More stories

  • in

    The origin and impeded dissemination of the DNA phosphorothioation system in prokaryotes

    1.Eckstein, F. Phosphorothioation of DNA in bacteria. Nat. Chem. Biol. 3, 689–690 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Wang, L. et al. Phosphorothioation of DNA in bacteria by dnd genes. Nat. Chem. Biol. 3, 709–710 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Zhou, X. et al. A novel DNA modification by sulphur. Mol. Microbiol. 57, 1428–1438 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Chen, S., Wang, L. & Deng, Z. Twenty years hunting for sulfur in DNA. Protein cell 1, 14–21 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Xu, T. et al. DNA phosphorothioation in Streptomyces lividans: mutational analysis of the dnd locus. BMC Microbiol. 9, 41 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.You, D., Wang, L., Yao, F., Zhou, X. & Deng, Z. A novel DNA modification by sulfur: DndA is a NifS-like cysteine desulfurase capable of assembling DndC as an iron-sulfur cluster protein in Streptomyces liVidans. Biochemistry 46, 6126–6133 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Chen, F. et al. Crystal structure of the cysteine desulfurase DndA from Streptomyces lividans which is involved in DNA phosphorothioation. PLoS ONE 7, e36635 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.An, X. et al. A novel target of IscS in Escherichia coli: participating in DNA phosphorothioation. PLoS ONE 7, e51265 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Wang, L., Jiang, S., Deng, Z., Dedon, P. C. & Chen, S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol. Rev. 43, 109–122 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Yao, F., Xu, T., Zhou, X., Deng, Z. & You, D. Functional analysis of spfD gene involved in DNA phosphorothioation in Pseudomonas fluorescens Pf0-1. FEBS Lett. 583, 729–733 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Hu, W. et al. Structural insights into DndE from Escherichia coli B7A involved in DNA phosphorothioation modification. Cell Res. 22, 1203–1206 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Cheng, Q. et al. Regulation of DNA phosphorothioate modifications by the transcriptional regulator DptB in Salmonella. Mol. Microbiol. 97, 1186–1194 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Xiong, W., Zhao, G., Yu, H. & He, X. Interactions of Dnd proteins involved in bacterial DNA phosphorothioate modification. Front. Microbiol. 6, 1139 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    14.Dai, D. et al. DNA phosphorothioate modification plays a role in peroxides resistance in Streptomyces lividans. Front. Microbiol. 7, 1380 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    15.Xie, X. et al. Phosphorothioate DNA as an antioxidant in bacteria. Nucleic Acids Res. 40, 9115–9124 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Yang, Y. et al. DNA backbone sulfur-modification expands microbial growth range under multiple stresses by its anti-oxidation function. Sci. Rep. 7 (2017).17.Xu, T., Yao, F., Zhou, X., Deng, Z. & You, D. A novel host-specific restriction system associated with DNA backbone S-modification in Salmonella. Nucleic Acids Res. 38, 7133–7141 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Liu, G. et al. Cleavage of phosphorothioated DNA and methylated DNA by the Type IV restriction endonuclease ScoMcrA. PLoS Genet. 6, e1001253 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Tong, T. et al. Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc. Natl Acad. Sci. USA 115, E2988–E2996 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Xiong, L. et al. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat. Commun. 10 (2019).21.Xiong, X. et al. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat. Microbiol. 5, 917–928 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Dai, D., Pu, T., Liang, J., Wang, Z. & Tang, A. Regulation of dndB gene expression in Streptomyces lividans. Front. Microbiol. 9, 2387 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Zhou, X., Deng, Z., Firmin, J. L., Hopwood, D. A. & Kieser, T. Site-specific degradation of Streptomyces lividans DNA during electrophoresis in buffers contaminated with ferrous iron. Nucleic Acids Res. 16, 4341–4352 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Sun, Y. et al. DNA phosphorothioate modifications are widely distributed in the human microbiome. Biomolecules 10, 1175 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    25.Khan, H. et al. DNA phosphorothioate modification facilitates the dissemination of mcr-1 and blaNDM-1 in drinking water supply systems. Environ. Pollut. 268, 115799 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Wang, L. et al. DNA phosphorothioation is widespread and quantized in bacterial genomes. Proc. Natl Acad. Sci. USA 108, 2963–2968 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Blow, M. J. et al. The epigenomic landscape of prokaryotes. PLoS Genet. 12, e1005854 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Yang, X., Jian, H. & Wang, F. pSW2, a novel low-temperature-inducible gene expression vector based on a filamentous phage of the deep-sea bacterium Shewanella piezotolerans WP3. Appl. Environ. Microbiol. 81, 5519–5526 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Cao, B. et al. Genomic mapping of phosphorothioates reveals partial modification of short consensus sequences. Nat. Commun. 5, 3951 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Jian, H. et al. Multiple mechanisms are involved in repression of filamentous phage SW1 transcription by the DNA-binding protein FpsR. J. Mol. Biol. 431, 1113–1126 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Lai, C. et al. In vivo mutational characterization of DndE involved in DNA phosphorothioate modification. PLoS ONE 9, e107981 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Schoemaker, J. M., Gayda, R. C. & Markovitz, A. Regulation of cell division in Escherichia coli: SOS induction and cellular location of the SulA protein, a key to lon-associated filamentation and death. J. Bacteriol. 158, 551–561 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Jian, H., Xiong, L., Xu, G., Xiao, X. & Wang, F. Long 5′ untranslated regions regulate the RNA stability of the deep-sea filamentous phage SW1. Sci. Rep. 6, 21908 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Chen, C. et al. Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc. Natl Acad. Sci. USA 114, 4501–4506 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Maleki, F., Khosravi, A., Nasser, A., Taghinejad, H. & Azizian, M. Bacterial heat shock protein activity. J. Clin. Diagnostic Res. 10, BE01–BE03 (2016).CAS 

    Google Scholar 
    36.Knoll, A. H. Paleobiological perspectives on early microbial evolution. Cold Spring Harb. Perspect. Biol. 7, a018093 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58, 769–785 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Luo, G. et al. Rapid oxygenation of Earth’s atmosphere 2.33 billion years ago. Sci. Adv. 2, e1600134 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J. & Brasier, M. D. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nat. Geosci. 4, 698–702 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Bontognali, T. R. R. et al. Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc. Natl Acad. Sci. USA 109, 15146–15151 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Schirrmeister, B. E., Vos, J. M. D., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the great oxidation event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Pang, K. et al. Nitrogen-fixing heterocystous Cyanobacteria in the tonian period. Curr. Biol. 28, 616–622 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Demoulin, C. F. et al. Cyanobacteria evolution: Insight from the fossil record. Free Radic. Biol. Med. in press (2021).44.Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Ou, H.-Y. et al. dndDB: a database focused on phosphorothioation of the DNA backbone. PLoS ONE 4, e5132 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Janda, J. M. & Abbott, S. L. The genus Shewanella: from the briny depths below to human pathogen. Crit. Rev. Microbiol. 40, 293–312 (2014).PubMed 
    Article 

    Google Scholar 
    47.Fredrickson, J. K. et al. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 6, 592–603 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Nealson, K. H. & Scott, J. Ecophysiology of the Genus Shewanella. Prokaryotes 6, 1133–1151 (2006).Article 

    Google Scholar 
    50.Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Hay, I. D. & Lithgow, T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep. 20, e47427 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Mai-Prochnow, A. et al. ‘Big things in small packages: the genetics of filamentous phage and effects on fitness of their host’. FEMS Microbiol. Rev. 39, 465–487 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Middelboe, M., Glud, R. N. & Finster, K. Distribution of viruses and bacteria in relation to diagenetic activity in an estuarine sediment. Limnol. Oceanogr. 48, 1447–1456 (2003).ADS 
    Article 

    Google Scholar 
    54.Engelhardt, T., Orsi, W. D. & Jørgensen, B. B. Viral activities and life cycles in deep subseafloor sediments. Environ. Microbiol. Rep. 7, 868–873 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dell’Anno, A., Corinaldesi, C. & Danovaro, R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc. Natl Acad. Sci. USA 112, E2014–E2019 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Rakonjac, J. Filamentous Bacteriophages: Biology and Applications. eLS (2012).57.Güemes, A. G. C. et al. Viruses as winners in the game of life. Annu. Rev. Virol. 3, 197–214 (2016).Article 
    CAS 

    Google Scholar 
    58.Breitbart, M. Marine viruses: truth or dare. Annu. Rev. Mar. Sci. 4, 425–448 (2012).ADS 
    Article 

    Google Scholar 
    59.Danovaro, R. et al. Marine viruses and global climate change. FEMS Microbiol. Rev. 35, 993–1034 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Touchon, M., Bernheim, A. & Rocha, E. P. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 10, 2744–2754 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Harrison, E. & Brockhurst, M. A. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. Bioessays 39, 201700112 (2017).Article 

