More stories

  • in

    Transcriptional responses of Trichodesmium to natural inverse gradients of Fe and P availability

    1.Falkowski PG. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature. 1997;387:272–5.CAS 

    Google Scholar 
    2.Zehr JP. Nitrogen fixation by marine cyanobacteria. Trends Microbiol. 2011;19:162–73.CAS 
    PubMed 

    Google Scholar 
    3.Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ. Trichodesmium a globally significant marine cyanobacterium. Science (80-). 1997;276:1221–9.CAS 

    Google Scholar 
    4.Bergman B, Sandh G, Lin S, Larsson J, Carpenter EJ. Trichodesmium – a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol Rev. 2013;37:286–302. 37(3):286–302CAS 
    PubMed 

    Google Scholar 
    5.Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T, et al. Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Glob Biogeochem Cycles. 2005;19:1–17.
    Google Scholar 
    6.Mahaffey C, Michaels AF, Capone DG. The conundrum of marine N2 fixation. Am J Sci. 2005;305:546–95.CAS 

    Google Scholar 
    7.Moore C, Mills MM, Achterberg EP, Geider RJ, Laroche J, Lucas MI, et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat Geosci. 2009;2:867–71.CAS 

    Google Scholar 
    8.Dyhrman ST, Webb EA, Anderson DM, Moffett JW, Waterbury JB. Cell-specific detection of phosphorus stress in Trichodesmium from the Western North Atlantic. Limnol Oceanogr. 2002;47:1832–6.
    Google Scholar 
    9.Snow JT, Schlosser C, Woodward EMS, Mills MM, Achterberg EP, Mahaffey C, et al. Environmental controls on the biogeography of diazotrophy and Trichodesmium in the Atlantic Ocean. Glob Biogeochem Cycles. 2015;29:865–84.CAS 

    Google Scholar 
    10.Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti C, Brooks N, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005;308:67–71.CAS 
    PubMed 

    Google Scholar 
    11.Schlosser CA, Strzepek K, Gao X, Fant C, Blanc É, Paltsev S, et al. The future of global water stress: an integrated assessment. Earth’s Future. 2014;2:341–61.
    Google Scholar 
    12.Wu J, Sunda W, Boyle EA, Karl DM. Phosphate depletion in the Western North Atlantic. Ocean Sci. 2000;289:759–62.CAS 

    Google Scholar 
    13.Mather RL, Reynolds SE, Wolff GA, Williams RG, Torres-Valdes S, Woodward EMS, et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat Geosci. 2008;1:439–43.CAS 

    Google Scholar 
    14.Ward BA, Dutkiewicz S, Moore CM, Follows MJ. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol Oceanogr. 2013;58:2059–75.CAS 

    Google Scholar 
    15.Mills MM, Moore CM, Langlois R, Milne A, Achterberg E, Nachtigall K, et al. Nitrogen and phosphorus co-limitation of bacterial productivity and growth in the oligotrophic subtropical North Atlantic. Limnol Oceanogr. 2008;53:824–34.CAS 

    Google Scholar 
    16.Garcia NS, Fu F, Sedwick PN, Hutchins DA. Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria. ISME J. 2015;9:238–45.CAS 
    PubMed 

    Google Scholar 
    17.Walworth NG, Fu FX, Webb EA, Saito MA, Moran D, McLlvin MR, et al. Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nat Commun. 2016;7:1–11.
    Google Scholar 
    18.Walworth NG, Fu FX, Lee MD, Cai X, Saito MA, Webb EA, et al. Nutrient-colimited Trichodesmium as a nitrogen source or sink in a future ocean. Appl Environ Microbiol. 2018;84:1–14.CAS 

    Google Scholar 
    19.Held NA, Webb EA, McIlvin MM, Hutchins DA, Cohen NR, Moran DM, et al. Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences 2020;17:2537–51.
    Google Scholar 
    20.Polyviou D, Baylay AJ, Hitchcock A, Robidart J, Moore CM, Bibby TS. Desert dust as a source of iron to the globally important diazotroph Trichodesmium. Front Microbiol. 2018;8:2683.PubMed 
    PubMed Central 

    Google Scholar 
    21.Snow JT, Polyviou D, Skipp P, Chrismas NA, Hitchcock A, Geider R, et al. Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium. PLOS ONE 2015;10:e0142626.22.Frischkorn KR, Haley ST, Dyhrman ST. Transcriptional and proteomic choreography under phosphorus deficiency and re-supply in the N2 fixing cyanobacterium Trichodesmium erythraeum. Front Microbiol. 2019;10:330. 2012;6:1728–39PubMed 
    PubMed Central 

    Google Scholar 
    23.Rouco M, Frischkorn KR, Haley ST, Alexander H, Dyhrman ST. Transcriptional patterns identify resource controls on the diazotroph Trichodesmium in the Atlantic and Pacific oceans. ISME J. 2018;12:1486–95.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Shi T, Sun Y, Falkowski PG. Effects of iron limitation on the expression of metabolic genes in the marine cyanobacterium Trichodesmium erythraeum IMS101. Environ Microbiol. 2007;9:2945–56.CAS 
    PubMed 

    Google Scholar 
    25.Saito MA, Bertrand EM, Dutkiewicz S, Bulygin VV, Moran DM, Monteiro FM, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc Natl Acad Sci USA 2011;108:2184–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.La Roche J, Boyd PW, McKay RML, Geider RJ. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature. 1996;382:802–5.
    Google Scholar 
    27.De la Cerda B, Castielli O, Durán RV, Navarro JA, Hervás M, De la Rosa MA. A proteomic approach to iron and copper homeostasis in cyanobacteria. Brief Funct Genom Proteom. 2007;6:322–9.
    Google Scholar 
    28.Chappell PD, Webb EA. A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium. Environ Microbiol. 2010;12:13–27.CAS 
    PubMed 

    Google Scholar 
    29.Polyviou D, Machelett MM, Hitchcock A, Baylay AJ, MacMillan F, Mark Moore C, et al. Structural and functional characterization of IdiA/FutA (Tery_3377), an iron-binding protein from the ocean diazotroph Trichodesmium erythraeum. J Biol Chem. 2018;293:18099–109.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Berman-Frank I, Lundgren P, Chen YB, Küpper H, Kolber Z, Bergman B, et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science. 2001;294:1534–7.CAS 
    PubMed 

    Google Scholar 
    31.Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol. 2003;154:157–64.CAS 
    PubMed 

    Google Scholar 
    32.Sandh G, Ran L, Xu L, Sundqvist G, Bulone V, Bergman B. Comparative proteomic profiles of the marine cyanobacterium Trichodesmium erythraeum IMS101 under different nitrogen regimes. Proteomics. 2011;11:406–19.CAS 
    PubMed 

    Google Scholar 
    33.Orchard ED, Webb EA, Dyhrman ST. Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environ Microbiol. 2009;11:2400–11.CAS 
    PubMed 

    Google Scholar 
    34.Dyhrman ST, Ruttenberg KC. Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol Oceanogr. 2006;51:1381–90.CAS 

    Google Scholar 
    35.Karl DM. Nutrient dynamics in the deep blue sea. Trends Microbiol. 2002;10:410–8.CAS 
    PubMed 

    Google Scholar 
    36.Polyviou D, Hitchcock A, Baylay AJ, Moore CM, Bibby TS. Phosphite utilization by the globally important marine diazotroph Trichodesmium. Environ Microbiol Rep. 2015;7:824–30.CAS 
    PubMed 

    Google Scholar 
    37.Obata H, Karatani H, Matsui M, Nakayama E. Fundamental studies for chemical speciation of iron in seawater with an improved analytical method. Marine Chemistry. 1997;56:97–106.38.Kunde K, Wyatt NJ, González-Santana D, Tagliabue A, Mahaffey C, Lohan MC. Iron Distribution in the Subtropical North Atlantic: The Pivotal Role of Colloidal Iron. Glob Biogeochem Cycles. 2019;33:1532–47.CAS 

    Google Scholar 
    39.Woodward EMS, Rees AP. Nutrient distributions in an anticyclonic eddy in the northeast Atlantic Ocean, with reference to nanomolar ammonium concentrations. Deep Res Part II Top Stud Oceanogr. 2001;48:775–93.CAS 

    Google Scholar 
    40.Davis CE, Blackbird S, Wolff G, Woodward M, Mahaffey C. Seasonal organic matter dynamics in a temperate shelf sea. Prog Oceanogr. 2019;177:101925.
    Google Scholar 
    41.Lomas MW, Burke AL, Lomas DA, Bell DW, Shen C, Dyhrman ST, et al. Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP). Biogeosci Discuss. 2009;6:10137–75.
    Google Scholar 
    42.Klawonn I, Lavik G, Böning P, et al. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations. Front Microbiol. 2015;6:769.PubMed 
    PubMed Central 

    Google Scholar 
    43.Frischkorn KR, Haley ST, Dyhrman ST. Coordinated gene expression between Trichodesmium and its microbiome over day-night cycles in the North Pacific Subtropical Gyre. ISME J. 2018;12:997–1007.PubMed 
    PubMed Central 

