Spatial and temporal patterns of genetic diversity in Bombus terrestris populations of the Iberian Peninsula and their conservation implications
1.Sage, R. F. Global change biology: A primer. Glob. Change Biol. 26, 3–30 (2020).ADS
Google Scholar
2.Sutherland, W. J. et al. A horizon scan of emerging issues for global conservation in 2019. Trends Ecol. Evol. 34, 83–94 (2018).PubMed
Google Scholar
3.Porto, R. G. et al. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Secur. 12, 1425–1442 (2020).
Google Scholar
4.Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 1–10 (2016).
Google Scholar
5.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).PubMed
Google Scholar
6.Ellis, J. S. et al. Introgression in native populations of Apis mellifera mellifera L: implications for conservation. J. Insect Conserv. 22, 377–390 (2018).
Google Scholar
7.Hart, A. F., Maebe, K., Brown, G., Smagghe, G. & Ings, T. Winter activity unrelated to introgression in British bumblebee Bombus terrestris audax. Apidologie 52, 315–327 (2021).
Google Scholar
8.Ings, T. C., Ward, N. L. & Chittka, L. Can commercially imported bumble bees out-compete their native conspecifics?. J. Appl. Ecol. 43, 940–948 (2006).
Google Scholar
9.Graystock, P., Blane, E. J., McFrederick, Q. S., Goulson, D. & Hughes, W. O. Do managed bees drive parasite spread and emergence in wild bees?. IJP-PAW 5, 64–75 (2016).PubMed
Google Scholar
10.Chandler, D., Cooper, E. & Prince, G. Are there risks to wild European bumble bees from using commercial stocks of domesticated Bombus terrestris for crop pollination?. J. Apic. Res. 58, 1–17 (2019).
Google Scholar
11.Velthuis, H. H. W. & Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 37, 421–451 (2006).
Google Scholar
12.Trillo, A. et al. Contrasting occurrence patterns of managed and native bumblebees in natural habitats across a greenhouse landscape gradient. Agric. Ecosyst. Environ. 272, 230–236 (2019).
Google Scholar
13.Lecocq, T., Rasmont, P., Harpke, A. & Schweiger, O. Improving international trade regulation by considering intraspecific variation for invasion risk assessment of commercially traded species: The Bombus terrestris case. Conserv. Lett. 9, 281–289 (2015).
Google Scholar
14.Martinet, B. et al. Global effects of extreme temperatures on wild bumblebees. Conserv. Biol. 35(5), 1507–1518 (2021).PubMed
Google Scholar
15.Schmid-Hempel, R. et al. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 83, 823–837 (2014).PubMed
Google Scholar
16.Aizen, M. A. et al. Coordinated species importation policies are needed to reduce serious invasions globally: The case of alien bumblebees in South America. J. Appl. Ecol. 56, 100–106 (2018).
Google Scholar
17.Tsuchida, K., Yamaguchi, A., Kanbe, Y. & Goka, K. Reproductive interference in an introduced bumblebee: Polyandry may mitigate negative reproductive impact. Insects 10, 59 (2019).PubMed Central
Google Scholar
18.Rasmont, P., Coppée, A., Michez, D. & De Meulemeester, T. An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Ann. Soc. Entomol. Fr. (N.S.) 44, 243–250 (2008).
Google Scholar
19.Lecocq, T. et al. The alien’s identity: Consequences of taxonomic status for the international bumblebee trade regulations. Biol. Conserv. 195, 169–176 (2016).
Google Scholar
20.Ornosa, C. & Ortiz-Sánchez, F. Hymenoptera: Apoidea I. In Fauna Ibérica Vol. 23 (eds Ramos, M. A. et al.) (Museo Nacional de Ciencias Naturales, CSIC, 2004).
Google Scholar
21.Hewitt, G. M. Mediterranean Peninsulas: The Evolution of Hotspots. In Biodiversity Hotspots (eds Zachos, F. & Habel, J.) 123–147 (Springer-Verlag, 2011).
Google Scholar
22.Ortiz-Sánchez, F. Introducción de Bombus terrestris terrestris (Linnaeus, 1758) en el Sur de España para la polinización de cultivos en invernadero (Hymenoptera, Apidae). Boln. Asoc. Esp. Ent. 16, 247–248 (1992).
