More stories

  • in

    The science of the host–virus network

    1.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Woolhouse, M. E. et al. Temporal trends in the discovery of human viruses. Proc. R. Soc. B 275, 2111–2115 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    3.Smith, K. F. et al. Global rise in human infectious disease outbreaks. J. R. Soc. Interface 11, 20140950 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    4.Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).5.Swei, A., Couper, L. I., Coffey, L. L., Kapan, D. & Bennett, S. Patterns, drivers, and challenges of vector-borne disease emergence. Vector Borne Zoonotic Dis. 20, 159–170 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    6.Belay, E. D. et al. Zoonotic disease programs for enhancing global health security. Emerg. Infect. Dis. 23, S65 (2017).PubMed Central 

    Google Scholar 
    7.Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    8.Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).PubMed 

    Google Scholar 
    10.Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362, 577–580 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    12.Schmidt, J. P. et al. Spatiotemporal fluctuations and triggers of Ebola virus spillover. Emerg. Infect. Dis. 23, 415 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface. Phil. Trans. R. Soc. Biol. Sci. 374, 20190296 (2019).
    Google Scholar 
    14.Glennon, E. E. et al. Syndromic detectability of haemorrhagic fever outbreaks. Preprint at medRxiv https://doi.org/10.1101/2020.03.28.20019463 (2020).15.Pigott, D. M. et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet 390, 2662–2672 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    16.Palmer, S., Brown, D. & Morgan, D. Early qualitative risk assessment of the emerging zoonotic potential of animal diseases. BMJ 331, 1256–1260 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    17.Grange, Z. L. et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc. Natl Acad. Sci. USA 118, e2002324118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Carlson, C. J. From PREDICT to prevention, one pandemic later. Lancet Microbe 1, e6–e7 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    19.Holmes, E., Rambaut, A. & Andersen, K. Pandemics: spend on surveillance, not prediction. Nature 558, 180–182 (2018).CAS 
    PubMed 

    Google Scholar 
    20.Breiman, L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231 (2001).
    Google Scholar 
    21.Mouquet, N. et al. Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).
    Google Scholar 
    22.Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Stephens, P. R. et al. Global mammal parasite database version 2.0. Ecology 98, 1476 (2017).PubMed 

    Google Scholar 
    24.Wardeh, M., Risley, C., McIntyre, M. K., Setzkorn, C. & Baylis, M. Database of host–pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).PubMed 

    Google Scholar 
    26.Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. BioScience https://doi.org/10.1093/biosci/biab080 (2021).27.Dallas, T., Park, A. W. & Drake, J. M. Predicting cryptic links in host–parasite networks. PLoS Comput. Biol. 13, e1005557 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    28.Poisot, T. et al. Imputing the mammalian virome with linear filtering and singular value decomposition. Preprint at https://arxiv.org/abs/2105.14973 (2021).29.Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. Preprint at bioRxiv https://doi.org/10.1101/2021.08.06.455442 (2021).30.Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. 11, 2260 (2020).31.Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. R. Soc. B Biol. Sci. 275, 1695–1701 (2008).
    Google Scholar 
    32.Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. Open Sci. 6, 181182 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    33.Washburne, A. D. et al. Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ 6, e5979 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    34.Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Stephens, P. R. et al. The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol. Lett. 19, 1159–1171 (2016).PubMed 

    Google Scholar 
    36.Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J. & Jiggins, F. M. The evolution and genetics of virus host shifts. PLoS Pathog. 10, e1004395 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    37.Farrell, M. J., Elmasri, M., Stephens, D. A. & Davies, T. J. Predicting missing links in global host–parasite networks. bioRxiv https://doi.org/10.1101/2020.02.25.965046 (2020).38.Gilbert, A. T. et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth 10, 298–313 (2013).PubMed 

    Google Scholar 
    39.Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    40.Walsh, M. G., Mor, S. M., Maity, H. & Hossain, S. A preliminary ecological profile of Kyasanur Forest disease virus hosts among the mammalian wildlife of the Western Ghats, India. Ticks Tick Borne Dis. 11, 101419 (2020).PubMed 

    Google Scholar 
    41.Plowright, R. K. et al. Prioritizing surveillance of Nipah virus in India. PLoS Negl. Trop. Dis. 13, e0007393 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    42.Schmidt, J. P. et al. Ecological indicators of mammal exposure to Ebolavirus. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180337 (2019).
    Google Scholar 
    43.Worsley-Tonks, K. E. et al. Using host traits to predict reservoir host species of rabies virus. PLoS Negl. Trop. Dis. 14, e0008940 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    44.Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    45.Johnson, C. K. et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5, 14830 (2015).
    Google Scholar 
    46.Elena, S. F. & Sanjuán, R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 79, 11555–11558 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol. 16, e3000003 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    48.Grewelle, R. E. Larger viral genome size facilitates emergence of zoonotic diseases. Preprint at bioRxiv https://doi.org/10.1101/2020.03.10.986109 (2020).49.Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Walker, J. W., Han, B. A., Ott, I. M. & Drake, J. M. Transmissibility of emerging viral zoonoses. PLoS ONE 13, e0206926 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    51.Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2010146117 (2020).52.Zhang, Z. et al. Rapid identification of human-infecting viruses. Transbound. Emerg. Dis. 66, 2517–2522 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Eng, C. L., Tong, J. C. & Tan, T. W. Predicting zoonotic risk of influenza A viruses from host tropism protein signature using random forest. Int. J. Mol. Sci. 18, 1135 (2017).PubMed Central 

    Google Scholar 
    54.Li, J. et al. Machine learning methods for predicting human-adaptive influenza A viruses based on viral nucleotide compositions. Mol. Biol. Evol. 37, 1224–1236 (2020).CAS 
    PubMed 

    Google Scholar 
    55.Kim, B., Niu, X., Hunter, D. R. & Cao, X. A dynamic additive and multiplicative effects model with application to the United Nations voting behaviors. Preprint at https://arxiv.org/abs/1803.06711 (2018).56.Becker, D. et al. Optimizing predictive models to prioritize viral discovery in zoonotic reservoirs. Lancet Microbe (in the press).57.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    59.Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. 37, 117–129 (2021).CAS 
    PubMed 

    Google Scholar 
    61.Young, C. C. & Olival, K. J. Optimizing viral discovery in bats. PLoS ONE 11, e0149237 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    62.Albery, G. F. et al. Urban-adapted mammal species have more known pathogens. Preprint at bioRxiv https://doi.org/10.1101/2021.01.02.425084 (2021).63.Wille, M., Geoghegan, J. L. & Holmes, E. C. How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Preprint at bioRxiv https://doi.org/10.1101/2021.08.10.455791 (2021).65.Xu, G. J. et al. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Geoghegan, J. L. & Holmes, E. C. Predicting virus emergence amid evolutionary noise. Open Biol. 7, 170189 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    67.Fischhoff, I. R., Castellanos, A. A., Rodrigues, J. P., Varsani, A. & Han, B. A. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2021.1651 (2021).68.Hou, Y. et al. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch. Virol. 155, 1563–1569 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Thompson, A. J., de Vries, R. P. & Paulson, J. C. Virus recognition of glycan receptors. Curr. Opin. Virol. 34, 117–129 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Kocher, J. F. et al. Bat caliciviruses and human noroviruses are antigenically similar and have overlapping histo-blood group antigen binding profiles. Mbio 9, e00869-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    71.Chiramel, A. I. et al. TRIM5α restricts flavivirus replication by targeting the viral protease for proteasomal degradation. Cell Rep. 27, 3269–3283 (2019).CAS 
    PubMed 

    Google Scholar 
    72.Young, F., Rogers, S. & Robertson, D. L. Predicting host taxonomic information from viral genomes: a comparison of feature representations. PLoS Comput. Biol. 16, e1007894 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).CAS 
    PubMed 