    Google Scholar 
    44.Tang W, Cerdán-García E, Berthelot H, Polyviou D, Wang S, Baylay A, et al. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J. 2020;14:2514–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Zehr JP, McReynolds LA. Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1989;55:2522–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Zani S, Mellon MT, Collier JL, Zehr JP. Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol. 2000;66:3119–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Turk KA, Rees AP, Zehr JP, Pereira N, Swift P, Shelley R, et al. Nitrogen fixation and nitrogenase (nifH) expression in tropical waters of the eastern North Atlantic. ISME J. 2011;5:1201–12.CAS 
    PubMed 

    Google Scholar 
    48.Hitchen J, Sooknanan R, Khanna A. ScriptSeq V2 Library Preparation Method: A Rapid and Efficient Method for Preparing Directional RNA-Seq Libraries. J Biomol Tech. 2012;23:S33–S34.PubMed Central 

    Google Scholar 
    49.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 2011;17:10–2.
    Google Scholar 
    50.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. MetaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using. Microbiome. 2014;2:4904–9.
    Google Scholar 
    52.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Hyatt D, Chen GL, LoCascio PF, Land ML, Frank W, Larimer LJH. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:1–11.
    Google Scholar 
    55.Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 2002;30:1575–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–14.CAS 
    PubMed 

    Google Scholar 
    57.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 

    Google Scholar 
    58.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. correspondence QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Publ Gr. 2010;7:335–6.CAS 

    Google Scholar 
    59.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    60.Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Westreich ST, Treiber ML, Mills DA, Korf I, Lemay DG. SAMSA2: a standalone metatranscriptome analysis pipeline. BMC Bioinforma. 2018;19:1–11.
    Google Scholar 
    62.Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 2012;28:3211–7.CAS 

    Google Scholar 
    64.Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.CAS 
    PubMed 

    Google Scholar 
    65.Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic Acids Res. 2014;42:D553–9.66.Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Liao Y, Smyth GK, Shi W. FeatureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923–30.CAS 

    Google Scholar 
    68.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.
    Google Scholar 
    69.Wu S, Mi T, Zhen Y, Yu K, Wang F, Yu Z. A Rise in ROS and EPS Production: New Insights into the Trichodesmium erythraeum Response to Ocean Acidification. J Phycol. 2021;57:172–82.CAS 
    PubMed 

    Google Scholar 
    70.Sedwick PN, Church TM, Bowie AR, Marsay CM, Ussher SJ, Achilles KM, et al. Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer: Eolian imprint, spatiotemporal variability, and ecological implications. Global Biogeochem Cycles. 2005;19:GB4006.71.Hatta M, Measures CI, Wu J, Roshan S, Fitzsimmons JN, Sedwick P, et al. An overview of dissolved Fe and Mn distributions during the 2010-2011 U.S. GEOTRACES north Atlantic cruises: GEOTRACES GA03. Deep Res Part II Top Stud Oceanogr. 2015;116:117–29.CAS 

    Google Scholar 
    72.Mahaffey C, Reynolds S, Davis CE, Lohan MC. Alkaline phosphatase activity in the subtropical ocean: insights from nutrient, dust and trace metal addition experiments. Front Mar Sci. 2014;1:73.
    Google Scholar 
    73.Church MJ, Mahaffey C, Letelier RM, Lukas R, Zehr JP, Karl DM. Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochem Cycles. 2009;23:GB2020.74.Zehr JP, Capone DG. Changing perspectives in marine nitrogen fixation. Science. 2020;368:eaay9514.75.Benavides M, Moisander PH, Daley MC, Bode A, Arístegui J. Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. J Plankton Res. 2016;38:662–72.CAS 

    Google Scholar 
    76.Luo YW, Doney SC, Anderson LA, Benavides M, Berman-Frank I, Bode A, et al. Database of diazotrophs in global ocean: Abundance, biomass and nitrogen fixation rates. Earth Syst Sci Data. 2012;4:47–73.
    Google Scholar 
    77.Moisander PH, Beinart RA, Voss M, Zehr JP. Diversity and abundance of diazotrophic microorganisms in the South China Sea during intermonsoon. ISME J. 2008;2:954–67.CAS 
    PubMed 

    Google Scholar 
    78.Moisander PH, Serros T, Paerl RW, Beinart RA, Zehr JP. Gammaproteobacterial diazotrophs and nifH gene expression in surface waters of the South Pacific Ocean. ISME J 2014;8:1962–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Robidart JC, Church MJ, Ryan JP, et al. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean. ISME J. 2014;8:1175–85.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Stenegren M, Caputo A, Berg C, Bonnet S, Foster R. Distribution and drivers of symbiotic and free-living diazotrophic cyanobacteria in the western tropical South Pacific. Biogeosciences 2018;15:1559–78.CAS 

    Google Scholar 
    81.Langlois R, Großkopf T, Mills M, Takeda S, LaRoche J. Widespread Distribution and Expression of Gamma A (UMB), an Uncultured, Diazotrophic, γ-Proteobacterial nifH Phylotype. PLoS ONE. 2015;10:e0128912.PubMed 
    PubMed Central 

    Google Scholar 
    82.Ratten J-M, LaRoche J, Desai DK, et al. Sources of iron and phosphate affect the distribution of diazotrophs in the North Atlantic. Deep Sea Res Part II: Topical Stud Oceanogr. 2015;116:332–41.CAS 

    Google Scholar 
    83.Voss, M, Croot, P, Lochte, K, Mills, M, Peeken, I. Patterns of nitrogen fixation along 10°N in the tropical Atlantic. Geophys Res Lett. 2004;31:L23S09.84.Bibby TS, Nield J, Barber J. Iron deficiency induces the formation of an antenna ring around trimeric photosystem I in cyanobacteria. Nature. 2001;412:743–5.85.Richier S, Macey AI, Pratt NJ, Honey DJ, Moore CM, Bibby TS. Abundances of iron-binding photosynthetic and nitrogen-fixing proteins of Trichodesmium both in culture and in situ from the North Atlantic. PLoS ONE. 2012;7:e35571.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Keren N, Aurora R, Pakrasi HB. Critical roles of bacterioferritins in iron storage and proliferation of cyanobacteria. Plant Physiol. 2004;135:1666–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.González A, Bes MT, Valladares A, Peleato ML, Fillat MF. FurA is the master regulator of iron homeostasis and modulates the expression of tetrapyrrole biosynthesis genes in Anabaena sp. PCC 7120. Environ Microbiol. 2012;14:3175–87.PubMed 

    Google Scholar 
    88.Sebastian M, Ammerman JW. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J. 2009;3:563–72.CAS 
    PubMed 

    Google Scholar 
    89.Browning TJ, Achterberg EP, Yong JC, Rapp I, Utermann C, Engel A, et al. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. Nat Commun. 2017;8:1–7.
    Google Scholar 
    90.Proudfoot M, Kuznetsova E, Brown G, Rao NN, Kitagawa M, Mori H, et al. General enzymatic screens identify three new nucleotidases in Escherichia coli: Biochemical characterization of SurE, YfbR, and YjjG. J Biol Chem. 2004;279:54687–94.CAS 
    PubMed 

    Google Scholar 
    91.Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr. 2010;55:2161–9.CAS 

    Google Scholar 
    92.Berman-Frank I, Cullen JT, Shaked Y, Sherrell RM, Falkowski PG. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol Oceanogr. 2001;46:1249–60.CAS 

    Google Scholar 
    93.Schoffman H, Keren N. Function of the IsiA pigment–protein complex in vivo. Photosynth Res. 2019;141:343–53.CAS 
    PubMed 

    Google Scholar 
    94.Küpper H, Ferimazova N, Šetlík I, Berman-Frank I. Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol. 2004;135:2120–33.PubMed 
    PubMed Central 

    Google Scholar 
    95.Behrenfeld MJ, Milligan AJ. Photophysiological expressions of iron stress in phytoplankton. Ann Rev Mar Sci. 2013;5:217–46.PubMed 

    Google Scholar 
    96.Ho TY. Nickel limitation of nitrogen fixation in Trichodesmium. Limnol Oceanogr. 2013;58:112–20.CAS 

    Google Scholar 
    97.Tilman D. Resources: a graphical‐mechanistic approach to competition and predation. Am Nat. 1980;116:362–3.
    Google Scholar 
    98.Mills MM, Ridame C, Davey M, La Roche J, Geider RJ. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 2004;429:292–4.CAS 
    PubMed 

    Google Scholar 
    99.Saito MA, McIlvin MR, Moran DM, Goepfert TJ, DiTullio GR, Post AF, et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 2014;345:1173–7.CAS 
    PubMed 

    Google Scholar 
    100.NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Chlorophyll Data. MODIS-Aqua Level 3 Mapped Chlorophyll Data Version R2018.0. NASA OB.DAAC, Greenbelt, MD, USA. Published online 2017. More

