.Fernandes, R., Millard, A. R., Brabec, M., Nadeau, M.-J. & Grootes, P. Food reconstruction using isotopic transferred signals (FRUITS): A Bayesian model for diet reconstruction. PLoS ONE 9, e87436 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    133.Wickham, H. ggplot2: Elegant graphics for data analysis (Springer, 2016).MATH 

    Google Scholar 
    134.Mcgill, R., Tukey, J. W. & Larsen, W. A. Variations of box plots. Am. Stat. 32, 12–16 (1978).
    Google Scholar 
    135.Kwak, S. G. & Kim, J. H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesthesiol. 70, 144–156 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Decadal shifts in traits of reef fish communities in marine reserves

    1.O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).
    Google Scholar 
    2.Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    3.Lester, S. E. et al. Biological effects within no-take marine reserves: A global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).ADS 

    Google Scholar 
    4.Brandl, S. J., Emslie, M. J. & Ceccarelli, D. M. Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7, e01557 (2016).
    Google Scholar 
    5.Ramírez-Ortiz, G. et al. Reduced fish diversity despite increased fish biomass in a Gulf of California Marine Protected Area. PeerJ 2020, e8885 (2020).
    Google Scholar 
    6.Miatta, M., Bates, A. E. & Snelgrove, P. V. R. Incorporating biological traits into conservation. Strategies https://doi.org/10.1146/annurev-marine-032320 (2021).Article 

    Google Scholar 
    7.Coleman, M. A. et al. Functional traits reveal early responses in marine reserves following protection from fishing. Divers. Distrib. 21, 876–887 (2015).ADS 

    Google Scholar 
    8.Bellwood, D. R., Streit, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: A coral reef perspective. Funct. Ecol. 33, 1365–2435. https://doi.org/10.1111/1365-2435.13265 (2019).Article 

    Google Scholar 
    9.Brandl, S. J. et al. Coral reef ecosystem functioning: Eight core processes and the role of biodiversity. Front. Ecol. Environ. https://doi.org/10.1002/fee.2088 (2019).Article 

    Google Scholar 
    10.McLean, M., Mouillot, D., Villéger, S., Graham, N. A. J. & Auber, A. Interspecific differences in environmental response blur trait dynamics in classic statistical analyses. Mar. Biol. 166, 1–10 (2019).
    Google Scholar 
    11.Hadj-Hammou, J., Mouillot, D. & Graham, N. A. J. Response and effect traits of coral reef fish. Front. Mar. Sci. 8, 640619 (2021).
    Google Scholar 
    12.Griffin-Nolan, R. J. et al. Trait selection and community weighting are key to understanding ecosystem responses to changing precipitation regimes. Funct. Ecol. 32, 1746–1756 (2018).
    Google Scholar 
    13.Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.McLean, M. et al. A climate-driven functional inversion of connected marine ecosystems. Curr. Biol. 28, 3654-3660.e3 (2018).CAS 
    PubMed 

    Google Scholar 
    15.Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 

    Google Scholar 
    16.Harborne, A. R. & Mumby, P. J. Novel ecosystems: Altering fish assemblages in warming waters. Curr. Biol. 21, R822–R824 (2011).CAS 
    PubMed 

    Google Scholar 
    17.Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).
    Google Scholar 
    18.Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    19.Munday, P. L. & Jones, G. P. The ecological implications of small body size among coral-reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 36, 373–411 (1998).
    Google Scholar 
    20.Babcock, R. C. et al. Decadal trends in marine reserves reveal differential rates of change in direct and indirect effects. Proc. Natl. Acad. Sci. 107, 18256–18261 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Robinson, J. P. W. et al. Fishing degrades size structure of coral reef fish communities. Glob. Change Biol. 23, 1009–1022 (2017).ADS 

    Google Scholar 
    22.Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: Current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).
    Google Scholar 
    23.Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science (80-.) 368, 307–311 (2020).ADS 
    CAS 

    Google Scholar 
    24.McClanahan, T. R. Kenyan coral reef lagoon fish: Effects of fishing, substrate complexity, and sea urchins. Coral Reefs 13, 231–241 (1994).ADS 

    Google Scholar 
    25.McClanahan, T. R. & Graham, N. A. J. Recovery trajectories of coral reef fish assemblages within Kenyan marine protected areas. Mar. Ecol. Prog. Ser. 294, 241–248 (2005).ADS 

    Google Scholar 
    26.Graham, N. A. J. et al. Changing role of coral reef marine reserves in a warming climate. Nat. Commun. 111(11), 1–8 (2020).
    Google Scholar 
    27.Greene, L. E. The use of discrete group censusing for assessment and monitoring of reef fish assemblages. PhD diss., Florida Institute of Technology, Melbourne (1990).28.McClanahan, T. R., Graham, N. A. J., Calnan, J. M. & MacNeil, M. A. Toward pristine biomass: Reef fish recovery in coral reef marine protected areas in Kenya. Ecol. Appl. 17, 1055–1067 (2007).PubMed 

    Google Scholar 
    29.McClanahan, T. R. & Humphries, A. T. Differential and slow life-history responses of fishes to coral reef closures. Mar. Ecol. Prog. Ser. 469, 121–131 (2012).ADS 

    Google Scholar 
    30.Kublicki, M. GASPAR general approach to species-abundance relationships in a context of global change, reef fish species as a model (2010).31.Froese, R. & Pauly, D. FishBase. World Wide Web Electronic Publication. (2019). Available at: http://www.fishbase.org. Accessed 23 May 2019.32.Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 