    Google Scholar 
    74.Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Truong, P., Garcia-Vallve, S. & Puigbo, P. An unsupervised algorithm for host identification in flaviviruses. Life https://doi.org/10.3390/life11050442 (2021).76.Mollentze, N., Babayan, S. & Streicker, D. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 19, e3001390 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Wang, W. et al. A network-based integrated framework for predicting virus–prokaryote interactions. NAR Genom. Bioinform. 2, lqaa044 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    78.Bartoszewicz, J. M., Seidel, A. & Renard, B. Y. Interpretable detection of novel human viruses from genome sequencing data. NAR Genom. Bioinform. 3, lqab004 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    79.He, X. et al. Neural collaborative filtering. In Proc. 26th International Conference on World Wide Web 26, 173–182 (Republic and Canton of Geneva, Switzerland, 2017).80.Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction using graph convolutional networks. NIPS’17: Proc. 31st International Conference on Neural Information Processing Systems 31, 6533–6542 (2017).
    Google Scholar 
    81.Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40, 52–74 (2017).
    Google Scholar 
    82.Bergner, L. M. et al. Characterizing and evaluating the zoonotic potential of novel viruses discovered in vampire bats. Viruses 13, 252 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Schulz, J. E. et al. Serological evidence for henipa-like and filo-like viruses in Trinidad bats. J. Infect. Dis. 221, S375–S382 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    85.Brook, C. E. et al. Disentangling serology to elucidate henipa- and filovirus transmission in Madagascar fruit bats. J. Anim. Ecol. 88, 1001–1016 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    86.Seifert, S. N. et al. Rousettus aegyptiacus bats do not support productive Nipah virus replication. J. Infect. Dis. 221, S407–S413 (2020).CAS 
    PubMed 

    Google Scholar 
    87.Carlson, C. J. et al. The future of zoonotic risk prediction. Phil. Trans. R. Soc. B Biol. Sci. 376, 20200358 (2021).
    Google Scholar 
    88.Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).CAS 
    PubMed 

    Google Scholar 
    91.Woo, P. C. Y. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–895 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).CAS 
    PubMed 

    Google Scholar 
    93.Wang, M. et al. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis. 11, 1860–1865 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    94.Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    95.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).CAS 
    PubMed 

    Google Scholar 
    97.Lam, T.-Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).CAS 
    PubMed 

    Google Scholar 
    98.Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).CAS 
    PubMed 

    Google Scholar 
    101.Chandler, J. C. et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl Acad. Sci. USA 118, e2114828118 (2021).PubMed 

    Google Scholar 
    102.Jia, P., Dai, S., Wu, T. & Yang, S. New approaches to anticipate the risk of reverse zoonosis. Trends Ecol. Evol. 36, 580–590 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    103.Lednicky, J. A. et al. Isolation of a novel recombinant canine coronavirus from a visitor to Haiti: further evidence of transmission of coronaviruses of zoonotic origin to humans. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab924 (2021).104.Vlasova, A. N. et al. Novel canine coronavirus isolated from a hospitalized pneumonia patient, East Malaysia. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab456 (2021).105.Lednicky, J. A. et al. Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution. Preprint at medRxiv https://doi.org/10.1101/2021.03.19.21253391 (2021).106.Hay, A. J. & McCauley, J. W. The WHO global influenza surveillance and response system (GISRS)—a future perspective. Influenza Other Respir. Viruses 12, 551–557 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    107.Subbarao, K. et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396 (1998).CAS 
    PubMed 

    Google Scholar 
    108.Kandeel, A. et al. Zoonotic transmission of avian influenza virus (H5N1), Egypt, 2006–2009. Emerg. Infect. Dis. 16, 1101 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    109.Ke, C. et al. Human infection with highly pathogenic avian influenza A (H7N9) virus, China. Emerg. Infect. Dis. 23, 1332 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Gaidet, N. et al. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog. 4, e1000127 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    111.Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Mol. Biol. Rev. 56, 152–179 (1992).CAS 

    Google Scholar 
    112.Pawar, S. D. et al. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009–2011 in the West Bengal State, India. Virol. J. 9, 151 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    113.Parry, R., Wille, M., Turnbull, O. M., Geoghegan, J. L. & Holmes, E. C. Divergent influenza-like viruses of amphibians and fish support an ancient evolutionary association. Viruses 12, 1042 (2020).CAS 
    PubMed Central 

    Google Scholar 
    114.Campbell, P. J. et al. The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J. Virol. 88, 3802–3814 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    115.Carlson, C. Evolutionary surprise, artificial intelligence, and H5N8. The Verena Blog https://www.viralemergence.org/blog/evolutionary-surprise-artificial-intelligence-and-h5n8 (2021).116.Wardeh, M., Baylis, M. & Blagrove, M. S. Predicting mammalian hosts in which novel coronaviruses can be generated. Nat. Commun. 12, 780 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    117.Crossman, L. C. Leveraging deep learning to simulate coronavirus spike proteins has the potential to predict future zoonotic sequences. Preprint at bioRxiv https://doi.org/10.1101/2020.04.20.046920 (2020). More

  • in

    Reply to: Spatial scale and the synchrony of ecological disruption

    1.Colwell, R. K. Spatial scale and the synchrony of ecological disruption. Nature https://doi.org/10.1038/s41586-021-03760-4 (2021).2.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    4.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).Article 

    Google Scholar 
    6.Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Nadeau, C. P., Urban, M. C. & Bridle, J. R. Coarse climate change projections for species living in a fine-scaled world. Glob. Change Biol. 23, 12–24 (2017).ADS 
    Article 

    Google Scholar 
    8.Stewart, S. B. et al. Climate extreme variables generated using monthly time‐series data improve predicted distributions of plant species. Ecography 44, 626–639 (2021).Article 

    Google Scholar 
    9.Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).ADS 
    Article 

    Google Scholar 
    10.McKechnie, A. E. & Wolf, B. O. The Physiology of Heat Tolerance in Small Endotherms. Physiology 34, 302–313 (2019).CAS 
    Article 

    Google Scholar 
    11.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article 

    Google Scholar 
    12.Mahony, C. R. & Cannon, A. J. Wetter summers can intensify departures from natural variability in a warming climate. Nat. Commun. 9, 783 (2018).ADS 
    Article 

    Google Scholar 
    13.Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010).Article 

    Google Scholar 
    14.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).CAS 
    Article 

    Google Scholar 
    15.Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).Article 

    Google Scholar 
    16.Genin, A., Levy, L., Sharon, G., Raitsos, D. E. & Diamant, A. Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc. Natl Acad. Sci. USA 117, 25378–25385 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    18.Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).ADS 
    Article 

    Google Scholar 
    19.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).ADS 
    Article 

    Google Scholar 
    22.Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).Article 

    Google Scholar 
    23.Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Article 

    Google Scholar 
    26.NOAA National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information. Accessed 10.05.2021. More

  • in

    Spatial scale and the synchrony of ecological disruption

    1.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 

    Google Scholar 
    3.Sih, T. L., Cappo, M. & Kingsford, M. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia). Sci. Rep. 7, 10886 (2017).ADS 
    Article 

    Google Scholar 
    4.Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl Acad. Sci. USA 107, 9707–9711 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Stroud, J. T. et al. Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evol. 5, 4757–4765 (2015).Article 

    Google Scholar 
    9.Lima, F. P. et al. Loss of thermal refugia near equatorial range limits. Glob. Change Biol. 22, 254–263 (2016).ADS 
    Article 

    Google Scholar 
    10.Lenoir, J. & Svenning, J. C. Climate‐related range shifts–a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2014).Article 

    Google Scholar 
    11.Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar 
    12.Ackerly, D. D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165–S184 (2003).Article 

    Google Scholar 
    13.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article 

    Google Scholar 
    14.Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018). CAS 
    Article 

    Google Scholar 
    15.Desbruyères, D., McDonagh, E. L., King, B. A. & Thierry, V. Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Clim. 30, 1985–1997 (2017).ADS 
    Article 

    Google Scholar  More

  • in

    Reconciling biome-wide conservation of an apex carnivore with land-use economics in the increasingly threatened Pantanal wetlands

    1.Inskip, C. & Zimmermann, A. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1), 18–34 (2009).
    Google Scholar 
    2.Weber, W. & Rabinowitz, A. A global perspective on large carnivore conservation. Conserv. Biol. 10(4), 1046–1054 (1996).
    Google Scholar 
    3.Treves, A. & Karanth, U. K. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17(6), 1491–1499 (2003).
    Google Scholar 
    4.Romero-Muñoz, A., Morato, R., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18(2), 67–68 (2020).
    Google Scholar 
    5.Packer, C. et al. Conserving large carnivores: dollars and fence. Ecol. Lett. 16(5), 635–641 (2013).CAS 
    PubMed 

    Google Scholar 
    6.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    PubMed 

    Google Scholar 
    7.Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R. & Harmsen, B. Panthera onca. The IUCN Red List of Threatened Species 2017, e.T15953A123791436 (2017).8.Menezes, J. F. S., Tortato, F. R., Oliveira-Santos, L. G., Roque, F. O. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3(8), e477 (2021).
    Google Scholar 
    9.Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).
    Google Scholar 
    10.Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16(1), 1–15 (2002).
    Google Scholar 
    11.De Paula, R. C., Desbiez, A. & Cavalcanti, S. M. C. Plano de Ação Nacional para Conservação da Onça-pintada. Série Espécies Ameaçadas (Instituto Chico Mendes de Conservação da Biodiversidade, Atibaia, 2013).
    Google Scholar 
    12.Seidl, A. F., Silva, J. S. V. & Moraes, A. S. Cattle ranching and deforestation in the Brazilian Pantanal. Ecol. Econ. 36(3), 413–425 (2001).
    Google Scholar 
    13.Tomas, W. M. et al. Sustainability agenda for the Pantanal wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30 (2019).ADS 

