X-ray computed tomography (CT) and ESEM-EDS investigations of unusual subfossilized juniper cones
1.Mohamed, W. & El-Rifai, E. An integrated approach for the documentation and virtual reconstruction of metal fragments. In Seventh World Archaeological Congress-WAC 7, Dead Sea, Jordan (2013).2.Birks, H. H. Plant macrofossil introduction. Encycl. Quat. Sci. 3, 2266–2288 (2007).
Google Scholar
3.van der Veen, M. In The Science of Roman History (ed. Scheidel, W.) 53–94 (Princeton University Press, 2018).
Google Scholar
4.Stanley, J.-D. Submergence and burial of ancient coastal sites on the subsiding Nile delta margin, Egypt. Méditer. Rev. Géogr. Pays Méditer./J. Mediter. Geogr. 104, 65–73 (2005).
Google Scholar
5.Zhao, X. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702. https://doi.org/10.1016/j.palaeo.2020.109702 (2020).Article
Google Scholar
6.Sestini, G. Nile Delta: A review of depositional environments and geological history. Geol. Soc. Lond. Spec. Publ. 41, 99–127 (1989).ADS
Google Scholar
7.Stanley, D. J. & Warne, A. G. Nile Delta: Recent geological evolution and human impact. Science 260, 628–634 (1993).ADS
CAS
PubMed
Google Scholar
8.Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quatern. Sci. Rev. 170, 212–231. https://doi.org/10.1016/j.quascirev.2017.06.017 (2017).ADS
Article
Google Scholar
9.Björdal, C., Nilsson, T. & Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 43, 63–73. https://doi.org/10.1016/S0964-8305(98)00070-5 (1999).Article
Google Scholar
10.Douterelo, I., Goulder, R. & Lillie, M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: Implications for the in situ preservation of archaeological remains. Appl. Soil. Ecol. 44, 219–227. https://doi.org/10.1016/j.apsoil.2009.12.009 (2010).Article
Google Scholar
11.Weiss, E. & Kislev, M. E. Plant remains as a tool for reconstruction of the past environment, economy, and society: Archaeobotany in Israel. Israel J. Earth Sci. 56, 163–173 (2007).
Google Scholar
12.Birks, H. J. B. Challenges in the presentation and analysis of plant-macrofossil stratigraphical data. Veg. Hist. Archaeobotany 23, 309–330 (2014).
Google Scholar
13.Mauquoy, D., Hughes, P. & Van Geel, B. A protocol for plant macrofossil analysis of peat deposits. Mires Peat 7, 1–5 (2010).
Google Scholar
14.Jacomet, S., Kreuz, A. & Rösch, M. Archäobotanik: Aufgaben Methoden, und Ergebnisse vegetations-und agrargeschichtlicher Forschung (Ulmer, 1999).
Google Scholar
15.Jacomet, S. Plant macrofossil methods and studies: Use in environmental archaeology. In Encyclopedia of quaternary science 2384–2412 (Elsevier, Amsterdam, 2007).