  • in

    The science of the host–virus network

    1.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Woolhouse, M. E. et al. Temporal trends in the discovery of human viruses. Proc. R. Soc. B 275, 2111–2115 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    3.Smith, K. F. et al. Global rise in human infectious disease outbreaks. J. R. Soc. Interface 11, 20140950 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    4.Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).5.Swei, A., Couper, L. I., Coffey, L. L., Kapan, D. & Bennett, S. Patterns, drivers, and challenges of vector-borne disease emergence. Vector Borne Zoonotic Dis. 20, 159–170 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    6.Belay, E. D. et al. Zoonotic disease programs for enhancing global health security. Emerg. Infect. Dis. 23, S65 (2017).PubMed Central 

    Google Scholar 
    7.Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    8.Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).CAS 
    PubMed 

    Google Scholar 
    9.Carlson, C. J., Zipfel, C. M., Garnier, R. & Bansal, S. Global estimates of mammalian viral diversity accounting for host sharing. Nat. Ecol. Evol. 3, 1070–1075 (2019).PubMed 

    Google Scholar 
    10.Babayan, S. A., Orton, R. J. & Streicker, D. G. Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science 362, 577–580 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Han, B. A. et al. Undiscovered bat hosts of filoviruses. PLoS Negl. Trop. Dis. 10, e0004815 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    12.Schmidt, J. P. et al. Spatiotemporal fluctuations and triggers of Ebola virus spillover. Emerg. Infect. Dis. 23, 415 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    13.Guth, S., Visher, E., Boots, M. & Brook, C. E. Host phylogenetic distance drives trends in virus virulence and transmissibility across the animal–human interface. Phil. Trans. R. Soc. Biol. Sci. 374, 20190296 (2019).
    Google Scholar 
    14.Glennon, E. E. et al. Syndromic detectability of haemorrhagic fever outbreaks. Preprint at medRxiv https://doi.org/10.1101/2020.03.28.20019463 (2020).15.Pigott, D. M. et al. Local, national, and regional viral haemorrhagic fever pandemic potential in Africa: a multistage analysis. Lancet 390, 2662–2672 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    16.Palmer, S., Brown, D. & Morgan, D. Early qualitative risk assessment of the emerging zoonotic potential of animal diseases. BMJ 331, 1256–1260 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    17.Grange, Z. L. et al. Ranking the risk of animal-to-human spillover for newly discovered viruses. Proc. Natl Acad. Sci. USA 118, e2002324118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Carlson, C. J. From PREDICT to prevention, one pandemic later. Lancet Microbe 1, e6–e7 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    19.Holmes, E., Rambaut, A. & Andersen, K. Pandemics: spend on surveillance, not prediction. Nature 558, 180–182 (2018).CAS 
    PubMed 

    Google Scholar 
    20.Breiman, L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat. Sci. 16, 199–231 (2001).
    Google Scholar 
    21.Mouquet, N. et al. Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).
    Google Scholar 
    22.Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Stephens, P. R. et al. Global mammal parasite database version 2.0. Ecology 98, 1476 (2017).PubMed 

    Google Scholar 
    24.Wardeh, M., Risley, C., McIntyre, M. K., Setzkorn, C. & Baylis, M. Database of host–pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).PubMed 

    Google Scholar 
    26.Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. BioScience https://doi.org/10.1093/biosci/biab080 (2021).27.Dallas, T., Park, A. W. & Drake, J. M. Predicting cryptic links in host–parasite networks. PLoS Comput. Biol. 13, e1005557 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    28.Poisot, T. et al. Imputing the mammalian virome with linear filtering and singular value decomposition. Preprint at https://arxiv.org/abs/2105.14973 (2021).29.Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. Preprint at bioRxiv https://doi.org/10.1101/2021.08.06.455442 (2021).30.Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. 11, 2260 (2020).31.Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. R. Soc. B Biol. Sci. 275, 1695–1701 (2008).
    Google Scholar 
    32.Guy, C., Thiagavel, J., Mideo, N. & Ratcliffe, J. M. Phylogeny matters: revisiting ‘a comparison of bats and rodents as reservoirs of zoonotic viruses’. R. Soc. Open Sci. 6, 181182 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    33.Washburne, A. D. et al. Taxonomic patterns in the zoonotic potential of mammalian viruses. PeerJ 6, e5979 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    34.Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Stephens, P. R. et al. The macroecology of infectious diseases: a new perspective on global-scale drivers of pathogen distributions and impacts. Ecol. Lett. 19, 1159–1171 (2016).PubMed 

    Google Scholar 
    36.Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J. & Jiggins, F. M. The evolution and genetics of virus host shifts. PLoS Pathog. 10, e1004395 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    37.Farrell, M. J., Elmasri, M., Stephens, D. A. & Davies, T. J. Predicting missing links in global host–parasite networks. bioRxiv https://doi.org/10.1101/2020.02.25.965046 (2020).38.Gilbert, A. T. et al. Deciphering serology to understand the ecology of infectious diseases in wildlife. EcoHealth 10, 298–313 (2013).PubMed 

    Google Scholar 
    39.Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    40.Walsh, M. G., Mor, S. M., Maity, H. & Hossain, S. A preliminary ecological profile of Kyasanur Forest disease virus hosts among the mammalian wildlife of the Western Ghats, India. Ticks Tick Borne Dis. 11, 101419 (2020).PubMed 

    Google Scholar 
    41.Plowright, R. K. et al. Prioritizing surveillance of Nipah virus in India. PLoS Negl. Trop. Dis. 13, e0007393 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    42.Schmidt, J. P. et al. Ecological indicators of mammal exposure to Ebolavirus. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180337 (2019).
    Google Scholar 
    43.Worsley-Tonks, K. E. et al. Using host traits to predict reservoir host species of rabies virus. PLoS Negl. Trop. Dis. 14, e0008940 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    44.Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 11, 1842 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    45.Johnson, C. K. et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 5, 14830 (2015).
    Google Scholar 
    46.Elena, S. F. & Sanjuán, R. Adaptive value of high mutation rates of RNA viruses: separating causes from consequences. J. Virol. 79, 11555–11558 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Duffy, S. Why are RNA virus mutation rates so damn high? PLoS Biol. 16, e3000003 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    48.Grewelle, R. E. Larger viral genome size facilitates emergence of zoonotic diseases. Preprint at bioRxiv https://doi.org/10.1101/2020.03.10.986109 (2020).49.Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Walker, J. W., Han, B. A., Ott, I. M. & Drake, J. M. Transmissibility of emerging viral zoonoses. PLoS ONE 13, e0206926 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    51.Damas, J. et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2010146117 (2020).52.Zhang, Z. et al. Rapid identification of human-infecting viruses. Transbound. Emerg. Dis. 66, 2517–2522 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Eng, C. L., Tong, J. C. & Tan, T. W. Predicting zoonotic risk of influenza A viruses from host tropism protein signature using random forest. Int. J. Mol. Sci. 18, 1135 (2017).PubMed Central 

    Google Scholar 
    54.Li, J. et al. Machine learning methods for predicting human-adaptive influenza A viruses based on viral nucleotide compositions. Mol. Biol. Evol. 37, 1224–1236 (2020).CAS 
    PubMed 

    Google Scholar 
    55.Kim, B., Niu, X., Hunter, D. R. & Cao, X. A dynamic additive and multiplicative effects model with application to the United Nations voting behaviors. Preprint at https://arxiv.org/abs/1803.06711 (2018).56.Becker, D. et al. Optimizing predictive models to prioritize viral discovery in zoonotic reservoirs. Lancet Microbe (in the press).57.Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    59.Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. 37, 117–129 (2021).CAS 
    PubMed 

    Google Scholar 
    61.Young, C. C. & Olival, K. J. Optimizing viral discovery in bats. PLoS ONE 11, e0149237 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    62.Albery, G. F. et al. Urban-adapted mammal species have more known pathogens. Preprint at bioRxiv https://doi.org/10.1101/2021.01.02.425084 (2021).63.Wille, M., Geoghegan, J. L. & Holmes, E. C. How accurately can we assess zoonotic risk? PLoS Biol. 19, e3001135 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Preprint at bioRxiv https://doi.org/10.1101/2021.08.10.455791 (2021).65.Xu, G. J. et al. Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    66.Geoghegan, J. L. & Holmes, E. C. Predicting virus emergence amid evolutionary noise. Open Biol. 7, 170189 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    67.Fischhoff, I. R., Castellanos, A. A., Rodrigues, J. P., Varsani, A. & Han, B. A. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2021.1651 (2021).68.Hou, Y. et al. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch. Virol. 155, 1563–1569 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Thompson, A. J., de Vries, R. P. & Paulson, J. C. Virus recognition of glycan receptors. Curr. Opin. Virol. 34, 117–129 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Kocher, J. F. et al. Bat caliciviruses and human noroviruses are antigenically similar and have overlapping histo-blood group antigen binding profiles. Mbio 9, e00869-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    71.Chiramel, A. I. et al. TRIM5α restricts flavivirus replication by targeting the viral protease for proteasomal degradation. Cell Rep. 27, 3269–3283 (2019).CAS 
    PubMed 

