1.Nesshöver, C. et al. The science, policy and practice of nature-based solutions: an interdisciplinary perspective. Sci. Total Environ. 579, 1215–1227 (2017).Article
Google Scholar
2.Chausson, A. et al. Mapping the effectiveness of nature-based solutions for climate change adaptation. Glob. Chang. Biol. 26, 6134–6155 (2020).Article
Google Scholar
3.Pires, J. C. M. Negative emissions technologies: a complementary solution for climate change mitigation. Sci. Total Environ. 672, 502–514 (2019).Article
Google Scholar
4.McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 90, 489–500 (2012).Article
Google Scholar
5.Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).Article
Google Scholar
6.Nellemann, C. et al. Blue Carbon — The Role of Healthy Oceans in Binding Carbon (UN Environment, 2009).7.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article
Google Scholar
8.Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front. Mar. Sci. 5, 376 (2018).Article
Google Scholar
9.Friess, D. A. et al. in Oceanography and Marine Biology Vol. 58 Ch. 3 (CRC, 2020).10.Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15 https://doi.org/10.1098/rsbl.2018.0781 (2019).11.Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).Article
Google Scholar
12.Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).Article
Google Scholar
13.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article
Google Scholar
14.Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).Article
Google Scholar
15.Macreadie, P. I. et al. Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen. Sci. Total Environ. 686, 264–275 (2019).Article
Google Scholar
16.Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J. & Maher, D. T. Mangrove mortality in a changing climate: an overview. Estuar. Coast. Shelf Sci. 215, 241–249 (2018).Article
Google Scholar
17.Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).Article
Google Scholar
18.Zhao, Q. et al. Where marine protected areas would best represent 30% of ocean biodiversity. Biol. Conserv. 244, 108536 (2020).Article
Google Scholar
19.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).Article
Google Scholar
20.Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).Article
Google Scholar
21.Van, T. T. et al. Changes in mangrove vegetation area and character in a war and land use change affected region of Vietnam (Mui Ca Mau) over six decades. Acta Oecol. 63, 71–81 (2015).Article
Google Scholar
22.Dung, L. V., Tue, N. T., Nhuan, M. T. & Omori, K. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. For. Ecol. Manage. 380, 31–40 (2016).Article
Google Scholar
23.Nam, V. N., Sasmito, S. D., Murdiyarso, D., Purbopuspito, J. & MacKenzie, R. A. Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetl. Ecol. Manag. 24, 231–244 (2016).Article
Google Scholar
24.Reynolds, L. K., Waycott, M., McGlathery, K. J. & Orth, R. J. Ecosystem services returned through seagrass restoration. Restor. Ecol. 24, 583–588 (2016).Article
Google Scholar
25.Das, S. Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev. 94, 492–502 (2017).Article
Google Scholar
26.Kiesel, J. et al. Effective design of managed realignment schemes can reduce coastal flood risks. Estuar. Coast. Shelf Sci. 242, 106844 (2020).Article
Google Scholar
27.McNally, C. G., Uchida, E. & Gold, A. J. The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems. Proc. Natl Acad. Sci. USA 108, 13945–13950 (2011).Article
Google Scholar
28.Chow, J. Mangrove management for climate change adaptation and sustainable development in coastal zones. J. Sustain. For. 37, 139–156 (2018).Article
Google Scholar
29.Dasgupta, S., Islam, M. S., Huq, M., Huque Khan, Z. & Hasib, M. R. Quantifying the protective capacity of mangroves from storm surges in coastal Bangladesh. PLoS ONE 14, e0214079 (2019).Article
Google Scholar
30.Sutton-Grier, A. E. & Moore, A. Leveraging carbon services of coastal ecosystems for habitat protection and restoration. Coast. Manag. 44, 259–277 (2016).Article
Google Scholar
31.Owuor, M. A., Mulwa, R., Otieno, P., Icely, J. & Newton, A. Valuing mangrove biodiversity and ecosystem services: a deliberative choice experiment in Mida Creek, Kenya. Ecosyst. Serv. 40, 101040 (2019).Article
Google Scholar
32.Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2018).Article
Google Scholar
33.Bunting, P. et al. The global mangrove watch — a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).Article
Google Scholar
34.Jayathilake, D. R. M. & Costello, M. J. A modelled global distribution of the seagrass biome. Biol. Conserv. 226, 120–126 (2018).Article
