More stories

  • in

    Microplastics increase susceptibility of amphibian larvae to the chytrid fungus Batrachochytrium dendrobatidis

    1.Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).CAS 
    PubMed 

    Google Scholar 
    2.Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).CAS 
    PubMed 

    Google Scholar 
    3.Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. Microplastics in freshwater systems: A review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 75, 63–82 (2015).CAS 
    PubMed 

    Google Scholar 
    4.Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    PubMed 

    Google Scholar 
    5.Lambert, S. & Wagner, M. Microplastics are contaminants of emerging concern in freshwater environments: an overview. Freshwater Microplastics, 1–23 (2018).6.de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).ADS 

    Google Scholar 
    7.Rist, S., Almroth, B. C., Hartmann, N. B. & Karlsson, T. M. A critical perspective on early communications concerning human health aspects of microplastics. Sci. Total Environ. 626, 720–726 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    8.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    9.Anbumani, S. & Kakkar, P. Ecotoxicological effects of microplastics on biota: A review. Environ. Sci. Pollut. Res. 25, 14373–14396 (2018).CAS 

    Google Scholar 
    10.Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).CAS 
    PubMed 
    ADS 

    Google Scholar 
    11.Foley, C. J., Feiner, Z. S., Malinich, T. D. & Höök, T. O. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates. Sci. Total Environ. 631, 550–559 (2018).PubMed 
    ADS 

    Google Scholar 
    12.Wong, J. K. H., Lee, K. K., Tang, K. H. D. & Yap, P.-S. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions. Sci. Total Environ. 719, 137512 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    13.Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    14.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608. https://doi.org/10.1093/icb/ict028 (2013).Article 
    PubMed 

    Google Scholar 
    15.Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    PubMed 

    Google Scholar 
    16.Viršek, M. K., Lovšin, M. N., Koren, Š, Kržan, A. & Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull. 125, 301–309 (2017).PubMed 

    Google Scholar 
    17.Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12480 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc. Natl. Acad. Sci. 95, 9031–9036 (1998).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    19.Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B 371, 20150465 (2016).
    Google Scholar 
    20.O’Hanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    21.Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS One 11, e0160746 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    22.Walker, S. et al. Factors driving pathogenicity versus prevalence of the amphibian pathogen Batrachochytrium dendrobatidis and chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).PubMed 

    Google Scholar 
    23.Hite, J. L., Bosch, J., Fernández-Beaskoetxea, S., Medina, D. & Hall, S. R. Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proc. R. Soc. B 283, 20160832 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    24.Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; Is there a link?. Proc. R. Soc. B 274, 253–260 (2007).PubMed 

    Google Scholar 
    25.Parris, M. J. & Baud, D. R. Interactive effects of a heavy metal and chytridiomycosis on gray treefrog larvae (Hyla chrysoscelis). Copeia 2004, 344–350 (2004).
    Google Scholar 
    26.Bosch, J. et al. Increased tropospheric ozone levels enhance pathogen infection levels of amphibians. Sci. Total Environ. 759, 143461 (2021).CAS 
    PubMed 
    ADS 

    Google Scholar 
    27.Brown, J. R., Miiller, T. & Kerby, J. L. The interactive effect of an emerging infectious disease and an emerging contaminant on Woodhouse’s toad (Anaxyrus woodhousii) tadpoles. Environ. Toxicol. Chem. 32, 2003–2008 (2013).CAS 
    PubMed 

    Google Scholar 
    28.Hanlon, S. M. & Parris, M. J. The interactive effects of chytrid fungus, pesticides, and exposure timing on gray treefrog (Hyla versicolor) larvae. Environ. Toxicol. Chem. 33, 216–222 (2014).CAS 
    PubMed 

    Google Scholar 
    29.McMahon, T. A., Romansic, J. M. & Rohr, J. R. Nonmonotonic and monotonic effects of pesticides on the pathogenic fungus Batrachochytrium dendrobatidis in culture and on tadpoles. Environ. Sci. Technol. 47, 7958–7964 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    30.Bosch, J., Martinez-Solano, I. & Garcia-Paris, M. Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol. Conserv. 97, 331–337 (2001).
    Google Scholar 
    31.Tobler, U. & Schmidt, B. R. Within-and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5, e10927 (2010).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    32.Boyero, L. et al. Microplastics impair amphibian survival, body condition and function. Chemosphere 244, 125500 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    33.Fisher, M. C. & Garner, T. W. Chytrid fungi and global amphibian declines. Nat. Rev. Microbiol. 18, 332–343 (2020).CAS 
    PubMed 

    Google Scholar 
    34.Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral Ecol. 33, 1022–1032 (2008).
    Google Scholar 
    35.Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).PubMed 

    Google Scholar 
    36.Garner, T. W., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: An experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011).ADS 

    Google Scholar 
    37.Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. R. Soc. B 282, 20142039 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B 371, 20150454 (2016).
    Google Scholar 
    39.Ortiz-Santaliestra, M. E., Fisher, M. C., Fernández-Beaskoetxea, S., Fernández-Benéitez, M. J. & Bosch, J. Ambient ultraviolet B radiation and prevalence of infection by Batrachochytrium dendrobatidis in two amphibian species. Conserv. Biol. 25, 975–982 (2011).PubMed 

    Google Scholar 
    40.Rohr, J. R. et al. Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proc. R. Soc. B 281, 20140629 (2014).PubMed Central 

