Wheat (Triticum aestivum) adaptability evaluation in a semi-arid region of Central Morocco using APSIM model
1.FAO. Food and Agriculture Organization of the United Nations. FAOSTAT Data; www.faostat.fao.org (last access 15.06.21), (2016).2.Gomez, D., Salvador, P., Sanz, J. & Casanova, J. L. Modelling wheat yield with antecedent information, satellite and climate data using machine learning methods in Mexico. Agric. For. Meteorol. 300, 108317. https://doi.org/10.1016/j.agrformet.2020.108317 (2021).ADSÂ
ArticleÂ
Google ScholarÂ
3.Wrigley, C. W. Wheat: A unique grain for the world. In Wheat chemistry and technology 4th edn (eds Khan, K. & Shewry, P. R.) 1â17 (AACC Int. Inc, St Paul, 2009).
Google ScholarÂ
4.Awika, J. M. Major cereal grains production and use around the world. In Advances in Cereal Science: Implications to Food Processing and Health Promotion, Vol. 1089 (eds Awika, J. M., Piironen, V. & Bean, S.) 1â13 (American Chemical Society, 2011).5.Gupta, R., Meghwal, M. & Prabhakar, P. K. Bioactive compounds of pigmented wheat (Triticum aestivum): Potential benefits in human health. Trends Food Sci. Technol. 110, 240â252. https://doi.org/10.1016/j.tifs.2021.02.003 (2021).CASÂ
ArticleÂ
Google ScholarÂ
6.FAO. Food and Agriculture Organization of the United Nations. FAOSTAT Data; www.faostat.fao.org (last access 15.06.21), (2020).7.USDA. Grain and Feed Annual. United States Department of Agriculture (USDA), Foreign Agricultural Service (FAS), MO2020-0007; https://www.fas.usda.gov/data/morocco-grain-and-feed-annual-3 (last access 15.06.21), (2020).8.McIntyre, C. L. et al. Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor. Appl. Genet. 120, 527â541. https://doi.org/10.1007/s00122-009-1173-4 (2010).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
9.UN. World population prospects. United Nations (UN), Department of Economic and Social Affairs (DESA); https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html (last access 15.06.21), (2017).10.Gomez-Macpherson, H. & Richards, R. A. Effect of sowing time on yield and agronomic characteristics of wheat in south-eastern Australia. Aust. J. Agric. Res. 46, 1381â1399. https://doi.org/10.1071/AR9951381 (1995).ArticleÂ
Google ScholarÂ
11.Stone, P. J. & Nicolas, M. E. Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. I. Grain growth. Aust. J. Plant Physiol. 22, 927â934. https://doi.org/10.1071/PP9950927 (1995).ArticleÂ
Google ScholarÂ
12.Mahdi, L., Bell, C. J. & Ryan, J. Establishment and yield of wheat (Triticum turgidum L.) after early sowing at various depths in a semi-arid Mediterranean environment. Field Crops Res. 58, 187â196. https://doi.org/10.1016/S0378-4290(98)00094-X (1998).ArticleÂ
Google ScholarÂ
13.Radmehr, M., Ayeneh, G. A. & Mamghani, R. Responses of late, medium and early maturity bread wheat genotypes to different sowing date. I. Effect of sowing date on phonological, morphological, and grain yield of four breed wheat genotypes. Iran. J. Seed. Sapling 21, 175â189 (2003).
