1.Rabosky, D. L. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013).
Google Scholar
2.Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).ADS
CAS
PubMed
Google Scholar
3.Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
Google Scholar
4.Verdú, M., Jordano, P. & Valiente-Banuet, A. The phylogenetic structure of plant facilitation networks changes with competition. J. Ecol. 98, 1454–1461 (2010).
Google Scholar
5.Gavini, S. S., Ezcurra, C. & Aizen, M. A. Plant–plant interactions promote alpine diversification. Evol. Ecol. 33, 195–209 (2019).
Google Scholar
6.Eriksson, O. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol. Rev. 91(1), 168–186 (2016).PubMed
Google Scholar
7.Tur, C., Sáez, A., Traveset, A. & Aizen, M. A. Evaluating the effects of pollinator-mediated interactions using pollen transfer networks: Evidence of widespread facilitation in south Andean plant communities. Ecol. Lett. 19, 576–586 (2016).CAS
PubMed
Google Scholar
8.Braun, J. & Lortie, C. J. Finding the bees knees: A conceptual framework and systematic review of the mechanisms of pollinator-mediated facilitation. Perspect. Plant Ecol. Evol. Syst. 36, 33–40 (2019).
Google Scholar
9.Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).
Google Scholar
10.Waser, N. M. & Ollerton, J. Plant-Pollinator Interactions: From Specialization to Generalization (University of Chicago Press, 2006).
Google Scholar
11.Biella, P. et al. Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Sci. Rep. 9, 7376 (2019).ADS
PubMed
PubMed Central
Google Scholar
12.Arceo-Gómez, G. et al. Global geographic patterns of heterospecific pollen receipt help uncover potential ecological and evolutionary impacts across plant communities worldwide. Sci. Rep. 9(1), 8086 (2019).ADS
PubMed
PubMed Central
Google Scholar
13.Morales, C. L. & Traveset, A. Interspecific pollen transfer: Magnitude, prevalence and consequences for plant fitness. Crit. Rev. Plant Sci. 27, 221–238 (2008).CAS
Google Scholar
14.Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M. & Karron, J. D. New frontiers in competition for pollination. Ann. Bot. 103, 1403–1413 (2009).PubMed
PubMed Central
Google Scholar
15.Moeller, D. A. Facilitative interactions among plants via shared pollinators. Ecology 85, 3289–3301 (2004).
Google Scholar
16.Ghazoul, J. Floral diversity and the facilitation of pollination. J. Ecol. 94, 295–304 (2006).
Google Scholar
17.Muñoz, A. A. & Cavieres, L. A. The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. J. Ecol. 96, 459–467 (2008).
Google Scholar
18.Hegland, S. J., Grytnes, J. A. & Totland, O. The relative importance of positive and negative interactions for pollinator attraction in a plant community. Ecol. Res. 24, 929–936 (2009).
Google Scholar
19.Ashman, T. L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100(6), 1061–1070 (2013).PubMed
Google Scholar
20.Fang, Q. & Huang, S. Q. A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology 94, 1176–1185 (2013).PubMed
Google Scholar
21.Arceo-Gómez, G. et al. Patterns of among- and within-species variation in heterospecific pollen receipt: The importance of ecological generalization. Am. J. Bot. 103, 396–407 (2016).PubMed
Google Scholar
22.Fang, Q., Gao, J., Armbruster, W. S. & Huang, S. Q. Multi-year stigmatic pollen-load sampling reveals temporal stability in interspecific pollination of flowers in a subalpine meadow. Oikos 128, 1739–1747 (2019).
Google Scholar
23.Bartomeus, I., Bosch, J. & Vila, M. High invasive pollen transfer, yet low deposition on native stigmas in a Carpobrotus-invaded community. Ann. Bot. 102, 417–424 (2008).PubMed
PubMed Central
Google Scholar
24.Lázaro, A., Jakobsson, A. & Totland, Ø. How do pollinator visitation rate and seed set relate to species’ floral traits and community context?. Oecologia 173(3), 881–893 (2013).ADS
PubMed
Google Scholar
25.Matsumoto, T., Takakura, K. I. & Nishida, T. Alien pollen grains interfere with the reproductive success of native congener. Biol. Invasions 12, 1617–1626 (2010).
