More stories

  • in

    Rapid phenotypic change in a polymorphic salamander over 43 years

    1.Bergmann, C. About the relationships between heat conservation and body size of animals. Goett. Stud. (original in German) 1, 595–708 (1847).
    Google Scholar 
    2.Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: A third universal response to warming?. Trends Ecol. Evol. 26, 285–291 (2011).PubMed 

    Google Scholar 
    3.Ashton, K. G., Tracy, M. C. & de Queiroz, A. Is Bergmann’s rule valid for mammals?. Am. Nat. 156, 390–415 (2000).PubMed 

    Google Scholar 
    4.Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).
    Google Scholar 
    5.Riemer, K., Guralnick, R. P. & White, E. P. No general relationship between mass and temperature in endothermic species. Elife 7, e27166 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    6.Mousseau, T. A. Ectotherms follow the converse to Bergmann’s rule. Evolution 51, 630–632 (1997).PubMed 

    Google Scholar 
    7.Ashton, K. G. & Feldman, C. R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 57, 1151–1163 (2003).PubMed 

    Google Scholar 
    8.Olalla-Tárraga, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: Anurans follow Bergmann’s rule, urodeles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007).
    Google Scholar 
    9.Adams, D. C. & Church, J. O. Amphibians do not follow Bergmann’s rule. Evolution 62, 413–420 (2008).PubMed 

    Google Scholar 
    10.Angilletta, M. J. Jr. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 333–342 (2003).
    Google Scholar 
    11.Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).ADS 

    Google Scholar 
    12.Huey, R. B., Kearney, M. R., Krockenberger, A., Holtum, J. M. & Williams, S. E. Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).
    Google Scholar 
    13.Ohlberger, J. Climate warming and ectotherm body size—from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).
    Google Scholar 
    14.Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 89, 329–338 (2002).CAS 
    PubMed 

    Google Scholar 
    15.West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (A Review). Proc. Natl. Acad. Sci. USA 83, 1388–1392 (1986).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Forsman, A., Ahnesjö, J., Caesar, S. & Karisson, M. A model of ecological and evolutionary consequences of color polymorphism. Ecology 89, 34–40 (2008).PubMed 

    Google Scholar 
    17.McLean, C. A. & Stuart-Fox, D. Geographic variation in animal colour polymorphisms and its role in speciation. Biol. Rev. 89, 860–873 (2014).PubMed 

    Google Scholar 
    18.Spotila, J. R. Role of temperature and water in the ecology of lungless salamanders. Ecol. Monogr. 42, 95–125 (1972).
    Google Scholar 
    19.Cabe, P. R. et al. Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98, 53–60 (2007).CAS 
    PubMed 

    Google Scholar 
    20.Peterman, W. E. & Semlitsch, R. D. Fine-scale habitat associations of a terrestrial salamander: The role of environmental gradients and implications for population dynamics. PLoS ONE 8, e62184 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Farallo, V. R. & Miles, D. B. The importance of microhabitat: A comparison of two microendemic species of Plethodon to the widespread P. cinereus. Copeia 104, 67–77 (2016).
    Google Scholar 
    22.Burton, T. M. & Likens, G. E. Salamander populations and biomass in the Hubbard Brook experimental forest, New Hampshire. Copeia 1975, 541–546 (1975).
    Google Scholar 
    23.Mathis, A. Territories of male and female terrestrial salamanders: Costs, benefits, and intersexual spatial associations. Oecologia 86, 433–440 (1991).ADS 
    PubMed 

    Google Scholar 
    24.Anthony, C. D. & Pfingsten, R. A. Eastern red-backed salamander. Plethodon cinereus (Green 1818). In Amphibians of Ohio. Ohio Biological Survey (eds Pfingsten, R. A. et al.) 335–360 (2013).
    25.Moore, J.-D. & Ouellet, M. Questioning the use of an amphibian colour morph as an indicator of climate change. Glob. Change Biol. 21, 566–571 (2015).ADS 

    Google Scholar 
    26.Highton, R. Revision of North American salamanders of the genus Plethodon. Bull. Fla. State Mus. 6, 236–367 (1962).
    Google Scholar 
    27.Acord, M. A., Anthony, C. D. & Hickerson, C. M. Assortative mating in a polymorphic salamander. Copeia 2013, 676–683 (2013).
    Google Scholar 
    28.Reiter, M. K., Anthony, C. D. & Hickerson, C. A. M. Territorial behavior and ecological divergence in a polymorphic salamander. Copeia 2014, 481–488 (2014).
    Google Scholar 
    29.Paluh, D. J., Eddy, C., Ivanov, K., Hickerson, C. M. & Anthony, C. D. Selective foraging on ants by a terrestrial polymorphic salamander. Am. Midl. Nat. 174, 265–277 (2015).
    Google Scholar 
    30.Stuczka, A., Hickerson, C. M. & Anthony, C. D. Niche partitioning along the diet axis in a colour polymorphic population of Eastern Red-backed Salamanders, Plethodon cinereus. Amphibia-Reptilia 37, 283–290 (2016).
    Google Scholar 
    31.Otaibi, B. W., Johnson, Q. K. & Cosentino, B. J. Postautotomy tail movement differs between colour morphs of the red-backed salamander (Plethodon cinereus). Amphibia-Reptilia 38, 395–399 (2017).
    Google Scholar 
    32.Hantak, M. M., Brooks, K. M., Hickerson, C. M., Anthony, C. D. & Kuchta, S. R. A spatiotemporal assessment of dietary partitioning between color morphs of a terrestrial salamander. Copeia 108, 727–736 (2020).
    Google Scholar 
    33.Moreno, G. Behavioral and physiological differentiation between the color morphs of the salamander, Plethodon cinereus. J. Herpetol. 23, 335–341 (1989).
    Google Scholar 
    34.Anthony, C. D., Venesky, M. D. & Hickerson, C. A. M. Ecological separation in a polymorphic terrestrial salamander. J. Anim. Ecol. 77, 646–653 (2008).PubMed 

    Google Scholar 
    35.Evans, A. E., Urban, M. C. & Jockusck, E. L. Developmental temperature alters color polymorphism but not hatchling size in a woodland salamander. Oecoloiga 192, 909–918 (2020).ADS 

    Google Scholar 
    36.Petruzzi, E. E., Niewiarowski, P. H. & Moore, F. B. G. The role of thermal niche selection in maintenance of a colour polymorphism in redback salamanders (Plethodon cinereus). Front. Zool. 5, 3–10 (2006).
    Google Scholar 
    37.Muñoz, D. J., Hesed, K. M., Grant, E. H. C. & Miller, D. A. W. Evaluating within-population variability in behavior and demography for the adaptive potential of a dispersal-limited species to climate change. Ecol. Evol. 6, 8740–8755 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    38.Lotter, F. & Scott, N. J. Jr. Correlation between climate and distribution of the color morphs of the salamander Plethodon cinereus. Copeia 1977, 681–690 (1977).
    Google Scholar 
    39.Gibbs, J. P. & Karraker, N. E. Effects of warming conditions in eastern North American forests on Red-Backed Salamander morphology. Conserv. Biol. 20, 913–917 (2006).PubMed 

    Google Scholar 
    40.Cosentino, B. J., Moore, J.-D., Karraker, N. E., Ouellet, M. & Gibbs, J. P. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander. Ecol. Evol. 7, 5426–5434 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    41.Evans, A. E., Forester, B. R., Jockusch, E. L. & Urban, M. C. Salamander morph frequencies do not evolve as predicted in response to 40 years of climate change. Ecography 41, 1687–1697 (2018).
    Google Scholar 
    42.Vose, R., Easterling, D., Kunkel, K., LeGrande, A. & Wehner, M. Temperature changes in the United States. In (eds Wuebbles, D. J. et al.). Climate Science Special Report: Fourth National Climate Assessment, Vol. 1, 185–206 (2017).43.Highton, R. Correlating costal grooves with trunk vertebrae in salamanders. Copeia 1957, 107–109 (1957).
    Google Scholar 
    44.Fisher-Reid, C. M. & Wiens, J. J. Is geographic variation within species related to macroevolutionary patterns between species?. J. Evol. Biol. 28, 1502–1515 (2015).CAS 
    PubMed 

    Google Scholar 
    45.Wake, D. B. Comparative osteology and evolution of the lungless salamanders, family Plethodontidae. Mem. South. Calif. Acad. Sci. 4, 1–111 (1966).
    Google Scholar 
    46.Jockush, E. L. Geographic variation and phenotypic plasticity of number of trunk vertebrae in Slender Salamanders, Batrachoseps (Caudata: Plethodontidae). Evolution 51, 1966–1982 (1997).
    Google Scholar 
    47.Parra-Olea, G. & Wake, D. B. Extreme morphological and ecological homoplasy in tropical salamanders. Proc. Natl. Acad. Sci. USA 98, 7888–7891 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Pike, D. A. & Mitchell, J. C. Burrow-dwelling ecosystem engineers provide thermal refugia throughout the landscape. Anim. Conserv. 16, 694–703 (2013).
    Google Scholar 
    49.Caruso, N. M., Sears, M. W., Adams, D. C. & Lips, K. R. Widespread rapid reductions in body size of adult salamanders in response to climate change. Glob. Change Biol. 20, 1751–1759 (2014).ADS 