Google ScholarÂ
14.Turner, N. C. Agronomic options for improving rainfall use efficiency of crops in dryland farming systems. J. Exp. Bot. 55, 2413â2425. https://doi.org/10.1093/jxb/erh154 (2004).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
15.Pickering, P. A. & Bhave, M. Comprehensive analysis of Australian hard wheat cultivars shows limited puroindoline allele diversity. Plant Sci. 172, 371â379. https://doi.org/10.1016/j.plantsci.2006.09.013 (2007).CASÂ
ArticleÂ
Google ScholarÂ
16.Zheng, B., Chenu, K., Fernanda Dreccer, M. & Chapman, S. C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties?. Glob. Change Biol. 18, 2899â2914. https://doi.org/10.1111/j.1365-2486.2012.02724.x (2012).ADSÂ
ArticleÂ
Google ScholarÂ
17.Wu, X. S., Chang, X. P. & Jing, R. L. Genetic insight into yield-associated traits of wheat grown in multiple rain-fed environments. PLoS ONE 7, e31249. https://doi.org/10.1371/journal.pone.0031249 (2012).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
18.Mueller, B. et al. Lengthening of the growing season in wheat and maize producing regions. Weather Clim. Extrem. 9, 47â56. https://doi.org/10.1016/j.wace.2015.04.001 (2015).ArticleÂ
Google ScholarÂ
19.Hunt, J. R., Hayman, P. T., Richards, R. A. & Passioura, J. B. Opportunities to reduce heat damage in rainfed wheat crops based on plant breeding and agronomic management. Field Crops Res. 224, 126â138. https://doi.org/10.1016/j.fcr.2018.05.012 (2018).ArticleÂ
Google ScholarÂ
20.Ababaei, B. & Chenu, K. Heat shocks increasingly impede grain filling but have little effect on grain setting across the Australian wheatbelt. Agric. For. Meteorol. 284, 107889. https://doi.org/10.1016/j.agrformet.2019.107889 (2020).ADSÂ
ArticleÂ
Google ScholarÂ
21.Anderson, W. K. & Smith, W. R. Yield advantage of two semi-dwarf compared with two tall wheats depends on sowing time. Aust. J. Agric. Res. 41, 811â826. https://doi.org/10.1071/AR9900811 (1990).ArticleÂ
Google ScholarÂ
22.Connor, D. J., Theiveyanathan, S. & Rimmington, G. M. Development, growth, water-use and yield of a spring and a winter wheat in response to time of sowing. Aust. J. Agric. Res. 43, 493â516. https://doi.org/10.1071/AR9920493 (1992).ArticleÂ
Google ScholarÂ
23.Owiss, T., Pala, M. & Ryan, J. Management alternatives for improved durum wheat production under supplemental irrigation in Syria. Eur. J. Agron. 11, 255â266. https://doi.org/10.1016/S1161-0301(99)00036-2 (1999).ArticleÂ
Google ScholarÂ
24.Bassu, S., Asseng, A., Motzo, R. & Giunta, F. Optimizing sowing date of durum wheat in a variable Mediterranean environment. Field Crops Res. 111, 109â118. https://doi.org/10.1016/j.fcr.2008.11.002 (2009).ArticleÂ
Google ScholarÂ
25.Bannayan, M., Eyshi Rezaei, E. & Hoogenboom, G. Determining optimum sowing dates for rainfed wheat using the precipitation uncertainty model and adjusted crop evapotranspiration. Agric. Water Manag. 126, 56â63. https://doi.org/10.1016/j.agwat.2013.05.001 (2013).ArticleÂ
Google ScholarÂ
26.Liang, Y. F. et al. Subsoiling and sowing time influence soil water content, nitrogen translocation and yield of dryland winter wheat. Agronomy 9, 37. https://doi.org/10.3390/agronomy9010037 (2019).ArticleÂ
Google ScholarÂ
27.Farooq, M., Basra, S. M. A., Rehman, H. & Saleem, B. A. Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J. Agron. Crop Sci. 194, 55â60. https://doi.org/10.1111/j.1439-037X.2007.00287.x (2008).ArticleÂ
Google ScholarÂ
28.Kudair, I. M. & Adary, A. H. The effects of temperature and planting depth on coleoptile length of some Iraqi local and introduced wheat cultivars. Mesopotamia J. Agric. 17, 49â62 (1982).
Google ScholarÂ
29.Leoncini, E. et al. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars. PLoS ONE 7, e45997. https://doi.org/10.1371/journal.pone.0045997 (2012).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
30.Busko, M. et al. The effect of Fusarium inoculation and fungicide application on concentrations of flavonoids (apigenin, kaempferol, luteolin, naringenin, quercetin, rutin, vitexin) in winter wheat cultivars. Am. J. Plant Sci. 5, 3727â3736. https://doi.org/10.4236/ajps.2014.525389 (2014).CASÂ
ArticleÂ
Google ScholarÂ
31.Bannayan, M., Kobayashi, K., Marashi, H. & Hoogenboom, G. Gene-based modeling for rice: An opportunity to enhance the simulation of rice growth and development?. J. Theor. Biol. 249, 593â605. https://doi.org/10.1016/j.jtbi.2007.08.022 (2007).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
