More stories

  • in

    Mapping classes of carbon

    This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide licence to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). More

  • in

    Field metabolic rates of giant pandas reveal energetic adaptations

    1.Li, B. V. & Pimm, S. L. China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conserv. Biol. 30, 329–339 (2016).PubMed 

    Google Scholar 
    2.Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
    Google Scholar 
    3.Dunham, A. E., Grant, B. W. & Overall, K. L. Interfaces between biophysical and physiological ecology and the population ecology of terrestrial vertebrate ectotherms. Physiol. Zool. 62, 335–355 (1989).
    Google Scholar 
    4.Nowak, R. M. Walker’s Mammals of the World Vol. II (Johns Hopkins University Press, 1991).
    Google Scholar 
    5.Nelson, R. A., Wahner, H. W., Jones, J. D., Ellefson, R. D. & Zollman, P. E. Metabolism of bears before, during, and after winter sleep. Am. J. Physiol. 224, 491–496 (1973).CAS 
    PubMed 

    Google Scholar 
    6.Best, R. C. Thermoregulation in resting and active polar bears. J. Comp. Physiol. 146, 63–73 (1982).
    Google Scholar 
    7.Watts, P. D., Øritsland, N. A. & Hurst, R. J. Standard metabolic rate of polar bears under simulated denning conditions. Physiol. Zool. 60, 687–691 (1987).
    Google Scholar 
    8.Watts, P. & Cuyler, C. Metabolism of the black bear under simulated denning conditions. Acta Physiol. Scand. 134, 149–152 (1988).CAS 
    PubMed 

    Google Scholar 
    9.Watts, P. D. & Jonkel, C. Energetic cost of winter dormancy in grizzly bear. J. Wildl. Manag. 52, 654–656 (1988).
    Google Scholar 
    10.Tøien, Ø. et al. Hibernation in black bears: Independence of metabolic suppression from body temperature. Science 331, 906–909 (2011).ADS 
    PubMed 

    Google Scholar 
    11.McNab, B. K. Rate of metabolism in the termite-eating sloth bear (Ursus ursinus). J. Mammal. 73, 168–172 (1992).
    Google Scholar 
    12.Pagano, A. M. et al. Energetic costs of locomotion in bears: is plantigrade locomotion energetically economical?. J. Exp. Biol. 221, jeb175372 (2018).PubMed 

    Google Scholar 
    13.Pagano, A. M. & Williams, T. M. Estimating the energy expenditure of free-ranging polar bears using tri-axial accelerometers: A validation with doubly labeled water. Ecol. Evol. 9, 4210–4219 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    14.Zhang, Y., Mathewson, P. D., Zhang, Q., Porter, W. P. & Ran, J. An ecophysiological perspective on likely giant panda habitat responses to climate change. Glob. Change Biol. 24, 1804–1816 (2018).ADS 

    Google Scholar 
    15.Fei, Y. et al. Metabolic rates of giant pandas inform conservation strategies. Sci. Rep. 6, 27248. https://doi.org/10.1038/srep27248 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Sieg, A. E. et al. Mammalian metabolic allometry: Do intraspecific variation, phylogeny, and regression models matter?. Am. Nat. 174, 720–733 (2009).PubMed 

    Google Scholar 
    17.Nie, Y. et al. Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349, 171–174 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    18.Acquarone, M., Born, E. W. & Speakman, J. R. Field metabolic rates of walrus (Odobenus rosmarus) measured by the doubly labeled water method. Aquat. Mamm. 32, 363–369 (2006).
    Google Scholar 
    19.Nagy, K. & Montgomery, G. Field metabolic rate, water flux, and food consumption in three-toed sloths (Bradypus variegatus). J. Mammal. 61, 465–472 (1980).
    Google Scholar 
    20.Mautz, W. & Nagy, K. Ontogenetic changes in diet, field metabolic rate, and water flux in the herbivorous lizard Dipsosaurus dorsalis. Physiol. Zool. 60, 640–658 (1987).
    Google Scholar 
    21.Anava, A., Kam, M., Shkolnik, A. & Degen, A. Effect of group size on field metabolic rate of Arabian babblers provisioning nestlings. Condor 103, 376–380 (2001).
    Google Scholar 
    22.Fyhn, M. et al. Individual variation in field metabolic rate of kittiwakes (Rissa tridactyla) during the chick-rearing period. Physiol. Biochem. Zool. 74, 343–355 (2001).CAS 
    PubMed 

    Google Scholar 
    23.Møller, A. P. Relative longevity and field metabolic rate in birds. J. Evol. Biol. 21, 1379–1386 (2008).PubMed 

