1.Elphick, C. S. Why study birds in rice fields?. Waterbirds 33(sp1), 1–7. https://doi.org/10.1675/063.033.s101 (2010).MathSciNet
Article
Google Scholar
2.Machado, I. F. & Maltchik, L. Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands?. Aquat. Conserv. Mar. Freshw. Ecosyst. 20(1), 39–46 (2010).
Google Scholar
3.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18(4), 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9 (2003).Article
Google Scholar
4.Shuford, W. D., Humphrey, J. M. & Nur, N. Breeding status of the Black tern in California. West. Birds 32, 189–217 (2001).
Google Scholar
5.Sánchez-Guzmán, J. M. et al. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: The importance of the rice fields in Extremadura, Spain. Biodivers. Conserv. 16(12), 3333–3344. https://doi.org/10.1007/s10531-006-9018-9 (2007).Article
Google Scholar
6.Lane, S. J. & Fujioka, M. The impact of changes in irrigation practices on the distribution of foraging egrets and herons (Ardeidae) in the rice fields of central Japan. Biol. Conserv. 83(2), 221–230. https://doi.org/10.1016/S0006-3207(97)00054-2 (1998).Article
Google Scholar
7.Bambaradeniya, C. N. B. et al. Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodivers. Conserv. 13(9), 1715–1753. https://doi.org/10.1023/B:BIOC.0000029331.92656.de (2004).Article
Google Scholar
8.Donald, P. F. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18(1), 17–38. https://doi.org/10.1111/j.1523-1739.2004.01803.x (2004).Article
Google Scholar
9.Steffen, W. et al. Sustainability. Planetary boundaries: Guiding human development on a changing planet. Science 347(6223), 1259855. https://doi.org/10.1126/science.1259855 (2015).CAS
Article
PubMed
Google Scholar
10.Ramankutty, N. et al. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 69, 789–815. https://doi.org/10.1146/annurev-arplant-042817-040256,Pubmed:29489395 (2018).CAS
Article
PubMed
Google Scholar
11.Le Féon, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 137(1–2), 143–150. https://doi.org/10.1016/j.agee.2010.01.015 (2010).Article
Google Scholar
12.Donal, P. F., Gree, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Biol. Sci. 268(1462), 25–29. https://doi.org/10.1098/rspb.2000.1325,Pubmed:12123294 (2001).CAS
Article
PubMed
PubMed Central
Google Scholar
13.Gregory, R. D. et al. Developing indicators for European birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360(1454), 269–288. https://doi.org/10.1098/rstb.2004.1602 (2005).Article
PubMed
PubMed Central
Google Scholar
14.Beketov, M. A., Kefford, B. J., Schäfer, R. B. & Liess, M. Pesticides reduce regional biodiversity of stream invertebrates. Proc. Natl. Acad. Sci. U S A 110(27), 11039–11043. https://doi.org/10.1073/pnas.1305618110 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
15.Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11(2), 97–105. https://doi.org/10.1016/j.baae.2009.12.001 (2010).CAS
Article
Google Scholar
16.Van Dijk, T. C., Van Staalduinen, M. A. & Van der Sluijs, J. P. Macro-invertebrate decline in surface water polluted with Imidacloprid. PLoS ONE 8(5), e62374. https://doi.org/10.1371/journal.pone.0062374,Pubmed:23650513 (2013).ADS
Article
PubMed
PubMed Central
Google Scholar
17.Katayama, N., Baba, Y. G., Kusumoto, Y. & Tanaka, K. A review of post-war changes in rice farming and biodiversity in Japan. Agric. Syst. 132, 73–84. https://doi.org/10.1016/j.agsy.2014.09.001 (2015).Article
Google Scholar
