Phosphorus supply affects long-term carbon accumulation in mid-latitude ombrotrophic peatlands
1.Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24, 1028–1042 (2014).
Google Scholar
2.Loisel, J. et al. Insights and issues with estimating northern peatland carbon stocks and fluxes since the Last Glacial Maximum. Earth Sci. Rev. 165, 59–80 (2017).CAS
Google Scholar
3.Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).4.Scharlemann, J. P., Tanner, E. V., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91 (2014).CAS
Google Scholar
5.Chambers, F. M., Barber, K. E., Maddy, D. & Brew, J. A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. The Holocene 7, 391–399 (1997).
Google Scholar
6.Charman, D. J., Blundell, A., Chiverrell, R. C., Hendon, D. & Langdon, P. G. Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain. Quat. Sci. Rev. 25, 336–350 (2006).
Google Scholar
7.Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).CAS
Google Scholar
8.van der Linden, M. & van Geel, B. Late Holocene climate change and human impact recorded in a south Swedish ombrotrophic peat bog. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 649–667 (2006).
Google Scholar
9.Clymo, R. S. The limits to peat bog growth. Philos. Trans. R. Soc. B Biol. Sci. 303, 605–654 (1984).
Google Scholar
10.Hessen, D. O., Ågren, G. I., Anderson, T. R., Elser, J. J. & de Ruiter, P. C. Carbon sequestration in ecosystems: the role of stoichiometry. Ecology 85, 1179–1192 (2004).
Google Scholar
11.Damman, A. W. H. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30, 480–495 (1978).CAS
Google Scholar
12.Malmer, N. Patterns in the growth and the accumulation of inorganic constituents in the Sphagnum cover on ombrotrophic bogs in Scandinavia. Oikos 53, 105–120 (1988).CAS
Google Scholar
13.Wang, R. et al. Global forest carbon uptake due to nitrogen and phosphorus deposition from 1850 to 2100. Glob. Change Biol. 23, 4854–4872 (2017).
Google Scholar
14.Du, E. et al. Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmos. Chem. Phys. 16, 8571–8579 (2016).CAS
Google Scholar
15.Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).CAS
Google Scholar
16.Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl. Acad. Sci. USA 103, 19386–19389 (2006).CAS
Google Scholar
17.Bragazza, L. et al. High nitrogen deposition alters the decomposition of bog plant litter and reduces carbon accumulation. Glob. Change Biol. 18, 1163–1172 (2012).
Google Scholar
18.Aerts, R., Wallén, B. & Malmer, N. Growth-limiting nutrients in Sphagnum-dominated bogs subject to low and high atmospheric nitrogen supply. J. Ecol. 80, 131–140 (1992).
Google Scholar
19.Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. & Neff, J. C. Is atmospheric phosphorus pollution altering global alpine Lake stoichiometry? Glob. Biogeochem. Cycles 29, 1369–1383 (2015).20.Charman, D. J. et al. Drivers of Holocene peatland carbon accumulation across a climate gradient in northeastern North America. Quat. Sci. Rev. 121, 110–119 (2015).
Google Scholar
21.Charman, D. J. et al. Climate-related changes in peatland carbon accumulation during the last millennium. Biogeosciences 10, 929–944 (2013).
Google Scholar
22.Beilman, D. W., MacDonald, G. M., Smith, L. C. & Reimer, P. J. Carbon accumulation in peatlands of West Siberia over the last 2000 years. Glob. Biogeochem. Cycles 23, GB1012 (2009).23.Wang, M., Moore, T. R., Talbot, J. & Richard, P. J. H. The cascade of C:N:P stoichiometry in an ombrotrophic peatland: from plants to peat. Environ. Res. Lett. 9, 024003 (2014).CAS
Google Scholar
24.Wang, M., Moore, T. R., Talbot, J. & Riley, J. L. The stoichiometry of carbon and nutrients in peat formation. Glob. Biogeochem. Cycles 29, 113–121 (2015).
Google Scholar
25.Gorham, E. & Janssens, J. A. The distribution and accumulation of chemical elements in five peat cores from the mid-continent to the eastern coast of North America. Wetlands 25, 259–278 (2005).
Google Scholar
26.Ratcliffe, J. L. et al. Rapid carbon accumulation in a peatland following Late Holocene tephra deposition, New Zealand. Quat. Sci. Rev. 246, 106505 (2020).
