More stories

  • in

    The influence of rainfall and tillage on wheat yield parameters and weed population in monoculture versus rotation systems

    1.Navarra, A. & Tubiana, L. (eds) Regional Assessment of Climate Change in the Mediterranean, Advances in Global Change Research (Springer Netherlands, 2013). https://doi.org/10.1007/978-94-007-5772-1.Book 

    Google Scholar 
    2.Solomon, S. S. IPCC (2007): Climate Change the Physical Science Basis. AGUFM 2007, U43D-01 (2007).3.Seneviratne, S. et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment: An Overview of the IPCC SREX report, Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC) (2012).4.Bates, B., Kundzewicz, Z. & Wu, S. Climate Change and Water. Intergovernmental Panel on Climate Change Secretariat (2008).5.Neve, P., Vila-Aiub, M. & Phytologist, F.R.-N. Evolutionary-thinking in agricultural weed management. New Phytol. 184(4), 783–793 (2009).Article 

    Google Scholar 
    6.Harrison, M. T., Cullen, B. R. & Rawnsley, R. P. Modelling the sensitivity of agricultural systems to climate change and extreme climatic events. Agric. Syst. https://doi.org/10.1016/j.agsy.2016.07.006 (2016).Article 

    Google Scholar 
    7.Moret, D., Arrúe, J. L., López, M. V. & Gracia, R. Winter barley performance under different cropping and tillage systems in semiarid Aragon (NE Spain). Eur. J. Agron. 26, 54–63. https://doi.org/10.1016/j.eja.2006.08.007 (2007).Article 

    Google Scholar 
    8.FAO (Food and Agriculture Organization). Rome: Introduction to Conservation Agriculture (Its Principles and Benefits). http://teca.fao.org/technology/introduction-conservationagriculture-its-principles-benefits (2013).9.Kertész, À. & Madarász, B. Conservation agriculture in Europe. Int. Soil Water Conserv. Res. 2(1), 91–96 (2014).Article 

    Google Scholar 
    10.Álvaro-Fuentes, J., López, M. V., Cantero-Martínez, C. & Arrúe, J. L. Tillage effects on soil organic carbon fractions in Mediterranean dryland agroecosystems. Soil Sci. Soc. Am. J. 72, 541–547 (2008).ADS 
    Article 

    Google Scholar 
    11.Bouchery, Y., Ghaffari, A., Jemai, Z. & Dallery, Y. Including sustainability criteria into inventory models. Eur. J. Oper. Res. 222, 229–240 (2012).MathSciNet 
    Article 

    Google Scholar 
    12.Soane, B. D. et al. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 118, 66–87 (2012).Article 

    Google Scholar 
    13.Madejón, E. et al. Effect of long-term conservation tillage on soil biochemical properties in Mediterranean Spanish areas. Soil Tillage Res. 105, 55–62 (2009).Article 

    Google Scholar 
    14.De Vita, P., Di Paolo, E., Fecondo, G., Di Fonzo, N. & Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 92, 69–78. https://doi.org/10.1016/j.still.2006.01.012 (2007).Article 

    Google Scholar 
    15.Giambalvo, D. et al. Faba bean grain yield, N2 fixation, and weed infestation in a long-term tillage experiment under rainfed Mediterranean conditions. Plant Soil 360, 215–227. https://doi.org/10.1007/s11104-012-1224-5 (2012).CAS 
    Article 

    Google Scholar 
    16.Ruisi, P. et al. Conservation tillage in a semiarid Mediterranean environment: Results of 20 years of research. Ital. J. Agron. 9(560), 1–7. https://doi.org/10.4081/ija.2014.560 (2014).Article 

    Google Scholar 
    17.Plaza-Bonilla, D., Cantero-Martínez, C., Viñas, P. & Álvaro-Fuentes, J. Soil aggregation and organic carbon protection in a no-tillage chronosequence under Mediterranean conditions. Geoderma 193–194, 76–82 (2013).ADS 
    Article 

    Google Scholar 
    18.Barberi, P. & Lo Cascio, B. Long-term tillage and crop rotation effects on weed seed bank size and composition. Weed Res. 41(4), 325–340. https://doi.org/10.1046/j.1365-3180.2001.00241.x (2001).Article 

    Google Scholar 
    19.Batey, T. & McKenzie, D. C. Soil compaction: Identification directly in the field. Soil Use Manag. 22, 123–131. https://doi.org/10.1111/j.1475-2743.2006.00017.x (2006).Article 

    Google Scholar 
    20.Lampurlanés, J., Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Long-term analysis of soil water conservation and crop yield under different tillage systems in Mediterranean rainfed conditions. Field Crops Res. 198, 59–67. https://doi.org/10.1016/j.fcr.2016.02.010 (2016).Article 

    Google Scholar 
    21.Ruisi, P. et al. Weed seedbank size and composition in a long-term tillage and crop sequence experiment. Weed Res. 55, 320–328. https://doi.org/10.1111/wre.12142 (2015).Article 

    Google Scholar 
    22.Mahli, S. S. & Lemke, R. Tillage, crop residue and N fertilizer effects on crop yield, nutrient uptake, soil quality and nitrous oxide gasemissions in a second 4-yr rotation cycle. Soil Tillage Res. 96, 269–283. https://doi.org/10.1016/j.still.2007.06.011 (2007).Article 

    Google Scholar 
    23.Santín-Montanyá, M. I., Gandía, M. L., Zambrana, E. & Tenorio, J. L. Effects of tillage systems on wheat and weed water relationships over time when growing together, in semiarid conditions. Ann. Appl. Biol. 177, 256–265. https://doi.org/10.1111/aab.12620 (2020).Article 

    Google Scholar 
    24.Chaghazardi, H. R., Jahansouz, M. R., Ahmadi, A. & Gorji, M. Effects of tillage management on productivity of wheat and chickpea under cold, rainfed conditions in western Iran. Soil Tillage Res. 162, 26–33. https://doi.org/10.1016/j.still.2016.04.010 (2016).Article 

    Google Scholar 
    25.López-Bellido, L., Fuentes, M., Castillo, J. E., López-Garrido, F. J. & Fernández, E. J. Long-term tillage, crop rotation, and nitrogen fertiliser effects on wheat yield under rainfed Mediterranean conditions. Agron. J. 88, 783–791 (1996).Article 

    Google Scholar 
    26.Cantero-Martínez, C., Angás, P. & Lampurlanés, J. Long-term yield and water use efficiency under various tillage systems in Mediterranean rainfed conditions. Ann. Appl. Biol. 150, 293–305. https://doi.org/10.1111/j.1744-7348.2007.00142.x (2007).Article 

    Google Scholar 
    27.Campiglia, E., Mancinelli, R., De Stefanis, E., Pucciarmati, S. & Radicetti, E. The long-term effects of conventional and organic ropping systems, tillage managements and weather conditions on yield and grain quality of durum wheat (Triticum durum Desf.) in the Mediterranean environment of central Italy. Field Crops Res. 176, 34–44. https://doi.org/10.1016/j.fcr.2015.02.021 (2015).Article 

    Google Scholar 
    28.Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: The challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71 (2012).Article 

    Google Scholar 
    29.Plourde, J. D., Pijanowski, B. C. & Pekin, B. K. Evidence for increased monoculture cropping in the Central United States. Agric. Ecosyst. Environ. 165, 50–59 (2013).Article 

    Google Scholar 
    30.Seymour, M., Kirkegaard, J. A., Peoples, M. B., White, P. F. & French, R. J. Break-crop benefits to wheat in Western Australia—Insights from over three decades of research. Crop Pasture Sci. 63, 1 (2012).Article 

    Google Scholar 
    31.Wang, H. & Ortiz-Bobea, A. Market-driven corn monocropping in the U.S. Midwest. Agric. Resour. Econ. Rev. 48, 274–296 (2019).Article 

    Google Scholar 
    32.Tekin, S., Yazar, A. & Barut, H. Comparison of wheat-based rotation systems vs monocropping under dryland Mediterranean conditions. Int. J. Agric. Biol. Eng. 10, 203–213. https://doi.org/10.25165/j.ijabe.20171005.3443 (2017).Article 

    Google Scholar 
    33.Ryan, J., Singh, M. & Pala, M. Long-term cereal-based rotation trials in the Mediterranean region: Implications for cropping sustainability. Adv. Agron. 97, 273–319. https://doi.org/10.1016/S0065-2113(07)00007-7 (2008).CAS 
    Article 

    Google Scholar 
    34.Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article 

    Google Scholar 
    35.Marini, L. et al. Crop rotations sustain cereal yields under a changing climate. Environ. Res. Lett. 15(12), 124011 (2020).Article 

    Google Scholar 
    36.Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Amato, G. et al. Long-term tillage and crop sequence effects on wheat grain yield and quality. Agron. J. 105, 1317–1327 (2013).Article 

    Google Scholar 
    38.Loke, P. F., Kotzé, E. & Du Preez, C. C. Impact of long-term wheat production management practices on soil acidity, phosphorus and some micronutrients in a semi-arid Plinthosol. Soil Res. 51, 415–426. https://doi.org/10.1071/SR12359 (2013).CAS 
    Article 

    Google Scholar 
    39.Martin-Rueda, I. et al. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Tillage Res. 92, 1–9 (2007).Article 

    Google Scholar 
    40.Hadjichristodoulou, A. The relationship of grain yield with harvest index and total biological yield of barley in drylands. Tech. Bull. 126, 1–10 (1991).
    Google Scholar 
    41.Zimdahl, R. L. Weed-Crop Competition: A Review 49–50, 109–145 (Blackwell Publishing, 2004).42.Nkoa, R., Owen, M. D. K. & Swanton, C. J. Weed abundance, distribution, diversity, and community analyses. Weed Sci. 63, 64–90. https://doi.org/10.1614/ws-d-13-00075.1 (2015).Article 

    Google Scholar 
    43.Ter Braak, C. J. F. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    44.Fried, G., Petit, S. & Reboud, X. A specialist-generalist classification of the arable flora and its response to changes in agricultural practices. BMC Ecol. 10, 20 (2010).Article 

    Google Scholar 
    45.Korres, N. E. et al. Cultivars to face climate change effects on crops and weeds: A review. Agron. Sustain. Dev. 36, 1–22. https://doi.org/10.1007/s13593-016-0350-5 (2016).Article 

    Google Scholar 
    46.Acevedo, E. H., Silva, P. C., Silva, H. R. & Solar, B. R. Wheat production in Mediterranean environments. In Wheat: Ecology and Physiology of Yield Determination 295–331 (1999).47.Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1–12. https://doi.org/10.3389/fpls.2017.00095 (2017).CAS 
    Article 

    Google Scholar 
    48.Calzarano, F. et al. Durum wheat quality, yield and sanitary status under conservation agriculture. Agriculture https://doi.org/10.3390/agriculture8090140 (2018).Article 

    Google Scholar 
    49.Santín-Montanyá, M. I., Fernández-Getino, A. P., Zambrana, E. & Tenorio, J. L. Effects of tillage on winter wheat production in Mediterranean dryland fields. Arid Land Res. Manag. 31(3), 269–282. https://doi.org/10.1080/15324982.2017.1307289 (2017).Article 

