More stories

  • in

    Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats

    1.Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38, 5–11 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Cortés, A., Peachey, L. E., Jenkins, T. P., Scotti, R. & Cantacessi, C. Helminths and microbes within the vertebrate gut—not all studies are created equal. Parasitology 146, 1371–1378 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Nat. Acad. Sci. 110, 3229–3236 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Brown, E. M., Sadarangani, M. & Finlay, B. B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–667 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279, 90–105 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Ducarmon, Q. R. et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 83, e00007-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Jourdan, P. M., Lamberton, P. H. L., Fenwick, A. & Addiss, D. G. Soil-transmitted helminth infections. Lancet 391, 252–265 (2018).PubMed 
    Article 

    Google Scholar 
    14.Wammes, L. J., Mpairwe, H., Elliott, A. M. & Yazdanbakhsh, M. Helminth therapy or elimination: Epidemiological, immunological, and clinical considerations. Lancet Infect. Dis. 14, 1150–1162 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Jenkins, T. P. et al. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol. 19, 1–17 (2021).Article 
    CAS 

    Google Scholar 
    16.Holm, J. B. et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE 10, e0125495 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Ducarmon, Q. R. et al. Dynamics of the bacterial gut microbiota during controlled human infection with Necator americanus larvae. Gut Microbes 12, 1840764 (2020).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    18.Broadhurst, M. J. et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog. 8, e1003000 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140295 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Filyk, H. A. & Osborne, L. C. The multibiome: The intestinal ecosystem’s influence on immune homeostasis, health, and disease. EBioMedicine 13, 46–54 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cantacessi, C. et al. Impact of experimental hookworm infection on the human gut microbiota. J. Infect. Dis. 210, 1431–1434 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Li, R. W. et al. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect. Immun. 80, 2150–2157 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Reynolds, L. A., Brett Finlay, B. & Maizels, R. M. Cohabitation in the intestine: Interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 195, 4059–4066 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8, e2880 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Rosa, B. A. et al. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia. Microbiome 6, 33 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Newbold, L. K. et al. Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota. ISME J. 11, 663–675 (2017).PubMed 
    Article 

    Google Scholar 
    27.Baxter, N. T. et al. Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl. Environ. Microbiol. 81, 396–404 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Cooper, P. et al. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS ONE 8, e76573 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Rapin, A. & Harris, N. L. Helminth-bacterial interactions: Cause and consequence. Trends Immunol. 39, 724–733 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Cowlishaw, G. & Dunbar, R. I. Primate Conservation Biology (University of Chicago Press, 2000).Book 

    Google Scholar 
    31.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Barelli, C. et al. The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems 5, 3 (2020).Article 

    Google Scholar 
    33.Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: Implications for conservation. Sci. Rep. 5, 14862 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Barelli, C. et al. Altitude and human disturbance are associated with helminth diversity in an endangered primate, Procolobus gordonorum. PLoS ONE 14, e0225142 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Barelli, C. et al. Loss of protozoan and metazoan intestinal symbiont biodiversity in wild primates living in unprotected forests. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    36.Aivelo, T. & Norberg, A. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 87, 438–447 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Vlčková, K. et al. Relationships between gastrointestinal parasite infections and the fecal microbiome in free-ranging western lowland gorillas. Front. Microbiol. 9, 1202 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Mann, A. E. et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 14, 609–622 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.de Winter, I. I. et al. Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs. Sci. Rep. 10, 16818 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Ghai, R. R. et al. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Negl. Trop. Dis. 8, e3256 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Nutman, T. B. Human infection with Strongyloides stercoralis and other related Strongyloides species. Parasitology 144, 263–273 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Stephenson, L. S., Holland, C. V. & Cooper, E. S. The public health significance of Trichuris trichiura. Parasitology 121, S73–S95 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Viney, M. E. The biology of Strongyloides spp. WormBook https://doi.org/10.1895/wormbook.1.141.2 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Renelies-Hamilton, J. et al. Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal. Infect. Genet. Evol. 74, 104010 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Afrin, T. et al. Sequential changes in the host gut microbiota during infection with the intestinal parasitic nematode. Front. Cell Infect. Microbiol. 9, 217 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Rubel, M. A. et al. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biol. 21, 122 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Jenkins, T. P. et al. Author Correction: A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Sci. Rep. 9, 8571 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.van der Zande, H. J. P., Zawistowska-Deniziak, A. & Guigas, B. Immune regulation of metabolic homeostasis by helminths and their molecules. Trends Parasitol. 35, 795–808 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Maeda, Y. & Takeda, K. Host–microbiota interactions in rheumatoid arthritis. Exp. Mol. Med. 51, 1–6 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Biddle, A., Stewart, L., Blanchard, J. & Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, 627–640 (2013).Article 

    Google Scholar 
    52.Brulc, J. M. et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. USA 106, 1948–1953 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Hale, V. L. et al. Diet versus phylogeny: A comparison of gut microbiota in captive Colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    54.Trosvik, P. et al. Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate. Microbiome 6, 84 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Liu, B. et al. Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids Health Dis. 17, 159 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Bhute, S. S. et al. Gut microbial diversity assessment of Indian Type-2-diabetics reveals alterations in Eubacteria, Archaea, and Eukaryotes. Front. Microbiol. 8, 214 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Wang, Y. et al. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three potential biomarkers of gut microbiota that affect progression and complications of obesity-induced Type 2 diabetes Mellitus. Diabetes Metab. Syndr. Obes. 13, 835–850 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Yarahmadi, M. et al. The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro. J. Parasit. Dis. 40, 75–80 (2016).PubMed 
    Article 

    Google Scholar 
    59.Dinleyici, E. C. et al. Clinical efficacy of Saccharomyces boulardii or metronidazole in symptomatic children with Blastocystis hominis infection. Parasitol. Res. 108, 541–545 (2011).PubMed 
    Article 

    Google Scholar 
    60.Lepczyńska, M. & Dzika, E. The influence of probiotic bacteria and human gut microorganisms causing opportunistic infections on ST3. Gut Pathog. 11, 6 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Huseyin, C. E., O’Toole, P. W., Cotter, P. D. & Scanlan, P. D. Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 41, 479–511 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Mittermeier, R. A., Myers, N., Gill, P. C. & Mittermeier, C. G. Hotspots: Earth’s Richest and Most Endangered Terrestrial Ecoregions (CEMEX, 2000).
    Google Scholar 
    63.Platts, P. J. et al. Delimiting tropical mountain ecoregions for conservation. Environ. Conserv. 38, 312–324 (2011).Article 

    Google Scholar 
    64.Ruiz-Lopez, M. J. et al. A novel landscape genetic approach demonstrates the effects of human disturbance on the Udzungwa red colobus monkey (Procolobus gordonorum). Heredity 116, 167–176 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Cavada, N., Tenan, S., Barelli, C. & Rovero, F. Effects of anthropogenic disturbance on primate density at the landscape scale. Conserv. Biol. 33, 873–882 (2019).PubMed 
    Article 

    Google Scholar 
    66.Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Rovero, F. et al. Primates decline rapidly in unprotected forests: Evidence from a monitoring program with data constraints. PLoS ONE 10, e0118330 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.International Union for the Conservation of Nature and Natural Resources (IUCN). 2021. IUCN red list of threatened species version 2020-2. International Union for the Conservation of Nature and Natural Resources http://www.iucnredlist.org. (Accessed 21 Apr 2021).69.Modrý, D., Pafčo, B., Petrželková, K. J. & Hasegawa, H. Parasites of Apes: An Atlas of Coproscopic Diagnostics (2018).70.Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129–1143 (2006).Article 

    Google Scholar 
    71.Hasegawa, H. Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary study of pinworms. In Primate Parasite Ecology: The Dynamics of Host-parasite Relationships (eds Huffman, M. A. & Chapman, C. A.) 29–46 (Cambridge University Press, 2009).
    Google Scholar 
    72.Mallott, E. K., Malhi, R. S. & Garber, P. A. High-throughput sequencing of fecal DNA to identify insects consumed by wild Weddell’s saddleback tamarins (Saguinus weddelli, Cebidae, Primates) in Bolivia. Am. J. Phys. Anthropol. 156, 474–481 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Mallott, E. K., Garber, P. A. & Malhi, R. S. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus). Am. J. Phys. Anthropol. 162, 241–254 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021) https://www.R-project.org.76.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R package version, Vol. 1, 3 (2018) https://CRAN.R-project.org/package=emmeans. More