Google Scholar
27.Kylander, M. E. et al. Mineral dust as a driver of carbon accumulation in northern latitudes. Sci. Rep. 8, 6876 (2018).28.Hughes, P. D. M. et al. The impact of high tephra loading on late-Holocene carbon accumulation and vegetation succession in peatland communities. Quat. Sci. Rev. 67, 160–175 (2013).
Google Scholar
29.Limpens, J., Berendse, F. & Klees, H. How phosphorus availability affects the impact of nitrogen deposition on Sphagnum and vascular plants in bogs. Ecosystems 7, 793–804 (2004).CAS
Google Scholar
30.Fritz, C. et al. Nutrient additions in pristine Patagonian Sphagnum bog vegetation: can phosphorus addition alleviate (the effects of) increased nitrogen loads. Plant Biol. 14, 491–499 (2012).CAS
Google Scholar
31.White, J. R. & Reddy, K. R. Influence of phosphorus loading on organic nitrogen mineralization of everglades soils. Soil Sci. Soc. Am. J. 64, 1525 (2000).CAS
Google Scholar
32.Bledsoe, R. B., Goodwillie, C. & Peralta, A. L. Long-term nutrient enrichment of an oligotroph-dominated wetland increases bacterial diversity in bulk soils and plant rhizospheres. mSphere 5, e00035-20 (2020).
Google Scholar
33.Lin, X. et al. Microbial community stratification linked to utilization of carbohydrates and phosphorus limitation in a boreal peatland at Marcell Experimental Forest, Minnesota, USA. Appl. Environ. Microbiol. 80, 3518–3530 (2014).
Google Scholar
34.Sjögersten, S., Cheesman, A. W., Lopez, O. & Turner, B. L. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104, 147–163 (2011).
Google Scholar
35.Cheesman, A. W., Turner, B. L. & Ramesh Reddy, K. Soil phosphorus forms along a strong nutrient gradient in a tropical ombrotrophic wetland. Soil Sci. Soc. Am. J. 76, 1496–1506 (2012).CAS
Google Scholar
36.Kivimäki, S. K., Sheppard, L. J., Leith, I. D. & Grace, J. Long-term enhanced nitrogen deposition increases ecosystem respiration and carbon loss from a Sphagnum bog in the Scottish Borders. Environ. Exp. Bot. 90, 53–61 (2013).
Google Scholar
37.Moore, T. R., Knorr, K.-H., Thompson, L., Roy, C. & Bubier, J. L. The effect of long-term fertilization on peat in an ombrotrophic bog. Geoderma 343, 176–186 (2019).CAS
Google Scholar
38.Hill, B. H. et al. Ecoenzymatic stoichiometry and microbial processing of organic matter in northern bogs and fens reveals a common P-limitation between peatland types. Biogeochemistry 120, 203–224 (2014).CAS
Google Scholar
39.Vitousek, P. M. et al. Towards an ecological understanding of biological nitrogen fixation. In The Nitrogen Cycle at Regional to Global Scales (eds. Boyer, E. W. & Howarth, R. W.) 1–45 (Springer Netherlands, 2002).40.Larmola, T. et al. Methanotrophy induces nitrogen fixation during peatland development. Proc. Natl. Acad. Sci. USA 111, 734–739 (2014).CAS
Google Scholar
41.van den Elzen, E. et al. Symbiosis revisited: phosphorus and acid buffering stimulate N2 fixation but not Sphagnum growth. Biogeosciences 14, 1111–1122 (2017).
Google Scholar
42.van den Elzen, E., Bengtsson, F., Fritz, C., Rydin, H. & Lamers, L. P. M. Variation in symbiotic N2 fixation rates among Sphagnum mosses. PLoS ONE 15, e0228383 (2020).
Google Scholar
43.Toberman, H. et al. Dependence of ombrotrophic peat nitrogen on phosphorus and climate. Biogeochemistry 125, 11–20 (2015).CAS
Google Scholar
44.Basilier, K., Granhall, U., Stenström, T.-A. & Stenstrom, T.-A. Nitrogen fixation in wet minerotrophic moss communities of a subarctic mire. Oikos 31, 236 (1978).CAS
Google Scholar
45.Lin, X. et al. Microbial metabolic potential for carbon degradation and nutrient (nitrogen and phosphorus) acquisition in an ombrotrophic peatland. Appl. Environ. Microbiol. 80, 3531–3540 (2014).