    Google Scholar 
    33.Rousseeuw, P. et al. Finding Groups in Data: Cluster Analysis Extended Rousseeuw et al. CRAN (Comprehensive R Archive Network (CRAN), 2018).34.Paradis, E. et al. Package ‘ape’: Analyses of Phylogenetics and Evolution Depends R. (2019).35.Laliberté, E., Legendre, P. & Maintainer, B. S. Package ‘FD’ Type Package Title Measuring Functional Diversity (FD) from Multiple Traits, and Other Tools for Functional Ecology (2015).36.Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22, 134–147 (2007).
    Google Scholar 
    37.Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).ADS 

    Google Scholar 
    38.McClanahan, T. Coral reef fish communities, diversity, and their fisheries and biodiversity status in East Africa. Mar. Ecol. Prog. Ser. 632, 175–191 (2019).ADS 

    Google Scholar 
    39.Selig, E. R., Casey, K. S. & Bruno, J. F. New insights into global patterns of ocean temperature anomalies: Implications for coral reef health and management. Glob. Ecol. Biogeogr. 19, 397–411 (2010).
    Google Scholar 
    40.Ye, H., Deyle, E. R., Gilarranz, L. J. & Sugihara, G. Distinguishing time-delayed causal interactions using convergent cross mapping. Sci. Rep. 5, 14750 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Wilson, S. K. et al. Influence of nursery microhabitats on the future abundance of a coral reef fish. Proc. R. Soc. B Biol. Sci. 283, 1–7 (2016).
    Google Scholar 
    42.McClanahan, T. R. Decadal turnover of thermally stressed coral taxa support a risk-spreading approach to marine reserve design. Coral Reefs https://doi.org/10.1007/s00338-020-01984-w (2020).Article 

    Google Scholar 
    43.Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine socio-environmental covariates: Queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976 (2017).PubMed 

    Google Scholar 
    44.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (2009).45.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC Press, 2017).MATH 

    Google Scholar 
    46.Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).
    Google Scholar 
    47.Wood, S. N. Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025–1036 (2006).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    48.Pedersen, E. J., Miller, D. L., Simpson, G. L. & Ross, N. Hierarchical generalized additive models in ecology: An introduction with mgcv. PeerJ 2019, e6876 (2019).
    Google Scholar 
    49.Pecuchet, L. et al. From traits to life-history strategies: Deconstructing fish community composition across European seas. Glob. Ecol. Biogeogr. 26, 812–822 (2017).
    Google Scholar 
    50.Dormann, F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 30, 609–628 (2007).
    Google Scholar 
    51.Schulp, C. J. E., Lautenbach, S. & Verburg, P. H. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecol. Indic. 36, 131–141 (2014).
    Google Scholar 
    52.Warton, D. I. & Hui, F. K. C. The arcsine is asinine: The analysis of proportions in ecology. Ecology 92, 3–10 (2011).PubMed 

    Google Scholar 
    53.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).54.MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).ADS 
    CAS 

    Google Scholar 
    55.McClanahan, T. R., Ateweberhan, M., Muhando, C. A., Maina, J. & Mohammed, M. S. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecol. Monogr. 77, 503–525 (2007).
    Google Scholar 
    56.Chirico, A. A. D., McClanahan, T. R. & Eklöf, J. S. Community- and government-managed marine protected areas increase fish size, biomass and potential value. PLoS ONE 12, e0182342 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    57.McClanahan, T. R., Friedlander, A. M., Graham, N. A. J., Chabanet, P. & Bruggemann, J. H. Variability in coral reef fish baseline and benchmark biomass in the central and western Indian Ocean provinces. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3448 (2020).Article 

    Google Scholar 
    58.Mbaru, E. K., Graham, N. A. J., McClanahan, T. R. & Cinner, J. E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13547 (2019).Article 

    Google Scholar 
    59.Dulvy, N. K., Polunin, N. V. C., Mill, A. C. & Graham, N. A. J. Size structural change in lightly exploited coral reef fish communities: Evidence for weak indirect effects. Can. J. Fish. Aquat. Sci. 61, 466–475 (2004).
    Google Scholar 
    60.D’Agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Mbaru, E. K. & McClanahan, T. R. Escape gaps in African basket traps reduce bycatch while increasing body sizes and incomes in a heavily fished reef lagoon. Fish. Res. 148, 90–99 (2013).
    Google Scholar 
    62.Grime, J. P. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Google Scholar 
    63.Campbell, S. J. et al. Fishing restrictions and remoteness deliver conservation outcomes for Indonesia’s coral reef fisheries. Conserv. Lett. https://doi.org/10.1111/conl.12698 (2020).Article 

    Google Scholar 
    64.Heenan, A., Williams, G. J. & Williams, I. D. Natural variation in coral reef trophic structure across environmental gradients. Front. Ecol. Environ. 18, 69–75 (2020).
    Google Scholar 
    65.Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e6 (2019).CAS 
    PubMed 

    Google Scholar 
    66.González-Rivero, M. et al. Linking fishes to multiple metrics of coral reef structural complexity using three-dimensional technology. Sci. Rep. 7, 1–15 (2017).
    Google Scholar 
    67.Coker, D. J., Graham, N. A. J. & Pratchett, M. S. Interactive effects of live coral and structural complexity on the recruitment of reef fishes. Coral Reefs 31, 919–927 (2012).ADS 