Google Scholar
16.Takahashi, M., Crane, P. R. & Ando, H. Fossil flowers and associated plant fossils from the Kamikitaba locality (Ashizawa Formation, Futaba Group, lower Coniacian, upper Cretaceous) of Northeast Japan. J. Plant. Res. 112, 187–206. https://doi.org/10.1007/PL00013872 (1999).Article
Google Scholar
17.Poppinga, S. et al. Hygroscopic motions of fossil conifer cones. Sci. Rep. 7, 40302. https://doi.org/10.1038/srep40302 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
18.Crepet, W. L., Nixon, K. C., Grimaldi, D. & Riccio, M. A mosaic Lauralean flower from the Early Cretaceous of Myanmar. Am. J. Bot. 103, 290–297. https://doi.org/10.3732/ajb.1500393 (2016).Article
PubMed
Google Scholar
19.Feng, Z., Röβler, R., Annacker, V. & Yang, J.-Y. Micro-CT investigation of a seed fern (probable medullosan) fertile pinna from the Early Permian Petrified Forest in Chemnitz, Germany. Gondwana Res. 26, 1208–1215. https://doi.org/10.1016/j.gr.2013.08.005 (2014).ADS
Article
Google Scholar
20.Gee, C. T., Dayvault, R. D., Stockey, R. A. & Tidwell, W. D. Greater palaeobiodiversity in conifer seed cones in the Upper Jurassic Morrison Formation of Utah, USA. Palaeobiodivers. Palaeoenviron. 94, 363–375. https://doi.org/10.1007/s12549-014-0160-1 (2014).Article
Google Scholar
21.Herrera, F. et al. A new voltzian seed cone from the Early Cretaceous of Mongolia and its implications for the evolution of ancient conifers. Int. J. Plant Sci. 176, 791–809. https://doi.org/10.1086/683060 (2015).Article
Google Scholar
22.Rozefelds, A. et al. Traditional and computed tomographic (CT) techniques link modern and Cenozoic fruits of Pleiogynium (Anacardiaceae) from Australia. Alcheringa 39, 24–39. https://doi.org/10.1080/03115518.2014.951916 (2015).Article
Google Scholar
23.Su, T., Wilf, P., Huang, Y., Zhang, S. & Zhou, Z. Peaches Preceded Humans: Fossil Evidence from SW China. Sci. Rep. 5, 16794. https://doi.org/10.1038/srep16794 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
24.Nishida, H. The frontier of fossil plant studies. Gakujutu Geppou 54, 1142–1144 (2001).
Google Scholar
25.Collinson, M. E. et al. X-ray micro-computed tomography (micro-CT) of pyrite-permineralized fruits and seeds from the London Clay Formation (Ypresian) conserved in silicone oil: A critical evaluation. Botany 94, 697–711. https://doi.org/10.1139/cjb-2016-0078 (2016).CAS
Article
Google Scholar
26.Dilcher, D. L. & Manchester, S. R. Investigations of angiosperms from the Eocene of North America: A fruit belonging to the Euphorbiaceae. Tertiary Res. 9, 45–58 (1987).
Google Scholar
27.Koch, B. E. & Friedrich, W. L. StereoskopischeRntgen-aufnahmen von fossilenFrüchten. Bull. Geol. Soc. Denmark. 21, 358–367 (1972).
Google Scholar
28.Debussche, M. & Isenmann, P. Fleshy fruit characters and the choices of bird and mammal seed dispersers in a Mediterranean region. Oikos 56, 327–338 (1989).
Google Scholar
29.Esteves, C. F., Costa, J. M., Vargas, P., Freitas, H. & Heleno, R. H. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE 10, e0138882. https://doi.org/10.1371/journal.pone.0138882 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
30.Manniche, L. Sacred Luxuries: Fragrance, Aromatherapy, and Cosmetics in Ancient Egypt (Cornell University Press, 1999).
Google Scholar
31.Kendall, P. Trees for life Discover the forest, Mythology & folklore, Juniper (Iris Publisher, 2005).
Google Scholar
32.Waltz, L. R. The Herbal Encyclopedia: A Practical Guide to the Many Uses of Herbs (iUniverse, 2004).
Google Scholar
33.Tunon, H., Olavsdotter, C. & Bohlin, L. Evaluation of anti-inflammatory activity of some Swedish medicinal plants. Inhibition of prostaglandin biosynthesis and PAF-induced exocytosis. J. Ethnopharmacol. 48, 61–76 (1995).CAS
PubMed
Google Scholar
34.Modnicki, D. & Łabędzka, J. Estimation of the total phenolic compounds in juniper sprouts (Juniperus communis, Cupressaceae) from different places at the kujawsko-pomorskie province. Herba Pol. 55, 127–132 (2009).CAS
Google Scholar
35.Longe, J. L. The Gale Encyclopedia of Alternative Medicine Vol. 3 (Thomson Gale ((Thomson Gale, A Part of The Thomson Corporation), London, 2005).