Google Scholar
46.Kox, M. A. R. et al. Effects of nitrogen fertilization on diazotrophic activity of microorganisms associated with Sphagnum magellanicum. Plant Soil 406, 83–100 (2016).CAS
Google Scholar
47.Bubier, J. L., Moore, T. R. & Bledzki, L. A. Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog. Glob. Change Biol. 13, 1168–1186 (2007).
Google Scholar
48.Fritz, C., Lamers, L. P. M., Riaz, M., van den Berg, L. J. L. & Elzenga, T. J. T. M. Sphagnum mosses – masters of efficient N-uptake while avoiding intoxication. PLoS ONE 9, e79991 (2014).
Google Scholar
49.Morris, P. J. et al. Global peatland initiation driven by regionally asynchronous warming. Proc. Natl. Acad. Sci. USA 115, 4851–4856 (2018).CAS
Google Scholar
50.Schillereff, D. N. et al. Long-term macronutrient stoichiometry of UK ombrotrophic peatlands. Sci. Total Environ. 572, 1561–1572 (2016).CAS
Google Scholar
51.Sjöström, J. K. et al. Paleodust deposition and peat accumulation rates – bog size matters. Chem. Geol. 554, 119795 (2020).
Google Scholar
52.Kylander, M. E. et al. Potentials and problems of building detailed dust records using peat archives: an example from Store Mosse (the “Great Bog”), Sweden. Geochim. Cosmochim. Acta 190, 156–174 (2016).CAS
Google Scholar
53.Mahowald, N. et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles 22, 1–19 (2008).
Google Scholar
54.Tipping, E. et al. Atmospheric deposition of phosphorus to land and freshwater. Environ. Sci.: Processes Impacts 16, 1608–1617 (2014).CAS
Google Scholar
55.Wang, R. et al. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci. 8, 48–54 (2015).CAS
Google Scholar
56.Newman, E. I. Phosphorus inputs to terrestrial ecosystems. J. Ecol. 83, 713–726 (1995).
Google Scholar
57.Worrall, F., Moody, C. S., Clay, G. D., Burt, T. P. & Rose, R. The total phosphorus budget of a peat-covered catchment. J. Geophys. Res. Biogeosci. 121, 1814–1828 (2016).CAS
Google Scholar
58.Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).
Google Scholar
59.Bedford, B. L., Walbridge, M. R. & Aldous, A. Patterns in nutrient availability and plant diversity of temperate North American Wetlands. Ecology 80, 2151–2169 (1999).
Google Scholar
60.Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance: Tansley review. New Phytol. 164, 243–266 (2004).
Google Scholar
61.Yan, J. et al. Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. J. Environ. Sci. 42, 152–162 (2016).CAS
Google Scholar
62.Barrow, N. J. Comparing two theories about the nature of soil phosphate. Eur. J. Soil Sci. 72, 679–685 (2021).CAS
Google Scholar
63.Bridgham, S. D., Pastor, J., Janssens, J. A., Chapin, C. & Malterer, T. J. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16, 45–65 (1996).
Google Scholar
64.Kuhry, P. & Vitt, D. H. Fossil carbon/nitrogen ratios as a measure of peat decomposition. Ecology 77, 271–275 (1996).
Google Scholar
65.Kuhry, P., Halsey, L. A., Bayley, S. E. & Vitt, D. H. Peatland development in relation to Holocene climatic change in Manitoba and Saskatchewan (Canada). Can. J. Earth Sci. 29, 1070–1090 (1992).CAS
Google Scholar
66.Malmer, N. & Wallén, B. Input rates, decay losses and accumulation rates of carbon in bogs during the last millennium: internal processes and environmental changes. The Holocene 14, 111–117 (2004).
Google Scholar
67.Malmer, N. & Holm, E. Variation in the C/N-quotient of peat in relation to decomposition rate and age determination with 210 Pb. Oikos 43, 171–182 (1984).CAS
Google Scholar
68.Larsson, A., Segerstrom, U., Laudon, H. & Nilsson, M. Holocene carbon and nitrogen accumulation rates and contemporary carbon export in discharge: a study from a boreal fen catchment. Holocene 27, 48 (2016), https://doi.org/10.1177/0959683616675936.69.Berendse, F. et al. Raised atmospheric CO2 levels and increased N deposition cause shifts in plant species composition and production in Sphagnum bogs. Glob. Change Biol. 7, 591–598 (2001).