  • in

    Sea ice presence is linked to higher carbon export and vertical microbial connectivity in the Eurasian Arctic Ocean

    1.Serreze, M. C. & Meier, W. N. The Arctic’s sea ice cover: trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 1436, 36–53 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pörtner, H. et al. IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergov. Panel Clim. Chang. 1–765 (2019).3.Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).Article 

    Google Scholar 
    4.Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).Article 

    Google Scholar 
    5.Nöthig, E.-M. et al. Summertime plankton ecology in Fram Strait—a compilation of long- and short-term observations. Polar Res. 34, 23349 (2015).Article 
    CAS 

    Google Scholar 
    6.Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Chang. Biol. 24, 2545–2553 (2018).PubMed 
    Article 

    Google Scholar 
    8.Wiedmann, I. et al. What feeds the Benthos in the Arctic Basins? Assembling a carbon budget for the deep Arctic Ocean. Front. Mar. Sci. 7, 544386 (2020).9.Randelhoff, A. & Sundfjord, A. Short commentary on marine productivity at Arctic shelf breaks: upwelling, advection and vertical mixing. Ocean Sci. 14, 293–300 (2018).Article 

    Google Scholar 
    10.Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Sci. (80-.). 369, 198–202 (2020).Article 
    CAS 

    Google Scholar 
    11.Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).Article 

    Google Scholar 
    12.Leu, E. et al. Arctic spring awakening—steering principles behind the phenology of vernal ice algal blooms. Prog. Oceanogr. 139, 151–170 (2015).Article 

    Google Scholar 
    13.Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408–1408 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Lalande, C. et al. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Glob. Biogeochem. Cycles 28, 571–583 (2014).Article 
    CAS 

    Google Scholar 
    15.Fernández-Méndez, M. et al. Photosynthetic production in the central Arctic Ocean during the record sea-ice minimum in 2012. Biogeosciences 12, 3525–3549 (2015).Article 

    Google Scholar 
    16.Boetius, A. et al. Export of algal biomass from the melting Arctic sea ice. Science 339, 1430–1432 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    17.Assmy, P. et al. Floating ice-algal aggregates below melting Arctic sea ice. PLoS ONE 8, e76599 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Perrette, M., Yool, A., Quartly, G. D. & Popova, E. E. Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 8, 515–524 (2011).Article 

    Google Scholar 
    19.Underwood, G. J. C. et al. Organic matter from Arctic sea-ice loss alters bacterial community structure and function. Nat. Clim. Chang. 9, 170–176 (2019).Article 

    Google Scholar 
    20.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Henson, S., Le Moigne, F. & Giering, S. Drivers of carbon export efficiency in the global ocean. Glob. Biogeochem. Cycles 33, 891–903 (2019).Article 
    CAS 

    Google Scholar 
    22.Ruiz‐González, C. et al. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol. Ecol. 29, 1820–1838 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Preston, C. M., Durkin, C. A. & Yamahara, K. M. DNA metabarcoding reveals organisms contributing to particulate matter flux to abyssal depths in the North East Pacific ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 173, 104708 (2020).Article 
    CAS 

    Google Scholar 
    25.Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    26.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).PubMed 
    PubMed Central 
    CAS 

    Google Scholar 
    27.Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Rapp, J. Z., Fernández-Méndez, M., Bienhold, C. & Boetius, A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front. Microbiol. 9, 1035 (2018).29.Smedsrud, L. H., Halvorsen, M. H., Stroeve, J. C., Zhang, R. & Kloster, K. Fram Strait sea ice export variability and September Arctic sea ice extent over the last 80 years. Cryosphere 11, 65–79 (2017).Article 

    Google Scholar 
    30.Krumpen, T. et al. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter. Sci. Rep. 9, 5459 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Lalande, C. et al. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 78–89 (2016).Article 

    Google Scholar 
    32.Wekerle, C., Krumpen, T., Dinter, T., Iversen, M. & Salter, I. Origin and properties of sediment trap catchment areas in Fram Strait: results from Lagrangian modelling and remote sensing. Front. Mar. Sci. 5, 4071– 26 (2018).33.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol, 7, 1451–1456 (2016).Article 

    Google Scholar 
    35.Wilson, B. et al. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front. Mar. Sci. 4, 1–17 (2017).
    Google Scholar 
    36.Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S. & Berge, J. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Prog. Oceanogr. 90, 18–32 (2011).Article 

    Google Scholar 
    37.Becagli, S. et al. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic. Atmos. Environ. 136, 1–15 (2016).Article 
    CAS 

    Google Scholar 
    38.Lalande, C., Bauerfeind, E., Nöthig, E. & Beszczynska-Möller, A. Impact of a warm anomaly on export fluxes of biogenic matter in the eastern Fram Strait. Prog. Oceanogr. 109, 70–77 (2013).Article 

    Google Scholar 
    39.Olli, K. et al. Food web functions and interactions during spring and summer in the Arctic water inflow region: investigated through inverse modeling. Front. Mar. Sci. 6, https://doi.org/10.3389/fmars.2019.00244 (2019).40.Bauerfeind, E. et al. Particle sedimentation patterns in the eastern Fram Strait during 2000 – 2005: Results from the Arctic long-term observatory HAUSGARTEN. Deep Sea Res. Part I 56, 1471–1487 (2009).Article 
    CAS 

    Google Scholar 
    41.Soltwedel, T. et al. Natural variability or anthropogenically-induced variation? Insights from 15 years of multidisciplinary observations at the arctic marine LTER site HAUSGARTEN. Ecol. Indic. 1–14, https://doi.org/10.1016/j.ecolind.2015.10.001 (2015).42.Randelhoff, A. et al. Arctic mid-winter phytoplankton growth revealed by autonomous profilers. Sci. Adv. 6, eabc2678 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Lannuzel, D. et al. The future of Arctic sea-ice biogeochemistry and ice-associated ecosystems. Nat. Clim. Chang. 10, 983–992 (2020).Article 

    Google Scholar 
    45.Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A: Oceanogr. Res. Pap. 34, 267–285 (1987).Article 
    CAS 

    Google Scholar 
    46.Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic. Ocean. Science 356, 285–291 (2017).PubMed 
    CAS 

    Google Scholar 
    47.Wang, Q. et al. The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model. Geosci. Model Dev. 7, 663–693 (2014).Article 
    CAS 

    Google Scholar 
    48.Wekerle, C. et al. Eddy-resolving simulation of the Atlantic water circulation in the Fram Strait with focus on the seasonal cycle. J. Geophys. Res. Ocean. 122, 8385–8405 (2017).Article 

    Google Scholar 
    49.Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates – potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085 (2013).Article 

    Google Scholar 
    50.Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO 2 by the oceans. Science 367, 791–793 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Fadeev, E. et al. Microbial communities in the East and West Fram Strait during sea ice melting season. Front. Mar. Sci. 5, 429 (2018).52.Buchan, A., LeCleir, G. R., Gulvik, C. A., González, J. M. & Gonzalez, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Bergauer, K. et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc. Natl Acad. Sci. 115, E400–E408 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 1–11 (2020).CAS 

    Google Scholar 
    55.Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Brown, C. M., Mathai, P. P., Loesekann, T., Staley, C. & Sadowsky, M. J. Influence of library composition on sourcetracker predictions for community-based microbial source tracking. Environ. Sci. Technol. 53, 60–68 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Słomka, J., Alcolombri, U., Secchi, E., Stocker, R. & Fernandez, V. I. Encounter rates between bacteria and small sinking particles. N. J. Phys. 22, 043016 (2020).Article 

    Google Scholar 
    58.Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale succesions on model marine particles. Nat. Commun. 7, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    59.Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).Article 

    Google Scholar 
    60.Kiørboe, T., Tang, K., Grossart, H. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047 (2003).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Proctor, L. M. & Fuhrman, J. A. Roles of viral infection in organic particle flux. Mar. Ecol. Prog. Ser. 69, 133–142 (1991).Article 