MATHÂ
Google ScholarÂ
32.Soler, C. M. T., Sentelhas, P. C. & Hoogenboom, G. Application of the CSM-CERES-Maize model for sowing date evaluation and yield forecasting for maize grown off-season in a subtropical environment. Eur. J. Agron. 18, 165â177. https://doi.org/10.1016/j.eja.2007.03.002 (2007).ArticleÂ
Google ScholarÂ
33.Andarzian, B. et al. WheatPot: A simple model for spring wheat yield potential using monthly weather data. Biosyst. Eng. 99, 487â495. https://doi.org/10.1016/j.biosystemseng.2007.12.008 (2008).ArticleÂ
Google ScholarÂ
34.Andarzian, B., Hoogenboom, G., Bannayan, M., Shirali, M. & Andarzian, B. Determining optimum sowing date of wheat using CSM-CERES-Wheat model. J. Saudi Soc. Agric. Sci. 14, 189â199. https://doi.org/10.1016/j.jssas.2014.04.004 (2015).ArticleÂ
Google ScholarÂ
35.Palosuo, T. et al. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. Eur. J. Agron. 35, 103â114. https://doi.org/10.1016/j.eja.2011.05.001 (2011).ArticleÂ
Google ScholarÂ
36.Rötter, R. P. et al. Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Res. 133, 23â36. https://doi.org/10.1016/j.fcr.2012.03.016 (2012).ArticleÂ
Google ScholarÂ
37.Ran, H. et al. Capability of a solar energy-driven crop model for simulating water consumption and yield of maize and its comparison with a water-driven crop model. Agric. For. Meteorol. 287, 107955. https://doi.org/10.1016/j.agrformet.2020.107955 (2020).ADSÂ
ArticleÂ
Google ScholarÂ
38.Keating, B. A. et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267â288. https://doi.org/10.1016/S1161-0301(02)00108-9 (2003).ArticleÂ
Google ScholarÂ
39.Probert, M. E. & Dimes, J. P. Modelling release of nutrients from organic resources using APSIM. In Modelling nutrient management in tropical cropping systems Vol. 114 (eds Delve, R. J. & Probert, M. E.) 25â31 (ACIAR Proceedings, 2004).40.Mohanty, M. et al. Simulating soybeanâwheat cropping system: APSIM model parameterization and validation. Agric. Ecosyst. Environ. 152, 68â78. https://doi.org/10.1016/j.agee.2012.02.013 (2012).ArticleÂ
Google ScholarÂ
41.George, N., Thompson, S. E., Hollingsworth, J., Orloff, S. & Kaffka, S. Measurement and simulation of water-use by canola and camelina under cool-season conditions in California. Agric. Water Manag. 196, 15â23. https://doi.org/10.1016/j.agwat.2017.09.015 (2018).ArticleÂ
Google ScholarÂ
42.Bahri, H., Annabi, M., MâHamed, H. C. & Frija, A. Assessing the long-term impact of conservation agriculture on wheat-based systems in Tunisia using APSIM simulations under a climate change context. Sci. Total Environ. 692, 1223â1233. https://doi.org/10.1016/j.scitotenv.2019.07.307 (2019).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
43.Ahmed, M. et al. Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci. Rep. 9, 7813. https://doi.org/10.1038/s41598-019-44251-x (2019).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
44.Eyni-Nargeseh, H., Deihimfard, R., Rahimi-Moghaddam, R. & Mokhtassi-Bidgoli, A. Analysis of growth functions that can increase irrigated wheat yield under climate change. Meteorol. Appl. 27, 1â10. https://doi.org/10.1002/met.1804 (2020).ArticleÂ
Google ScholarÂ
45.Rahimi-Moghaddam, S., Eyni-Nargeseh, H., Kalantar Ahmadi, S. A. & Azizi, K. Towards withholding irrigation regimes and resistant genotypes as strategies to increase canola production in drought-prone environments: A modeling approach. Agric. Water Manag. 243, 106487. https://doi.org/10.1016/j.agwat.2020.106487 (2021).ArticleÂ
Google ScholarÂ
46.Berghuijs, H. N. C. et al. Calibrating and testing APSIM for wheat-faba bean pure cultures and intercrops across Europe. Field Crops Res. 264, 108088. https://doi.org/10.1016/j.fcr.2021.108088 (2021).ArticleÂ
Google ScholarÂ
47.METLE. National Report. Ministry of Equipment, Transport, Logistics and Water (last access 15.06.21), (2019).48.HCP. Voluntary national review of the implementation of the sustainable development goals. High Comm. Plng. p. 188 (2020).49.Hammer, G. L. et al. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 61, 2185â2202. https://doi.org/10.1093/jxb/erq095 (2010).CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
50.Holzworth, D. P. et al. APSIMâevolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 62, 327â350. https://doi.org/10.1016/j.envsoft.2014.07.009 (2014).ArticleÂ