    Google Scholar 
    41.Hanlon, S. M., Lynch, K. J., Kerby, J. & Parris, M. J. Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Dis. Aquat. Org. 112, 237–242 (2015).
    Google Scholar 
    42.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Gabor, C. R., Bosch, J., Fries, J. N. & Davis, D. R. A non-invasive water-borne hormone assay for amphibians. Amphibia-Reptilia 34, 151–162 (2013).
    Google Scholar 
    44.Ortiz-Santaliestra, M. E., Marco, A., Fernández, M. J. & Lizana, M. Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Environ. Toxicol. Chem. 25, 105–111 (2006).CAS 
    PubMed 

    Google Scholar 
    45.Jackson, M. C., Loewen, C. J., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: A meta-analysis. Glob. Change Biol. 22, 180–189 (2016).ADS 

    Google Scholar 
    46.Buck, J. C., Truong, L. & Blaustein, A. R. Predation by zooplankton on Batrachochytrium dendrobatidis: Biological control of the deadly amphibian chytrid fungus?. Biodivers. Conserv. 20, 3549–3553 (2011).
    Google Scholar 
    47.Medina, D., Garner, T. W., Carrascal, L. M. & Bosch, J. Delayed metamorphosis of amphibian larvae facilitates Batrachochytrium dendrobatidis transmission and persistence. Dis. Aquat. Org. 117, 85–92 (2015).
    Google Scholar 
    48.Boyle, A. H. D. et al. Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis. Aquat. Org. 73, 175–192 (2007).
    Google Scholar 
    49.Hu, L. et al. Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis. Chemosphere 164, 611–617 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    50.Boyle, D. G., Boyle, D., Olsen, V., Morgan, J. & Hyatt, A. Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis. Aquat. Org. 60, 141–148 (2004).CAS 

    Google Scholar 
    51.Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).
    Google Scholar  More

  • in

    Shallow-emerged coral may warn of deep-sea coral response to thermal stress

    1.Stone, R. P., Masuda, M. M. & Karinen, J. F. Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska. ICES J. Mar. Sci. 72, 900–915 (2014).Article 

    Google Scholar 
    2.Matsumoto, A. K. Recent observations on the distribution of deep-sea coral communities on the Shiribeshi Seamount, Sea of Japan’. In Freiwald, A., & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems. 345–356. Springer, Berlin, Heidelberg (2005).3.Power, M. E. et al. Challenges in the quest for keystones: Identifying keystone species is difficult—But essential to understanding how loss of species will affect ecosystems. BioSci. 46, 609–620 (1996).Article 

    Google Scholar 
    4.Waller, R. G. et al. Phenotypic plasticity or a reproductive dead end? Primnoa pacifica (Cnidaria: Alcyonacea) in the Southeastern Alaska Region. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00709 (2019).Article 

    Google Scholar 
    5.Witherell, D. & Coon, C. ‘Protecting gorgonian corals off Alaska from fishing impacts.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 117–115 (2000).6.Krieger, K. J. ‘Coral (Primnoa) impacted by fishing gear in the Gulf of Alaska.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 106–116 (2000).7.Stone, R. P. & Shotwell, S. K. State of deep coral ecosystems in the Alaska Region: Gulf of Alaska, Bering Sea and the Aleutian Islands. The State of Deep Coral Ecosystems of the United States. NOAA Technical Memorandum CRCP-3, NOAA, Silver Spring, 65–108 (2007).8.Andrews, A. H. et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101–110 (2002).MathSciNet 
    Article 

    Google Scholar 
    9.Federal Register Fisheries of the exclusive economic zone of Alaska, 50 CFD, Ch. VI, Part 679 (10-1-17 edition): 490–964 (2017).10.Stone, R. P. & Mondragon, J. Deep-sea emergence of red tree corals (Primnoa pacifica) in Southeast Alaska glacial fjords. NOAA professional Papers NMFS 20, 33 p. https://doi.org/10.7755/PP.20 (2018).11.Waller, R. G., Stone, R. P., Johnstone, J. & Mondragon, J. Sexual reproduction and seasonality of the Alaskan red tree coral, Primnoa pacifia. PLoS ONE https://doi.org/10.1371/journal.pone.0090893 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Franzén, Å. ‘Spermatogenesis.’ In Giese, A., Pearse, J.S., & Pearse, V.B. (eds.) Reproduction of marine invertebrates, Vol. IX, 1–47. Blackwell Scientific Publications, Palo Alto, CA, & The Boxwood Press, Pacific Grove, CA (1987).13.Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269 (1980).Article 

    Google Scholar 
    14.Schmidt, H. & Zissler, D. The sperm of the Anthozoa and their phylogenetic significance. Zoologica (Stuttg.) 44, 1–98 (1979).
    Google Scholar 
    15.Harrison, P.L. & Jamieson, B.G.M. ‘Cnidaria and Ctenophora.’ In Jamieson, B. G. M (ed), Progress in male gamete ultrastructure and phylogeny, Reproductive biology of invertebrates; vol. 9, pt. A, John Wiley and Sons Ltd, UK (1999).16.National Park Service Southeast Alaska Inventory and Monitoring Network. https://irma.nps.gov/DataStore/Reference/Profile/2258347 (accessed 11 February 2020).17.Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).Article 

    Google Scholar 
    18.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    19.Cairns, S. D. & Bayer, F. M. A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bull. Mar. Sci. 77, 225–256 (2005).
    Google Scholar 
    20.Taylor, M. I., Cairns, S. D., Agnew, J. A. & Rogers, A. D. A revision of the genus Thouarella Gray, 1870 (Octocorallia, Primnoidae) including an illustrated dichotomous key, a new species description, and comments on Plumarella Gray, 1870 and Dasystenella, Versluys, 1906. Zootaxa 3602, 1–105 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. 99, S39–S43 (2018).Article 

