Monitoring fish communities through environmental DNA metabarcoding in the fish pass system of the second largest hydropower plant in the world
1.de Souza Dias, V., Pereira da Luz, M., Medero, G. M. & Tarley Ferreira Nascimento, D. An overview of hydropower reservoirs in Brazil: Current situation, future perspectives and impacts of climate change. Water 10, 592 (2018).
Google Scholar
2.Patias, J., Zuquette, L. V. & Rodrigues-Carvalho, J. A. Piezometric variations in the basaltic massif beneath the Itaipu hydroelectric plant (Brazil/Paraguay border): Right Buttress Dam. Bull. Eng. Geol. Environ. 74, 207–231 (2015).CAS
Google Scholar
3.Agostinho, A. A. Pesquisas, monitoramento e manejo da fauna aquática em empreendimentos hidrelétricos. In Seminário Sobre Fauna Aquática E O Setor Elétrico Brasileiro 38–59 (Brasil, 1994).4.Makrakis, S., Gomes, L. C., Makrakis, M. C., Fernandez, D. R. & Pavanelli, C. S. The Canal da Piracema at Itaipu Dam as a fish pass system. Neotrop. Ichthyol. 5, 185–195 (2007).
Google Scholar
5.Dos Reis, R. B., Frota, A., Depra, G. D. C., Ota, R. R. & Da Graca, W. J. Freshwater fishes from Paraná State, Brazil: An annotated list, with comments on biogeographic patterns, threats, and future perspectives. Zootaxa 4868, 451–494 (2020).
Google Scholar
6.Becker, R. A., Sales, N. G., Santos, G. M., Santos, G. B. & Carvalho, D. C. DNA barcoding and morphological identification of neotropical ichthyoplankton from the Upper Paraná and São Francisco. J. Fish Biol. 87, 159–168 (2015).CAS
PubMed
Google Scholar
7.Milan, D. T. et al. New 12S metabarcoding primers for enhanced Neotropical freshwater fish biodiversity assessment. Sci. Rep. 10, 1–12 (2020).ADS
Google Scholar
8.Agostinho, A. A., Pelicice, F. M. & Gomes, L. C. Dams and the fish fauna of the Neotropical region: Impacts and management related to diversity and fisheries. Braz. J. Biol. 68, 1119–1132 (2008).CAS
PubMed
Google Scholar
9.Bonar, S. A., Hubert, W. A. & Willis, D. W. Standard methods for sampling North American freshwater fishes. American Fisheries Society, Bethesda, (USA, 2009).
Google Scholar
10.Shaw, J. L. A. et al. Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biol. Conserv. 197, 131–138 (2016).
Google Scholar
11.Reis, R. E. et al. Fish biodiversity and conservation in South America. J. Fish Biol. 89, 12–47 (2016).CAS
PubMed
Google Scholar
12.Baumgartner, G. et al. Peixes do baixo rio Iguaçu. (Eduem, 2012).13.Taberlet, P., Bonin, A., Coissac, E. & Zinger, L. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, 2018).
Google Scholar
14.Taberlet, P., Coissac, E., Pompanon, F., Christian, B. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol Ecol 33, 2045–2050 (2012).
Google Scholar
15.Ritter, C. D. et al. The pitfalls of biodiversity proxies: Differences in richness patterns of birds, trees and understudied diversity across Amazonia. Sci. Rep. 9, 1–3 (2019).CAS
Google Scholar
16.Sales, N. G. et al. Space-time dynamics in monitoring neotropical fish communities using eDNA metabarcoding. Sci. Total Environ. 754, 142096 (2021).ADS
CAS
PubMed
Google Scholar
17.Zinger, L. et al. Body size determines soil community assembly in a tropical forest. Mol. Ecol. 28, 528–543 (2019).CAS
PubMed
Google Scholar
18.Baird, D. J. & Hajibabaei, M. Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Mol. Ecol. 21, 2039–2044 (2012).PubMed
Google Scholar
19.Zinger, L. et al. Advances and prospects of environmental DNA in neotropical rainforests. Adv. Ecol. Res. 62, 331–373 (2020).
Google Scholar
20.Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Mol. Ecol. Resour. 19, 27–46 (2019).CAS
PubMed
Google Scholar
21.Sales, N. G., Wangensteen, O. S., Carvalho, D. C. & Mariani, S. Influence of preservation methods, sample medium and sampling time on eDNA recovery in a neotropical river. Environ. DNA 119–130. https://doi.org/10.1002/edn3.14 (2020).Article
Google Scholar
22.Blaxter, M. et al. Defining operational taxonomic units using DNA barcode data. Philos. Trans. R. Soc. B Biol. Sci. 360(1462), 1935–1943. https://doi.org/10.1098/rstb.2005.1725 (2005).CAS
Article
Google Scholar
23.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS
PubMed
PubMed Central
Google Scholar
24.Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv 81257 (2016).