    Google Scholar 
    68.Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).ADS 

    Google Scholar 
    69.Russ, G. R., Aller-Rojas, O. D., Rizzari, J. R. & Alcala, A. C. Off-reef planktivorous reef fishes respond positively to decadal-scale no-take marine reserve protection and negatively to benthic habitat change. Mar. Ecol. 38, e12442 (2017).ADS 

    Google Scholar 
    70.Darling, E. S., McClanahan, T. R. & Côté, I. M. Life histories predict coral community disassembly under multiple stressors. Glob. Change Biol. 19, 1930–1940 (2013).ADS 

    Google Scholar 
    71.Strain, E. M. A. et al. A global assessment of the direct and indirect benefits of marine protected areas for coral reef conservation. Divers. Distrib. 25, 9–20 (2019).
    Google Scholar 
    72.Floeter, S. R., Bender, M. G., Siqueira, A. C. & Cowman, P. F. Phylogenetic perspectives on reef fish functional traits. Biol. Rev. 93, 131–151 (2018).PubMed 

    Google Scholar 
    73.Michael, P. J., Hyndes, G. A., Vanderklift, M. A. & Vergés, A. Identity and behaviour of herbivorous fish influence large-scale spatial patterns of macroalgal herbivory in a coral reef. Mar. Ecol. Prog. Ser. 482, 227–240 (2013).ADS 

    Google Scholar 
    74.Paijmans, K. C., Booth, D. J. & Wong, M. Y. L. Predation avoidance and foraging efficiency contribute to mixed-species shoaling by tropical and temperate fishes. J. Fish Biol. 96, 806–814 (2020).PubMed 

    Google Scholar 
    75.White, J. W. & Warner, R. R. Behavioral and energetic costs of group membership in a coral reef fish. Oecologia 154, 423–433 (2007).ADS 
    PubMed 

    Google Scholar 
    76.van Kooten, T., Persson, L. & de Roos, A. M. Population dynamical consequences of gregariousness in a size-structured consumer-resource interaction. J. Theor. Biol. 245, 763–774 (2007).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    77.Kelley, J. L., Grierson, P. F., Collin, S. P. & Davies, P. M. Habitat disruption and the identification and management of functional trait changes. Fish Fish. 19, 716–728 (2018).
    Google Scholar 
    78.Rochet, M. Short-term effects of fishing on life history traits of fishes. ICES J. Mar. Sci. 55, 371–391 (1998).
    Google Scholar 
    79.McClanahan, T. R. et al. Global baselines and benchmarks for fish biomass: Comparing remote reefs and fisheries closures. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps12874 (2019).Article 

    Google Scholar 
    80.Jacob, U. et al. The role of body size in complex food webs: A cold case. Adv. Ecol. Res. 45, 181–223 (2011).
    Google Scholar 
    81.McClanahan, T. R. & Graham, N. A. J. Marine reserve recovery rates towards a baseline are slower for reef fish community life histories than biomass. Proc. Biol. Sci. 282, 20151938 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Humphries, A. T. Algal turf consumption by sea urchins and fishes is mediated by fisheries management on coral reefs in Kenya. Coral Reefs https://doi.org/10.1007/s00338-020-01943-5 (2020).Article 

    Google Scholar 
    83.Ward, T. J., Heinemann, D. & Evans, N. The role of marine reserves as fisheries management tools. A review of concepts, evidence and international experience. Bur. Rural Sci. Aust. 192, 105 (2001).
    Google Scholar 
    84.Bergseth, B. J., Williamson, D. H., Russ, G. R., Sutton, S. G. & Cinner, J. E. A social-ecological approach to assessing and managing poaching by recreational fishers. Front. Ecol. Environ. 15, 67–73 (2017).
    Google Scholar 
    85.McClanahan, T. R. Recovery of functional groups and trophic relationships in tropical fisheries closures. Mar. Ecol. Prog. Ser. 497, 13–23 (2014).ADS 

    Google Scholar 
    86.Mcclanahan, T. R. & Omukoto, J. O. Comparison of modern and historical fish catches (AD 750–1400) to inform goals for marine protected areas and sustainable fisheries. Conserv. Biol. 25, 945–955 (2011).PubMed 

    Google Scholar 
    87.Williams, G. J. & Graham, N. A. J. Rethinking coral reef functional futures. Funct. Ecol. 33, 942–947 (2019).
    Google Scholar  More

  • in

    Community RNA-Seq: multi-kingdom responses to living versus decaying roots in soil

    1.Swift MJ, Anderson JM, Heal OW. Decomposition in terrestrial ecosystems. Oxford: Blackwell Publishing; 1979.2.Scholes MC, Powlson D, Tian G. Input control of organic matter dynamics. Geoderma. 1997;79:25–47.CAS 

    Google Scholar 
    3.Sokol NW, Kuebbing SE, Ayala EK, Bradford MA. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytologist. 2019;221:233–46.CAS 

    Google Scholar 
    4.Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Ann Rev Ecol Evol Syst. 2017;48:419–45.
    Google Scholar 
    5.Greyston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol. 1996;5:29–56.
    Google Scholar 
    6.Schimel DS. Terrestrial biogeochemical cycles: global estimates with remote sensing. Remote Sens Environ. 1995;51:49–56.
    Google Scholar 
    7.Angst G, Mueller KE, Nierop KGJ, Simpson MJ. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol Biochem. 2021;156:108189.CAS 