Google Scholar
35.McKenzie, L. J. et al. The global distribution of seagrass meadows. Environ. Res. Lett. 15, 74041 (2020).Article
Google Scholar
36.Trumbore, S. E. Potential responses of soil organic carbon to global environmental change. Proc. Natl Acad. Sci. USA 94, 8284–8291 (1997).Article
Google Scholar
37.Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240–244 (2018).Article
Google Scholar
38.Ouyang, X. & Lee, S. Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 11, 317 (2020).Article
Google Scholar
39.Kauffman, J. B. et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90, e01405 (2020).Article
Google Scholar
40.Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).Article
Google Scholar
41.Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).Article
Google Scholar
42.Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).Article
Google Scholar
43.Sanderman, J. et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 13, 55002 (2018).Article
Google Scholar
44.Traganos, D. et al. Towards global-scale seagrass mapping and monitoring using Sentinel-2 on Google Earth Engine: the case study of the Aegean and Ionian Seas. Remote Sens. 10, 1227 (2018).Article
Google Scholar
45.Hossain, M. S. & Hashim, M. Potential of Earth Observation (EO) technologies for seagrass ecosystem service assessments. Int. J. Appl. Earth Obs. Geoinf. 77, 15–29 (2019).Article
Google Scholar
46.Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).Article
Google Scholar
47.Coastal carbon atlas. Coastal Carbon Research Coordination Network. CCRCN https://ccrcn.shinyapps.io/CoastalCarbonAtlas/_w_8595a9b5/#tab-6425-6 (2019).48.UNEP-WCMC. Ocean data viewer: global distribution of seagrasses. UNEP https://doi.org/10.34892/x6r3-d211 (2018).49.Hammerstrom, K. K., Kenworthy, W. J., Fonseca, M. S. & Whitfield, P. E. Seed bank, biomass, and productivity of Halophila decipiens, a deep water seagrass on the west Florida continental shelf. Aquat. Bot. 84, 110–120 (2006).Article
Google Scholar
50.Pergent-Martini, C. et al. Descriptors of Posidonia oceanica meadows: use and application. Ecol. Indic. 5, 213–230 (2005).Article
Google Scholar
51.Esteban, N., Unsworth, R. K. F., Gourlay, J. B. Q. & Hays, G. C. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles. Mar. Pollut. Bull. 134, 99–105 (2018).Article
Google Scholar
52.York, P. H. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167 (2015).Article
Google Scholar
53.Serrano, O. et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 10, 4313 (2019).Article
Google Scholar
54.Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, 1111 (2003).Article
Google Scholar
55.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article
Google Scholar
56.Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).Article
Google Scholar
57.Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538 (2018).Article
Google Scholar
58.Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 14652 (2020).Article
Google Scholar
59.Maher, D. T., Call, M., Santos, I. R. & Sanders, C. J. Beyond burial: lateral exchange is a significant atmospheric carbon sink in mangrove forests. Biol. Lett. 14, 20180200 (2018).Article
Google Scholar
60.Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Ocean 64, 996–1013 (2019).Article
Google Scholar
61.Kelleway, J. J. et al. A national approach to greenhouse gas abatement through blue carbon management. Glob. Environ. Chang. 63, 102083 (2020).Article
Google Scholar
62.Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Chang. Biol. 68, 5844–5855 (2020).Article
Google Scholar
63.Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016).Article
Google Scholar
64.Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).Article
Google Scholar
65.Worthington, T. & Spalding, M. Mangrove restoration potential: a global map highlighting a critical opportunity (OECD, 2018).66.Kearney, M. S., Riter, J. C. A. & Turner, R. E. Freshwater river diversions for marsh restoration in Louisiana: twenty-six years of changing vegetative cover and marsh area. Geophys. Res. Lett. 38, 16405 (2011).Article
Google Scholar
67.Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870–872 (2019).Article
Google Scholar
68.Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135 (2019).Article
Google Scholar
69.Herr, D., Blum, J., Himes-Cornell, A. & Sutton-Grier, A. An analysis of the potential positive and negative livelihood impacts of coastal carbon offset projects. J. Environ. Manag. 235, 463–479 (2019).Article
Google Scholar