18.Maeda, T. Patterns of bird abundance and habitat use in rice fields of the Kanto Plain, central Japan. Ecol. Res. 16(3), 569–585. https://doi.org/10.1046/j.1440-1703.2001.00418.x (2001).Article
Google Scholar
19.Nam, H. K., Choi, S. H., Choi, Y. S. & Yoo, J. C. Patterns of waterbirds abundance and habitat use in rice fields. Korean J. Environ. Agric. 31(4), 359–367. https://doi.org/10.5338/KJEA.2012.31.4.359 (2012).Article
Google Scholar
20.Choi, S. H., Nam, H. K. & Yoo, J. C. Characteristics of population dynamics and habitat use of shorebirds in rice fields during spring migration. Korean J. Environ. Agric. 33(4), 334–343. https://doi.org/10.5338/KJEA.2014.33.4.334 (2014).Article
Google Scholar
21.Elphick, C. S., Taft, O. & Lourenço, P. M. Management of rice fields for birds during the non-growing season. Waterbirds 33(sp1), 181–192. https://doi.org/10.1675/063.033.s114 (2010).Article
Google Scholar
22.Ibáñez, C., Curcó, A., Riera, X., Ripoll, I. & Sánchez, C. Influence on birds of rice field management practices during the growing season: A review and an experiment. Waterbirds 33(sp1), 167–180. https://doi.org/10.1675/063.033.s113 (2010).Article
Google Scholar
23.Sato, N. & Maruyama, N. Foraging site preference of intermediate egrets Egretta intermedia during the breeding season in the eastern part of the Kanto Plain, Japan. J. Yamashina Inst. Ornithol. 28(1), 19-34_1. https://doi.org/10.3312/jyio1952.28.19 (1996).Article
Google Scholar
24.Nam, H. K., Choi, Y. S., Choi, S. H. & Yoo, J. C. Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38(2), 173–183. https://doi.org/10.1675/063.038.0206 (2015).Article
Google Scholar
25.Azuma, A. & Takeuchi, K. Relationships between population density of frogs and environmental conditions in Yatsu-habitat. J. Jpn. Inst. Landsc. Archit. 62(5), 573–576 (1999).Article
Google Scholar
26.Mullié, W. C. et al. The impact of Furadan 3g (carbofuran) applications on aquatic macroinvertebrates in irrigated rice in Senegal. Arch. Environ. Contam. Toxicol. 20(2), 177–182. https://doi.org/10.1007/BF01055902 (1991).Article
Google Scholar
27.Tourenq, C., Sadoul, N., Beck, N., Mesléard, F. & Martin, J. L. Effects of cropping practices on the use of rice fields by waterbirds in the Camargue, France. Agric. Ecosyst. Environ. 95(2–3), 543–549. https://doi.org/10.1016/S0167-8809(02)00203-7 (2003).Article
Google Scholar
28.Mesléard, F., Garnero, S., Beck, N. & Rosecchi, E. Uselessness and indirect negative effects of an insecticide on rice field invertebrates. C. R. Biol. 328(10–11), 955–962. https://doi.org/10.1016/j.crvi.2005.09.003,Pubmed:16286085 (2005).Article
PubMed
Google Scholar
29.Osten, J. R. V., Soares, A. M. & Guilhermino, L. Black-bellied whistling duck (Dendrocygna autumnalis) brain cholinesterase characterization and diagnosis of anticholinesterase pesticide exposure in wild populations from Mexico. Environ. Toxicol. Chem. 24(2), 313–317. https://doi.org/10.1897/03-646.1,Pubmed:15719990 (2005).Article
PubMed
Google Scholar
30.Katayama, N. et al. Organic farming and associated management practices benefit multiple wildlife taxa: A large-scale field study in rice paddy landscapes. J. Appl. Ecol. 56, 1970–1981. https://doi.org/10.1111/1365-2664.13446 (2019).Article
Google Scholar
31.Parsons, K. C., Mineau, P. & Renfrew, R. B. Effects of pesticide use in rice fields on birds. Waterbirds 33(sp1), 193–218. https://doi.org/10.1675/063.033.s115 (2010).Article
Google Scholar