    Google Scholar 
    22.Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).ADS 
    Article 

    Google Scholar 
    23.Leuzinger, S., Willis, B. L. & Anthony, K. R. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).Article 

    Google Scholar 
    24.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    25.Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res. (2 Top. Stud. Oceanogr.) 99, 36–41 (2014).26.Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ https://doi.org/10.7717/peerj.1606 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Weinnig, A. M., Gómez, C. E., Hallaj, A. & Cordes, E. E. Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    28.Thompson, D. M. & Van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. B 276, 2893–2901 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).CAS 
    Article 

    Google Scholar 
    31.Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Gori, A. et al. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31, 823–837 (2012).ADS 
    Article 

    Google Scholar 
    33.Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 1–12 (2015).Article 

    Google Scholar 
    34.Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).ADS 
    Article 

    Google Scholar 
    35.Grinyó, J. et al. Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina. PLoS ONE 13, e0203308 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecol. 99, 421–437 (2018).Article 

    Google Scholar 
    37.Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).ADS 
    Article 

    Google Scholar 
    38.Hartmann, A. C., Marhaver, K. L. & Vermeij, M. J. Corals in healthy populations produce more larvae per unit cover. Conserv. Lett. 11, e12410 (2018).Article 

    Google Scholar 
    39.Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar. Biol. 151, 1571–1584 (2007).Article 

    Google Scholar 
    40.Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).Article 

    Google Scholar 
    41.Tsounis, G., Rossi, S., Aranguren, M., Gili, J. M. & Arntz, W. Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 148, 513–527 (2006).Article 

    Google Scholar 
    42.Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Johnstone, J., Nash, S., Hernandez, E. & Rahman, M. S. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. Mar. Environ. Res. 149, 40–49 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Bögner, D. Life under climate change scenarios: Sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).Article 

    Google Scholar 
    45.Nash, S. & Rahman, M. S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 86, 1444–1458 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.López-Galindo, L. et al. Reproductive performance of Octopus maya males conditioned by thermal stress. Ecol. Indic. 96, 437–447 (2019).Article 

    Google Scholar 
    47.IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.48.Barrie, J. V. & Conway, K. W. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quat. Res. 51, 113–123 (1999).Article 

    Google Scholar 
    49.Hartill, É. C., Waller, R. G. & Auster, P. J. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PLoS ONE https://doi.org/10.1371/journal.pone.0236945 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rossin, A. M., Waller, R. G. & Stone, R. P. The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE https://doi.org/10.1371/journal.pone.0203976 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Microbes in a sea of sinking particles

    1.Alcolombri, U. et al. Nat. Geosci. 14, 775–780 (2021).CAS 
    Article 

    Google Scholar 
    2.Briggs, N., Dall’Olmo, G. & Claustre, H. Science 367, 791–793 (2020).CAS 
    Article 

    Google Scholar 
    3.Azam, F. Science 280, 694–696 (1998).CAS 
    Article 

    Google Scholar 
    4.Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Nature 568, 327–335 (2019).CAS 
    Article 

    Google Scholar 
    5.Steinberg, D. K. et al. Limnol. Oceanogr. 53, 1327–1338 (2008).Article 

    Google Scholar 
    6.Lampitt, R. S., Wishner, K. F., Turley, C. M. & Angel, M. V. Mar. Biol. 116, 689–702 (1993).Article 

    Google Scholar 
    7.Mende, D. R. et al. Nat. Microbiol. 2, 1367–1373 (2017).CAS 
    Article 

    Google Scholar 
    8.Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Nat. Commun. 9, 2743 (2018).Article 

    Google Scholar 
    9.Trull, T. W. et al. 55, 1684–1695 (2008).10.Bressac, M. et al. Nat. Geosci. 12, 995–1000 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Hot and cold water

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Bacterial response to spatial gradients of algal-derived nutrients in a porous microplate