Google ScholarÂ
51.Gaydon, D. S. et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res. 204, 52â75. https://doi.org/10.1016/j.fcr.2016.12.015 (2017).ArticleÂ
Google ScholarÂ
52.Climate Kelpie website. http://www.climatekelpie.com.au/manage-climate/decision-support-tools-for-managing-climate (2010).53.McCown, R. L., Hammer, G. L., Hargreaves, J. N. G., Holzworth, D. P. & Freebairn, D. M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 50, 255â271. https://doi.org/10.1016/0308-521X(94)00055-V (1996).ArticleÂ
Google ScholarÂ
54.Cichota, R., Vogeler, I., Werner, A., Wigley, K. & Paton, B. Performance of a fertiliser management algorithm to balance yield and nitrogen losses in dairy systems. Agric. Syst. 162, 56â65. https://doi.org/10.1016/j.agsy.2018.01.017 (2018).ArticleÂ
Google ScholarÂ
55.Laurenson, S., Cichota, R., Reese, P. & Breneger, S. Irrigation runoff from a rolling landscape with slowly permeable subsoils in New Zealand. Irrig. Sci. 36, 121â131. https://doi.org/10.1007/s00271-018-0570-3 (2018).ArticleÂ
Google ScholarÂ
56.Rodriguez, D. et al. Predicting optimum crop designs using crop models and seasonal climate forecasts. Sci. Rep. 8, 2231. https://doi.org/10.1038/s41598-018-20628-2 (2018).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
57.Archontoulis, S. V., Miguez, F. E. & Moore, K. J. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environ. Model. Softw. 62, 465e477. https://doi.org/10.1016/j.envsoft.2014.04.009 (2014).ArticleÂ
Google ScholarÂ
58.Brown, H., Huth, N. & Holzworth, D. Crop model improvement in APSIM: Using wheat as a case study. Eur. J. Agron. 100, 141â150. https://doi.org/10.1016/j.eja.2018.02.002 (2018).ArticleÂ
Google ScholarÂ
59.Yang, X. et al. Cropping system productivity and evapotranspiration in the semiarid Loess Plateau of China under future temperature and precipitation changes: An APSIM-based analysis of rotational vs. Continuous systems. Agric. Water Manag. 229, 105959. https://doi.org/10.1016/j.agwat.2019.105959 (2020).ArticleÂ
Google ScholarÂ
60.Balboa, G. R. et al. A systems-level yield gap assessment of maize-soybean rotation under highand low-management inputs in the Western US Corn Belt using APSIM. Agric. Syst. 174, 125â154. https://doi.org/10.1016/j.agsy.2019.04.008 (2019).ArticleÂ
Google ScholarÂ
61.Yang, X. et al. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess plateau of China using APSIM. Agric. Syst. 166, 111â123. https://doi.org/10.1016/j.agsy.2018.08.005 (2018).ArticleÂ
Google ScholarÂ
62.Mohanty, M. et al. Soil carbon sequestration potential in a Vertisol in central India- results from a 43-year long-term experiment and APSIM modeling. Agric. Syst. 184, 102906. https://doi.org/10.1016/j.agsy.2020.102906 (2020).ArticleÂ
Google ScholarÂ
63.Vogeler, I., Thomas, S. & van der Weerden, T. Effect of irrigation management on pasture yield and nitrogen losses. Agric. Water Manag. 216, 60â69. https://doi.org/10.1016/j.agwat.2019.01.022 (2019).ArticleÂ
Google ScholarÂ
64.Bosi, C. et al. APSIM-tropical pasture: A model for simulating perennial tropical grass growth and its parameterisation for palisade grass (Brachiaria brizantha). Agric. Syst. 184, 102917. https://doi.org/10.1016/j.agsy.2020.102917 (2020).ArticleÂ
Google ScholarÂ
65.Smethurst, P. J., Valadares, R. V., Huth, N. I., Almeida, A. C. & JĂșlio, C. L. N. Generalized model for plantation production of Eucalyptus grandisand hybrids forgenotype-site-management applications. For. Ecol. Manag. 469, 118164. https://doi.org/10.1016/j.foreco.2020.118164 (2020).ArticleÂ
Google ScholarÂ
66.Xiao, D. P., Liu, D. L., Wang, B., Feng, P. Y. & Tang, J. Z. Climate change impact on yields and water use of wheat and maize in the north China plain under future climate change scenarios. Agric. Water Manag. 238, 1â15. https://doi.org/10.1016/j.agwat.2020.106238 (2020).ArticleÂ
Google ScholarÂ
67.Seyoum, S., Rachaputi, R., Chauhan, Y., Prasanna, B. & Fekybelu, S. Application of the APSIM model to exploit G Ă E Ă M interactions for maize improvement in Ethiopia. Field Crops Res. 217, 113â124. https://doi.org/10.1016/j.fcr.2017.12.012 (2018).ArticleÂ
Google ScholarÂ
68.Basche, A. D. & DeLonge, M. S. Comparing infiltration rates in soils managed with conventional and alternative farming methods: A meta-analysis. PLoS ONE 14, e0215702. https://doi.org/10.1371/journal.pone.0215702 (2019).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