70.Mojica Vélez, J. M., Barrasa García, S. & Espinoza Tenorio, A. Policies in coastal wetlands: key challenges. Environ. Sci. Policy 88, 72–82 (2018).Article
Google Scholar
71.Zeng, Y. et al. Economic and social constraints on reforestation for climate mitigation in Southeast Asia. Nat. Clim. Chang. 10, 842–844 (2020).Article
Google Scholar
72.van Katwijk, M. M. et al. Global analysis of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).Article
Google Scholar
73.Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl Acad. Sci. USA 106, 12377–12381 (2009).Article
Google Scholar
74.Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996 (2006).Article
Google Scholar
75.Tan, Y. M. et al. Seagrass restoration is possible: insights and lessons from Australia and New Zealand. Front. Mar. Sci. 7, 617 (2020).Article
Google Scholar
76.Greiner, J. T., McGlathery, K. J., Gunnell, J. & McKee, B. A. Seagrass restoration enhances ‘blue carbon’ sequestration in coastal waters. PLoS ONE 8, e72469 (2013).Article
Google Scholar
77.Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).Article
Google Scholar
78.Cunha, A. H. et al. Changing paradigms in seagrass restoration. Restor. Ecol. 20, 427–430 (2012).Article
Google Scholar
79.Rezek, R. J., Furman, B. T., Jung, R. P., Hall, M. O. & Bell, S. S. Long-term performance of seagrass restoration projects in Florida, USA. Sci. Rep. 9, 15514 (2019).Article
Google Scholar
80.Worthington, T. A. et al. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2, 429–443 (2020).Article
Google Scholar
81.Kandus, P. et al. Remote sensing of wetlands in South America: status and challenges. Int. J. Remote Sens. 39, 993–1016 (2018).Article
Google Scholar
82.Gallant, A. L. The challenges of remote monitoring of wetlands. Remote Sens. 7, 10938–10950 (2015).Article
Google Scholar
83.Unsworth, R. K. F. et al. Sowing the seeds of seagrass recovery using hessian bags. Front. Ecol. Evol. 7, 311 (2019).Article
Google Scholar
84.Duarte, C. M., Dennison, W. C., Orth, R. J. W. & Carruthers, T. J. B. The charisma of coastal ecosystems: addressing the imbalance. Estuaries Coasts 31, 233–238 (2008).Article
Google Scholar
85.de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).Article
Google Scholar
86.Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).Article
Google Scholar
87.Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).Article
Google Scholar
88.Deegan, L. A. et al. Coastal eutrophication as a driver of salt marsh loss. Nature 490, 388–392 (2012).Article
Google Scholar
89.Cardoso, P. G., Raffaelli, D. & Pardal, M. A. The impact of extreme weather events on the seagrass Zostera noltii and related Hydrobia ulvae population. Mar. Pollut. Bull. 56, 483–492 (2008).Article
Google Scholar
90.Rogers, K. Accommodation space as a framework for assessing the response of mangroves to relative sea-level rise. Singap. J. Trop. Geogr. 42, 163–183 (2021).Article
Google Scholar
91.Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).Article
Google Scholar
92.Lefcheck, J. S., Wilcox, D. J., Murphy, R. R., Marion, S. R. & Orth, R. J. Multiple stressors threaten the imperiled coastal foundation species eelgrass (Zostera marina) in Chesapeake Bay, USA. Glob. Chang. Biol. 23, 3474–3483 (2017).Article
Google Scholar
93.Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 8, 338–344 (2018).Article
Google Scholar
94.Kendrick, G. A. et al. A systematic review of how multiple stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic seagrass community. Front. Mar. Sci. 6, 455 (2019).Article
Google Scholar
95.Duke, N. C. et al. Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusually extreme weather event. Mar. Freshw. Res. 68, 1816–1829 (2017).Article
Google Scholar
96.Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15, 64010 (2020).Article
Google Scholar
97.Asbridge, E., Lucas, R., Rogers, K. & Accad, A. The extent of mangrove change and potential for recovery following severe Tropical Cyclone Yasi, Hinchinbrook Island, Queensland, Australia. Ecol. Evol. 8, 10416–10434 (2018).Article
Google Scholar
98.Hickey, S. M. et al. Is climate change shifting the poleward limit of mangroves? Estuaries Coasts 40, 1215–1226 (2017).Article
Google Scholar
99.Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A. & Krauss, K. W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Chang. Biol. 20, 147–157 (2014).Article
Google Scholar
100.Whitt, A. A. et al. March of the mangroves: drivers of encroachment into southern temperate saltmarsh. Estuar. Coast. Shelf Sci. 240, 106776 (2020).Article