    Google Scholar 
    63.Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Wu, X. et al. Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. PNAS 117, 14322–14330 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Willbanks, A. et al. The evolution of epigenetics: from prokaryotes to humans and its biological consequences. Genet. Epigenet. 8, 25–36 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Razin, A. & Cedar, H. DNA methylation and gene expression. Microbiol. Rev. 55, 451–458 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Casadesús, J. & Low, D. Epigenetic gene regulation in the bacterial world. Microbiol. Mol. Biol. Rev. 70, 830–856 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Iyer, L. M., Abhiman, S. & Aravind, L. Natural history of eukaryotic DNA methylation systems. Prog. Mol. Biol. Transl. Sci. 101, 25–104 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Gan, R. et al. DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks. Sci. Rep. 4, 6642 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Chen, L. et al. Theoretical study on the relationship between Rp-phosphorothioation and base-step in S-DNA: based on energetic and structural analysis. J. Phys. Chem. B 119, 474–481 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Kellner, S. et al. Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat. Chem. Biol. 13, 888–894 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ślesak, I., Kula, M., Ślesak, H., Miszalski, Z. & Strzałka, K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic. Biol. Med. 140, 61–73 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    74.Brioukhanov, A. L., Thauer, R. K. & Netrusov, A. I. Catalase and superoxide dismutase in the cells of strictly anaerobic microorganisms. Microbiol. (Russ. Acad. Sci.) 71, 330–335 (2002).
    Google Scholar 
    75.Sebaihia, M. et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38, 779–786 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    76.Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–D205 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy database. Bioinformatics 36, 1925–1927 (2020).CAS 

    Google Scholar 
    84.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood treesfor large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kwak, S. G. & Kim, J. H. Central limit theorem: the cornerstone of modern statistics. Korean J. Anesthesiol. 70, 144–156 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2013).90.Chok, N. S. Pearson’s versus Spearman’s and Kendall’s correlation coefficients for continuous data Master of Science thesis, University of Pittsburgh, (2010).91.Jian, H., Xu, G., Gai, Y., Xu, J. & Xiao, X. The histone-like nucleoid structuring protein (H-NS) is a negative regulator of the lateral flagellar system in the deep-sea bacterium Shewanella piezotolerans WP3. Appl. Environ. Microbiol. 82, 2388–2398 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Wang, F. et al. Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE 3, e1937 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Jian, H., Xu, J., Xiao, X. & Wang, F. Dynamic modulation of DNA replication and gene transcription in deep-sea filamentous phage SW1 in response to changes of host growth and temperature. PLoS ONE 7, e41578 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2016).Article 
    CAS 

    Google Scholar 
    95.Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    96.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    98.Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    99.Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Gao, H. et al. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J. 3, 966–976 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Lenski, R. E., Rose, M. R., Simpson, S. C. & Tadler, S. C. Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Am. Naturalist 138, 1315–1341 (1991).Article 

    Google Scholar  More

  • in

    Antibiotic resistance in the environment

    1.D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011). This study shows that different ARGs are present in 30,000-year-old permafrost.
    Google Scholar 
    2.Bhullar, K. et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7, e34953 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lugli, G. A. et al. Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome 5, 5 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    4.Perry, J., Waglechner, N. & Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6, a025197 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    5.Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010). This authoritative and educational review discusses in an insightful way the evolution of resistance, including its origins and future implications.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 

    Google Scholar 
    7.Martinez, J. L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. R. Soc. B Biol. Sci. 276, 2521–2530 (2009).
    Google Scholar 
    8.Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz935 (2019).Article 
    PubMed Central 

    Google Scholar 
    9.Mackenzie, J. S. & Jeggo, M. The one health approach — why is it so important? Trop. Med. Infect. Dis. 4, 88 (2019).PubMed Central 

    Google Scholar 
    10.Buschhardt, T. et al. A one health glossary to support communication and information exchange between the human health, animal health and food safety sectors. One Health 13, 100263 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    11.Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).CAS 
    PubMed 

    Google Scholar 
    12.Wellington, E. M. et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 13, 155–165 (2013).CAS 
    PubMed 

    Google Scholar 
    13.Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fux053 (2017).Article 
    PubMed Central 

    Google Scholar 
    14.Chow, L. K. M., Ghaly, T. M. & Gillings, M. R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 99, 21–27 (2021).
    Google Scholar 
    15.Andersson, D. I. et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 44, 171–188 (2020).CAS 
    PubMed 

    Google Scholar 
    16.Singer, A. C., Shaw, H., Rhodes, V. & Hart, A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01728 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.United Nations Environment Programme. Frontiers 2017: emerging issues of environmental concern, https://www.unenvironment.org/resources/frontiers-2017-emerging-issues-environmental-concern (2017).18.Access to Medicines Foundation. 2020 antimicrobial resistance benchmark, https://accesstomedicinefoundation.org/publications/2020-antimicrobial-resistance-benchmark (2020).19.Review on Antimicrobial Resistance. Antimicrobials in agriculture and the environment: reducing unnecessary waste, https://amr-review.org/Publications.html (2015).20.European Parliament. Strategic approach to pharmaceuticals in the environment, https://www.europarl.europa.eu/doceo/document/TA-9-2020-0226_EN.pdf (2020).21.WHO. Technical brief on water, sanitation, hygiene (WASH) and wastewater management to prevent infections and reduce the spread of antimicrobial resistance (AMR)., https://www.who.int/water_sanitation_health/publications/wash-wastewater-management-to-prevent-infections-and-reduce-amr/en/ (2020).22.Graham, D. W. et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 1441, 17–30 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    23.Smalla, K., Cook, K., Djordjevic, S. P., Klümper, U. & Gillings, M. Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy195 (2018).Article 
    PubMed 

    Google Scholar 
    24.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).CAS 
    PubMed 

    Google Scholar 
    25.Schulz, F. et al. Towards a balanced view of the bacterial tree of life. Microbiome https://doi.org/10.1186/s40168-017-0360-9 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012). This study demonstrates numerous identical resistance gene loci between multiresistant soil bacteria and diverse human pathogens, providing evidence for recent gene exchange across species and environments.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Berglund, F. et al. Identification of 76 novel B1 metallo-beta-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5, 134 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    28.Dantas, G., Sommer, M. O. A., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).CAS 
    PubMed 

    Google Scholar 
    29.Berglund, F. et al. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microb. Genomics https://doi.org/10.1099/mgen.0.000455 (2020).Article 

    Google Scholar 
    30.Pawlowski, A. C. et al. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat. Commun. 7, 13803 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Morar, M. & Wright, G. D. The genomic enzymology of antibiotic resistance. Annu. Rev. Genet. 44, 25–51 (2010).CAS 
    PubMed 

    Google Scholar 
    32.Andersson, D. I., Jerlström-Hultqvist, J. & Näsvall, J. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb. Perspect. Biol. 7, a017996 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    33.Razavi, M., Kristiansson, E., Flach, C.-F. & Larsson, D. G. J. The association between insertion sequences and antibiotic resistance genes. mSphere https://doi.org/10.1128/msphere.00418-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.00088-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Gillings, M. et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190, 5095–5100 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Razavi, M. et al. Discovery of the fourth mobile sulfonamide resistance gene. Microbiome https://doi.org/10.1186/s40168-017-0379-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Flach, C.-F. et al. Does antifouling paint select for antibiotic resistance? Sci. Total Environ. 590–591, 461–468 (2017).PubMed 

    Google Scholar 
    38.Shintani, M. et al. Plant species-dependent increased abundance and diversity of IncP-1 plasmids in the rhizosphere: new insights into their role and ecology. Front. Microbiol. 11, 590776 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Baquero, F., Coque, T. M., Martínez, J.-L., Aracil-Gisbert, S. & Lanza, V. F. Gene transmission in the one health microbiosphere and the channels of antimicrobial resistance. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02892 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Vandecraen, J., Chandler, M., Aertsen, A. & Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43, 709–730 (2017).CAS 
    PubMed 

    Google Scholar 
    41.Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E. & Courvalin, P. Modes and modulations of antibiotic resistance gene expression. Clin. Microbiol. Rev. 20, 79–114 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Jutkina, J., Marathe, N. P., Flach, C. F. & Larsson, D. G. J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616-617, 172–178 (2018).CAS 
    PubMed 

    Google Scholar 
    43.Scornec, H., Bellanger, X., Guilloteau, H., Groshenry, G. & Merlin, C. Inducibility of Tn916 conjugative transfer in Enterococcus faecalis by subinhibitory concentrations of ribosome-targeting antibiotics. J. Antimicrob. Chemother. 72, 2722–2728 (2017).CAS 
    PubMed 

    Google Scholar 
    44.Aminov, R. I. Horizontal gene exchange in environmental microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2011.00158 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Knöppel, A., Näsvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01495-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Kimura, M. & Ohta, T. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Letten, A. D., Hall, A. R. & Levine, J. M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat. Ecol. Evol. 5, 431–441 (2021).PubMed 