    Google Scholar 
    24.Riek, A. Relationship between field metabolic rate and body weight in mammals: Effect of the study. J. Zool. 276, 187–194 (2008).
    Google Scholar 
    25.Sparling, C. E., Thompson, D., Fedak, M. A., Gallon, S. L. & Speakman, J. R. Estimating field metabolic rates of pinnipeds: Doubly labelled water gets the seal of approval. Funct. Ecol. 22, 245–254 (2008).
    Google Scholar 
    26.Hudson, L. N., Isaac, N. J. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    27.Munn, A. J. et al. Field metabolic rate, movement distance, and grazing pressures by western grey kangaroos (Macropus fuliginosus melanops) and Merino sheep (Ovis aries) in semi-arid Australia. Mamm. Biol. 81, 423–430 (2016).
    Google Scholar 
    28.Drack, S. et al. Field metabolic rate and the cost of ranging of the red-tailed sportive lemur (Lepilemur ruficaudatus) in New Directions in Lemur Studies (eds. Rakotosamimanana, B., Rasamimanana H., Ganzhorn, J. U., & Goodman S. M.) 83–91 (1999).29.Kilham, B. & Gray, E. Among the Bears: Raising Orphan Cubs in the Wild (Henry Holt, 2002).
    Google Scholar 
    30.Xu, W., Ouyang, Z., Jiang, Z., Zheng, H. & Liu, J. Assessment of giant panda habitat in the Daxiangling Mountain Range, Sichuan, China. Biodivers. Sci. 14, 223 (2006).CAS 

    Google Scholar 
    31.Zhao, C. et al. Relationship between human disturbance and endangered giant panda Ailuropoda melanoleuca habitat use in the Daxiangling Mountains. Oryx 51, 146–152 (2017).
    Google Scholar 
    32.Wysowski, D. K. & Pollock, M. L. Reports of death with use of propofol (Diprivan) for nonprocedural (long-term) sedation and literature review. J. Am. Soc. Anesthesiol. 105, 1047–1051 (2006).
    Google Scholar 
    33.Mistraletti, G., Donatelli, F. & Carli, F. Metabolic and endocrine effects of sleep deprivation. Essent. Psychopharmacol. 6, 312–317 (2005).
    Google Scholar 
    34.Champagne, C. D., Houser, D. S., Costa, D. P. & Crocker, D. E. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in Northern elephant seals. PLoS ONE 7, e38442. https://doi.org/10.1371/journal.pone.0038442 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Fahlman, Å. Anaesthesia of wild carnivores and primates. Licentiate Thesis (Swedish University of Agricultural Sciences, Uppsala, Sweden, 2005).36.Arnemo, J. M. et al. Risk of capture-related mortality in large free-ranging mammals: experiences from Scandinavia. Wildl. Biol. 12, 109–113 (2006).
    Google Scholar 
    37.West, G., Heard, D. & Caulkett, N. Zoo Animal and Wildlife Immobilization and Anesthesia 2nd edn. (John Wiley & Sons, 2014).
    Google Scholar 
    38.Speakman, J. R. Doubly Labelled Water: Theory and Practice (Springer, 1997).
    Google Scholar 
    39.Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277 (1999).CAS 
    PubMed 

    Google Scholar 
    40.Prosser, C. L. & Brown, F. A. Jr. Comparative Animal Physiology, Environmental and Metabolic Animal Physiology 260–261 (W. B. Saunders, 1991).
    Google Scholar 
    41.Scholander, P. F., Hock, R., Walters, V., Johnson, F. & Irving, L. Heat regulation in some arctic and tropical mammals and birds. Biol. Bull. 99, 237–258 (1950).CAS 
    PubMed 

    Google Scholar 
    42.Hart, J. S. Rodents in Comparative Physiology of Thermoregulation, Volume II Mammals (ed Whittow, G. C.) 1–149 (Academic Press, 1971).43.McNab, B. K. The Physiological Ecology of Vertebrates: A View From Energetics (Cornell University Press, 2002).
    Google Scholar 
    44.Schaller, G. B., Hu, J. C., Pan, W. S. & Zhu, J. Giant Pandas of Wolong (The University of Chicago Press, 1985).
    Google Scholar 
    45.Taylor, C., Heglund, N. & Maloiy, G. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. exp. Biol. 97, 1–21 (1982).CAS 
    PubMed 

    Google Scholar 
    46.Pagano, A. M. Polar bear (Ursus maritimus) behavior and energetics: New metrics for examining the physiological impact of a changing Arctic environment. Ph.D. Dissertation (University of California Santa Cruz, CA, 2018).47.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).
    Google Scholar 
    48.Hu, J. C. Research on the Giant Panda (Shanghai Publishing House of Science and Technology, 2001).
    Google Scholar 
    49.Liu, G., Guan, T., Dai, Q., Li, H. & Gong, M. Impacts of temperature on giant panda habitat in the north Minshan Mountains. Ecol. Evol. 6, 987–996 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    50.Hull, V. et al. Impact of livestock on giant pandas and their habitat. J. Nat. Conserv. 22, 256–264 (2014).
    Google Scholar 
    51.Hull, V. et al. Habitat use and selection by giant pandas. PLoS ONE 11(9), e0162266 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    52.Li, B. V., Pimm, S. L., Li, S., Zhao, L. & Luo, C. Free-ranging livestock threaten the long-term survival of giant pandas. Biol. Cons. 216, 18–25 (2017).
    Google Scholar 
    53.Pan, W. et al. A Chance for Lasting Survival: Ecology and Behavior of Wild Giant Pandas (Smithsonian Institution Press, 2014).
    Google Scholar 
    54.Hayes, J. P. Field and maximal metabolic rates of deer mice (Peromyscus maniculatus) at lowand high altitudes. Physiol. Zool. 62, 732–744 (1989).
    Google Scholar 
    55.Bi, W. Physiological ecology of soft-release giant pandas (Ailuropoda melanoleuca). PhD Dissertation. (Drexel University, Philadelphia, PA, 2020) More