    Google Scholar 
    50.Radomski, T., Hantak, M. M., Brown, A. D. & Kuchta, S. R. Multilocus phylogeography of the Eastern Red-backed Salamander (Plethodon cinereus): Cryptic Appalachian diversity and post-glacial range expansion. Herpetologica 76, 61–73 (2020).
    Google Scholar 
    51.Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    52.Hill, A. W. et al. The Notes from Nature tool for unlocking biodiversity records from museum records through citizen science. ZooKeys 209, 219–223 (2012).
    Google Scholar 
    53.Constable, H., Guralnick, R., Wieczorek, J., Spencer, C. & Peterson, A. T. VertNet: A new model for biodiversity data sharing. PLoS Biol. 8, e1000309 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    54.Guralnick, R. & Constable, H. VertNet: Creating a data-sharing community. Bioscience 60, 258–259 (2010).
    Google Scholar 
    55.Guralnick, R. P. et al. The importance of digitized biocollections as a source of trait data and a new VertNet resource. Database 2016, baw158 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    56.Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    57.Hollister, J., Shah, T., Robitaille, A., Beck, M. & Johnson, M. elevatr: Access elevation data from various APIs. R package version 0.3.1. https://doi.org/10.5281/zenodo.4282962 (2020).58.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).59.Barton, K. Package ‘MuMIn’. Model Selection and Model Averaging Based on Information Criteria. R package version 3.2.4. http://cran.r-project.org/web/packages/MuMIn/index.html (2012).60.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    61.Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    62.Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).ADS 

    Google Scholar 
    63.Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 

    Google Scholar 
    64.Fisher-Reid, M. C., Engstrom, T. N., Kuczynski, C. A., Stephens, P. R. & Wiens, J. J. Parapatric divergence of sympatric morphs in a salamander: Incipient speciation on Long Island?. Mol. Ecol. 22, 4681–4694 (2013).PubMed 

    Google Scholar 
    65.Brodie, E. D. III. & Brodie, E. D. Jr. Tetrodotoxin resistance in garter snakes: An evolutionary response of predators to dangerous prey. Evolution 44, 651–659 (1990).PubMed 

    Google Scholar 
    66.Brodie, E. D. Jr., Ridenhour, B. J. & Brodie, E. D. III. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution 56, 2067–2082 (2002).PubMed 

    Google Scholar 
    67.Siepielski, A. M., DiBattista, J. D. & Carlson, S. M. It’s about time: The temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 12, 1261–1276 (2009).PubMed 

    Google Scholar 
    68.Siepielski, A. M. et al. Spatial patterns of directional phenotypic selection. Ecol. Lett. 16, 1382–1392 (2013).PubMed 

    Google Scholar 
    69.Thompson, J. N. Coevolution: The geographic mosaic of coevolutionary arms races. Curr. Biol. 15, 992–994 (2005).
    Google Scholar 
    70.Corl, A., Davis, A. R., Kuchta, S. R. & Sinervo, B. Selective loss of polymorphic mating types is associated with rapid phenotype evolution during morphic speciation. Proc. Natl. Acad. Sci. 107, 4254–4259 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Roulin, A. Melanin-based colour polymorphism responding to climate change. Glob. Change Biol. 20, 3344–3350 (2014).ADS 

    Google Scholar 
    72.Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biol. Rev. 94, 1294–1316 (2019).PubMed 

    Google Scholar 
    73.Delhey, K. Gloger’s rule. Curr. Biol. 27, R689–R691 (2017).CAS 
    PubMed 

    Google Scholar 
    74.Delhey, K. Darker where cold and wet: Australian birds follow their own version of Gloger’s rule. Ecography 41, 673–683 (2018).
    Google Scholar 
    75.Hantak, M. M. & Kuchta, S. R. Predator perception across space and time: Relative camouflage in a colour polymorphic salamander. Biol. J. Linn. Soc. 123, 21–33 (2018).
    Google Scholar 
    76.Atkinson, D. Temperature and organism size—A biological law for ectotherms?. Adv. Ecol. Res. 25, 1–58 (1994).
    Google Scholar 
    77.Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life-history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).PubMed 

    Google Scholar 
    78.Martof, B. S. & Rose, F. L. Geographic variation in southern populations of Desmognathus ochrophaeus. Am. Midl. Nat. 69, 376–425 (1963).
    Google Scholar 
    79.Tilley, S. G. Life histories and comparative demography of two salamander populations. Copeia 1980, 806–821 (1980).
    Google Scholar 
    80.Peterman, W. E., Crawford, J. A. & Hocking, D. J. Effects of elevation on plethodontid salamander body size. Copeia 104, 202–208 (2016).
    Google Scholar 
    81.Williams, E. E., Highton, R. & Cooper, D. M. Breakdown of polymorphism of the red-backed salamander on Long Island. Evolution 22, 76–86 (1968).PubMed 

    Google Scholar 
    82.Wake, D. B. & Lynch, J. F. The distribution, ecology and evolutionary history of plethodontid salamanders in tropical America. Sci. Bull. Nat. Hist. Mus. Los Angel Cty. 25, 1–65 (1976).
    Google Scholar 
    83.Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486 (2020).PubMed 

    Google Scholar 
    84.Wake, D. B. Homoplasy: The result of natural selection, or evidence of design limitations?. Am. Nat. 138, 543–567 (1991).
    Google Scholar 
    85.Farallo, V. R., Wier, R. & Miles, D. B. The bogert effect revisited: Salamander regulatory behaviors are differently constrained by time and space. Ecol. Evol. 8, 11522–11532 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    86.Connette, G. M., Crawford, J. A. & Peterman, W. E. Climate change and shrinking salamanders: Alternative mechanisms for changes in plethodontid salamander body size. Glob. Change Biol. 21, 2834–2843 (2015).ADS 

    Google Scholar 
    87.Karell, P., Ahola, K., Karstinen, T., Valkama, J. & Brommer, J. E. Climate change drives microevolution in a wild bird. Nat. Commun. 2, 208 (2011).ADS 
    PubMed 

    Google Scholar 
    88.Lepetz, V., Massot, M., Chaine, A. S. & Clobert, J. Climate warming and the evolution of morphotypes in a reptile. Glob. Change Biol. 15, 454–466 (2009).ADS 

    Google Scholar 
    89.Panayotova, I. N. & Horth, L. Modeling the impact of climate change on a rare color morph in fish. Ecol. Model. 387, 10–16 (2018).
    Google Scholar 
    90.Clusella-Trullas, S. & Nielsen, M. The evolution of insect body coloration under changing climates. Curr. Opin. Insect Sci 41, 25–32 (2020).PubMed 

    Google Scholar 
    91.Sullivan, C. N. & Koski, M. H. The effects of climate change on floral anthocyanin polymorphisms. Proc. R. Soc. B Biol. Sci. 288, 20202693 (2021).
    Google Scholar 
    92.Hugall, A. F. & Stuart-Fox, D. Accelerated speciation in colour-polymorphic birds. Nature 485, 631–634 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    93.Gray, S. M. & Mckinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007).PubMed 

    Google Scholar 
    94.Mckinnon, J. S. & Pierotti, M. R. Colour polymorphism and correlated characters: Genetic mechanisms and evolution. Mol. Ecol. 19, 5101–5125 (2010).PubMed 

    Google Scholar 
    95.Hantak, M. M. et al. Do genetic structure and landscape heterogeneity impact color morph frequency in a polymorphic salamander?. Ecography 42, 1383–1394 (2019).
    Google Scholar 
    96.U. S. Geological Survey – Gap Analysis Project. Eastern Red-backed Salamander (Plethodon cinereus) aERBSx_CONUS_2001v1 Range Map. https://doi.org/10.5066/F7P26X90 (2017). More

  • in

    Altered fire regimes modify lizard communities in globally endangered Araucaria forests of the southern Andes

    1.Krebs, P., Pezzatti, G. B., Mazzoleni, S., Talbot, L. M. & Conedera, M. Fire regime: History and definition of a key concept in disturbance ecology. Theory Biosci. 129, 53–69 (2010).PubMed 

    Google Scholar 
    2.Harvey, B. J., Donato, D. C. & Turner, M. G. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology 97, 2272–2282 (2016).PubMed 