    Google Scholar 
    50.Shimshi, D., Bielorai, H. & Mantell, A. Irrigation of field crops. In Arid Zone Irrigation 369–381 (Springer, 1973).51.Schultz, J. E. Crop production in a rotation trial at Tarlee, South Australia. Aust. J. Exp. Agric. 35, 865–876. https://doi.org/10.1071/EA9950865 (1995).Article 

    Google Scholar 
    52.Alarcón, R. et al. Effects of no-tillage and non-inversion tillage on weed community diversity and crop yield over nine years in a Mediterranean cereal-legume cropland. Soil Tillage Res. 179, 54–62. https://doi.org/10.1016/j.still.2018.01.014 (2018).Article 

    Google Scholar 
    53.Šíp, V., Vavera, R., Chrpová, J., Kusá, H. & Růžek, P. Winter wheat yield and quality related to tillage practice, input level and environmental conditions. Soil Tillage Res. 132, 77–85. https://doi.org/10.1016/j.still.2013.05.002 (2013).Article 

    Google Scholar 
    54.Woźniak, A. Effect of cereal monoculture and tillage systems on grain yield and weed infestation of winter durum wheat. Int. J. Plant Prod. 14, 1–8. https://doi.org/10.1007/s42106-019-00062-8 (2020).Article 

    Google Scholar 
    55.Schulte, B. J., Tomasek, B. J., Davis, A. S., Andersson, L. & Benoit, D. L. An investigation to enhance understanding of the stimulation of weed seedling emergence by soil disturbance. Weed Res. 54, 1–12. https://doi.org/10.1111/wre.12054 (2014).Article 

    Google Scholar 
    56.Calado, J. M. G., Basch, G. & de Carvalho, M. Weed emergence as influenced by soil moisture and air temperature. J. Pest Sci. 82, 81–88. https://doi.org/10.1007/s10340-008-0225-x (2009).Article 

    Google Scholar 
    57.Siddique, K. H. M. et al. Innovations in agronomy for food legumes. A review. Agron. Sustain. Dev. 32, 45–64 (2012).Article 

    Google Scholar 
    58.Payne, W. A., Rasmussen, P. E., Chen, C. & Ramig, R. E. Assessing simple wheat and pea models using data from a long-term tillage experiment. Agron. J. 93, 250–260. https://doi.org/10.2134/agronj2001.931250x (2001).Article 

    Google Scholar 
    59.Machado, S., Petrie, S., Rhinhart, K. & Ramig, R. E. Tillage effects on water use and grain yield of winter wheat and green pea in rotation. Agron. J. 100, 154–162. https://doi.org/10.2134/agrojnl2006.0218 (2008).Article 

    Google Scholar 
    60.Copec, K., Filipovic, D., Husnjak, S., Kovacev, I. & Kosustic, S. Effects of tillage systems on soil water content and yield in maize and winter wheat production. Plant Soil Environ. 61(5), 213–219. https://doi.org/10.17221/156/2015-pse (2015).Article 

    Google Scholar 
    61.López-Bellido, L., López-Bellido, R. J., Redondo, R. & Benítez, J. Faba bean nitrogen fixation in a wheat-based rotation under rainfed Mediterranean conditions: Effect of tillage system. Field Crop Res. 98, 253–260 (2006).Article 

    Google Scholar 
    62.López-Bellido, R. J., López-Bellido, L., Benítez-Vega, J. & López-Bellido, F. J. Tillage system, preceding crop, and nitrogen fertilizer in wheat crop: I. Soil water content. Agron. J. 99, 59–65. https://doi.org/10.2134/agronj2006.0025 (2007).Article 

    Google Scholar 
    63.López-Bellido, L., Muñoz-Romero, V., Fernández-García, P. & López-Bellido, R. J. Ammonium accumulation in soil: The long-term effects of tillage, rotation and N rate in a Mediterranean vertisol. Soil Use Manag. 30(4), 471–479 (2014).Article 

    Google Scholar 
    64.Bilalis, D., Efthimiadis, P. & Sidiras, N. Effect of three tillage systems on weed flora in a 3-year rotation with four crops. J. Agron. Crop Sci. 186, 135–141. https://doi.org/10.1046/j.1439-037X.2001.00458.x (2001).Article 

    Google Scholar 
    65.Feledyn-Szewczyk, B., Smagacz, J., Kwiatkowski, C. A., Harasim, E. & Woźniak, A. Weed flora and soil seed bank composition as affected by tillage system in three-year crop rotation. Agriculture https://doi.org/10.3390/agriculture10050186 (2020).Article 

    Google Scholar 
    66.Pala, M., Ryan, J., Zhang, H., Singh, M. & Harris, H. C. Water-use efficiency of wheat-based rotation systems in a Mediterranean environment. Agric. Water Manag. 93, 136–144. https://doi.org/10.1016/j.agwat.2007.07.001 (2007).Article 

    Google Scholar 
    67.Légère, A., Stevenson, F. C. & Benoit, D. L. Diversity and assembly of weed communities: Contrasting responses across cropping systems. Weed Res. 45, 303–315. https://doi.org/10.1111/j.1365-3180.2005.00459.x (2005).Article 

    Google Scholar 
    68.Sans, F. X., Berner, A., Armengot, L. & Mäder, P. Tillage effects on weed communities in an organic winter wheat-sunflower-spelt cropping sequence. Weed Res. 51, 413–421. https://doi.org/10.1111/j.1365-3180.2011.00859.x (2011).Article 

    Google Scholar 
    69.Sarani, M., Oveisi, M., Mashhadi, H. R., Alizade, H. & Gonzalez-Andujar, J. L. Interactions between the tillage system and crop rotation on the crop yield and weed populations under arid conditions. Weed Biol. Manag. 14, 198–208. https://doi.org/10.1111/wbm.12047 (2014).Article 

    Google Scholar 
    70.Pardo, G. et al. Effects of reduced and conventional tillage on weed communities: Results of a long-term experiment in Southwestern Spain. Planta Daninha https://doi.org/10.1590/s0100-83582019370100152 (2019).Article 

    Google Scholar 
    71.Fennimore, S. A. & Jackson, L. E. Organic amendment and tillage effects on vegetable field weed emergence and seedbanks 1. Weed Technol. 17, 42–50. https://doi.org/10.1614/0890-037x(2003)017[0042:oaateo]2.0.co;2 (2003).Article 

    Google Scholar 
    72.Francis, A. & Warwick, S. I. The biology of Canadian weeds. 3. Lepidium draba L., L. chalepense L., L. appelianum Al-Shehbaz (updated). Can. J. Plant Sci. 88, 379–401. https://doi.org/10.4141/CJPS07100 (2008).Article 

    Google Scholar  More

  • in

    High species richness of tachinid parasitoids (Diptera: Calyptratae) sampled with a Malaise trap in Baihua Mountain Reserve, Beijing, China

    1.Wilson, E. O. The little things that run the world (The importance and conservation of invertebrates). Conserv. Biol. 1, 344–346 (1987).
    Google Scholar 
    2.Stork, N. E. How many species are there?. Biodivers. Conserv. 2, 215–232 (1993).
    Google Scholar 
    3.Erwin, T. L. Tropical forests: Their richness in Coleoptera and other arthropod species. Coleopts. Bull. 36, 74–75 (1982).
    Google Scholar 
    4.Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth?. Annu. Rev. Entomol. 63, 31–45 (2018).CAS 
    PubMed 

    Google Scholar 
    6.Linnaeus, C. Amoenitates Academicae, seu Dissertationes Variae Physicae, Medicae, Botanicae, Volume 2. (Laurentium Salvium, 1749).7.Linnaeus, C. Systema Naturae per Regna tria Naturae, Secundum Classes, Ordines, Genera, Species cum Characteribus, Differentiis, Synonymis, Locis. (Laurentium Salvium, 1758).8.Metcalf, Z. P. How many insects are there in the world?. Entomol. News 51, 219–222 (1940).
    Google Scholar 
    9.Ødegaard, F. The relative importance of trees versus lianas as hosts for phytophagous beetles (Coleoptera) in tropical forests. J. Biogeogr. 27, 283–296 (2000).
    Google Scholar 
    10.Geiger, M. F. et al. The global Malaise trap program–how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).11.D’Souza, M. L. & Hebert, P. D. N. Stable baselines of temporal turnover underlie high beta diversity in tropical arthropod communities. Mol. Ecol. 27, 2447–2460 (2018).PubMed 

    Google Scholar 
    12.Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. Bmc. Biol. 17, 96 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Wu, Y. et al. Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J. Biogeogr. 40, 2310–2323 (2013).
    Google Scholar 
    14.Morelli, F. et al. Taxonomic diversity, functional diversity and evolutionary uniqueness in bird communities of Beijing’s urban parks: Effects of land use and vegetation structure. Urban For. Urban Green. 23, 84–92 (2017).
    Google Scholar 
    15.White, E. P. Spatiotemporal scaling of species richness: Patterns, processes and implications. In Scaling biodiversity (eds Storch, D. et al.) 325–346 (Cambridge University Press, 2007).
    Google Scholar 
    16.Schwartz, M. D. Phenology: An Integrative Environmental Science. (Springer, 2013).17.Brehm, G., Colwell, R. K. & Kluge, J. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob. Ecol. Biogeogr. 16, 205–219 (2007).
    Google Scholar 
    18.Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).
    Google Scholar 
    19.Le, C. M., Wilson, S. W. & Soulier-Perkins, A. Elevational gradient of Hemiptera (Heteroptera, Auchenorrhyncha) on a tropical mountain in Papua New Guinea. PeerJ 3, e978 (2015).
    Google Scholar 
    20.McCravy, K. W. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 9, 170 (2018).PubMed Central 

    Google Scholar 
    21.Karlsson, D. et al. The Swedish Malaise trap project: A 15 year retrospective on a countrywide insect inventory. Biodivers. Data J. 8, e47255 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    22.Borkent, A. et al. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science. Zootaxa 4402, 53–90 (2018).PubMed 

    Google Scholar 
    23.Fraser, S. E. M., Dytham, C. & Mayhew, P. J. The effectiveness and optimal use of Malaise traps for monitoring parasitoid wasps. Insect Conserv. Divers. 1, 22–31 (2008).
    Google Scholar 
    24.Gaston, K. J., Gauld, I. D. & Hanson, P. The size and composition of the hymenopteran fauna of Costa Rica. J. Biogeogr. 23, 105–113 (1996).
    Google Scholar 
    25.Townes, H. K. Design of a Malaise trap. Proc. Entomol. Soc. Wash. 64, 253–262 (1962).
    Google Scholar 
    26.O’Hara, J. E. History of tachinid classification (Diptera, Tachinidae). ZooKeys 316, 1–34 (2013).
    Google Scholar 
    27.O’Hara, J. E., Henderson, S. J. & Wood, D. M. Preliminary Checklist of the Tachinidae of the World. Version 2.1. http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Worldchecklist.html (2020).28.Stireman, J. O., O’Hara, J. E. & Wood, D. M. Tachinidae: Evolution, behavior, and ecology. Annu. Rev. Entomol. 51, 525–555 (2006).CAS 
    PubMed 