Google Scholar
101.Cavanaugh, K. C. et al. Sensitivity of mangrove range limits to climate variability. Glob. Ecol. Biogeogr. 27, 925–935 (2018).Article
Google Scholar
102.Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).Article
Google Scholar
103.Coldren, G. A., Langley, J. A., Feller, I. C. & Chapman, S. K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 107, 79–90 (2019).Article
Google Scholar
104.Yando, E. S. et al. Salt marsh–mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. J. Ecol. 104, 1020–1031 (2016).Article
Google Scholar
105.Doughty, C. L. et al. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 39, 385–396 (2016).Article
Google Scholar
106.Lovelock, C. E. et al. Sea level and turbidity controls on mangrove soil surface elevation change. Estuar. Coast. Shelf Sci. 153, 1–9 (2015).Article
Google Scholar
107.Woodroffe, C. D. et al. Mangrove sedimentation and response to relative sea-level rise. Ann. Rev. Mar. Sci. 8, 243–266 (2016).Article
Google Scholar
108.Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).Article
Google Scholar
109.Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).Article
Google Scholar
110.Nicholls, R. J. Coastal flooding and wetland loss in the 21st century: changes under the SRES climate and socio-economic scenarios. Glob. Environ. Chang. 14, 69–86 (2004).Article
Google Scholar
111.Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).Article
Google Scholar
112.Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 27, 2856–2866 (2021).Article
Google Scholar
113.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).Article
Google Scholar
114.Friedlingstein, P. et al. Global Carbon Budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article
Google Scholar
115.Morris, R. L., Boxshall, A. & Swearer, S. E. Climate-resilient coasts require diverse defence solutions. Nat. Clim. Chang. 10, 485–487 (2020).Article
Google Scholar
116.Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).Article
Google Scholar
117.Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).Article
Google Scholar
118.Howard, J. F. et al. Clarifying the role of coastal and marine systems in climate mitigation. Front. Ecol. Environ. 15, 42–50 (2017).Article
Google Scholar
119.Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oysters reefs. Ecol. Appl. 8, 128–140 (1998).Article
Google Scholar
120.Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327 (2020).Article
Google Scholar
121.Lester, S. E., Dubel, A. K., Hernan, G., McHenry, J. & Rassweiler, A. Spatial planning principles for marine ecosystem restoration. Front. Mar. Sci. 7, 328 (2020).Article
Google Scholar
122.Herr, D. & Landis, E. Coastal blue carbon ecosystems: opportunities for nationally determined contributions. Policy brief (IUCN, 2016).123.Apple Newsroom. Conserving mangroves, a lifeline for the world. Apple (22 April 2019) https://www.apple.com/newsroom/2019/04/conserving-mangroves-a-lifeline-for-the-world124.Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl Acad. Sci. USA 116, 12232–12237 (2019).Article
Google Scholar
125.Herr, D., von Unger, M., Laffoley, D. & McGivern, A. Pathways for implementation of blue carbon initiatives. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 116–129 (2017).Article
Google Scholar
126.Friess, D. A. et al. in Sustainable Development Goals: Their Impacts on Forests and People Ch. 14 (eds Katila, P. et al.) 445–481 (Cambridge Univ. Press, 2019).127.Waltham, N. J. et al. UN Decade on Ecosystem Restoration 2021–2030 — what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).Article
Google Scholar
128.Convention on Biological Diversity. Conference of the Parties Decision X/2: strategic plan for biodiversity 2011–2020. CBD https://www.cbd.int/decision/cop/?id=12268 (2011).129.United Nations. Transforming our world: the 2030 Agenda for Sustainable Development (UN, 2015).130.Brander, L. M. et al. The global costs and benefits of expanding marine protected areas. Mar. Policy 116, 103953 (2020).Article
Google Scholar
131.Howard, J. F. et al. The potential to integrate blue carbon into MPA design and management. Aquat. Conserv. 27, 100–115 (2017).Article
Google Scholar
132.Needelman, B. A. et al. The science and policy of the Verified Carbon Standard methodology for tidal wetland and seagrass restoration. Estuaries Coasts 41, 2159–2171 (2018).Article
Google Scholar
133.Michaelowa, A., Hermwille, L., Obergassel, W. & Butzengeiger, S. Additionality revisited: guarding the integrity of market mechanisms under the Paris Agreement. Clim. Policy 19, 1211–1224 (2019).Article