    Google Scholar 
    48.Waglechner, N. & Wright, G. D. Antibiotic resistance: it’s bad, but why isn’t it worse? BMC Biol. https://doi.org/10.1186/s12915-017-0423-1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Ebmeyer, S., Erik, K. & Larsson, D. G. J. A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun. Biol. https://doi.org/10.1038/s42003-020-01545-5 (2021). This study amends, summarizes and scrutinizes current evidence for proposed recent origin species for mobile ARGs.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Andersson, D. I. & Hughes, D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 35, 901–911 (2011).CAS 
    PubMed 

    Google Scholar 
    51.Wang, J., Chu, L., Wojnárovits, L. & Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total. Environ. 744, 140997 (2020).CAS 
    PubMed 

    Google Scholar 
    52.Tran, N. H., Reinhard, M. & Gin, K. Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 133, 182–207 (2018).CAS 
    PubMed 

    Google Scholar 
    53.Szymańska, U. et al. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchem. J. 147, 729–740 (2019).
    Google Scholar 
    54.Anwar, M., Iqbal, Q. & Saleem, F. Improper disposal of unused antibiotics: an often overlooked driver of antimicrobial resistance. Expert Rev. Antiinfect Ther. https://doi.org/10.1080/14787210.2020.1754797 (2020).Article 

    Google Scholar 
    55.Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).PubMed 

    Google Scholar 
    56.Cabello, F. C., Godfrey, H. P., Buschmann, A. H. & Dölz, H. J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 16, e127–e133 (2016).PubMed 

    Google Scholar 
    57.Taylor, P. & Reeder, R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric. Biosci. https://doi.org/10.1186/s43170-020-00001-y (2020).Article 

    Google Scholar 
    58.Larsson, D. G. J. Pollution from drug manufacturing: review and perspectives. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130571 (2014).
    Google Scholar 
    59.Larsson, D. G. J., De Pedro, C. & Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 148, 751–755 (2007).CAS 
    PubMed 

    Google Scholar 
    60.Milaković, M. et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ. Int. 123, 501–511 (2019).PubMed 

    Google Scholar 
    61.Bielen, A. et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 126, 79–87 (2017).CAS 
    PubMed 

    Google Scholar 
    62.Fick, J. et al. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 28, 2522–2527 (2009).CAS 
    PubMed 

    Google Scholar 
    63.Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016). This study uses a simplified approach based on available MIC data for many species to predict concentrations of 111 antibiotics that are not likely to select for resistance.CAS 
    PubMed 

    Google Scholar 
    64.Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. https://doi.org/10.1038/s41467-018-07992-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Yang, Y., Li, B., Zou, S., Fang, H. H. P. & Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106 (2014).CAS 
    PubMed 

    Google Scholar 
    67.Bengtsson-Palme, J. et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 572, 697–712 (2016).CAS 
    PubMed 

    Google Scholar 
    68.Manaia, C. M. et al. Antibiotic resistance in wastewater treatment plants: tackling the black box. Environ. Int. 115, 312–324 (2018).CAS 
    PubMed 

    Google Scholar 
    69.Flach, C. F., Genheden, M., Fick, J. & Joakim Larsson, D. G. A comprehensive screening of Escherichia coli isolates from Scandinavia’s largest sewage treatment plant indicates no selection for antibiotic resistance. Environ. Sci. Technol. 52, 11419–11428 (2018).CAS 
    PubMed 

    Google Scholar 
    70.Kraupner, N. et al. Evidence for selection of multi-resistant E. coli by hospital effluent. Environ. Int. 150, 106436 (2021).CAS 
    PubMed 

    Google Scholar 
    71.Flach, C. F. et al. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. J. Antimicrob. Chemother. 70, 2709–2717 (2015).CAS 
    PubMed 

    Google Scholar 
    72.Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. J. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00648 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Marathe, N. P. et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ. Int. 112, 279–286 (2018).CAS 
    PubMed 

    Google Scholar 
    74.Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils–a review. J. Plant Nutr. Soil Sci. 166, 145–167 (2003).CAS 

    Google Scholar 
    75.Li, W., Shi, Y., Gao, L., Liu, J. & Cai, Y. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China. Sci. Total. Environ. 445–446, 306–313 (2013).PubMed 

    Google Scholar 
    76.Reinthaler, F. F. et al. Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. J. Water Health 11, 13–20 (2013).PubMed 

    Google Scholar 
    77.Rutgersson, C. et al. Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. Environ. Int. 137, 105339 (2020).CAS 
    PubMed 

    Google Scholar 
    78.Jechalke, S., Heuer, H., Siemens, J., Amelung, W. & Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 22, 536–545 (2014).CAS 
    PubMed 

    Google Scholar 
    79.Boxall, A. B. et al. Pharmaceuticals and personal care products in the environment: what are the big questions? Environ. Health Perspect. 120, 1221–1229 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    80.Song, J., Rensing, C., Holm, P. E., Virta, M. & Brandt, K. K. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environ. Sci. Technol. 51, 3040–3047 (2017).CAS 
    PubMed 

    Google Scholar 
    81.Jechalke, S. et al. Plasmid-mediated fitness advantage of Acinetobacter baylyi in sulfadiazine-polluted soil. FEMS Microbiol. Lett. 348, 127–132 (2013). This study shows that a commonly used antibiotic in pig farming has the potential to select for a resistant Acinetobacter strain in manure-amended soils.CAS 
    PubMed 

    Google Scholar 
    82.Pal, C. et al. Metal resistance and its association with antibiotic resistance. Adv. Microb. Physiol. 70, 261–313 (2017).CAS 
    PubMed 

    Google Scholar 
    83.Wales, A. & Davies, R. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4, 567–604 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    84.Pal, C., Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics https://doi.org/10.1186/s12864-015-2153-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Klümper, U. et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11, 152–165 (2017).PubMed 

    Google Scholar 
    86.Jutkina, J., Rutgersson, C., Flach, C. F. & Joakim Larsson, D. G. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Total. Environ. 548–549, 131–138 (2016).PubMed 

    Google Scholar 
    87.Wang, Y. et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 14, 2179–2196 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Klumper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015). This study shows that plasmids that are common in pathogens can easily be taken up by diverse environmental bacteria, thereby providing pathways for the exchange of resistance genes.CAS 
    PubMed 

    Google Scholar 
    89.Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Genomics and the evolution of antibiotic resistance. Ann. N. Y. Acad. Sci. 1388, 92–107 (2017).PubMed 

    Google Scholar 
    90.Heuer, H. & Smalla, K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol. Rev. 36, 1083–1104 (2012).CAS 
    PubMed 

    Google Scholar 
    91.Bengtsson-Palme, J. & Larsson, D. G. Antibiotic resistance genes in the environment: prioritizing risks. Nat. Rev. Microbiol. 13, 396 (2015).CAS 
    PubMed 

    Google Scholar 
    92.Leonard, A. F. C. et al. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 114, 326–333 (2018). This is one of few studies showing that people more likely to ingest surface waters are also more prone to be carriers of resistant bacteria compared with matched controls.PubMed 

    Google Scholar 
    93.Manaia, C. M. Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol. 25, 173–181 (2017).CAS 
    PubMed 

    Google Scholar 
    94.Schijven, J. F., Blaak, H., Schets, F. M. & De Roda Husman, A. M. Fate of extended-spectrum β-lactamase-producing Escherichia coli from faecal sources in surface water and probability of human exposure through swimming. Environ. Sci. Technol. 49, 11825–11833 (2015).CAS 
    PubMed 

    Google Scholar 
    95.Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. & Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet. Health 2, e398–e405 (2018).PubMed 

    Google Scholar 
    96.Dancer, S. J. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 27, 665–690 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    97.Weber, D. J., Anderson, D. & Rutala, W. A. The role of the surface environment in healthcare-associated infections. Curr. Opin. Infect. Dis. 26, 338–344 (2013).PubMed 

    Google Scholar 
    98.Søraas, A., Sundsfjord, A., Sandven, I., Brunborg, C. & Jenum, P. A. Risk factors for community-acquired urinary tract infections caused by ESBL-producing Enterobacteriaceae –a case–control study in a low prevalence country. PLoS ONE 8, e69581 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    99.Zhou, S.-Y.-D. et al. Prevalence of antibiotic resistome in ready-to-eat salad. Front. Public Health https://doi.org/10.3389/fpubh.2020.00092 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Uyttendaele, M. et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 14, 336–356 (2015).
    Google Scholar 
    101.Reid, C. J., Blau, K., Jechalke, S., Smalla, K. & Djordjevic, S. P. Whole genome sequencing of Escherichia coli from store-bought produce. Front. Microbiol. 10, 3050 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    102.Blau, K. et al. The transferable resistome of produce. mBio 9, e01300-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    103.Zhu, Y.-G. et al. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 131, 105059 (2019).PubMed 