    Google Scholar 
    29.Cerretti, P. et al. Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Syst. Entomol. 39, 335–353 (2014).
    Google Scholar 
    30.Stireman, J. O., Dyer, L. A. & Greeney, H. F. Specialised generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conserv. Diver. 10, 367–384 (2017).
    Google Scholar 
    31.Belshaw, R. Tachinid (Diptera) assemblages in habitats of a secondary succession in southern Britain. Entomology 111, 151–161 (1992).
    Google Scholar 
    32.Inclán, D. J. & Stireman, J. O. Tachinid (Diptera: Tachinidae) Parasitoid diversity and temporal abundance at a single site in the northeastern United States. Ann. Entomol. Soc. Am. 104, 287–296 (2011).
    Google Scholar 
    33.Cerretti, P., Whitmore, D., Mason, F. & Taglianti, A. V. Survey on the spatio-temporal distribution of tachinid flies: Using Malaise traps (Diptera, Tachinidae). In Invertebrati diuna foresta della Pianura Padana, Bosco della Fontana, Secondo contributo (eds Cerretti, P. et al.) 229–256 (Springer, 2004).34.Stireman, J. O. Alpha and beta diversity of a tachinid parasitoid community. Ann. Entomol. Soc. Am. 101, 362–370 (2008).
    Google Scholar 
    35.Pei, W. Y. et al. Species diversity of Tachinidae in Baihuashan National Nature Reserve of Beijing, China. J. Environ. Entomol. 41, 1218–1225 (2019).
    Google Scholar 
    36.Zhao, Y. et al. Fauna resource investigation of Tachinidae (Diptera) from Mt. Huangyi, Eastern Liaoning, China. J. Environ. Entomol. 41, 1208–1217 (2019).
    Google Scholar 
    37.Zhang, Y. Z. et al. Fauna resource investigation of Tachinidae (Diptera) from the grasslands, Inner Mongolia of China. J. Environ. Entomol. 40, 1353–1363 (2018).
    Google Scholar 
    38.Zhang, C. T. et al. Preliminary investigation on Tachinidae (Diptera) of Hanma National Nature Reserve, Inner Mongolia, China. J. Environ. Entomol. 35, 257–264 (2017).CAS 

    Google Scholar 
    39.Liang, H. C. et al. Fauna resource of Tachinidae in Liaoning Hun River Source Nature Reserve of China. J. Environ. Entomol. 38, 1214–1223 (2016).
    Google Scholar 
    40.Zhang, C. T. et al. Faunistic investigation of Tachinidae in Liaoning Bailang Mountain National Nature Reserve of China. J. Environ. Entomol. 37, 726–734 (2015).
    Google Scholar 
    41.Zhang, D. et al. Study on Tachinidae fauna in Songshan National Nature Reserve of Beijing, China. Chin. J. Vector Biol. Control 22, 459–465 (2011).
    Google Scholar 
    42.Herting, B. & Dely-Draskovits, A. Family Tachinidae. In Catalogue of Palaearctic Diptera. Volume 13. Anthomyiidae–Tachinidae. (eds Soós, A. & Papp, L.) 118–458 (Hungarian Natural History Museum, 1993).43.O’Hara, J. E. & Henderson, S. J. World Genera of the Tachinidae (Diptera) and Their Regional Occurrence. Version 11.0. http://www.nadsdiptera.org/Tach/WorldTachs/Genera/Worldgenera.html (2020).44.Tschorsnig, H. P. & Richter, V. A. Family Tachinidae. In Contributions to a Manual of Palaearctic Diptera (with special reference to flies of economic importance) (eds Papp, L. & Darvas, B) 691–827 (Higher Brachycera Science Herald Press, 1998).45.Cerretti, P., Tschorsnig, H. P., Lopresti, M. & Giovanni, F. D. MOSCHweb: A matrix-based interactive key to the genera of the Palaearctic Tachinidae (Insecta, Diptera). ZooKeys 205, 5–18 (2012).
    Google Scholar 
    46.Andersen, S. Revision of European species of Phytomyptera Rondani (Diptera: Tachinidae). Insect Syst. Evol. 19, 43–80 (1988).
    Google Scholar 
    47.Andersen, S. The Siphonini (Diptera: Tachinidae) of Europe. Fauna Entomol. Scand. 33, 1–146 (1996).
    Google Scholar 
    48.Chao, C. M. et al. Tachinidae. In Flies of China Vol. 2 (eds Xue, W. Q. & Chao, C. M.) (Liaoning Science and Technology Press, 1998).
    Google Scholar 
    49.Chao, C. M. et al. Fauna Sinica. Insecta. Vol. 23. Diptera. Tachinidae (1) (Science Press, 2001).
    Google Scholar 
    50.O’Hara, J. E., Shima, H. & Zhang, C. T. Annotated catalogue of the Tachinidae (Insecta: Diptera) of China. Zootaxa 2190, 1–236 (2009).
    Google Scholar 
    51.Tachi, T. & Shima, H. Systematic study of the genus Peribaea Robineau-Desvoidy of East Asia (Diptera: Tachinidae). Tijdschr. voor Entomol. 145, 115–144 (2002).
    Google Scholar 
    52.Tschorsnig, H. P. Preliminary Host Catalogue of Palaearctic Tachinidae (Diptera). http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Home.html (2017).53.Zhang, C. T., Shima, H. & Chen, X. L. A review of the genus Dexia Meigen in the Palearctic and Oriental Regions (Diptera: Tachinidae). Zootaxa 2705, 1–81 (2010).
    Google Scholar 
    54.Colwell, R. K. Estimates: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9.1.0. http://viceroy.eeb.uconn.edu/estimates/ (2019).55.Oksanen, J. F. et al. Vegan: Community Ecology Package. R Package Version 2.4-3. https://CRAN.R-project.org/package=vegan. Accessed 20 May 2018 (2017).56.Mielke, P. W. 34 Meteorological applications of permutation techniques based on distance functions. Handb. Stat. 4, 813–830 (1984).
    Google Scholar 
    57.Ge, Y. et al. Exotic spartina alterniflora invasion changes temporal dynamics and composition of spider community in a salt marsh of Yangtze Estuary, China. Estuar. Coast. Shelf. Sci. 239, 106755 (2020).
    Google Scholar 
    58.Haq, F. et al. Multivariate approach to the classification and ordination of the forest ecosystem of Nandiar valley western Himalayas. Ecol. Indic. 80, 232–241 (2017).
    Google Scholar 
    59.Oara, J. E., Zhang, C. T. & Shima, H. Catalogue of the Tachinidae (Insecta: Diptera) of China. In Catalogue of Life China: 2021 Annual Checklist, Volume 2 Animals, Insect (VI), Diptera (3) (eds Yang, D. et al.) 845–1170 (The Biodiversity Committee of Chinese Academy of Sciences, 2021).60.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (eds Wiley, J. & Ltd, S.) 1–10 (Wiley, 2010).
    Google Scholar 
    61.Zhang, J. T., Xu, B. & Li, M. Vegetation patterns and species diversity along elevational and disturbance gradients in the Baihua Mountain Reserve, Beijing, China. Mt. Res. Dev. 33, 170–178 (2013).ADS 

    Google Scholar 
    62.Huang, Y. et al. The effects of habitat area, vegetation structure and insect richness on breeding bird populations in Beijing urban parks. Urban For. Urban Green. 14, 1027–1039 (2015).
    Google Scholar 
    63.Eldegard, K., Totland, Ø. & Moe, S. R. Edge effects on plant communities along power line clearings. J. Appl. Ecol. 52, 871–880 (2015).
    Google Scholar 
    64.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).
    Google Scholar 
    65.Harper, K. A. et al. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19, 768–782 (2005).
    Google Scholar 
    66.Laurance, W. F. et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS ONE 2, e1017 (2007).67.Stireman, J. O. III., Cerretti, P., Whitmore, D., Hardersen, S. & Gianelle, D. Composition and stratification of a tachinid (Diptera: Tachinidae) parasitoid community in a European temperate plain forest. Insect Conserv. Divers. 5, 346–357 (2012).
    Google Scholar 
    68.Burington, Z. L. et al. Latitudinal patterns in tachinid parasitoid diversity (Diptera: Tachinidae): A review of the evidence. Insect Conserv. Divers. 13, 419–431 (2020).
    Google Scholar 
    69.Campbell, J. W., Hanula, J. L. & Waldrop, T. A. Effects of prescribed fire and fire surrogates on floral visiting insects of the blue ridge province in North Carolina. Biol. Conserv. 134, 393–404 (2007).
    Google Scholar 
    70.Alfred, D. J. et al. A study on five sampling methods of parasitic hymenopterans in rice ecosystem. Biol. Control. 32, 187–192 (2018).
    Google Scholar 
    71.Wells, W. & Decker, T. A comparison of three types of insect traps for collecting non-Formicidae Hymenoptera on the Island of Dominica. Southwest. Entomol. 31, 59–68 (2006).
    Google Scholar  More

  • in

    Past, present, and future climate space of the only endemic vertebrate genus of the Italian peninsula

    1.Hewitt, G. H. The genetic legacy of Quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    2.Hewitt, G. H. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).CAS 
    PubMed 

    Google Scholar 
    3.Hauswaldt, J. S. et al. From species divergence to population structure: A multimarker approach on the most basal lineage of Salamandridae, the spectacled salamanders (genus Salamandrina) from Italy. Mol. Phylogenetics Evol. 70, 1–12 (2014).
    Google Scholar 
    4.Gomez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).
    Google Scholar 
    5.Hewitt, G. H. Mediterranean peninsulas: The evolution of hotspots. In Biodiversity Hotspots: Distribution and Protection of Conservation Priority (eds Zachos, F. E. & Habel, J. C.) 123–148 (Springer, 2011).
    Google Scholar 
    6.Lanza, B. & Corti, C. Evolution of knowledge on the Italian herpetofauna during the 20th century. Boll. Mus. Civ. St. Nat. Verona 20, 373–436 (1996).
    Google Scholar 
    7.Sindaco, R., Eremčenko, V. K. & Venchi, A. Mediterranean reptiles: State of knowledge, hot spots, areas of endemism, conservation. In Abstracts of the VI Congress of the Societas Herpetologica Italica (eds Bologna, M.A., Capula, M., Carpaneto, G.M., Luiselli, L., Marangoni, C. & Venchi, A.), (Roma, September 27–October 1 2006), Stilgrafica, Roma, pp. 101–102 (2006).8.Borkin, L. J. Distribution of amphibians in North Africa, Europe, Western Asia and Former Soviet Union. In Patterns of Distribution of Amphibians. A Global Perspective (ed. Duellman, W. E.) 329–420 (Johns Hopkins University Press, 1999).
    Google Scholar 
    9.Speybroeck, J. et al. Species list of the European herpetofauna–2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia 41, 139–189 (2020).
    Google Scholar 
    10.Venczel, M. & Sanchíz, B. A fossil plethodontids salamander from the Middle Miocene of Slovakia (Caudata, Plethodontidae). Amphibia-Reptilia 26, 408–411 (2005).
    Google Scholar 
    11.Venczel, M. & Hír, J. Amphibians and squamates from the Miocene of Felsötárkány Basin, N-Hungary. Palaeontogr. Abt. A 300, 117–158 (2013).
    Google Scholar 
    12.Georgalis, G. L., Villa, A., Ivanov, M., Vasilyan, D. & Delfino, M. Fossil amphibians and reptiles from the Neogene locality of Maramena (Greece), the most diverse European herpetofauna at the Miocene/Pliocene transition boundary. Palaeontol. Electron. 22, 1–99 (2019).
    Google Scholar 
    13.Macaluso, L. et al. A progressive extirpation: An overview of the fossil record of Salamandrina (Salamandridae, Urodela). Hist. Biol., 1–18 (2021).14.Delfino, M., Bailon, S. & Pitruzzella, G. The late pliocene amphibians and reptiles from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). Geodiversitas 33(2), 357–382 (2011).
    Google Scholar 
    15.Lanza, B. Salamandrina terdigitata (Lacépède, 1788): Emblem of the Unione Zoologica Italiana. Boll. Zool. 55, 1–4 (1988).
    Google Scholar 
    16.Agustí, J. et al. A calibrated mammal scale for the Neogene of Western Europe. State of the art. Earth-Sci. Rev. 52, 247–260 (2001).ADS 