    Google Scholar 
    62.Tamburini, C. et al. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res. Part II: Top. Stud. Oceanogr. 56, 1533–1546 (2009).Article 
    CAS 

    Google Scholar 
    63.Grossart, H. P. & Gust, G. Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4000 m: An experimental approach. Mar. Ecol. Prog. Ser. 390, 97–104 (2009).Article 

    Google Scholar 
    64.Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum. Sci. Rep. 6, 4–10 (2016).Article 
    CAS 

    Google Scholar 
    65.Zinger, L., Boetius, A. & Ramette, A. Bacterial taxa-area and distance-decay relationships in marine environments. Mol. Ecol. 23, 954–964 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Hoffmann, K. et al. Diversity and metabolism of Woeseiales bacteria, global members of marine sediment communities. ISME J. 14, 1042–1056 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. 113, C02S03 (2008).
    Google Scholar 
    68.Cavalieri, D. J., Parkinson, C. L., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1. (1996). https://doi.org/10.5067/8GQ8LZQVL0VL69.Edler, L. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll. (Baltic Marine Biologists BMB, Sweden) (1979).70.Ploug, H. & Jørgensen, B. B. A net-jet flow system for mass transfer and micro electrode studies in sinking aggregates. Mar. Ecol. Prog. Ser. 176, 279 (1999).Article 
    CAS 

    Google Scholar 
    71.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Fadeev, E. et al. Comparison of two 16S rRNA Primers (V3–V4 and V4–V5) for studies of Arctic microbial communities. Front. Microbiol. 12, 1–11 (2021).Article 

    Google Scholar 
    73.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10 (2011).Article 

    Google Scholar 
    74.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).75.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Gómez-Rubio, V. ggplot2—elegant graphics for data analysis (2nd edition). J. Statistical Softw. 77, (2017).77.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    79.Knights, D. et al. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8, 761–763 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    80.Silvester, N. et al. The European Nucleotide Archive in 2017. Nucleic Acids Res. 46, D36–D40 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    81.Diepenbroek, M. et al. in Informatik 2014 (eds. Plödereder, E., Grunske, L., Schneider, E. & Ull, D.) 1711–1721 (Gesellschaft für Informatik e.V., 2014).82.Wekerle, C. Backward particle trajectories used to estimate the pathways of settling aggregates measured at stations N, HG and EG in Fram Strait. (2021). Available at: https://doi.org/10.1594/PANGAEA.928251.83.Fadeev, E. edfadeev/Export_and_vert_conn_FRAM: Published workflow. (2021). Available at: https://zenodo.org/record/5515441. More

  • in

    A whale of an appetite revealed by analysis of prey consumption

    NEWS AND VIEWS
    03 November 2021

    A whale of an appetite revealed by analysis of prey consumption

    Reaching a deeper understanding of the ocean ecosystems that maintain whales might aid conservation efforts. Measurements of the animals’ krill intake indicate that previous figures were substantial underestimates.

    Victor Smetacek

    0

    Victor Smetacek

    Victor Smetacek is at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Baleen whales are the largest known animals that have ever lived. They feed on centimetre-sized prey by filtering seawater through plates of frayed, bristle-like combs, termed baleen, that are fixed to their upper jaws. Previous estimates of the food requirements of whale populations indicate the animals’ enormous food demand1. In the Southern Ocean near Antarctica, before the whaling era, the krill biomass consumed by whales alone is estimated to have been 190 million tonnes annually1, an amount substantially greater than the entire annual world fish catch in modern times2. Intense fishing by humans has decimated ocean fish stocks in a few decades. By contrast, whale feeding seems to be sustainable, as evidenced by hallmarks of the animals’ evolution, such as their long lifespan and high degree of specialization geared to the consumption of just one prey — krill.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 599, 33-34 (2021)
    doi: https://doi.org/10.1038/d41586-021-02951-3

    References1.Laws, R. M. Phil. Trans. R. Soc. B 279, 81–96 (1977).Article 

    Google Scholar 
    2.Pauly, D. & Zeller, D. Nature Commun. 7, 10244 (2016).PubMed 
    Article 

    Google Scholar 
    3.Savoca, M. S. et al. Nature 599, 85–90 (2021).Article 

    Google Scholar 
    4.Goldbogen, J. A. et al. Science 366, 1367–1372 (2019)PubMed 
    Article 

    Google Scholar 
    5.Williams, T. M. Science 366, 1316–1317 (2019).PubMed 
    Article 

    Google Scholar 
    6.Smetacek, V. in Impacts of Global Warming on Polar Ecosystems (ed. Duarte, C. M.) 45–81 (Fund. BBVA, 2008).
    Google Scholar 
    7.Nicol, S. et al. Fish Fish. 11, 203–209 (2010).Article 

    Google Scholar 
    8.Smetacek, V. Protist 169, 791–802 (2018).PubMed 
    Article 

    Google Scholar 
    9.González, H. E. Polar Biol. 12, 81–91 (1992).Article 

    Google Scholar 
    10.Holm-Hansen, O. & Huntley, M. J. Crustac. Biol. 4 (5), 156–173 (1984).
    Google Scholar 
    11.Hart, T. J. Discov. Rep. 21, 261–356 (1942).
    Google Scholar 
    12.Hardy, A. Great Waters: A Voyage of Natural History to Study Whales, Plankton and the Waters of the Southern Ocean (Harper & Row, 1967).
    Google Scholar 
    13.Bar-On, Y. M., Phillips, R. & Milo, R. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Baleen whale prey consumption based on high-resolution foraging measurements

    The giant diatom dump

    Why are whales big?

    See all News & Views

    Subjects

    Ecology

    Ocean sciences

    Latest on:

    Ecology

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    A seagrass harbours a nitrogen-fixing bacterial partner
    News & Views 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Ocean sciences

    Pliocene decoupling of equatorial Pacific temperature and pH gradients
    Article 20 OCT 21

    Mercury stable isotopes constrain atmospheric sources to the ocean
    Article 29 SEP 21

    Coral conservation strikes a balance
    Nature Index 24 SEP 21

    Jobs

    Global Scholar Recruitment Campaign

    City University of Hong Kong (CityU)
    Hong Kong, China

    Postdoctoral Training Fellow – Papagiannopoulos Laboratory

    Francis Crick Institute
    London, United Kingdom

    Postdoc – X-ray cross-correlation analysis

    German Electron Synchrotron (DESY)
    Hamburg, Germany

    Postdoc – Coherent X-ray Diffraction Imaging

    German Electron Synchrotron (DESY)
    Hamburg, Germany More

  • in

    A seagrass harbours a nitrogen-fixing bacterial partner

    NEWS AND VIEWS
    03 November 2021

    A seagrass harbours a nitrogen-fixing bacterial partner

    How underwater seagrasses obtain the nitrogen they need has been unclear. Evidence has now emerged of a partnership with a bacterium that might be analogous to the system used by many land plants to gain nitrogen.

    Douglas G. Capone

     ORCID: http://orcid.org/0000-0002-3968-736X

    0

    Douglas G. Capone

    Douglas G. Capone is in the Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Seagrass meadows are a prominent feature of many shallow coastal areas of the temperate through to the tropical ocean. Seagrasses provide a crucial habitat for invertebrates and juvenile fish, stabilize sediments and buffer the shoreline against erosion1. Moreover, they contribute directly and positively to the ‘blue economy’ of the oceans through their long-term storage of carbon2. Lush and highly productive seagrass beds often thrive in nutrient-deficient waters, and attempts to solve the enigma of how they accomplish this feat have driven considerable research over the years. Writing in Nature, Mohr et al.3 provide crucial evidence indicating that the success of a seagrass called Posidonia oceanica (Fig. 1), which proliferates throughout the warm waters of the Mediterranean Sea (and elsewhere), might be attributed to the development of a highly integrated partnership with a bacterium. This system is reminiscent of those found in some terrestrial plants.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02956-y

    References1.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (eds) Seagrasses: Biology, Ecology and Conservation (Springer, 2006).
    Google Scholar 
    2.Lovelock, C. E. & Duarte, C. M. Biol. Lett. 15, 20180781 (2019).PubMed 
    Article 

    Google Scholar 
    3.Mohr, W. et al. Nature https://doi.org/10.1038/s41586-021-04063-4 (2021).Article 