    Google Scholar 
    104.Pal, C., Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. The structure and diversity of human, animal and environmental resistomes. Microbiome 4, 54 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Kozajda, A., Jeżak, K. & Kapsa, A. Airborne Staphylococcus aureus in different environments — a review. Environ. Sci. Pollut. Res. 26, 34741–34753 (2019).CAS 

    Google Scholar 
    106.Ashbolt, N. J. et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 121, 993–1001 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    107.Franz, E., Schijven, J., De Roda Husman, A. M. & Blaak, H. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water. Environ. Sci. Technol. 48, 6763–6771 (2014).CAS 
    PubMed 

    Google Scholar 
    108.Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug. Discov. 12, 371–387 (2013).CAS 
    PubMed 

    Google Scholar 
    109.Linton, K. B., Richmond, M. H., Bevan, R. & Gillespie, W. A. Antibiotic resistance and R factors in coliform bacilli isolated from hospital and domestic sewage. J. Med. Microbiol. 7, 91–103 (1974).CAS 
    PubMed 

    Google Scholar 
    110.Huijbers, P., Joakim Larsson, D. G. & Flach, C. F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 261, 114200 (2020).CAS 
    PubMed 

    Google Scholar 
    111.Hutinel, M. et al. Population-level surveillance of antibiotic resistance in Escherichia coli through sewage analysis. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2019.24.37.1800497 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of antimicrobial resistance. Science 367, 630–632 (2020).CAS 
    PubMed 

    Google Scholar 
    113.Kwak, Y. K. et al. Surveillance of antimicrobial resistance among Escherichia coli in wastewater in Stockholm during 1 year: does it reflect the resistance trends in the society? Int. J. Antimicrob. Agents 45, 25–32 (2015).CAS 
    PubMed 

    Google Scholar 
    114.Parnanen, K. M. M. et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 5, eaau9124 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    115.Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019). This is the most comprehensive survey of ARGs in sewage across the world to date, showing distinct differences between regions.PubMed 
    PubMed Central 

    Google Scholar 
    116.Huijbers, P. M. C., Flach, C. F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).CAS 
    PubMed 

    Google Scholar 
    117.Böhm, M.-E., Razavi, M., Marathe, N. P., Flach, C.-F. & Larsson, D. G. J. Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. Microbiome https://doi.org/10.1186/s40168-020-00814-z (2020). Using a functional assay targeting mobile genes, this study explores environment communities and finds a completely novel resistance gene that had escaped discovery in clinics despite its presence in pathogens on different continents.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C. & Larsson, D. G. J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 200, 117261 (2021).CAS 
    PubMed 

    Google Scholar 
    119.Karkman, A., Berglund, F., Flach, C.-F., Kristiansson, E. & Larsson, D. G. J. Predicting clinical resistance prevalence using sewage metagenomic data. Commun. Biol. https://doi.org/10.1038/s42003-020-01439-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    120.European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2017 (Stockholm, Sweden, 2018).121.Hovi, T. et al. Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiol. Infect. 140, 1–13 (2012).CAS 
    PubMed 

    Google Scholar 
    122.Agrawal, S., Orschler, L. & Lackner, S. Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in southern Germany. Sci. Rep. https://doi.org/10.1038/s41598-021-84914-2 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. & Brouwer, A. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ. Sci. Technol. Lett. 7, 511–516 (2020).CAS 

    Google Scholar 
    124.Lundstrom, S. V. et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci. Total Environ. 553, 587–595 (2016).PubMed 

    Google Scholar 
    125.McCann, C. M. et al. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ. Int. 125, 497–504 (2019).CAS 
    PubMed 

    Google Scholar 
    126.Pruden, A., Arabi, M. & Storteboom, H. N. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ. Sci. Technol. 46, 11541–11549 (2012).CAS 
    PubMed 

    Google Scholar 
    127.Zhu, Y.-G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).CAS 
    PubMed 

    Google Scholar 
    128.Zhu, Y.-G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. USA 110, 3435–3440 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    129.Knapp, C. W., Dolfing, J., Ehlert, P. A. I. & Graham, D. W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580–587 (2010).CAS 
    PubMed 

    Google Scholar 
    130.Nesme, J. & Simonet, P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ. Microbiol. 17, 913–930 (2015).PubMed 

    Google Scholar 
    131.Finley, R. L. et al. The scourge of antibiotic resistance: the important role of the environment. Clin. Infect. Dis. 57, 704–710 (2013).PubMed 

    Google Scholar 
    132.Sjölund, M. et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg. Infect. Dis. 14, 70–72 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    133.Zhu, G. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. https://doi.org/10.1038/s41396-020-00780-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    134.Nichols, D. et al. Use of Ichip for high-throughput in situ cultivation of “Uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    135.Ashton, P. M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).CAS 
    PubMed 

    Google Scholar 
    136.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS 
    PubMed 

    Google Scholar 
    137.Rice, E. W., Wang, P., Smith, A. L. & Stadler, L. B. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ. Sci. Technol. Lett. 7, 282–291 (2020).CAS 

    Google Scholar 
    138.Sivalingam, P., Poté, J. & Prabakar, K. Extracellular DNA (eDNA): neglected and potential sources of antibiotic resistant genes (ARGs) in the aquatic environments. Pathogens 9, 874 (2020).CAS 
    PubMed Central 

    Google Scholar 
    139.Bengtsson-Palme, J., Larsson, D. G. J. & Kristiansson, E. Using metagenomics to investigate human and environmental resistomes. J. Antimicrob. Chemother. 72, 2690–2703 (2017).CAS 
    PubMed 

    Google Scholar 
    140.Karkman, A. et al. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 92, https://doi.org/10.1093/femsec/fiw014 (2016).141.Gillings, M. R. et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9, 1269–1279 (2015).CAS 
    PubMed 

    Google Scholar 
    142.Gaze, W. H., Abdouslam, N., Hawkey, P. M. & Wellington, E. M. H. Incidence of Class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob. Agents Chemother. 49, 1802–1807 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Sommer, M. O. A., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol. 15, 689–696 (2017). This article highlights the needs to consider the environmental gene reservoir and other factors influencing resistance evolution in the development process for new antibiotics.CAS 
    PubMed 

    Google Scholar 
    144.Pehrsson, E. C., Forsberg, K. J., Gibson, M. K., Ahmadi, S. & Dantas, G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00145 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    145.Kim, C., Ryu, H.-D., Chung, E. G., Kim, Y. & Lee, J.-K. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: sample preparation, liquid chromatography, and mass spectrometry. J. Environ. Manag. 217, 629–645 (2018).CAS 

    Google Scholar 
    146.Fahrenfeld, N. & Bisceglia, K. J. Emerging investigators series: sewer surveillance for monitoring antibiotic use and prevalence of antibiotic resistance: urban sewer epidemiology. Environ. Sci. Water Res. Technol. 2, 788–799 (2016).CAS 

    Google Scholar 
    147.Anliker, S. et al. Assessing emissions from pharmaceutical manufacturing based on temporal high-resolution mass spectrometry data. Environ. Sci. Technol. 54, 4110–4120 (2020). This recent study elegantly uses the erratic emission profiles of drugs from manufacturing plants to attribute a large portion of the pharmaceutical residues found in a Swiss river to industrial emissions, further showing that curbing such pollution is an ongoing, worldwide challenge.CAS 
    PubMed 

    Google Scholar 
    148.Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    149.Kraupner, N. et al. Selective concentrations for trimethoprim resistance in aquatic environments. Environ. Int. 144, 106083 (2020).CAS 
    PubMed 

    Google Scholar 
    150.Murray, A. K. et al. Novel insights into selection for antibiotic resistance in complex microbial communities. mBio https://doi.org/10.1128/mbio.00969-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    151.Government of India. Environment (Protection) Amendment Rules, 2020 – Inviting comments/suggestions on Environmental Standards for Bulk Drug and Formulation (Pharmaceutical) Industry, http://moef.gov.in/g-s-r-44-e-date-23-01-2020-environment-protection-amendment-rules-2020-inviting-commentssuggestions-on-environmental-standards-for-bulk-drug-and-formulation-pharmaceutical-indu/ (2020).152.Tell, J. et al. Science-based targets for antibiotics in receiving waters from pharmaceutical manufacturing operations. Integr. Environ. Assess. Manag. 15, 312–319 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Greenfield, B. K. et al. Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01686-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    154.Murray, A. K. et al. The ‘Selection end points in Communities of bacTeria’ (SELECT) method: a novel experimental assay to facilitate risk assessment of selection for antimicrobial resistance in the environment. Environ. Health Perspect. 128, 107007 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    155.Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).CAS 
    PubMed 

    Google Scholar 
    156.Stanton, I. C., Murray, A. K., Zhang, L., Snape, J. & Gaze, W. H. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun. Biol. https://doi.org/10.1038/s42003-020-01176-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Nijsingh, N., Munthe, C. & Larsson, D. G. J. Managing pollution from antibiotics manufacturing: charting actors, incentives and disincentives. Environ. Health 18, 95 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    158.Sundin, G. W. & Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56, 161–180 (2018).CAS 
    PubMed 