    Google Scholar 
    17.Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. P. Roy. Soc. B-Biol. Sci. 277, 661–671 (2010).
    Google Scholar 
    18.Baselga, A., Lobo, J. M., Svenning, J. C. & Araujo, M. B. Global patterns in the shape of species geographical ranges reveal range determinants. J. Biogeogr. 39, 760–771 (2012).
    Google Scholar 
    19.Iannella, M., D’Alessandro, P. & Biondi, M. Evidences for a shared history for spectacled salamanders, haplotypes and climate. Sci. Rep. 8(1), 1–11 (2018).CAS 

    Google Scholar 
    20.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).
    Google Scholar 
    21.Ficetola, G. F. et al. Knowing the past to predict the future: Land-use change and the distribution of invasive bullfrogs. Glob. Change Biol. 16(2), 528–537 (2010).ADS 

    Google Scholar 
    22.Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1(4), 330–342 (2010).
    Google Scholar 
    23.Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10(1), 1–14 (2019).CAS 

    Google Scholar 
    24.Jones, L. A. et al. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6, 182111 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Moss, R. et al. Towards new scenarios for the analysis of emissions: Climate change, impacts and response strategies. Intergovernmental Panel on Climate Change Secretariat (IPCC), pp. 132 (2008).26.Wayne, G. P. The beginner’s guide to representative Concentration pathways. Skeptical science Version 1.0 (2013).27.GBIF.org (2021) GBIF Occurrence Download https://doi.org/10.15468/dl.as6sk2.28.Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Nat. Sci. Data 5, 180254 (2018).
    Google Scholar 
    29.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/.30.Karger, D. N., Nobis, M. P., Normand, S., Graham, C. H, & Zimmermann, N. E. CHELSA-TraCE21k v1. 0. Downscaled transient temperature and precipitation data since the last glacial maximum. Clim. Past Discuss., 1–27 (2021).31.Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H. & Hu, A. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768), 1751–1753 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    32.Hill, D. J. The non-analogue nature of Pliocene temperature gradients. EPSL 425, 232–241 (2015).ADS 
    CAS 

    Google Scholar 
    33.Dolan, A. M. et al. Modelling the enigmatic late Pliocene glacial event—Marine Isotope Stage M2. Glob. Planet. Change 128, 47–60 (2015).ADS 

    Google Scholar 
    34.Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35(2), 213–226 (2021).
    Google Scholar 
    35.Thuiller, W., Georges, D. & Engler, R. biomod2: Ensemble platform for species distribution modelling. R package version 3.1–64 (2014). http://CRAN.R-project.org/package=biomod2.36.McCullagh, P. & Nelder, J. A. Generalized Linear Models 511 (Chapman and Hall, 1989).MATH 

    Google Scholar 
    37.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    38.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An opensource release of Maxent. Ecography 40, 887–893 (2017).
    Google Scholar 
    39.QGIS Development Team (2021). QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.40.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).
    Google Scholar 
    41.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    42.Weiss, S. & Ferrand, N. Phylogeography of Southern European Refugia Evolutionary Perspectives on the Origins and Conservation of European Biodiversity 377 (Springer, 2007).
    Google Scholar 
    43.Martinetto, E. The role of central Italy as a centre of refuge for thermophilous plants in the late Cenozoic. Acta Palaeobot. 41(2), 299–319 (2001).
    Google Scholar 
    44.Martinetto, E. et al. Late persistence and deterministic extinction of “humid thermophilous plant taxa of East Asian affinity”(HUTEA) in southern Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 467, 211–231 (2017).
    Google Scholar 
    45.Villa, A. & Delfino, M. Fossil lizards and worm lizards (Reptilia, Squamata) from the Neogene and Quaternary of Europe: An overview. Swiss J. Palaeontol. 138, 177–211 (2019).
    Google Scholar 
    46.Montuire, S., Maridet, O. & Legendre, S. Late Miocene–early Pliocene temperature estimates in Europe using rodents. Palaeogeogr. Palaeoclimatol. Palaeoecol. 238(1–4), 247–262 (2006).
    Google Scholar 
    47.Velitzelos, D., Bouchal, J. M. & Denk, T. Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palyno. 204, 56–117 (2014).
    Google Scholar 
    48.Martinetto, E. & Vieira, M. New Pliocene records of plant fossil-taxa from NW Portugal and their relevance for the assessment of diversity loss patterns in the late Cenozoic of Europe. Rev. Palaeobot. Palyno. 104286 (2020).49.Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    50.Jylhä, K. et al. Observed and projected future shifts of climatic zones in Europe and their use to visualize climate change information. Weather Clim. Soc. 2(2), 148–167 (2010).
    Google Scholar 
    51.Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109(1–2), 213 (2011).ADS 
    CAS 

    Google Scholar 
    52.Rutledge, D. Estimating long-term world coal production with logit and probit transforms. Int. J. Coal Geol. 85(1), 23–33 (2011).CAS 

    Google Scholar 
    53.Hausfather, Z. & Peters, G. Emissions: The “business as usual” story is misleading. Nature 577(7792), 618–620 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    54.Delfino, M. Letters to the Editor: The past and future of extant amphibians. Science 308, 49–50 (2005).CAS 
    PubMed 

    Google Scholar 
    55.Lanza, B., Andreone, F., Bologna, M. A., Corti, C. & Razzetti, E. Fauna d’Italia, Vol. XLII, Amphibia. Calderini, Bologna, XI + 537 pp (2007).56.Martínez-Monzón, A., Cuenca-Bescós, G., Bisbal-Chinesta, J.-F. & Blain, H.-A. One million years of diversity shifts in amphibians and reptiles in a Mediterranean landscape: Resilience rules the Quaternary. Palaeontology https://doi.org/10.1111/pala.12547 (2021).Article 

    Google Scholar 
    57.Basile, M. et al. Seasonality and microhabitat selection in a forest-dwelling salamander. Sci. Nat. 104(9–10), 80 (2017).
    Google Scholar 
    58.Macaluso, L. et al. Osteology of the Italian endemic spectacled salamanders, Salamandrina spp. (Amphibia, Urodela, Salamandridae): Selected skeletal elements for palaeontological investigations. J. Morph. 281(11), 1391–1410 (2020).PubMed 

    Google Scholar 
    59.Sanchiz, B. On the presence of zogosphene-zigantrum vertebral articulations in salamandrids. Acta Zool. Cracov. 31(6), 493–504 (1988).
    Google Scholar 
    60.Utzeri, C., Antonelli, D. & Angelini, C. Note on the behavior of the Spectacled Salamander Salamandrina terdigitata (Lacépede, 1788). Herpetozoa 18, 182–185 (2005).
    Google Scholar 
    61.Weitzman, M. L. The Noah’s Ark Problem. Econometrica 66, 1279–1298 (1998).MathSciNet 
    MATH 

    Google Scholar 
    62.Erwin, D. H. Extinction as the loss of evolutionary history. PNAS 105(1), 11520–11527 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    PubMed 

    Google Scholar 
    64.Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    65.Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. PNAS 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Acoustic differentiation and classification of wild belugas and narwhals using echolocation clicks

    1.Madsen, P. T. & Wahlberg, M. Recording and quantification of ultrasonic echolocation clicks from free-ranging toothed whales. Deep. Res. Part I(54), 1421–1444 (2007).
    Google Scholar 
    2.Au, W. W. L. Sonar of Dolphins (Springer, 1993).
    Google Scholar 
    3.Reeves, R. R. et al. Distribution of endemic cetaceans in relation to hydrocarbon development and commercial shipping in a warming Arctic. Mar. Policy 44, 375–389 (2014).
    Google Scholar 
    4.Hauser, D. D. W. et al. Habitat selection by two beluga whale populations in the Chukchi and Beaufort seas. PLoS One 12, e0172755 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Vacquié-Garcia, J., Lydersen, C., Ims, R. A. & Kovacs, K. M. Habitats and movement patterns of white whales Delphinapterus leucas in Svalbard, Norway in a changing climate. Mov. Ecol. 6, 21 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    6.Lydersen, C., Martin, A. R., Kovacs, K. M. & Gjertz, I. Summer and autumn movements of white whales Delphinapterus leucas in Svalbard, Norway. Mar. Ecol. Prog. Ser. 219, 265–274 (2001).ADS 

    Google Scholar 
    7.Innes, S. et al. Surveys of belugas and narwhals in the Canadian High Arctic in 1996. NAMMCO Sci. Publ. 4, 169–190 (2002).
    Google Scholar 
    8.Smith, T. G. & Martin, A. R. Distribution and movements of belugas, Delphinapterus leucas, in the Canadian High Arctic. Can. J. Fish. Aquat. Sci. 51, 1653–1663 (1994).
    Google Scholar 
    9.Hobbs, R. et al. Global review of the conservation status of Monodontid stocks. Mar. Fish. Rev. 81, 1–53 (2019).ADS 