    Google Scholar 
    8.Bardgett RD. The biology of soil: a community ecosystem approach. Oxford: Oxford University Press; 2005.9.Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Front Microbiol. 2012;3:1–11.
    Google Scholar 
    10.Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, et al. Soil protistology rebooted: 30 fundamental questions to start with. Soil Biol Biochem. 2017;111:94–103.CAS 

    Google Scholar 
    11.Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol. 2016;25:4059–74.CAS 
    PubMed 

    Google Scholar 
    12.Osono T. Ecology of ligninolytic fungi associated with leaf litter decomposition. Ecol Res. 2007;22:955–74.
    Google Scholar 
    13.Hattenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition in terrestrial ecosystems. Ann Rev Ecol Evol Syst. 2005;36:191–218.
    Google Scholar 
    14.Pugh G. Terrestrial fungi. In: Dickenson C, Pugh G, editors. Biology of plant litter decomposition. 2. London: Academic Press Inc.; 1974. p. 303–36.15.Sinsabaugh RL, Moorhead DL. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol Biochem. 1994;26:1305–11.
    Google Scholar 
    16.Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: Diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–8.CAS 

    Google Scholar 
    17.Chakraborty S, Old K. Ultrastructure and description of a fungus-feeding amoeba, Trichamoeba mycophaga n. sp. (Amoebidae, Amoebea), from Australia. J Eukaryot Microbiol. 1986;33:564–9.
    Google Scholar 
    18.Bjørnlund L, Rønn R. ‘David and Goliath’of the soil food web–Flagellates that kill nematodes. Soil Biol Biochem. 2008;40:2032–9.
    Google Scholar 
    19.Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q, Wu H, et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 2018;12:634–8.PubMed 

    Google Scholar 
    20.Neher DA, Weicht TR, Barbercheck ME. Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Appl Soil Ecol. 2012;54:14–23.
    Google Scholar 
    21.Bokhorst S, Wardle DA. Microclimate within litter bags of different mesh size: Implications for the ‘arthropod effect’ on litter decomposition. Soil Biol Biochem. 2013;58:147–52.CAS 

    Google Scholar 
    22.Carrillo Y, Ball BA, Bradford MA, Jordan CF, Molina M. Soil fauna alter the effects of litter composition on nitrogen cycling in a mineral soil. Soil Biol Biochem. 2011;43:1440–9.CAS 

    Google Scholar 
    23.Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol Biochem. 2012;49:124–31.CAS 

    Google Scholar 
    24.Meyer WM, Ostertag R, Cowie RH. Macro-invertebrates accelerate litter decomposition and nutrient release in a Hawaiian rainforest. Soil Biol Biochem. 2011;43:206–11.CAS 

    Google Scholar 
    25.Stout JD. The Relationship between protozoan populations and biological activity in soils. Integr Comp Biol. 1973;13:193–201.
    Google Scholar 
    26.Bonkowski M, Griffiths B, Scrimgeour C. Substrate heterogeneity and microfauna in soil organic ‘hotspots’ as determinants of nitrogen capture and growth of ryegrass. Appl Soil Ecol. 2000;14:37–53.
    Google Scholar 
    27.Hünninghaus M, Dibbern D, Kramer S, Koller R, Pausch J, Schloter-Hai B, et al. Disentangling carbon flow across microbial kingdoms in the rhizosphere of maize. Soil Biol Biochem. 2019;134:122–30.
    Google Scholar 
    28.Tedersoo L, Anslan S. Towards PacBio‐based pan‐eukaryote metabarcoding using full‐length ITS sequences. Environ Microbiol Rep. 2019;11:659–68.CAS 
    PubMed 

    Google Scholar 
    29.Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, et al. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. Mycokeys. 2015;10:1–43.
    Google Scholar 
    30.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 

    Google Scholar 
    31.Baldrian P, Kolařík M, Stursová M, Kopecký J, Valášková V, Větrovský T, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. ISME J. 2012;6:248–58.CAS 
    PubMed 

    Google Scholar 
    32.Poisot T, Péquin B, Gravel D. High‐throughput sequencing: a roadmap toward community ecology. Ecol Evol. 2013;3:1125–39.PubMed 
    PubMed Central 

    Google Scholar 
    33.Nguyen NH, Smith D, Peay K, Kennedy P. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol. 2015;205:1389–93.CAS 
    PubMed 

    Google Scholar 
    34.Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 2010;4:642–7.CAS 
    PubMed 

    Google Scholar 
    35.Suzuki MT, Giovannoni SJ. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol. 1996;62:625–30.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Soergel D, Dey N, Knight R, Brenner S. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 2012;6:1440–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Nomura M, Gourse R, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117.CAS 
    PubMed 

    Google Scholar 
    38.Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE. 2008;3:e2527.PubMed 
    PubMed Central 

    Google Scholar 
    39.Kembel SW, Wu M, Eisen JA, Green JL. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comp Biol. 2012;8:e1002743.CAS 

    Google Scholar 
    40.Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:219.
    Google Scholar 
    41.Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 2011;12:R44.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Xue Y, Lanzén A, Jonassen I. Reconstructing ribosomal genes from large scale total RNA meta-transcriptomic data. Bioinformatics. 2020;36:3365–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Bang-Andreasen T, Anwar MZ, Lanzén A, Kjøller R, Rønn R, Ekelund F, et al. Total RNA-sequencing reveals multi-level microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol Ecol. 2020;96:fiaa016.PubMed 
    PubMed Central 

