Forest fires and climate-induced tree range shifts in the western US
1.von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. of Chicago Press, 1807).2.Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).3.Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).CAS
PubMed
Google Scholar
4.Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl Acad. Sci. 105, 11823–11826 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
5.Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Veg. Sci. 28, 939–950 (2017).
Google Scholar
6.Thomas, C. D. Climate, climate change and range boundaries: climate and range boundaries. Divers. Distrib. 16, 488–495 (2010).
Google Scholar
7.Lenoir, J. & Svenning, J.-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).
Google Scholar
8.Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS
CAS
PubMed
Google Scholar
9.Grabherr, G., Gottfried, M. & Pauli, H. Climate change impacts in alpine environments: climate change impacts in alpine environments. Geogr. Compass 4, 1133–1153 (2010).
Google Scholar
10.Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).ADS
Google Scholar
11.Im, S. T., Kharuk, V. I., Sukachev Institute of Forest SB RAS – subdivision of FSC KSC SB RAS; Siberian Federal University & Lee, V. G. Migration of the northern evergreen needleleaf timberline in Siberia in the 21st century. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Iz Kosm. 17, 176–187 (2020).
Google Scholar
12.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS
CAS
PubMed
Google Scholar
13.Murphy, H. T., VanDerWal, J. & Lovett-Doust, J. Signatures of range expansion and erosion in eastern North American trees: signatures of range expansion and erosion. Ecol. Lett. 13, 1233–1244 (2010).PubMed
Google Scholar
14.Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. & Curtis-McLane, S. Adaptation, migration or extirpation: climate change outcomes for tree populations: climate change outcomes for tree populations. Evol. Appl. 1, 95–111 (2008).PubMed
PubMed Central
Google Scholar
15.Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).PubMed
Google Scholar
16.Williams, M. I. & Dumroese, R. K. Preparing for climate change: forestry and assisted migration. J. For. 111, 287–297 (2013).
Google Scholar
17.Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).PubMed
Google Scholar
18.Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).PubMed
Google Scholar
19.Anderson, R. P. When and how should biotic interactions be considered in models of species niches and distributions? J. Biogeogr. 44, 8–17 (2017).
Google Scholar
20.Wilkinson, D. M. Mycorrhizal fungi and quaternary plant migrations. Glob. Ecol. Biogeogr. Lett. 7, 137 (1998).
Google Scholar
21.Wilkinson, D. M. Plant colonization: are wind dispersed seeds really dispersed by birds at larger spatial and temporal scales? J. Biogeogr. 24, 61–65 (1997).
Google Scholar
22.MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton Univ. Press, 1984).23.Pigot, A. L. & Tobias, J. A. Species interactions constrain geographic range expansion over evolutionary time. Ecol. Lett. 16, 330–338 (2013).PubMed
Google Scholar
24.Svenning, J.-C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).PubMed
PubMed Central
Google Scholar
25.Liang, Y., Duveneck, M. J., Gustafson, E. J., Serra-Diaz, J. M. & Thompson, J. R. How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Glob. Chang. Biol. 24, e335–e351 (2018).ADS
PubMed
Google Scholar
26.Moorcroft, P. R., Pacala, S. W. & Lewis, M. A. Potential role of natural enemies during tree range expansions following climate change. J. Theor. Biol. 241, 601–616 (2006).ADS
MathSciNet
CAS
PubMed
MATH
Google Scholar
27.Moran, E. V. & Ormond, R. A. Simulating the interacting effects of intraspecific variation, disturbance, and competition on climate-driven range shifts in trees. PLoS ONE 10, e0142369 (2015).PubMed
PubMed Central
Google Scholar
28.Stralberg, D. et al. Wildfire-mediated vegetation change in boreal forests of Alberta. Can. Ecosphere 9, e02156 (2018).
Google Scholar
29.Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).ADS
CAS
PubMed
Google Scholar
30.Ettinger, A. & HilleRisLambers, J. Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Glob. Chang. Biol. 23, 3921–3933 (2017).ADS
PubMed
Google Scholar
31.Caplat, P., Anand, M. & Bauch, C. Interactions between climate change, competition, dispersal, and disturbances in a tree migration model. Theor. Ecol. 1, 209–220 (2008).
Google Scholar
32.Serra-Diaz, J. M., Scheller, R. M., Syphard, A. D. & Franklin, J. Disturbance and climate microrefugia mediate tree range shifts during climate change. Landsc. Ecol. 30, 1039–1053 (2015).
Google Scholar
33.Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B Biol. Sci. 279, 2072–2080 (2012).