  • in

    Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic

    Mixed layer depth and phytoplankton accumulation dynamics in the North AtlanticThe NAAMES expeditions intensively measured biological, chemical, and physical properties from 4 to 7 locations, or stations, in each bloom phase during November (Winter Transition), March−April (Accumulation), May (Climax; same as Climax Transition22), and September (Decline)22. Stations spanned a broad range in latitude (~37 °N to ~55 °N, Fig. 1a), sub-regional classifications (Gulf Stream and Sargasso Sea, Subtropical, Temperate and Subpolar)24, and MLDs (tens to hundreds of meters) (Fig. 1b and Supplementary Fig. 1). MLDs were calculated using a density difference threshold of 0.03 kg m−3 from the top 10 m25. Field data and associated analyses are derived from phytoplankton 1–20 µm in diameter and their associated communities sampled within the photic zone (40, 20, 1% surface irradiance) and within the mixed layer, unless otherwise noted.Fig. 1: Mixed layer depth and phytoplankton accumulation dynamics.a Locations of sampled stations within subregions of the Northwest Atlantic during the NAAMES expeditions (color coded and shaped by the bloom phase; W. Tran = Winter Transition; Acc = Accumulation; Clim = Climax; Decl = Decline; See key in Panel B). Black rectangle represents the study area of NAAMES and this research. b Mixed layer depths within the NAAMES campaigns (black box in Fig. 1a), calculated from CTD casts at each of the station locations (colored symbols) and Bio-ARGO profiling floats that were deployed at stations and sampled continuously (small circles with separate grey lines for each float). The latter provided a history of mixed layer depths before, during, and after occupation. c Bloom phase distribution of accumulation rates for in situ phytoplankton populations sampled several times per day at 5 m. Each point represents the median accumulation rate of each station. d Bloom phase distribution of phytoplankton cell accumulation rates derived from on-deck incubations of phytoplankton populations at simulated in situ light and temperature conditions (see ‘Methods’). Each point represents a biological replicate. Data in panels (c) and (d) are based on cell concentrations and contoured with ridgeline smoothing to represent the distribution of accumulation rates across stations within a given bloom phase. The size of contour peaks is driven by frequency of observations. e Phytoplankton concentration (taken from 5 m) as a function of water column stratification (expressed as buoyancy frequency; s−1). Higher buoyancy frequencies to the right of the plot represent more stratification. A LOESS line of best fit (shaded area = 95% confidence interval) for data shows the general trend of phytoplankton concentration across all seasonal phases. Different letters denote statistically significant groups (p  0.05, Kruskal−Wallis) between populations collected from 5 m in-line sampling throughout the day (in situ) and contemporaneous incubations of the same phytoplankton populations under simulated in situ irradiance and temperature (incubations; see ‘Methods’) (Fig. 1c, d). Accumulation rates using incubations calculated via cell concentration or via biovolume were not statistically different (Supplementary Fig. 2b).Phytoplankton cell concentration and biovolume generally increased with water column stability (stratification), during the Winter Transition, Accumulation, and Climax phases (Fig. 1e and Supplementary Fig. 2c). Stratification was quantified by the buoyancy frequency averaged over the upper 300 m of the water column (see ‘Methods’). Higher values of buoyancy frequency indicate a more stratified water column where exchange with nutrient-rich water below the surface is reduced. Strongly stratified water columns (buoyancy frequencies above 2 × 10−5 s−1) during the Decline phase were associated with lower cell concentrations (Fig. 1e), consistent with enhanced phytoplankton loss or reduced accumulation. Phytoplankton biovolume and cell size distribution within 1–20 µm-sized phytoplankton cells increased during the Decline phase (Supplementary Fig. 2c–e). These higher biovolumes could have been a result of changes in community composition. They could have also been attributed to aggregation caused by virus infection20,21,28, as virus concentrations were highest during this season (discussed below), or by light stress27, as mixed layer populations were more consistently exposed to daily higher irradiance levels characteristic of shallow mixed layers (Fig. 1e).In situ phytoplankton cell concentrations increased from Winter Transition until the Climax phase, from ~1 × 106 to 2.5 × 107 cells L−1 (Fig. 2a, c, gray boxes). On-deck incubations showed similar trends but had higher overall cell concentrations (Fig. 2a, c, white boxes). The Decline phase was characterized by a 4-fold reduction in median phytoplankton cell concentrations from the peak abundances observed during Climax phase (Fig. 2a, c). The stress markers utilized in this study provided a unique view into