    Google Scholar 
    44.Geisen S, Tveit AT, Clark IM, Richter A, Svenning MM, Bonkowski M, et al. Metatranscriptomic census of active protists in soils. ISME J. 2015;9:2178–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Adl SM, Habura A, Eglit Y. Amplification primers of SSU rDNA for soil protists. Soil Biol Biochem. 2014;69:328–42.CAS 

    Google Scholar 
    46.Wagner M, Nielsen PH, Loy A, Nielsen JL, Daims H. Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol. 2006;17:83–91.CAS 
    PubMed 

    Google Scholar 
    47.Neufeld J, Wagner M, Murrell J. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 2007;1:103–10.CAS 
    PubMed 

    Google Scholar 
    48.Radajewski S, Ineson P, Parekh NR, Murrell J. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403:646–9.CAS 
    PubMed 

    Google Scholar 
    49.Radajewski S, Murrell JC. Stable isotope probing for detection of methanotrophs after enrichment with 13CH4. In: de Muro MA, Rapley R, editors. Gene probes: principles and protocols. Totowa, NJ: Humana Press; 2002. p. 149–57.50.Manefield M, Whiteley AS, Griffiths R, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol. 2002;68:5367–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Mayali X, Weber PK, Nuccio E, Lietard J, Somoza M, Blazewicz SJ, et al. Stable isotope probing, methods and protocols. Methods Mol Biol. 2019;2046:71–87.PubMed 

    Google Scholar 
    52.Mayali X, Weber PK, Brodie EL, Mabery S, Hoeprich PD, Pett-Ridge J. High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use. ISME J. 2012;6:1210–21.CAS 
    PubMed 

    Google Scholar 
    53.Waldrop MP, Firestone MK. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb Ecol. 2006;52:470–9.CAS 
    PubMed 

    Google Scholar 
    54.Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, Li J, et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio. 2015;6:e00746.PubMed 
    PubMed Central 

    Google Scholar 
    55.DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. Selective progressive response of soil microbial community to wild oat. ISME J. 2009;3:168–78.CAS 
    PubMed 

    Google Scholar 
    56.Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK. Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol. 1999;65:2685–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Nuccio EE, Starr E, Karaoz U, Brodie EL, Zhou J, Tringe SG, et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 2020;269:1–16.
    Google Scholar 
    58.Griffiths RI, Whiteley AS, O’Donnell AG, Bailey M. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol. 2000;66:5488–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Andrews S. FastQC: a quality control tool for high throughput sequence data (Version 0.10.1) 2012; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/60.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.PubMed 
    PubMed Central 

    Google Scholar 
    64.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Miller CS, Handley KM, Wrighton KC, Frischkorn KR, Thomas BC, Banfield JF. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE. 2013;8:e56018.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Choi J, Kim S-H. A genome tree of life for the Fungi kingdom. Proc Natl Acad Sci USA. 2017;114:9391–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018;47:D259–64.PubMed Central 

    Google Scholar 
    72.Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, et al. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 2005;52:399–451.
    Google Scholar 
    73.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 

    Google Scholar 
    75.Pausch J, Kramer S, Scharroba A, Scheunemann N, Butenschoen O, Kandeler E, et al. Small but active—pool size does not matter for carbon incorporation in below‐ground food webs. Funct Ecol. 2016;30:479–89.
    Google Scholar 
    76.el Zahar Haichar F, Achouak W, Christen R. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol. 2007;9:625–34.CAS 

    Google Scholar 
    77.Ha YE, Kang CI, Joo EJ, Park SY, Kang SJ, Wi YM, et al. Bacterial populations assimilating carbon from 13C-labeled plant residue in soil: analysis by a DNA-SIP approach. Soil Biol Biochem. 2011;43:814–22.
    Google Scholar 
    78.Eichorst SA, Kuske CR. Identification of cellulose-responsive bacterial and fungal communities in geographically and edaphically different soils by using stable isotope probing. Appl Environ Microbiol. 2012;78:2316–27.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front Microbiol. 2016;7:626.
    Google Scholar 
    80.Wilhelm RC, Pepe-Ranney C, Weisenhorn P, Lipton M, Buckley DH. Competitive exclusion and metabolic dependency among microorganisms structure the cellulose economy of an agricultural soil. mBio. 2021;12:e03099-20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Lehtovirta-Morley LE, Ross J, Hink L, Weber EB, Gubry-Rangin C, Thion C, et al. Isolation of ‘Candidatus Nitrosocosmicus franklandus’, a novel ureolytic soil archaeal ammonia oxidiser with tolerance to high ammonia concentration. FEMS Microbiol Ecol. 2016;92:fiw057.PubMed 
    PubMed Central 

    Google Scholar 
    82.Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, De Valpine P, Brodie EL, et al. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology. 2016;97:1307–18.PubMed 

    Google Scholar 
    83.Ceja-Navarro JA, Wang Y, Arellano A, Ramanculova L, Yuan M, Byer A, et al. Protist diversity and network complexity in the rhizosphere are dynamic and changing as the plant develops. Microbiome. 2021;9. https://doi.org/10.1186/s40168-021-01042-9.
    Google Scholar 
    84.Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.CAS 
    PubMed 