    Acrylic and polydimethylsiloxane (PDMS) molds preparationThe incubating device for the porous microplate was designed using a CAD software (Solidworks, Dassault Systèmes) and the exported drawing files were used to laser cut 1/4” and 1/8” acrylic sheet (Universal Laser Systems; Supplementary Fig. S2). After washing the cut acrylic parts with deionized water, they were attached by acrylic (Weld-On) and epoxy (3 M) adhesives that were followed by a curing process for ~18 h. Polydimethylsiloxane (PDMS) (Sylgard 184, Dow Corning) was cast onto the acrylic mold and cured at 80 °C for at least 3 h. The PDMS mold was carefully detached from the acrylic surface by dispensing isopropyl alcohol (VWR) into the area between the PDMS and the acrylic molds (Fig. 2a).Fig. 2: Synthesis and characterization of porous microplate.a Procedure to build a porous microplate using polydimethylsiloxane (PDMS) and acrylic molds. b Image of the microplate with an array of culture wells (wall thickness: 0.9 mm). c Scanning electron microscopy image of nanoporous copolymer HEMA–EDMA.Full size imagePorous microplate preparationSynthesis of copolymer HEMA–EDMA was based on previously described protocols [30, 31] and details are given as follows. Prepolymer solution HEMA − EDMA was prepared by mixing 2-hydroxyethyl methacrylate (HEMA; monomer, 24 wt.%, Sigma-Aldrich), ethylene glycol dimethacrylate (EDMA; crosslinker, 16 wt.%, Sigma-Aldrich), 1-decanol (porogen, 12 wt.%, Sigma-Aldrich), cyclohexanol (porogen, 48 wt.%, Sigma-Aldrich) and 2,2-dimethoxy-2-phenylacetophenone (DMPAP; photoinitiator, 1 wt.%). The solution was stored at room temperature without light exposure until further use. Glass slides (75 × 50 mm2, VWR) were chemically cleaned by sequentially soaking in 1 M hydrochloric acid and 1 M sodium hydroxide for one hour, followed by rinsing with deionized water and air drying. The prepolymer solution was cast onto the PDMS mold and a glass slide was placed on the mold. The solution was then polymerized under ultraviolet light with a wavelength 365 nm for 15 min by using a commercial UV lamp (VWR). The photopolymerized device was detached from the PDMS mold and stored in a jar containing methanol (VWR) until further use (Fig. 2a). The jar was refilled with new methanol twice in order to remove the remaining porogen and uncrosslinked monomers from the hydrogel.Upon each incubation experiment with the porous microplate, each device was decontaminated by replacing the solvent with 70% alcohol (VWR) and storing it for 24 h. They were immersed in a pre-autoclaved jar for two weeks with f/2 medium with omitted silicate, where the jar was refilled once with a new sterile medium to adjust its pH for the algal culture and remove any solvent remaining in the hydrogel. Before inoculating microbial cells, each microplate was taken out from the jar and the media remaining on the top surface was removed by absorbing it with a pre-sterilized wipe to minimize the chance for cross-contamination between wells (Fig. 2b).Scanning electron microscopyPhotopolymerized HEMA − EDMA was removed from methanol and dried in air for at least one week to evaporate the excess solvent. A ~5 × 5 mm2 specimen was collected from the dried copolymer and attached to a pin stub. The stub was loaded on a scanning electron microscope (SEM; MERLIN, Carl Zeiss), and the specimen was characterized with imaging software (SmartSEM, Carl Zeiss) with 16,270X magnification and an operating voltage of 1 kV. The SEM imaging was performed at the Electron Microscopy Facility in the MIT Materials Research Science and Engineering Centers (MRSEC; Fig. 2c).Strains and culturing conditionsAxenic P. tricornutum CCMP 2561 was acquired from the National Center for Marine Algae and Microbiota (NCMA) and shown to be axenic via epifluorescence microscopy and sequencing of the 16 S rRNA gene [11]. P. tricornutum was maintained in f/2 medium with 20 g L−1 commercially available sea salts (Instant Ocean, Blacksburg) and with omitted silicate, which we will refer to as f/2-Si [11, 16]. Batch cultures were grown at 20 °C with a 12 h light/12 h dark diurnal cycle and a light intensity of 200 μmol photons m−2 s−1 (Exlenvce). Every 2–3 weeks, axenic cultures were monitored for bacterial contamination by streaking culture samples on marine broth agar [33], that tests for contamination by bacteria that can grow on agar media and is not definitive. Every 6–12 months, every axenic and bacterial co-culture of P. tricornutum was inspected for the absence/presence of bacteria by staining the cellular DNA with 0.1% v/v SYTO BC Green Fluorescent Acid Stain (Thermofisher, Supplementary Fig. S1).Bacterial community samples (referred to as “phycosphere enrichments”) were obtained from mesocosms of P. tricornutum and maintained as previously described [11, 16]. Briefly, an outdoor P. tricornutum mesocosm sample in natural seawater was collected in Corpus Christi, TX and filtered with 0.6–1 µm pores to remove larger algal cells. The bacterial filtrates were inoculated to an axenic algal culture, maintained in f/2-Si media for ~3 months, and washed with a sterile medium to enrich for phycosphere-associated bacteria. These enriched communities were subsequently co-cultured with P. tricornutum in f/2-Si media for ~4 years prior to the start of the experiments.Two bacterial strains, Marinobacter sp. 3-2 and Algoriphagus sp. ARW1R1, were isolated from the phycosphere enrichment samples (Supplementary Table S1). The isolates were either maintained by growing on marine broth agar plates at 30 °C or by co-culturing with P. tricornutum through inoculation of a single colony into the axenic culture.
    P. tricornutum culture in porous microplateThree baseline experiments were designed to study how the alga P. tricornutum interacts with its associated bacteria in the porous microplate (Fig. 1). For experiments assessing the algal growth in the microplate, axenic P. tricornutum was acclimated to a copolymer environment in advance by inoculating a stationary phase-culture to a separate microplate. After acclimation for 4 days, the culture was diluted to ~1 × 106 cells ml−1 and transferred to the experimental microplate. Three replicated microplates were placed in a single transparent covered container (128 × 85 × 10 mm3, VWR) which was filled with ~25 ml f/2-Si medium to keep the microplate hydrated throughout the incubation period of 20 days with an initial culture volume of 75 µl (Fig. 1a). The procedures were conducted under a biosafety cabinet to prevent any biological contamination. The cells were incubated under the same conditions as described above for the batch cultures (temperature, light intensity, diurnal cycle).Growth of P. tricornutum was measured by counting cells using a hemocytometer (Electron Microscopy Sciences) or flow cytometry (described later). Specific growth rates were calculated from the natural log of the cell densities in triplicate sampled during an exponential growth phase (day 3 for the batch culture, day 5 for the porous microplate system; Fig. 3a).Fig. 3: Cultivation of P. tricornutum in the porous microplate.a Schematic of a microplate for algal cultivation. b Growth curve and maximal growth rate (inset) comparing the porous microplate with flask culture. Error bars, standard deviation of triplicates. c Cell abundance at center (n = 3) and surrounding (n = 18) wells after incubation. Asterisks denote statistical differences with following levels (two-tailed t-test): ***P  More