Google Scholar
23.Cejas, D., López-López, A., Muñoz, I., Ornosa, C. & De la Rúa, P. Unveiling introgression in bumblebee (Bombus terrestris) populations through mitogenome-based markers. Anim. Genet. 51, 70–77 (2020).CAS
PubMed
Google Scholar
24.Seabra, S. G. et al. Genomic signatures of introgression between commercial and native bumblebees, Bombus terrestris, in western Iberian Peninsula—Implications for conservation and trade regulation. Evol. Appl. 12, 1–13 (2019).
Google Scholar
25.Bartomeus, I., Molina, F. P., Hidalgo-Galiana, A. & Ortego, J. Safeguarding the genetic integrity of native pollinators requires stronger regulations on commercial lines. Ecol. Solut. Evid. 1(1), e12012 (2020).
Google Scholar
26.Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: Dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).
Google Scholar
27.Williams, P. H. et al. Genes suggest ancestral colour polymorphisms are shared across morphologically cryptic species in arctic bumblebees. PLoS ONE 10, e0144544 (2015).PubMed
PubMed Central
Google Scholar
28.Gosterit, A. Adverse effects of inbreeding on colony foundation success in bumblebees, Bombus terrestris (Hymenoptera: Apidae). Appl. Entomol. Zool. 51, 521–526 (2016).
Google Scholar
29.Maebe, K., Karise, R., Meeus, I., Mänd, M. & Smagghe, G. Pattern of population structuring between Belgian and Estonian bumblebees. Sci. Rep. 9, 1–8 (2019).CAS
Google Scholar
30.Allio, R., Donega, S., Galtier, N. & Nabholz, B. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 34, 2762–2772 (2017).CAS
Google Scholar
31.Patten, M. M., Carioscia, S. A. & Linnen, C. R. Biased introgression of mitochondrial and nuclear genes: A comparison of diploid and haplodiploid systems. Mol. Ecol. 24, 5200–5210 (2015).CAS
PubMed
Google Scholar
32.Gosterit, A. & Baskar, V. C. Impacts of commercialization on the developmental characteristics of native Bombus terrestris (L.) colonies. Insectes Soc. 63, 609–614 (2016).
Google Scholar
33.Moreira, A. S., Horgan, F. G., Murray, T. E. & Kakouli-Duarte, T. Population genetic structure of Bombus terrestris in Europe: Isolation and genetic differentiation of Irish and British populations. Mol. Ecol. 24, 3257–3268 (2015).PubMed
Google Scholar
34.Zayed, A. Bee genetics and conservation. Apidologie 40, 237–262 (2009).
Google Scholar
35.Schenau, E. & Jha, S. High levels of male diploidy but low levels of genetic structure characterize Bombus vosnesenskii populations across the Western US. Conserv. Genet. 18, 597–605 (2017).
Google Scholar
36.Van Wilgenburg, E., Driessen, G. & Beukeboom, L. W. Single locus complementary sex determination in Hymenoptera: An “unintelligent” design?. Front. Zool. 3, 1–15 (2006).PubMed
PubMed Central
Google Scholar
37.Bogo, G. et al. No evidence for an inbreeding avoidance system in the bumble bee Bombus terrestris. Apidologie 49, 473–483 (2018).
Google Scholar
38.Kent, C. F. et al. Conservation genomics of the declining North American bumblebee Bombus terricola reveals inbreeding and selection on immune genes. Front. Genet. 9, 316 (2018).ADS
PubMed
PubMed Central
Google Scholar
39.Cejas, D., Ornosa, C., Muñoz, I. & De la Rúa, P. Searching for molecular markers to differentiate Bombus terrestris (Linnaeus) subspecies in the Iberian Peninsula. Sociobiology 65, 558–565 (2018).
Google Scholar
40.Ministerio de Agricultura, Pesca y Alimentación de España. Encuesta sobre Superficies y Rendimientos de Cultivos (ESYRCE). https://cpage.mpr.gob.es N.I.P.O.: 001-19-051-9 (2021).41.Nei, M. Genetic distance between populations. Am. Nat. 106, 283–292 (1972).
Google Scholar
42.Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. PNAS 94, 9197–9201 (1997).ADS
CAS
PubMed
PubMed Central
Google Scholar
43.Anderson, E. C. Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos. Trans. R. Soc. B 363(1505), 2841–2850 (2008).
Google Scholar
44.Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
Google Scholar
45.Facon, B. et al. Can things get worse when an invasive species hybridizes? The harlequin ladybird Harmonia axyridis in France as a case study. Evol. Appl. 4, 71–88 (2011).PubMed
Google Scholar
46.Ornosa, C., Torres, F. & De la Rúa, P. Updated list of bumblebees (Hymenoptera: Apidae) from the Spanish Pyrenees with notes on their decline and conservation status. Zootaxa 4237, 41–77 (2017).