25.Muha, T. P., Rodriguez-Barreto, D., O’Rorke, R., Garcia de Leaniz, C. & Consuegra, S. Using eDNA metabarcoding to monitor changes in fish community composition after barrier removal. Front. Ecol. Evol. 9, 28 (2021).
Google Scholar
26.Kitano, T., Umetsu, K., Tian, W. & Osawa, M. Two universal primer sets for species identification among vertebrates. Int. J. Legal Med. 121, 423–427 (2007).PubMed
Google Scholar
27.Stoeckle, M. Y., Soboleva, L. & Charlop-Powers, Z. Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS One 12, e0175186 (2017).PubMed
PubMed Central
Google Scholar
28.Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: A case study, using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).
Google Scholar
29.De Souza, L. S., Godwin, J. C., Renshaw, M. A. & Larson, E. Environmental DNA (eDNA) detection probability is influenced by seasonal activity of organisms. PLoS One 11, e0165273 (2016).PubMed
PubMed Central
Google Scholar
30.Ritter, C. D. et al. Locality or habitat? Exploring predictors of biodiversity in Amazonia. Ecography (Cop.) 42, 321–333 (2019).
Google Scholar
31.CFMV-Resolução no 1000 de 11 de maio de 2012—Dispõe sobre procedimentos e métodos de eutanásia em animais e dá outras providências. (2012).32.Britski, H. A., de Silimon, K. Z. S. & Lopes, B. S. Peixes do Pantanal: manual de identificação, ampl. Brasília, DF, Embrapa Informação Tecnológica (2007).33.Ota, R. R., Deprá, G. de C., Graça, W. J. da & Pavanelli, C. S. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotrop. Ichthyol. 16(2). https://www.scielo.br/j/ni/a/tScwvm8JLhKnbxKjtBQLPBx/abstract/?lang=en (2018).34.Neris, N., Villalba, F., Kamada, D. & Viré, S. Guía de peces del Paraguay/Guide of fishes of Paraguay. Zamphiropolos, (Paraguay, 2010).
Google Scholar
35.Pie, M. R. et al. Development of a real-time PCR assay for the detection of the golden mussel (Limnoperna fortunei, Mytilidae) in environmental samples. An. Acad. Bras. Cienc. 89, 1041–1045 (2017).CAS
PubMed
Google Scholar
36.Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).ADS
CAS
PubMed
PubMed Central
Google Scholar
37.Boeger, W. A. et al. Testing a molecular protocol to monitor the presence of golden mussel larvae (Limnoperna fortunei) in plankton samples. J. Plankton Res. 29, 1015–1019 (2007).CAS
Google Scholar
38.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
Google Scholar
39.Van Rossum, G. & Drake, F. L. Python 3 References Manual. Scotts Valley CA: CreateSpace. (2009).40.R Core Team. R: the R project for statistical computing. 2019. https://www.r-project.org/ (accessed 30 Mar 2020).41.Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS
PubMed
Google Scholar
42.Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).CAS
PubMed
Google Scholar
43.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421 (2009).
Google Scholar
44.Team, Rs. RStudio: integrated development for R. RStudio, Inc., Boston, MA https://www.rstudio.com42, 84 (2015).45.Wickham, H. tidyverse: Easily Install and Load “Tidyverse” Packages (Version R package version 1.1. 1). (2017).46.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH
Google Scholar
47.Tang, Y., Horikoshi, M. & Li, W. ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 8, 474 (2016).
Google Scholar
48.Auguie, B. & Antonov, A. gridExtra: Miscellaneous functions for “grid” graphics (Version 2.2. 1)[Computer software]. (2016).49.Kassambara, A. & Kassambara, M. A. Package ‘ggpubr’. (2020).50.Oksanen, J. et al. Vegan: Community ecology package. R package version 1.17-4. https://cran.r-project.org. Acesso em 23, 2010 (2010).51.McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).ADS
PubMed
PubMed Central
Google Scholar
52.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).
Google Scholar
53.Marcon, E., Herault, B. & Marcon, M. E. Package ‘entropart’. (2021).54.Mächler, E., Walser, J.-C. & Altermatt, F. Decision making and best practices for taxonomy-free eDNA metabarcoding in biomonitoring using Hill numbers. BioRxiv (2020).55.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS
CAS
PubMed
PubMed Central
Google Scholar
56.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed
PubMed Central
Google Scholar
57.León, A., Reyes, J., Burriel, V. & Valverde, F. Data quality problems when integrating genomic information. In International Conference on Conceptual Modeling 173–182 (Springer, 2016).58.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed
PubMed Central
Google Scholar
59.Stahlhut, J. K. et al. DNA barcoding reveals diversity of hymenoptera and the dominance of parasitoids in a sub-arctic environment. BMC Ecol. 13, 2 (2013).PubMed
PubMed Central
Google Scholar
60.Gillet, B. et al. Direct fishing and eDNA metabarcoding for biomonitoring during a 3-year survey significantly improves number of fish detected around a South East Asian reservoir. PLoS One 13, e0208592 (2018).PubMed
PubMed Central
Google Scholar
61.Barrett, M. et al. Living planet report 2018: Aiming higher. WWF. Available at: https://www.globallandscapesforum.org/publication/living-planet-report-2018-aiming-higher/ (2018).62.Díaz, S. M. et al. The global assessment report on biodiversity and ecosystem services: Summary for policy makers. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 56, (2019).63.Dudgeon, D. Asian river fishes in the Anthropocene: Threats and conservation challenges in an era of rapid environmental change. J. Fish Biol. 79, 1487–1524 (2011).CAS
PubMed
Google Scholar
64.Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R960–R967 (2019).CAS
PubMed
Google Scholar
65.He, F. et al. Disappearing giants: A review of threats to freshwater megafauna. Wiley Interdiscip. Rev. Water 4, e1208 (2017).