    Google Scholar 
    14.Tortato, F. R. & Izzo, T. J. Advances and barriers to the development of jaguar-tourism in the Brazilian Pantanal. Perspect. Ecol. Conserv. 15(1), 61–63 (2017).
    Google Scholar 
    15.Tortato, F. R., Hoogesteijn, R. & Elbroch, M. Have natural disasters created opportunities to initiate Big Cat Tourism in South America?. Biotropica 52(3), 400–403 (2020).
    Google Scholar 
    16.Quigley, H. & Crawshaw, P. G. Jr. A conservation plan for the jaguar (Panthera onca) in the Pantanal region of Brazil. Biol. Conserv. 61(3), 149–157 (1992).
    Google Scholar 
    17.Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).
    Google Scholar 
    18.Junk, W. J. et al. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aqua Sci. 69, 278–309 (2006).
    Google Scholar 
    19.Guerra, A. et al. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91, 104388 (2020).
    Google Scholar 
    20.Marengo, J. A. et al. Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Front. Water 3, 1–20 (2021).
    Google Scholar 
    21.Berlinck, C. N. et al. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Brazilian Journal of Biology 82, e244200 (2021).CAS 

    Google Scholar 
    22.Garcia, L. C. et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: integrative fire management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293, 112870 (2021).CAS 

    Google Scholar 
    23.Libonati, R., Sander, L. A., Peres, L. F., DaCamara, C. C. & Garcia, L. C. Rescue Brazil’s burning Pantanal wetlands. Nature 588, 217–220 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Hoogesteijn, A. & Hoogesteijn, R. Cattle ranching and biodiversity conservation as allies in South America’s flooded savannas. Great Plains Res. 20, 37–50 (2010).
    Google Scholar 
    25.Ferraz, K. M. P. M. B., Ferraz, S. F. B., De Paula, R. C., Beisiegel, B. & Breitenmoser, C. Species distribution modeling for conservation purposes. Natureza Conservação 10(2), 214–220 (2012).
    Google Scholar 
    26.Zimmermann, A., Walpole, M. J. & Leader-Williams, N. Cattle ranchers’ attitudes to conflicts with jaguar Panthera onca in the Pantanal of Brazil. Oryx 39(4), 406–412 (2005).
    Google Scholar 
    27.Marchini, S. & Macdonald, D. W. Predicting rancher’s intention to kill jaguars: case studies in Amazonia and Pantanal. Biol. Conserv. 147(1), 213–221 (2012).
    Google Scholar 
    28.Abreu, U. G. P., McManus, C. & Santos, A. S. Cattle ranching, conservation and transhumance in Brazilian Pantanal. Pastoralism 1(1), 99–114 (2010).
    Google Scholar 
    29.Alho, C. J. R. & Sabino, J. A conservation agenda for the Pantanal’s biodiversity. Braz. J. Biol. 71(1), 327–335 (2011).CAS 
    PubMed 

    Google Scholar 
    30.Hoogesteijn, R. et al. Conservación de Jaguares fuera de Áreas Protegidas: Turismo de Observación de Jaguares en Propiedades Privadas en El Pantanal. In Conservación de grandes vertebrados en áreas no protegidas de Colombia, Venezuela y Brasil (eds Payan-Garrido, E. et al.) 259–274 (Panthera. Fundación Herencia Ambiental Caribe e Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Cartagena, 2015).
    Google Scholar 
    31.Tyagi, A. et al. Physiological stress responses of tigers due to anthropogenic disturbance especially tourism in two central Indian tiger reserves. Conservation Physiology 7(1), coz045 (2020).
    Google Scholar 
    32.Hayward, M. W. & Hayward, G. J. The impact of tourists on lion Panthera leo behaviour, stress and energetics. Acta Theriol. 54(3), 219–224 (2009).
    Google Scholar 
    33.Romanach, S., Lindsey, P. A. & Woodroffe, R. Determinants of attitudes towards predators in central Kenya and suggestions for increasing tolerance in livestock dominated landscapes. Oryx 41(2), 185–195 (2007).
    Google Scholar 
    34.Hemson, G. S., Maclennan, S., Mills, G., Johnson, P. & Macdonald, D. Community, lions, livestock and money: a spatial and social analysis of attitudes to wildlife and the conservation value of tourism in a human–carnivore conflict in Botswana. Biol. Conserv. 142(11), 2718–2725 (2009).
    Google Scholar 
    35.Mossaz, A., Buckley, R. C. & Castley, J. G. Ecotourism contributions to conservation of African big cats. J. Nat. Conserv. 28, 112–118 (2015).
    Google Scholar 
    36.Macdonald, C. et al. Conservation potential of apex predator tourism. Biol. Conserv. 215, 132–141 (2017).
    Google Scholar 
    37.Campos, Z., Mourão, G. & Magnusson, W. Drought drastically reduces suitable habitat for Yacare caiman. Crocodile Specialist Group Newsl. 39(4), 14–16 (2020).
    Google Scholar 
    38.Marengo, J. A., Oliveira, G. S. & Alves, L. M. Climate change scenarios in the Pantanal. In Dynamics of the Pantanal Wetland in South America (eds Bergier, I. & Assine, M. L.) 227–238 (Springer International Publishing, Heidelberg, 2016).
    Google Scholar 
    39.Thielen, D. et al. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLOS ONE 15(1), e0227437 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Bergier, I. et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 619, 1116–1125 (2018).ADS 
    PubMed 

    Google Scholar 
    41.Araujo, A. et al. Relationships between variability in precipitation, river levels, and beef cattle production in the Brazilian Pantanal. Wetl. Ecol. Manage. 26(5), 829–848 (2018).
    Google Scholar 
    42.Filho, W. L., Azeiteira, U. M., Salvia, A. L., Fritzen, B. & Libonati, R. Fire in Paradise: why the Pantanal is burning. Environ. Sci. Policy 123, 31–34 (2021).
    Google Scholar 
    43.Brown, J. L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 
    44.Morato, R. G. et al. Space use and movement of a Neotropical top predator: the endangered jaguar. PLOS ONE 11(12), e0168176 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    45.Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    46.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 
    47.Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).
    Google Scholar 
    48.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40(7), 887–893 (2017).
    Google Scholar 
    49.Pinto, M. M., Libonati, R., Trigo, R. M., Trigo, I. F. & DaCamara, C. C. A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J. Photogramm. Remote. Sens. 160, 260–274 (2020).ADS 

    Google Scholar 
    50.LASA – Laboratório de Aplicações de Satélites Ambientais. ALARMES – LASA. https://lasa.ufrj.br/alarmes/ (2021).51.Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse (2017).52.Bray, A. et al. infer: Tidy Statistical Inference. R package version 0.5.4. https://cran.r-project.org/web/packages/infer/index.html (2021).53.Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: with Applications in R (Springer, Berlin, 2020).MATH 

    Google Scholar  More

  • in

    Pea peels as a value-added food ingredient for snack crackers and dry soup

    1.Klupsaite, D. & Gražina, J. Legume: Composition, protein extraction and functional properties. A review. Chem. Technol. 66 (2015).2.Tassoni, A., et al. State-of-the-art production chains for peas, beans and chickpeas-valorization of agro-industrial residues and applications of derived extracts. Molecules (Basel, Switzerland) 25 (2020).3.Vilariño, M. V., Franco, C. & Quarrington, C. Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci. 5 (2017).4.Malenica, D. & Bhat, R. Review article: Current research trends in fruit and vegetables wastes and by-products management-scope and opportunities in the estonian context. Agron. Res. 18, 1760–1795 (2020).
    Google Scholar 
    5.Tharanathan, R. N. & Mahadevamma, S. Grain legumes—a boon to human nutrition. Trends Food Sci. Technol. 14, 507–518 (2003).CAS 

    Google Scholar 
    6.Nguyen, T. M., Phoukham, K. & Ngo, T. V. Formulation and quality evaluation of pearl oyster mushroom soup powder supplement with some kinds of legumes and vegetables. Acta Sci. Polonorum Technol. Aliment. 19, 435–443 (2020).CAS 