Google Scholar
26.Flanagan, R. J., Mitchell, R. J. & Karron, J. D. Effects of multiple competitors for pollination on bumblebee foraging patterns and Mimulus ringens reproductive success. Oikos 120(2), 200–207 (2011).
Google Scholar
27.Arceo-Gómez, G. & Ashman, T. L. Heterospecific pollen deposition: Does diversity alter the consequences?. New Phytol. 192(3), 738–746 (2011).PubMed
Google Scholar
28.Arceo-Gómez, G., Kaczorowski, R. L., Patel, C. & Ashman, T. L. Interactive effects between donor and recipient species mediate fitness costs of heterospecific pollen receipt in a co-flowering community. Oecologia 189, 1041–1047 (2019).ADS
PubMed
Google Scholar
29.Montgomery, B. R. Pollination of Sisyrinchium campestre (Iridaceae) in prairies invaded by the introduced plant Euphorbia ésula (Euphorbiaceae). Am. Midl. Nat. 162, 239–252 (2009).
Google Scholar
30.Huang, Z. H., Liu, H. L. & Huang, S. Q. Interspecific pollen transfer between two coflowering species was minimized by bumblebee fidelity and differential pollen placement on the bumblebee body. J. Plant Ecol. 8(2), 109–115 (2015).
Google Scholar
31.Moreira-Hernández, J. I., Terzich, N., Zambrano-Cevallos, R., Oleas, N. H. & Muchhala, N. Differential tolerance to increasing heterospecific pollen deposition in two sympatric species of Burmeistera (Campanulaceae: Lobelioideae). Int. J. Plant Sci. 180, 987–995 (2019).
Google Scholar
32.Makino, T. T., Ohashi, K. & Sakai, S. How do floral display size and the density of surrounding flowers influence the likelihood of bumble bee revisitation to a plant?. Funct. Ecol. 21, 87–95 (2007).
Google Scholar
33.Liao, K., Gituru, R. W., Guo, Y. H. & Wang, Q. F. The presence of co-flowering species facilitates reproductive success of Pedicularis monbeigiana (Orobanchaceae) through variation in bumble-bee foraging behaviour. Ann. Bot. 108, 877–884 (2011).PubMed
PubMed Central
Google Scholar
34.Sieber, Y. et al. Do alpine plants facilitate each other’s pollination? Experiments at a small spatial scale. Acta Oecol. 37, 369–374 (2011).ADS
Google Scholar
35.Yang, C. F., Wang, Q. F. & Guo, Y. H. Pollination in a patchily distributed lousewort is facilitated by presence of a co-flowering plant due to enhancement of quantity and quality of pollinator visits. Ann. Bot. 112, 1751–1758 (2013).PubMed
PubMed Central
Google Scholar
36.Losapio, G. & Schöb, C. Pollination interactions reveal direct costs and indirect benefits of plant–plant facilitation for ecosystem engineers. J. Plant Ecol. 13, 107–113 (2020).
Google Scholar
37.Molina-Montenegro, M., Badano, E. & Cavieres, L. Positive interactions among plant species for pollinator service: Assessing the “magnet species” concept with invasive species. Oikos 117, 1833–1839 (2008).
Google Scholar
38.Arceo-Gómez, G. & Ashman, T. L. Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: Implications for native biodiversity decline. J. Ecol. 104, 1003–1008 (2016).
Google Scholar
39.Streher, N. S., Bergamo, P. J., Ashman, T. L., Wolowski, M. & Sazima, M. Effect of heterospecific pollen deposition on pollen tube growth depends on the phylogenetic relatedness between donor and recipient. AoB Plants 12, plaa016 (2020).CAS
PubMed
PubMed Central
Google Scholar
40.Suárez-Mariño, A., Arceo-Gómez, G., Sosenski, P. & Parra-Tabla, V. Patterns and effects of heterospecific pollen transfer between an invasive and two native plant species: The importance of pollen arrival time to the stigma. Am. J. Bot. 106, 1308–1315 (2019).PubMed
Google Scholar
41.Celaya, I. N., Arceo-Gómez, G., Alonso, C. & Parra-Tabla, V. Negative effects of heterospecific pollen receipt vary with abiotic conditions: Ecological and evolutionary implications. Ann. Bot. 116(5), 789–795 (2015).PubMed
PubMed Central
Google Scholar
42.Johnson, A. L. & Ashman, T. L. Consequences of invasion for pollen transfer and pollination revealed in a tropical island ecosystem. New Phytol. 221, 142–154 (2019).PubMed
Google Scholar
43.Albor, C., Arceo-Gómez, G. & Parra-Tabla, V. Integrating floral trait and flowering time distribution patterns help reveal a more dynamic nature of co-flowering community assembly processes. J. Ecol. 108, 2221–2231 (2020).