  • in

    Harmonizing climate-smart and sustainable agriculture

    1.Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 5 (in the press); https://www.ipcc.ch/srccl/chapter/chapter-5/2.Jägermeyr, J. et al. Nat. Food https://doi.org/10.1038/s43016-021-00400-y (2021).3.Rosenzweig, C. et al. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Fischer, T., Byerlee, D. & Edmeades, G. Crop Yields and Global Food Security: Will Yield Increase Continue to Feed the World? ACIAR Monograph No. 158 (Australian Centre for International Agricultural Research, 2014).5.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Part A (Cambridge Univ. Press, 2014).6.Dang, H. L., Li, E., Nuberg, I. & Bruwer, J. Clim. Dev. 11, 765–774 (2019).Article 

    Google Scholar 
    7.Peng, B. et al. Nat. Plants 6, 338–348 (2020).Article 

    Google Scholar 
    8.Song, X.-P. et al. Nat. Sustain. 4, 784–792 (2021).Article 

    Google Scholar 
    9.Rosenzweig, C. & Tubiello, F. N. Mitig. Adapt. Strat. Glob. Chang. 12, 855–873 (2007).Article 

    Google Scholar 
    10.Smith, P. & Olesen, J. E. J. Agric. Sci. 148, 543–552 (2010).CAS 
    Article 

    Google Scholar 
    11.Lobell, D. B., Baldos, U. L. C. & Hertel, T. W. Environ. Res. Lett. 8, 015012 (2013).ADS 
    Article 

    Google Scholar 
    12.Springmann, M. et al. Nature 562, 519–525 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Gerten, D. et al. Nat. Sustain. 3, 200–208 (2020).Article 

    Google Scholar 
    14.Chang, J. et al. Nat. Food 2, 700–711 (2021).Article 

    Google Scholar 
    15.Ruane, A. C. et al. Environ. Res. Lett. 12, 125003 (2017).ADS 
    Article 

    Google Scholar  More

  • in

    A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area

    1.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Wilson, K. A. et al. Conserving biodiversity efficiently: What to do, where, and when. PLoS Biol. 5, 1850–1861. https://doi.org/10.1371/journal.pbio.0050223 (2007).CAS 
    Article 

    Google Scholar 
    3.Carr, M. H. et al. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves. Ecol. Appl. 13, 90–107. https://doi.org/10.1890/1051-0761(2003)013[0090:CMATEI]2.0.CO;2 (2003).Article 

    Google Scholar 
    4.Coles, R. G. et al. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuar. Coast. Shelf Sci. 153, A1–A12. https://doi.org/10.1016/j.ecss.2014.07.020 (2015).ADS 
    Article 

    Google Scholar 
    5.Beger, M. et al. Incorporating asymmetric connectivity into spatial decision making for conservation. Conserv. Lett. 3, 359–368. https://doi.org/10.1111/j.1755-263X.2010.00123.x (2010).Article 

    Google Scholar 
    6.Brodie, J. & Waterhouse, J. A critical review of environmental management of the ‘not so Great’ Barrier Reef. Estuar. Coast. Shelf Sci. 104, 1–22. https://doi.org/10.1016/j.ecss.2012.03.012 (2012).ADS 
    Article 

    Google Scholar 
    7.Collier, C. J. et al. An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay. Environ. Sustain. Indicators 7, 100042. https://doi.org/10.1016/j.ecolind.2012.04.005 (2020).Article 

    Google Scholar 
    8.Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan. http://www.environment.gov.au/system/files/resources/d98b3e53-146b-4b9c-a84a-2a22454b9a83/files/reef-2050-long-term-sustainability-plan.pdf (2015). (Accessed 09 June 2021).9.Commonwealth of Australia. Reef 2050 Long-Term Sustainability Plan—July 2018. https://www.environment.gov.au/system/files/resources/35e55187-b76e-4aaf-a2fa-376a65c89810/files/reef-2050-long-term-sustainability-plan-2018.pdf (2018). (Accessed 09 June 2021).10.Tulloch, V. J. et al. Linking threat maps with management to guide conservation investment. Biol. Cons. 245, 108527. https://doi.org/10.1016/j.biocon.2020.108527 (2020).Article 

    Google Scholar 
    11.Greene, H. G., Bizzarro, J. J., O’Connell, V. M. & Brylinsky, C. K. Construction of digital potential marine benthic habitat maps using a coded classification scheme and its application. Mapp. Seafloor Habitat Characterization Geol. Assoc. Canada Special Paper 47, 145–159 (2007).
    Google Scholar 
    12.Grech, A. et al. Spatial patterns of seagrass dispersal and settlement. Divers. Distrib. 22, 1150–1162. https://doi.org/10.1111/ddi.12479 (2016).Article 

    Google Scholar 
    13.Young, M. & Carr, M. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring. PLoS ONE 10, e0116200. https://doi.org/10.1371/journal.pone.0116200 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Foley, M. M. et al. Guiding ecological principles for marine spatial planning. Mar. Policy 34, 955–966. https://doi.org/10.1016/j.marpol.2010.02.001 (2010).Article 

    Google Scholar 
    15.Diggon, S. et al. The marine plan partnership: Indigenous community-based marine spatial planning. Mar. Policy. https://doi.org/10.1016/j.marpol.2019.04.014 (2019).Article 