    Google Scholar 
    4.Thies, J. E. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J., Fuhrmann, J. J.& Zuberer, D. A.) 455–487 (Elsevier, 2021).
    Google Scholar 
    5.Zuberer, D. A. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J., Fuhrmann, J. J.& Zuberer, D. A.) 423–453 (Elsevier, 2021).
    Google Scholar 
    6.Larkum, A. W. D., Waycott, M. & Conran, J. G. in Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D., Kendrick, G. A. & Ralph, P. J.) 3–29 (Springer, 2018).
    Google Scholar 
    7.Welsh, D. T. Ecol. Lett. 3, 58–71 (2000).Article 

    Google Scholar 
    8.Cramer, M. J., Haghshenas, N., Bagwell, C. E., Matsui, G. Y. & Lovell, C. R. Int. J. Syst. Evol. Microbiol. 61, 1053–1060 (2011).PubMed 
    Article 

    Google Scholar 
    9.Clúa, J., Roda, C., Zanetti, M. E. & Blanco, F. A. Genes 9, 125 (2018).Article 

    Google Scholar 
    10.Evans, S. M., Griffin, K. J., Blick, R. A. J., Poore, A. G. B. & Vergés, A. PLoS ONE 13, e0190370 (2018).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium

    From sea to sea

    Consistent patterns of nitrogen fixation identified in the ocean

    See all News & Views

    Subjects

    Microbiology

    Plant sciences

    Ecology

    Latest on:

    Microbiology

    African scientists race to test COVID drugs — but face major hurdles
    News Feature 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Why scientists worldwide are watching UK COVID infections
    News Explainer 02 NOV 21

    Plant sciences

    Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression
    Article 03 NOV 21

    From the archive
    News & Views 02 NOV 21

    Cell surface and intracellular auxin signalling for H+ fluxes in root growth
    Article 27 OCT 21

    Ecology

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    A whale of an appetite revealed by analysis of prey consumption
    News & Views 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Jobs

    Global Scholar Recruitment Campaign

    City University of Hong Kong (CityU)
    Hong Kong, China

    Postdoctoral Training Fellow – Papagiannopoulos Laboratory

    Francis Crick Institute
    London, United Kingdom

    Postdoc – X-ray cross-correlation analysis

    German Electron Synchrotron (DESY)
    Hamburg, Germany

    Postdoc – Coherent X-ray Diffraction Imaging

    German Electron Synchrotron (DESY)
    Hamburg, Germany More

  • in

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium

    Etymology‘Candidatus Celerinatantimonas neptuna’ (nep.tu’na L. fem. n.), pertaining to Neptunus (L. masc. n. Neptune), the Roman god of the seas and the Neptune grass, Posidonia oceanica.SamplingA P. oceanica meadow at 8 m water depth and nearby sandy sediments in Fetovaia Bay, Elba, Italy13 were sampled between June 2014 and September 2019; individual sampling months and years are indicated in the sections below and/or in the figures and tables. In May 2017, a P. oceanica meadow at the island of Pianosa, Italy was also sampled. All of the samples were obtained via SCUBA diving.Complete plants of P. oceanica were carefully separated from the meadow by hand and stored in seawater-filled containers until arrival at the shore-based laboratory. Sediment for use in the laboratory-based aquaria was scooped into containers from nearby sandy patches. Seawater was pumped through a hose (placed at about 0.5 m above the P. oceanica meadow) into several 50 l barrels onboard the boat and was later used in the laboratory for the aquarium and the incubation experiments.The sediment within the seagrass meadow was sampled with stainless steel core tubes (length, 50 cm), which were drilled into the sediment by divers, and the cores were briefly stored at 22 °C (ambient temperature, September 2019) in a seawater-filled barrel until further processing at the shore-based laboratory.Porewater nutrient samples were obtained using stainless steel lances41 at intervals of around 10 cm. Water column nutrient samples were obtained from above the seagrass meadow at the start or end of sampling. Nutrient samples were collected in 15 ml or 50 ml centrifuge tubes and were stored in a cooler box until further processing.Nutrient measurementsWater column nutrients were measured during several sampling campaigns as indicated in Extended Data Table 1a. Ammonium (NH4+) concentrations were measured fluorometrically42 in the nearby shore-based laboratory, and the remaining water was frozen (−20 °C) for later analyses of nitrate (NO3−), nitrite (NO2−), phosphate (PO43−) and silicate (SiO44−) using an autoanalyser (QuAAtro, Seal Analytical). Porewater samples were obtained in June 2019 and were processed the same as the water column nutrient samples with the exception that ammonium was not measured on site but at the home laboratory at the same time as the other nutrients. Dissolved inorganic nitrogen (ammonium plus NOx−) concentrations in the porewater were averaged for the upper 20 cm (Extended Data Table 1b).Net primary production measurements using the EC methodNet carbon dioxide (CO2) fluxes were calculated on the basis of oxygen (O2) fluxes determined using the aquatic eddy covariance (EC) method. In this non-invasive approach, turbulence-induced transport is resolved using high-frequency current meters combined with fast O2 microsensors. Under the assumption of stationarity, the instantaneous turbulent flux contributions are calculated by correlating vertical current fluctuations to oxygen fluctuations. Our EC system was equipped with an acoustic Doppler velocimeter (ADV, Nortek) and ultra-fast responding optode microsensors with a tip diameter of 430 µm (t90  More

  • in

    Baleen whale prey consumption based on high-resolution foraging measurements

    1.Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Barlow, J., Kahru, M. & Mitchell, B. G. Cetacean biomass, prey consumption, and primary production requirements in the California Current ecosystem. Mar. Ecol. Prog. Ser. 371, 285–295 (2008).ADS 
    Article 

    Google Scholar 
    5.Fortune, S. M. E., Trites, A. W., Mayo, C. A., Rosen, D. A. S. & Hamilton, P. K. Energetic requirements of North Atlantic right whales and the implications for species recovery. Mar. Ecol. Prog. Ser. 478, 253–272 (2013).ADS 
    Article 

    Google Scholar 
    6.Trites, A. W., Christensen, V. & Pauly, D. Competition between fisheries and marine mammals for prey and primary production in the Pacific Ocean. J. Northwest Atl. Fish. Sci. 22, 173–187 (1997).Article 

    Google Scholar 
    7.Lavery, T. J. et al. Whales sustain fisheries: blue whales stimulate primary production in the Southern Ocean. Mar. Mammal Sci. 30, 888–904 (2014).CAS 
    Article 

    Google Scholar 
    8.Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds. Estes, J. A. et al.) 202–214 (Univ. California Press, 2006).9.Smith, L. A., Link, J. S., Cadrin, S. X. & Palka, D. L. Consumption by marine mammals on the Northeast U.S. continental shelf. Ecol. Appl. 25, 373–389 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep. Res. Part I Oceanogr. Res. Pap. 56, 727–740 (2009).ADS 
    Article 

    Google Scholar 
    11.Pauly, D. & Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 7, 10244 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal Impacts on Structure and Function of Ocean Ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    13.Smetacek, V. in Impacts of Global Warming on Polar Ecosystems (ed. Duarte, C. M.) 46–80 (Fundacion BBVA, 2008).14.Wing, S. et al. Seabirds and marine mammals redistribute bioavailable iron in the Southern Ocean. Mar. Ecol. Prog. Ser. 510, 1–13 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209 (2010).Article 

    Google Scholar 
    16.Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M. & Wirsing, A. J. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Goldbogen, J. A. et al. How baleen whales feed: the biomechanics of engulfment and filtration. Ann. Rev. Mar. Sci. 9, 367–386 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Kleiber, M. The Fire of Life: An Introduction to Animal Energetics (Krieger, 1975).20.Nagy, K. A. Field metabolic rate and body size. J. Exp. Biol. 208, 1621–1625 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385 (2014).Article 

    Google Scholar 
    22.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lee, C. I. L., Pakhomov, E., Atkinson, A. & Siegel, V. Long-term relationships between the marine environment, krill and salps in the Southern Ocean. J. Mar. Biol. 2010, 410129 (2010).Article 

    Google Scholar 
    24.Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Goldbogen, J. A. et al. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Nickels, C. F., Sala, L. M. & Ohman, M. D. The morphology of euphausiid mandibles used to assess selective predation by blue whales in the southern sector of the California Current System. J. Crustac. Biol. 38, 563–573 (2018).Article 