    Google Scholar 
    72.Young, F., Rogers, S. & Robertson, D. L. Predicting host taxonomic information from viral genomes: a comparison of feature representations. PLoS Comput. Biol. 16, e1007894 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).CAS 
    PubMed 

    Google Scholar 
    74.Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Truong, P., Garcia-Vallve, S. & Puigbo, P. An unsupervised algorithm for host identification in flaviviruses. Life https://doi.org/10.3390/life11050442 (2021).76.Mollentze, N., Babayan, S. & Streicker, D. Identifying and prioritizing potential human-infecting viruses from their genome sequences. PLoS Biol. 19, e3001390 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Wang, W. et al. A network-based integrated framework for predicting virus–prokaryote interactions. NAR Genom. Bioinform. 2, lqaa044 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    78.Bartoszewicz, J. M., Seidel, A. & Renard, B. Y. Interpretable detection of novel human viruses from genome sequencing data. NAR Genom. Bioinform. 3, lqab004 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    79.He, X. et al. Neural collaborative filtering. In Proc. 26th International Conference on World Wide Web 26, 173–182 (Republic and Canton of Geneva, Switzerland, 2017).80.Fout, A., Byrd, J., Shariat, B. & Ben-Hur, A. Protein interface prediction using graph convolutional networks. NIPS’17: Proc. 31st International Conference on Neural Information Processing Systems 31, 6533–6542 (2017).
    Google Scholar 
    81.Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: methods and applications. IEEE Data Eng. Bull. 40, 52–74 (2017).
    Google Scholar 
    82.Bergner, L. M. et al. Characterizing and evaluating the zoonotic potential of novel viruses discovered in vampire bats. Viruses 13, 252 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Schulz, J. E. et al. Serological evidence for henipa-like and filo-like viruses in Trinidad bats. J. Infect. Dis. 221, S375–S382 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    85.Brook, C. E. et al. Disentangling serology to elucidate henipa- and filovirus transmission in Madagascar fruit bats. J. Anim. Ecol. 88, 1001–1016 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    86.Seifert, S. N. et al. Rousettus aegyptiacus bats do not support productive Nipah virus replication. J. Infect. Dis. 221, S407–S413 (2020).CAS 
    PubMed 

    Google Scholar 
    87.Carlson, C. J. et al. The future of zoonotic risk prediction. Phil. Trans. R. Soc. B Biol. Sci. 376, 20200358 (2021).
    Google Scholar 
    88.Ge, X.-Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).CAS 
    PubMed 

    Google Scholar 
    91.Woo, P. C. Y. et al. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol. 79, 884–895 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).CAS 
    PubMed 

    Google Scholar 
    93.Wang, M. et al. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis. 11, 1860–1865 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    94.Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    95.Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Xiao, K. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 583, 286–289 (2020).CAS 
    PubMed 

    Google Scholar 
    97.Lam, T.-Y. et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).CAS 
    PubMed 

    Google Scholar 
    98.Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).CAS 
    PubMed 

    Google Scholar 
    101.Chandler, J. C. et al. SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc. Natl Acad. Sci. USA 118, e2114828118 (2021).PubMed 

    Google Scholar 
    102.Jia, P., Dai, S., Wu, T. & Yang, S. New approaches to anticipate the risk of reverse zoonosis. Trends Ecol. Evol. 36, 580–590 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    103.Lednicky, J. A. et al. Isolation of a novel recombinant canine coronavirus from a visitor to Haiti: further evidence of transmission of coronaviruses of zoonotic origin to humans. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab924 (2021).104.Vlasova, A. N. et al. Novel canine coronavirus isolated from a hospitalized pneumonia patient, East Malaysia. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciab456 (2021).105.Lednicky, J. A. et al. Emergence of porcine delta-coronavirus pathogenic infections among children in Haiti through independent zoonoses and convergent evolution. Preprint at medRxiv https://doi.org/10.1101/2021.03.19.21253391 (2021).106.Hay, A. J. & McCauley, J. W. The WHO global influenza surveillance and response system (GISRS)—a future perspective. Influenza Other Respir. Viruses 12, 551–557 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    107.Subbarao, K. et al. Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393–396 (1998).CAS 
    PubMed 

    Google Scholar 
    108.Kandeel, A. et al. Zoonotic transmission of avian influenza virus (H5N1), Egypt, 2006–2009. Emerg. Infect. Dis. 16, 1101 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    109.Ke, C. et al. Human infection with highly pathogenic avian influenza A (H7N9) virus, China. Emerg. Infect. Dis. 23, 1332 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    110.Gaidet, N. et al. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog. 4, e1000127 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    111.Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Mol. Biol. Rev. 56, 152–179 (1992).CAS 

    Google Scholar 
    112.Pawar, S. D. et al. Avian influenza surveillance reveals presence of low pathogenic avian influenza viruses in poultry during 2009–2011 in the West Bengal State, India. Virol. J. 9, 151 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    113.Parry, R., Wille, M., Turnbull, O. M., Geoghegan, J. L. & Holmes, E. C. Divergent influenza-like viruses of amphibians and fish support an ancient evolutionary association. Viruses 12, 1042 (2020).CAS 
    PubMed Central 

    Google Scholar 
    114.Campbell, P. J. et al. The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to A/Puerto Rico/8/1934-based reassortant viruses. J. Virol. 88, 3802–3814 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    115.Carlson, C. Evolutionary surprise, artificial intelligence, and H5N8. The Verena Blog https://www.viralemergence.org/blog/evolutionary-surprise-artificial-intelligence-and-h5n8 (2021).116.Wardeh, M., Baylis, M. & Blagrove, M. S. Predicting mammalian hosts in which novel coronaviruses can be generated. Nat. Commun. 12, 780 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    117.Crossman, L. C. Leveraging deep learning to simulate coronavirus spike proteins has the potential to predict future zoonotic sequences. Preprint at bioRxiv https://doi.org/10.1101/2020.04.20.046920 (2020). More

  • in

    Reply to: Spatial scale and the synchrony of ecological disruption

    1.Colwell, R. K. Spatial scale and the synchrony of ecological disruption. Nature https://doi.org/10.1038/s41586-021-03760-4 (2021).2.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Jorda, G. et al. Ocean warming compresses the three-dimensional habitat of marine life. Nat. Ecol. Evol. 4, 109–114 (2020).Article 

    Google Scholar 
    4.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Ricklefs, R. E. Disintegration of the ecological community. Am. Nat. 172, 741–750 (2008).Article 

    Google Scholar 
    6.Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Nadeau, C. P., Urban, M. C. & Bridle, J. R. Coarse climate change projections for species living in a fine-scaled world. Glob. Change Biol. 23, 12–24 (2017).ADS 
    Article 

    Google Scholar 
    8.Stewart, S. B. et al. Climate extreme variables generated using monthly time‐series data improve predicted distributions of plant species. Ecography 44, 626–639 (2021).Article 

    Google Scholar 
    9.Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).ADS 
    Article 

    Google Scholar 
    10.McKechnie, A. E. & Wolf, B. O. The Physiology of Heat Tolerance in Small Endotherms. Physiology 34, 302–313 (2019).CAS 
    Article 

    Google Scholar 
    11.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article 

    Google Scholar 
    12.Mahony, C. R. & Cannon, A. J. Wetter summers can intensify departures from natural variability in a warming climate. Nat. Commun. 9, 783 (2018).ADS 
    Article 

    Google Scholar 
    13.Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. Predicting survival, reproduction and abundance of polar bears under climate change. Biol. Conserv. 143, 1612–1622 (2010).Article 

    Google Scholar 
    14.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).CAS 
    Article 

    Google Scholar 
    15.Vergés, A. et al. Long-term empirical evidence of ocean warming leading to tropicalization of fish communities, increased herbivory, and loss of kelp. Proc. Natl Acad. Sci. USA 113, 13791–13796 (2016).Article 

    Google Scholar 
    16.Genin, A., Levy, L., Sharon, G., Raitsos, D. E. & Diamant, A. Rapid onsets of warming events trigger mass mortality of coral reef fish. Proc. Natl Acad. Sci. USA 117, 25378–25385 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    18.Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).ADS 
    Article 

    Google Scholar 
    19.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).ADS 
    Article 

    Google Scholar 
    22.Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).Article 

    Google Scholar 
    23.Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Williams, J. W., Ordonez, A. & Svenning, J. C. A unifying framework for studying and managing climate-driven rates of ecological change. Nat. Ecol. Evol. 5, 17–26 (2021).Article 

    Google Scholar 
    26.NOAA National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information. Accessed 10.05.2021. More

  • in

    Spatial scale and the synchrony of ecological disruption

    1.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 

    Google Scholar 
    3.Sih, T. L., Cappo, M. & Kingsford, M. Deep-reef fish assemblages of the Great Barrier Reef shelf-break (Australia). Sci. Rep. 7, 10886 (2017).ADS 
    Article 

    Google Scholar 
    4.Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl Acad. Sci. USA 107, 9707–9711 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Stroud, J. T. et al. Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evol. 5, 4757–4765 (2015).Article 

    Google Scholar 
    9.Lima, F. P. et al. Loss of thermal refugia near equatorial range limits. Glob. Change Biol. 22, 254–263 (2016).ADS 
    Article 