    Google Scholar 
    159.Government of Sweden. Uppdrag angående försöksverksamhet för en miljöpremie i läkemedelsförmånssystemet, https://www.regeringen.se/499677/contentassets/36dcec65be904fd58e5e6b01c2f99709/uppdrag-angaende-forsoksverksamhet-for-en-miljopremie-i-lakemedelsformanssystemet-tlv.pdf (2021).160.Norwegian Hospital Procurement Trust. New environmental criteria for the procurement of pharmaceuticals, https://sykehusinnkjop.no/nyheter/new-environmental-criteria-for-the-procurement-of-pharmaceuticals (2019).161.Swedish Procurement Agency. Pharmaceuticals, https://www.upphandlingsmyndigheten.se/kriterier/sjukvard-och-omsorg/lakemedel/ (2021).162.G7. G7 Health Ministers’ Declaration, Oxford, 4 June 2021, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/992268/G7-health_ministers-communique-oxford-4-june-2021_5.pdf (2021).163.Årdal, C. et al. Supply chain transparency and the availability of essential medicines. Bull. World Health Organ. 99, 319–320 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    164.Graham, D., Giesen, M. & Bunce, J. Strategic approach for prioritising local and regional sanitation interventions for reducing global antibiotic resistance. Water 11, 27 (2018).
    Google Scholar 
    165.Margot, J. et al. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci. Total. Environ. 461–462, 480–498 (2013).PubMed 

    Google Scholar 
    166.Larsson, D. G. J. et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 117, 132–138 (2018).PubMed 

    Google Scholar 
    167.Laxminarayan, R. et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect. Dis. 20, e51–e60 (2020).PubMed 

    Google Scholar 
    168.Ahammad, Z. S., Sreekrishnan, T. R., Hands, C. L., Knapp, C. W. & Graham, D. W. Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ. Sci. Technol. 48, 3014–3020 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    169.Kookana, R. S. et al. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130586 (2014).
    Google Scholar  More

  • in

    Functional forest restoration

    1.Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate (United Nations Environment Programme, 2021).2.Bongers, F. J. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01564-3 (2021).Article 

    Google Scholar 
    3.Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar 
    4.Guerrero-Ramírez, N. R. et al. Nat. Ecol. Evol. 1, 1639–1642 (2017).Article 

    Google Scholar 
    5.Fargione, J. et al. Proc. R. Soc. B 274, 871–876 (2007).Article 

    Google Scholar 
    6.Montagnini, F. & Piotto, D. In Silviculture in the Tropics (eds Günter, S. et al.) 501–511 (Springer-Verlag, 2011).7.Aerts, R. & Honnay, O. BMC Ecol. 11, 29 (2011).Article 

    Google Scholar 
    8.Messier, C. et al. Conserv. Lett. https://doi.org/gk82nr (2021).9.Sacco, A. D. et al. Global Change Biol. 27, 1328–1348 (2021).Article 

    Google Scholar 
    10.Coleman, E. A. et al. Nat. Sustain. https://doi.org/gzhx (2021).11.Forrester, D. I. For. Ecol. Manage. 312, 282–292 (2014).Article 

    Google Scholar 
    12.Eisenhauer, N., Reich, P. B. & Scheu, S. Basic Appl. Ecol. 13, 571–578 (2012).Article 

    Google Scholar 
    13.Zemp, D. C. et al. Agric. Ecosyst. Environ. 283, 106564 (2019).Article 

    Google Scholar 
    14.Laughlin, D. C. et al. Nat. Ecol. Evol. 5, 1123–1134 (2021).Article 

    Google Scholar 
    15.Rodrigues, R. R. et al. Práticas de restauração nos diferentes biomas brasileiros. in BPBES/IIS: Relatório Temático sobre Restauração de Paisagens e Ecossistemas (eds. Crouzeilles, R. et al.) (Editora Cubo, 2019). More

  • in

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    1.Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).2.Bastin, J. F. et al. The global tree restoration potential. Science 366, 76–79 (2019).
    Google Scholar 
    3.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Zhang, J., Fu, B., Stafford-smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).8.Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).
    Google Scholar 
    9.Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    10.Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 285, 20181240 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    14.Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    15.Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).
    Google Scholar 
    16.Staples, T. L., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biogeogr. 28, 1417–1429 (2019).
    Google Scholar 
    17.Cheesman, A. W., Preece, N. D., van Oosterzee, P., Erskine, P. D. & Cernusak, L. A. The role of topography and plant functional traits in determining tropical reforestation success. J. Appl. Ecol. 55, 1029–1039 (2018).CAS 

    Google Scholar 
    18.Ma, L. et al. Species identity and composition effects on community productivity in a subtropical forest. Basic Appl. Ecol. 55, 87–97 (2021).
    Google Scholar 
    19.Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017)..20.Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    21.Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bruelheide, H. et al. Global trait— environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    24.van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Google Scholar 
    26.Chiang, J. M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Turnbull, L., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    31.Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).
    Google Scholar 
    32.Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).
    Google Scholar 
    33.Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    34.Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    35.Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    36.Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).
    Google Scholar 
    37.Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V. & Sterck, F. J. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 376, 321–332 (2016).
    Google Scholar 
    38.Toïgo, M. et al. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 106, 1073–1082 (2018).
    Google Scholar 
    39.Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).
    Google Scholar 
    40.Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).41.Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).
    Google Scholar 
    42.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 303, 35–45 (2013).
    Google Scholar 
    47.Mayoral, C., van Breugel, M., Cerezo, A. & Hall, J. S. Survival and growth of five Neotropical timber species in monocultures and mixtures. For. Ecol. Manag. 403, 1–11 (2017).
    Google Scholar 
    48.Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    49.Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    50.Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).
    Google Scholar 
    51.Ruiz-Jaen, M. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    52.Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    53.Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    54.Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).
    Google Scholar 
    55.Piston, N. et al. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).
    Google Scholar 
    56.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    57.O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686 (2017).
    Google Scholar 
    58.Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).59.Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).
    Google Scholar 
    60.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    61.Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).
    Google Scholar 
    62.Fiedler, S., Perring, M. P. & Tietjen, B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol. Evol. 8, 6369–6380 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    63.Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
    Google Scholar 
    64.Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).
    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).66.Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211 (2014).67.Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J. Ecol. 103, 1667–1679 (2015).CAS 

    Google Scholar 
    68.Krober, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).70.Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110 (2017).
    Google Scholar  More

  • in

    Feedback between bottom-up and top-down control of stream biofilm mediated through eutrophication effects on grazer growth

    Experimental set-upThe experiment was performed in the MOBICOS mesocosm facility, a container-based laboratory platform34 located by the river Holtemme in Wernigerode, central Germany (51° 49′ 00.7″ N, 10° 43′ 29.26″ E). See Weitere et al.35 for detailed water quality data at this station. Each experimental unit consisted of a rectangular flume (62 cm long, 14 cm high and 8 cm wide) constantly supplied with water from the river Holtemme, with a flow rate of 1000 L h−1 per flume. The water was filtered by a self-cleaning filter with a mesh size of 50 µm in order to remove larger particles without removing most unicellular organisms. The water level in each flume was 7.5 cm. At the bottom of each flume was a tray containing 30 white ceramic tiles (2.3 × 2.3 cm), disposed in three rows of ten tiles each, and a smaller tray containing nine additional tiles, disposed in three rows of three tiles each. The tiles served as substrates for periphyton growth. Vertical nets were placed at both ends of each flume to prevent grazers from leaving the experimental facility.The study consisted of a fully factorial experiment, in which two levels of phosphorus supply (high, P+, versus low, P−) were crossed with two levels of light intensity above the flumes (high, L+, versus low, L−) and with grazer presence (G+) and absence (G−), for a total of eight treatments: P+L+G+, P+L+G−, P+L−G+, P+L−G−, P−L+G+, P−L+G−, P−L−G+, and P−L−G−. In the P− treatments, the water flowing in the flumes was kept at ambient P concentration, which was below detection limit ( More

  • in

    The proximity of a highway increases CO2 respiration in forest soil and decreases the stability of soil organic matter

    1.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science (80-). 304, 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Janzen, H. H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 104, 399–417 (2004).CAS 
    Article 

    Google Scholar 
    3.Leinweber, P., Jandl, G., Baum, C., Eckhardt, K. U. & Kandeler, E. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol. Biochem. 40, 1496–1505 (2008).CAS 
    Article 

    Google Scholar 
    4.Kosugi, Y. et al. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric. For. Meteorol. 147, 35–47 (2007).ADS 
    Article 

    Google Scholar 
    5.Epron, D. Separating autotrophic and heterotrophic components of soil respiration: Lessons learned from trenching and related root-exclusion experiments. Soil Carbon Dyn. Integr. Methodol. https://doi.org/10.1017/CBO9780511711794.009 (2010).Article 