the physiological status of communities across these annual bloom phases (Supplementary Table 1). Our ROS and compromised cell membranes biomarkers specifically targeted eukaryotic phytoplankton, given the conditions used for flow cytometry analysis (see ‘Methods’). PCD-related proteases and lipids were extracted from biomass collected onto 1.2 and 0.2 µm diameter membrane filters, respectively. Consequently, these biomarkers could also include eukaryotic heterotrophs and bacteria in the system. Induction of caspase and metacaspase activities have been found in diverse phytoplankton, such as coccolithophores, diatoms, chlorophytes, nitrogen-fixing cyanobacteria, and dinoflagellates cells undergoing stress, senescence, and death29. They have also been reported in stressed or dying grazers30, although no marine species has been explicitly studied. TAGs are found mainly in marine eukaryotic phytoplankton31,33,33 and grazers34. The highly unsaturated fatty acids in the PC and OxPCs detected in our measurements are also indicative of eukaryotic organisms, and not marine cyanobacteria32 or heterotrophic bacteria35.Fig. 2: Seasonal phases have distinct physiological state signatures.a, c Concentration of phytoplankton cells sampled within the mixed layer at depths associated with 40, 20, or 1% surface irradiance during different seasonal phases (W.Tran = Winter Transition; Acc = Accumulation; Clim = Climax; Decl = Decline). Data are shown for in situ water (grey bars) and on-deck incubations (open bars). Population-wide levels of a, b cellular reactive oxygen species (colored by fluorescence fold change from unstained; median per population) and c, d cell death (colored by % compromised membrane). Plots (b) and (d) are contoured with ridgeline smoothing to represent the relative in situ distribution of biomarker levels within each phase. The size of contour peaks is driven by frequency of observations. e, f In situ inventories of live (e; green) and dead (f; red) cells within the mixed layer through the different phases. Individual circles denote biological replicates. Box plots in (a), (c), (e) and (f) represent the median value bounded by the upper and lower quartiles with whiskers representing median + quartile × 1.5. Different letters denote statistically significant groups (p  5 µM; PO4  > 0.4 µM). Notably, nutrient concentrations during the Climax phase were similar or higher than those observed for Accumulation phase samples, which had lower ROS signatures (Fig. 2b).Phytoplankton cells in the Decline and Winter Transition phases had a higher percentage of compromised cell membranes, reaching levels as high as 80% (Fig. 2c, d). Both late stage viral infection and PCD have been linked to high levels of compromised membranes13,29. The percentage of phytoplankton cells with compromised membranes was used to calculate concentrations of live and dead cells within the mixed layer across the bloom phases. Living phytoplankton cell concentrations generally increased from the Winter Transition through the Climax phase (Fig. 2e). The variability of dead cells was highest in the Decline phase, which also had the largest variation in total, living, and dead cell concentrations (Fig. 2c, e, f).Targeted analysis of OxPC, and TAGs in resident phytoplankton communities provided further context of changes in physiological states due to their relevance in cellular stress and loss processes. The seasonal bloom phases were characterized by distinct levels of these lipids (Fig. 3 and Supplementary Fig. 4). OxPC levels were highest in the Climax phase (Fig. 3a), where mixed layers had recently shallowed (Fig. 1b) and were concomitant with high intracellular ROS levels (Fig. 2b). Subcellular environments lacking in adequate antioxidant capacity are expected to accumulate OxPC40 particularly when a shallow mixed-layer enhances UV exposure15. Chlorophyll-normalized TAG was highest in the Decline phase (Fig. 3b), which also had the lowest accumulation rates (Fig. 1c, d). High cellular TAG levels have been observed in senescent41,42 or nutrient limited9 diatoms, and virus infected haptophytes43.Fig. 3: Seasonal phases are characterized by distinct lipid profiles and cell death-associated proteolytic activity.a Oxidized phosphatidylcholine (OxPC40:10, OxPC42:11, OxPC44:12) normalized to total phosphatidylcholine (PC40:10, PC42:11, PC44:12). b Triacylglycerol (TAG; pmol L−1), normalized to ChlA (peak area/L). c (top) The proportion of in situ samples with positive caspase activity (cleavage of IETD-AFC; color shading). (bottom) Caspase-specific activity rates (µmol substrate hydrolyzed h−1 µg protein−1) for in situ populations. d (top) The proportion of in situ samples with positive metacaspase activity (cleavage of VRPR-AMC; color shading). (bottom) Metacaspase-specific activity rates (µmol substrate hydrolyzed h−1 µg protein−1) for in situ populations. All box plots represent the median value bounded by the upper and lower quartiles, with whiskers representing median + quartile × 1.5. Different letters denote statistically significant groups (p  More