    Google Scholar 
    16.Kenchington, R. & Day, J. Zoning, a fundamental cornerstone of effective Marine Spatial Planning: Lessons learnt from the Great Barrier Reef, Australia. J. Coast. Conserv. 15, 271–278. https://doi.org/10.1007/s11852-011-0147-2 (2011).Article 

    Google Scholar 
    17.Noble, M. M., Harasti, D., Pittock, J. & Doran, B. Understanding the spatial diversity of social uses, dynamics, and conflicts in marine spatial planning. J. Environ. Manage. 246, 929–940. https://doi.org/10.1016/j.jenvman.2019.06.048 (2019).Article 
    PubMed 

    Google Scholar 
    18.Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Cons. 226, 120–126. https://doi.org/10.1016/j.biocon.2018.07.009 (2018).Article 

    Google Scholar 
    19.den Hartog, C. & Kuo, J. Seagrasses: Biology, Ecology and Conservation Ch. 1 1–23 (Springer Netherlands, 2006).
    Google Scholar 
    20.Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).
    Google Scholar 
    21.Short, F. T. et al. Extinction risk assessment of the world’s seagrass species. Biol. Cons. 144, 1961–1971. https://doi.org/10.1016/j.biocon.2011.04.010 (2011).Article 

    Google Scholar 
    22.Coles, R., McKenzie, L., De’ath, G., Roelofs, A. & Long, W. L. Spatial distribution of deepwater seagrass in the inter-reef lagoon of the Great Barrier Reef World Heritage Area. Mar. Ecol. Prog. Ser. 392, 57–68. https://doi.org/10.3354/meps08197 (2009).ADS 
    Article 

    Google Scholar 
    23.McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 074041. https://doi.org/10.1088/1748-9326/ab7d06 (2020).ADS 
    Article 

    Google Scholar 
    24.Hemminga, M. A. & Duarte, C. M. Seagrass Ecology (Cambridge University Press, 2000).Book 

    Google Scholar 
    25.Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733. https://doi.org/10.1126/science.aal1956 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Coles, R. G., Lee Long, W. J., Watson, R. A. & Derbyshire, K. J. Distribution of seagrasses, and their fish and penaeid prawn communities, in Cairns Harbour, a tropical estuary, Northern Queensland, Australia. Mar. Freshw. Res. 44, 193–210. https://doi.org/10.1071/MF9930193 (1993).Article 

    Google Scholar 
    27.de los Santos, C. B. et al. Seagrass ecosystem services: Assessment and scale of benefits. Out Blue Value Seagrasses Environ. People. 19–21 (2020).
    28.Marsh, H., O’Shea, T. J. & Reynolds, J. E. III. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).Book 

    Google Scholar 
    29.Scott, A. L. et al. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Front. Plant Sci. 9, 1–10. https://doi.org/10.3389/fpls.2018.00127 (2018).Article 

    Google Scholar 
    30.Fourqurean, J. W. et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5, 505–509. https://doi.org/10.1038/ngeo1477 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Carter, A., Taylor, H. & Rasheed, M. Torres Strait Mapping: Seagrass Consolidation, 2002–2014 Vol. 47 (James Cook University, 2014).
    Google Scholar 
    32.Lee Long, W. J., Mellors, J. E. & Coles, R. G. Seagrasses between Cape York and Hervey Bay, Queensland, Australia. Austr. J. Mar. Freshw. Res. 44, 19–32. https://doi.org/10.1071/MF9930019 (1993).Article 

    Google Scholar 
    33.Maxwell, P. et al. Seagrasses of Moreton Bay Quandamooka: Diversity, ecology and resilience. in Moreton Bay Quandamooka & Catchment: Past, Present, and Future (eds I. R. Tibbetts et al.) 279–298 (Moreton Bay Foundation Ltd, 2019).
    34.Lambert, V. M. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2021.112494 (2021).Article 
    PubMed 

    Google Scholar 
    35.McKenna, S. A. et al. Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event. J. Biosci. 40, 389–398. https://doi.org/10.1007/s12038-015-9516-6 (2015).Article 
    PubMed 

    Google Scholar 
    36.Collier, C. J., Waycott, M. & McKenzie, L. J. Light thresholds derived from seagrass loss in the coastal zone of the northern Great Barrier Reef, Australia. Ecol. Indicators 23, 211–219. https://doi.org/10.1016/j.ecolind.2012.04.005 (2012).Article 

    Google Scholar 
    37.York, P. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: Annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167. https://doi.org/10.1038/srep13167 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Grech, A., Coles, R. & Marsh, H. A broad-scale assessment of the risk to coastal seagrasses from cumulative threats. Mar. Policy 35, 560–567. https://doi.org/10.1016/j.marpol.2011.03.003 (2011).Article 

    Google Scholar 
    39.Brodie, J. & Pearson, R. G. Ecosystem health of the Great Barrier Reef: Time for effective management action based on evidence. Estuar. Coast. Shelf Sci. 183, 438–451. https://doi.org/10.1016/j.ecss.2016.05.008 (2016).ADS 
    Article 

    Google Scholar 
    40.York, P. H. et al. Identifying knowledge gaps in seagrass research and management: An Australian perspective. Mar. Environ. Res. 127, 163–172. https://doi.org/10.1016/j.marenvres.2016.06.006 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Carruthers, T. J. B. et al. Seagrass habitats of Northeast Australia: Models of key processes and controls. Bull. Mar. Sci. 71, 1153–1153 (2002).
    Google Scholar 
    42.Waycott, M., Longstaff, B. J. & Mellors, J. Seagrass population dynamics and water quality in the Great Barrier Reef region: A review and future research directions. Mar. Pollut. Bull. 51, 343–350. https://doi.org/10.1016/j.marpolbul.2005.01.017 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Grech, A. & Coles, R. G. An ecosystem-scale predictive model of coastal seagrass distribution. Aquat. Conserv.-Mar. Freshw. Ecosyst. 20, 437–444. https://doi.org/10.1002/aqc.1107 (2010).Article 