    Google Scholar 
    6.Musselman, R. C. & Fox, D. G. A review of the role of temperate forests in the global CO2 balance. J. Air Waste Manag. Assoc. 41, 798–807 (1991).CAS 
    Article 

    Google Scholar 
    7.Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 363, 815–830 (2008).CAS 
    Article 

    Google Scholar 
    8.Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 220, 242–258 (2005).Article 

    Google Scholar 
    9.Kaiser, K., Guggenberger, G. & Zech, W. Sorption of DOM and DOM fractions to forest soils. Geoderma 74, 281–303 (1996).ADS 
    Article 

    Google Scholar 
    10.Hassink, J. A model of the physical protection of organic matter in soils the capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191, 77–87 (1997).CAS 
    Article 

    Google Scholar 
    11.Saidy, A. R. et al. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173–174, 104–110 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Mueller, K. E. et al. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111, 601–614 (2012).CAS 
    Article 

    Google Scholar 
    13.Mulder, J., De Wit, H. A., Boonen, H. W. J. & Bakken, L. R. Increased levels of aluminium in forest soils: Effects on the stores of soil organic carbon. Water Air. Soil Pollut. 130, 989–994 (2001).ADS 
    Article 

    Google Scholar 
    14.Gruba, P. & Socha, J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. For. Ecol. Manag. 447, 105–114 (2019).Article 

    Google Scholar 
    15.Chrzan, A. Zawartość wybranych metali ciężkich w glebie i faunie glebowej. Proc. ECOpole. 7, 23–26 (2013).
    Google Scholar 
    16.Ampoorter, E., Van Nevel, L., De Vos, B., Hermy, M. & Verheyen, K. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For. Ecol. Manag. 260, 1664–1676 (2010).Article 

    Google Scholar 
    17.Meriano, M., Eyles, N. & Howard, K. W. F. Hydrogeological impacts of road salt from Canada’s busiest highway on a Lake Ontario watershed (Frenchman’s Bay) and lagoon, City of Pickering. J. Contam. Hydrol. 107, 66–81 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Barbier, L., Suaire, R., Durickovic, I., Laurent, J. & Simonnot, M. O. Is a road stormwater retention pond able to intercept deicing salt?. Water Air. Soil Pollut. 229, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    19.Willmert, H. M., Osso, J. D., Twiss, M. R. & Langen, T. A. Winter road management effects on roadside soil and vegetation along a mountain pass in the Adirondack Park, New York, USA. J. Environ. Manag. 225, 215–223 (2018).CAS 
    Article 

    Google Scholar 
    20.General Directorate for National Roads and Motorways. Detailed technical specifications. Winter maintenance of the road network administered by the General Directorate for National Roads and Motorways, Lublin Branch in the years: 2012÷2016 (in Polish). (2012).21.Durickovic, I. NaCl material for winter maintenance and its environmental effect. Salt Earth https://doi.org/10.5772/intechopen.86907 (2020).Article 

    Google Scholar 
    22.General Directorate for National Roads and Motorways. We’ll recap the winter of 2019/2020 and explain what road maintenance is all about (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/37500/Podsumujemy-zime-20192020-i-wyjasnimy-o-co-chodzi-w-utrzymaniu-drog. Accessed on October 20, 2021.23.General Directorate for National Roads and Motorways. Ready for all weather. The 2020/2021 winter season has begun (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/40259/Gotowi-na-kazda-pogode-Zaczal-sie-sezon-zimowy-20202021. Accessed on October 20, 2021.24.General Directorate for National Roads and Motorways. Average annual daily traffic (AADT) at measuring points in 2015 on state roads (in Polish). (2015). https://www.archiwum.gddkia.gov.pl/pl/2551/GPR-2015. Accessed on October 20, 2021.25.QGIS Association. QGIS Geographic Information System. (2021). http://www.qgis.org Accessed on October 20, 2021.26.Woś, A. The Climate of Poland (in Polish) (Polish Scientific Publishers PWN, 1999).
    Google Scholar 
    27.Polish State Forests. Nature and forest conditions of Suchedniów Forest Inspectorate (in Polish). A report. (2011). https://suchedniow.radom.lasy.gov.pl/documents/11058/18775352/warunki+przyrodniczo-lesne.pdf Accessed on October 20, 2021.28.Hopkins, D. W. Carbon mineralization. In Soil Sampling and Methods of Analysis (eds. Carter, M. R. & Gregorich, E. G.) (CRC Press, 2008).29.Buurman, P., van Lagen, B. & Velthorst, E. J. Manual for Soil and Water Analysis (Backhuys Publishers, 1996).
    Google Scholar 
    30.R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Accessed on October 20, 2021..31.Navrátil, T. et al. Soil mercury distribution in adjacent coniferous and deciduous stands highly impacted by acid rain in the Ore Mountains, Czech Republic. Appl. Geochem. 75, 63–75 (2016).Article 
    CAS 

    Google Scholar 
    32.Gruba, P., Pietrzykowski, M. & Pasichnyk, D. Tree species affects the concentration of total mercury (Hg) in forest soils: Evidence from a forest soil inventory in Poland. Sci. Total Environ. 647, 141–148 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Obrist, D. et al. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45, 3974–3981 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Kupka, D., Kania, M., Pietrzykowski, M., Łukasik, A. & Gruba, P. Multiple factors influence the accumulation of heavy metals (Cu, Pb, Ni, Zn) in forest soils in the vicinity of roadways. Water Air Soil Pollut. 232, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    35.Borchers, J. G. & Perry, A. D. The influence of soil texture and aggregation on carbon and nitrogen dynamics in southwest Oregon forests and clearcuts. Can. J. For. Res. 22, 298–305 (1992).CAS 
    Article 

    Google Scholar 
    36.Chantigny, M. H., Angers, D. A., Kaiser, K. & Kalbitz, K. Extraction and characterization of dissolved organic matter. In Soil Sampling and Methods of Analysis (eds. Carter, M. & Gregorich, E. G.) (CRC Press, 2008).37.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Grigalaviciene, I., Rutkoviene, V. & Marozas, V. The accumulation of heavy metals Pb, Cu and Cd at roadside forest soil. Polish J. Environ. Stud. 14, 109–115 (2005).CAS 

    Google Scholar 
    39.Bäckström, M., Bäckman, L., Folkeson, L., Karlsson, S. & Lind, B. Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res. 38, 720–732 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A. & Ganei, S. A. Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environ. Monit. Assess. 190, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    41.Doelman, P. & Haanstra, L. Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 79, 317–327 (1984).CAS 
    Article 

    Google Scholar 
    42.Hattori, H. Influence of heavy metals on soil mcrobial activities. Soil Sci. Plant Nutr. 38, 93–100 (1992).CAS 
    Article 

    Google Scholar 
    43.Gülser, F. & Erdoǧan, E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess. 145, 127–133 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Lofgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).ADS 
    Article 

    Google Scholar 
    45.Mason, C. F., Norton, S. A., Fernandez, I. J. & Katz, L. E. Deconstruction of the chemical effects of road salt on stream water chemistry. J. Environ. Qual. 28, 82–91 (1999).CAS 
    Article 

    Google Scholar 
    46.Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).CAS 
    Article 

    Google Scholar 
    47.Rhodes, A. L. & Guswa, A. J. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA. Sci. Total Environ. 545–546, 525–545 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Cunningham, M. A., Snyder, E., Yonkin, D., Ross, M. & Elsen, T. Accumulation of deicing salts in soils in an urban environment. Urban Ecosyst. 11, 17–31 (2008).Article 

    Google Scholar 
    49.Berggren, D., Mulder, J. & Westerhof, R. Prolonged leaching of mineral forest soils with dilute HCl solutions: The solubility of Al and soil organic matter. Eur. J. Soil Sci. 49, 305–316 (1998).CAS 
    Article 

    Google Scholar 
    50.Prenzel, J. & Schulte-Bisping, H. Some chemical parameter relations in a population of German forest soils. Geoderma 64, 309–326 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Reuss, J. O., Walthall, P. M., Roswall, E. C. & Hopper, R. W. E. Aluminum solubility, calcium-aluminum exchange, and pH in acid forest soils. Soil Sci. Soc. Am. J. 54, 374–380 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Hobbie, S. E. et al. Tree species effects on soil organic matter dynamics: The role of soil cation composition. Ecosystems 10, 999–1018 (2007).CAS 
    Article 

    Google Scholar 
    53.Scheel, T., Jansen, B., Van Wijk, A. J., Verstraten, J. M. & Kalbitz, K. Stabilization of dissolved organic matter by aluminium: A toxic effect or stabilization through precipitation?. Eur. J. Soil Sci. 59, 1122–1132 (2008).CAS 
    Article 

    Google Scholar 
    54.Lützow, M. V. et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 57, 426–445 (2006).Article 
    CAS 