69.Holzworth, D. et al. The development of a farming systems model (APSIM): A disciplined approach. In Proceedings of the iEMSs Third Biennial Meeting, Burlington, VT, USA, 9â13 July 2006 (International Environmental Modelling and Software Society, Manno, Switzerland, 2006).70.Gaydon, D. S. The APSIM modelâan overview. In SAC Monograph: The SAARC-Australia Project Developing Capacity in Cropping Systems Modelling for South Asia (eds Dr. Donald S. Gaydon et al.) 15â31 (2014).71.Pinheiro, J. C. & Bates, D. M. Mixed Effects Models in S and S-Plus (Statistics and Computing) (Springer, New York, 2000).BookÂ
Google ScholarÂ
72.El Halimi, R. Nonlinear Mixed-effects Models and Bootstrap resampling: Analysis of Non-normal Repeated Measures in Biostatistical Practice. Amazon Books. 320 (2009).73.Vock, D. M., Davidian, M., Tsiatis, A. A. & Muir, A. J. Mixed model analysis of censored longitudinal data with flexible random-effects density. Biostat. 13, 61â73. https://doi.org/10.1093/biostatistics/kxr026 (2012).ArticleÂ
MATHÂ
Google ScholarÂ
74.Beroho, M. et al. Analysis and prediction of climate forecasts in Northern Morocco: Application of multilevel linear mixed effects models using R Software. Heliyon 6, e05094. https://doi.org/10.1016/j.heliyon.2020.e05094 (2020).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
75.Laird, N. M. & Ware, J. H. Random-effects models for longitudinal data. Biometrics 38, 963â974. https://doi.org/10.2307/2529876 (1982).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
MATHÂ
Google ScholarÂ
76.Littell, R. C., Henry, P. R. & Ammerman, C. B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. Biotechnol. 76, 1216â1231. https://doi.org/10.2527/1998.7641216x (1998).CASÂ
ArticleÂ
Google ScholarÂ
77.Bouyoucos, G. J. Direction for making mechanical analysis of soils by the hydrometer method. Soil Sci. 42, 225â230. https://doi.org/10.1097/00010694-193609000-00007 (1936).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
78.Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models, part I: A discussion of principles. J. Hydrol. 10, 282â290. https://doi.org/10.1016/0022-1694(70)90255-6 (1970).ADSÂ
ArticleÂ
Google ScholarÂ
79.Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. Int. J. Climatol. 32, 2088â2094. https://doi.org/10.1002/joc.2419 (2011).ArticleÂ
Google ScholarÂ
80.Loague, K. & Green, R. E. Statistical and graphical methods for evaluating solute transport models; overview and application. J. Contam. Hydrol. 7, 51â73. https://doi.org/10.1016/0169-7722(91)90038-3 (1991).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
81.Willmott, C. J. et al. Statistic for the evaluation and comparison of models. J. Geophys. Res. 90, 8995â9005. https://doi.org/10.1029/JC090iC05p08995 (1985).ADSÂ
ArticleÂ
Google ScholarÂ
82.Jones, C. A., Kiniry, J. R. & Dyke, P. T. CERES-Maize, A simulation model of maize growth and development 1st edn. (Texas University Press, College Station, 1986).
Google ScholarÂ
83.Dardanelli, J. L., Bacheier, O. A., Sereno, R. & Gil, R. Rooting depth and soil water extraction patterns of different crops in a silty loam Haplustoll. Field Crops Res. 54, 29â38. https://doi.org/10.1016/S0378-4290(97)00017-8 (1997).ArticleÂ
Google ScholarÂ
84.Probert, M. E., Dimes, J. P., Keating, B. A., Dalal, R. C. & Strong, W. M. APSIMâs water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems. Agric. Syst. 56, 1â28. https://doi.org/10.1016/S0308-521X(97)00028-0 (1998).ArticleÂ
Google ScholarÂ
85.Littleboy, M., Freebairn, D. M., Silburn, D. M., Woodruff, D. R., Hammer, G. L. PERFECT version 3. A computer simulation model of productivity erosion runoff functions to evaluate conservation techniques. Queensland department of natural resources and department of plant industries. Queensland Dep. Prim. Ind., Queensland, Australia (1999).86.Dalgliesh, N. P. & Foale, M. A. Soil matters: Monitoring soil water and nutrients in dryland farming. Agric. Prod. Sys. Res. Unit, Toowoomba, Australia; http://hdl.handle.net/102.100.100/217161?index=1 (1998).87.Malone, R. W. et al. Evaluating and predicting agricultural management effects under tile drainage using modified APSIM. Geoderma 140, 310â322. https://doi.org/10.1016/j.geoderma.2007.04.014 (2007).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