    Google Scholar 
    44.Carter, A. et al. Synthesizing 35 years of seagrass spatial data from the Great Barrier Reef World Heritage Area, Queensland, Australia. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10193 (2021).Article 

    Google Scholar 
    45.Beaman, R. J. High-Resolution Depth Model for the Great Barrier Reef—30 m. Dataset. http://pid.geoscience.gov.au/dataset/115066 (2017). (Accessed 10 March 2020).46.Bishop-Taylor, R., Sagar, S., Lymburner, L. & Beaman, R. Between the tides: Modelling the elevation of Australia’s exposed intertidal zone at continental scale. Estuar. Coast. Shelf Sci. 223, 115–128. https://doi.org/10.1016/j.ecss.2019.03.006 (2019).ADS 
    Article 

    Google Scholar 
    47.Geoscience Australia. Intertidal Extents Model 25m. v. 2.0.0. Dataset. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search?node=srv#/metadata/7d6f3432-5f93-45ee-8d6c-14b26740048a (2017). (Accessed 10 March 2021).48.Steven, A. D. et al. eReefs: An operational information system for managing the Great Barrier Reef. J. Operat. Oceanogr. 12, S12–S28. https://doi.org/10.1080/1755876X.2019.1650589 (2019).Article 

    Google Scholar 
    49.Baird, M. E. et al. CSIRO environmental modelling suite (EMS): Scientific description of the optical and biogeochemical models (vB3p0). Geosci. Model Dev. 13, 4503–4553. https://doi.org/10.5194/gmd-13-4503-2020 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Baird, M. E. et al. Remote-sensing reflectance and true colour produced by a coupled hydrodynamic, optical, sediment, biogeochemical model of the Great Barrier Reef, Australia: Comparison with satellite data. Environ. Model. Softw. 78, 79–96. https://doi.org/10.1016/j.envsoft.2015.11.025 (2016).Article 

    Google Scholar 
    51.Margvelashvili, N. et al. Simulated fate of catchment-derived sediment on the Great Barrier Reef shelf. Mar. Pollut. Bull. 135, 954–962. https://doi.org/10.1016/j.marpolbul.2018.08.018 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Griffiths, L. L., Connolly, R. M. & Brown, C. J. Critical gaps in seagrass protection reveal the need to address multiple pressures and cumulative impacts. Ocean Coast. Manag. https://doi.org/10.1016/j.ocecoaman.2019.104946 (2020).Article 

    Google Scholar 
    53.Unsworth, R. K. F. et al. Global challenges for seagrass conservation. Ambio 48, 801–815. https://doi.org/10.1007/s13280-018-1115-y (2019).Article 
    PubMed 

    Google Scholar 
    54.Grech, A. et al. Predicting the cumulative effect of multiple disturbances on seagrass connectivity. Glob. Change Biol. 24, 3093–3104. https://doi.org/10.1111/gcb.14127 (2018).ADS 
    Article 

    Google Scholar 
    55.Fernandes, L. et al. A process to design a network of marine no-take areas: Lessons from the Great Barrier Reef. Ocean Coast. Manag. 52, 439–447. https://doi.org/10.1016/j.ocecoaman.2009.06.004 (2009).Article 

    Google Scholar 
    56.Bainbridge, Z. et al. Fine sediment and particulate organic matter: A review and case study on ridge-to-reef transport, transformations, fates, and impacts on marine ecosystems. Mar. Pollut. Bull. 135, 1205–1220. https://doi.org/10.1016/j.marpolbul.2018.08.002 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Tol, S. J. et al. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Sci. Rep. 7, 4458. https://doi.org/10.1038/s41598-017-04421-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Rasheed, M. A., McKenna, S. A., Carter, A. B. & Coles, R. G. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 83, 491–499. https://doi.org/10.1016/j.marpolbul.2014.02.013 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Collier, C. & Waycott, M. Temperature extremes reduce seagrass growth and induce mortality. Mar. Pollut. Bull. 83, 483–490. https://doi.org/10.1016/j.marpolbul.2014.03.050 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Modell. Softw. https://doi.org/10.1016/j.envsoft.2020.104717 (2020).Article 

    Google Scholar 
    61.Taylor, H. A. & Rasheed, M. A. Impacts of a fuel oil spill on seagrass meadows in a subtropical port, Gladstone, Australia—The value of long-term marine habitat monitoring in high risk areas. Mar. Pollut. Bull. 63, 431–437. https://doi.org/10.1016/j.marpolbul.2011.04.039 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Fraser, M. W. et al. Effects of dredging on critical ecological processes for marine invertebrates, seagrasses and macroalgae, and the potential for management with environmental windows using Western Australia as a case study. Ecol. Ind. 78, 229–242. https://doi.org/10.1016/j.ecolind.2017.03.026 (2017).Article 

    Google Scholar 
    63.Wolanski, E. Physical Oceanographic Processes of the Great Barrier Reef (CRC Press, 1994).
    Google Scholar 
    64.Hopley, D., Smithers, S. G. & Parnell, K. E. The Geomorphology of the Great Barrier Reef: Development, Diversity, and Change (Cambridge University Press, 2007).Book 