    Google Scholar 
    3.Prichard, S. J., Stevens-Rumann, C. S. & Hessburg, P. F. Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs. For. Ecol. Manag. 396, 217–233 (2017).
    Google Scholar 
    4.González, M. E., Lara, A., Urrutia, R. & Bosnich, J. Cambio climático y su impacto potencial en la ocurrencia de incendios forestales en la zona centro-sur de Chile (33°–42° S). Bosque 32, 215–219 (2011).
    Google Scholar 
    5.Perfetti-Bolaño, A., González-acuña, D., Barrientos, C. & Moreno, L. Efectos del fuego sobre la avifauna del cerro Cayumanque, región del Bío-bío, Chile. Boletín Chil. Ornitol. 19, 1–11 (2013).
    Google Scholar 
    6.Engstrom, R. T. First-order fire effects on animals: Review and recommendations. Fire Ecol. 6, 115–130 (2010).
    Google Scholar 
    7.Doherty, T. S. et al. Ecosystem responses to fire: Identifying cross-taxa contrasts and complementarities to inform management strategies. Ecosystems 20, 872–884 (2017).
    Google Scholar 
    8.Kowaljow, E. et al. A 55-year-old natural experiment gives evidence of the effects of changes in fire frequency on ecosystem properties in a seasonal subtropical dry forest. Land Degrad. Dev. 30, 266–277 (2019).
    Google Scholar 
    9.Ferreira, C. C., Santos, X. & Carretero, M. A. Does ecophysiology mediate reptile responses to fire regimes? Evidence from Iberian lizards. PeerJ 4, e2107 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    10.Russell, K. R., Van Lear, D. H. & Guynn, D. C. Prescribed fire effects on herpetofauna: Review and management implications. Wildl. Soc. Bull. 27, 374–384 (1999).
    Google Scholar 
    11.Shine, R., Brown, G. P. & Elphick, M. J. Effects of intense wildfires on the nesting ecology of oviparous montane lizards. Austral. Ecol. 41, 756–767 (2016).
    Google Scholar 
    12.Driscoll, D. A., Smith, A. L., Blight, S. & Maindonald, J. Reptile responses to fire and the risk of post-disturbance sampling bias. Biodivers. Conserv. 21, 1607–1625 (2012).
    Google Scholar 
    13.Hu, Y., Kelly, L. T., Gillespie, G. R. & Jessop, T. S. Lizard responses to forest fire and timber harvesting: Complementary insights from species and community approaches. For. Ecol. Manag. 379, 206–215 (2016).
    Google Scholar 
    14.Hromada, S. J. et al. Response of reptile and amphibian communities to the reintroduction of fire in an oak/hickory forest. For. Ecol. Manag. 428, 1–13 (2018).
    Google Scholar 
    15.Chergui, B., Pleguezuelos, J. M., Fahd, S. & Santos, X. Modelling functional response of reptiles to fire in two Mediterranean forest types. Sci. Total Environ. 732, 139205 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    16.Costa, B. M., Pantoja, D. L., Sousa, H. C., de Queiroz, T. A. & Colli, G. R. Long-term, fire-induced changes in habitat structure and microclimate affect Cerrado lizard communities. Biodivers. Conserv. 29, 1659–1681 (2020).
    Google Scholar 
    17.Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
    Google Scholar 
    18.Arroyo, M. T. K., Cavieres, L., Peñaloza, A., Riveros, M. & Faggi, A. Relaciones fitogeográficas y patrones regionales de riqueza de especies en la flora del bosque lluvioso templado de Sudamérica. In: Ecología de los Bosques Nativos de Chile (eds Armesto, J. et al.) 71–100 (1995).19.González, M. E., Veblen, T. T. & Sibold, J. S. Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. J. Biogeogr. 32, 1187–1202 (2005).
    Google Scholar 
    20.Veblen, T. T. Regeneration patterns in Araucaria araucana forests in Chile. J. Biogeogr. 9, 11 (1982).
    Google Scholar 
    21.Aagesen, D. L. Indigenous resource rights and conservation of the monkey-puzzle tree (Araucaria araucana, Araucariaceae): A case study from southern Chile. Econ. Bot. 52, 146–160 (1998).
    Google Scholar 
    22.Aagesen, D. Burning monkey-puzzle: Native fire ecology and forest management in northern Patagonia. Agric. Human Values 21, 233–242 (2004).
    Google Scholar 
    23.Pollmann, W. & Veblen, T. T. Nothofagus regeneration dynamics in south-central Chile: A test of a general model. Ecol. Monogr. 74, 615–634 (2004).
    Google Scholar 
    24.Ortega, M., Ponce, X. & Tamarín, R. Manual con medidas para la prevención de incendios forestales, IX Región (Corporación Nacional Forestal (CONAF), 2006).
    Google Scholar 
    25.Ferreira, D., Pinho, C., Brito, J. C. & Santos, X. Increase of genetic diversity indicates ecological opportunities in recurrent-fire landscapes for wall lizards. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    26.Nimmo, D. G. et al. Predicting the century-long post-fire responses of reptiles. Glob. Ecol. Biogeogr. 21, 1062–1073 (2012).
    Google Scholar 
    27.Smith, A. L., Michael Bull, C. & Driscoll, D. A. Successional specialization in a reptile community cautions against widespread planned burning and complete fire suppression. J. Appl. Ecol. 50, 1178–1186 (2013).
    Google Scholar 
    28.Kelly, L. T., Bennett, A. F., Clarke, M. F. & Mccarthy, M. A. Optimal fire histories for biodiversity conservation. Conserv. Biol. 29, 473–481 (2015).PubMed 

    Google Scholar 
    29.Valentine, L. E., Reaveley, A., Johnson, B., Fisher, R. & Wilson, B. A. Burning in banksia woodlands: How does the fire-free period influence reptile communities?. PLoS ONE 7, e34448 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Uribe, S. & Estades, C. F. Reptiles in monterey pine plantations of the coastal range of central Chile. Rev. Chil. Hist. Nat. 87, 1–8 (2014).
    Google Scholar 
    31.Santos, X., Badiane, A. & Matos, C. Contrasts in short- and long-term responses of Mediterranean reptile species to fire and habitat structure. Oecologia 180, 205–216 (2016).ADS 
    PubMed 

    Google Scholar 
    32.Ferreira, D., Mateus, C. & Santos, X. Responses of reptiles to fire in transition zones are mediated by bioregion affinity of species. Biodivers. Conserv. 25, 1543–1557 (2016).
    Google Scholar 
    33.Zúñiga, A. H. Changes in the structure of assemblages of three liolaemus lizards (Iguania, liolaemidae) in a protected area of south-central Chile affected by a mixed-severity wildfire. Zoodiversity 54, 265–274 (2020).
    Google Scholar 
    34.Rubio, A. V. & Simonetti, J. A. Lizard assemblages in a fragmented landscape of central Chile. Eur. J. Wildl. Res. 57, 195–199 (2011).
    Google Scholar 
    35.Driscoll, D. A. & Henderson, M. K. How many common reptile species are fire specialists? A replicated natural experiment highlights the predictive weakness of a fire succession model. Biol. Conserv. 141, 460–471 (2008).
    Google Scholar 
    36.Lindenmayer, D. B., Claridge, A. W., Gilmore, A. M., Michael, D. & Lindenmayer, B. D. The ecological roles of logs in Australian forests and the potential impacts of harvesting intensification on log-using biota. Pacific Conserv. Biol. 8, 121–140 (2002).
    Google Scholar 
    37.Evans, M. J., Newport, J. S. & Manning, A. D. A long-term experiment reveals strategies for the ecological restoration of reptiles in scattered tree landscapes. Biodivers. Conserv. 28, 2825–2843 (2019).
    Google Scholar 
    38.Mella, J. E. Guía de Campo Reptiles de Chile. Tomo: 1 Zona Central (2017).39.Whitford, K. R. & McCaw, W. L. Coarse woody debris is affected by the frequency and intensity of historical harvesting and fire in an open eucalypt forest. Aust. For. 82, 56–69 (2019).
    Google Scholar 
    40.Vidal, M. A. & Labra, A. Herpetología de Chile (GráficAndes, 2008).
    Google Scholar 
    41.Meiri, S. & Chapple, D. G. Biases in the current knowledge of threat status in lizards, and bridging the ‘assessment gap’. Biol. Conserv. 204, 6–15 (2016).
    Google Scholar 
    42.Tingley, R., Meiri, S. & Chapple, D. G. Addressing knowledge gaps in reptile conservation. Biol. Conserv. 204, 1–5 (2016).
    Google Scholar 
    43.Watson, J. E. M., Whittaker, R. J. & Dawson, T. P. Habitat structure and proximity to forest edge affect the abundance and distribution of forest-dependent birds in tropical coastal forests of southeastern Madagascar. Biol. Conserv. 120, 311–327 (2004).
    Google Scholar 
    44.Scott, D. M. et al. The impacts of forest clearance on lizard, small mammal and bird communities in the arid spiny forest, southern Madagascar. Biol. Conserv. 127, 72–87 (2006).
    Google Scholar 
    45.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).ADS 