  • in

    Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis

    1.Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).CAS 
    PubMed 

    Google Scholar 
    2.Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).CAS 
    PubMed 

    Google Scholar 
    3.Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    PubMed 

    Google Scholar 
    5.Lambert, S. & Wagner, M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater Microplastics, 1–23 (2018).6.de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    7.Rist, S., Almroth, B. C., Hartmann, N. B. & Karlsson, T. M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 626, 720–726 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).CAS 

    Google Scholar 
    10.Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).PubMed 
    ADS 

    Google Scholar 
    12.Wong, J. K. H., Lee, K. K., Tang, K. H. D. & Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719, 137512 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    13.Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028 (2013).Article 
    PubMed 

    Google Scholar 
    15.Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    PubMed 

    Google Scholar 
    16.Viršek, M. K., Lovšin, M. N., Koren, Š, Kržan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).PubMed 

    Google Scholar 
    17.Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12480 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    19.Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465 (2016).
    Google Scholar 
    20.O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    21.Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS One 11, e0160746 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    22.Walker, S. et al. Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).PubMed 

    Google Scholar 
    23.Hite, J. L., Bosch, J., Fernández-Beaskoetxea, S., Medina, D. & Hall, S. R. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proc. R. Soc. B 283, 20160832 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    24.Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; Is there a link?. Proc. R. Soc. B 274, 253–260 (2007).PubMed 

    Google Scholar 
    25.Parris, M. J. & Baud, D. R. Interactive effects of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2004, 344–350 (2004).
    Google Scholar 
    26.Bosch, J. et al. Increased tropospheric ozone levels enhance pathogen infection levels of amphibians. Sci. Total Environ. 759, 143461 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    27.Brown, J. R., Miiller, T. & Kerby, J. L. The interactive effect of an emerging infectious disease and an emerging contaminant on Woodhouse’s toad (Anaxyrus woodhousii) tadpoles. Environ. Toxicol. Chem. 32, 2003–2008 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Hanlon, S. M. & Parris, M. J. The interactive effects of chytrid fungus, pesticides, and exposure timing on gray treefrog (Hyla versicolor) larvae. Environ. Toxicol. Chem. 33, 216–222 (2014).CAS 
    PubMed 

    Google Scholar 
    29.McMahon, T. A., Romansic, J. M. & Rohr, J. R. Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environ. Sci. Technol. 47, 7958–7964 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    30.Bosch, J., Martinez-Solano, I. & Garcia-Paris, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97, 331–337 (2001).
    Google Scholar 
    31.Tobler, U. & Schmidt, B. R. Within-and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5, e10927 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Boyero, L. et al. Microplastics impair amphibian survival, body condition and function. Chemosphere 244, 125500 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    33.Fisher, M. C. & Garner, T. W. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).CAS 
    PubMed 

    Google Scholar 
    34.Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecol. 33, 1022–1032 (2008).
    Google Scholar 
    35.Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).PubMed 

    Google Scholar 
    36.Garner, T. W., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: An experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011).ADS 

    Google Scholar 
    37.Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B 371, 20150454 (2016).
    Google Scholar 
    39.Ortiz-Santaliestra, M. E., Fisher, M. C., Fernández-Beaskoetxea, S., Fernández-Benéitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).PubMed 

    Google Scholar 
    40.Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. B 281, 20140629 (2014).PubMed Central 

    Google Scholar 
    41.Hanlon, S. M., Lynch, K. J., Kerby, J. & Parris, M. J. Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis. Aquat. Org. 112, 237–242 (2015).
    Google Scholar 
    42.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Gabor, C. R., Bosch, J., Fries, J. N. & Davis, D. R. A non-invasive water-borne hormone assay for amphibians. Amphibia-Reptilia 34, 151–162 (2013).
    Google Scholar 
    44.Ortiz-Santaliestra, M. E., Marco, A., Fernández, M. J. & Lizana, M. Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Environ. Toxicol. Chem. 25, 105–111 (2006).CAS 
    PubMed 

    Google Scholar 
    45.Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).ADS 

    Google Scholar 
    46.Buck, J. C., Truong, L. & Blaustein, A. R. Predation by zooplankton on Batrachochytrium dendrobatidis: Biological control of the deadly amphibian chytrid fungus?. Biodivers. Conserv. 20, 3549–3553 (2011).
    Google Scholar 
    47.Medina, D., Garner, T. W., Carrascal, L. M. & Bosch, J. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Dis. Aquat. Org. 117, 85–92 (2015).
    Google Scholar 
    48.Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).
    Google Scholar 
    49.Hu, L. et al. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164, 611–617 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Boyle, D. G., Boyle, D., Olsen, V., Morgan, J. & Hyatt, A. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).CAS 

    Google Scholar 
    51.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar  More