    Google Scholar 
    65.Hopley, D. The Queensland coastline: attributes and issues. in Queensland: A Geographical Interpretation (ed J. H. Holmes) 73–94 (Booralong Publications, 1986).66.McKenzie, L. J. et al. Marine Monitoring Program: Annual report for inshore seagrass monitoring 2017–2018. http://hdl.handle.net/11017/3488 (Great Barrier Reef Marine Park Authority, 2019). (Accessed 23 December 2020).67.Van De Wetering, C., Reason, C., Rasheed, M., Wilkinson, J. & York, P. Port of Abbot Point Long-Term Seagrass Monitoring Program—2019 Vol. 53 (James Cook University, 2020).
    Google Scholar 
    68.Van De Wetering, C., Carter, A. & Rasheed, M. Seagrass Habitat of Mourilyan Harbour: Annual Monitoring Report—2019 Vol. 51 (James Cook University, 2020).
    Google Scholar 
    69.McKenna, S. et al. Port of Townsville Seagrass Monitoring Program: 2019 (James Cook University, 2020).
    Google Scholar 
    70.York, P. & Rasheed, M. Annual Seagrass Monitoring in the Mackay-Hay Point Region—2019 Vol. 51 (James Cook University, 2020).
    Google Scholar 
    71.Reason, C., McKenna, S. & Rasheed, M. Seagrass Habitat of Cairns Harbour and Trinity Inlet: Cairns Shipping Development Program and Annual Monitoring Report 2019 Vol. 54 (James Cook University, 2020).
    Google Scholar 
    72.Smith, T., Chartrand, K., Wells, J., Carter, A. & Rasheed, M. Seagrasses in Port Curtis and Rodds Bay 2019 Annual Long-Term Monitoring and Whole Port Survey Vol. 71 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/02, James Cook University, 2020).
    Google Scholar 
    73.Chartrand, K. M., Szabó, M., Sinutok, S., Rasheed, M. A. & Ralph, P. J. Living at the margins: The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts. Mar. Environ. Res. 136, 126–138. https://doi.org/10.1016/j.marenvres.2018.02.006 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Dyall, A. et al. Queensland Coastal Waterways Geomorphic Habitat Mapping, Version 2 (1:100 000 scale digital data). http://catalogue.aodn.org.au/geonetwork/srv/eng/metadata.show?uuid=a05f7892-c344-7506-e044-00144fdd4fa6 (2004). (Accessed 05 October 2020).75.Heap, A. D. & Harris, P. T. Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 55, 555–585. https://doi.org/10.1080/08120090801888669 (2008).ADS 
    Article 

    Google Scholar 
    76.Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    77.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    78.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    79.plotmo: Plot a Model’s Residuals, Response, and Partial Dependence Plots. R package version 3.5.7 (2020).80.caret: Classification and Regression Training. R package version 6.0-86 (2020).81.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evolut. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article 

    Google Scholar 
    82.raster: Geographic Data Analysis and Modeling. R package version 3.3-13 (2020).83.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    84.De’ath, G. Multivariate partitioning. The mvpart Package version 1.1-1. Archive form on CRAN, https://cran.r-project.org. (2004).85.De’ath, G. Multivariate regression trees: a new technique for modeling species–environment relationships. Ecology 83, 1105–1117 (2002).
    Google Scholar  More

  • in

    Link knowledge and action networks to tackle disasters

    CORRESPONDENCE
    16 November 2021

    Link knowledge and action networks to tackle disasters

    Jim Falk

    0
    ,

    Rita R. Colwell

    1
    ,

    Charles F. Kennel

    2
    &

    Cherry A. Murray

    3

    Jim Falk

    University of Melbourne, Melbourne, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Rita R. Colwell

    University of Maryland, College Park, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Charles F. Kennel

    Scripps Institution of Oceanography, San Diego, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Cherry A. Murray

    University of Arizona, Tuscon, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Earth’s climate, ecological and human systems could converge into a comprehensive crisis within our children’s lifetimes, driven by factors such as inequality, inadequate health infrastructure and food insecurity (see consensus statement, J. Falk et al. Sustain. Sci. https://doi.org/g5bd; 2021). As the COVID-19 pandemic has revealed, national military and economic security provide inadequate protection against global catastrophes.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 599, 372 (2021)
    doi: https://doi.org/10.1038/d41586-021-03419-0

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Climate change

    Biodiversity

    Society

    Latest on:

    Climate change

    COP26: Meet the scientists behind the crucial climate summit
    News Q&A 15 NOV 21

    ‘COP26 hasn’t solved the problem’: scientists react to UN climate deal
    News 14 NOV 21

    My international-student group helped me through a hurricane
    Career Column 12 NOV 21

    Biodiversity

    COP26 climate pledges: What scientists think so far
    News 05 NOV 21

    The answer to the biodiversity crisis is not more debt
    Editorial 26 OCT 21

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Society

    Presidents of Royal Society live long lives
    Correspondence 16 NOV 21

    Caltech confronted its racist past. Here’s what happened
    News Feature 10 NOV 21

    Scientists: don’t feed the doubt machine
    World View 02 NOV 21

    Jobs

    Open rank: Research Associate, Post-Doctoral Fellow or Research Scientist Positions

    OSU Department of Pediatrics (Nationwide Children’s Hospital)
    Columbus, OH, United States

    Doctoral Research Associates

    University of Münster (WWU)
    Münster, Germany

    Project Manager

    University of Oxford
    Oxford, United Kingdom

    Postdoctor

    University of Gothenburg (GU)
    Gothenburg, Sweden More