    Google Scholar 
    46.Hu, Y., Urlus, J., Gillespie, G., Letnic, M. & Jessop, T. S. Evaluating the role of fire disturbance in structuring small reptile communities in temperate forests. Biodivers. Conserv. 22, 1949–1963 (2013).
    Google Scholar 
    47.Gutiérrez, J. A., Krenz, J. D. & Ibargüengoytía, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332–337 (2010).
    Google Scholar 
    48.Artacho, P., Saravia, J., Perret, S., Bartheld, J. L. & Le Galliard, J. F. Geographic variation and acclimation effects on thermoregulation behavior in the widespread lizard Liolaemus pictus. J. Therm. Biol. 63, 78–87 (2017).PubMed 

    Google Scholar 
    49.Elzer, A. L. et al. Forest-fire regimes affect thermoregulatory opportunities for terrestrial ectotherms. Austral. Ecol. 38, 190–198 (2013).
    Google Scholar 
    50.Todd, B. D. & Andrews, K. M. Response of a reptile guild to forest harvesting. Conserv. Biol. 22, 753–761 (2008).PubMed 

    Google Scholar 
    51.Santos, X., Sillero, N., Poitevin, F. & Cheylan, M. Realized niche modelling uncovers contrasting responses to fire according to species-specific biogeographical affinities of amphibian and reptile species. Biol. J. Linn. Soc. 126, 55–67 (2019).
    Google Scholar 
    52.Farnsworth, L. M., Nimmo, D. G., Kelly, L. T., Bennett, A. F. & Clarke, M. F. Does pyrodiversity beget alpha, beta or gamma diversity? A case study using reptiles from semi-arid Australia. Divers. Distrib. 20, 663–673 (2014).
    Google Scholar 
    53.Vera-Escalona, I. M., Coronado, T., Muñoz-Mendoza, C. & Victoriano, P. F. Distribución histórica y actual de la lagartija Liolaemus pictus (Dumeril & Bibron 1837) (Liolaemidae) y nuevo límite continental sur de distribución. Gayana 74, 139–146 (2010).
    Google Scholar 
    54.Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B Biol. Sci. 285, 20172241 (2018).
    Google Scholar 
    55.Bowman, D. M. J. S. & Haberle, S. G. Paradise burnt: How colonizing humans transform landscapes with fire. Proc. Natl. Acad. Sci. USA. 107, 21234–21235 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Maia-Carneiro, T., Dorigo, T. A. & Rocha, C. F. D. Influences of seasonality, thermal environment and wind intensity on the thermal ecology of Brazilian sand lizards in a restinga remnant. South Am. J. Herpetol. 7, 241–251 (2012).
    Google Scholar 
    57.Nimmo, D. G., Kelly, L. T., Farnsworth, L. M., Watson, S. J. & Bennett, A. F. Why do some species have geographically varying responses to fire history?. Ecography 37, 805–813 (2014).
    Google Scholar 
    58.Jones, G. M. et al. Megafires: An emerging threat to old-forest species. Front. Ecol. Environ. 14, 300–306 (2016).
    Google Scholar 
    59.Chergui, B., Fahd, S., Santos, X. & Pausas, J. G. Socioeconomic factors drive fire-regime variability in the mediterranean basin. Ecosystems 21, 619–628 (2018).
    Google Scholar 
    60.Hellmich, W. & Goetsch, W. Die eidechsen Chiles, insbesondere die gattung Liolaemus, nach den sammlungen Goetsch-Hellmich, Vol. 24 (1934).61.Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., Villalba,
    A. The ecology of the conifers of southern South America. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S.) 129–135 (Melbourne University Press, Carlton, Victoria, 1995).
    Google Scholar 
    62.Donoso, C. Bosques templados de Chile y Argentina. Variación, Estructura y Dinámica (Editorial Universitaria S.A., 1993).
    Google Scholar 
    63.Fuentes-Ramirez, A., Barrientos, M., Almonacid, L., Arriagada-Escamilla, C. & Salas-Eljatib, C. Short-term response of soil microorganisms, nutrients and plant recovery in fire-affected Araucaria araucana forests. Appl. Soil Ecol. 131, 99–106 (2018).
    Google Scholar 
    64.Urrutia-Estrada, J., Fuentes-Ramírez, A. & Hauenstein, E. Diferencias en la composición florística en bosques de Araucaria-Nothofagus afectados por distintas severidades de fuego. Gayana Bot. 75, 12–25 (2018).
    Google Scholar 
    65.González, M. E., Szejner, M., Muñoz, A. A. & Silva, J. Incendios catastróficos en bosques andinos de Araucaria-Nothofagus: Efecto de la severidad y respuesta de la vegetación. Bosque Nativ. 46, 12–17 (2009).
    Google Scholar 
    66.Luebert, F. & Pliscoff, P. Sinopsis bioclimática y vegetacional de Chile (Editorial Universitaria S.A., 2006).
    Google Scholar 
    67.(CONAF), C. N. F. Análisis de la afectación y severidad de los incendios forestales (2017).68.Zúñiga, A. H. et al. Rodent assemblage composition as indicator of fire severity in a protected area of south-central Chile. Austral. Ecol. 46, 249–260 (2021).
    Google Scholar 
    69.Demangel, D. Reptiles en Chile (Fauna Nativa Ediciones, 2016).
    Google Scholar 
    70.Vera-Escalona, I. et al. Lizards on ice: Evidence for multiple refugia in Liolaemus pictus (Liolaemidae) during the last glacial maximum in the southern Andean beech forests. PLoS ONE 7, e48358 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Ibarra, J. T. & Martin, K. Biotic homogenization: Loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biol. Conserv. 192, 418–427 (2015).
    Google Scholar 
    72.Buckland, S. T., Rexstad, E. A., Marques, T. A. & Oedekoven, C. S. Methods in Statistical Ecology (Springer, 2015).MATH 

    Google Scholar 
    73.Ibarra, J. T. & Martin, K. Beyond species richness: An empirical test of top predators as surrogates for functional diversity and endemism. Ecosphere 6, 1–15 (2015).
    Google Scholar 
    74.Royle, J. A., Dawson, D. K. & Bates, S. Modeling abundance effects in distance sampling. Ecology 85, 1591–1597 (2004).
    Google Scholar 
    75.Marques, T. A., Thomas, L., Fancy, S. G. & Buckland, S. T. Improving estimates of bird density using multiple-covariate distance sampling. Auk 124, 1229–1243 (2007).
    Google Scholar 
    76.Fiske, I. J. & Chandler, R. B. Unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).
    Google Scholar 
    77.R Core Team. R: A Language and Environment for Statistical Computing (2019).78.Furnas, B. J., Newton, D. S., Capehart, G. D. & Barrows, C. W. Hierarchical distance sampling to estimate population sizes of common lizards across a desert ecoregion. Ecol. Evol. 9, 3046–3058 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    79.Burnham, K. P. & Anderson, D. R. Model Selection and Inference. A Practical Information-Theoretical Approach (Springer, 2002).MATH 

    Google Scholar 
    80.Pinheiro, J. & Bates, D. Package ‘nlme’: Linear and Nonlinear Mixed Effects Models (2020).81.Mazerolle, J. M. Package ‘AICcmodavg’: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).82.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Effects of soil texture and nitrogen fertilisation on soil bacterial community structure and nitrogen uptake in flue-cured tobacco

    Accumulation and distribution of N in flue-cured tobacco growing in different soilsAccumulation dynamics of N in different soilsNitrogen gradually increased in loam soil, clay loam, and sandy loam soils with plant growth (Fig. 1), attaining a maximum at the mature-plant stage(2.10 g/plant, 1.43 g/plant, and 2.90 g/plant, respectively). Nitrogen accumulation was lower in plants grown in clay loam than in plants grown in loam soil and sandy loam during the entire growth period, indicating that the N supply capacity of clay loam was relatively weak, and tobacco plants grown in this soil had the lowest levels of N uptake and utilisation. The N uptake and accumulation in flue-cured tobacco grown in loam soil and sandy loam were basically the same before the ceiling stage, but at the mature stage, N accumulation was significantly higher in plants grown in sandy loam than in plants grown in loam soil and clay loam (P  More