    Google Scholar 
    55.Gruba, P. & Socha, J. Effect of parent material on soil acidity and carbon content in soils under silver fir (Abies alba Mill.) stands in Poland. CATENA 140, 90–95 (2016).CAS 
    Article 

    Google Scholar 
    56.Gruba, P. & Mulder, J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ. 511, 655–662 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).Article 

    Google Scholar  More

  • in

    Body mass and geographic distribution determined the evolution of the wing flight-feather molt strategy in the Neornithes lineage

    1.Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Claramunt, S. & Cracraft, J. A new time tree reveals Earth history’s imprint on the evolution of modern birds. Sci. Adv. 1, e1501005 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines. (Bloomsbury Publishing, 2020).5.Ginn, H. B. & Melville, D. S. Moult in Birds (BTO guide). (British Trust for Ornithology, 1983).6.Stresemann, E. & Stresemann, V. Die Mauser der Vögel. (Friedländer, 1966).7.Jenni, L. & Winkler, R. The Biology of Moult in Birds. (Bloomsbury Publishing, 2020).8.Kiat, Y., Izhaki, I. & Sapir, N. The effects of long-distance migration on the evolution of moult strategies in Western-Palearctic passerines. Biol. Rev. 94, 700–720 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Kiat, Y. et al. Sequential molt in a feathered dinosaur and implications for early paravian ecology and locomotion. Curr. Biol. 30, 3633–3638 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Pyle, P. Identification guide to North American birds: A Compendium of Information on Identifying, Ageing, and Sexing ‘Near-Passerines’ and Passerines in the Hand. (Slate Creek Press, 1997).11.Berlow, E. L., Brose, U. & Martinez, N. D. The, “Goldilocks factor” in food webs. Proc. Natl. Acad. Sci. 105, 4079–4080 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 529, 367–370 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    13.Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).CAS 
    Article 

    Google Scholar 
    14.McKinnon, L. et al. Lower predation risk for migratory birds at high latitudes. Science 327, 326–327 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Meiri, S., Dayan, T. & Simberloff, D. Biogeographical patterns in the Western Palearctic: the fasting-endurance hypothesis and the status of Murphy’s rule. J. Biogeogr. 32, 369–375 (2005).Article 

    Google Scholar 
    16.Millar, J. S. & Hickling, G. J. Fasting endurance and the evolution of mammalian body size. Funct. Ecol. 4, 5–12 (1990).Article 

    Google Scholar 
    17.Peters, R. H. & Peters, R. H. The Ecological Implications of Body Size. vol. 2 (Cambridge University Press, 1986).18.Pérez-Granados, C. et al. Time available for moulting shapes inter- and intra-specific variability in post-juvenile moult extent in wheatears (genus Oenanthe). J. Ornithol. 162, 255–264 (2020).Article 

    Google Scholar 
    19.Hemborg, C., Sanz, J. & Lundberg, A. Effects of latitude on the trade-off between reproduction and moult: a long-term study with Pied Flycatcher. Oecologia 129, 206–212 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.de la Hera, I., Díaz, J. a., Pérez-Tris, J. & Tellería, J. L. A comparative study of migratory behaviour and body mass as determinants of moult duration in passerines. J. Avian Biol. 40, 461–465 (2009).21.Kiat, Y. & Sapir, N. Age-dependent modulation of songbird summer feather moult by temporal and functional constraints. Am. Nat. 189, 184–195 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Møller, A. P. The allometry of number of feathers in birds changes seasonally. Avian Res. 6, 1–5 (2015).Article 

    Google Scholar 
    23.Rohwer, S., Ricklefs, R. E., Rohwer, V. G. & Copple, M. M. Allometry of the duration of flight feather molt in birds. PLoS Biol. 7, 1246 (2009).Article 
    CAS 

    Google Scholar 
    24.Rohwer, V. G. & Rohwer, S. How do birds adjust the time required to replace their flight feathers?. Auk 130, 699–707 (2013).Article 

    Google Scholar 
    25.Barta, Z. et al. Annual routines of non-migratory birds: optimal moult strategies. Oikos 112, 580–593 (2006).Article 

    Google Scholar 
    26.Barta, Z. et al. Optimal moult strategies in migratory birds. Philos. Trans. R. Soc. London B Biol. Sci. 363, 211–229 (2008).27.Wunderle, J. M. Age-specific foraging proficiency in birds. Curr. Ornithol. 8, 273–324 (1991).
    Google Scholar 
    28.Marchetti, K. & Price, T. Differences in the foraging of juvenile and adult birds: the importance of developmental constraints. Biol. Rev. 64, 51–70 (1989).Article 

    Google Scholar 
    29.Delhey, K. et al. Partial or complete? The evolution of post-juvenile moult strategies in passerine birds. J. Anim. Ecol. 89, 2896–2908 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kiat, Y. & Izhaki, I. Why renew fresh feathers? Advantages and conditions for the evolution of complete post-juvenile moult. J. Avian Biol. 47, 47–56 (2016).Article 

    Google Scholar 
    31.Kiat, Y. & Sapir, N. Life-history trade-offs result in evolutionary optimization of feather quality. Biol. J. Linn. Soc. 125, 613–624 (2018).
    Google Scholar 
    32.Callan, L. M., La Sorte, F. A., Martin, T. E. & Rohwer, V. G. Higher nest predation favors rapid fledging at the cost of plumage quality in nestling birds. Am. Nat. 193, 717–724 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2019).
    Google Scholar 
    34.Dunning Jr, J. B. CRC Handbook of Avian Body Masses. (CRC Press, 2007).35.Billerman, S. M., Keeney, B. K., Rodewald, P. G. & Schulenberg, T. S. Birds of the World. (Cornell Laboratory of Ornithology, 2020).36.Bird species distribution maps of the world. BirdLife International (2019).37.Jetz, W. et al. Global distribution and conservation of evolutionary distinctness in birds. Curr. Biol. 24, 919–930 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Rubolini, D., Liker, A., Garamszegi, L. Z., Møller, A. P. & Saino, N. Using the BirdTree.org website to obtain robust phylogenies for avian comparative studies: a primer. Curr. Zool. 61, 959–965 (2015).39.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    40.Akaike, H. Factor analysis and AIC. Psychometrika 52, 317–332 (1987).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    41.Rabosky, D. L. No substitute for real data: a cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses. Evolution 69, 3207–3216 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Thomas, G. H. An avian explosion. Nature 526, 516–517 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Tung Ho, L. si & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).46.Felsenstein, J. A comparative method for both discrete and continuous characters using the threshold model. Am. Nat. 179, 145–156 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Cody, M. L. A general theory of clutch size. Evolution 174–184 (1966).48.Newton, I. The Migration Ecology of Birds. (Academic Press, 2010).49.Newton, I. Speciation and Biogeography of Birds. (Academic Press, 2003).50.Terrill, R. S., Seeholzer, G. F. & Wolfe, J. D. Evolution of breeding plumages in birds: a multiple-step pathway to seasonal dichromatism in New World warblers (Aves: Parulidae). Ecol. Evol. 10, 9223–9239 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fogden, M. P. L. The seasonality and population dynamics of equatorial forest birds in Sarawak. Ibis 114, 307–343 (1972).Article 

    Google Scholar 
    52.Kiat, Y., Davaasuren, B., Erdenechimeg, T., Troupin, D. & Sapir, N. Large-scale longitudinal climate gradient across the Palearctic region affects passerine feather moult extent. Ecography 44, 124–133 (2020).Article 

    Google Scholar 
    53.Kiat, Y., Vortman, Y. & Sapir, N. Feather moult and bird appearance are correlated with global warming over the last 200 years. Nat. Commun. 10, 1–7 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Bojarinova, J. G., Lehikoinen, E. & Eeva, T. Dependence of postjuvenile moult on hatching date, condition and sex in the Great Tit. J. Avian Biol. 30, 437–446 (1999).Article 

    Google Scholar 
    55.Ryzhanovsky, V. N. Subspecies-specific features of molt in the Common Chiffchaff (Phylloscopus collybita) from Europe and Western Siberia. Russ. J. Ecol. 48, 268–274 (2017).Article 

    Google Scholar 
    56.Slavenko, A. et al. Global patterns of body size evolution in squamate reptiles are not driven by climate. Glob. Ecol. Biogeogr. 28, 471–483 (2019).Article 

    Google Scholar 
    57.Graham, C. H., Storch, D. & Machac, A. Phylogenetic scale in ecology and evolution. Glob. Ecol. Biogeogr. 27, 175–187 (2018).Article 

    Google Scholar 
    58.Hone, D. W. E., Dyke, G. J., Haden, M. & Benton, M. J. Body size evolution in Mesozoic birds. J. Evol. Biol. 21, 618–624 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Berv, J. S. & Field, D. J. Genomic signature of an avian Lilliput effect across the K-Pg extinction. Syst. Biol. 67, 1–13 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Dececchi, T. A. & Larsson, H. C. E. Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Puttick, M. N., Thomas, G. H. & Benton, M. J. High rates of evolution preceded the origin of birds. Evolution 68, 1497–1510 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Vizcaíno, S. F. & Fariña, R. A. On the flight capabilities and distribution of the giant Miocene bird Argentavis magnificens (Teratornithidae). Lethaia 32, 271–278 (1999).Article 