88.Cresswell, H. P. et al. Catchment response to farm scale land use change. CSIRO and NSW Dept. of Ind. & Invest. (2009).89.Hammer, G. L. et al. Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn Belt?. Crop Sci. 49, 299â312. https://doi.org/10.2135/cropsci2008.03.0152 (2009).ArticleÂ
Google ScholarÂ
90.Archontoulis, S. V., Miguez, F. E. & Moore, K. J. Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States. Agron. J. 106, 1025. https://doi.org/10.2134/agronj2013.0421 (2014).CASÂ
ArticleÂ
Google ScholarÂ
91.MacCarthy, D. S., Sommer, R. & Vlek, P. L. G. Modeling the impacts of contrasting nutrient and residue management practices on grain yield of sorghum (Sorghum bicolor (L.) Moench) in a semi-arid region of Ghana using APSIM. Field Crops Res. 113, 105â115. https://doi.org/10.1016/j.fcr.2009.04.006 (2009).ArticleÂ
Google ScholarÂ
92.Yang, Y. et al. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: Sensitivity of future changes to projected climate changes and soil type. Theor. Appl. Climatol. 123, 565â579. https://doi.org/10.1007/s00704-015-1376-3 (2016).ADSÂ
ArticleÂ
Google ScholarÂ
93.Deihimfard, R., Eyni-Nargeseh, H. & Mokhtassi-Bidgoli, A. Effect of future climate change on wheat yield and water use efficiency under semi-arid conditions as predicted by APSIM-wheat model. Int. J. Plant Prod. 12, 115â125. https://doi.org/10.1007/s42106-018-0012-4 (2018).ArticleÂ
Google ScholarÂ
94.Zhao, P. et al. The adaptability of Apsim-wheat model in the middle and lower reaches of the Vangtze river plain of china: A case study of winter wheat in hubei province. Agronomy 10, 981. https://doi.org/10.3390/agronomy10070981 (2020).ArticleÂ
Google ScholarÂ
95.SHNP, D. S., Takahashi, T., Okada, K. Evaluation of APSIM-wheat to simulate the response of yield and grain protein content to nitrogen application on an Andosol in Japan. Plant Prod. Sci. https://doi.org/10.1080/1343943X.2021.1883989 (2021).96.OâLeary, G. J. et al. Response of wheat growth, grain yield and water use to elevated CO2 under afree-air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 21, 2670â2686. https://doi.org/10.1111/gcb.12830 (2015).ADSÂ
ArticleÂ
Google ScholarÂ
97.Lilley, J. M. & Kirkegaard, J. A. Farming system context drives the value of deep wheat roots in semi-arid environments. J. Exp. Bot. 67, 3665â3681. https://doi.org/10.1093/jxb/erw093 (2016).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
98.Whitbread, A. M., Hoffmann, M. P., Davoren, C. W., Mowat, D. & Baldock, J. A. Measuring and modeling the water balance in low-Rainfall cropping systems. Trans. ASABE 60, 2097â2110. https://doi.org/10.13031/trans.12581 (2017).ArticleÂ
Google ScholarÂ
99.Silungwe, F. R. et al. Crop upgrading strategies and modelling for rainfed cereals in a semi-arid climateâa review. Water 10, 356. https://doi.org/10.3390/w10040356 (2018).ArticleÂ
Google ScholarÂ
100.Hussain, J., Khaliq, T., Ahmad, A. & Akhtar, J. Performance of four crop model for simulations of wheat phenology, leaf growth, biomass and yield across planting dates. PLoS ONE 13, e0197546. https://doi.org/10.1371/journal.pone.0197546 (2018).CASÂ
ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
101.Asseng, S., Turner, N. C. & Keating, B. A. Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant Soil 233, 127â143. https://doi.org/10.1023/A:1010381602223 (2001).CASÂ
ArticleÂ
Google ScholarÂ
102.Moeller, C., Pala, M., Manschadi, A. M., Meinke, H. & Sauerborn, J. Assessing the sustainability of wheat-based cropping systems using APSIM: Model parameterisation and evaluation. Aust. J. Agric. Res. 58, 75â86. https://doi.org/10.1007/s11625-013-0228-2 (2007).ArticleÂ
Google ScholarÂ
103.Bassu, S., Asseng, S., Giunta, F. & Motzo, R. Optimizing triticale sowing densities across the Mediterranean Basin. Field Crops Res. 144, 167â178. https://doi.org/10.1016/j.fcr.2013.01.014 (2013).ArticleÂ
Google ScholarÂ
104.Bationo, A., Mokwunye, U., Vlek, P. L. G., Koala, S. & Shapiro, B. I. Soil fertility management for sustainable land use in the West African Sudano-Sahelian Zone. In Soil Fertility Management in Africa: A Regional Perspective, African Academy of Sciences Centro Internacional de Agricultura Tropical (CIAT); Tropical Soil Biology and Fertility (TSBF) (eds Gichuri, M. P. et al.) 253â292 (Academic and Scientific Publishing, Nairobi, 2003).