    Google Scholar 
    10.Lenoir, J. & Svenning, J. C. Climate‐related range shifts–a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2014).Article 

    Google Scholar 
    11.Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar 
    12.Ackerly, D. D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165–S184 (2003).Article 

    Google Scholar 
    13.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).Article 

    Google Scholar 
    14.Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361, eaar5452 (2018). CAS 
    Article 

    Google Scholar 
    15.Desbruyères, D., McDonagh, E. L., King, B. A. & Thierry, V. Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography. J. Clim. 30, 1985–1997 (2017).ADS 
    Article 

    Google Scholar  More

  • in

    Reconciling biome-wide conservation of an apex carnivore with land-use economics in the increasingly threatened Pantanal wetlands

    1.Inskip, C. & Zimmermann, A. Human-felid conflict: a review of patterns and priorities worldwide. Oryx 43(1), 18–34 (2009).
    Google Scholar 
    2.Weber, W. & Rabinowitz, A. A global perspective on large carnivore conservation. Conserv. Biol. 10(4), 1046–1054 (1996).
    Google Scholar 
    3.Treves, A. & Karanth, U. K. Human-carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17(6), 1491–1499 (2003).
    Google Scholar 
    4.Romero-Muñoz, A., Morato, R., Tortato, F. & Kuemmerle, T. Beyond fangs: beef and soybean trade drive jaguar extinction. Front. Ecol. Environ. 18(2), 67–68 (2020).
    Google Scholar 
    5.Packer, C. et al. Conserving large carnivores: dollars and fence. Ecol. Lett. 16(5), 635–641 (2013).CAS 
    PubMed 

    Google Scholar 
    6.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    PubMed 

    Google Scholar 
    7.Quigley, H., Foster, R., Petracca, L., Payan, E., Salom, R. & Harmsen, B. Panthera onca. The IUCN Red List of Threatened Species 2017, e.T15953A123791436 (2017).8.Menezes, J. F. S., Tortato, F. R., Oliveira-Santos, L. G., Roque, F. O. & Morato, R. G. Deforestation, fires, and lack of governance are displacing thousands of jaguars in Brazilian Amazon. Conserv. Sci. Pract. 3(8), e477 (2021).
    Google Scholar 
    9.Morato, R. G. et al. Resource selection in an apex predator and variation in response to local landscape characteristics. Biol. Conserv. 228, 233–240 (2018).
    Google Scholar 
    10.Sanderson, E. W. et al. Planning to save a species: the jaguar as a model. Conserv. Biol. 16(1), 1–15 (2002).
    Google Scholar 
    11.De Paula, R. C., Desbiez, A. & Cavalcanti, S. M. C. Plano de Ação Nacional para Conservação da Onça-pintada. Série Espécies Ameaçadas (Instituto Chico Mendes de Conservação da Biodiversidade, Atibaia, 2013).
    Google Scholar 
    12.Seidl, A. F., Silva, J. S. V. & Moraes, A. S. Cattle ranching and deforestation in the Brazilian Pantanal. Ecol. Econ. 36(3), 413–425 (2001).
    Google Scholar 
    13.Tomas, W. M. et al. Sustainability agenda for the Pantanal wetland: perspectives on a collaborative interface for science, policy, and decision-making. Trop. Conserv. Sci. 12, 1–30 (2019).ADS 

    Google Scholar 
    14.Tortato, F. R. & Izzo, T. J. Advances and barriers to the development of jaguar-tourism in the Brazilian Pantanal. Perspect. Ecol. Conserv. 15(1), 61–63 (2017).
    Google Scholar 
    15.Tortato, F. R., Hoogesteijn, R. & Elbroch, M. Have natural disasters created opportunities to initiate Big Cat Tourism in South America?. Biotropica 52(3), 400–403 (2020).
    Google Scholar 
    16.Quigley, H. & Crawshaw, P. G. Jr. A conservation plan for the jaguar (Panthera onca) in the Pantanal region of Brazil. Biol. Conserv. 61(3), 149–157 (1992).
    Google Scholar 
    17.Tortato, F. R., Izzo, T. J., Hoogesteijn, R. & Peres, C. A. The numbers of the beast: valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Glob. Ecol. Conserv. 11, 106–114 (2017).
    Google Scholar 
    18.Junk, W. J. et al. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aqua Sci. 69, 278–309 (2006).
    Google Scholar 
    19.Guerra, A. et al. Drivers and projections of vegetation loss in the Pantanal and surrounding ecosystems. Land Use Policy 91, 104388 (2020).
    Google Scholar 
    20.Marengo, J. A. et al. Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Front. Water 3, 1–20 (2021).
    Google Scholar 
    21.Berlinck, C. N. et al. The Pantanal is on fire and only a sustainable agenda can save the largest wetland in the world. Brazilian Journal of Biology 82, e244200 (2021).CAS 

    Google Scholar 
    22.Garcia, L. C. et al. Record-breaking wildfires in the world’s largest continuous tropical wetland: integrative fire management is urgently needed for both biodiversity and humans. J. Environ. Manag. 293, 112870 (2021).CAS 

    Google Scholar 
    23.Libonati, R., Sander, L. A., Peres, L. F., DaCamara, C. C. & Garcia, L. C. Rescue Brazil’s burning Pantanal wetlands. Nature 588, 217–220 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Hoogesteijn, A. & Hoogesteijn, R. Cattle ranching and biodiversity conservation as allies in South America’s flooded savannas. Great Plains Res. 20, 37–50 (2010).
    Google Scholar 
    25.Ferraz, K. M. P. M. B., Ferraz, S. F. B., De Paula, R. C., Beisiegel, B. & Breitenmoser, C. Species distribution modeling for conservation purposes. Natureza Conservação 10(2), 214–220 (2012).
    Google Scholar 
    26.Zimmermann, A., Walpole, M. J. & Leader-Williams, N. Cattle ranchers’ attitudes to conflicts with jaguar Panthera onca in the Pantanal of Brazil. Oryx 39(4), 406–412 (2005).
    Google Scholar 
    27.Marchini, S. & Macdonald, D. W. Predicting rancher’s intention to kill jaguars: case studies in Amazonia and Pantanal. Biol. Conserv. 147(1), 213–221 (2012).
    Google Scholar 
    28.Abreu, U. G. P., McManus, C. & Santos, A. S. Cattle ranching, conservation and transhumance in Brazilian Pantanal. Pastoralism 1(1), 99–114 (2010).
    Google Scholar 
    29.Alho, C. J. R. & Sabino, J. A conservation agenda for the Pantanal’s biodiversity. Braz. J. Biol. 71(1), 327–335 (2011).CAS 
    PubMed 

    Google Scholar 
    30.Hoogesteijn, R. et al. Conservación de Jaguares fuera de Áreas Protegidas: Turismo de Observación de Jaguares en Propiedades Privadas en El Pantanal. In Conservación de grandes vertebrados en áreas no protegidas de Colombia, Venezuela y Brasil (eds Payan-Garrido, E. et al.) 259–274 (Panthera. Fundación Herencia Ambiental Caribe e Instituto de Investigaciones de Recursos Biológicos Alexander von Humboldt, Cartagena, 2015).
    Google Scholar 
    31.Tyagi, A. et al. Physiological stress responses of tigers due to anthropogenic disturbance especially tourism in two central Indian tiger reserves. Conservation Physiology 7(1), coz045 (2020).
    Google Scholar 
    32.Hayward, M. W. & Hayward, G. J. The impact of tourists on lion Panthera leo behaviour, stress and energetics. Acta Theriol. 54(3), 219–224 (2009).
    Google Scholar 
    33.Romanach, S., Lindsey, P. A. & Woodroffe, R. Determinants of attitudes towards predators in central Kenya and suggestions for increasing tolerance in livestock dominated landscapes. Oryx 41(2), 185–195 (2007).
    Google Scholar 
    34.Hemson, G. S., Maclennan, S., Mills, G., Johnson, P. & Macdonald, D. Community, lions, livestock and money: a spatial and social analysis of attitudes to wildlife and the conservation value of tourism in a human–carnivore conflict in Botswana. Biol. Conserv. 142(11), 2718–2725 (2009).
    Google Scholar 
    35.Mossaz, A., Buckley, R. C. & Castley, J. G. Ecotourism contributions to conservation of African big cats. J. Nat. Conserv. 28, 112–118 (2015).
    Google Scholar 
    36.Macdonald, C. et al. Conservation potential of apex predator tourism. Biol. Conserv. 215, 132–141 (2017).
    Google Scholar 
    37.Campos, Z., Mourão, G. & Magnusson, W. Drought drastically reduces suitable habitat for Yacare caiman. Crocodile Specialist Group Newsl. 39(4), 14–16 (2020).
    Google Scholar 
    38.Marengo, J. A., Oliveira, G. S. & Alves, L. M. Climate change scenarios in the Pantanal. In Dynamics of the Pantanal Wetland in South America (eds Bergier, I. & Assine, M. L.) 227–238 (Springer International Publishing, Heidelberg, 2016).
    Google Scholar 
    39.Thielen, D. et al. Quo vadis Pantanal? Expected precipitation extremes and drought dynamics from changing sea surface temperature. PLOS ONE 15(1), e0227437 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Bergier, I. et al. Amazon rainforest modulation of water security in the Pantanal wetland. Sci. Total Environ. 619, 1116–1125 (2018).ADS 
    PubMed 