  • in

    Shallow-emerged coral may warn of deep-sea coral response to thermal stress

    1.Stone, R. P., Masuda, M. M. & Karinen, J. F. Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska. ICES J. Mar. Sci. 72, 900–915 (2014).Article 

    Google Scholar 
    2.Matsumoto, A. K. Recent observations on the distribution of deep-sea coral communities on the Shiribeshi Seamount, Sea of Japan’. In Freiwald, A., & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems. 345–356. Springer, Berlin, Heidelberg (2005).3.Power, M. E. et al. Challenges in the quest for keystones: Identifying keystone species is difficult—But essential to understanding how loss of species will affect ecosystems. BioSci. 46, 609–620 (1996).Article 

    Google Scholar 
    4.Waller, R. G. et al. Phenotypic plasticity or a reproductive dead end? Primnoa pacifica (Cnidaria: Alcyonacea) in the Southeastern Alaska Region. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00709 (2019).Article 

    Google Scholar 
    5.Witherell, D. & Coon, C. ‘Protecting gorgonian corals off Alaska from fishing impacts.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 117–115 (2000).6.Krieger, K. J. ‘Coral (Primnoa) impacted by fishing gear in the Gulf of Alaska.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 106–116 (2000).7.Stone, R. P. & Shotwell, S. K. State of deep coral ecosystems in the Alaska Region: Gulf of Alaska, Bering Sea and the Aleutian Islands. The State of Deep Coral Ecosystems of the United States. NOAA Technical Memorandum CRCP-3, NOAA, Silver Spring, 65–108 (2007).8.Andrews, A. H. et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101–110 (2002).MathSciNet 
    Article 

    Google Scholar 
    9.Federal Register Fisheries of the exclusive economic zone of Alaska, 50 CFD, Ch. VI, Part 679 (10-1-17 edition): 490–964 (2017).10.Stone, R. P. & Mondragon, J. Deep-sea emergence of red tree corals (Primnoa pacifica) in Southeast Alaska glacial fjords. NOAA professional Papers NMFS 20, 33 p. https://doi.org/10.7755/PP.20 (2018).11.Waller, R. G., Stone, R. P., Johnstone, J. & Mondragon, J. Sexual reproduction and seasonality of the Alaskan red tree coral, Primnoa pacifia. PLoS ONE https://doi.org/10.1371/journal.pone.0090893 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Franzén, Å. ‘Spermatogenesis.’ In Giese, A., Pearse, J.S., & Pearse, V.B. (eds.) Reproduction of marine invertebrates, Vol. IX, 1–47. Blackwell Scientific Publications, Palo Alto, CA, & The Boxwood Press, Pacific Grove, CA (1987).13.Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269 (1980).Article 

    Google Scholar 
    14.Schmidt, H. & Zissler, D. The sperm of the Anthozoa and their phylogenetic significance. Zoologica (Stuttg.) 44, 1–98 (1979).
    Google Scholar 
    15.Harrison, P.L. & Jamieson, B.G.M. ‘Cnidaria and Ctenophora.’ In Jamieson, B. G. M (ed), Progress in male gamete ultrastructure and phylogeny, Reproductive biology of invertebrates; vol. 9, pt. A, John Wiley and Sons Ltd, UK (1999).16.National Park Service Southeast Alaska Inventory and Monitoring Network. https://irma.nps.gov/DataStore/Reference/Profile/2258347 (accessed 11 February 2020).17.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    18.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    19.Cairns, S. D. & Bayer, F. M. A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bull. Mar. Sci. 77, 225–256 (2005).
    Google Scholar 
    20.Taylor, M. I., Cairns, S. D., Agnew, J. A. & Rogers, A. D. A revision of the genus Thouarella Gray, 1870 (Octocorallia, Primnoidae) including an illustrated dichotomous key, a new species description, and comments on Plumarella Gray, 1870 and Dasystenella, Versluys, 1906. Zootaxa 3602, 1–105 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. 99, S39–S43 (2018).Article 

    Google Scholar 
    22.Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).ADS 
    Article 

    Google Scholar 
    23.Leuzinger, S., Willis, B. L. & Anthony, K. R. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).Article 

    Google Scholar 
    24.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    25.Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res. (2 Top. Stud. Oceanogr.) 99, 36–41 (2014).26.Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ https://doi.org/10.7717/peerj.1606 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Weinnig, A. M., Gómez, C. E., Hallaj, A. & Cordes, E. E. Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    28.Thompson, D. M. & Van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. B 276, 2893–2901 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Gori, A. et al. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31, 823–837 (2012).ADS 
    Article 

    Google Scholar 
    33.Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 1–12 (2015).Article 

    Google Scholar 
    34.Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).ADS 
    Article 

    Google Scholar 
    35.Grinyó, J. et al. Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina. PLoS ONE 13, e0203308 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecol. 99, 421–437 (2018).Article 

    Google Scholar 
    37.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    38.Hartmann, A. C., Marhaver, K. L. & Vermeij, M. J. Corals in healthy populations produce more larvae per unit cover. Conserv. Lett. 11, e12410 (2018).Article 