  • in

    Quaternary landscape dynamics boosted species dispersal across Southeast Asia

    Surface processes model and forcing mechanismsLandscape evolution over the last one million years interval is performed with the open-source modelling code Badlands34. It simulates the evolution of topography induced by sediment erosion, transport, and deposition (Fig. 1a). Amongst the different capabilities available in Badlands, we applied the fluvial incision and hillslope processes, which are described by geomorphic equations and explicitly solved using a finite volume discretisation. In this study, soil properties are assumed to be spatially and temporally uniform over the region, and we do not differentiate between regolith and bedrock. It is worth noting that the role of flexural responses induced by erosion and deposition is also not accounted for. Under these assumptions, the continuity of mass is governed by vertical land motion (U, uplift or subsidence in m/yr), long-term diffusive processes and detachment-limited fluvial runoff-based stream power law:$$frac{partial z}{partial t}=U+kappa {nabla }^{2}z+epsilon {(PA)}^{m}nabla {z}^{n}$$
    (1)
    where z is the surface elevation (m), t is the time (yr), κ is the diffusion coefficient for soil creep34 with different values for terrestrial and marine environments, ϵ is a dimensional coefficient of erodibility of the channel bed, m and n are dimensionless empirically constants, that are set to 0.5 and 1, respectively, and PA is a proxy for water discharge that numerically integrates the total area (A) and precipitation (P) from upstream regions34.Both κ and ϵ depend on lithology, precipitation, and channel hydraulics and are scale dependent34. All our landscape evolution simulations are running over a triangular irregular network of ~18. e6 km2 with a resolution of ~5 km, and outputs are saved every 1000 yr.The detachment-limited fluvial runoff-based stream power law is computed with a ({{{{{{{mathcal{O}}}}}}}}(n))-efficient ordering approach54 based on a single-flow-direction approximation where water is routed down the path of the steepest descent. The flow routing algorithm and associated sediment transport from source to sink depend on surface morphology, and sediment deposition occurs under three circumstances: (1) existence of depressions or endorheic basins, (2) if local slope is less than the aggregational slope in land areas and (3) when sediments enter the marine realm34. Submerged sediments are then transported by diffusion processes defined with a constant marine diffusion coefficient34.All landscape simulations are constrained with different forcing mechanisms, and five scenarios were tested (Supplementary Table 2).First, we impose precipitation estimates from the PaleoClim database38,39,40. These estimates are products from paleoclimate simulations (coupled atmosphere-ocean general circulation model) downscaled at approximately the same resolution as our landscape model (~5 km at the equator). Annual averages of precipitation rates are then used to provide rainfall trends in our simulations based on the ten specific snapshots available (from the mid-Pliocene warm period to late Holocene and present day). Between two consecutive snapshots, we assume that precipitation remains constant for the considered time interval. For exposed regions that are considered flooded in the PaleoClim database, we define offshore precipitations using a nearest neighbour algorithm where closest precipitation estimates are averaged from PaleoClim inland regions. To evaluate the role of precipitation variability on landscape dynamics, we also run a uniform rainfall scenario (2 m/yr obtained by averaging the annual precipitation rates from the PaleoClim database).Secondly, the models are forced with sea level fluctuations known to play a major role in the flooding history of the Sunda Shelf11,13,53. Two sea level curves are tested (Supplementary Fig. 1d). To account for the inherent uncertainty in reconstructed sea level variations, we chose a first curve37 obtained from a sea level stack constructed from five to seven individual reconstructions that agrees with isostatically adjusted coral-based sea level estimates at both 125 and 400 ka. The second one is taken from the global sea level curve reconstruction36 based on benthic oxygen isotope data and has been recently used to reconstruct the subsidence history of Sundaland17,18.The last forcing considered in our study is the tectonic regime. First, we chose to explore a non-tectonic model based on the default assumption of stability for the shelf17. Secondly, we assumed a uniform subsidence rate of −0.25 mm/yr recently derived from a combination of geomorphological observations, coral reef growth numerical simulations and shallow seismic stratigraphy interpretations17. Then, to represent the regional variations in the tectonic regime, we have compiled and digitised a number of calibration points (Supplementary Fig. 1b and Table 1) that were used to produce a subsidence and uplift map by geo-referencing calibration points and available tectonic polygons, and by Gaussian-smoothing and normalising the uplift and subsidence rates between the calibrated range to avoid sharp transitions in regions without observations. The resulting map does not account for fine spatial scale tectonic features such as fault systems43,55 or orogenic and sedimentary related isostatic responses. It rather represents a regional vertical tectonic trend with an overall uplift of Wallacea and NW Borneo regions and long-wavelength subsidence of Sunda Shelf and Singapore Strait17.Landscape evolution model calibrationThe landscape models start during the Calabrian in the Pleistocene Epoch, one million years before the present. At each time interval, the landscape evolves following Eq. (1) and the surface adjusts under the action of rivers and soil creep (Fig. 1a). In addition to surface changes, we extract morphometric characteristics such as drainage basins extents, river profiles lengths (Fig. 3 and Supplementary Fig. 2), distance between main rivers outlet (Supplementary Fig. 3) and tracks the cumulative erosion and deposition over time (Fig. 1b and Supplementary Fig. 1d).For model calibration, we perform a series of steps consisting in adjusting the initial elevation and the erosion–deposition parameters (i.e., κ and ϵ in Eq. (1)) to match with different observations.The initial paleo-surface is obtained by applying the uplift and subsidence rates backwards to calculate the total change in topography for the 1 Myr interval. Then, we test the simulated paleo-river drainages against results from a combination of phylogenic studies9,13 and paleo-river channels and valleys found from seismic and well surveys41,42,44. Iteratively, we modify our paleo-elevation to ensure those main river basins (e.g., Johore, Siam, Mekong, East Sunda) encapsulate the paleo-drainage maps reconstructed using lowland freshwater taxa described in13 (Supplementary Fig. 1a and Table 4) and that the major rivers follow paleo-rivers systems derived from both 2D and 3D seismic interpretations (Fig. 1b).For surface processes parametrisation, we tested different ranges of diffusion and erodibility coefficients and compared the final sediment accumulation across the Sunda Shelf (Fig. 1b) using estimated deposit thicknesses41,42,43,44. The Sunda Shelf is predominantly experiencing deposition over the past 500 kyr and increases in deposition are positively correlated with periods of sea level rise (i.e., Pearson’s coefficients for correlation with sea level above 80%, Supplementary Fig. 1d). After exploring a range of values, we set κ values to 1. e−2 and 8. e−2 m2/yr for terrestrial and marine environments and ϵ between 2.5 and 7.5 e−8yr−1 for the different scenarios to fit with chosen surveys dataset (Supplementary Table 2 and 3).Upon uniform subsidence case (−0.25mm/yr), flooding is limited, and the shelf only undergoes two full marine transgressions ( >60% of the shelf flooded) around 125 ka and during the last 10–20 kyr (Supplementary Fig. 1c). Upon spatially variable tectonics (non-uniform subsidence), partial flooding events are more pervasive, with higher magnitudes and greater temporal durations. Due to the shallow and flat physiography of Sundaland, we also note that even small increases in sea level amplitudes ( 0) and values higher than one and two standard deviations (zsc  > 1 and 2, respectively, Supplementary Fig. 1b). The approach provides a quantitative assessment of flow maps sensitivity to the chosen resistance maps.To gain additional insights into the distribution of connectivity regions across the shelf, we also employed a local spatial autocorrelation indicator, namely the Getis-Ord Gi⋆ index57. This hotspot analysis method assesses spatial clustering of the obtained current density maps, and the resultant z-scores provide spatially and statistically significant high or low clustered areas. The approach consists in looking at each local current value relative to its neighbouring one. From this spatial analysis, we extract both statistically significant hot and cold spots for each combination of resistance surfaces (Supplementary Fig. 5c). To extract statistically significant and persistent biogeographic connectivity areas across the exposed Sunda Shelf, we then combine all hotspots together and define preferential migration pathways as regions having a positive Gi⋆ z-scores for all resistance surfaces combination.We used the function zscore in the SciPy stats package to obtain the z-scores and the ESDA library for the Gi⋆ indicator computation.Modelling assumptions and limitationsThere are a number of important caveats for interpreting our modelling results.First, we made several assumptions related to our transient landscape evolution simulations. A single-flow direction algorithm54 was used to simulate temporal changes in river pathways. Recent work58 has shown that this algorithm might lead to numerical diffusion, fast degradation of knickpoints and underestimation of river captures particularly in flat regions. One way to address this would be to use a multiple flow direction method59 which allow for a better representation of flow distribution across the landscape. In this study, we also assumed a uniform and invariant soil erodibility coefficient for the entire domain and a detachment-limited erosion law. Even though the erodibility coefficient was calibrated independently for each simulation (Supplementary Table 3), soil cover and properties vary notably between Borneo, Sumatra, Java and the Malay Peninsula and soil conditions for the exposed sea floor would have changed significantly over successive flooding events12. Badlands software34 allows for multiple erodibility coefficients representing different soil compositions to be defined, and this functionality could be used to evaluate the impact of differential erosion on physiographic changes. Similarly, several transport-limited laws are also available and could be compared against our detachment-limited simulations.A second set of simplifications lies in the climatic conditions (i.e., rainfall regimes) used to force our simulations. We relied on the PaleoClim database40 which contains nine high-resolution paleoclimate dataset38,39,40 corresponding to specific time periods (4.2–0.3 ka, 8.326–4.2 ka, 11.7–8.326 ka, 12.9–11.7 ka, 14.7–12.9 ka, 17.0–14.7 ka, ca. 130 ka, ca. 787 ka and 3.205 Ma). The climate simulations from which these time periods are extracted do not consider emerged Sunda Shelf for the oldest inter-glacial events which can result in incorrect climatic pattern60. From 0.3–17 ka, precipitation fields in PaleoClim are obtained from the TRaCE21ka transient simulations of the last 21 kyr run with the CCSM3 model40. Although Fordham et al.39 show that precipitation errors range from 10–200% in their modern experiment, the paleoclim dataset provides a statistical downscaling method that includes a bias correction (namely the Change-Factor method, in which the anomaly between the modern simulation and observations is removed from the paleoclimate experiment) allowing the use of the model for paleoclimate studies40. The very same technique is applied for 130 ka and 787 ka fields that were obtained with different GCMs (namely HadCM3 and CCSM2). Given the absence of a million-year long transient climate simulation, we oversimplified the climatic conditions by considering that precipitation distribution and intensity remain constant between two consecutive intervals, generating an artificial stepwise evolution of rainfall through time. To evaluate the sensitivity of physiographic responses on the Sunda Shelf to precipitation, we ran a model with uniform rainfall over 1 Myr (scenario 4). Despite changes in the timing and extent of basins reorganisation (Supplementary Fig. 2 and Fig. 3b), we found limited differences in terms of flooding history and erosion/deposition patterns when compared with scenario 5 (Supplementary Fig. 1c, d and Supplementary Table 2). Recent work60 suggests clear regional responses induced by the emerged Sunda Shelf with seasonal enhancement of moisture convergence and continental precipitation induced by thermal properties of the land surface. This could significantly impact our simulation results. However, and at the time of writing, more continuous high-resolution paleoclimatic simulations considering the shelf as an emerged continental platform were still unavailable. Using high-resolution multi-model outputs would allow to target the uncertainty on climatic maps4 and will surely represent a significant advance for future studies. One approach would have used the orographic rainfall capability61 available in Badlands. The method is better suited to run generic simulations but falls short when applied to real cases as it relies on imposing paleo-environmental boundary conditions (e.g., temporal changes in wind direction and speed, moisture stability frequency or depth of moist layer) difficult to obtain for Earth-like model applied over geological time scales.Finally, our species-agnostic approach assumes an equally weighted cost between the three considered geomorphic features and does not account for additional factors (temperature, vegetation cover, solar radiation to cite a few), which are all important when assessing landscape connectivity for wildlife. Most importantly, we model connectivity at very large scales (5 km resolution). Often, species are highly influenced by microclimates and small-scale topography47. From our regional-scale simulations and hotspot analysis (Fig. 6), higher resolution models focusing on highly connected regions (across the Gulf of Thailand and Siam basin) could be applied to produce more detailed representations of species migration in the region. In addition, current flow field calculations from Circuitscape35 rely on randomly selecting nodes around the region of interest. For connectivity analysis, we used 33 terrestrial points located around the perimeter of the buffered Sundaland area (white contour line in Fig. 1b). Using a selection of nodes in a buffered region allows to reduce the bias in current density estimates46. However, bias might depend on the buffer size compared to the study area as well as the number of nodes selected46,47. Because of memory limitations and the great number of computed grids used to cover the past 500 kyr, we made a trade-off between buffer size and the number of selected points for pairwise calculations. Additional experiments could possibly be tested to evaluate bias in the proposed connectivity maps potentially using a tilling approach to reduce cell number45. More