Google Scholar
66.Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the floodplain of the Upper Paraná River: Effects of hydrological regulation by dams. (2018). Int. J. Ecohydrol. Hydrobiol Warsaw. 4(3), 267–280 (2004).
Google Scholar
67.Santana, M. L., Carvalho, F. R. & Teresa, F. B. Broad and fine-scale threats on threatened Brazilian freshwater fish: Variability across hydrographic regions and taxonomic groups. Biota Neotrop. 21 (2). https://www.scielo.br/j/bn/a/YqFbWSy5vbfHy3QK9kNpdKp/?format=html&lang=en (2021).68.Matthews, W. J. Patterns in Freshwater Fish Ecology. (Springer Science & Business Media, 2012).69.de Oliveira Bueno, E., Alves, G. J. & Mello, C. R. Hydroelectricity water footprint in Parana hydrograph region, Brazil. Renew. Energy 162, 596–612 (2020).
Google Scholar
70.Camacho Guerreiro, A. I., Amadio, S. A., Fabre, N. N. & da Silva Batista, V. Exploring the effect of strong hydrological droughts and floods on populational parameters of Semaprochilodus insignis (Actinopterygii: Prochilodontidae) from the Central Amazonia. Environ. Dev. Sustain. 23, 3338–3348 (2021).
Google Scholar
71.Jespersen, H., Rasmussen, G. & Pedersen, S. Severity of summer drought as predictor for smolt recruitment in migratory brown trout (Salmo trutta). Ecol. Freshw. Fish 30, 115–124 (2021).
Google Scholar
72.Pool, T. K., Grenouillet, G. & Villéger, S. Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Divers. Distrib. 20, 1235–1244 (2014).
Google Scholar
73.de Oliveira, E. F., Goulart, E. & Minte-Vera, C. V. Fish diversity along spatial gradients in the Itaipu Reservoir, Paraná, Brazil. Braz. J. Biol. 64, 447–458 (2004).CAS
PubMed
Google Scholar
74.Daga, V. S. et al. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: Comparing the roles of introduced species and their vectors. Hydrobiologia 746, 327–347 (2015).
Google Scholar
75.Vitule, J. R. S. Introdução de peixes em ecossistemas continentais brasileiros: revisão, comentários e sugestões de ações contra o inimigo quase invisível. Neotrop. Biol. Conserv. 4, 111–122 (2009).
Google Scholar
76.Mariac, C. et al. Species‐level ichthyoplankton dynamics for 97 fishes in two major river basins of the Amazon using quantitative metabarcoding. Mol. Ecol. https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1111%2Fmec.15944 (2021).77.Jackman, J. M. et al. eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems. Environ. DNA 3, 837–849 (2021).
Google Scholar
78.Bessey, C. et al. Maximizing fish detection with eDNA metabarcoding. Environ. DNA 2, 493–504 (2020).
Google Scholar
79.Evans, N. T. et al. Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering. Can. J. Fish. Aquat. Sci. 74, 1362–1374 (2017).CAS
Google Scholar
80.Prodan, A. et al. Comparing bioinformatic pipelines for microbial 16S rRNA amplicon sequencing. PLoS One 15, e0227434 (2020).CAS
PubMed
PubMed Central
Google Scholar
81.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS
Google Scholar
82.Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).PubMed
PubMed Central
Google Scholar
83.Pawluczyk, M. et al. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal. Bioanal. Chem. 407, 1841–1848 (2015).CAS
PubMed
Google Scholar
84.Holman, L. E., Chng, Y. & Rius, M. How does eDNA decay affect metabarcoding experiments? Environ. DNA https://onlinelibrary.wiley.com/action/showCitFormats?doi=10.1002%2Fedn3.201 (2021).85.Edgar, R. C. UNCROSS2: identification of cross-talk in 16S rRNA OTU tables. BioRxiv 400762 (2018).86.MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species. (Princeton University Press, 1984).87.Leray, M. & Knowlton, N. Random sampling causes the low reproducibility of rare eukaryotic OTUs in Illumina COI metabarcoding. PeerJ 5, e3006 (2017).PubMed
PubMed Central
Google Scholar
88.Team, Q. D. QGIS geographic information system. Open Source Geospatial Found. Proj. Versão 2, (2015). More