    Google Scholar 
    39.Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar. Biol. 151, 1571–1584 (2007).Article 

    Google Scholar 
    40.Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).Article 

    Google Scholar 
    41.Tsounis, G., Rossi, S., Aranguren, M., Gili, J. M. & Arntz, W. Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 148, 513–527 (2006).Article 

    Google Scholar 
    42.Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Johnstone, J., Nash, S., Hernandez, E. & Rahman, M. S. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. Mar. Environ. Res. 149, 40–49 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Bögner, D. Life under climate change scenarios: Sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).Article 

    Google Scholar 
    45.Nash, S. & Rahman, M. S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 86, 1444–1458 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.López-Galindo, L. et al. Reproductive performance of Octopus maya males conditioned by thermal stress. Ecol. Indic. 96, 437–447 (2019).Article 

    Google Scholar 
    47.IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.48.Barrie, J. V. & Conway, K. W. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quat. Res. 51, 113–123 (1999).Article 

    Google Scholar 
    49.Hartill, É. C., Waller, R. G. & Auster, P. J. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PLoS ONE https://doi.org/10.1371/journal.pone.0236945 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rossin, A. M., Waller, R. G. & Stone, R. P. The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE https://doi.org/10.1371/journal.pone.0203976 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Microbes in a sea of sinking particles

    1.Alcolombri, U. et al. Nat. Geosci. 14, 775–780 (2021).CAS 
    Article 

    Google Scholar 
    2.Briggs, N., Dall’Olmo, G. & Claustre, H. Science 367, 791–793 (2020).CAS 
    Article 

    Google Scholar 
    3.Azam, F. Science 280, 694–696 (1998).CAS 
    Article 

    Google Scholar 
    4.Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Nature 568, 327–335 (2019).CAS 
    Article 

    Google Scholar 
    5.Steinberg, D. K. et al. Limnol. Oceanogr. 53, 1327–1338 (2008).Article 

    Google Scholar 
    6.Lampitt, R. S., Wishner, K. F., Turley, C. M. & Angel, M. V. Mar. Biol. 116, 689–702 (1993).Article 

    Google Scholar 
    7.Mende, D. R. et al. Nat. Microbiol. 2, 1367–1373 (2017).CAS 
    Article 

    Google Scholar 
    8.Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Nat. Commun. 9, 2743 (2018).Article 

    Google Scholar 
    9.Trull, T. W. et al. 55, 1684–1695 (2008).10.Bressac, M. et al. Nat. Geosci. 12, 995–1000 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Hot and cold water