    Google Scholar 
    7.Apprich, S. et al. Wheat bran-based biorefinery 2: Valorization of products. LWT Food Sci. Technol. 56, 222–231 (2014).CAS 

    Google Scholar 
    8.Xia, N. et al. Characterization and in vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: Comparison to alkaline extraction. J. Cereal Sci. 56, 482–489 (2012).CAS 

    Google Scholar 
    9.Zhu, K.-X., Zhou, H.-M. & Qian, H.-F. Proteins extracted from defatted wheat germ: Nutritional and structural properties. Cereal Chem. 83, 69–75 (2006).CAS 

    Google Scholar 
    10.Tanongkankit, Y., Chiewchan, N. & Devahastin, S. Evolution of antioxidants in dietary fiber powder produced from white cabbage outer leaves: Effects of blanching and drying methods. J. Food Sci. Technol. 52, 2280–2287 (2015).CAS 
    PubMed 

    Google Scholar 
    11.Stojceska, V., Ainsworth, P., Plunkett, A., İbanoğlu, E. & İbanoğlu, Ş. Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 87, 554–563 (2008).CAS 

    Google Scholar 
    12.Babbar, N., Oberoi, H. S., Uppal, D. S. & Patil, R. T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 44, 391–396 (2011).CAS 

    Google Scholar 
    13.Elbadrawy, E. & Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 9, S1010–S1018 (2016).CAS 

    Google Scholar 
    14.Wadhwa, M., Kaushal, S. & Bakshi, M. P. S. Nutritive evaluation of vegetable wastes as complete feed for goat bucks. Small Rumin. Res. 64, 279–284 (2006).
    Google Scholar 
    15.Wadhwa, M. & Bakshi, M. Vegetable wastes-a potential source of nutrients for ruminants. Indian J. Anim. Nutr. 22, 70–76 (2005).
    Google Scholar 
    16.Garg, M. Nutritional evaluation and utilization of pea pod powder for preparation of jaggery biscuits. J. Food Process. Technol. 6, 522–528 (2015).
    Google Scholar 
    17.Belghith Fendri, L. et al. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 73, 584–591 (2016).CAS 

    Google Scholar 
    18.Hanan, E., Rudra, S. G., Sharma, V., Sagar, V. R. & Sehgal, S. Pea pod powder to enhance the storage quality of buckwheat bread. Vegetos (2021).19.Hanan, E., Rudra, G. S, Sagar, V. R. & Sharma, V. Utilization of pea pod powder for formulation of instant pea soup powder. J. Food Process. Preserv. (2020).20.Upasana, V. D. Nutritional evaluation of pea peel and pea peel extracted byproducts. Int. J. Food Sci. Nutr. 3, 65–67 (2018).
    Google Scholar 
    21.Abd-Allah, I., Rabie, M., Mostfa, D. M., Sulieman, A. & El-Badawi, A. Nutritional evaluation, chemical composition and antioxidant activity of some food processing wastes. Zag. J. Agric. Res. 43, 2115–2132 (2016).
    Google Scholar 
    22.El-Gohery, S. S. Quality aspects for high nutritional value pretzel. Curr. Sci. Int. 9, 583–593 (2020).
    Google Scholar 
    23.Hassanien, M. Impact of adding chickpea (Cicer arietinum L.) flour to wheat flour on the rheological properties of toast bread. Int. Food Res. J. 19, 521–525 (2012).
    Google Scholar 
    24.Sharoba, P. A., El-Desouky, A., Mahmoud, M. & Youssef, M. K. Quality attributes of some breads made from wheat flour substituted by different levels of whole amaranth meal. J. Agric. Sci. Mansoura Univ. 34, 6601–6617 (2009).
    Google Scholar 
    25.El-Sharnouby, G. Nutritional quality of biscuit supplemented with wheat bran and date palm fruits (Phoenix dactylifera L.). Food Nutr. Sci. 03, 322–328 (2012).CAS 

    Google Scholar 
    26.Abou El-Ez, A., Rania, W. Y., Shalaby, H. S., Abu El-Maaty, S. M. & Guirguis, A. H. Utlization of fruit and vegetable waste powders for fortification of some food products. Zag. J. Agric. Res. 6, 2189–2201 (2017).
    Google Scholar 
    27.Abd El-Salam, A. M., Morsy, O. M. & Abd El Mawla, E. M. Production and evaluation crackers and instant noodles supplement with spirulina algae. Curr. Sci. Int. 6, 908–919 (2017).
    Google Scholar 
    28.DRI. Dietary Reference Intakes, Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (The National Academies Press, Washington, 2005).
    Google Scholar 
    29.FAO/WHO. World health organization, food and agriculture organization of the united nations, United Nations University, 2007. Protein and amino acid requirements in human nutrition: Report of a joint who/fao/unu expert consultation. In: Joint expert consultation on protein and amino acid requirements in human nutrition; who technical report series. WHO, Geneva, Switzerland (2007).30.Shah, A. M., Wang, Z. & Ma, J. Glutamine metabolism and its role in immunity, a comprehensive review. Anim. Open Access J. MDPI 10, 326–332 (2020).
    Google Scholar 
    31.Rowayshed, G., Salama, A., Abul-Fadl, M., Akila-Hamza, S. & Emad, A. M. Nutritional and chemical evaluation for pomegranate (Punica granatum L.) fruit peel and seeds powders by products. Middle East J. Appl. Sci. 3, 169–179 (2013).
    Google Scholar 
    32.Hussein, A. M. S., Amal, S. A., Amany, M. H., Abeer, A. A. & Gamal, H. R. Physiochemical sensory and nutritional properties of corn-fenugreek flour composite biscuits. Aust. J. Basic Appl. Sci. 5, 84–95 (2011).CAS 

    Google Scholar 
    33.Mihiranie, S., Jayasundera, M. & Perera, N. Development of snack crackers incorporated with defatted coconut flour. J. Microbiol. Biotechnol. Food Sci. 7, 153–159 (2019).
    Google Scholar 
    34.Abdel-Haleem, A. M. & Omran, A. A. Preparation of dried vegetarian soup supplemented with some legumes. J. Food Nutr. Sci. 5, 2274–2282 (2014).
    Google Scholar 
    35.Holbrook, J. T. et al. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 40, 786–793 (1984).CAS 
    PubMed 

    Google Scholar 
    36.Schwalfenberg, G. K. & Genuis, S. J. The importance of magnesium in clinical healthcare. Scientifica 2017, 4179326 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    37.Hanif, R., Iqbal, Z., Iqbal, M., Hanif, S. & Rasheed, M. Use of vegetables as nutritional food role in human health. J. Agric. Biol. Sci. 1, 18–22 (2006).
    Google Scholar 
    38.Ibidapo, O. et al. Some functional properties of flours from commonly consumed selected nigerian food crops. Int. Res. J. Agric. Food Sci. 1, 92–98 (2016).
    Google Scholar 
    39.Fellows, P. Processing Technology Principles and Practice 2nd edn. (Woodhead Publishing Limited and Crc Press LlC, Washington, 2000).
    Google Scholar 
    40.Monteiro, M. et al. Flours and instant soup from tilapia wastes as healthy alternatives to the food industry. Food Sci. Technol. Res. 20, 571–581 (2014).CAS 

    Google Scholar 
    41.Hanan, E., Rudra, S., Sagar, V. R. & Sharma, V. Utilization of pea pod powder for formulation of instant pea soup powder short running title: Formulation of instant pea soup powder. J. Food Process. Preserv. 44, e14888 (2020).CAS 

    Google Scholar 
    42.Belghith-Fendri, L. et al. Pea and broad bean pods as a natural source of dietary fiber: The impact on texture and sensory properties of cake. J. Food Sci. 81, C2360-c2366 (2016).CAS 
    PubMed 

    Google Scholar 
    43.Ravindran, G. & Matia-Merino, L. Starch–fenugreek (Trigonella foenum-graecum L.) polysaccharide interactions in pure and soup systems. Food Hydrocoll. 23, 1047–1053 (2009).CAS 

    Google Scholar 
    44.Verma, A. Process for the preparation of value added instant tomato-mushroom soup mix incorporated with psyllium husk and its quality evaluation. Int. J. Pure Appl. Biosci. 5, 1502–1507 (2017).
    Google Scholar 
    45.Bose, D. & Shams-Ud-Din, M. The effect of chickpea (cicer arietinim) husk on the properties of cracker biscuits. J. Bangladesh Agric. Univ. 8, 147–152 (2010).
    Google Scholar 
    46.Yadav, A. R., Guha, M., Tharanathan, R. N. & Ramteke, R. S. Influence of drying conditions on functional properties of potato flour. Eur. Food Res. Technol. 223, 553–560 (2006).CAS 