    Google Scholar 
    41.Araujo, A. et al. Relationships between variability in precipitation, river levels, and beef cattle production in the Brazilian Pantanal. Wetl. Ecol. Manage. 26(5), 829–848 (2018).
    Google Scholar 
    42.Filho, W. L., Azeiteira, U. M., Salvia, A. L., Fritzen, B. & Libonati, R. Fire in Paradise: why the Pantanal is burning. Environ. Sci. Policy 123, 31–34 (2021).
    Google Scholar 
    43.Brown, J. L. SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5(7), 694–700 (2014).
    Google Scholar 
    44.Morato, R. G. et al. Space use and movement of a Neotropical top predator: the endangered jaguar. PLOS ONE 11(12), e0168176 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    45.Fick, S. E. & Hijmans, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).
    Google Scholar 
    46.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
    Google Scholar 
    47.Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2), 161–175 (2008).
    Google Scholar 
    48.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40(7), 887–893 (2017).
    Google Scholar 
    49.Pinto, M. M., Libonati, R., Trigo, R. M., Trigo, I. F. & DaCamara, C. C. A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images. ISPRS J. Photogramm. Remote. Sens. 160, 260–274 (2020).ADS 

    Google Scholar 
    50.LASA – Laboratório de Aplicações de Satélites Ambientais. ALARMES – LASA. https://lasa.ufrj.br/alarmes/ (2021).51.Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’. R package version 1.2.1. https://CRAN.R-project.org/package=tidyverse (2017).52.Bray, A. et al. infer: Tidy Statistical Inference. R package version 0.5.4. https://cran.r-project.org/web/packages/infer/index.html (2021).53.Vallejos, R., Osorio, F. & Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: with Applications in R (Springer, Berlin, 2020).MATH 

    Google Scholar  More

  • in

    Pea peels as a value-added food ingredient for snack crackers and dry soup

    1.Klupsaite, D. & Gražina, J. Legume: Composition, protein extraction and functional properties. A review. Chem. Technol. 66 (2015).2.Tassoni, A., et al. State-of-the-art production chains for peas, beans and chickpeas-valorization of agro-industrial residues and applications of derived extracts. Molecules (Basel, Switzerland) 25 (2020).3.Vilariño, M. V., Franco, C. & Quarrington, C. Food loss and waste reduction as an integral part of a circular economy. Front. Environ. Sci. 5 (2017).4.Malenica, D. & Bhat, R. Review article: Current research trends in fruit and vegetables wastes and by-products management-scope and opportunities in the estonian context. Agron. Res. 18, 1760–1795 (2020).
    Google Scholar 
    5.Tharanathan, R. N. & Mahadevamma, S. Grain legumes—a boon to human nutrition. Trends Food Sci. Technol. 14, 507–518 (2003).CAS 

    Google Scholar 
    6.Nguyen, T. M., Phoukham, K. & Ngo, T. V. Formulation and quality evaluation of pearl oyster mushroom soup powder supplement with some kinds of legumes and vegetables. Acta Sci. Polonorum Technol. Aliment. 19, 435–443 (2020).CAS 

    Google Scholar 
    7.Apprich, S. et al. Wheat bran-based biorefinery 2: Valorization of products. LWT Food Sci. Technol. 56, 222–231 (2014).CAS 

    Google Scholar 
    8.Xia, N. et al. Characterization and in vitro digestibility of rice protein prepared by enzyme-assisted microfluidization: Comparison to alkaline extraction. J. Cereal Sci. 56, 482–489 (2012).CAS 

    Google Scholar 
    9.Zhu, K.-X., Zhou, H.-M. & Qian, H.-F. Proteins extracted from defatted wheat germ: Nutritional and structural properties. Cereal Chem. 83, 69–75 (2006).CAS 

    Google Scholar 
    10.Tanongkankit, Y., Chiewchan, N. & Devahastin, S. Evolution of antioxidants in dietary fiber powder produced from white cabbage outer leaves: Effects of blanching and drying methods. J. Food Sci. Technol. 52, 2280–2287 (2015).CAS 
    PubMed 

    Google Scholar 
    11.Stojceska, V., Ainsworth, P., Plunkett, A., İbanoğlu, E. & İbanoğlu, Ş. Cauliflower by-products as a new source of dietary fibre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J. Food Eng. 87, 554–563 (2008).CAS 

    Google Scholar 
    12.Babbar, N., Oberoi, H. S., Uppal, D. S. & Patil, R. T. Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. Food Res. Int. 44, 391–396 (2011).CAS 

    Google Scholar 
    13.Elbadrawy, E. & Sello, A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 9, S1010–S1018 (2016).CAS 

    Google Scholar 
    14.Wadhwa, M., Kaushal, S. & Bakshi, M. P. S. Nutritive evaluation of vegetable wastes as complete feed for goat bucks. Small Rumin. Res. 64, 279–284 (2006).
    Google Scholar 
    15.Wadhwa, M. & Bakshi, M. Vegetable wastes-a potential source of nutrients for ruminants. Indian J. Anim. Nutr. 22, 70–76 (2005).
    Google Scholar 
    16.Garg, M. Nutritional evaluation and utilization of pea pod powder for preparation of jaggery biscuits. J. Food Process. Technol. 6, 522–528 (2015).
    Google Scholar 
    17.Belghith Fendri, L. et al. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 73, 584–591 (2016).CAS 

    Google Scholar 
    18.Hanan, E., Rudra, S. G., Sharma, V., Sagar, V. R. & Sehgal, S. Pea pod powder to enhance the storage quality of buckwheat bread. Vegetos (2021).19.Hanan, E., Rudra, G. S, Sagar, V. R. & Sharma, V. Utilization of pea pod powder for formulation of instant pea soup powder. J. Food Process. Preserv. (2020).20.Upasana, V. D. Nutritional evaluation of pea peel and pea peel extracted byproducts. Int. J. Food Sci. Nutr. 3, 65–67 (2018).
    Google Scholar 
    21.Abd-Allah, I., Rabie, M., Mostfa, D. M., Sulieman, A. & El-Badawi, A. Nutritional evaluation, chemical composition and antioxidant activity of some food processing wastes. Zag. J. Agric. Res. 43, 2115–2132 (2016).
    Google Scholar 
    22.El-Gohery, S. S. Quality aspects for high nutritional value pretzel. Curr. Sci. Int. 9, 583–593 (2020).
    Google Scholar 
    23.Hassanien, M. Impact of adding chickpea (Cicer arietinum L.) flour to wheat flour on the rheological properties of toast bread. Int. Food Res. J. 19, 521–525 (2012).
    Google Scholar 
    24.Sharoba, P. A., El-Desouky, A., Mahmoud, M. & Youssef, M. K. Quality attributes of some breads made from wheat flour substituted by different levels of whole amaranth meal. J. Agric. Sci. Mansoura Univ. 34, 6601–6617 (2009).
    Google Scholar 
    25.El-Sharnouby, G. Nutritional quality of biscuit supplemented with wheat bran and date palm fruits (Phoenix dactylifera L.). Food Nutr. Sci. 03, 322–328 (2012).CAS 

    Google Scholar 
    26.Abou El-Ez, A., Rania, W. Y., Shalaby, H. S., Abu El-Maaty, S. M. & Guirguis, A. H. Utlization of fruit and vegetable waste powders for fortification of some food products. Zag. J. Agric. Res. 6, 2189–2201 (2017).
    Google Scholar 
    27.Abd El-Salam, A. M., Morsy, O. M. & Abd El Mawla, E. M. Production and evaluation crackers and instant noodles supplement with spirulina algae. Curr. Sci. Int. 6, 908–919 (2017).
    Google Scholar 
    28.DRI. Dietary Reference Intakes, Dietary Reference Intakes for Energy, Carbohydrate, fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients) (The National Academies Press, Washington, 2005).
    Google Scholar 
    29.FAO/WHO. World health organization, food and agriculture organization of the united nations, United Nations University, 2007. Protein and amino acid requirements in human nutrition: Report of a joint who/fao/unu expert consultation. In: Joint expert consultation on protein and amino acid requirements in human nutrition; who technical report series. WHO, Geneva, Switzerland (2007).30.Shah, A. M., Wang, Z. & Ma, J. Glutamine metabolism and its role in immunity, a comprehensive review. Anim. Open Access J. MDPI 10, 326–332 (2020).
    Google Scholar 
    31.Rowayshed, G., Salama, A., Abul-Fadl, M., Akila-Hamza, S. & Emad, A. M. Nutritional and chemical evaluation for pomegranate (Punica granatum L.) fruit peel and seeds powders by products. Middle East J. Appl. Sci. 3, 169–179 (2013).
    Google Scholar 
    32.Hussein, A. M. S., Amal, S. A., Amany, M. H., Abeer, A. A. & Gamal, H. R. Physiochemical sensory and nutritional properties of corn-fenugreek flour composite biscuits. Aust. J. Basic Appl. Sci. 5, 84–95 (2011).CAS 