Google Scholar
44.Brooker, R. W. et al. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 96, 18–34 (2008).MathSciNet
Google Scholar
45.He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed
Google Scholar
46.Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn. (Springer, 2003).
Google Scholar
47.Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).CAS
PubMed
Google Scholar
48.Cavieres, L. A., Hernández-Fuentes, C., Sierra-Almeida, A. & Kikvidze, Z. Facilitation among plants as an insurance policy for diversity in Alpine communities. Funct. Ecol. 30(1), 52–59 (2016).
Google Scholar
49.Gavini, S. S., Ezcurra, C. & Aizen, M. A. Patch-level facilitation fosters high-Andean plant diversity at regional scales. J. Veg. Sci. 31, 1135–1145 (2020).
Google Scholar
50.Valiente-Banuet, A. & Verdú, M. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10, 1029–1036 (2007).PubMed
Google Scholar
51.McCormick, M. L., Aslan, C. E., Chaudhry, T. A. & Potter, K. A. Benefits and limitations of isolated floral patches in a pollinator restoration project in Arizona. Restor Ecol. 27, 1282–1290 (2019).
Google Scholar
52.Vamosi, J. C. et al. Pollination decays in biodiversity hotspots. Proc. Natl. Acad. Sci. USA 10, 956–961 (2006).ADS
Google Scholar
53.Parra-Tabla, V. et al. Pollen transfer networks reveal alien species as main heterospecific pollen donors with fitness consequences for natives. J. Ecol. 109, 939–951 (2021).
Google Scholar
54.Ballantyne, G., Baldock, K. C. R., Rendell, L. & Willmer, P. G. Pollinator importance networks illustrate the crucial value of bees in a highly speciose plant community. Sci. Rep. 7(1), 8389 (2017).ADS
PubMed
PubMed Central
Google Scholar
55.Johnson, S. D., Peter, C. I., Nilsson, L. A. & Agren, J. Pollination success in a deceptive orchid is enhance by co-occuring magnet plants. Ecology 84, 2919–2927 (2003).
Google Scholar
56.Ashman, T. L., Alonso, C., Parra-Tabla, V. & Arceo-Gómez, G. Pollen on stigmas as proxies of pollinator competition and facilitation: Complexities, caveats, and future directions. Ann. Bot. 125(7), 1003–1012 (2020).PubMed
PubMed Central
Google Scholar
57.Arroyo, M. T. K., Primack, R. & Armesto, J. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am. J. Bot. 69(1), 82–97 (1982).
Google Scholar
58.Arroyo, M. T. K., Armesto, J. J. & Primack, R. B. Community studies in population ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Pl. Syst. Evol. 149, 187–203 (1985).
Google Scholar
59.Arroyo, M. T. K. & Squeo, F. A. Relationship between plant breeding systems and pollination. In Biological Approaches and Evolutionary Trends in Plants (ed. Kawano, S.) 205–227 (Academic Press, 1990).
Google Scholar
60.Jakobsson, A., Padrón, B. & Traveset, A. Pollen transfer from invasive Carpobrotus spp. to natives—A study of pollinator behaviour and reproduction success. Biol. Conserv. 141, 136–145 (2008).
Google Scholar
61.Heinrich, B. Bumblebee foraging and the economics of sociality: How have bumblebees evolved to use a large variety of flowers efficiently? Individual bees have specialized behavioral repertories, and the colony, collectively, can harvest food from many different resources. Am. Sci. 64, 384–395 (1976).ADS
Google Scholar
62.Rasmann, S., Alvarez, N. & Pellissier, L. The altitudinal niche-breadth hypothesis in insect–plant interactions. In Annual Plant Reviews (Eds. C. Voelckel, & G. Jander) volume 47. (pp. 339–360). (Wiley-Blackwell Publishing, Oxford 2014).