    Google Scholar 
    47.Knezevic, D., Djukic, N., Paunovic, A. & Madic, M. Amino acid contents in grains of different winter wheat (Triticum aestivum L.) varieties. Cereal Res. Commun. 37, 647–650 (2009).CAS 

    Google Scholar 
    48.Gaines C. Associations among quality attributes of red and white soft wheat cultivars across locations and crop years. Cereal Chem. 68 (1991).49.Chitomarat S. Effects of drying on characteristic of powdered corn milk yoghurt (in thai). B.Sc. Thesis, Chiang Mai University, Thailand. (2002).50.Krokida, M. K. & Marinos-Kouris, D. Rehydration kinetics of dehydrated products. J. Food Eng. 57 (2003).51.Malomo, O., Ogunmoyela, O. O. A., Jimoh, M. & Oluwajoba, S. O. S. Rheological and functional properties of soy-poundo yam flour. Int. J. Food Sci. Nutr. Eng. 2, 101–107 (2013).
    Google Scholar 
    52.Piga, A. et al. Texture evolution of “amaretti” cookies during storage. Eur. Food Res. Technol. 221, 387–391 (2005).CAS 

    Google Scholar 
    53.Salem E. Nutritional quality of purslane and its crackers (2016).54.Wang, R., Zhang, M., Mujumdar, A. S. & Sun, J.-C. Microwave freeze–drying characteristics and sensory quality of instant vegetable soup. Drying Technol. 27, 962–968 (2009).
    Google Scholar  More

  • in

    Steering ecological-evolutionary dynamics to improve artificial selection of microbial communities