    Google Scholar 
    85.Zhang L, Lueders T. Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey. FEMS Microbiol Ecol. 2017;93:fix103.
    Google Scholar 
    86.Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    87.Rosenberg K, Bertaux J, Krome K, Hartmann A, Scheu S, Bonkowski M. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME J. 2009;3:675–84.CAS 
    PubMed 

    Google Scholar 
    88.Zaragoza SR, Mayzlish E, Steinberger Y. Seasonal changes in free-living Amoeba species in the root canopy of Zygophyllum dumosum in the Negev Desert, Israel. Microb Ecol. 2005;49:134–41.
    Google Scholar 
    89.Baldock BM, Baker JH, Sleigh MA. Laboratory growth rates of six species of freshwater Gymnamoebia. Oecologia. 1980;47:156–9.CAS 
    PubMed 

    Google Scholar 
    90.Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 2013;7:652–9.CAS 
    PubMed 

    Google Scholar 
    91.Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Global Change Biol. 2013;19:988–95.
    Google Scholar 
    92.Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.CAS 
    PubMed 

    Google Scholar 
    93.Allison SD, Martiny JB. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Wickings K, Grandy AS, Reed SC, Cleveland CC. The origin of litter chemical complexity during decomposition. Ecol Lett. 2012;15:1180–8.PubMed 

    Google Scholar 
    95.Hungate BA, Marks JC, Power ME, Schwartz E, van Groenigen KJ, Blazewicz SJ, et al. The functional significance of bacterial predators. mBio. 2021;12:e00466–21.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.de Ruiter PC, Neutel AM, Moore JC. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science. 1995;269:1257–60.PubMed 

    Google Scholar 
    97.Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    98.Yeates GW, Bongers T, De Goede R, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol. 1993;25:315–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Okada H, Harada H, Kadota I. Fungal-feeding habits of six nematode isolates in the genus Filenchus. Soil Biol Biochem. 2005;37:1113–20.CAS 

    Google Scholar 
    100.Rotem O, Pasternak Z, Jurkevitch E. Bdellovibrio and Like Organisms. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. The prokaryotes, deltaproteobacteria and epsilonproteobacteria. Berlin: Springer-Verlag; 2014. p. 3–17.101.Griffiths BS. Microbial-feeding nematodes and protozoa in soil: their effectson microbial activity and nitrogen mineralization in decomposition hotspots and the rhizosphere. Plant Soil. 1994;164:25–33.CAS 

    Google Scholar 
    102.Bonkowski M, Clarholm M. Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis. Acta Protozool. 2012;51:237–47.
    Google Scholar 
    103.Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol Biochem. 1985;17:181–7.CAS 

    Google Scholar 
    104.Halter D, Goulhen-Chollet F, Gallien S, Casiot C, Hamelin J, Gilard F, et al. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis. ISME J. 2012;6:1391–402.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Yuan C, Lei J, Cole J, Sun Y. Reconstructing 16S rRNA genes in metagenomic data. Bioinformatics. 2015;31:i35–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Zeng F, Wang Z, Wang Y, Zhou J, Chen T. Large-scale 16S gene assembly using metagenomics shotgun sequences. Bioinformatics. 2017;33:1447–56.CAS 
    PubMed 

    Google Scholar 
    107.Pericard P, Dufresne Y, Couderc L, Blanquart S, Touzet H. MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes. Bioinformatics. 2017;34:585–91.
    Google Scholar 
    108.Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS, et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 2019;47:e103-e.
    Google Scholar  More

  • in

    Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean

    1.Nicholson, E., Keith, D. A. & Wilcove, D. S. Assessing the threat status of ecological communities. Conserv. Biol. 23, 259–274 (2009).
    Google Scholar 
    2.Bland, L. M. et al. Developing a standardized definition of ecosystem collapse for risk assessment. Front. Ecol. Environ. 16, 29–36 (2018).
    Google Scholar 
    3.Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).
    Google Scholar 
    4.The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policy Makers (IPBES, 2019); https://ipbes.net/sites/default/files/2020-02/ipbes_global_assessment_report_summary_for_policymakers_en.pdf5.Souter, D. et al. (eds) Status of Coral Reefs of the World: 2020 Report (International Coral Reef Initiative, 2021).6.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 

    Google Scholar 
    7.Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 109, e12587 (2018).
    Google Scholar 
    8.Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24, 2416–2433 (2018).
    Google Scholar 
    9.Díaz-Pérez, L. et al. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11, e0161812 (2016).
    Google Scholar 
    10.Obura, D. O. et al. Coral reef monitoring, reef assessment technologies, and ecosystem-based management. Front. Mar. Sci. 6, 580 (2019).
    Google Scholar 
    11.Mumby, P. J., Steneck, R. S. & Hastings, A. Evidence for and against the existence of alternate attractors on coral reefs. Oikos 122, 481–491 (2013).
    Google Scholar 
    12.Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011).
    Google Scholar 
    13.Obura, D. et al. (eds) Coral Reef Status Report for the Western Indian Ocean (International Coral Reef Initiative, 2017).14.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).
    Google Scholar 
    15.Jackson, J., Donovan, M. K., Cramer, K. & Lam, V. (eds) Status and Trends of Caribbean Coral Reefs: 1970–2012 (International Coral Reef Initiative, 2014).16.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).CAS 