Google Scholar
34.Pausas, J. G. & Keeley, J. E. Wildfires as an ecosystem service. Front. Ecol. Environ. 17, 289–295 (2019).
Google Scholar
35.Harvey, B. J., Donato, D. C. & Turner, M. G. High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches: Drought and post-fire tree seedlings. Glob. Ecol. Biogeogr. 25, 655–669 (2016).
Google Scholar
36.Coop, J. D. et al. Wildfire-driven forest conversion in western north American landscapes. BioScience 70, 659–673 (2020).PubMed
PubMed Central
Google Scholar
37.Turner, M. G., Braziunas, K. H., Hansen, W. D. & Harvey, B. J. Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc. Natl Acad. Sci. 116, 11319–11328 (2019).CAS
PubMed
PubMed Central
Google Scholar
38.Stevens‐Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).PubMed
Google Scholar
39.Hanes, T. L. Succession after fire in the Chaparral of southern California. Ecol. Monogr. 41, 27–52 (1971).
Google Scholar
40.McKenzie, D. A. & Tinker, D. B. Fire-induced shifts in overstory tree species composition and associated understory plant composition in Glacier National Park, Montana. Plant Ecol. 213, 207–224 (2012).
Google Scholar
41.Walker, X. J., Mack, M. C. & Johnstone, J. F. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 20, 1137–1150 (2017).
Google Scholar
42.Hart, S. J. et al. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Change Biol. 25, 869–884 (2019).ADS
Google Scholar
43.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. 116, 6193–6198 (2019).CAS
PubMed
PubMed Central
Google Scholar
44.Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).ADS
Google Scholar
45.Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).
Google Scholar
46.Dobrowski, S. Z. et al. Forest structure and species traits mediate projected recruitment declines in western US tree species: tree recruitment patterns in the western US. Glob. Ecol. Biogeogr. 24, 917–927 (2015).
Google Scholar
47.Anderson, T. W. An Introduction to Multivariate Statistical Analysis (Wiley-Interscience, 2003).48.Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116 (2009).
Google Scholar
49.Tollefson, J. Quercus chrysolepis. https://www.fs.fed.us/database/feis/plants/tree/quechr/all.html (2008).50.Fryer, J. Quercus kelloggii. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2007).51.Meyer, R. Chrysolepis chrysophylla. https://www.fs.fed.us/database/feis/plants/tree/quekel/all.html (2012).52.Michelle, A. Pinus contorta var. latifolia. https://www.fs.fed.us/database/feis/plants/tree/pinconl/all.html (2003).53.Cope, A. Pinus contorta var. murrayana. https://www.fs.fed.us/database/feis/plants/tree/pinconm/all.html (1993).54.Cope, A. Pinus contorta var. contorta. https://www.fs.fed.us/database/feis/plants/tree/pinconc/all.html (1993).55.Rodman, K. C. et al. A trait‐based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. https://doi.org/10.1111/1365-2745.13480 (2020).56.Davis, K. T., Higuera, P. E. & Sala, A. Anticipating fire‐mediated impacts of climate change using a demographic framework. Funct. Ecol. 32, 1729–1745 (2018).
Google Scholar
57.Gutzler, D. S. & Robbins, T. O. Climate variability and projected change in the western United States: regional downscaling and drought statistics. Clim. Dyn. 37, 835–849 (2011).
Google Scholar
58.Leung, L. R. et al. Mid-century ensemble regional climate change scenarios for the western United States. Clim. Chang. 62, 75–113 (2004).
Google Scholar
59.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manag. 259, 660–684 (2010).
Google Scholar
60.Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).ADS
Google Scholar
61.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS
PubMed
Google Scholar
62.Lenoir, J., Gegout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).ADS
CAS
PubMed
Google Scholar
63.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).64.RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, PBC, 2020).65.U.S. Forest Service. Forest Inventory and Analysis National Core Field Guide. https://www.fia.fs.fed.us/library/field-guides-methods-proc/docs/2017/core_ver7-2_10_2017_final.pdf (2017).66.U.S. EPA. Level I Ecoregions of North America Shapefile. (2010).67.Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for north America. PLoS ONE 11, e0156720 (2016).PubMed
PubMed Central
Google Scholar
68.Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).
Google Scholar
69.Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data: measuring niche overlap. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
Google Scholar
70.Hill, A. avephill/wildfire-plant_RS: Forest fires and climate-induced tree range shifts in the western US. https://doi.org/10.5281/ZENODO.5555390 (2021). More