Google Scholar
134.Intergovernmental Panel on Climate Change. 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands (IPCC, 2014).135.United Nations Environment Programme. Out of the blue: the value of seagrasses to the environment and to people (UNEP, 2020).136.Murdiyarso, D. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nat. Clim. Chang. 5, 1089–1092 (2015).Article
Google Scholar
137.Jones, T. et al. Madagascar’s mangroves: quantifying nation-wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sens. 8, 106 (2016).Article
Google Scholar
138.Holmquist, J. R. et al. Uncertainty in United States coastal wetland greenhouse gas inventorying. Environ. Res. Lett. 13, 115005 (2018).Article
Google Scholar
139.Maher, D. T., Drexl, M., Tait, D. R., Johnston, S. G. & Jeffrey, L. C. iAMES: an inexpensive, automated methane ebullition sensor. Environ. Sci. Technol. 53, 6420–6426 (2019).Article
Google Scholar
140.Primavera, J. H. & Esteban, J. M. A. A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl. Ecol. Manag. 16, 345–358 (2008).Article
Google Scholar
141.Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. USA 112, 14295–14300 (2015).Article
Google Scholar
142.Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 14, 307–316 (2016).Article
Google Scholar
143.Burkholz, C., Garcias-Bonet, N. & Duarte, C. M. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments. Biogeosciences 17, 1717–1730 (2020).Article
Google Scholar
144.Bianchi, T. S. et al. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 119, 7–16 (2013).Article
Google Scholar
145.Apostolaki, E. T. et al. Exotic Halophila stipulacea is an introduced carbon sink for the eastern Mediterranean Sea. Sci. Rep. 9, 9643 (2019).Article
Google Scholar
146.Bell, J. & Lovelock, C. E. Insuring mangrove forests for their role in mitigating coastal erosion and storm-surge: an Australian case study. Wetlands 33, 279–289 (2013).Article
Google Scholar
147.Reguero, B. G. et al. Financing coastal resilience by combining nature-based risk reduction with insurance. Ecol. Econ. 169, 106487 (2020).Article
Google Scholar
148.Thomas, S. Blue carbon: knowledge gaps, critical issues, and novel approaches. Ecol. Econ. 107, 22–38 (2014).Article
Google Scholar
149.International Partnership for Blue Carbon. Blue carbon partnership. IPBC https://bluecarbonpartnership.org (2017).150.Boon, P. I. & Prahalad, V. Ecologists, economics and politics: problems and contradictions in applying neoliberal ideology to nature conservation in Australia. Pac. Conserv. Biol. 23, 115–132 (2017).Article
Google Scholar
151.Adame, M. F. et al. The undervalued contribution of mangrove protection in Mexico to carbon emission targets. Conserv. Lett. 11, e12445 (2018).Article
Google Scholar
152.Bell-James, J. & Lovelock, C. E. Legal barriers and enablers for reintroducing tides: an Australian case study in reconverting ponded pasture for climate change mitigation. Land Use Policy 88, 104192 (2019).Article
Google Scholar
153.Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).Article
Google Scholar
154.Saderne, V. et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 10, 1106 (2019).Article
Google Scholar
155.Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 4, 100 (2017).
Google Scholar
156.Froehlich, H. E., Afflerbach, J. C., Frazier, M. & Halpern, B. S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 29, 3087–3093.e3 (2019).Article
Google Scholar
157.Ritchie, H. & Roser, M. CO2 and greenhouse gas emissions. Our World in Data https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (2017).158.Smith, S. V. Marine macrophytes as a global carbon sink. Science 211, 838–840 (1981).Article
Google Scholar
159.Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate (IPCC, 2019).160.Verified Carbon Standard. VM0007 REDD+ methodology framework (REDD+MF) (VCS, 2020).161.Carnell, P. E. et al. Mapping ocean wealth Australia: the value of coastal wetlands to people and nature. The Nature Conservancy https://doi.org/10.21153/carnell2019mapping (2019).162.Jänes, H. et al. Stable isotopes infer the value of Australia’s coastal vegetated ecosystems from fisheries. Fish Fish. 21, 80–90 (2020).Article
Google Scholar
163.Jänes, H. et al. Quantifying fisheries enhancement from coastal vegetated ecosystems. Ecosyst. Serv. 43, 101105 (2020).Article
Google Scholar
164.Huang, B. et al. Quantifying welfare gains of coastal and estuarine ecosystem rehabilitation for recreational fisheries. Sci. Total Environ. 710, 134680 (2020).Article
Google Scholar More