Google Scholar
47.Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).
Google Scholar
48.Arnold, M. L. & Kunte, K. Adaptive genetic exchange: A tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).PubMed
Google Scholar
49.Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).PubMed
Google Scholar
50.De la Rúa, P. et al. Conserving genetic diversity in the honeybee: Comments on Harpur et al. (2012). Mol. Ecol. 22, 3208–3210 (2013).PubMed
Google Scholar
51.Estoup, A., Solignac, M., Cornuet, J. M., Goudet, J. & Scholl, A. Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol. Ecol. 5, 19–31 (1996).CAS
PubMed
Google Scholar
52.Silva, S. E. et al. Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium. Biol. J. Linn. Soc. 129, 259–272 (2020).
Google Scholar
53.Ayabe, T., Hoshiba, H. & Ono, M. Cytological evidence for triploid males and females in the bumblebee, Bombus terrestris. Chromosome Res. 12, 215–223 (2004).CAS
PubMed
Google Scholar
54.Takahashi, J., Ayabe, T., Mitsuhata, M., Shimizu, I. & Ono, M. Diploid male production in a rare and locally distributed bumblebee, Bombus florilegus (Hymenoptera, Apidae). Insectes Soc. 55, 43–50 (2008).
Google Scholar
55.Darvill, B., Ellis, J. S., Lye, G. C. & Goulson, D. Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol. Ecol. 15, 601–611 (2006).CAS
PubMed
Google Scholar
56.Gerloff, C. U. & Schmid-Hempel, P. Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera: Apidae). Oikos 111, 67–80 (2005).
Google Scholar
57.Kraus, F. B., Wolf, S. & Moritz, R. F. A. Male flight distance and population substructure in the bumblebee Bombus terrestris. J. Anim. Ecol. 78, 247–252 (2009).CAS
PubMed
Google Scholar
58.Ivanova, N., Dewaard, J. & Herbert, D. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).CAS
Google Scholar
59.Wandeler, P., Hoeck, P. E. & Keller, L. F. Back to the future: museum specimens in population genetics. Trends Ecol. Evol. 22, 634–642 (2007).PubMed
PubMed Central
Google Scholar
60.Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. Bioinform. Methods Protoc. 132, 365–386 (2000).CAS
Google Scholar
61.Hines, H., Cameron, S. & Williams, P. Molecular phylogeny of the bumble bee subgenus Pyrobombus (Hymenoptera: Apidae: Bombus) with insights into gene utility for lower-level analysis. Invertebr. Syst. 20, 289–303 (2006).CAS
Google Scholar
62.Estoup, A., Scholl, A., Pouvreau, A. & Solignac, M. Monoandry and polyandry in bumble bees (Hymenoptera; Bombinae) as evidenced by highly variable microsatellites. Mol. Ecol. 4, 89–94 (1995).CAS
PubMed
Google Scholar
63.Cejas, D., Ornosa, C., Muñoz, I. & De la Rúa, P. Preliminary report on cross-species microsatellite amplification for bumblebee biodiversity and conservation studies. Arch. de Zootec. 68, 422–426 (2019).
Google Scholar
64.Wang, J. Computationally efficent sibship and parentage assignment from multilocus marker data. Genetics 191, 183–194 (2012).CAS
PubMed
PubMed Central
Google Scholar
65.Piry, S. et al. Geneclass2: A software for genetic assignment and first generation migrant detection. Heredity 95(6), 536–539 (2004).CAS
Google Scholar
66.Cornuet, J. M., Piry, S., Luikart, G., Estoup, A. & Solignac, M. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153, 1989–2000 (1999).CAS
PubMed
PubMed Central
Google Scholar
67.Peakall, R. & Smouse, P. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).CAS
PubMed
PubMed Central
Google Scholar
68.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Google Scholar
69.Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed
Google Scholar
70.Kalinowski, S. T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS
Google Scholar
71.Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).
Google Scholar
72.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, http://www.R-project.org (2008).73.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Google Scholar
74.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
Google Scholar
75.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS
PubMed
PubMed Central
Google Scholar
76.Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
Google Scholar
77.Jombart, T. & Ahmed, I. adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 24, 1403–1405 (2011).
Google Scholar More