32.Choi, G., Nam, H. K., Son, S. J., Seock, M. & Yoo, J. C. The impact of agricultural activities on habitat use by the Wood sandpiper and Common greenshank in rice fields. Ornithol. Sci. 20(1), 27–37 (2021).Article
Google Scholar
33.Choi, G., Nam, H. K., Son, S. J., Do, M. S. & Yoo, J. C. Effects of Pesticide Use on the Distributions of Grey Herons (Ardea cinerea) and Great Egrets (Ardea alba) in Rice Fields of the Republic of Korea. Zool. Sci. 38, 162–169. https://doi.org/10.2108/zs200079 (2021).Article
Google Scholar
34.Lourenço, P. M. & Piersma, T. Stopover ecology of Black-tailed Godwits Limosa limosa in Portuguese rice fields: A guide on where to feed in winter. Bird Study 55(2), 194–202. https://doi.org/10.1080/00063650809461522 (2008).Article
Google Scholar
35.Fujioka, M., Lee, S. D., Kurechi, M. & Yoshida, H. Bird use of rice fields in Korea and Japan. Waterbirds 33(sp1), 8–29. https://doi.org/10.1675/063.033.s102 (2010).Article
Google Scholar
36.Stafford, J. D., Kaminski, R. M. & Reinecke, K. J. Avian foods, foraging and habitat conservation in world rice fields. Waterbirds 33(sp1), 133–150. https://doi.org/10.1675/063.033.s110 (2010).Article
Google Scholar
37.Harwood, J. D., Sunderland, K. D. & Symondson, W. O. C. Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. J. Appl. Ecol. 38(1), 88–99. https://doi.org/10.1046/j.1365-2664.2001.00572.x (2001).Article
Google Scholar
38.Morris, A. J., Bradbury, R. B. & Wilson, J. D. Determinants of patch selection by yellowhammers Emberiza citrinella foraging in cereal crops. Aspects Appl. Biol. 67, 43–50 (2002).
Google Scholar
39.Han, M. S. et al. Characteristics of benthic invertebrates in organic and conventional paddy field. Korean J. Environ. Agric. 32(1), 17–23. https://doi.org/10.5338/KJEA.2013.32.1.17 (2013).ADS
Article
Google Scholar
40.Dalzochio, M. S., Baldin, R., Stenert, C. & Maltchik, L. Can organic and conventional agricultural systems affect wetland macroinvertebrate taxa in rice fields?. Basic Appl. Ecol. 17(3), 220–229. https://doi.org/10.1016/j.baae.2015.10.009 (2016).Article
Google Scholar
41.Lourenço, P. M. & Piersma, T. Waterbird densities in south European rice fields as a function of rice management. Ibis 151(1), 196–199. https://doi.org/10.1111/j.1474-919X.2008.00881.x (2009).Article
Google Scholar
42.Dias, R. A., Blanco, D. E., Goijman, A. P. & Zaccagnini, M. E. Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. Condor Ornithol. Appl. 116(3), 384–393. https://doi.org/10.1650/CONDOR-13-160.1 (2014).Article
Google Scholar
43.Kim, Y. H., Kang, S. M., Khan, A. L., Lee, J. H. & Lee, I. J. Aspect of weed occurrence by methods of weed control in rice field. Korean J. Weed Sci. 31(1), 89–95. https://doi.org/10.5660/KJWS.2011.31.1.089 (2011).Article
Google Scholar
44.Shin, H. S. et al. Monthly change of the length-weight relationship of the loach (Misgurnus anguillicaudatus) population in paddy fields by farming practices. Korean J. Environ. Biol. 36(1), 1–10. https://doi.org/10.11626/KJEB.2018.36.1.001 (2018).ADS
Article
Google Scholar
45.Elphick, C. S. & Oring, L. W. Winter management of Californian rice fields for waterbirds. J. Appl. Ecol. 35(1), 95–108. https://doi.org/10.1046/j.1365-2664.1998.00274.x (1998).Article
Google Scholar
46.Pernollet, C. A., Cavallo, F., Simpson, D., Gauthier-Clerc, M. & Guillemain, M. Seed density and waterfowl use of rice fields in Camargue, France. J. Wild. Manag. 81(1), 96–111. https://doi.org/10.1002/jwmg.21167 (2017).Article
Google Scholar