    Google Scholar 
    10.Frost, K. J. & Lowry, L. F. Distribution, abundance, and movements of beluga whales, Delphinapterus leucas, in coastal waters of western Alaska. In Advances in Research on the Beluga Whale, Delphinapterus leucas Vol. 224 (eds Smith, T. G. et al.) 39–57 (Canadian Bulletin of Fisheries and Aquatic Sciences, 1990).
    Google Scholar 
    11.Lewis, A. E., Hammill, M. O., Power, M., Doidge, D. W. & Lesage, V. Movement and aggregation of eastern Hudson Bay beluga whales (Delphinapterus leucas): A comparison of patterns found through satellite telemetry and Nunavik Traditional Ecological Knowledge. Arctic 62, 13–24 (2009).
    Google Scholar 
    12.Ahonen, H., Stafford, K. M., Lydersen, C., Steur, L. D. & Kovacs, K. M. A multi-year study of narwhal occurrence in the western Fram Strait—detected via passive acoustic monitoring. Polar Res. 38, 1–14 (2019).
    Google Scholar 
    13.Heide-Jørgensen, M. P. et al. The migratory behaviour of narwhals (Monodon monoceros). Can. J. Zool. 81, 1298–1305 (2003).
    Google Scholar 
    14.Richard, P. R. et al. Baffin Bay narwhal population distribution and numbers: Aerial surveys in the Canadian High Arctic, 2002–04. Arctic 63, 85–99 (2010).
    Google Scholar 
    15.Dietz, R., Heide-Jørgensen, M. P., Richard, P. R. & Acquarone, M. Summer and fall movements of narwhals (Monodon monoceros) from northeastern Baffin Island towards northern Davis Strait. Arctic 54, 244–261 (2001).
    Google Scholar 
    16.Castellote, M. et al. Monitoring white whales (Delphinapterus leucas) with echolocation loggers. Polar Biol. 36, 493–509 (2013).
    Google Scholar 
    17.Frouin-Mouy, H., Kowarski, K., Martin, B. & Bröker, K. Seasonal trends in acoustic detection of marine mammals in Baffin Bay and Melville Bay, Northwest Greenland. Arctic 70, 59–76 (2017).
    Google Scholar 
    18.Sousa-Lima, R. S., Norris, T. F., Oswald, J. N. & Fernandes, D. P. A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals. Aquat. Mamm. 39, 23–53 (2013).
    Google Scholar 
    19.Zhong, M. et al. Beluga whale acoustic signal classification using deep learning neural network models. J. Acoust. Soc. Am. 147, 1834–1841 (2020).ADS 
    PubMed 

    Google Scholar 
    20.Castellote, M. et al. Seasonal distribution and foraging occurrence of Cook Inlet beluga whales based on passive acoustic monitoring. Endanger. Species Res. 41, 225–243 (2020).
    Google Scholar 
    21.Sjare, B. L. & Smith, T. G. The vocal repertoire of white whales, Delphinapterus leucas, summering in Cunningham Inlet, Northwest Territories. Can. J. Zool. 64, 407–415 (1986).
    Google Scholar 
    22.Chmelnitsky, E. G. & Ferguson, S. H. Beluga whale, Delphinapterus leucas, vocalizations from the Churchill River, Manitoba, Canada. J. Acoust. Soc. Am. 131, 4821–4835 (2012).ADS 
    PubMed 

    Google Scholar 
    23.Marcoux, M., Auger-Méthé, M. & Humphries, M. M. Variability and context specificity of narwhal (Monodon monoceros) whistles and pulsed calls. Mar. Mammal Sci. 28, 649–665 (2012).
    Google Scholar 
    24.Garland, E. C., Castellote, M. & Berchok, C. L. Beluga whale (Delphinapterus leucas) vocalizations and call classification from the eastern Beaufort Sea population. J. Acoust. Soc. Am. 137, 3054–3067 (2015).ADS 
    PubMed 

    Google Scholar 
    25.Rasmussen, M. H., Koblitz, J. C. & Laidre, K. L. Buzzes and high-frequency clicks recorded from narwhals (Monodon monoceros) at their wintering ground. Aquat. Mamm. 41, 256–264 (2015).
    Google Scholar 
    26.McCullough, J. L. K., Simonis, A. E., Sakai, T. & Oleson, E. M. Acoustic classification of false killer whales in the Hawaiian islands based on comprehensive vocal repertoire. JASA Express Lett. 1, 071201 (2021).
    Google Scholar 
    27.Ford, J. K. B. & Fisher, H. D. Underwater acoustic signals of the narwhal (Monodon monoceros). Can. J. Zool. 56, 552–560 (1978).
    Google Scholar 
    28.Rankin, S. et al. Acoustic classification of dolphins in the California Current using whistles, echolocation clicks, and burst pulses. Mar. Mammal Sci. 33, 520–540 (2017).
    Google Scholar 
    29.Walmsley, S. F., Rendell, L., Hussey, N. E. & Marcoux, M. Vocal sequences in narwhals (Monodon monoceros). J. Acoust. Soc. Am. 147, 1078–1091 (2020).ADS 
    PubMed 

    Google Scholar 
    30.Shapiro, A. D. Preliminary evidence for signature vocalizations among free-ranging narwhals (Monodon monceros). J. Acoust. Soc. Am. 120, 1695–1705 (2006).ADS 
    PubMed 

    Google Scholar 
    31.Simões Amorim, T. O. et al. Integrative bioacoustics discrimination of eight delphinid species in the western South Atlantic Ocean. PLoS One 14, e0217977 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    32.Stafford, K. M., Laidre, K. L. & Heide-Jørgensen, M. P. First acoustic recordings of narwhals (Monodon monoceros) in winter. Mar. Mammal Sci. 28, 197–207 (2012).
    Google Scholar 
    33.Castellote, M. et al. Dual instrument passive acoustic monitoring of belugas in Cook Inlet, Alaska. J. Acoust. Soc. Am. 139, 2697–2707 (2016).ADS 
    PubMed 

    Google Scholar 
    34.Lammers, M. O. et al. Passive acoustic monitoring of Cook Inlet beluga whales (Delphinapterus leucas). J. Acoust. Soc. Am. 134, 2497–2504 (2013).ADS 
    PubMed 

    Google Scholar 
    35.Roch, M. A., Stinner-Sloan, J., Baumann-Pickering, S. & Wiggins, S. M. Compensating for the effects of site and equipment variation on delphinid species identification from their echolocation clicks. J. Acoust. Soc. Am. 137, 22–29 (2015).ADS 
    PubMed 

    Google Scholar 
    36.Au, W. W., Penner, R. H., Carder, D. A. & Scronce, B. Demonstration of adaptation in beluga whale echolocation signals. J. Acoust. Soc. Am. 77, 726–730 (1985).ADS 
    CAS 
    PubMed 

    Google Scholar 
    37.Au, W. W. L., Penner, R. H. & Turl, C. W. Propagation of beluga echolocation signals. J. Acoust. Soc. Am. 82, 807–813 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    38.Roy, N., Simard, Y., Gervaise, C. & Dtn, E. 3D tracking of foraging belugas from their clicks: Experiment from a coastal hydrophone array. Appl. Acoust. 71, 1050–1056 (2010).
    Google Scholar 
    39.Zahn, M. J., Laidre, K. L., Stilz, P., Rasmussen, M. H. & Koblitz, J. C. Vertical sonar beam width of wild belugas (Delphinapterus leucas) in West Greenland. PLoS One 16, e0257054 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Rutenko, A. N. & Vishnyakov, A. A. Time sequences of sonar signals generated by a beluga whale when locating underwater objects. Acoust. Phys. 52, 314–323 (2006).ADS 

    Google Scholar 
    41.Koblitz, J. C., Stilz, P., Rasmussen, M. H. & Laidre, K. L. Highly directional sonar beam of narwhals (Monodon monoceros) measured with a vertical 16 hydrophone array. PLoS One 11, e0162069 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Podolskiy, E. A. & Sugiyama, S. Soundscape of a narwhal summering ground in a glacier fjord (Inglefield Bredning, Greenland). J. Geophys. Res. Ocean. 125, e2020JC016116 (2020).ADS 

    Google Scholar 
    43.Miller, L. A., Pristed, J., Mohl, B. & Surlykke, A. The click-sounds of narwhals (Monodon monoceros) in Inglefield Bay, Northwest Greenland. Mar. Mammal Sci. 11, 491–502 (1995).
    Google Scholar 
    44.Marcoux, M., Auger-Methe, M., Chmelnitsky, E., Ferguson, S. H. & Humphries, M. M. Local passive acoustic monitoring of narwhal presence in the Canadian Arctic: A pilot project. Arctic 64, 307–316 (2011).
    Google Scholar 
    45.Overland, J. et al. The urgency of Arctic change. Polar Sci. 21, 6–13 (2019).ADS 

    Google Scholar 
    46.Comiso, J. C. & Hall, D. K. Climate trends in the Arctic as observed from space. WIREs Clim. Change 5, 389–409 (2014).
    Google Scholar 
    47.Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).
    Google Scholar 
    48.Overland, J. E. & Wang, M. When will the summer Arctic be nearly sea ice free?. Geophys. Res. Lett. 40, 2097–2101 (2013).ADS 

    Google Scholar 
    49.Smith, L. C. & Stephenson, S. R. New Trans-Arctic shipping routes navigable by midcentury. Proc. Natl. Acad. Sci. U.S.A. 110, E1191–E1195 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Hauser, D. D. W., Laidre, K. L. & Stern, H. L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl. Acad. Sci. U.S.A. 115, 7617–7622 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and Arctic marine mammals: Review and policy recommendations. Environ. Rev. 28, 438–448 (2020).
    Google Scholar 
    52.Halliday, W. D. et al. Underwater sound levels in the Canadian Arctic, 2014–2019. Mar. Pollut. Bull. 168, 112437 (2021).CAS 
    PubMed 

    Google Scholar 
    53.Kochanowicz, Z. et al. Using western science and Inuit knowledge to model ship-source noise exposure for cetaceans (marine mammals) in Tallurutiup Imanga (Lancaster Sound), Nunavut, Canada. Mar. Policy 130, 104557 (2021).
    Google Scholar 
    54.Stewart, R. E. A., Lesage, V., Lawson, J. W., Cleator, H. & Martin, K. A. Science technical review of the draft Environmental Impact Statement (EIS) for Baffinland’s Mary River Project (Canadian Science Advisory Secretariat, Fisheries and Oceans Canada, 2011).
    Google Scholar 
    55.Heide-Jørgensen, M. P., Hansen, R. G., Westdal, K., Reeves, R. R. & Mosbech, A. Narwhals and seismic exploration: Is seismic noise increasing the risk of ice entrapments?. Biol. Conserv. 158, 50–54 (2013).
    Google Scholar 
    56.Blackwell, S. B., Greene, C. R. & Richardson, W. J. Drilling and operational sounds from an oil production island in the ice-covered Beaufort Sea. J. Acoust. Soc. Am. 116, 3199–3211 (2004).ADS 
    PubMed 

    Google Scholar 
    57.Yang, W. et al. Anthropogenic sound exposure-induced stress in captive dolphins and implications for cetacean health. Front. Mar. Sci. 8, 606736 (2021).
    Google Scholar 
    58.Erbe, C. & Farmer, D. M. Zones of impact around icebreakers affecting beluga whales in the Beaufort Sea. J. Acoust. Soc. Am. 108, 1332–1340 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    59.Heide-Jørgensen, M. P. et al. Behavioral response study on seismic airgun and vessel exposures in narwhals. Front. Mar. Sci. 8, 658173 (2021).
    Google Scholar 
    60.Gillespie, D., Mellinger, D. K., Gordon, J. & Al, E. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. Proc. Inst. Acoust. 30, 54–62 (2008).
    Google Scholar 
    61.Sakai, T. PAMpal: Load and process passive acoustic data. R package version 0.12.6. http://cran.r-project.org/package=PAMpal (2021).62.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing http://www.r-project.org/ (2021).63.Griffiths, E. T. et al. Detection and classification of narrow-band high frequency echolocation clicks from drifting recorders. J. Acoust. Soc. Am. 147, 3511–3522 (2020).ADS 
    PubMed 