    Calculating landscape, attractor, and restrictorIn this work, we considered communities with commensal, mutualistic, and exploitative interactions. Below, we describe the differential equations for each type of interaction, and how we calculate the corresponding community function landscape, species-composition attractor, and Newborn restrictor.Commensal H–M community: The model community for most simulations is the same commensal H–M community used in our previous work15. The community function landscape plots P(T) as a function of ϕM(0) and ({overline{f}}_{P}(0)). Assume that a Newborn community has 100 biomass units, that all cells have the same genotype (all M cells have the same ({f}_{P}={overline{f}}_{P}(0))), that death and birth processes are deterministic, and that there is no mutation. P(T) can then be numerically integrated from the following set of scaled differential equations for any given pair of ϕM(0) and ({overline{f}}_{P}(0))15:$$frac{dR}{dt}=-{c}_{{RM}}{g}_{M}M-{c}_{{RH}}{g}_{H}H$$
    (1)
    $$frac{dB}{dt}={g}_{H}H-{c}_{{BM}}{g}_{M}M$$
    (2)
    $$frac{dP}{dt}={f}_{P}{g}_{M}M$$
    (3)
    $$frac{dH}{dt}={g}_{H}H-{delta }_{H}H$$
    (4)
    $$frac{dM}{dt}={g}_{M}left(1-{f}_{P}right)M-{delta }_{M}M$$
    (5)
    where$${g}_{H}(R)={g}_{{Hmax}}frac{R}{R+{K}_{{HR}}}$$
    (6)
    $${g}_{M}(R, B)={g}_{{Mmax}}frac{{R}_{M}{B}_{M}}{{R}_{M}+{B}_{M}}left(frac{1}{{R}_{M}+1}+frac{1}{{B}_{M}+1}right)$$
    (7)
    and RM = R/KMR and BM = B/KMB. Unless otherwise specified, landscapes in this paper are obtained by integrating Equations (1–5) from t = 0 to t = 17.Equation (1) states that Resource R is depleted by biomass growth of M and H, where cRM and cRH represent the amount of R consumed per unit of M and H biomass, respectively. Equation (2) states that Byproduct B is released as H grows, and is decreased by biomass growth of M due to consumption (cBM amount of B per unit of M biomass). Equation (3) states that Product P is produced as fP fraction of potential M growth. Equation (4) states that H biomass increases at a rate dependent on Resource R in a Monod fashion (Equation (6)) and decreases at the death rate δH. Note that Agricultural waste is not a state variable here as it is present in excess. Equation (5) states that M biomass increases at a rate dependent on Resource R and Byproduct B according to the Mankad and Bungay model (Equation (7)51) discounted by (1 − fP) due to the fitness cost of making Product, and decreases at the death rate δM. In the Monod growth model (Equation (6)), gHmax is the maximal growth rate of H and KHR is the R at which gHmax/2 is achieved. In the Mankad and Bungay model (Equation (7)), KMR is the R at which gMmax/2 is achieved when B is in excess; KMB is the B at which gMmax/2 is achieved when R is in excess.Mutualistic H–M community: If Byproduct is harmful for H, then the community is mutualistic: H and M promote the growth of each other. Such a mutualistic community can still be described by Equations (1–5) and (7), but Equation (6) is replaced with$${g}_{H}(R)={g}_{{Hmax}}frac{R}{R+{K}_{{HR}}}exp left(-frac{B}{{B}_{0}}right)$$
    (8)
    where larger B0 indicates lower sensitivity, or higher resistance of H to its Byproduct B.Exploitative H–M community: If M releases an antagonistic byproduct A that inhibits the growth of H, then the interaction is exploitative: H promotes the growth of M, but M inhibits the growth of H. Besides Eqs (1–5) and (7), we then need to add an equation that describes the dynamics of A$$frac{dwidetilde{A}}{dt}={r}_{A}{g}_{M}left(1-{f}_{P}right)M$$where rA is the amount of A released when M’s biomass grows by 1 unit. We can then normalize (widetilde{A}) with rA$$A=widetilde{A}/{r}_{A}$$so that$$frac{dA}{dt}={g}_{M}left(1-{f}_{P}right)M.$$
    (9)
    We also need to modify the growth rates for H:$${g}_{H}={g}_{H}(R)={g}_{{Hmax}}frac{R}{R+{K}_{{HR}}}frac{{A}_{0}}{A+{A}_{0}}$$
    (10)
    where larger A0 indicates lower sensitivity, or higher resistance of H to M’s Antagonistic by product A.To calculate the community function landscape, species attractor, and Newborn restrictor, all phenotype parameters, except ({overline{f}}_{P}(0)) take the value from the Bounds column in Table 1. To construct the landscape such as in Fig. 2c, we calculated P(T) for every grid point on a 2D quadrilateral mesh of 10−2 ≤ ϕM(0) ≤ 0.99 and (1{0}^{-2} le {overline{f}}_{P}(0) le 0.99) with a mesh size of ΔϕM(0) = 10−2 and ({{Delta }}{overline{f}}_{P}(0)=1{0}^{-2}). To construct the landscapes in Fig. 5b(ii) and b(iii), P(T) was similarly calculated on a 2D grid with a finer mesh of ΔϕM(0) = 5 × 10−3 and ({{Delta }}{overline{f}}_{P}(0)=1{0}^{-4}).To calculate the species composition attractor, we integrated Equations (1–5) to obtain ϕM(T) − ϕM(0) for each grid point on the 2D mesh of ϕM(0) and ({overline{f}}_{P}(0)). The contour of ϕM(T) − ϕM(0) = 0 is then the species attractor (blue dashed curve in Fig. 2b).The attractor-induced Newborn restrictor at a given ({overline{f}}_{P}(0)) is calculated from its definition: if ϕM(0) of a parent Newborn is on the restrictor, then so is the average ϕM(0) among its offspring Newborns. Under no spiking, since the average ϕM(0) among offspring Newborn is the same as ϕM(T) of their parent Adult, the Newborn restrictor coincides with the species attractor (Fig. 3b and Fig. 5b ii). Under x% H spiking, x% of the biomass in Newborns is replaced with H cells. Thus if the parent Adult’s fraction of M biomass is ϕM(T), the average ϕM(0) among its offspring Newborns is (1 − x%)ϕM(T) under x% H spiking. The Newborn restrictor therefore is the contour of (1 − x%)ϕM(T) − ϕM(0) = 0 (teal curve in Fig. 5a ii and b iii, Fig. 2d ii). Compared with the orange restrictor under no spiking, the teal restrictor is shifted down.Parameter choicesDetails justifying our parameter choices are given in the Methods section of our previous work15. Briefly, our parameter choices are based on experimental measurements of microorganisms (e.g., S. cerevisiae and E. coli). To ensure the coexistence of H and M, M must grow faster than H for part of the maturation cycle since M has to wait for H’s Byproduct at the beginning of a cycle. Because we have assumed M and H to have similar affinities for Resource (Table 1), the maximal growth rate of M (gMmax) must exceed the maximal growth rate of H (gHmax), and M’s affinity for Byproduct (1/KMB) must be sufficiently large. Moreover, metabolite release and consumption need to be balanced to avoid extreme species ratios. We assume that H and M consume the same amount of Resource per new cell (cRH = cRM) since the biomass of various microbes shares similar elemental (e.g., carbon or nitrogen) compositions. We set consumption value so that the input Resource can support a maximum of 104 total biomass. The evolutionary bounds are set, such that evolved H and M could coexist for fp  0, the number of H cells supplemented to the Newborn community is the nearest integer to (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}{L}_{H}^{-1}). Because integer number of cells is assigned to each Newborn, the total biomass might not be exactly BMtarget but within a small deviation of ~2 biomass units.To mimic reproducing through pipetting, each M and H cell in an Adult community is assigned a random integer between 1 and dilution factor nD (Equation (12)). All cells assigned with the same random integer are then dealt to the same Newborn, generating nD Newborn communities. If φS  > 0, the number of H cells supplemented into each Newborn is a random number drawn from a Poisson distribution of a mean of (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}{L}_{H}^{-1}).To mimic reproducing through cell sorting, each Newborn receives a biomass of (B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{varphi }_{S}right)) from its parent Adult. Suppose that the fraction of M biomass in the parent Adult is ϕM(T), then M cells from the parent Adult are randomly assigned to the Newborn, until the total biomass of M comes closest to (B{M}_{{{{{{{{rm{target}}}}}}}}}{phi }_{M}(T)left(1-{varphi }_{S}right)) without exceeding it. H cells with a total biomass of (B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{phi }_{M}(T)right)left(1-{varphi }_{S}right)) are assigned similarly. If φS  > 0, the number of H cells supplemented to the Newborn community is the nearest integer to (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}{L}_{H}^{-1}) where LH is the biomass of individual H cell in the parent Adult. Because each of M and H cells had a length between 1 and 2, the actual biomass of M and H assigned to a Newborn could vary from the target by up to 2 biomass units. Consequently, deviations of BM(0) from BMtarget and of ϕM(0) from parent Adult’s ϕM(T) are only a few percent.Simulating species spiking when both H and M cells evolveIn the more complex scenario, both H and M evolve. We thus need to spike with evolved H and M clones. Additionally, Newborns are spiked with H or M clones from their own lineage as demonstrated in Supplementary Fig. 11a. Below, we describe the simulation code for the experimental procedure (Supplementary Fig. 11a) we simulated.In all simulations where 6 or 7 phenotypes are modified by mutations, chosen Adults are reproduced through pipetting in a similar fashion as described above. After Newborns are reproduced from a chosen Adult in Cycle C − 1, a preset number of H or M cells are randomly picked from the remaining of this Adult to form H or M-spiking mix for Cycle C. At the end of Cycle C, we choose 10 Adults with the highest functions. Assuming that each chosen Adult is reproduced through pipetting with φS-H-spiking strategy, a Newborn receives on average a biomass of (B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{varphi }_{S}right)) from its parent Adult community and on average a biomass of BMtargetφS from H spiking mix generated at the end of Cycle C − 1. Since each chosen Adult usually gives rise to 10 Newborns, the number of cells distributed from the chosen Adult to each Newborn is drawn from a multinomial distribution. Specifically, denote the integer random numbers of cells that would be assigned to 10 Newborns to be {x1, x2,…, x10}. If the chosen Adult has a total biomass of BM(T) composed of IM M cells and IH H cells (both IM and IH are integers), the probability that {x1, x2,…, x10} cells are assigned to 10 Newborns, respectively, and x11 cells remain, is$$Pr left({{x}_{1},{x}_{2},…,{x}_{10},{x}_{11}}right)=frac{({I}_{H}+{I}_{M})!}{{x}_{1}!cdots {x}_{10}!{x}_{11}!},{p}_{0}{{,}^{{x}_{1}+cdots +{x}_{10}}},{p}_{11}^{{x}_{11}}.$$Here, ({p}_{0}=B{M}_{{{{{{{{rm{target}}}}}}}}}left(1-{varphi }_{S}right)/BM(T)) is the probability that a cell is assigned to one of 10 Newborns, p11 = 1 − 10p0 is the probability that a cell is not assigned to Newborns. Thus, ({x}_{11}={I}_{H}+{I}_{M}-mathop{sum }nolimits_{i = 1}^{10}{x}_{i}) is the number of cells remaining after reproduction, from which H and M cells are randomly picked to generate the spiking mix for Cycle C + 1.Suppose that the current spiking strategy is φS-H, then these 10 Newborns are spiked with H-spiking mix generated in Cycle C − 1. An average of BMtargetφS of H biomass is spiked into each Newborn so that the total biomass of Newborns is on average BMtarget. Suppose that five H cells from the parent Adult’s lineage are randomly picked at the end of Cycle C − 1, and that they have biomass {LH1, LH2, LH3, LH4, LH5}, respectively. The total number of H cells assigned to each Newborn, xH, is then randomly drawn from a Poisson distribution with a mean of (B{M}_{{{{{{{{rm{target}}}}}}}}}{varphi }_{S}/{overline{L}}_{H}), where ({overline{L}}_{H}=frac{1}{5}mathop{sum }nolimits_{j = 1}^{5}{L}_{Hj}) is the average biomass of the five H cells. Each spiked H cell has an equal chance of being one of the five cells.Updating spiking percentage based on heritability checksWhen the community function landscape is unknown, we can estimate heritability of community function under different spiking percentages through parent–offspring regression. In most simulations (e.g., Fig. 7), heritability evaluation is carried out about every 100 cycles (“periodic heritability check”). In the simulations demonstrated in Supplementary Fig. 17, the average improvement rate in community function is estimated from the chosen Adults over the last 50 cycles. Heritability evaluation is carried out when this average improvement rate becomes negative (“adaptive heritability check”). For both periodic and adaptive checks, heritability evaluation can be postponed until within-community selection improves cell growth sufficiently to provide sufficient biomass for heritability check.During one round of heritability evaluation, heritability of community function is estimated through parent–offspring community function regression under all candidate spiking strategies (Supplementary Fig. 11b). The current spiking strategy is updated if an alternative spiking strategy confers significantly higher community function heritability.To evaluate heritability under one spiking strategy, up to 100 Newborn communities are generated under this spiking strategy. After these mature into Adults, their functions are the parent functions. Each Adult parent then gives rise to six Newborn offspring under the same spiking strategy. When the six Newborn offspring mature into Adults, the median of their functions is the average offspring function. When offspring functions are plotted against their parent functions, the slope of the least-squares linear regression (green dashed line in Supplementary Fig. 11b) quantifies the heritability of community function. Heritability of a community function is thus similar to heritability of an individual trait, except that we use median instead of mean of offspring functions, because median is less sensitive to outliers. The 95% confidence interval of heritability is then estimated by nonparametric bootstrap58,59. More specifically, first, 100 pairs of parent–offspring community functions are resampled with replacement. Second, heritability is calculated with the resampled data. Third, 1000 heritabilities are calculated from 1000 independent resamplings, from which the 95% confidence interval is estimated from the 5th and 95th percentile.An alternative spiking strategy is considered significantly more advantageous than the current spiking strategy if heritability of the alternative spiking strategy is higher than the right endpoint of the 95% confidence interval of the heritability of the current spiking strategy. If more than one alternative spiking strategies are more advantageous, the one with the highest heritability is implemented to replace the current strategy. Similarly, an alternative spiking strategy is considered more disadvantageous if heritability of the alternative spiking strategy is lower than the left endpoint of the 95% confidence interval of the heritability of the current spiking strategy. When implementing random spiking strategy, the current spiking strategy is updated with a strategy randomly picked from candidate spiking strategies.Simulating community selection with large population sizeWhen the population size of each community is scaled up by 10 or 100 times (Supplementary Figs. 2 and 18b), the simulation codes described above become inefficient. Instead of tracking the biomass and phenotype of each cell in a large population, we divide the cells into categories and track the number of cells from different categories, where a category is defined by a unique combination of cell biomass and phenotype ranges. In our simulations, the biomass of each cell ranges between 1 and 2, fP of each M cell ranges between 0 and 1. Since H cells do not mutate, H cells are divided into 100 categories. H cells that belong to category i have a biomass between [1 + (i − 1) × ΔL, 1 + i × ΔL] where ΔL = 10−2. Since only fP of M cells are modified by mutations, M cells are divided into 100 × 105 categories. M cells that belong to category (i, j) have a biomass between [1 + (i − 1) × ΔL, 1 + i × ΔL] and fP between [(j − 1) × ΔfP, j × ΔfP] where ΔfP = 10−5. Every time fP of a M cell is modified by mutations, this cell jumps from the current category to a new category determined by its new fP value.Similar to simulations with small population sizes, each selection cycle starts with ntot = 100 Newborn communities. Maturation time T is divided into time steps of length Δτ = 0.05. Over each time step, the growth in cell biomass and the changes in metabolites are simulated in a similar fashion as described above. At the end of each time step, the number of cells to die or to mutate in each category is drawn from a bionomial distribution. If fP of a M cell is modified by mutation, the mutation effect is drawn from the same distribution as described above: (frac{1}{2}) of mutations reduce fP to 0 and the other (frac{1}{2}) is randomly drawn from the distribution in Equation (11).At the end of a maturation cycle, top 10 Adults with the highest functions are chosen. Each then reproduces 10 Newborns via pipetting for the next cycle. The fold of dilution is similarly adjusted, so that the average of Newborn total biomass is BMtarget over all selection cycles. From each category of a chosen Adult, the number of cells assigned to a Newborn community is randomly drawn from a multinomial distribution.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Author Correction: Boreal forest biomass accumulation is not increased by two decades of soil warming

    AffiliationsDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SwedenHyungwoo Lim, Torgny Näsholm, Tomas Lundmark & Harald GripNicholas School of the Environment, Duke University, Durham, NC, USARam OrenDepartment of Forest Sciences, University of Helsinki, Helsinki, FinlandRam OrenDepartment of Soil and Environment, SLU, Uppsala, SwedenMonika StrömgrenSouthern Swedish Forest Research Centre, SLU, Alnarp, SwedenSune LinderAuthorsHyungwoo LimRam OrenTorgny NäsholmMonika StrömgrenTomas LundmarkHarald GripSune LinderCorresponding authorsCorrespondence to
    Hyungwoo Lim or Ram Oren. More

  • in

    Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition

    1.Catchpole, C. K. Variation in the song of the great reed warbler Acrocephalus arundinaceus in relation to mate attraction and territorial defence. Anim. Behav. 31, 1217–1225 (1983).
    Google Scholar 
    2.Andersson, M. Sexual selection (University Press, 1994).
    Google Scholar 
    3.Searcy, W. A. & Yasukawa, K. Song and female choice. In Ecology and evolution of acoustic communication in birds (eds Kroodsma, D. E. & Miller, E. H.) 454–473 (Cornell University Press, 1996).
    Google Scholar 
    4.O’Loghlen, A. L. & Beecher, M. D. Mate, neighbour and stranger song: A female song sparrow perspective. Anim. Behav. 58, 13–20 (1999).
    Google Scholar 
    5.Gentner, T. Q. & Hulse, S. H. Female European starling preference and choice for variation in conspecific male song. Anim. Behav. 59, 443–458 (2000).CAS 
    PubMed 

    Google Scholar 
    6.Molles, L. E. & Vehrencamp, S. L. Neighbour recognition by resident males in the banded wren Thryothorus pleurostictus a tropical songbird with high song type sharing. Anim. Behav. 61, 119–127 (2001).PubMed 

    Google Scholar 
    7.Ballentine, B., Hyman, J. & Nowicki, S. Vocal performance influences female response to male bird song: An experimental test. Behav. Ecol. 15, 163–168 (2004).
    Google Scholar 
    8.Forstmeier, W., Kempenaers, B., Meyer, A. & Leisler, B. A novel song parameter correlates with extra-pair paternity and reflects male longevity. Proc. R. Soc. Lond. B 269, 1479–1485 (2002).
    Google Scholar 
    9.de Kort, S. R., Eldermire, E. R. B., Valderrama, S., Botero, C. A. & Vehrencamp, S. L. Trill consistency is an age-related assessment signal in banded wrens. Proc. R. Soc. Lond. B 276, 2315–2321 (2009).
    Google Scholar 
    10.Węgrzyn, E., Leniowski, K. & Osiejuk, T. Whistle duration and consistency reflect philopatry and harem size in great reed warblers. Anim. Behav. 79, 1363–1372 (2010).
    Google Scholar 
    11.Węgrzyn, E., Leniowski, K. & Osiejuk, T. Introduce yourself at the beginning – Possibile identification function of the initial part of the song in the great reed warbler Acrocephalus arundinaceus. Ornis Fennica 86, 61–70 (2009).
    Google Scholar 
    12.Węgrzyn, E. & Leniowski, K. Middle Spotted Woodpecker territory owners distinguish between stranger and familiar foaters based on their vocal characteristics. Eur. Zool. J. 87, 58–72 (2020).
    Google Scholar 
    13.Podos, J. Motor constraints on vocal development in a songbird. Anim. Behav. 51, 1061–1070 (1996).
    Google Scholar 
    14.Podos, J., Southall, J. A. & Rossi-Santos, M. R. Vocal mechanics in Darwin’s finches: Correlation of beak gape and song frequency. J. Exp. Biol. 207, 607–619 (2004).PubMed 

    Google Scholar 
    15.Nelson, B. S., Deckers, G. J. L. & Suthers, R. A. Vocal tract filtering and sound radiation in a songbird. J. Exp. Biol. 208, 297–308 (2005).PubMed 

    Google Scholar 
    16.Falls, J. B. Individual recognition by sounds in birds. In Acoustic communication in birds Vol. 2 (eds Kroodsma, D. E. & Miller, E. H.) 237–278 (Academic Press, 1982).
    Google Scholar 
    17.Wiley, R. H., Hatchwell, B. J. & Davies, N. B. Recognition of individual males songs by female dunnocks: A mechanism increasing the number of copulatory partners and reproductive success. Ethology 88, 145–153 (1991).
    Google Scholar 
    18.Lind, H., Dabelsteen, T. & McGregor, P. K. Female great tits can identify mates by song. Anim. Behav. 52, 667–671 (1996).
    Google Scholar 
    19.Aubin, T., Jouventin, P. & Hildebrand, C. Penguins use the two-voice system to recognize each other. Proc. R. Soc. Lond. B 267, 1081–1087 (2000).CAS 

    Google Scholar 
    20.Charrier, I., Jouventin, P., Mathevon, N. & Aubin, T. Individual identity coding depends on call type in the South Polar Skua Catharacta maccormicki. Polar Biol. 24, 378–382 (2001).
    Google Scholar 
    21.Stoddard, P. K., Beecher, M. D., Horning, C. L. & Willis, M. S. Strong neighbor– stranger discrimination in song sparrows. Condor 92, 1051–1056 (1990).
    Google Scholar 
    22.Stoddard, P. K., Beecher, M. D., Horning, C. L. & Campbell, S. E. Recognition of individual neighbors by song in the song sparrow, a species with song repertoires. Behav. Ecol. Sociobiol. 29, 211–215 (1991).
    Google Scholar 
    23.Godard, R. Long–term memory of individual neighbours in a migratory songbird. Nature 350, 228–229 (1991).ADS 

    Google Scholar 
    24.Stoddard, P. K. Vocal recognition of neighbors by territorial passerines. In Ecology and evolution of acoustic communication in birds (eds Kroodsma, D. E. & Miller, E. H.) 56–374 (Cornell University Press, 1996).
    Google Scholar 
    25.Hyman, J. Seasonal variation in response to neighbors and strangers by a territorial songbird. Ethology 111, 951–961 (2010).
    Google Scholar 
    26.Mackin, W. A. Neighbor–stranger discrimination in Audubon’s Shearwater Puffinus l. lherminieri explained by a “real enemy” effect. Behav. Ecol. Sociobiol. 59(2), 326–332 (2005).
    Google Scholar 
    27.Charrier, I., Mathevon, N., Jouventin, P. & Aubin, T. Acoustic communication in a Black-headed Gull colony: How do chicks identify their parents?. Ethology 107, 961–974 (2001).
    Google Scholar 
    28.Lengagne, T., Lauga, J. & Aubin, T. Intra–syllabic acoustic signatures used by the King Penguin in parent–chick recognition: An experimental approach. J. Exp. Biol. 204, 663–672 (2001).CAS 
    PubMed 