  • in

    Correction to: Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups

    Author notesNina DombrowskiPresent address: Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, AB Den Burg, The NetherlandsKiley W. SeitzPresent address: EMBL Heidelberg, Meyerhofstraße 1, Heidelberg, GermanyThese authors contributed equally: Marguerite V. Langwig, Valerie De Anda.AffiliationsDepartment of Marine Science, University of Texas at Austin, Marine Science Institute, Port Aransas, TX, USAMarguerite V. Langwig, Valerie De Anda, Nina Dombrowski, Kiley W. Seitz, Ian M. Rambo & Brett J. BakerDepartment of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, AustraliaChris GreeningDepartment of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USAAndreas P. TeskeAuthorsMarguerite V. LangwigValerie De AndaNina DombrowskiKiley W. SeitzIan M. RamboChris GreeningAndreas P. TeskeBrett J. BakerCorresponding authorsCorrespondence to
    Marguerite V. Langwig or Brett J. Baker. More

  • in

    Diversity and compositional changes in the gut microbiota of wild and captive vertebrates: a meta-analysis

    Literature search and data retrievalWe performed a systematic literature search on the internet (Google Scholar, Web of Science) using the following keywords: [gut microbiota], [animal microbiome], [gut microbiome 16S] and [captive AND wild AND microbiota]. This search yielded 222 articles on animal microbiomes published between 2014 and 2020. The materials and methods of these articles were analysed to ascertain whether the study met the following criteria: (i) all wild and captive samples were processed using identical procedures, (ii) compared wild and captive animals were phylogenetically closely related (members of the same species or species complex), (iii) captive individuals were born in captivity, or no information was provided about the origin of the captive animals; i.e., wild animals brought into captivity and sampled some time later were excluded, (iv) captive animals that underwent a deliberate selection process (e.g. inbred mice or domestic animals) were also excluded for considering them genetically not comparable to the wild counterparts, and (v) only datasets with sample sizes over 12 individuals were considered for analysis. Raw data were extracted from the databases and repositories indicated in the articles (accession numbers listed in the “Bioinformatic resources”).Bioinformatic sequencing data processingDatafiles from the different studies were (i) stored at the University of Copenhagen’s Electronic Research Data Repository (ERDA), (ii) assigned a unique study identifier and (iii) re-processed in the Danish National Supercomputer for Life Sciences ‘Computerome2’ using a new bioinformatic pipeline we developed for processing data with different characteristics, including sequencing mode, read length and 16S rRNA gene fragment. The entire code can be found in the “Bioinformatic resources”. In short, for each individual dataset, we quality-filtered (mean phred score of q = 25) and (if necessary) trimmed and merged the paired-end reads based on the sequence overlap using AdapterRemoval224. Primers (if present) were trimmed using Cutadapt25, and reads were dereplicated with USEARCH Derep26 using a relative minimum copy number threshold of 0.01% of the total sequencing depth. Reads were then converted into zero-ratio OTUs using the denoising algorithm UNOISE327, and USEARCH was used to map the reads back to the OTUs and create an OTU table. HS-Blast28 was used to assign taxonomy against the non-redundant Silva 132 database29, and taxonomic assignments were filtered using different identity thresholds for each taxonomic level: 97% for genus-level taxonomy, 95% for family-level taxonomy, 92% for order-level taxonomy and 90% for higher taxonomic levels30. To minimise the impact of incorrectly assigned taxa, taxonomic annotations below these identity thresholds were converted into unclassified, and not considered in downstream analyses. This pipeline yielded relative read abundances assigned to different taxa for each individual dataset analysed.Data quality filteringIndividual data files generated by the aforementioned pipeline were aggregated by study and host species into genus-level abundance tables. The two datasets of Sarcophilus harrisii retrieved from two different studies were processed independently. Taxonomic resolution was limited to the genus level to maximise taxonomic annotation rate and minimise biases introduced by the different 16S rRNA gene markers employed in the analysed studies. On the one hand, wild animals’ microbial communities often contain taxa that do not map to any catalogued species with enough molecular similarity to assign species-level annotation. On the other hand, the analysed datasets were generated based on the V4, V3–V4 and V1–V3 regions of the 16S rRNA gene (Supplementary Dataset), which hindered comparability at the ASV or zOTU level. We then proceeded to quality-filter the genus-level abundance tables of each species through filtering individuals by minimum sequencing depth, minimum diversity coverage and taxonomic annotation. Only individual datasets with more than 1000 reads and diversity coverage values over 99% were retained, and final genus-level abundance tables that contained at least five animals in each contrasting group were considered for analysis. Since the studied datasets contained traces of dietary items and host DNA, read counts assigned to taxonomic groups not assigned to Bacteria genera, or not present in the LTPs132_SSU release of the SILVA Living Tree (https://www.arb-silva.de/projects/living-tree) used for measuring the phylogenetic relationships among bacteria, were removed to ensure accurate measurements of phylogenetic diversities. In the cases where one group (either wild or captive) outnumbered the other, samples were randomly selected to ensure even sample sizes.Diversity and compositional analysesDiversity and compositional analyses were carried out in the R statistical environment v.3.6.331 and Python 3.8 based on the Hill numbers framework. The operations explained below were conducted using the R packages ape32, dendextend33, dmetar34, hilldiv35, meta36, metamicrobiomeR37, phylosignal38, phytools39, treedist40, vegan41, and the python package qdiv42. Hereafter functions and their respective packages are displayed as ‘package::function’. Statistical significance level was set at a FDR-adjusted p-value of 0.05. All charts and figures in the manuscript were originally generated either in R (full code of all original figures is included in “Bioinformatic resources”) and subsequently modified in Adobe Illustrator to achieve the desired layout without distorting the dimensions of the quantitative elements.Hill numbersThe Hill numbers framework encompasses the group of diversity measures that quantify diversity in units of equivalent numbers of equally abundant taxa43,44—in our context bacteria genera. Hill numbers provide a general statistical framework that is sufficiently robust and flexible to address a wide range of scientific questions that molecular ecologists regularly try to answer through measurement, estimation, partitioning and comparison of diversities45. To obtain a complete vision of the gut microbiome differences between wild and captive animals, we conducted all our diversity and compositional analyses based on three contrasting Hill numbers based metrics: the so-called dR, which only accounts for richness (i.e., order of diversity 0, whether bacteria taxa were present or not), dRE which considered Richness + Evenness of order of diversity 1 (i.e., the relative abundances of bacteria are proportionally weighed) and dRER, which considered Richness, + Evenness + Regularity (i.e., the phylogenetic relationships among bacteria are accounted for). Detailed explanations of these metrics can be found elsewhere17,46,47.Phylogenetic treesThe dRER metric required a Bacterial phylogenetic tree to compute the relatedness among bacterial taxa. As our datasets contained different fragments of the 16S rRNA gene, and thus we were unable to generate a phylogenetic tree directly from our DNA sequence data, we relied on the SILVA Living Tree, and used the LTPs132_SSU release as the reference phylogenetic tree. In addition, the time-calibrated host phylogeny required by the host phylogenetic signal and phylosymbiosis analyses was generated using Timetree48.Diversity metrics and meta-analysisWe computed individual-based diversity metrics using the function hilldiv::hill_div, and obtained average alpha diversity metrics per species, as well as wild and captive populations per species. We used a Kruskal–Wallis (KW) test as implemented in the function hilldiv::div_test to ascertain whether the mean diversity values varied across analysed host species, and a PERMANOVA (PMV) test using vegan::adonis function based on the pairwise dissimilarity matrix to test whether host species were compositionally distinct.Average alpha diversity metrics of wild and captive populations per species were used to conduct a random-effects-model (REM) meta-analysis with raw effect sizes using the function meta::metacont. We used the Sidik–Jonkman estimator for the between-study variance and the Knapp–Hartung–Sidik–Jonkman adjustment method. The overall effect was calculated using Hedge’s g (SMD) and its 95% confidence interval and p-value. An identical analysis was performed for the entire dataset and two representative subsets of five species, containing only datasets derived from primates and cetartiodactylans. Higgin’s and Thompson’s I2 test, Tau-squared T2 and Cochran’s Q were used for quantifying the heterogeneity between the included species. Due to the high heterogeneity found in the study, we evaluated whether the between-study heterogeneity was caused by outliers with extreme effect sizes, which could be distorting our overall effect. We defined an outlier if the species’s confidence interval did not overlap with the confidence interval of the pooled effect using dmetar::find.outliers function.The function detected three outliers in dR metric (GOGO, PEMA and TUTR), four in dRE (GOGO, PEMA, MOCH, EQKI) and seven in dRER (RHBR, PYNE, PEMA, TUTR, MOCH, CENI and AIME). Even when these outliers were excluded from the analysis the I2 heterogeneity value was substantial for dR (I2 from 79.3 to 70.3%) and moderate for dRE (I2 from 80.1 to 60.0%) and dRER (I2 from 86.9 to 54.2%) and significant for both (Cochran’s Q, p-value  More