    Google Scholar 
    27.Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds. Estes, J. A. et al.) 202–214 (Univ. California Press, 2006).28.Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Chang. Biol. 22, 1214–1224 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Katija, K. Biogenic inputs to ocean mixing. J. Exp. Biol. 215, 1040–1049 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Katija, K., Sherlock, R. E., Sherman, A. D. & Robison, B. H. New technology reveals the role of giant larvaceans in oceanic carbon cycling. Sci. Adv. 3, e1602374 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Riisgård, H. U. On measurement of filtration rates in bivalves — the stony road to reliable data: review and interpretation. Mar. Ecol. Prog. Ser. 211, 275–291 (2001).ADS 
    Article 

    Google Scholar 
    32.Drenner, R. W., Mummert, J. R. & O’Brien, W. J. Filter-feeding rates of gizzard shad. Trans. Am. Fish. Soc. 111, 210–215 (1982).Article 

    Google Scholar 
    33.Rocha, R. C. Jr, Clapham, P. J. & Ivashchenko, Y. V. Emptying the oceans: a summary of industrial whaling catches in the 20th century. Mar. Fish. Rev. 76, 37–48 (2014).Article 

    Google Scholar 
    34.Christensen, L. B. Marine mammal populations: reconstructing historical abundances at the global scale. Fish. Cent. Res. Reports 14, 167 (2006).
    Google Scholar 
    35.Laws, R. M. Seals and whales of the Southern Ocean. Philos. Trans. R. Soc. B Biol. Sci. 279, 81–96 (1977).ADS 

    Google Scholar 
    36.Myers, R. A. & Worm, B. Rapid worldwide depletion of predatory fish communities. Nature 423, 280–283 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Trathan, P. N., Ratcliffe, N. & Masden, E. A. Ecological drivers of change at South Georgia: the krill surplus, or climate variability. Ecography 35, 983–993 (2012).Article 

    Google Scholar 
    38.Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Ratnarajah, L. et al. A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: sensitivity of primary productivity estimates to parameter uncertainty. Ecol. Modell. 320, 203–212 (2016).Article 

    Google Scholar 
    41.Willis, J. Whales maintained a high abundance of krill; both are ecosystem engineers in the Southern Ocean. Mar. Ecol. Prog. Ser. 513, 51–69 (2014).ADS 
    Article 

    Google Scholar 
    42.Gerber, L. R., Morissette, L., Kaschner, K. & Pauly, D. Should whales be culled to increase fishery yield? Science 323, 880–881 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Ruzicka, J. J., Steele, J. H., Ballerini, T., Gaichas, S. K. & Ainley, D. G. Dividing up the pie: whales, fish, and humans as competitors. Prog. Oceanogr. 116, 207–219 (2013).ADS 
    Article 

    Google Scholar 
    44.Arrigo, K. R., van Dijken, G. L. & Bushinsky, S. Primary production in the Southern Ocean, 1997-2006. J. Geophys. Res. Ocean. 113, C08004 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    45.Geremia, C. et al. Migrating bison engineer the green wave. Proc. Natl Acad. Sci. USA 116, 25707–25713 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bar-on, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Pallin, L. J. et al. High pregnancy rates in humpback whales (Megaptera novaeangliae) around the Western Antarctic Peninsula, evidence of a rapidly growing population. R. Soc. Open Sci. 5, 180017 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Aksnes, D. L. & Ohman, M. D. Multi-decadal shoaling of the euphotic zone in the southern sector of the California Current System. Limnol. Oceanogr. 54, 1272–1281 (2009).ADS 
    Article 

    Google Scholar 
    50.Krough, A. The physiology of the blue whale. Nature 133, 635–637 (1934).ADS 
    Article 

    Google Scholar 
    51.Lockyer, C. in Mammals in the Seas: Large Cetaceans (eds. Clarke, J. G., Goodman, J. & Soave, G. A.) 379–487 (FAO, 1981).52.Tamura, T. & Ohsumi, S. Regional assessments of prey consumption by marine cetaceans in the world. International Whaling Comission Scientific Report (2000); https://doi.org/10.1079/9780851996332.014353.Leaper, R. & Lavigne, D. How much do large whales eat? J. Cetacean Res. Manag. 9, 179–188 (2007).
    Google Scholar 
    54.Klumov, S. K. Food and helminth fauna of whalebone whales (Mystacoceti) in the main whaling regions of the world ocean. Tr. Instituta Okeanol. 71, 94–194 (1963).
    Google Scholar 
    55.Sigurjónsson, J. & Víkingsson, G. A. Estimation of food consumption by cetaceans in Icelandic and adjacent waters. J. Northw. Atl. Fish. Sci 22, 271–287 (1997).Article 

    Google Scholar 
    56.Tamura, T. & Konishi, K. Food habit and prey consumption of Antarctic minke whale Balaenoptera bonaerensis in JARPA research area. Inst. Cetacean Res. Rep. SC/D06/J18 (2006).57.Kenney, R. D., Scott, G. P., Thompson, T. J. & Winn, H. E. Estimates of prey consumption and trophic impacts of cetaceans in the USA northeast continental shelf ecosystem. J. Northwest Atl. Fish. Sci. 22, 155–171 (1997).Article 

    Google Scholar 
    58.Innes, B. Y. S., Lavigne, D. M., Earle, W. M. & Kovacs, K. M. Feeding rates of seals and whales. J. Anim. Ecol. 56, 115–130 (1987).Article 

    Google Scholar 
    59.Tamura, T. & Konishi, K. Prey composition and consumption rate by Antarctic minke whales based on JARPA and JARPAII data. Inst. Cetacean Res. Rep. SC/F14/J15 (2014).60.Tamura, T. Preliminary analyses on prey consumption by fin whales based on JARPAII data. Inst. Cetacean Res. Rep. SC/F14/J16 (2014).61.Tamura, T., Konishi, K. & Isoda, T. Updated estimation of prey consumption by common minke, Bryde’s and sei whales in the western North Pacific. Inst. Cetacean Res. Rep. SC/F16/JR15 (2016).62.Lockyer, C. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).Article 

    Google Scholar 
    63.Víkingsson, G. A. Feeding of fin whales (Balaenoptera physalus) off Iceland – diurnal and seasonal variation and possible rates. J. Northwest Atl. Fish. Sci. 22, 77–89 (1997).Article 

    Google Scholar 
    64.Ichii, T. & Kato, H. Food and daily food consumption of southern minke whales in the Antarctic (Balaenoptera acutorostrata). Polar Biol. 11, 479–487 (1991).Article 

    Google Scholar 
    65.Tamura, T. & Konishi, K. Feeding habits and prey consumption of Antarctic minke whale (Balaenoptera bonaerensis) in the Southern Ocean. J. Northwest Atl. Fish. Sci. 42, 13–25 (2009).Article 

    Google Scholar 
    66.Lockyer, C. Body fat condition in northeast Atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource. Can. J. Fish. Aquat. Sci. 43, 142–147 (1986).Article 

    Google Scholar 
    67.Goldbogen, J. A. et al. Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anat. Rec. 300, 1935–1941 (2017).CAS 
    Article 

    Google Scholar 
    68.Sumich, J. L. Swimming velocities, breathing patterns, and estimated costs of locomotion in migrating gray whales, Eschrichtius robustus. Can. J. Zool. 61, 647–652 (1983).Article 

    Google Scholar 
    69.Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).Article 

    Google Scholar 
    70.White, C. R. & Kearney, M. R. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr. Physiol. 4, 231–256 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Schmitz, O. J. & Lavigne, D. M. Intrinsic rate of increase, body size, and specific metabolic rate in marine mammals. Oecologia 62, 305–309 (1984).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Nagy, K. A., Girard, I. A. & Brown, T. K. Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr. 19, 247–277 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Rivero, J.-L. L. Locomotor muscle fibre heterogeneity and metabolism in the fastest large-bodied rorqual: the fin whale (Balaenoptera physalus). J. Exp. Biol. 221, jeb177758 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Friedlaender, A. S. et al. The advantages of diving deep: Fin whales quadruple their energy intake when targeting deep krill patches. Funct. Ecol. 34, 497–506 (2019).Article 