    Google Scholar 
    17.McClanahan, T. R., Ateweberhan, M., Darling, E. S., Graham, N. A. J. & Muthiga, N. A. Biogeography and change among regional coral communities across the Western Indian Ocean. PLoS ONE 9, e93385 (2014).
    Google Scholar 
    18.Nicholson, E. et al. Scientific foundations for an ecosystem goal, milestones and indicators for the post-2020 global biodiversity framework. Nat. Ecol. Evol. 5, 1338–1349 (2021).
    Google Scholar 
    19.Keith, D. A. et al. Scientific foundations for an IUCN Red List of Ecosystems. PLoS ONE 8, e62111 (2013).CAS 

    Google Scholar 
    20.Rodriguez, J. P. et al. A practical guide to the application of the IUCN Red List of Ecosystems criteria. Philos. Trans. R. Soc. B 370, 20140003 (2015).21.Alaniz, A. J., Pérez-Quezada, J. F., Galleguillos, M., Vásquez, A. E. & Keith, D. A. Operationalizing the IUCN Red List of Ecosystems in public policy. Conserv. Lett. 12, e12665 (2019).
    Google Scholar 
    22.van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. https://doi.org/10.1038/srep39666 (2016).23.Hausfather, Z. & Peters, G. P. Emissions—the ‘business as usual’ story is misleading. Nature 577, 618–620 (2020).CAS 

    Google Scholar 
    24.Gudka, M. et al. Participatory reporting of the 2016 bleaching event in the Western Indian Ocean. Coral Reefs 39, 1–11 (2020).
    Google Scholar 
    25.Diaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
    Google Scholar 
    26.Steneck, R. S., Mumby, P. J., MacDonald, C., Rasher, D. B. & Stoyle, G. Attenuating effects of ecosystem management on coral reefs. Sci. Adv. 4, eaao5493 (2018).
    Google Scholar 
    27.Arnold, S., Steneck, R. & Mumby, P. Running the gauntlet: inhibitory effects of algal turfs on the processes of coral recruitment. Mar. Ecol. Prog. Ser. 414, 91–105 (2010).
    Google Scholar 
    28.Karkarey, R., Kelkar, N., Lobo, A. S., Alcoverro, T. & Arthur, R. Long-lived groupers require structurally stable reefs in the face of repeated climate change disturbances. Coral Reefs 33, 289–302 (2014).
    Google Scholar 
    29.Sadovy de Mitcheson, Y. J. et al. Valuable but vulnerable: over-fishing and under-management continue to threaten groupers so what now? Mar. Policy 116, 103909 (2020).
    Google Scholar 
    30.Garpe, K. C. & Öhman, M. C. Coral and fish distribution patterns in Mafia Island Marine Park, Tanzania: fish–habitat interactions. Hydrobiologia 498, 191–211 (2003).
    Google Scholar 
    31.Samoilys, M., Roche, R., Koldewey, H. & Turner, J. Patterns in reef fish assemblages: insights from the Chagos Archipelago. PLoS ONE 13, e0191448 (2018).
    Google Scholar 
    32.Graham, N. A. J. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 

    Google Scholar 
    33.Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B 284, 20170660 (2017).
    Google Scholar 
    34.Nyström, M. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35, 30–35 (2006).
    Google Scholar 
    35.Uribe, E. S., Luna-Acosta, A. & Etter, A. Red List of Ecosystems: risk assessment of coral ecosystems in the Colombian Caribbean. Ocean Coast. Manag. 199, 105416 (2021).
    Google Scholar 
    36.Burns, E. L. et al. Ecosystem assessment of mountain ash forest in the Central Highlands of Victoria, south-eastern Australia. Austral Ecol. 40, 386–399 (2015).
    Google Scholar 
    37.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).
    Google Scholar 
    38.Boitani, L., Mace, G. M. & Rondinini, C. Challenging the scientific foundations for an IUCN Red List of Ecosystems. Conserv. Lett. 8, 125–131 (2015).
    Google Scholar 
    39.Rowland, J. A. et al. Ecosystem indices to support global biodiversity conservation. Conserv. Lett. 13, e12680 (2019).
    Google Scholar 
    40.Bland, L. M. et al. Impacts of the IUCN Red List of Ecosystems on conservation policy and practice. Conserv. Lett. 12, e12666 (2019).
    Google Scholar 
    41.Brooks, T. M. et al. Harnessing biodiversity and conservation knowledge products to track the Aichi Targets and Sustainable Development Goals. Biodiversity 16, 157–174 (2015).
    Google Scholar 
    42.Keith, D. A. et al. The IUCN Global Ecosystem Typology v1.0: Descriptive Profiles for Biomes and Ecosystem Functional Groups (Royal Botanic Gardens Kew, 2020).43.Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).
    Google Scholar 
    44.Pendleton, L. et al. Coral reefs and people in a high-CO2 world: where can science make a difference to people? PLoS ONE 11, e0164699 (2016).
    Google Scholar 
    45.Gamoyo, M., Obura, D. & Reason, C. J. C. Estimating connectivity through larval dispersal in the Western Indian Ocean. J. Geophys. Res. Biogeosci. 124, 2446–2459 (2019).
    Google Scholar 
    46.Portner, H. O. et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop Report on Biodiversity and Climate Change (IPBES, 2021); https://zenodo.org/record/510112547.Global Biodiversity Outlook 5 (Convention on Biological Diversity, 2020); https://www.cbd.int/gbo548.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).49.Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).
    Google Scholar 
    50.ICRI, Coral Reefs and the UN (International Coral Reef Initiative, 2021); https://www.icriforum.org/icri-coral-reefs-and-the-un/51.Mahon, R. & Fanning, L. Regional ocean governance: polycentric arrangements and their role in global ocean governance. Mar. Policy 107, 103590 (2019).
    Google Scholar 
    52.Bland, L. M., Keith, D. A., Miller, R. M., Murray, N. J. & Rodríguez, J. P. Guidelines for the Application of IUCN Red List of Ecosystems Categories and Criteria (IUCN, 2015); https://doi.org/10.2305/IUCN.CH.2016.RLE.1.en53.Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).
    Google Scholar 
    54.Veron, J., Stafford-Smith, M. G., Devantier, L. M. & Turak, E. Overview of distribution patterns of zooxanthellate Scleractinia. Front. Mar. Sci. 1, 81 (2015).55.Obura, D. O. The diversity and biogeography of Western Indian Ocean reef-building corals. PLoS ONE 7, e45013 (2012).CAS 