  • in

    Possible impacts of the predominant Bacillus bacteria on the Ophiocordyceps unilateralis s. l. in its infected ant cadavers

    Sample collectionSamples were collected from an evergreen broadleaf forest in central Taiwan (Lianhuachi Experimental Forest, Nantou County, 23°55′7″N 120°52′58″E) from January 2017 to March 2018. Permission to collect plants for the study was obtained from the Lianhuachi Research Center, Taiwan Forestry Research Institute, Council of Agriculture, Executive Yuan, Taiwan (Permission no.: 1062272538). The present study complies with the International Union for Conservation of Nature Policy Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora. Ant cadavers with fungal growth were collected from understory plants with a height of less than 3 m. Ant cadavers infected with O. unilateralis s. l. were removed carefully by cutting the leaf and placing it into a 50-mL conical centrifuge tube, which was then transported to the laboratory. Only cadavers in which the fungal growth stage preceded the development of perithecia, which theoretically has the highest biological activity, were collected (Fig. 1). In total, 24 infected P. moesta and 20 infected P. wolfi samples were collected.Figure 1Ophiocordyceps unilateralis sensu lato-infected (a) Polyrhachis moesta and (b) P. wolfi, with the stroma growing from the ant cadaver. The specimens were collected from the Lianhuachi Research Center, Taiwan and photographed in the laboratory by Wei-Jiun Lin.Full size imageIsolation and cultivation of bacteriaAnts on the leaves were first identified to species and then, using tweezers, each ant was placed carefully into a sterilized 1.5-mL microcentrifuge tube [see details in Lin et al. (2020)15. Samples were shaken one by one in 600 μL of sterilized water for a few seconds at 3000 revolutions/min (rpm) using a vortex mixer (AL-VTX3000L, CAE technology Co., Ltd., Québec, Canada), and were then soaked with 600 μL of 70% ethanol to sterilize the ant’s surface. The ethanol on the samples was washed twice with 600 μL of sterilized water, then vortexed in 400 μL of sterilized water. Next, 200 μL of the supernatant was spread homogeneously onto a Luria–Bertani (LB) agar plate (25 g Luria–Bertani broth and 15 g agar per liter) to confirm the absence of live bacteria.Bacteria from inside the ant host were released by homogenizing the ant host in 200 μL of water and culturing on LB agar plates at 28 °C for 2 days. Bacteria from each of the ant individuals were cultured independently and approximately equal numbers of the isolates were picked randomly with sterile toothpicks, and were suspended in the LB medium supplemented with 15% v/v glycerol and maintained at − 80 °C until the time of examination. In total, 247 bacterial isolates from P. moesta and 241 bacterial isolates from P. wolfi were collected.In addition to the bacterial isolates from the ant bodies, 60 bacterial isolates from soil, leaves, and air in the same forest were collected for the purpose of comparing their resistance to naphthoquinones (see below) by using the aforementioned procedure but without initial cleaning and sterilizing of the sample surface.Bacterial identificationBacteria collected from the ant hosts were identified by gene marker sequencing. Bacterial isolates were cultured in LB medium at 28 °C overnight to reach the log-phase, and genomic DNA was extracted following the methods described in Vingataramin and Frost (2015)20. Conspecies/strains of the bacterial isolates from the same host were determined using the randomly amplified polymorphic DNA (RAPD) method with the primer 5′-GAGGGTGGCGGTTCT-3′. PCR amplification was performed as follows: initial denaturation at 95 °C for 5 min, 40 cycles of amplification including denaturation at 95 °C for 1 min, annealing at 42 °C for 30 s, and extension at 72 °C for 1 min, followed by a final extension at 72 °C for 10 min. PCR products were run in 2% agarose gel and bacterial isolates were characterized by fragment patterns. For each of the ant hosts, bacterial isolates with the same RAPD pattern were considered to be the same strain. In total, 106 and 178 strains were found from P. moesta and P. wolfi, respectively. One of the bacterial isolates was selected at random to represent the strain and coded with “JYCB” followed by a series of numbers (e.g., JYCB191). Taxonomic status of each strain was determined to species by using the V3/V4 region of the 16S rDNA gene. PCR amplification with the primer set (8F: 5′-AGAGTTTGATCCTGGCTCAG-3′ and 1541R: 5′-AAGGAGGTGATCCAGCCGCA-3′)21,22 was performed under the following conditions: initial denaturation at 95 °C for 5 min, 40 cycles of amplification including denaturation at 95 °C for 1 min, annealing at 55 °C for 30 s, and extension at 72 °C for 1 min 45 s, followed by a final extension at 72 °C for 10 min. PCR products were first checked by running a gel, and were then sequenced at Genomics, Inc. (New Taipei City, Taiwan).The sequences of the bacterial strains from each of the ant hosts were first analyzed by the unweighted pair group method with arithmetic mean (UPGMA) analysis and clustered into clades according to the sequence dissimilarity ( More

  • in

    Endophytic bacterial communities are associated with leaf mimicry in the vine Boquila trifoliolata

    1.Wiens, D. Mimicry in plants. Evol. Biol. 11, 365–403 (1978).
    Google Scholar 
    2.Pasteur, G. A classificatory review of mimicry systems. Annu. Rev. Ecol. Syst. 13, 169–199 (1982).
    Google Scholar 
    3.Barrett, S. C. H. Mimicry in plants. Sci. Am. 257, 76–85 (1987).
    Google Scholar 
    4.Barlow, B. A. & Wiens, D. Host-parasite resemblance in Australian mistletoes: The case for cryptic mimicry. Evolution 31, 69–84 (1977).PubMed 

    Google Scholar 
    5.Ehleringer, J. R. et al. Mistletoes: A hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70, 234–237 (1986).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Canyon, D. V. & Hill, C. J. Mistletoe host-resemblance: A study of herbivory, nitrogen and moisture in two Australian mistletoes and their host trees. Aust. J. Ecol. 22, 395–403 (1997).
    Google Scholar 
    7.Blick, R. A. J., Burns, K. C. & Moles, A. T. Predicting network topology of mistletoe–host interactions: Do mistletoes really mimic their hosts?. Oikos 121, 761–771 (2012).
    Google Scholar 
    8.Gianoli, E. & Carrasco-Urra, F. Leaf mimicry in a climbing plant protects against herbivory. Curr. Biol. 24, 984–987 (2014).CAS 
    PubMed 