    Google Scholar 
    75.Calambokidis, J. et al. Differential vulnerability to ship strikes between day and night for blue, fin, and humpback whales based on dive and movement data from medium duration archival tags. Front. Mar. Sci. 6, 543 (2019).Article 

    Google Scholar 
    76.Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Gough, W. T. et al. Scaling of swimming performance in baleen whales. J. Exp. Biol. 222, jeb204172 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Parks, S. E., Warren, J. D., Stamieszkin, K., Mayo, C. A. & Wiley, D. Dangerous dining: Surface foraging of North Atlantic right whales increases risk of vessel collisions. Biol. Lett. 8, 57–60 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Nowacek, D. P. et al. Buoyant balaenids: the ups and downs of buoyancy in right whales. Proc. R. Soc. B Biol. Sci. 268, 1811–1816 (2001).CAS 
    Article 

    Google Scholar 
    80.Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).ADS 
    Article 

    Google Scholar 
    81.Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, 170449 (2018).
    Google Scholar 
    82.Goldbogen, J. A. et al. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).Article 

    Google Scholar 
    83.Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Cade, D. E. et al. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super group formation. Fucntional Ecol. 35, 894–908 (2021).Article 

    Google Scholar 
    85.Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina bay, Antarctic Peninsula. PLoS ONE 6, 2–6 (2011).Article 
    CAS 

    Google Scholar 
    86.Goldbogen, J. A. et al. Prey density and distribution drive the three-dimensional foraging strategies of the largest filter feeder. Funct. Ecol. 29, 951–961 (2015).Article 

    Google Scholar 
    87.Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Hamner, W. M. Aspects of schooling in Euphausia superba. J. Crustac. Biol. 4, 67–74 (1984).Article 

    Google Scholar 
    90.Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Passive versus active engulfment: verdict from trajectory simulations of lunge-feeding fin whales Balaenoptera physalus. J. R. Soc. Interface 6, 1005–1025 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Potvin, J., Goldbogen, J. A. & Shadwick, R. E. Scaling of lunge feeding in rorqual whales: an integrated model of engulfment duration. J. Theor. Biol. 267, 437–453 (2010).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    92.Goldbogen, J. A. et al. Underwater acrobatics by the world’s largest predator: 360° rolling manoeuvres by lunge-feeding blue whales. Biol. Lett. 9, 20120986 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Rodriguez-Romero, J., Palacios-Salgado, D. S., Lopez-Martinez, J., Vazquez, S. H. & Velazquez-Abunader, J. I. The length – weight relationship parameters of demersal fish species off the western coast of Baja California Sur, Mexico. J. Appl. Ichthology 25, 114–116 (2009).Article 

    Google Scholar 
    94.Pitcher, T. J. & Partridge, B. L. Fish school density and volume. Mar. Biol. 394, 383–394 (1979).Article 

    Google Scholar 
    95.Laidre, K. L., Heide-Jørgensen, M. P. & Nielsen, T. G. Role of the bowhead whale as a predator in West Greenland. Mar. Ecol. Prog. Ser. 346, 285–297 (2007).ADS 
    Article 

    Google Scholar 
    96.Simon, M., Johnson, M., Tyack, P. & Madsen, P. T. Behaviour and kinematics of continuous ram filtration in bowhead whales (Balaena mysticetus). Proc. R. Soc. B Biol. Sci. 276, 3819–3828 (2009).Article 

    Google Scholar 
    97.Baumgartner, M. F. & Mate, B. R. Summertime foraging ecology of North Atlantic right whales. Mar. Ecol. Prog. Ser. 264, 123–135 (2003).ADS 
    Article 

    Google Scholar 
    98.van der Hoop, J. M. et al. Foraging rates of ram‐filtering North Atlantic right whales. Funct. Ecol. 33, 1290–1306 (2019).Article 

    Google Scholar 
    99.Burnett, J. D. et al. Estimating morphometric attributes of baleen whales with photogrammetry from small UASs: a case study with blue and gray whales. Mar. Mammal Sci. 35, 108–139 (2019).Article 

    Google Scholar 
    100.Torres, W. I. & Bierlich, K. C. MorphoMetriX: a photogrammetric measurement GUI for morphometric analysis of megafauna. J. Open Source Softw. 5, 1825 (2020).ADS 
    Article 

    Google Scholar 
    101.Johnston, D. W. Unoccupied aircraft systems in marine science and conservation. Ann. Rev. Mar. Sci. 11, 439–463 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Durban, J. W. et al. Photogrammetry of blue whales with an unmanned hexacopter. Mar. Mammal Sci. 32, 1510–1515 (2016).Article 

    Google Scholar 
    103.Kelley, D. & Richards, C. oce: Analysis of Oceanographic Data R Package v. 1.1 (2019).104.Dubreuil, J. & Petitgas, P. Energy density of anchovy Engraulis encrasicolus in the Bay of Biscay. J. Fish Biol. 74, 521–534 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Chenowith, E. M. Bioenergetic and Economic Impacts of Humpback Whale Depredation at Salmon Hatchery Release Sites. PhD thesis, Univ. Alaska (2018).106.Werth, A. J. Models of hydrodynamic flow in the bowhead whale filter feeding apparatus. J. Exp. Biol. 207, 3569–3580 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Werth, A. in Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 487–526 (Academic, 2000).108.Mckinstry, C. A. E., Westgate, A. J. & Koopman, H. N. Annual variation in the nutritional value of stage V Calanus finmarchicus: implications for right whales and other copepod predators. Endang. Species Res. 20, 195–204 (2013).Article 

    Google Scholar 
    109.Folkow, L. P., Haug, T., Nilssen, K. T. & Nordy, E. S. Estimated food consumption of minke whales Balaenoptera acutorostrata in Northeast Atlantic waters in 1992-1995. NAMMCO Sci. Publ. 2, 65–80 (2000).Article 

    Google Scholar 
    110.Brodie, P. F. Cetacean energetics, an overview of intraspecific size variation. Ecology 56, 152–161 (1975).ADS 
    Article 

    Google Scholar 
    111.Hill, S. L. et al. Is current management of the antarctic krill fishery in the atlantic sector of the southern ocean precautionary? CCAMLR Sci. 23, 31–51 (2016).
    Google Scholar 
    112.Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    113.Ratnarajah, L., Bowie, A. R., Lannuzel, D., Meiners, K. M. & Nicol, S. The biogeochemical role of baleen whales and krill in Southern Ocean nutrient cycling. PLoS ONE 9, e114067 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    114.Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Candela, E., Camacho, M. V. & Perdomo, J. Iron absorption by humans and swine from Fe (III)-EDTA. Further studies. J. Nutr. 114, 2204–2211 (1984).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Ratnarajah, L. et al. A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: sensitivity of primary productivity estimates to parameter uncertainty. Ecol. Modell. 320, 203–212 (2016).Article 

    Google Scholar 
    117.Twining, B. S., Baines, S. B. & Fisher, N. S. Element stoichiometries of individual plankton cells collected during the Southern Ocean Iron Experiment (SOFeX). Limnol. Oceanogr. 49, 2115–2128 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    118.Strzepek, R. F., Maldonado, M. T., Hunter, K. A., Frew, R. D. & Boyd, P. W. Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: uptake of organically complexed iron and reduced cellular iron requirements. Limnol. Oceanogr. 56, 1983–2002 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    119.Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Wickham, H. ggplot2: Elegant Graphics for Data Analysis 2nd edn (Springer, 2016).121.Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).Article 

    Google Scholar 
    122.Blix, A. S. & Folkow, L. P. Daily energy expenditure in free living minke whales (Balaenoptera acutorostrata). Acta Physiol. Scand. 153, 61–66 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    123.Nordoy, E. S., Folkow, L. P., Martensson, P. & Blix, A. S. Food requirements of Northeast Atlantic minke whales. Dev. Mar. Biol. 4, 307–317 (1995).Article 