    Google Scholar 
    64.Baumann-Pickering, S., Wiggins, S. M., Hildebrand, J. A., Roch, M. A. & Schnitzler, H. Discriminating features of echolocation clicks of melon-headed whales (Peponocephala electra), bottlenose dolphins (Tursiops truncatus), and Gray’s spinner dolphins (Stenella longirostris longirostris). J. Acoust. Soc. Am. 128, 2212–2224 (2010).ADS 
    PubMed 

    Google Scholar 
    65.Sakai, T. PAMpal standardClickCalcs. https://taikisan21.github.io/PAMpal/StandardCalcs.html (2021).66.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    67.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    68.Anderson, M. J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef Stat. Ref. Online https://doi.org/10.1002/9781118445112.stat07841 (2017).Article 

    Google Scholar 
    69.Pearson, K. On lines and planes of closest fit to systems of points in space. Philos. Mag. 2, 559–572 (1901).MATH 

    Google Scholar 
    70.Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. Nat. Methods 14, 641–642 (2017).CAS 

    Google Scholar 
    71.Jackson, D. A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214 (1993).
    Google Scholar 
    72.Oksanen, J. et al. Vegan: Community ecology package. R package version 2.5-7. https://cran.r-project.org/package=vegan (2020).73.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    74.Yang, L. et al. Description and classification of echolocation clicks of Indian Ocean humpback (Sousa plumbea) and Indo-Pacific bottlenose (Tursiops aduncus) dolphins from Menai Bay, Zanzibar, East Africa. PLoS One 15, e0230319 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Archer, F. I., Rankin, S., Stafford, K. M., Castellote, M. & Delarue, J. Quantifying spatial and temporal variation of North Pacific fin whale (Balaenoptera physalus) acoustic behavior. Mar. Mammal Sci. 36, 224–245 (2020).
    Google Scholar 
    76.Ross, J. C. & Allen, P. E. Random Forest for improved analysis efficiency in passive acoustic monitoring. Ecol. Inform. 21, 34–39 (2014).
    Google Scholar 
    77.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    78.Archer, E. rfPermute: Estimate permutation p-values for Random Forest importance metrics. R package version 2.5. https://github.com/EricArcher/rfPermute (2021).79.Gurevich, V. S. & Evans, W. E. Echolocation discrimination of complex planar targets by the Beluga whale (Delphinapterus leucas). J. Acoust. Soc. Am. 60, S5 (1976).ADS 

    Google Scholar 
    80.Soldevilla, M. S. et al. Classification of Risso’s and Pacific white-sided dolphins using spectral properties of echolocation clicks. J. Acoust. Soc. Am. 124, 609–624 (2008).ADS 
    PubMed 

    Google Scholar 
    81.Morisaka, T., Yoshida, Y., Akune, Y., Mishima, H. & Nishimoto, S. Exchange of ‘signature’ calls in captive belugas (Delphinapterus leucas). J. Ethol. 31, 141–149 (2013).
    Google Scholar 
    82.Vergara, V., Michaud, R. & Barrett-Lennard, L. G. What can captive whales tell us about their wild counterparts? Identification, usage, and ontogeny of contact calls in belugas (Delphinapterus leucas). Int. J. Comp. Psychol. 23, 278–309 (2010).
    Google Scholar 
    83.Vergara, V. & Mikus, M. A. Contact call diversity in natural beluga entrapments in an Arctic estuary: Preliminary evidence of vocal signatures in wild belugas. Mar. Mammal Sci. 35, 434–465 (2019).
    Google Scholar 
    84.Panova, E. M. et al. Intraspecific variability in the ‘vowel’-like sounds of beluga whales (Delphinapterus leucas): Intra- and interpopulation comparisons. Mar. Mammal Sci. 32, 452–465 (2016).
    Google Scholar 
    85.Ames, A. E., Blackwell, S. B., Tervo, O. M. & Heide-Jørgensen, M. P. Evidence of stereotyped contact call use in narwhal (Monodon monoceros) mother-calf communication. PLoS One 16, e0254393 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Baumann-Pickering, S. et al. False killer whale and short-finned pilot whale acoustic identification. Endanger. Species Res. 28, 97–108 (2015).
    Google Scholar 
    87.Halliday, W. D. et al. Potential exposure of beluga and bowhead whales to underwater noise from ship traffic in the Beaufort and Chukchi Seas. Ocean Coast. Manag. 204, 105473 (2021).
    Google Scholar 
    88.Laidre, K. L., Jørgensen, O. A. & Treble, M. A. Deep-ocean predation by a high Arctic cetacean. ICES J. Mar. Sci. 61, 430–440 (2004).
    Google Scholar 
    89.Laidre, K. L., Heide-Jørgensen, M. P., Dietz, R., Hobbs, R. C. & Jørgensen, O. A. Deep-diving by narwhals Monodon monoceros: Differences in foraging behavior between wintering areas?. Mar. Ecol. Prog. Ser. 261, 269–281 (2003).ADS 

    Google Scholar 
    90.Lydersen, C. & Kovacs, K. M. A review of the ecology and status of white whales (Delphinapterus leucas) in Svalbard, Norway. Polar Res. 40, 5509 (2021).
    Google Scholar 
    91.Hauser, D. D. W. et al. Regional diving behavior of Pacific Arctic beluga whales Delphinapterus leucas and possible associations with prey. Mar. Ecol. Prog. Ser. 541, 245–264 (2015).ADS 

    Google Scholar 
    92.Ragen, T. J., Huntington, H. P. & Hovelsrud, G. K. Conservation of Arctic marine mammals faced with climate change. Ecol. Appl. 18, S166–S174 (2008).PubMed 

    Google Scholar 
    93.Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).PubMed 

    Google Scholar 
    94.Heide-Jørgensen, M. P., Dietz, R., Laidre, K. L. & Richard, P. Autumn movements, home ranges, and winter density of narwhals (Monodon monoceros) tagged in Tremblay Sound, Baffin Island. Polar Biol. 25, 331–341 (2002).
    Google Scholar 
    95.Hauser, D. D. W., Laidre, K. L., Suydam, R. S. & Richard, P. R. Population-specific home ranges and migration timing of Pacific Arctic beluga whales (Delphinapterus leucas). Polar Biol. 37, 1171–1183 (2014).
    Google Scholar 
    96.Huntington, H. P. A preliminary assessment of threats to Arctic marine mammals and their conservation in the coming decades. Mar. Policy 33, 77–82 (2009).
    Google Scholar 
    97.Gregersen, U., Hopper, J. R. & Knutz, P. C. Basin seismic stratigraphy and aspects of prospectivity in the NE Baffin Bay, Northwest Greenland. Mar. Pet. Geol. 46, 1–18 (2013).
    Google Scholar 
    98.McCauley, R. D. et al. Widely used marine seismic survey air gun operations negatively impact zooplankton. Nat. Ecol. Evol. 1, 0195 (2017).
    Google Scholar  More

  • in

    Hatching phenology is lagging behind an advancing snowmelt pattern in a high-alpine bird

    1.Helm, B. et al. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. B Biol. Sci. 280, 20130016 (2013).
    Google Scholar 
    2.Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. Syst. 38, 1–25 (2007).
    Google Scholar 
    3.Dawson, A. Control of the annual cycle in birds: Endocrine constraints and plasticity in response to ecological variability. Philos. Trans. R. Soc. B Biol. Sci. 363, 1621–1633 (2008).
    Google Scholar 
    4.Dawson, A., King, V. M., Bentley, G. E. & Ball, G. F. Photoperiodic control of seasonality in birds. J. Biol. Rhythms 16, 365–380 (2001).CAS 
    PubMed 

    Google Scholar 
    5.Wingfield, J. C. & Kenagy, G. J. Natural regulation of reproductive cycles. Vertebr. Endocrinol. Fundam. Biomed. Implic. 4, 181–241 (1991).
    Google Scholar 
    6.Hahn, T. P., Pereyra, M. E., Sharbaugh, S. M. & Bentley, G. E. Physiological responses to photoperiod in three cardueline finch species. Gen. Comp. Endocrinol. 137, 99–108 (2004).CAS 
    PubMed 

    Google Scholar 
    7.Perfito, N., Meddle, S. L., Tramontin, A. D., Sharp, P. J. & Wingfield, J. C. Seasonal gonadal recrudescence in song sparrows: Response to temperature cues. Gen. Comp. Endocrinol. 143, 121–128 (2005).CAS 
    PubMed 

    Google Scholar 
    8.Shutt, J. D. et al. The environmental predictors of spatio-temporal variation in the breeding phenology of a passerine bird. Proc. R. Soc. B Biol. Sci. 286, 20190952 (2019).
    Google Scholar 
    9.Drake, A. & Martin, K. Rainfall and nest site competition delay mountain bluebird and tree swallow breeding but do not impact productivity. Auk 137, 1–18 (2020).
    Google Scholar 
    10.Bison, M. et al. Best environmental predictors of breeding phenology differ with elevation in a common woodland bird species. Ecol. Evolut. https://doi.org/10.1002/ece3.6684 (2020).Article 

    Google Scholar 
    11.McNamara, J. M., Barta, Z., Klaassen, M. & Bauer, S. Cues and the optimal timing of activities under environmental changes. Ecol. Lett. 14, 1183–1190 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    12.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    13.Moussus, J.-P., Clavel, J., Jiguet, F. & Julliard, R. Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998 (2011).
    Google Scholar 
    14.Chamberlain, D. et al. The altitudinal frontier in avian climate impact research. Ibis 154, 205–209 (2012).
    Google Scholar 
    15.Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).ADS 

    Google Scholar 
    16.Jonas, T., Rixen, C., Sturm, M. & Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. Biogeosci. 113, G03013 (2008).ADS 

    Google Scholar 
    17.Kudo, G. & Hirao, A. S. Habitat-specific responses in the flowering phenology and seed set of alpine plants to climate variation: Implications for global-change impacts. Popul. Ecol. 48, 49–58 (2006).
    Google Scholar 
    18.Trant, A., Higgs, E. & Starzomski, B. M. A century of high elevation ecosystem change in the Canadian Rocky Mountains. Sci. Rep. 10, 9698 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Ceppi, P., Scherrer, S. C., Fischer, A. M. & Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 32, 203–213 (2012).
    Google Scholar 
    20.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).ADS 

    Google Scholar 
    21.Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    22.Brunetti, M. et al. Precipitation variability and changes in the greater Alpine region over the 1800–2003 period. J. Geophys. Res. Atmos. 111, D11107 (2006).ADS 

    Google Scholar 
    23.Napoli, A., Crespi, A., Ragone, F., Maugeri, M. & Pasquero, C. Variability of orographic enhancement of precipitation in the Alpine region. Sci. Rep. 9, 13352 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Diffenbaugh, N. S., Scherer, M. & Ashfaq, M. Response of snow-dependent hydrologic extremes to continued global warming. Nat. Clim. Chang. 3, 379–384 (2013).ADS 
    PubMed 