47.Firth, A. G. et al. Low external input sustainable agriculture: Winter flooding in rice fields increases bird use, fecal matter and soil health, reducing fertilizer requirements. Agric. Ecosyst. Environ. 300, 106962. https://doi.org/10.1016/j.agee.2020.106962 (2020).CAS
Article
Google Scholar
48.Manley, S. W., Kaminski, R. M., Reinecke, K. J. & Gerard, P. D. Waterbird foods in winter-managed ricefields in Mississippi. J. Wildl. Manag. 68(1), 74–83. https://doi.org/10.2193/0022-541X(2004)068[0074:WFIWRI]2.0.CO;2 (2004).Article
Google Scholar
49.Fraixedas, S., Burgas, D., Robson, D., Camps, J. & Barriocanal, C. Benefits of the European Agri-environment schemes for wintering lapwings: A case study from rice fields in the Mediterranean region. Waterbirds 43(1), 86–93. https://doi.org/10.1675/063.043.0109 (2020).Article
Google Scholar
50.Tourenq, C. et al. Spatial relationships between tree-nesting heron colonies and rice fields in the Camargue, France. Auk 121(1), 192–202. https://doi.org/10.1093/auk/121.1.192 (2004).Article
Google Scholar
51.Rural Research Institute. Management Effect of Environmentally-Friendly Agriculture Pilot Site: A Case Study on Project Office of Daeho Environment (Korea Rural Community Corporation, 2008).
Google Scholar
52.Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69. https://doi.org/10.1007/BF00337288 (1982).MathSciNet
Article
MATH
Google Scholar
53.Chon, T. S. Self-organizing maps applied to ecological sciences. Ecol. Inform. 6, 50–61. https://doi.org/10.1016/j.ecoinf.2010.11.002 (2011).Article
Google Scholar
54.Park, Y. S., Céréghino, R., Compin, A. & Lek, S. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecol. Modell. 160(3), 265–280. https://doi.org/10.1016/S0304-3800(02)00258-2 (2003).Article
Google Scholar
55.Akande, A., Costa, A. C., Mateu, J. & Henriques, R. Geospatial analysis of extreme weather events in Nigeria (1985–2015) using self-organizing maps. Adv. Meteorol. https://doi.org/10.1155/2017/8576150 (2017).Article
Google Scholar
56.Park, Y. S., Chung, Y. J. & Moon, Y. S. Hazard ratings of pine forests to a pine wilt disease at two spatial scales (individual trees and stands) using self-organizing map and random forest. Ecol. Model. 13, 40–46. https://doi.org/10.1016/j.ecoinf.2012.10.008 (2013).Article
Google Scholar
57.Chon, T. S., Park, Y. S., Moon, K. H. & Cha, E. Y. Patternizing communities by using an artificial neural network. Ecol. Model. 90, 69–78. https://doi.org/10.1016/0304-3800(95)00148-4 (1996).Article
Google Scholar
58.Vesanto, J., Himberg, J., Alhoniemi, E. & Parhankangas, J. SOM Toolbox for MATLAB 5. Technical Report a57. SOM Toolbox Team, Helsinki University of Technology, Finland, 1–60. (2000). http://www.cis.hut.fi/projects/somtoolbox.59.Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37(1–2), 17–23. https://doi.org/10.1093/biomet/37.1-2.17 (1950).MathSciNet
CAS
Article
PubMed
MATH
Google Scholar
60.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Google Scholar
61.Wehrens, R. & Kruisselbrink, J. Flexible self-organizing maps in Kohonen 3.0. J. Stat. Soft. 87(7), 1–18. https://doi.org/10.18637/jss.v087.i07 (2018).Article
Google Scholar
62.Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.4–4, https://CRAN.R-project.org/package=vegan (2017).63.Bates, D., Maechler, M. & Bolker, B. lme4: Linear Mixed-Effects Models Using S4 Classes. R package version 0.999375-42, http://cran.r-project.org/package=lme4 (2014).64.Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790. https://doi.org/10.1111/ecog.00566 (2014).Article
Google Scholar More