Google Scholar
36.Wurges, J. Juniper. In The Gale Encyclopedia of Alternative Medicine (ed. Longe, J. L.) (Thomson/Gale, 2005).
Google Scholar
37.Larson, E. Dangerous Tastes: The Story of Spices. Northeast. Nat. 9, 124 (2002).
Google Scholar
38.Dalby, A. Dangerous Tastes: The Story of Spices (University of California Press, 2000).
Google Scholar
39.Lorman, J. Greek Life 76–77 (Gregory House, 1997).
Google Scholar
40.El-Bana, M., Shaltout, K., Khalafallah, A. & Mosallam, H. Ecological status of the Mediterranean Juniperus phoenicea L. relicts in the desert mountains of North Sinai, Egypt. Flora 205, 171–178. https://doi.org/10.1016/j.flora.2009.04.004 (2010).Article
Google Scholar
41.Moustafa, A. et al. Ecological Prominence of Juniperus phoenicea L. growing in Gebel Halal, North Sinai, Egypt. Catrina 15, 11–23 (2016).
Google Scholar
42.Dalby, A. Siren Feasts: A History of Food and Gastronomy in Greece (Routledge, 1997).
Google Scholar
43.Klimko, M. et al. Morphological variation of Juniperus oxycedrus subsp. oxycedrus (Cupressaceae) in the Mediterranean region. Flora 202, 133–147. https://doi.org/10.1016/j.flora.2006.03.006 (2007).Article
Google Scholar
44.Farjon, A. A Monograph of Cupressaceae and Sciadopitys (Royal Botanic Gardens, 2005).
Google Scholar
45.Farjon, A. A Handbook of the World’s Conifers (2 vols.) Vol. 1 (Brill, 2010).
Google Scholar
46.Avci, M. & Zielinski, J. Juniperus oxycedrus f. yaltirikiana (Cupressaceae): A new form from NW Turkey. Phytol. Balcanica 14, 37–40 (2008).
Google Scholar
47.Browicz, K. & Ielioski, J. Chorology of Trees and Shrubs in Southwest Asia and Adjacent Regions (PWN, 1984).
Google Scholar
48.Adams, R. P. Junipers of the World: The Genus Juniperus (Trafford Publishing, 2014).
Google Scholar
49.Liphschitz, N., Waisel, Y. & Lev-Yadun, S. Dendrochronological investigations in Iran. Tree-Ring. Bull. 39, 39–45 (1979).
Google Scholar
50.Douaihy, B. et al. Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae). AoB Plants https://doi.org/10.1093/aobpla/pls013 (2012).Article
PubMed
PubMed Central
Google Scholar
51.Khajjak, M. H. et al. Seed and cone biometry of Juniperus excelsa from three Provenances in Balochistan. Int. J. Biosci. 10, 345–355. https://doi.org/10.12692/ijb/10.1.345-355 (2017).Article
Google Scholar
52.Klimko, M. et al. Morphological variation of Juniperus oxycedrus subsp oxycedrus (Cupressaceae) in the Mediterranean region. Flora 202, 133–147. https://doi.org/10.1016/j.flora.2006.03.006 (2007).Article
Google Scholar
53.Schulz, C., Jagel, A. & Stützel, T. Cone morphology in Juniperus in the light of cone evolution in Cupressaceae s.l. Flora 198, 161–177. https://doi.org/10.1078/0367-2530-00088 (2003).Article
Google Scholar
54.Arista, M., Ortiz, P. L. & Talavera, S. Reproductive cycles of two allopatric subspecies of Juniperus oxycedrus (Cupressaceae). Flora 196, 114–120. https://doi.org/10.1016/S0367-2530(17)30026-9 (2001).Article
Google Scholar
55.Juan, R., Pastor, J., Fernández, I. & Diosdado, J. C. Relationships between mature cone traits and seed viability in Juniperus oxycedrus L. subsp macrocarpa (Sm.) Ball (Cupressaceae). Acta Biol. Cracov. Bot 45, 69–78 (2003).