    Google Scholar 
    25.Beniston, M., Keller, F. & Goyette, S. Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for climate impacts studies. Theoret. Appl. Climatol. 74, 19–31 (2003).ADS 

    Google Scholar 
    26.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    27.Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    28.Tulp, I. & Schekkerman, H. Has prey availability for arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).
    Google Scholar 
    29.Leung, M.C.-Y. et al. Phenology of hatching and food in low Arctic passerines and shorebirds: Is there a mismatch?. Arctic Sci. 4, 538–556 (2018).
    Google Scholar 
    30.Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).
    Google Scholar 
    31.Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).
    Google Scholar 
    32.Hendricks, P. Spring snow conditions, laying date, and clutch size in an alpine population of American Pipits. J. Field Ornithol. 74, 423–429 (2003).
    Google Scholar 
    33.Pereyra, M. E. Effects of snow-related environmental variation on breeding schedules and productivity of a high-altitude population of dusky flycatchers (Empidonax oberholseri). Auk 128, 746–758 (2011).
    Google Scholar 
    34.Resano-Mayor, J. et al. Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: implications for species persistence in the face of climate change. Biodivers. Conserv. 28, 2669–2685 (2019).
    Google Scholar 
    35.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).MATH 

    Google Scholar 
    36.Bears, H., Martin, K. & White, G. C. Breeding in high-elevation habitat results in shift to slower life-history strategy within a single species. J. Anim. Ecol. 78, 365–375 (2009).CAS 
    PubMed 

    Google Scholar 
    37.García-González, R., Aldezabal, A., Laskurain, N. A., Margalida, A. & Novoa, C. Influence of snowmelt timing on the diet quality of pyrenean rock ptarmigan (Lagopus muta pyrenaica): Implications for reproductive success. PLoS ONE 11, e0148632 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    38.Antor, R. J. Arthropod fallout on high alpine snow patches of the Central Pyrenees, northeastern Spain. Arct. Alp. Res. 26, 72–76 (1994).
    Google Scholar 
    39.Brambilla, M. et al. Foraging habitat selection by alpine white-winged snowfinches Montifringilla nivalis during the nestling rearing period. J. Ornithol. 158, 277–286 (2017).
    Google Scholar 
    40.Heiniger, P. H. Anpassungsstrategien des Schneefinken (Montifringilla nivalis) an die extremen Umweltbedingungen des Hochgebirges. Der Ornithol. Beobachter 88, 193–207 (1991).
    Google Scholar 
    41.MacDonald, E. C., Camfield, A. F., Jankowski, J. E. & Martin, K. An alpine-breeding songbird can adjust dawn incubation rhythms to annual thermal regimes. Auk 131, 495–506 (2014).
    Google Scholar 
    42.Mortensen, L. O., Schmidt, N. M., Høye, T. T., Damgaard, C. & Forchhammer, M. C. Analysis of trophic interactions reveals highly plastic response to climate change in a tri-trophic high-arctic ecosystem. Polar Biol. 39, 1467–1478 (2016).
    Google Scholar 
    43.Grangé, J. L. Biologie de la reproduction de la Niverolle alpine Montifringilla nivalis dans les Pyrénnées occidentales françaises. Nos Oiseaux 55, 67–82 (2008).
    Google Scholar 
    44.Strinella, E., Vianale, P., Pirrello, S. & Artese, C. Biologia riproduttiva del Fringuello Alpino Montifringilla nivalis a Campo Imperatore nel Parco Nazionale del Gran Sasso e Monti della Laga (AQ). Alula 18, 95–100 (2011).
    Google Scholar 
    45.Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 367–372 (2003).
    Google Scholar 
    46.Knaus, P. et al. Schweizer Brutvogelatlas 2013–2016. Verbreitung und Bestandsentwicklung der Vögel in der Schweiz und im Fürstentum Liechtenstein. (Schweizerische Vogelwarte, 2018).47.Basist, A., Bell, G. D. & Meentemeyer, V. Statistical relationships between topography and precipitation patterns. J. Clim. 7, 1305–1315 (1994).ADS 

    Google Scholar 
    48.Hock, R. et al. High mountain areas. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H. O. et al.). 131–202. (IPCC-Intergovernmental Panel on Climate Change, 2019).49.Schmidt, N. M., Reneerkens, J., Christensen, J. H., Olesen, M. & Roslin, T. An ecosystem-wide reproductive failure with more snow in the Arctic. PLOS Biol. 17, e3000392 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Martin, K. & Wiebe, K. L. Coping mechanisms of alpine and arctic breeding birds: extreme weather and limitations to reproductive resilience. Integr. Comp. Biol. 44, 177–185 (2004).PubMed 

    Google Scholar 
    51.Williams, C. T. et al. Seasonal reproductive tactics: Annual timing and the capital-to-income breeder continuum. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160250 (2017).
    Google Scholar 
    52.Barlow, K. E. et al. Citizen science reveals trends in bat populations: The National Bat Monitoring Programme in Great Britain. Biol. Cons. 182, 14–26 (2015).
    Google Scholar 
    53.Strebel, N., Kéry, M., Schaub, M. & Schmid, H. Studying phenology by flexible modelling of seasonal detectability peaks. Methods Ecol. Evol. 5, 483–490 (2014).
    Google Scholar 
    54.Maggini, R. et al. Are Swiss birds tracking climate change?: Detecting elevational shifts using response curve shapes. Ecol. Model. 222, 21–32 (2011).
    Google Scholar 
    55.Gilg, O. et al. Climate change and the ecology and evolution of Arctic vertebrates. Ann. N. Y. Acad. Sci. 1249, 166–190 (2012).ADS 
    PubMed 

    Google Scholar 
    56.Gossmann, T. I. et al. Ice-age climate adaptations trap the alpine marmot in a state of low genetic diversity. Curr. Biol. 29, 1712–1720 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Charmantier, A. & Gienapp, P. Climate change and timing of avian breeding and migration: Evolutionary versus plastic changes. Evol. Appl. 7, 15–28 (2014).PubMed 

    Google Scholar 
    58.Klein, G., Vitasse, Y., Rixen, C., Marty, C. & Rebetez, M. Shorter snow cover duration since 1970 in the Swiss Alps due to earlier snowmelt more than to later snow onset. Clim. Change 139, 637–649 (2016).
    Google Scholar 
    59.Scridel, D. et al. A review and meta-analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis 160, 489–515 (2018).
    Google Scholar 
    60.Strinella, E., Scridel, D., Brambilla, M., Schano, C. & Korner-Nievergelt, F. Potential sex-dependent effects of weather on apparent survival of a high-elevation specialist. Sci. Rep. 10, 8386 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115 (2012).ADS 

    Google Scholar 
    62.Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Chang. 10, 406–415 (2020).ADS 

    Google Scholar 
    63.Summers-Smith, J. Handbook of the Birds of the World, Volume 14: Bush-Shrikes to Old World Sparrows. (2009).64.Glutz von Blotzheim, U., Bauer, K. & Bezzel, E. I: Passeridae. in Handbuch der Vögel Mitteleuropas. Vol. 12 (Akademische Verlagsgesellschaft, 1997).65.Antor, R. J. The importance of arthropod fallout on snow patches for the foraging of high-alpine birds. J. Avian Biol. 26, 81–85 (1995).
    Google Scholar 
    66.Gonseth, Y., Wohlgemuth, T., Sansonnens, B. & Buttler, A. Die Biogeographischen Regionen der Schweiz. Erläuterungen und Einteilungsstandard. Umwelt Materialien. Vol. 137 (2001).67.Thornton, P. E., Running, S. W. & White, M. A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190, 214–251 (1997).ADS 

    Google Scholar 
    68.Magnusson, J., Gustafsson, D., Hüsler, F. & Jonas, T. Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resour. Res. 50, 7816–7835 (2014).ADS 

    Google Scholar 
    69.Helbig, N., van Herwijnen, A., Magnusson, J. & Jonas, T. Fractional snow-covered area parameterization over complex topography. Hydrol. Earth Syst. Sci. 19, 1339–1351 (2015).ADS 

    Google Scholar 
    70.Begert, M. & Frei, C. Long-term area-mean temperature series for Switzerland—Combining homogenized station data and high resolution grid data. Int. J. Climatol. 38, 2792–2807 (2018).
    Google Scholar 
    71.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. ArXiv e-prints 1406 (2015).72.R Core Team. R: A Language and Environment for Statistical Computing. (2020).73.Gelman, A. & Su, Y.-S. Arm: Data analysis using regression and multilevel/hierarchical models. (2020).74.Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76 (2017).75.Stan Development Team. RStan: The R interface to Stan. (2020).76.Gabry, J. shinystan: Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models. (2018).77.Pebesma, E. J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30, 683–691 (2004).ADS 

    Google Scholar 
    78.Pebesma, E. & Bivand, R. S. S classes and methods for spatial data: the sp package. R News 5, 9–13 (2005).
    Google Scholar 
    79.Gelman, A. & Greenland, S. Are confidence intervals better termed “uncertainty intervals”?. BMJ 366, I5381 (2019).
    Google Scholar  More

  • in

    Prevalence of Toxoplasma gondii infection among small mammals in Tatarstan, Russian Federation