Google Scholar
63.Gegear, R. J. & Laverty, T. M. Flower constancy in bumblebees: A test of the trait variability hypothesis. Anim. Behav. 69(4), 939–949 (2005).
Google Scholar
64.Iler, A. M. & Goodell, K. Relative floral density of an invasive plant affects pollinator foraging behaviour on a native plant. J. Pollinat. Ecol. 13, 174–183 (2014).
Google Scholar
65.Dauber, J. et al. Effects of patch size and density on flower visitation and seed set of wild plants: A pan-European approach. J. Ecol. 98, 188–196 (2010).
Google Scholar
66.Totland, Ø. Pollination in alpine Norway: Flowering phenology, insect visitors, and visitation rates in two plant communities. Canad. J. Bot. 71, 1072–1079 (1993).
Google Scholar
67.Zhao, Z. G. & Wang, Y. K. Selection by pollinators on floral traits in generalized Trollius ranunculoides (Ranunculaceae) along altitudinal gradients. PLoS ONE 10(2), e0118299 (2015).PubMed
PubMed Central
Google Scholar
68.Hagen, M., Wikelski, M. & Kissling, W. D. Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS ONE 6(5), e19997 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
69.Hegland, S. J. & Boeke, L. Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol. Entomol. 31, 532–538 (2006).
Google Scholar
70.Lázaro, A., Lundgren, R. & Totland, Ø. Co-flowering neighbors influence the diversity and identity of pollinator groups visiting plant species. Oikos 118, 691–702 (2009).
Google Scholar
71.Potts, S. G. et al. Nectar resource diversity organises flower-visitor community structure. Entomol. Exp. Appl. 113, 103–107 (2004).
Google Scholar
72.Hoyle, H. et al. Plant species or flower colour diversity? Identifying the drivers of public and invertebrate response to designed annual meadows. Landsc. Urban. Plan. 180, 103–113 (2018).
Google Scholar
73.Walker, B. H. Biodiversity and ecological redundancy. Biol. Conserv. 6, 18–23 (1992).
Google Scholar
74.Arroyo, M. T. K., Pacheco, D. A. & Dudley, L. S. Functional role of long-lived flowers in preventing pollen limitation in a high elevation outcrossing species. AoB Plants 9(6), plx050 (2017).PubMed
PubMed Central
Google Scholar
75.Nuñez, C., Aizen, M. & Ezcurra, C. Species associations and nurse effects in patches of high-Andean vegetation. J. Veg. Sci. 10, 357–364 (1999).
Google Scholar
76.Ferreyra, M., Clayton, S. & Ezcurra, C. High Mountain of the Patagonian Andes (LOLA, 2020).
Google Scholar
77.Riveros, M. Biología reproductiva en especies vegetales de dos comunidades de la zona templada del sur de Chile, 40° S. Ph.D. Dissertation, Universidad de Chile, Santiago, Chile (1991).78.Riveros, M., Humaña, A. M. & Lanfranco, D. Actividad de los polinizadores en el Parque Nacional Puyehue, X region, Chile. Medio Ambiente 11, 5–12 (1991).
Google Scholar
79.Alexander, M. P. A versatile stain for pollen, fungi, yeast and bacteria. Stain Technol. 55, 13–18 (1980).CAS
PubMed
Google Scholar
80.- R Core Development Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed April 2021 (2018).81.- Magnusson, A. et al. glmmTMB: Generalized linear mixed models using template model builder. https://github.com/glmmTM. Accessed April 2021 (2017).82.Kock, N. & Lynn, G. S. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. J. Assoc. Inf. Syst. 13(7), 546–580 (2012).
Google Scholar
83.Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. e-Collab. 11(4), 1–10 (2015).
Google Scholar
84.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed
Google Scholar
85.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).
Google Scholar
86.Arceo-Gómez, G., Alonso, C., Ashman, T. L. & Parra-Tabla, V. Variation in sampling effort affects the observed richness of plant–plant interactions via heterospecific pollen transfer: Implications for interpretation of pollen transfer networks. Am. J. Bot. 105, 1601–1608 (2018).PubMed
Google Scholar
87.Colwell, R. K. & Coddington, J. A. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R Soc. Lond. B Biol. Sci. 345, 101–118 (1994).ADS
CAS
PubMed
Google Scholar
88.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).
Google Scholar
89.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3(5), 808–812 (2012).
Google Scholar More