Google ScholarÂ
105.Bernstein, L. et al. IPCC, 2007: Climate Change 2007: Synth. Rep. Geneva: IPCC. ISBN 2-9169-122-4 (2008).106.Tramblay, Y. et al. Climate change impacts on extreme precipitation in Morocco. Glob. Planet Change 82, 104â114. https://doi.org/10.1016/j.gloplacha.2011.12.002 (2012).ADSÂ
ArticleÂ
Google ScholarÂ
107.Tramblay, Y., Ruelland, D., Somot, S., Bouaicha, R. & Servat, E. High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: A first evaluation of the ALADIN-Climate model in Morocco. Hydrol. Earth Syst. Sci. 17, 3721â3739. https://doi.org/10.5194/hess-17-3721-2013 (2013).ADSÂ
ArticleÂ
Google ScholarÂ
108.Seif-Ennasr, M. et al. Climate change and adaptive water management measures in Chtouka AĂŻt Baha region (Morocco). Sci. Total Environ. 573, 862â875. https://doi.org/10.1016/j.scitotenv.2016.08.170 (2016).ADSÂ
CASÂ
ArticleÂ
PubMedÂ
Google ScholarÂ
109.Hirich, A., Fatnassi, H., Ragab, R. & Choukr-Allah, R. Prediction of climate change impact on corn grown in the South of Morocco using the saltmed model. J. Irrigat. Drain. Eng. 65, 9â18. https://doi.org/10.1002/ird.2002 (2016).ArticleÂ
Google ScholarÂ
110.Ouhamdouch, S. & Bahir, M. Climate change impact on future rainfall and temperature in semi-arid areas (Essaouira basin, Morocco). Environ. Process. 4, 975â990. https://doi.org/10.1007/s40710-017-0265-4 (2017).ArticleÂ
Google ScholarÂ
111.Brouziyne, Y. et al. Modelling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric. Syst. 162, 154â163. https://doi.org/10.1016/j.agsy.2018.01.024 (2018).ArticleÂ
Google ScholarÂ
112.Dosio, A. & Panitz, H.-J. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models. Clim. Dyn. 46, 1599â1625. https://doi.org/10.1007/s00382-015-2664-4 (2016).ArticleÂ
Google ScholarÂ
113.Zeroual, A., Assani, A. A., Meddi, M. & Alkama, R. Assessment of climate change in Algeria from 1951 to 2098 using the Köppen-Geiger climate classification scheme. Clim. Dyn. 52, 227â243. https://doi.org/10.1007/s00382-018-4128-0 (2018).ArticleÂ
Google ScholarÂ
114.Mami, A. et al. Future climatic and hydrologic changes estimated by bias-adjusted regional climate model outputs of the Cordex-Africa project: Case of the Tafna basin (North-Western Africa). Int. J. Glob. Warm. 23, 58â90. https://doi.org/10.1504/IJGW.2021.112489 (2021).ArticleÂ
Google ScholarÂ
115.Arora, V. K. & Gajri, P. R. Evaluation of a crop growthâwater balance model for analyzing wheat responses to climate and water-limited environments. Field Crops Res. 59, 213â224. https://doi.org/10.1016/S0378-4290(98)00124-5 (1998).ArticleÂ
Google ScholarÂ
116.Aggarwal, P. K., Talukdar, K. K., Mall, R. K. Potential yields of riceâwheat system in the Indo-Gangetic plains of India. RiceâWheat Consortium Paper Series 10. New Delhi, India. RWCIGP, CIMMYT. p. 16 (2000).117.Arora, V. K., Singh, H. & Singh, B. Analyzing wheat productivity responses to climatic, irrigation and fertilizerânitrogen regimes in a semi-arid subâtropical environment using the CERES-Wheat model. Agric. Water Manag. 94, 22â30. https://doi.org/10.1016/j.agwat.2007.07.002 (2007).ArticleÂ
Google ScholarÂ
118.Timsina, J. et al. Evaluation of options for increasing yield and water productivity of wheat in Punjab, India using the DSSATâCSM-CERES-wheat model. Agric. Water Manag. 95, 1099â1110. https://doi.org/10.1016/j.agwat.2008.04.009 (2008).ArticleÂ
Google ScholarÂ
119.Balwinder-Singha, Humphreys & E., Gaydon, D. S., Eberbach, P. L.,. Evaluation of the effects of mulch on optimum sowing date and irrigation management of zero till wheat in central Punjab, India using APSIM. Field Crops Res. 197, 83â96. https://doi.org/10.1016/j.fcr.2016.08.016 (2016).ArticleÂ
Google ScholarÂ
120.Choudhury, A. K. et al. Optimum Sowing Window and Yield Forecasting for Maize in Northern and Western Bangladesh Using CERES Maize Model. Agronomy 11, 635. https://doi.org/10.3390/agronomy11040635 (2021).ArticleÂ
Google ScholarÂ
121.Sun, H., Shao, I., Chen, S. & Zhang, X. Effects of sowing time and rate on crop growth and radiation use efficiency of winter wheat in the North China Plain. Int. J. Plant Prod. 7, 117â138 (2013).