    Google Scholar 
    33.Mihiranie, S., Jayasundera, M. & Perera, N. Development of snack crackers incorporated with defatted coconut flour. J. Microbiol. Biotechnol. Food Sci. 7, 153–159 (2019).
    Google Scholar 
    34.Abdel-Haleem, A. M. & Omran, A. A. Preparation of dried vegetarian soup supplemented with some legumes. J. Food Nutr. Sci. 5, 2274–2282 (2014).
    Google Scholar 
    35.Holbrook, J. T. et al. Sodium and potassium intake and balance in adults consuming self-selected diets. Am. J. Clin. Nutr. 40, 786–793 (1984).CAS 
    PubMed 

    Google Scholar 
    36.Schwalfenberg, G. K. & Genuis, S. J. The importance of magnesium in clinical healthcare. Scientifica 2017, 4179326 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    37.Hanif, R., Iqbal, Z., Iqbal, M., Hanif, S. & Rasheed, M. Use of vegetables as nutritional food role in human health. J. Agric. Biol. Sci. 1, 18–22 (2006).
    Google Scholar 
    38.Ibidapo, O. et al. Some functional properties of flours from commonly consumed selected nigerian food crops. Int. Res. J. Agric. Food Sci. 1, 92–98 (2016).
    Google Scholar 
    39.Fellows, P. Processing Technology Principles and Practice 2nd edn. (Woodhead Publishing Limited and Crc Press LlC, Washington, 2000).
    Google Scholar 
    40.Monteiro, M. et al. Flours and instant soup from tilapia wastes as healthy alternatives to the food industry. Food Sci. Technol. Res. 20, 571–581 (2014).CAS 

    Google Scholar 
    41.Hanan, E., Rudra, S., Sagar, V. R. & Sharma, V. Utilization of pea pod powder for formulation of instant pea soup powder short running title: Formulation of instant pea soup powder. J. Food Process. Preserv. 44, e14888 (2020).CAS 

    Google Scholar 
    42.Belghith-Fendri, L. et al. Pea and broad bean pods as a natural source of dietary fiber: The impact on texture and sensory properties of cake. J. Food Sci. 81, C2360-c2366 (2016).CAS 
    PubMed 

    Google Scholar 
    43.Ravindran, G. & Matia-Merino, L. Starch–fenugreek (Trigonella foenum-graecum L.) polysaccharide interactions in pure and soup systems. Food Hydrocoll. 23, 1047–1053 (2009).CAS 

    Google Scholar 
    44.Verma, A. Process for the preparation of value added instant tomato-mushroom soup mix incorporated with psyllium husk and its quality evaluation. Int. J. Pure Appl. Biosci. 5, 1502–1507 (2017).
    Google Scholar 
    45.Bose, D. & Shams-Ud-Din, M. The effect of chickpea (cicer arietinim) husk on the properties of cracker biscuits. J. Bangladesh Agric. Univ. 8, 147–152 (2010).
    Google Scholar 
    46.Yadav, A. R., Guha, M., Tharanathan, R. N. & Ramteke, R. S. Influence of drying conditions on functional properties of potato flour. Eur. Food Res. Technol. 223, 553–560 (2006).CAS 

    Google Scholar 
    47.Knezevic, D., Djukic, N., Paunovic, A. & Madic, M. Amino acid contents in grains of different winter wheat (Triticum aestivum L.) varieties. Cereal Res. Commun. 37, 647–650 (2009).CAS 

    Google Scholar 
    48.Gaines C. Associations among quality attributes of red and white soft wheat cultivars across locations and crop years. Cereal Chem. 68 (1991).49.Chitomarat S. Effects of drying on characteristic of powdered corn milk yoghurt (in thai). B.Sc. Thesis, Chiang Mai University, Thailand. (2002).50.Krokida, M. K. & Marinos-Kouris, D. Rehydration kinetics of dehydrated products. J. Food Eng. 57 (2003).51.Malomo, O., Ogunmoyela, O. O. A., Jimoh, M. & Oluwajoba, S. O. S. Rheological and functional properties of soy-poundo yam flour. Int. J. Food Sci. Nutr. Eng. 2, 101–107 (2013).
    Google Scholar 
    52.Piga, A. et al. Texture evolution of “amaretti” cookies during storage. Eur. Food Res. Technol. 221, 387–391 (2005).CAS 

    Google Scholar 
    53.Salem E. Nutritional quality of purslane and its crackers (2016).54.Wang, R., Zhang, M., Mujumdar, A. S. & Sun, J.-C. Microwave freeze–drying characteristics and sensory quality of instant vegetable soup. Drying Technol. 27, 962–968 (2009).
    Google Scholar  More

  • in

    Author Correction: Boreal forest biomass accumulation is not increased by two decades of soil warming

    AffiliationsDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU), Umeå, SwedenHyungwoo Lim, Torgny Näsholm, Tomas Lundmark & Harald GripNicholas School of the Environment, Duke University, Durham, NC, USARam OrenDepartment of Forest Sciences, University of Helsinki, Helsinki, FinlandRam OrenDepartment of Soil and Environment, SLU, Uppsala, SwedenMonika StrömgrenSouthern Swedish Forest Research Centre, SLU, Alnarp, SwedenSune LinderAuthorsHyungwoo LimRam OrenTorgny NäsholmMonika StrömgrenTomas LundmarkHarald GripSune LinderCorresponding authorsCorrespondence to
    Hyungwoo Lim or Ram Oren. More

  • in

    Stable isotopes and predation marks shed new light on ammonoid habitat depth preferences

    1.Landman, N. H. et al. (eds) Ammonoid Paleobiology (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.Book 

    Google Scholar 
    2.Klug, C. et al. (eds) Ammonoid Paleobiology: From Anatomy to Ecology (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.Book 

    Google Scholar 
    3.Klug, C. et al. (eds) Ammonoid Paleobiology: From Macroevolution to Paleogeography (Springer, 2015). https://doi.org/10.1007/978-94-017-9633-0.Book 

    Google Scholar 
    4.Ritterbush, K. A., Hoffmann, R., Lukeneder, A. & De Baets, K. Pelagic palaeoecology: The importance of recent constraints on ammonoid palaeobiology and life history. J. Zool. 292(4), 229–241. https://doi.org/10.1111/jzo.12118 (2014).Article 

    Google Scholar 
    5.Westermann, G. E. G. Ammonoid life and habitat. In Ammonoid Paleobiology (eds Landman, N. H. et al.) 607–707 (Plenum, 1996). https://doi.org/10.1007/978-1-4757-9153-2_16.Chapter 

    Google Scholar 
    6.Lukeneder, A. Ammonoid habitats and life history. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 689–791 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_18.Chapter 

    Google Scholar 
    7.Hoffmann, R. et al. A novel multiproxy approach to reconstruct the paleoecology of extinct cephalopods. Gondwana Res. 67, 64–81. https://doi.org/10.1016/j.gr.2018.10.011 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Hoffmann, R. et al. Recent advances in heteromorph ammonoid palaeobiology. Biol. Rev. Cambr. Philos. Soc. 96, 576–610. https://doi.org/10.1111/brv.12669 (2021).Article 

    Google Scholar 
    9.Moriya, K., Nishi, H., Kawahata, H., Tanabe, K. & Takayanagi, Y. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31, 167–170 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Moriya, K. Isotope signature of ammonoid shells. In Ammonoid Paleobiology: From Anatomy to Ecology (eds Klug, C. et al.) 793–836 (Springer, 2015). https://doi.org/10.1007/978-94-017-9630-9_19.Chapter 

    Google Scholar 
    11.Sessa, J. A. et al. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms. PNAS 112, 15562–15567. https://doi.org/10.1073/pnas.1507554112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Stevens, K., Mutterlose, J. & Wiedenroth, K. Stable isotope data (δ18O, δ13C) of the ammonite genus Simbirskites—Implications for habitat reconstructions of extinct cephalopods. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 164–175. https://doi.org/10.1016/j.palaeo.2014.10.031 (2015).Article 

    Google Scholar 
    13.Surlyk, F., Dons, T., Clausen, C. K. & Higham, J. Upper Cretaceous. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Copestake, P. et al.) 213–233 (Geological Society of London, 2003).
    Google Scholar 
    14.Thibault, N., Harlou, R., Schovsbo, N. H., Stemmerik, L. & Surlyk, F. Late Cretaceous (late Campanian–Maastrichtian) sea surface temperature record of the Boreal Chalk Sea. Clim. Past 12, 429–438. https://doi.org/10.5194/cp-12-429-2016 (2016).Article 