    Study area and samplingSmall mammals (murid rodents and shrews) were captured using mouse-type snap traps in Tatarstan, Russian Federation (Fig. 1, Table S1). Area type (urban or rural), vegetation (forest or field) and distance from trapping points to the nearest human settlement were recorded. The distinction between forest and field was made based on the UN Food and Agriculture Organization’s criteria23,24. Each administrative division in the Tatarstan was defined to be urban or rural by the Federal Service of State Statistics of Russian Federation25. Based on these criteria, Kazan city and Naberezhnye Chelny city were classified as urban districts and Vysokogorsky district, Yelabuzhsky district, Laishevsky district, Mamadyshsky district, Nizhnekamsky district, Pestrechinsky district and Tukayevsky district were classified as rural districts. Small mammals were captured during the spring and fall periods of 2016 and 2017. Fifty traps were placed in a line every 5 m in one place. Traps were baited and left for one night. Animal suffering was minimized as snap traps cause rapid death in murid rodents and shrews. Each captured small mammal’s species, age, and sex were morphologically identified using a reference guide26, and the animals were then stored at − 20 °C until their brains were isolated.EthicsAll experiments were performed in compliance with relevant Russian and Japanese and institutional laws and guidelines and were approved by the Ministry of Health of the Russian Federation and the Animal Research Committee of Gifu University (Permit Nos. MU 3.1.1029-01, and 17060, respectively). Study was carried out in compliance with the ARRIVE guidelines (https://arriveguidelines.org).DNA extraction and PCRBrain tissue samples were prepared as described previously12. Brain samples stored at − 20 °C were transferred to a − 86 °C deep freezer. Each deep-frozen whole brain sample was homogenized in 1 ml of a 0.9% saline solution. Total DNA was extracted from the brain tissues of each small mammal using a Genomic DNA Purification Kit (Promega, Madison, WI, USA), following the manufacturer’s instructions. Nested PCR was performed with the Takara PCR Amplification Kit (Takara Bio Inc., Foster City, California, USA) according to the manufacturer’s instructions. The primer sets and PCR conditions used to detect the B1 gene from T. gondii were those described previously12.MappingSpatial referencing of the sampling sites was conducted using global positioning system navigation with a Garmin eTrex 10 device. Visualization of cartographic data and measurements of the distances from the trapping points to the nearest human settlements were performed using QGIS 3.12 software27. Geodetic coordinates were projected into planar rectangular coordinates in the Universal Transverse Mercator projection on the WGS-84 ellipsoid (Universal Transverse Mercator, zone 39N). The overview map of the European part of Russia was made in the Lambert Conformal Conic Projection. Map coordinates are represented as geodetic coordinates (WGS-84, degrees and minutes north latitude and east longitude). To visualize thematic objects (administrative boundaries, forests, agricultural lands, and water bodies), a set of vector data layers, NextGIS (Russia), was purchased from OpenStreetMap and contributors, 2021 (https://data.nextgis.com). Data license: ODbL.Dataset and statistical analysesMultivariate logistic regression was performed using the R statistical software package (version 3.6.3)28 to assess the trapping point area (urban or rural), vegetation (forest or field), small mammal species type (alien or non-alien species), age (0–2 months-old juveniles, 3–6 months-old adults or ≧ 6 months old), sex (male or female) and distance from trapping points to the nearest human settlements as risk factors for PCR positivity. According to previous reports2,13,16,17,18, four species, Mi. arvalis, A. flavicollis, A. agrarius, A. uralensis, and three species, My. glareolus, S. araneus and D. nitedula are considered alien and non-alien species, respectively. Quantitative data were replaced with 0 or 1 dummy variables, and age data were replaced by 0, 1 and 2 for juveniles, adults and elders, respectively. Multicollinearity of the explanatory variables was evaluated using Spearman’s coefficient29 calculated using dplyr, FSA and psych packages30,31,32. None of the Spearman’s coefficients were  > 0.6. To find the best fit model, a forward selection procedure was used. Predictive performance and model fitting were assessed using the area under the receiver operating characteristic (ROC) curve, area under the curve (AUC) and corrected Akaike’s information criterion (AICc) with Akaike weight (Wi). AICc and Wi were calculated using the MuMIN package33, and the AUC was calculated using the R pROC package34. P-values of  More

  • in

    Penetrative and non-penetrative interaction between Laboulbeniales fungi and their arthropod hosts

    The micro-CT results from Arthrorhynchus agree perfectly with the previously known light microscope and transmission electron microscope images2. This emphasizes that microtomography is a good technique to visualize the type of fungal attachment to the host and especially the penetration of the cuticle, apart from the study of thallus in amber fossils17. As Jensen et al. (2019) demonstrated the presence of a haustorium in Arthrorhynchus using scanning electron microscopy, we are confident that the lack of penetration and haustorium in Rickia found by micro-CT is real. This is also in agreement with results from the scanning electron microscopical investigation of the attachment sites of R. gigas, which exhibits no indication of penetration and are very similar to those of R. wasmannii previously shown18.Despite the absence of a haustorium, and hence without any obvious means of obtaining nutrition, Rickia gigas is quite a successful fungus, being often abundant on several species of Afrotropical millipedes of the family Spirostreptidae10. It was originally described from Archispirostreptus gigas, and Tropostreptus (= ‘Spirostreptus’) hamatus20, and was subsequently reported from several other Tropostreptus species19.A further challenge for Laboulbeniales growing on millipedes is that infected millipedes, in some species even adults, may moult, shedding the exuviae with the fungus, as has been observed by us on an undescribed Rickia species on a millipede of the genus Spirobolus (family Spirobolidae).The question of how non-haustoriate Laboulbeniales obtain nutrients has been discussed by several authors18, including staining experiments using fungi of the non-haustoriate genus Laboulbenia on various beetles21. Whereas the surface of the main thallus was almost impenetrable to the dye applied (Nile Blue), the smaller appendages could sometimes be penetrated21. The dye injection into the beetle elytra upon which the fungi were sitting, actually spread from the elytron into the fungus, thus indicating that in spite of the lack of a haustorium, the fungus is able to extract nutrients from the interior of its host21.Such experiments have not been performed on Rickia species, but the possibility that nutrients may pass from the host into the basis of the fungus cannot be excluded. For this genus, or at least R. gigas, there may, however, be an alternative way to obtain nutrients: the small opening in the circular wall by which the thallus is attached to the host may allow nutrients from the surface of the millipede or from the environment to seep into the foot of the fungus. However, further experiments are needed in order to evaluate this hypothesis. Moreover, we should not exclude a potential role of primary and secondary appendages in Laboulbeniales nutrition, as we still do not understand exactly their functional role on the fungus life cycle11.The predominant position of the Laboulbeniales on the host might be related to the absence or presence of a haustorium. Thus, the haustoriate species of the genus Arthrorhynchus are most frequently encountered in large numbers on the arthrodial membranes of the host’s abdomen, although some thalli are found on legs2,22. At the arthrodial membranes the cuticle is more flexible and therefore might be easier to penetrate by a parasite. Furthermore, most tissues providing/storing nutrition (e.g., fat body) are located within the abdomen. In contrast, non-haustoriate fungi as are often located on more stiff and sclerotized body-parts like the genus Rickia on the legs or body-rings of millipedes7,20,23 or the genus Laboulbenia on the elytra of beetles21,24. A reason for this might be that the non-haustoriate forms, which are only superficially attached to the host need a more or less smooth surface for adherence and can easily become detached from a flexible surface, which is movable in itself, like the arthrodial membrane, while the haustoriate forms are firmly anchored within the hosts’ cuticle.Whereas the vast majority of the more than 2000 described species of Laboulbeniales show no sign of host penetration, haustoria have been reported from some other genera18, including Trenomyces parasitizing bird lice25,26, Hesperomyces growing on coccinellid beetles and Herpomyces on cockroaches (formerly a Laboulbeniales and now in the order Herpomycetales10), with pernicious consequences on the hosts’ fitness18,27. Micro-CT studies on these genera could help to understand the host penetration. In order to fully understand how Laboulbeniales obtain nourishment, although other approaches are, also needed—for the time being it remains a mystery how the non-haustoriate Laboulbeniales sustain themselves. More

  • in

    The first report of iron-rich population of adapted medicinal spinach (Blitum virgatum L.) compared with cultivated spinach (Spinacia oleracea L.)

    Collection and domestication of the wild populationsThe academic permission for collections and research on medicinal plants was obtained from the Head of Biotechnology Department, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran. The study complies with all relevant guidelines. Some populations of wild spinaches were harvested during spring season 2013 from the mountain habitat of this wild plant in the Tarom region of Zanjan province from an altitude of 2500–3000 m and were transferred to the greenhouses conditions. The domestication and cultivation experiments were conducted at Research Institute of Modern Biological Techniques, University of Zanjan, 1579° m above sea level, with 48° 28′ longitude and 36° 40′ latitude, from April 2013 to August 2020. The resulted seeds were cultured on pots to produce adequate seeds. The seedlings were transferred to the field with rows spaced 50 cm apart and also 50 cm between plants within the rows. Two seeds per hill were planted in an area of approximately 50 m2. Based on the organic conditions, no fertilization was performed. Thinning was done 25 days after emergence, leaving one plant per hill. The other cultural practices were those normally adopted for cultivation in the region.Mass selection of populationsIn the first year, phenotypic studies were performed during the growing season and weak, diseased and underdeveloped plants were removed from the field before the flowering stage. Then plants with the same phenotype and the desired traits were selected and after harvesting, their seeds were mixed. This election cycle was repeated for 5 years. In the final year, the new mass selected population was compared in a pilot project with cultivated spinach in traits such as yield, resistance to wilt, cold and pests, diseases, and mineral contents. This variety before the certification in the related national organization is a candida cultivar. It is a developed population that will be evaluated in the session of the Iranian variety of introduction committee.The seeds of cultivated spinach (Spinacia oleracea L. |Varamin 88|) were prepared from the Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran.Performing tests of stability, uniformity and differentiationTo assess morphologically and differentiate advanced uniformity in the studied population (Candida cultivar), the population was managed as a randomized complete block design with three replications over 2 years according to the instructions for spinach differentiation, uniformity, and stability (DUS Testing) of the International Union New Plant Cultivation (UPOV) and some morphological traits on plants or parts of plants. The studied traits included: cotyledon length, presence or absence of anthocyanin in petiole and veins, green color intensity, shrinkage, presence of lobes in the petiole, petiole state, petiole length, foil shape, foil edge shape, tip shape, and part of the length of the petiole, the time of flowering and the color of the seeds.Mineral analysesTo compare the mineral content of mass-selected population-medicinal spinach (MSP) with cultivated spinach (Spinacia oleracea L. var. Varamin 88), both plants were planted in pots and fields on similar conditions. In five leaves stage, plant samples were taken from both leaf and crown sections. The sampling method was such that after removing half a meter from the beginning and end of each plot (to remove the marginal effect) and also removing the two sidelines, five plants were harvested randomly for plant mineral analysis. Atomic absorption spectroscopy was used to determine the mineral content including iron (Fe), zinc (Z), manganese (Mn), and copper (Cu).The dried samples of root-crown and leave were stored, and later grounded and analyzed for iron (Fe), zinc (Z), manganese (Mn), and copper (Cu) in mass-selected variety (MSP) and cultivated spinach (CSP). Studied minerals were measured using atomic absorption spectrometry in the model of GBC AVANTA (GBC scientific equipment Ltd., Melbourne, Vic., Australia).Calibration of AAS was done using the working standard prepared from commercially available metal/mineral standard solutions (1000 μg/mL, Merck, Germany). The most appropriate wavelength, hollow cathode lamp current, gas mixture flow rate, slit width, and other AAS instrument parameters for metals/minerals were selected as given in the instrument user’s manual, and background correction was used during the determination of metals/minerals. Measurements were made within the linear range of working standards used for calibration15,16.The concentrations of all the minerals were expressed as mg/1000 g (ppm) dry weight of the sample. Each value is the mean of three replicate determination ± standard deviation.Scanning electron microscopy (SEM)For SEM studies, the seeds enveloping were removed and were acetolyzed in a 1:9 sulfuric acid-acetic anhydride solution. The seeds were vigorously shaken for 5 min. Then, they were left for 24–48 h in the solution. After this time, seeds were again shaken for 5 min and then washed.in distilled water by shaking for a further 5 min. The seeds were dried overnight and then were mounted on stubs and covered with Au–Pd by sputter coater model SC 7620. After coating, coated seeds were photographed with an LEO 1450 VP Scanning Electron Microscope. All photographs were taken in the Taban laboratory (Tehran, Iran).Statistical analysisThe statistical evaluation including: data transformation, analysis of variance and comparison of means were performed (SPSS software, Version 11.0). The experiment was structured following a randomized complete block design (RCBD) with three replications. Means comparisons were conducted using an ANOVA protected the least significant difference (LSD) test, with the ANOVA confidence levels of 0.95. Data were presented with their standard deviations (SD). More