Google Scholar
56.Ward, L. & Shellswell, C. Looking After Juniper, Ecology, Conservation and Folklore (Plantlife Press, 2017).
Google Scholar
57.García, D., Zamora, R., Gómez, J. M., Jordano, P. & Hódar, J. A. Geographical variation in seed production, predation and abortion in Juniperus communis throughout its range in Europe. J. Ecol. 88, 435–446. https://doi.org/10.1046/j.1365-2745.2000.00459.x (2000).Article
Google Scholar
58.Grzeskowiak, M. & Bednorz, L. Zmiennosc morfologiczna szyszkojagod jalowca pospolitego Juniperus communis L. subsp. communis w Nadlesnictwie Kaliska [Bory Tucholskie]. Roczniki Akademii Rolniczej w Poznaniu. Botanika 5, 71–78 (2002).
Google Scholar
59.Shahi, A., Movafeghi, A., Hekmat-Shoar, H., Neishabouri, A. & Iranipour, S. Demographic study of Juniperus communis L. on Mishu-Dagh altitudes in North West of Iran. Asian J. Plant Sci. 6, 1080–1087. https://doi.org/10.3923/ajps.2007.1080.1087 (2007).Article
Google Scholar
60.Thomas, P. A., El-Barghathi, M. & Polwart, A. Biological flora of the British Isles: Juniperus communis L. J. Ecol. 95, 1404–1440. https://doi.org/10.1111/j.1365-2745.2007.01308.x (2007).Article
Google Scholar
61.McCartan, S. A. & Gosling, P. G. Guidelines for seed collection and stratification of common juniper (Juniperus communis L.). Tree Plant. Notes 56, 24–29 (2013).
Google Scholar
62.García, D., Zamora, R., Gómez, J. M. & Hódar, J. A. Annual variability in reproduction of Juniperus communis L. in a Mediterranean mountain: Relationship to seed predation and weather. Écoscience 9, 251–255. https://doi.org/10.1080/11956860.2002.11682711 (2002).Article
Google Scholar
63.Raatikainen, N. & Tanska, T. Cone and seed yields of the juniper (Juniperus communis) in southern and central Finland. Acta Bot. Fenn. 149, 27–39 (1993).
Google Scholar
64.McCartan, S., Gosling, P. G. & Ives, L. Seed fill determination in common juniper (Juniperus communis L.). In Procdings of IUFRO Tree Seed Symposium, Recent Advances in Seed Physiology and Technology (eds Beardmore, T. L. & Simpson, J. D.) 65 (Fredricton, 2007).
Google Scholar
65.McCartan, S. & Gosling, P. G. Exposed! Predicting filled and empty seeds in juniper with x-radiographs. Ecotype 38, 7 (2007).
Google Scholar
66.Pers-Kamczyc, E., Tyrała-Wierucka, Ż, Rabska, M., Wrońska-Pilarek, D. & Kamczyc, J. The higher availability of nutrients increases the production but decreases the quality of pollen grains in Juniperus communis L. J. Plant Physiol. 248, 153156. https://doi.org/10.1016/j.jplph.2020.153156 (2020).CAS
Article
PubMed
Google Scholar
67.Verheyen, K. et al. Juniperus communis: Victim of the combined action of climate warming and nitrogen deposition?. Plant Biol. 11, 49–59. https://doi.org/10.1111/j.1438-8677.2009.00214.x (2009).CAS
Article
PubMed
Google Scholar
68.Kormuťák, A., Bolecek, P., Galgóci, M. & Gömöry, D. Longevity and germination of Juniperus communis L. pollen after storage. Sci. Rep. 11, 12755. https://doi.org/10.1038/s41598-021-90942-9 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
69.Yahaya, N., Lim, K. S., Noor, N. M., Othman, S. R. & Abdullah, A. Effects of clay and moisture content on soil-corrosion dynamic. Malays. J. Civ. Eng. 23, 24–32. https://doi.org/10.11113/mjce.v23.15809 (2011).Article
Google Scholar
70.Scott, D. A. (2002).71.Selwyn, L. S. ASM Handbook Volume 13C. Corrosion: Environments and Industries 306–322 (ASM International, 2006).