    Google Scholar 
    9.Gianoli, E., Saldaña, A., Jiménez-Castillo, M. & Valladares, F. Distribution and abundance of vines along the light gradient in a southern temperate rainforest. J. Veg. Sci. 21, 66–73 (2010).
    Google Scholar 
    10.Gianoli, E. Eyes in the chameleon vine?. Trends Plant Sci. 22, 4–5 (2017).CAS 
    PubMed 

    Google Scholar 
    11.Gianoli, E. & Molina-Montenegro, M. A. Leaf damage induces twining in a climbing plant. New Phytol. 167, 385–390 (2005).PubMed 

    Google Scholar 
    12.González-Teuber, M. & Gianoli, E. Damage and shade enhance climbing and promote associational resistance in a climbing plant. J. Ecol. 96, 122–126 (2008).
    Google Scholar 
    13.Calder, D. M. Mistletoes in focus: An introduction. In The Biology of Mistletoes (eds Calder, D. M. & Bernhardt, P.) 1–18 (Academic Press, 1983).
    Google Scholar 
    14.Cook, M. E., Leigh, A. & Watson, D. M. Hiding in plain sight: Experimental evidence for birds as selective agents for host mimicry in mistletoes. Botany 98, 525–531 (2020).
    Google Scholar 
    15.Atsatt, P. R. Mistletoe leaf shape: A host morphogen hypothesis. In The Biology of Mistletoes (eds Calder, D. M. & Bernhardt, P.) 259–275 (Academic Press, 1983).
    Google Scholar 
    16.Hall, P. J., Badenoch-Jones, J., Parker, C. W., Letham, D. S. & Barlow, B. A. Identification and quantification of cytokinins in the xylem sap of mistletoes and their hosts in relation to leaf mimicry. Aust. J. Plant Physiol. 14, 429–438 (1987).CAS 

    Google Scholar 
    17.Watson, D. M. Mistletoes of Southern Australia (CSIRO, 2019).
    Google Scholar 
    18.Holopainen, J. K. & Blande, J. D. Molecular plant volatile communication. In Sensing in Nature (ed. López-Larrea, C.) 17–31 (Springer Science, 2012).
    Google Scholar 
    19.Baldwin, I. T., Kessler, A. & Halitschke, R. Volatile signaling in plant–plant–herbivore interactions: What is real?. Curr. Opin. Plant Biol. 5, 351–354 (2002).CAS 
    PubMed 

    Google Scholar 
    20.Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144 (2010).PubMed 

    Google Scholar 
    21.Karban, R., Yang, L. H. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52 (2014).PubMed 

    Google Scholar 
    22.Coyne, J. A. Fantastic and plastic mimicry in a tropical vine. Why Evolution is True Blog. http://whyevolutionistrue.com/2014/04/26/fantastic-and-plastic-mimicry-in-a-tropical-vine (2014).23.Pannell, J. R. Leaf mimicry: Chameleon-like leaves in a Patagonian vine. Curr. Biol. 24, R357–R359 (2014).CAS 
    PubMed 

    Google Scholar 
    24.Baluška, F. & Mancuso, S. Vision in plants via plant-specific ocelli?. Trends Plant Sci. 21, 727–730 (2016).PubMed 

    Google Scholar 
    25.Richardson, A. O. & Palmer, J. D. Horizontal gene transfer in plants. J. Exp. Bot. 58, 1–9 (2007).CAS 
    PubMed 

    Google Scholar 
    26.Bock, R. The give-and-take of DNA: Horizontal gene transfer in plants. Trends Plant Sci. 15, 11–22 (2010).CAS 
    PubMed 

    Google Scholar 
    27.Yoshida, S., Maruyama, S., Nozaki, H. & Shirasu, K. Horizontal gene transfer by the parasitic plant Striga hermonthica. Science 328, 1128 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    28.Christin, P. A. et al. Adaptive evolution of C4 photosynthesis through recurrent lateral gene transfer. Curr. Biol. 22, 445–449 (2012).CAS 
    PubMed 

    Google Scholar 
    29.Gao, C. et al. Horizontal gene transfer in plants. Funct. Integr. Genomics 14, 23–29 (2014).CAS 
    PubMed 

    Google Scholar 
    30.Diao, X., Freeling, M. & Lisch, D. Horizontal transfer of a plant transposon. PLoS Biol. 4, e5 (2006).PubMed 

    Google Scholar 
    31.El Baidouri, M. et al. Widespread and frequent horizontal transfers of transposable elements in plants. Genome Res. 24, 831–838 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    32.Prentice, H. C., Li, Y., Lönn, M., Tunlid, A. & Ghatnekar, L. A horizontally transferred nuclear gene is associated with microhabitat variation in a natural plant population. Proc. R. Soc. B Biol. Sci. 282, 20152453 (2015).
    Google Scholar 
    33.Yu, A. et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc. Natl. Acad. Sci. 110, 2389–2394 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Takahashi, K. Influence of bacteria on epigenetic gene control. Cell. Mol. Life Sci. 71, 1045–1054 (2014).CAS 
    PubMed 

    Google Scholar 
    35.Ramos-Cruz, D., Troyee, A. N. & Becker, C. Epigenetics in plant organismic interactions. Curr. Opin. Plant Biol. 61, 102060 (2021).CAS 
    PubMed 

    Google Scholar 
    36.Lodewyckx, C. et al. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606 (2002).
    Google Scholar 
    37.Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. & Dowling, D. N. Bacterial endophytes: Recent developments and applications. FEMS Microbiol. Lett. 278, 1–9 (2008).CAS 
    PubMed 

    Google Scholar 
    38.Barrett, S. C. H. Crop mimicry in weeds. Econ. Bot. 37, 255–282 (1983).
    Google Scholar 
    39.McElroy, J. S. Vavilovian mimicry: Nikolai Vavilov and his little-known impact on weed science. Weed Sci. 62, 207–216 (2014).CAS 

    Google Scholar 
    40.Ye, C.-Y. et al. Genomic evidence of human selection on Vavilovian mimicry. Nat. Ecol. Evol. 3, 1474–1482 (2019).PubMed 

    Google Scholar 
    41.Ruiz, E. Lardizabalaceae. In Flora de Chile Vol. 2 (eds Marticorena, C. & Rodríguez, R.) 24–27 (Universidad de Concepción, 2003).
    Google Scholar 
    42.Muñoz-Schick, M. Flora del Parque Nacional Puyehue (Editorial Universitaria, 1980).
    Google Scholar 
    43.Dorsch K. Hydrogeologische Untersuchungen der Geothermalfelder von Puyehue und Cordón Caulle, Chile. PhD thesis (Ludwig-Maximilians-Universität, 2003).44.Valladares, F., Saldaña, A. & Gianoli, E. Costs versus risks: Architectural changes with changing light quantity and quality in saplings of temperate rainforest trees of different shade tolerance. Austral Ecol. 37, 35–43 (2012).
    Google Scholar 
    45.Salgado-Luarte, C. & Gianoli, E. Shade-tolerance and herbivory are associated with RGR of tree species via different functional traits. Plant Biol. 19, 413–419 (2017).CAS 
    PubMed 

    Google Scholar 
    46.Salgado-Luarte, C. & Gianoli, E. Herbivory on temperate rainforest seedlings in sun and shade: Resistance, tolerance and habitat distribution. PLoS One 5, e11460 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Salgado-Luarte, C. & Gianoli, E. Herbivores modify selection on plant functional traits in a temperate rainforest understory. Am. Nat. 180, E42–E53 (2012).PubMed 

    Google Scholar 
    48.Sun, B. Y., Stuessy, T. F., Humaña, A. M., Riveros, G. M. & Crawford, D. J. Evolution of Rhaphithamnus venustus (Verbenaceae), a gynodioecious hummingbird-pollinated endemic of the Juan Fernandez Islands, Chile. Pac. Sci. 50, 55–65 (1996).
    Google Scholar 
    49.Saldaña, A. & Lusk, C. H. Influencia de las especies del dosel en la disponibilidad de recursos y regeneración avanzada en un bosque templado lluvioso del sur de Chile. Rev. Chil. Hist. Nat. 76, 639–650 (2003).
    Google Scholar 
    50.Gut, B. Árboles-Trees Patagonia. Árboles nativos e introducidos en Patagonia (Vázquez Mazzini, 2017).
    Google Scholar 
    51.Sahu, S. K., Thangaraj, M. & Kathiresan, K. DNA extraction protocol for plants with high levels of secondary metabolites and polysaccharides without using liquid nitrogen and phenol. ISRN Mol. Biol. 2012, 205049 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    52.Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).CAS 
    PubMed 

    Google Scholar 
    53.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    55.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).MATH 

    Google Scholar  More