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate

    Acrylic and polydimethylsiloxane (PDMS) molds preparationThe incubating device for the porous microplate was designed using a CAD software (Solidworks, Dassault Systèmes) and the exported drawing files were used to laser cut 1/4” and 1/8” acrylic sheet (Universal Laser Systems; Supplementary Fig. S2). After washing the cut acrylic parts with deionized water, they were attached by acrylic (Weld-On) and epoxy (3 M) adhesives that were followed by a curing process for ~18 h. Polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was cast onto the acrylic mold and cured at 80 °C for at least 3 h. The PDMS mold was carefully detached from the acrylic surface by dispensing isopropyl alcohol (VWR) into the area between the PDMS and the acrylic molds (Fig. 2a).Fig. 2: Synthesis and characterization of porous microplate.a Procedure to build a porous microplate using polydimethylsiloxane (PDMS) and acrylic molds. b Image of the microplate with an array of culture wells (wall thickness: 0.9 mm). c Scanning electron microscopy image of nanoporous copolymer HEMA–EDMA.Full size imagePorous microplate preparationSynthesis of copolymer HEMA–EDMA was based on previously described protocols [30, 31] and details are given as follows. Prepolymer solution HEMA − EDMA was prepared by mixing 2-hydroxyethyl methacrylate (HEMA; monomer, 24 wt.%, Sigma-Aldrich), ethylene glycol dimethacrylate (EDMA; crosslinker, 16 wt.%, Sigma-Aldrich), 1-decanol (porogen, 12 wt.%, Sigma-Aldrich), cyclohexanol (porogen, 48 wt.%, Sigma-Aldrich) and 2,2-dimethoxy-2-phenylacetophenone (DMPAP; photoinitiator, 1 wt.%). The solution was stored at room temperature without light exposure until further use. Glass slides (75 × 50 mm2, VWR) were chemically cleaned by sequentially soaking in 1 M hydrochloric acid and 1 M sodium hydroxide for one hour, followed by rinsing with deionized water and air drying. The prepolymer solution was cast onto the PDMS mold and a glass slide was placed on the mold. The solution was then polymerized under ultraviolet light with a wavelength 365 nm for 15 min by using a commercial UV lamp (VWR). The photopolymerized device was detached from the PDMS mold and stored in a jar containing methanol (VWR) until further use (Fig. 2a). The jar was refilled with new methanol twice in order to remove the remaining porogen and uncrosslinked monomers from the hydrogel.Upon each incubation experiment with the porous microplate, each device was decontaminated by replacing the solvent with 70% alcohol (VWR) and storing it for 24 h. They were immersed in a pre-autoclaved jar for two weeks with f/2 medium with omitted silicate, where the jar was refilled once with a new sterile medium to adjust its pH for the algal culture and remove any solvent remaining in the hydrogel. Before inoculating microbial cells, each microplate was taken out from the jar and the media remaining on the top surface was removed by absorbing it with a pre-sterilized wipe to minimize the chance for cross-contamination between wells (Fig. 2b).Scanning electron microscopyPhotopolymerized HEMA − EDMA was removed from methanol and dried in air for at least one week to evaporate the excess solvent. A ~5 × 5 mm2 specimen was collected from the dried copolymer and attached to a pin stub. The stub was loaded on a scanning electron microscope (SEM; MERLIN, Carl Zeiss), and the specimen was characterized with imaging software (SmartSEM, Carl Zeiss) with 16,270X magnification and an operating voltage of 1 kV. The SEM imaging was performed at the Electron Microscopy Facility in the MIT Materials Research Science and Engineering Centers (MRSEC; Fig. 2c).Strains and culturing conditionsAxenic P. tricornutum CCMP 2561 was acquired from the National Center for Marine Algae and Microbiota (NCMA) and shown to be axenic via epifluorescence microscopy and sequencing of the 16 S rRNA gene [11]. P. tricornutum was maintained in f/2 medium with 20 g L−1 commercially available sea salts (Instant Ocean, Blacksburg) and with omitted silicate, which we will refer to as f/2-Si [11, 16]. Batch cultures were grown at 20 °C with a 12 h light/12 h dark diurnal cycle and a light intensity of 200 μmol photons m−2 s−1 (Exlenvce). Every 2–3 weeks, axenic cultures were monitored for bacterial contamination by streaking culture samples on marine broth agar [33], that tests for contamination by bacteria that can grow on agar media and is not definitive. Every 6–12 months, every axenic and bacterial co-culture of P. tricornutum was inspected for the absence/presence of bacteria by staining the cellular DNA with 0.1% v/v SYTO BC Green Fluorescent Acid Stain (Thermofisher, Supplementary Fig. S1).Bacterial community samples (referred to as “phycosphere enrichments”) were obtained from mesocosms of P. tricornutum and maintained as previously described [11, 16]. Briefly, an outdoor P. tricornutum mesocosm sample in natural seawater was collected in Corpus Christi, TX and filtered with 0.6–1 µm pores to remove larger algal cells. The bacterial filtrates were inoculated to an axenic algal culture, maintained in f/2-Si media for ~3 months, and washed with a sterile medium to enrich for phycosphere-associated bacteria. These enriched communities were subsequently co-cultured with P. tricornutum in f/2-Si media for ~4 years prior to the start of the experiments.Two bacterial strains, Marinobacter sp. 3-2 and Algoriphagus sp. ARW1R1, were isolated from the phycosphere enrichment samples (Supplementary Table S1). The isolates were either maintained by growing on marine broth agar plates at 30 °C or by co-culturing with P. tricornutum through inoculation of a single colony into the axenic culture.
    P. tricornutum culture in porous microplateThree baseline experiments were designed to study how the alga P. tricornutum interacts with its associated bacteria in the porous microplate (Fig. 1). For experiments assessing the algal growth in the microplate, axenic P. tricornutum was acclimated to a copolymer environment in advance by inoculating a stationary phase-culture to a separate microplate. After acclimation for 4 days, the culture was diluted to ~1 × 106 cells ml−1 and transferred to the experimental microplate. Three replicated microplates were placed in a single transparent covered container (128 × 85 × 10 mm3, VWR) which was filled with ~25 ml f/2-Si medium to keep the microplate hydrated throughout the incubation period of 20 days with an initial culture volume of 75 µl (Fig. 1a). The procedures were conducted under a biosafety cabinet to prevent any biological contamination. The cells were incubated under the same conditions as described above for the batch cultures (temperature, light intensity, diurnal cycle).Growth of P. tricornutum was measured by counting cells using a hemocytometer (Electron Microscopy Sciences) or flow cytometry (described later). Specific growth rates were calculated from the natural log of the cell densities in triplicate sampled during an exponential growth phase (day 3 for the batch culture, day 5 for the porous microplate system; Fig. 3a).Fig. 3: Cultivation of P. tricornutum in the porous microplate.a Schematic of a microplate for algal cultivation. b Growth curve and maximal growth rate (inset) comparing the porous microplate with flask culture. Error bars, standard deviation of triplicates. c Cell abundance at center (n = 3) and surrounding (n = 18) wells after incubation. Asterisks denote statistical differences with following levels (two-tailed t-test): ***P  More