    Google Scholar 
    29.Jouventin, P. & Aubin, T. Acoustic systems are adapted to breeding ecologies: Individual recognition in nesting penguins. Anim. Behav. 64, 747–757 (2002).
    Google Scholar 
    30.Cucco, M. & Malacarne, G. Is the song of black restart males an honest signal of status?. Condor 101, 689–694 (1999).
    Google Scholar 
    31.Christie, P. J., Mennill, D. J. & Ratcliffe, L. M. Chickadee song structure is individually distinctive over long broadcast distances. Behaviour 141, 101–124 (2004).
    Google Scholar 
    32.Sherman, P. W., Reeve, H. K. & Pfennig D. W. Recognition systems. In: Krebs JR,DaviesNB, editors. Behavioural ecology: An evolutionary approach. Oxford: Blackwell Scientific. pp. 69–96 (1997).33.Kilham, L. Behavior and methods of communication of Pileated woodpeckers. Condor 61, 377–387 (1959).
    Google Scholar 
    34.Lawrence, L. & de Kort, S. R. A comparative life–history study of four species of woodpeckers. Ornithol. Monogr. 5, 1–155 (1967).
    Google Scholar 
    35.Winkler, H. & Short, L. A comparative analysis of acoustical signals in Pied woodpeckers (Aves, Picoides). Bull. Am. Mus. Nat. Hist. 160, 1–110 (1978).
    Google Scholar 
    36.Crusoe, D. A. Acoustic behavior and its role in the social relations of the red-headed wood-pecker: Picidae, Melanerpes erythrocephalus. Doctoral dissertation, University of Illinois at Chicago Circle (1980).37.Pardo, M. A. et al. Wild acorn woodpeckers recognize associations between individuals in other groups. Proc. R. Soc. B 285, 20181017 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    38.Leniowski, K. & Węgrzyn, E. The carotenoid-based red cap of the middle spotted woodpecker Dendrocopos medius reflects individual quality and territory size. Ibis 155(4), 804–813 (2013).
    Google Scholar 
    39.Podos, J., Lahti, D. C. & Moseley, D. L. Vocal performance and sensorimotor learning in songbirds. Adv. Study Behav. 40, 159–195 (2009).
    Google Scholar 
    40.Tremain, S. B., Swiston, K. A. & Mennill, D. J. Seasonal variation in acoustic signals of Pileated Woodpeckers. Wilson J. Ornithol. 120(3), 499–504 (2008).
    Google Scholar 
    41.Kilham, L. Reproductive behavior of red–bellied woodpeckers. Wilson Bull. 73, 237–254 (1961).
    Google Scholar 
    42.Catchpole, C. K. & Slater, P. J. B. Bird Song. Biological themes and variation 2nd edn. (Cambridge University Press, Cambridge, 2008).
    Google Scholar 
    43.Falls, J. B. & McNicholl, M. K. Neighbor–stranger discrimination by song in male blue grouse. Can. J. Zool. 57(2), 457–462 (1979).
    Google Scholar 
    44.Galeotti, P. & Pavan, G. Individual recognition of male tawny owls Strix aluco using spectrograms of their territorial calls. Ethol. Ecol. Evol. 3(2), 113–126 (1991).
    Google Scholar 
    45.Prum, R. O. Sexual selection and the evolution of mechanical sound production in manakins Aves: Pipridae. Anim. Behav. 55(4), 977–994 (1998).CAS 
    PubMed 

    Google Scholar 
    46.Rebbeck, M., Corrick, R., Eaglestone, B. & Stainton, C. Recognition of individual European Nightjars Caprimulgus europaeus from their song. Ibis 143, 468–475 (2001).
    Google Scholar 
    47.Dodenhoff, D. J. An analysis of acoustic communication within the social system of downy woodpeckers Picoides pubescens. Doctoral dissertation, The Ohio State University. (2002).48.Budka, M., Deoniziak, K., Tumiel, T. & Białas, J. T. Vocal individuality in drumming in great spotted woodpecker—A biological perspective and implications for conservation. PLoS ONE 13(2), e0191716 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Ydenberg, R. C., Giraldeau, L. A. & Falls, J. B. Neighbours, strangers, and the asymmetric war of attrition. Anim. Behav. 36(2), 343–347 (1988).
    Google Scholar 
    50.Delport, W., Kemp, A. C. & Ferguson, W. H. Vocal identification of individual African Wood Owls Strix woodfordii: a technique to monitor long-term adult turnover and residency. Ibis 144, 30–39 (2002).
    Google Scholar 
    51.Peake, T. M. et al. Individuality in Corncrake Crex crex vocalisations. Ibis 140, 120–217 (1998).
    Google Scholar 
    52.Hoodless, A. N., Inglis, J. G., Doucet, J.-P. & Aebischer, N. J. Vocal individuality in the roding calls of Woodcock Scolopax rusticola and their use to validate a survey method. Ibis 150, 80–89 (2008).
    Google Scholar 
    53.Grava, T., Mathevon, N., Place, E. & Balluet, P. Individual acoustic monitoring of the European Eagle Owl Bubo bubo. Ibis 150, 279–287 (2008).
    Google Scholar 
    54.Odom, K. J., Slaght, J. C. & Gutierrez, R. J. Distinctiveness in the territorial calls of Great horned owls within and among years. J. Raptor Res. 47, 21–30 (2013).
    Google Scholar 
    55.Aubin, T., Mathevon, N., Staszewski, V. & Boulinier, T. Acoustic communication in the Kittiwake Rissa tridactyla: potential cues for sexual and individual signatures in ling calls. Polar Biol. 30, 1027–1033 (2007).
    Google Scholar 
    56.Bretagnolle, V. & Laquette, B. Structural variation in the call of the Cory’s Shearwater (Colonectris diodemea, Aves, Procellaridae). Ethology 85, 313–323 (1990).
    Google Scholar 
    57.de Broke, M. L. Sexual differences in the voice and individual vocal recognition in the Manx Shearwater (Puffinus Puffinus). Anim. Behav. 26, 622–629 (1978).
    Google Scholar 
    58.Dreiss, A. N., Ruppli, C. A. & Roulin, A. Individual vocal signatures in barn owl nestling: does individual recognition have an adaptive role in sibling vocal competition?. J. Evol. Biol. 27, 63–75 (2014).CAS 
    PubMed 

    Google Scholar 
    59.Volodin, I. A., Volodina, E. V., Klenova, A. V. & Filatova, O. A. Individual and sexual differences in the calls of the monomorphic White-faced Whistling Duck Dendrocygna viduata. Acta Ornithol. 40, 43–52 (2005).
    Google Scholar 
    60.Bragina, E. & Beme, J. sexual and individual features in the long range and short range calls of the White-naped crane. Condor 115, 501–507 (2013).
    Google Scholar 
    61.Terry, A. M. R., Peake, T. M. & McGregor, P. K. The role of vocal individuality in conservation. Front. Zool. 2, 10 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    62.Pasinelli, G. Oaks (Quercus sp.) and only oaks? Relations between habitat structure and home range size of the middle spotted woodpecker (Dendrocopos medius). Biol. Conserv. 93(2), 227–235 (2000).
    Google Scholar 
    63.Pasinelli, G. Dendrocopos medius middle spotted woodpecker. BWP Update 5(1), 49–99 (2003).
    Google Scholar 
    64.Michalek, K. G. & Winkler, H. Parental care and parentage in monogamous great spotted woodpeckers Picoides major and middle spotted woodpeckers Picoides medius. Behaviour 138(10), 1259–1285 (2001).
    Google Scholar 
    65.Pasinelli, G., Hegelbach, J. & Reyer, H.-U. Spacing behavior of the Middle Spotted Woodpecker in central Europe. J. Wildl. Manag. 65, 432–441 (2001).
    Google Scholar 
    66.Pasinelli, G. Breeding performance of the middle spotted woodpecker Dendrocopos medius in relation to weather and territory quality. Ardea 89, 353–361 (2001).
    Google Scholar 
    67.Kosiński, Z. & Winiecki, A. Ocena liczebności dzięcioła średniego Dendrocopos medius – Porównanie metody kartograficznej z użyciem stymulacji magnetofonowej z metodą wyszukiwania gniazd. Notatki Ornitologiczne 44, 43–55 (2003).
    Google Scholar 
    68.Specht, R. Avisoft-SASLab Pro: sound analysis and synthesis laboratory (Avisoft Bioacoustics, 2002).
    Google Scholar 
    69.Mundry, R. & Sommer, C. Discriminant function analysis with nonindependent data: consequences and an alternative. Anim. Behav. 74, 965–976 (2007).
    Google Scholar 
    70.Tabachnick, B. G. & Fidell, L. S. Using multivariate statistics 4th edn. (Allyn and Bacon, 2001).
    Google Scholar 
    71.Leniowski, K. Signaling quality in the Middle Spotted Woodpecker Dendrocopos medius: home ranges, colour ornaments and calls. (PhD thesis) Adam Mickiewicz University, Poznań, Poland (2011). More