    Google Scholar 
    56.Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).CAS 

    Google Scholar 
    57.Knowlton, N. Thresholds and multiple stable states in coral reef community dynamics. Integr. Comp. Biol. 32, 674–682 (1992).
    Google Scholar 
    58.Hughes, T. P., Carpenter, S., Rockström, J., Scheffer, M. & Walker, B. Multiscale regime shifts and planetary boundaries. Trends Ecol. Evol. 28, 389–395 (2013).
    Google Scholar 
    59.Jouffray, J. B. et al. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago. Philos. Trans. R. Soc. B 370, 20130268 (2014).60.Nyström, M. & Folke, C. Spatial resilience of coral reefs. Ecosystems 4, 406–417 (2001).
    Google Scholar 
    61.Mumby, P. J. Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs 28, 761–773 (2009).
    Google Scholar 
    62.Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B 283, 20151985 (2016).
    Google Scholar 
    63.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).CAS 

    Google Scholar 
    64.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).CAS 

    Google Scholar 
    65.Ainsworth, C. H. & Mumby, P. J. Coral–algal phase shifts alter fish communities and reduce fisheries production. Glob. Change Biol. 21, 165–172 (2015).
    Google Scholar 
    66.Wittebolle, L. et al. Initial community evenness favours functionality under selective stress. Nature 458, 623–626 (2009).CAS 

    Google Scholar 
    67.Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).CAS 

    Google Scholar 
    68.Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).
    Google Scholar 
    69.Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).CAS 

    Google Scholar 
    70.Huang, W., Mukherjee, D. & Chen, S. Assessment of Hurricane Ivan impact on chlorophyll-a in Pensacola Bay by MODIS 250m remote sensing. Mar. Pollut. Bull. 62, 490–498 (2011).CAS 

    Google Scholar 
    71.Chen, S. Estimating wide range total suspended solids concentrations from MODIS 250-m imageries: an improved method. ISPRS J. Photogramm. Remote Sens. 99, 58–69 (2015).
    Google Scholar 
    72.Porter, S. N., Branch, G. M. & Sink, K. J. Changes in shallow-reef community composition along environmental gradients on the East African coast. Mar. Biol. 164, 101 (2017).
    Google Scholar 
    73.Perry, C. T. & Alvarez-Filip, L. Changing geo‐ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2018).
    Google Scholar 
    74.Andrefouet, S. et al. Global assessment of modern coral reef extent and diversity for regional science and management applications: a view from space. In Proc. 10th International Coral Reef Symposium 1732–1745 (ICRS, 2006).75.Maina, J., Venus, V., McClanahan, T. R. & Ateweberhan, M. Modelling susceptibility of coral reefs to environmental stress using remote sensing data and GIS models. Ecol. Model. 212, 180–199 (2008).
    Google Scholar 
    76.Maina, J., McClanahan, T. R., Venus, V., Ateweberhan, M. & Madin, J. Global gradients of coral exposure to environmental stresses and implications for local management. PLoS ONE 6, e23064 (2011).CAS 

    Google Scholar 
    77.Liu, G. et al. NOAA coral reef watch’s decision support system for coral reef management. In Proc. 12th International Coral Reef Symposium (2012); https://www.icrs2012.com/proceedings/manuscripts/ICRS2012_5A_6.pdf78.Hill, J. & Wilkinson, C. Methods for Ecological Monitoring of Coral Reefs: Version 1 (Australian Institute of Marine Science, 2004).79.Wilkinson, C. Status of Coral Reefs of the World: 2008 (International Coral Reef Initiative, 2008).80.Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 15 (2018).
    Google Scholar 
    81.Bax, N. J. et al. Linking capacity development to GOOS monitoring networks to achieve sustained ocean observation. Front. Mar. Sci. 5, 206 (2018).
    Google Scholar 
    82.Reuchlin-Hugenholtz, E., Shackell, N. L. & Hutchings, J. A. The potential for spatial distribution indices to signal thresholds in marine fish biomass. PLoS ONE 10, e0120500 (2015).
    Google Scholar 
    83.Kuempel, C. D., Adams, V. M., possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2017).
    Google Scholar 
    84.Morais, R. A., Connolly, S. R. & Bellwood, D. R. Human exploitation shapes productivity–biomass relationships on coral reefs. Glob. Change Biol. 26, 1295–1305 (2020).
    Google Scholar 
    85.Harford, W. J., Sagarese, S. R. & Karnauskas, M. Coping with information gaps in stock productivity for rebuilding and achieving maximum sustainable yield for grouper–snapper fisheries. Fish Fish. 20, 303–321 (2019).
    Google Scholar  More