    Google Scholar 
    64.McNeill Alexander, R. All-time giants: the largest animals and their problems. Palaeontology 41, 1231–1246 (1998).
    Google Scholar  More

  • in

    Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats

    1.Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38, 5–11 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cortés, A., Peachey, L. E., Jenkins, T. P., Scotti, R. & Cantacessi, C. Helminths and microbes within the vertebrate gut—not all studies are created equal. Parasitology 146, 1371–1378 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Nat. Acad. Sci. 110, 3229–3236 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Brown, E. M., Sadarangani, M. & Finlay, B. B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–667 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279, 90–105 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Ducarmon, Q. R. et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 83, e00007-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Jourdan, P. M., Lamberton, P. H. L., Fenwick, A. & Addiss, D. G. Soil-transmitted helminth infections. Lancet 391, 252–265 (2018).PubMed 
    Article 

    Google Scholar 
    14.Wammes, L. J., Mpairwe, H., Elliott, A. M. & Yazdanbakhsh, M. Helminth therapy or elimination: Epidemiological, immunological, and clinical considerations. Lancet Infect. Dis. 14, 1150–1162 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Jenkins, T. P. et al. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol. 19, 1–17 (2021).Article 
    CAS 

    Google Scholar 
    16.Holm, J. B. et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE 10, e0125495 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Ducarmon, Q. R. et al. Dynamics of the bacterial gut microbiota during controlled human infection with Necator americanus larvae. Gut Microbes 12, 1840764 (2020).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    18.Broadhurst, M. J. et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog. 8, e1003000 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140295 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Filyk, H. A. & Osborne, L. C. The multibiome: The intestinal ecosystem’s influence on immune homeostasis, health, and disease. EBioMedicine 13, 46–54 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cantacessi, C. et al. Impact of experimental hookworm infection on the human gut microbiota. J. Infect. Dis. 210, 1431–1434 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Li, R. W. et al. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect. Immun. 80, 2150–2157 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Reynolds, L. A., Brett Finlay, B. & Maizels, R. M. Cohabitation in the intestine: Interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 195, 4059–4066 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8, e2880 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Rosa, B. A. et al. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia. Microbiome 6, 33 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Newbold, L. K. et al. Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota. ISME J. 11, 663–675 (2017).PubMed 
    Article 

    Google Scholar 
    27.Baxter, N. T. et al. Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl. Environ. Microbiol. 81, 396–404 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Cooper, P. et al. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS ONE 8, e76573 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Rapin, A. & Harris, N. L. Helminth-bacterial interactions: Cause and consequence. Trends Immunol. 39, 724–733 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Cowlishaw, G. & Dunbar, R. I. Primate Conservation Biology (University of Chicago Press, 2000).Book 

    Google Scholar 
    31.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Barelli, C. et al. The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems 5, 3 (2020).Article 

    Google Scholar 
    33.Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: Implications for conservation. Sci. Rep. 5, 14862 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Barelli, C. et al. Altitude and human disturbance are associated with helminth diversity in an endangered primate, Procolobus gordonorum. PLoS ONE 14, e0225142 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Barelli, C. et al. Loss of protozoan and metazoan intestinal symbiont biodiversity in wild primates living in unprotected forests. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    36.Aivelo, T. & Norberg, A. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 87, 438–447 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Vlčková, K. et al. Relationships between gastrointestinal parasite infections and the fecal microbiome in free-ranging western lowland gorillas. Front. Microbiol. 9, 1202 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Mann, A. E. et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 14, 609–622 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.de Winter, I. I. et al. Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs. Sci. Rep. 10, 16818 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Ghai, R. R. et al. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Negl. Trop. Dis. 8, e3256 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Nutman, T. B. Human infection with Strongyloides stercoralis and other related Strongyloides species. Parasitology 144, 263–273 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Stephenson, L. S., Holland, C. V. & Cooper, E. S. The public health significance of Trichuris trichiura. Parasitology 121, S73–S95 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Viney, M. E. The biology of Strongyloides spp. WormBook https://doi.org/10.1895/wormbook.1.141.2 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Renelies-Hamilton, J. et al. Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal. Infect. Genet. Evol. 74, 104010 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Afrin, T. et al. Sequential changes in the host gut microbiota during infection with the intestinal parasitic nematode. Front. Cell Infect. Microbiol. 9, 217 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Rubel, M. A. et al. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biol. 21, 122 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Jenkins, T. P. et al. Author Correction: A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Sci. Rep. 9, 8571 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.van der Zande, H. J. P., Zawistowska-Deniziak, A. & Guigas, B. Immune regulation of metabolic homeostasis by helminths and their molecules. Trends Parasitol. 35, 795–808 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Maeda, Y. & Takeda, K. Host–microbiota interactions in rheumatoid arthritis. Exp. Mol. Med. 51, 1–6 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Biddle, A., Stewart, L., Blanchard, J. & Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, 627–640 (2013).Article 

    Google Scholar 
    52.Brulc, J. M. et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. USA 106, 1948–1953 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Hale, V. L. et al. Diet versus phylogeny: A comparison of gut microbiota in captive Colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    54.Trosvik, P. et al. Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate. Microbiome 6, 84 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Liu, B. et al. Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids Health Dis. 17, 159 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Bhute, S. S. et al. Gut microbial diversity assessment of Indian Type-2-diabetics reveals alterations in Eubacteria, Archaea, and Eukaryotes. Front. Microbiol. 8, 214 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Wang, Y. et al. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three potential biomarkers of gut microbiota that affect progression and complications of obesity-induced Type 2 diabetes Mellitus. Diabetes Metab. Syndr. Obes. 13, 835–850 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Yarahmadi, M. et al. The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro. J. Parasit. Dis. 40, 75–80 (2016).PubMed 
    Article 

    Google Scholar 
    59.Dinleyici, E. C. et al. Clinical efficacy of Saccharomyces boulardii or metronidazole in symptomatic children with Blastocystis hominis infection. Parasitol. Res. 108, 541–545 (2011).PubMed 
    Article 

    Google Scholar 
    60.Lepczyńska, M. & Dzika, E. The influence of probiotic bacteria and human gut microorganisms causing opportunistic infections on ST3. Gut Pathog. 11, 6 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Huseyin, C. E., O’Toole, P. W., Cotter, P. D. & Scanlan, P. D. Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 41, 479–511 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Mittermeier, R. A., Myers, N., Gill, P. C. & Mittermeier, C. G. Hotspots: Earth’s Richest and Most Endangered Terrestrial Ecoregions (CEMEX, 2000).
    Google Scholar 
    63.Platts, P. J. et al. Delimiting tropical mountain ecoregions for conservation. Environ. Conserv. 38, 312–324 (2011).Article 

    Google Scholar 
    64.Ruiz-Lopez, M. J. et al. A novel landscape genetic approach demonstrates the effects of human disturbance on the Udzungwa red colobus monkey (Procolobus gordonorum). Heredity 116, 167–176 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Cavada, N., Tenan, S., Barelli, C. & Rovero, F. Effects of anthropogenic disturbance on primate density at the landscape scale. Conserv. Biol. 33, 873–882 (2019).PubMed 
    Article 

    Google Scholar 
    66.Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Rovero, F. et al. Primates decline rapidly in unprotected forests: Evidence from a monitoring program with data constraints. PLoS ONE 10, e0118330 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.International Union for the Conservation of Nature and Natural Resources (IUCN). 2021. IUCN red list of threatened species version 2020-2. International Union for the Conservation of Nature and Natural Resources http://www.iucnredlist.org. (Accessed 21 Apr 2021).69.Modrý, D., Pafčo, B., Petrželková, K. J. & Hasegawa, H. Parasites of Apes: An Atlas of Coproscopic Diagnostics (2018).70.Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129–1143 (2006).Article 

    Google Scholar 
    71.Hasegawa, H. Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary study of pinworms. In Primate Parasite Ecology: The Dynamics of Host-parasite Relationships (eds Huffman, M. A. & Chapman, C. A.) 29–46 (Cambridge University Press, 2009).
    Google Scholar 
    72.Mallott, E. K., Malhi, R. S. & Garber, P. A. High-throughput sequencing of fecal DNA to identify insects consumed by wild Weddell’s saddleback tamarins (Saguinus weddelli, Cebidae, Primates) in Bolivia. Am. J. Phys. Anthropol. 156, 474–481 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Mallott, E. K., Garber, P. A. & Malhi, R. S. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus). Am. J. Phys. Anthropol. 162, 241–254 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021) https://www.R-project.org.76.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R package version, Vol. 1, 3 (2018) https://CRAN.R-project.org/package=emmeans. More