Google Scholar
70.Juutinen, S., Bubier, J. L. & Moore, T. R. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue bog. Ecosystems 13, 874–887 (2010).CAS
Google Scholar
71.Lequy, É., Legout, A., Conil, S. & Turpault, M. P. Aeolian dust deposition rates in Northern French forests and inputs to their biogeochemical cycles. Atmos. Environ. 80, 281–289 (2013).CAS
Google Scholar
72.Harrison, J. A., Caraco, N. & Seitzinger, S. P. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Glob. Biogeochem. Cycles 19, GB4S04 (2005).73.Yu, Z. Holocene carbon flux histories of the world’s peatlands: global carbon-cycle implications. The Holocene 21, 761–774 (2011).
Google Scholar
74.Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry. (Elsevier, Amsterdam, 2013).
Google Scholar
75.Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).76.Larmola, T. et al. Vegetation feedbacks of nutrient addition lead to a weaker carbon sink in an ombrotrophic bog. Glob. Change Biol. 19, 3729–3739 (2013).
Google Scholar
77.Li, F. et al. Organic carbon linkage with soil colloidal phosphorus at regional and field scales: insights from size fractionation of fine particles. Environ. Sci. Technol. 55, 5815–5825 (2021).CAS
Google Scholar
78.Spohn, M. Increasing the organic carbon stocks in mineral soils sequesters large amounts of phosphorus. Glob. Change Biol. 26, 4169–4177 (2020).
Google Scholar
79.Sjöström, J. Mid-Holocene Mineral Dust Deposition in Raised Bogs in Southern Sweden: Processes and Links. PhD thesis, Stockholm Univ. (2021).80.Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).CAS
Google Scholar
81.Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).CAS
Google Scholar
82.Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).CAS
Google Scholar
83.Clymo, R. S. & Bryant, C. L. Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog. Geochim. Cosmochim. Acta 72, 2048–2066 (2008).CAS
Google Scholar
84.Morris, P. J., Waddington, J. M., Benscoter, B. W. & Turetsky, M. R. Conceptual frameworks in peatland ecohydrology: looking beyond the two-layered (acrotelm-catotelm) model. Ecohydrology 4, 1–11 (2011).
Google Scholar
85.Rydin, H. & Jeglum, J. The Biology of Peatlands (Oxford University Press, 2013).86.Limpens, J., Heijmans, M. M. P. D. & Berendse, F. The nitrogen cycle in boreal peatlands. Boreal Peatl. Ecosyst. 188, 195–230 (2006).CAS
Google Scholar
87.Biester, H., Knorr, K.-H., Schellekens, J., Basler, A. & Hermanns, Y.-M. Comparison of different methods to determine the degree of peat decomposition in peat bogs. Biogeosciences 11, 2691–2707 (2014).CAS
Google Scholar
88.Zaccone, C., Plaza, C., Ciavatta, C., Miano, T. M. & Shotyk, W. Advances in the determination of humification degree in peat since: Applications in geochemical and paleoenvironmental studies. Earth-Sci. Rev. 185, 163–178 (2018).CAS
Google Scholar
89.Alboukadel Kassambara. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (CRAN, 2020).90.Legendre, P. & Oksanen, J. lmodel2: Model II Regression. R package version 1.7–3. https://CRAN.R-project.org/package=lmodel2 (CRAN, 2018).91.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, New York, 2016).
Google Scholar
92.Tipping, E. et al. Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci. Rep. 7, 1890 (2017).CAS
Google Scholar
93.Bragazza, L. & Limpens, J. Dissolved organic nitrogen dominates in European bogs under increasing atmospheric N deposition. Glob. Biogeochem. Cycles 18, GB4018 (2004).94.Turunen, J., Roulet, N. T., Moore, T. R. & Richard, P. J. H. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob. Biogeochem. Cycles 18, 1–12 (2004).
Google Scholar
95.Lund, M., Christensen, T. R., Mastepanov, M., Lindroth, A. & Ström, L. Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates. Biogeosciences 6, 2135–2144 (2009).CAS
Google Scholar
96.Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
Google Scholar More