    Google Scholar 
    124.Murase, H., Tamura, T., Matsuoka, K. & Hakamada, T. First attempt of estimation of feeding impact on krill standing stock by three baleen whale species (Antarctic minke, humpback and fin whales) in Areas IV and V using JARPA dat. Inst. Cetacean Res. Rep. SC/D06/J22 (2006).125.Southall, B. L. et al. Behavioral responses of individual blue whales (Balaenoptera musculus) to mid-frequency military sonar. J. Exp. Biol. 222, jeb190637 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    126.Goldbogen, J. A. et al. Blue whales respond to simulated mid-frequency military sonar. Proc. R. Soc. B 280, 20130657 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Stimpert, A. K. et al. Sound production and associated behavior of tagged fin whales (Balaenoptera physalus) in the Southern California Bight. Anim. Biotelemetry 3, 1–12 (2015).Article 

    Google Scholar 
    128.Goldbogen, J. A. et al. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J. Exp. Biol. 211, 3712–3719 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Wiley, D. et al. Underwater components of humpback whale bubble-net feeding behaviour. Behaviour 148, 575–602 (2011).Article 

    Google Scholar 
    130.Friedlaender, A. S., Tyson, R. B., Stimpert, A. K., Read, A. J. & Nowacek, D. P. Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Mar. Ecol. Prog. Ser. 494, 281–289 (2013).ADS 
    Article 

    Google Scholar 
    131.Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. 223, jeb224196 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Friedlaender, A. S. et al. Feeding rates and under-ice foraging strategies of the smallest lunge filter feeder, the Antarctic minke whale (Balaenoptera bonaerensis). J. Exp. Biol. 217, 2851–2854 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Domenici, P., Batty, R. S. & Similä, T. Spacing of wild schooling herring while encircled by killer whales. J. Fish Biol. 57, 831–836 (2000).Article 

    Google Scholar 
    134.Tamura, T. et al. Some examinations of uncertainties in the prey consumption estimates of common minke, sei and Bryde’s whales in the western North Pacific. (2009).135.Innes, S., Lavigne, D. M., Earle, W. M. & Kovacs, K. M. Estimating feeding rates of marine mammals from heart mass to body mass ratios. Mar. Mammal Sci. 2, 227–229 (1986).Article 

    Google Scholar 
    136.Armstrong, A. J. & Siegfried, W. R. Consumption of Antarctic krill by minke whales (Balaenoptera acutorostrata). Antarct. Sci. 3(1)13-18. 1991. 3, 13–18 (1991).
    Google Scholar 
    137.Reilly, S. et al. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean. Deep. Res. Part II Top. Stud. Oceanogr. 51, 1397–1409 (2004).ADS 
    Article 

    Google Scholar 
    138.Read, A. J. & Brownstein, C. R. Considering other consumers: Fisheries, predators, and Atlantic herring in the Gulf of Maine. Conserv. Ecol. 7 (2003).139.Nagy, K. Food requirements of wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutr. Abstr. Rev. Ser. B 71, 21R–31R (2001).
    Google Scholar 
    140.Stevick, P. T. et al. Trophic relationships and oceanography on and around a small offshore bank. Mar. Ecol. Prog. Ser. 363, 15–28 (2008).ADS 
    Article 

    Google Scholar  More

  • in

    Gamma diversity and under-sampling together generate patterns in beta-diversity

    1.Cornell, H. V. & Harrison, S. P. What are species pools and when are they important?. Annu. Rev. Ecol. Evol. Syst. 45, 45–67 (2014).Article 

    Google Scholar 
    2.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    3.Vellend, M. The Theory of Ecological Communities Vol. 57 (Princeton University Press, 2020).
    Google Scholar 
    4.Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    5.Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2351–2363 (2011).Article 

    Google Scholar 
    6.Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: Implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).Article 

    Google Scholar 
    7.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Google Scholar 
    8.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 

    Google Scholar 
    9.Tuomisto, H. & Ruokolainen, K. Comment on “disentangling the drivers of β diversity along latitudinal and elevational gradients”. Science 335, 1573 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    10.Harrison, S. Local and regional diversity in a patchy landscape: Native, alien, and endemic herbs on serpentine. Ecology 80, 70–80 (1999).Article 

    Google Scholar 
    11.Vellend, M. Parallel effects of land-use history on species diversity and genetic diversity of forest herbs. Ecology 85, 3043–3055 (2004).Article 

    Google Scholar 
    12.Pardini, R., de Souza, S. M., Braga-Neto, R. & Metzger, J. P. The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biol. Conserv. 124, 253–266 (2005).Article 

    Google Scholar 
    13.Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    14.Qian, H., Chen, S., Mao, L. & Ouyang, Z. Drivers of β-diversity along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 22, 659–670 (2013).Article 

    Google Scholar 
    15.Marathe, A., Priyadarsanan, D. R., Krishnaswamy, J. & Shanker, K. Spatial and climatic variables independently drive elevational gradients in ant species richness in the Eastern Himalaya. PLoS ONE 15, e0227628 (2020).Article 
    CAS 

    Google Scholar 
    16.Måsviken, J., Dalerum, F. & Cousins, S. A. Contrasting altitudinal variation of alpine plant communities along the Swedish mountains. Ecol. Evol. 10, 4838–4853 (2020).Article 

    Google Scholar 
    17.Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).Article 

    Google Scholar 
    18.Xu, W., Chen, G., Liu, C. & Ma, K. Latitudinal differences in species abundance distributions, rather than spatial aggregation, explain beta-diversity along latitudinal gradients. Glob. Ecol. Biogeogr. 24, 1170–1180 (2015).Article 

    Google Scholar 
    19.Mori, A. S. et al. Community assembly processes shape an altitudinal gradient of forest biodiversity. Glob. Ecol. Biogeogr. 22, 878–888 (2013).Article 

    Google Scholar 
    20.Stegen, J. C. et al. Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob. Ecol. Biogeogr. 22, 202–212 (2013).Article 

    Google Scholar 
    21.Kim, T. N., Bartel, S., Wills, B. D., Landis, D. A. & Gratton, C. Disturbance differentially affects alpha and beta diversity of ants in tallgrass prairies. Ecosphere 9, e02399 (2018).Article 

    Google Scholar 
    22.de Castro, F. S., Silva, P. G. D., Solar, R., Fernandes, G. W. & Neves, F. S. Environmental drivers of taxonomic and functional diversity of ant communities in a tropical mountain. Insect Conserv. Divers. 13, 393–403 (2020).Article 

    Google Scholar 
    23.Rodríguez, P. & Arita, H. T. Beta diversity and latitude in North American mammals: Testing the hypothesis of covariation. Ecography 27, 547–556 (2004).Article 

    Google Scholar 
    24.Agosti, D. & Alonso, L. The ALL protocol: A standard protocol for the collection of ground-dwelling ants. In Ants: Standard Methods for Measuring and Monitoring Biodiversity (eds Agosti, D. et al.) 204–206 (Smithsonian Institution Press, 2000).
    Google Scholar 
    25.Gotelli, N. J., Ellison, A. M., Dunn, R. R. & Sanders, N. J. Counting ants (Hymenoptera: Formicidae): Biodiversity sampling and statistical analysis for myrmecologists. Myrmecol. News 15, 13–19 (2011).
    Google Scholar 
    26.Greenslade, P. Sampling ants with pitfall traps: Digging-in effects. Insectes Soc. 20, 343–353 (1973).Article 

    Google Scholar 
    27.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).
    Google Scholar  More

  • in

    Shape-changing chains for morphometric analysis of 2D and 3D, open or closed outlines