Google Scholar
72.Ingo, G. M. et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A 83, 513–520. https://doi.org/10.1007/s00339-006-3550-z (2006).ADS
CAS
Article
Google Scholar
73.Papadopoulou, O., Vassiliou, P., Grassini, S., Angelini, E. & Gouda, V. Soil-induced corrosion of ancient Roman brass: A case study. Mater. Corros. 67, 160–169. https://doi.org/10.1002/maco.201408115 (2016).CAS
Article
Google Scholar
74.Robbiola, L. & Portier, R. A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. J. Cult. Herit. 7, 1–12. https://doi.org/10.1016/j.culher.2005.11.001 (2006).Article
Google Scholar
75.Vuai, S. A., Nakamura, K. & Tokuyama, A. Geochemical characteristics of runoff from acid sulfate soils in the northern area of Okinawa Island, Japan. Geochem. J. 37, 579–592 (2003).ADS
CAS
Google Scholar
76.Marani, D., Patterson, J. W. & Anderson, P. R. Alkaline precipitation and aging of Cu(II) in the presence of sulfate. Water Res. 29, 1317–1326. https://doi.org/10.1016/0043-1354(94)00286-G (1995).CAS
Article
Google Scholar
77.Baboian, R. Corrosion Tests and Standards: Application and Interpretation Vol. 20 (ASTM International, 2005).
Google Scholar
78.Strandberg, H. Reactions of copper patina compounds—II. Influence of sodium chloride in the presence of some air pollutants. Atmos. Environ. 32, 3521–3526. https://doi.org/10.1016/S1352-2310(98)00058-2 (1998).ADS
CAS
Article
Google Scholar
79.Borkow, G. & Gabbay, J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol. 3, 272–278 (2009).CAS
Google Scholar
80.Dollwet, H. Historic uses of copper compounds in medicine. Trace Elem. Med. 2, 80–87 (1985).
Google Scholar
81.Milanino, R. Copper in medicine and personal care: A historical overview. In Copper and the Skin 149–160 (Informa Healthcare, 2006).
Google Scholar
82.Robinson, M. Environmental archaeology: Approaches, techniques & applications. Antiquity 79, 229–230 (2005).
Google Scholar
83.Milanesi, C. et al. Ultrastructural study of archaeological Vitis vinifera L. seeds using rapid-freeze fixation and substitution. Tissue Cell 41, 443–447. https://doi.org/10.1016/j.tice.2009.03.002 (2009).CAS
Article
PubMed
Google Scholar
84.Akahane, H., Furuno, T., Miyajima, H., Yoshikawa, T. & Yamamoto, S. Rapid wood silicification in hot spring water: An explanation of silicification of wood during the Earth’s history. Sed. Geol. 169, 219–228. https://doi.org/10.1016/j.sedgeo.2004.06.003 (2004).CAS
Article
Google Scholar
85.Leo, R. F. & Barghoorn, E. S. Silicification of wood. Bot. Mus. Leafl. Harv. Univ. 25, 1–47 (1976).CAS
Google Scholar
86.Hellawell, J. et al. Incipient silicification of recent conifer wood at a Yellowstone hot spring. Geochim. Cosmochim. Acta 149, 79–87. https://doi.org/10.1016/j.gca.2014.10.018 (2015).ADS
CAS
Article
Google Scholar More