Google ScholarÂ
122.Qu, H. J. et al. Effects of plant density and seeding date on accumulation and translocation of dry matter and nitrogen in winter wheat cultivar Lankao Aizao 8. Acta Agron. Sin. 35, 124â131. https://doi.org/10.3724/SP.J.1006.2009.00124 (2009).CASÂ
ArticleÂ
Google ScholarÂ
123.Liu, P. et al. Effect of seeding rate and sowing date on population traits and grain yield of drip irrigated winter wheat. J. Triticeae Crops 33, 1202â1207 (2013).CASÂ
Google ScholarÂ
124.Lu, H. D., Xue, J. Q., Hao, Y. C., Zhang, R. H. & Gao, J. Effects of sowing time on spring maize (Zea mays L.) growth and water use efficiency in rainfed dryland. Acta Agron. Sin. 41, 1906â1914 (2015).ArticleÂ
Google ScholarÂ
125.Taylor, S. & Evans, C. Wheat: Susceptibility of varieties to common root rot. CWFS Research Compendium (2005).126.Bowden, P. et al. Wheat growth & development. NSW Department of Primary Industries, State of New South Wales, p. 104 (2008).127.DEEDI. Wheat varieties. Queensland Department of Employment, Economic Development and Innovation (DEEDI). p. 20 (2010).128.Lush, D. et al. Queensland wheat varieties. Grains Research and Development Corporation (GRDC) and the Queensland Department of Agriculture, Fisheries and Forestry (DAFF). p. 20 (2015).129.Greenwood, J. R. Wheat inflorescence architecture. Thesis report, Australian National University, p. 218 (2017).130.Lush, D., Forknall, C., Neate, S., Sheedy, J. Queensland wheat varieties. Grains Research and Development Corporation (GRDC) and the Queensland Department of Agriculture and Fisheries (DAF). p. 20 (2018).131.Hines, S., Andrews, M., Scott, W. R. & Jack, D. Sowing depth and nitrogen effects on emergence of a range of New Zealand wheat cultivars. Proc. Agron. Soc. N. Z. 21, 67â72 (1991).
Google ScholarÂ
132.Zaicou, C. et al. Wheat variety guide 2008 Western Australia. Department of Agriculture and Food, Western Australia, Perth. Bull. 4733 (2008).133.Kelbert, A. J., Spaner, D., Briggs, K. G. & King, J. R. The association of culm anatomy with lodging susceptibility in modern spring wheat genotypes. Euphytica 136, 211â221. https://doi.org/10.1023/B:EUPH.0000030670.36730.a4 (2004).ArticleÂ
Google ScholarÂ
134.Mason, H., Navabi, A., Frick, B., OâDonovan, J. & Spaner, D. Cultivar and seeding rate effects on the competitive ability of spring cereals grown under organic production in northern Canada. Agron. J. 99, 1199â1207. https://doi.org/10.2134/agronj2006.0262 (2007).ArticleÂ
Google ScholarÂ
135.Shah, L. et al. Improving lodging resistance: Using wheat and rice as classical examples. Int. J. Mol. Sci. 20, 4211. https://doi.org/10.3390/ijms20174211 (2019).CASÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
136.Mitter, V. et al. A high-throughput greenhouse bioassay to detect crown rot resistance in wheat germplasm. Plant Pathol. 55, 433â441. https://doi.org/10.1111/j.1365-3059.2006.01384.x (2006).ArticleÂ
Google ScholarÂ
137.Hare, R. Agronomy of the durum wheats Kamilaroi, Yallaroi, Wollaroi and EGA Bellaroi. NSW Department of Primary Industries, State of New South Wales, Primefact 140 (2006).138.DPI&F. Wheat varieties for Queensland. Department of Primary Industries and Fisheries (DPI&F), State of Queensland, p. 12 (2007).139.Singh, B. et al. Inheritance and chromosome location of leaf rust resistance in durum wheat cultivar Wollaroi. Euphytica 175, 351â355. https://doi.org/10.1007/s10681-010-0179-y (2010).ArticleÂ
Google ScholarÂ
140.Bansal, U. K., Kazi, A. G., Singh, B., Hare, R. A. & Bariana, H. S. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed 33, 51â59. https://doi.org/10.1007/s11032-013-9933-x (2014).CASÂ
ArticleÂ
Google Scholar More