    Google Scholar 
    15.Wilmsen, M. & Niebuhr, B. High-resolution Campanian-Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal component: Palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea. Acta Geol. Pol. 67, 47–74. https://doi.org/10.1515/agp-2017-0004 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Birkelund, T. Ammonites from the Maastrichtian White Chalk of Denmark. Bull. Geol. Soc. Denmark 40, 33–81 (1993).Article 

    Google Scholar 
    17.Niebuhr, B. Late Campanian and Early Maastrichtian ammonites from the white chalk of Kronsmoor (northern Germany)—Taxonomy and stratigraphy. Acta Geol. Pol. 53, 257–281 (2003).
    Google Scholar 
    18.Kruta, I. & Landman, N. H. Injuries on Nautilus jaws: Implications for the function of ammonite aptychi. Veliger 50, 241–247 (2008).
    Google Scholar 
    19.Tanabe, K., Kruta, I. & Landman, N. H. Ammonoid buccal mass and jaw apparatus. In Ammonoid Paleobiology: From Macroevolution to Paleogeography (eds Klug, C. et al.) 439–494 (Springer, 2015).
    Google Scholar 
    20.Kruta, I., Landman, N. H. & Cochran, J. K. A new approach for the determination of ammonite and nautilid habitats. PLoS ONE 9, e87479. https://doi.org/10.1371/journal.pone.0087479 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Machalski, M. Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: Taxonomy, evolution, and extinction. Acta Palaeontol. Pol. 50(4), 653–696 (2005).
    Google Scholar 
    22.Machalski, M. Correlation of shell and aptychus growth provides insights into the palaeobiology of a scaphitid ammonite. Palaeontology 64, 225–247. https://doi.org/10.1111/pala.12519 (2021).Article 

    Google Scholar 
    23.Dubicka, Z. & Peryt, D. Integrated biostratigraphy of Upper Maastrichtian chalk at Chełm (SE Poland). Ann. Soc. Geol. Pol. 81, 185–197 (2011).
    Google Scholar 
    24.Dubicka, Z. & Peryt, D. Latest Campanian and Maastrichtian palaeoenvironmental changes: Implications from an epicontinental sea (SE Poland and western Ukraine). Cret. Res. 37, 272–284. https://doi.org/10.1016/j.cretres.2012.04.009 (2012).Article 

    Google Scholar 
    25.Machalski, M. & Malchyk, O. Durophagous predation on late Maastrichtian (Cretaceous) scaphitid ammonites from Poland. In 10th International Symposium “Cephalopods—Present and Past”, Program and Abstracts. Münstersche Forschungen zur Geologie und Paläontologie 110, 77–78 (2018).
    Google Scholar 
    26.Keupp, H. Sublethal punctures in body chambers of Mesozoic ammonites (forma Aegra fenestra n. f.), a tool to interpret synecological relationships, particularly predator–prey interactions. Paläontol. Z. 80, 112–123. https://doi.org/10.1007/BF02988971 (2006).Article 

    Google Scholar 
    27.Mironenko, A. Sublethal injuries on the shells of Jurassic ammonites from Central Russia. In Jurassic Deposits of the Southern Part of the Moscow Syneclise and Their Fauna (eds Rogov, M. A. & Zakharov, V. A.) 183–208 (Transactions of the Geological Institute, GEOS, 2017) (in Russian).
    Google Scholar 
    28.Moriya, K. Evolution of habitat depth in the Jurassic-Cretaceous ammonoids. PNAS 112, 15540–15541. https://doi.org/10.1073/pnas.1520961112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Leszczyński, K. The internal geometry and lithofacies pattern of the Upper Cretaceous-Danian sequence in the Polish Lowlands. Geol. Q. 56, 363–386. https://doi.org/10.7306/gq.1028 (2012).Article 

    Google Scholar 
    30.Jurkowska, A. & Świerczewska-Gładysz, E. New model of Si balance in the Late Cretaceous epicontinental European Basin. Global Planet. Change 186, 103108. https://doi.org/10.1016/j.gloplacha.2019.103108 (2020).Article 

    Google Scholar 
    31.Müller, R. D. et al. GPlates: Building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261. https://doi.org/10.1029/2018GC007584 (2018).ADS 
    Article 

    Google Scholar 
    32.Walaszczyk, I., Dubicka, Z., Olszewska-Nejbert, D. & Remin, Z. Integrated biostratigraphy of the Santonian through Maastrichtian (Upper Cretaceous) of extra-Carpathian Poland. Acta Geol. Pol. 66, 321–358. https://doi.org/10.1515/agp-2016-0016 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Surlyk, F. et al. Upper Campanian-Maastrichtian holostratigraphy of the eastern Danish Basin. Cret. Res. 46, 232–256. https://doi.org/10.1016/j.cretres.2013.08.006 (2013).Article 

    Google Scholar 
    34.Tagliavento, M., Lauridsen, B. W. & Stemmerik, L. Episodic dysoxia during Late Cretaceous cyclic chalk-marl deposition—Evidence from framboidal pyrite distribution in the upper Maastrichtian Rørdal Mb., Danish Basin. Cret. Res. 106, 104223. https://doi.org/10.1016/j.cretres.2019.104223 (2020).Article 

    Google Scholar 
    35.Dubicka, Z., Wierzbowski, H. & Wierny, W. Oxygen and carbon isotope records of Upper Cretaceous foraminifera from Poland: Vital and microhabitat effects. Palaeogeogr. Palaeoclimatol. Palaeoecol. 500, 33–51. https://doi.org/10.1016/j.palaeo.2018.03.029 (2018).Article 

    Google Scholar 
    36.Klompmaker, A. A., Waljaard, N. A. & Fraaije, R. H. B. Ventral bite marks in Mesozoic ammonoids. Palaeogeogr. Palaeoclimatol. Palaeoecol. 280, 245–257. https://doi.org/10.1016/j.palaeo.2009.06.013 (2009).Article 

    Google Scholar 
    37.Fraaye, R. H. B. Late Cretaceous swimming crabs: Radiation, migration, competition, and extinction. Acta Geol. Pol. 46, 269–278 (1996).
    Google Scholar 
    38.Caldwell, R. L. & Dingle, H. Stomatopods. Sci. Am. 234, 80–89 (1976).ADS 
    Article 

    Google Scholar 
    39.Dunstan, A. J., Ward, P. D. & Marshall, N. J. Vertical distribution and migration patterns of Nautilus pompilius. PLoS ONE 6, e16311. https://doi.org/10.1371/journal.pone.0016311 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Ward, P., Dooley, F. & Barord, G. J. Nautilus: Biology, systematics, and paleobiology as viewed from 2015. Swiss J. Palaeontol. 135, 169–185. https://doi.org/10.1007/s13358-016-0112-7 (2016).Article 

    Google Scholar 
    41.Landman, N. H., Cobban, W. A. & Larson, N. L. Mode of life and habitat of scaphitid ammonites. Geobios 45, 87–98. https://doi.org/10.1016/j.geobios.2011.11.006 (2012).Article 

    Google Scholar 
    42.Peterman, D. J. et al. Syn vivo hydrostatic and hydrodynamic properties of scaphitid ammonoids from the U.S. Western Interior. Geobios 60, 79–98. https://doi.org/10.1016/j.geobios.2020.04.004 (2021).Article 

    Google Scholar 
    43.Tsujita, C. J. & Westermann, G. Ammonoid habitats and habits in the Western Interior Seaway: A case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 144, 135–160. https://doi.org/10.1016/S0031-0182(98)00090-X (1998).Article 

    Google Scholar 
    44.Fraaije, R. H. B., Van Bakel, B. W. M., Jagt, J. W. M. & Viegas, P. A. The rise of a novel, plankton-based marine ecosystem during the Mesozoic: A bottom-up model to explain new higher-tier invertebrate morphotypes. Boletín de la Sociedad Geol. Mexicana 70, 187–200. https://doi.org/10.18268/bsgm2018v70n1a11 (2018).Article 

    Google Scholar 
    45.Alldredge, A. L. & King, J. M. The distance demersal zooplankton migrate above the benthos: Implications for predation. Marine Biol. 84, 253–260. https://doi.org/10.1007/BF00392494 (1985).Article 

    Google Scholar 
    46.Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Pal. Electron. 4, 1–9 (2001).
    Google Scholar 
    47.Anderson, T. F. & Arthur, M. A. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleonvironmental problems. In Stable Isotopes in Sedimentary Geology, The Society of Economic Paleontologists and Mineralogists Short Course Vol. 10 (eds Arthur, M. A. et al.) 1–151 (SEPM, 1983). https://doi.org/10.2110/scn.83.01.0000.Chapter 

    Google Scholar 
    48.Coplen, T. B., Kendall, C. & Hopple, J. Comparison of stable isotope reference samples. Nature 302, 236–238. https://doi.org/10.1038/302236a0 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    49.McLennan, S. M. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary process. Rev. Mineral. 21, 169–200 (1989).CAS 

    Google Scholar 
    50.Webb, G. E. & Kamber, B. S. Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim. Cosmochim. Acta 64, 1557–1565. https://doi.org/10.1016/S0016-7037(99)00400-7 (2000).ADS 
    CAS 
    Article 

    Google Scholar  More