    2D mandible outlinesIn17, elliptical Fourier analysis (EFA) is employed to investigate the lateral shape difference between 106 fossil mandibles of 5 groups: A. robustus ((n=7)), H. erectus ((n=12)), H. heidelbergensis ((n=4)), H. neanderthalensis ((n=22)), and H. sapiens ((n=61)). In the presented work, the authors apply the shape-changing chain method to the same dataset. Twelve samples were suppressed, including all 7 A. robustus samples, 4 H. neanderthalensis samples, and one H. sapiens sample. Therefore, 94 mandible profiles of 4 groups of the ancient human are analyzed: H. erectus ((n=12)), H. heidelbergensis ((n=4)), H. neanderthalensis ((n=18)), and H. sapiens ((n=60)). The dataset is in the form of Cartesian coordinates of points along the mandible boundary. Note that the shape-changing chain method does not require pre-alignment of curves or removal of the size factor. However, the mandible profile dataset the authors obtained had already lost the information of the original sample sizes. Therefore, only normalized mandibular shapes are compared herein. Figure 5 illustrates the mean shape of each group of profiles by aligning all profiles in the set using a standard Procrustes superimposition (PS) which includes translation, scaling, and rotation of the profiles27.Figure 5Mean mandibular shapes of samples from H. erectus (red circles), H. heidelbergensis (blue triangles), H. neanderthalensis (green squares), and H. sapiens (black diamonds).Full size imageUsing the relative angle method ((k=150), (T=20^circ)), five apices are reserved, constituting six sub-profiles for each profile. An illustration of the location of the apices on a mandible profile is shown in Fig. 6. Each sub-profile is then matched with a shape-changing chain individually. The determination of segment type vector of each sub-profile refers to the growth mechanism of mandible proposed by Enlow et al.28. As shown in Fig. 6, the mechanism of mandible growth involves bone resorption (indicated by the arrows pointing towards the mandible contour) and bone deposition (indicated by the arrows pointing out of the mandible contour). Although the whole mandible’s displacement direction is forwards and downwards, the reconstruction of the ascending limb is generally backwards and upwards. G-segments and C-segments are employed to approximate the growing portions in target profiles and characterize the difference in profile lengths.Figure 6A profile ((j=1)) from the H. erectus group: Five apices (red circle) are located using the relative angle method ((k=150), (T=20^circ)) and divide the profile into six sub-profiles. The arrows represent the growth pattern of the mandible28.Full size imageNote that the growths of the inferior edge of the mandibular body and the posterior edge of the mandibular ramus are more significant than the rest parts of the mandible profile. The 94 mandible profiles are then matched with a shape-changing chains using the following scheme. The segment vectors for the first, second, third, and sixth sub-profiles are defined as (left[{text{MGM}}right]) alike, and the segment vectors for the fourth and fifth sub-profiles are both defined as (left[{text{MCGM}}right]), where the C-segments and G-segments are used to capture the difference in arc lengths. Therefore, the overall segment vector is$$mathbf{V}=left[text{M G M M G M M G M M C G M M C G M M G M} , right]text{,}$$where there are a total of 20 segments—12 M-segments, 2 C-segments, and 6 G-segments. After the segment type vector is defined, the shape-changing chain is generated to match the target mandible profiles and then is optimized for each sub-profile. The maximum and mean error of all profiles of the final matching result are ({E}_{text{max}}=8.0863) and (overline{E }=0.6009) units, respectively. Figure 7 shows the best (a), the average (b), and the worst match (c) according to ({tilde{E }}_{j}). Note that in the worst match, the G-segment at the condyle (head) of the mandible causes the largest matching error. This is because the third primary segmentation point (between the two M-segments that follow) identified using the relative angle method for this specific profile is not at the tip of the condyle as the majority of the profiles.Figure 7The fitting result of 94 human mandibles. (a) The best match (the 4th profile—H. erectus, ({tilde{E }}_{4}=0.3924)); (b) The match with error closest to (overline{E }) (the 6th profile—H. erectus, ({tilde{E }}_{6}=0.6006)); (c) The worst match (the 13th profile—H. heidelbergenis, ({tilde{E }}_{13}=1.0771)).Full size imageThe orientation difference between two neighboring segments reflects the rotational angle between them, and thus are employed in the statistical analysis in the next step. Denote the direction of a vector (mathbf{u}={left{{u}_{x},{u}_{y}right}}^{T}) as (angle left(mathbf{u}right)), then the orientation change between the ({e}{text{th}}) and the ({(e+1)}{text{th}}) segments on the ({j}{text{th}}) profile is calculated as the difference between the direction of the last piece on the ({e}{text{th}}) segment and the direction of the first piece on the ({(e+1)}{text{th}}) segment$${sigma }_{j}^{e}=angle left({overline{mathbf{z}} }_{{j}_{2}}^{e+1}-{overline{mathbf{z}} }_{{j}_{1}}^{e+1}right)-angle left({overline{mathbf{z}} }_{{j}_{{m}_{j}^{e}+1}}^{e}-{overline{mathbf{z}} }_{{j}_{{m}_{j}^{e}}}^{e}right), forall e=1,dots ,q-1 j=1,dots ,p.$$
    (10)
    In the mandible example, 19 angular variables are generated from 20 segments. As in17, a stepwise discrimination analysis (DA) is conducted (in IBM SPSS 22) to figure out the relationship among the four homo groups. DA is a supervised classification method and returns (g-1) canonical components among (g) groups of samples29. Figure 8 shows the convex hull of four homo genus plotted with the first and the second canonical components. The three main groups: H. erectus, H. neanderthalensis, and H. sapiens, are separated from each other in the direction of the first canonical component. H. heidelbergensis and H. neanderthalensis have an overlap in the direction of the second canonical component. In stepwise DA, leave-one-out cross-validation (LOOCV) is applied to verify the stability of the linear model. As a result, the prediction accuracy is 91.5% and the cross-validation accuracy is 80.9%. This DA result suggests that the shape-changing chain method is useful in analyzing 2D shapes. The classification matrices of original prediction and LOOCV are presented in Table 2, showing the details of discrimination of the four mandibular shape groups.Figure 8Canonical plot of the 94 human mandibles from four groups (H. erectus, H. heidelbergensis, H. neanderthalensis, and H. sapiens) based on the orientation changes between segments (19 variables).Full size imageTable 2 Classification matrices of the original DA and cross-validated prediction of 94 human mandibles.Full size tableNote that the classification results as shown in Fig. 8 and Table 2 are in accordance with the results obtained with EFA in17. The high misclassification rate of H. heidelbergensis and its distribution on the canonical plot are also in keep with the mainstream opinion that H. heidelbergensis is a chronospecies evolving from H. erectus and is considered as the most recent common ancestor (MRCA) between H. sapiens and H. neanderthalensis. In the work of Lestrel et al. based on EFA, 20 harmonics are employed to match 106 mandibular shapes, producing 82 Fourier descriptors17. Then, 12 distances from the centroid to specified points on each mandible’s contour are used in statistical analysis. Compared to their study, the shape-changing chain method generates only a total of 28 variables (20 orientations of all segments and 8 arc lengths of C-segments and G-segments). The differences of orientations between neighboring segments is then calculated and generates 19 variables to be analyzed in stepwise DA. Table 3 shows a comparison of the variables generated in the approximation of curves and used for statistical analysis with the shape-changing chain method and EFA. The shape-changing chain method performs a satisfying approximation result of the mandibular shapes with much fewer variables compared with EFA.Table 3 Numbers of variables used in the shape-changing chain method and in EFA17 for fitting and analyzing human mandible profiles.Full size table2D leaf outlinesLeaf classification is a typical problem that has been studied with various methods, such as artificial neural networks (ANN)30, image moments31, and EFA9. In addition, many leaves have a symmetrical shape creating issues for effective EFA12. Using the shape-changing chain method, the fitting result reveals the growth of portions on the contour and the rotation between them. This kind of information can be used in statistical analysis. Although other methods which also make use of non-shape information (size, color, etc.) have been very convenient and efficient in recognizing leaf genera, leaf matching and classification remains a problem to test the ability of the shape-changing chain method to fit and compare profiles with complicated and largely varying shapes. In this example, nine groups of 145 leaves are studied (see the groups and the number of samples in each group in Table 3). The original scanned and binarized images of the nine genera of leaves are shown in Fig. s1. The contours are traced using the Moore-Neighbor method32 and then smoothed with the MATLAB cubic spline interpolation (see Fig. s2). All leaf profiles of their original sizes are analyzed. The arc lengths of the profiles range from 1141.5 units to 8433.1 units, the areas of the leaves range from (6.1671times {10}^{4}) units2 to (1.4615times {10}^{6}) units2.Applying the relative angle method, a number of apices are recognized on each leaf contour. These apices are the primary segmentation points that determine the boundaries of sub-profiles on leaf contours. Note that the shapes of leaves from different groups vary significantly, therefore the point interval and angle threshold used for locating apices varies from group to group. For some groups, the numbers of apices identified on different samples may be different too. Table 4 shows the parameters used for identifying apices as well as the minimum and maximum numbers of apices identified on samples for each group.Table 4 Parameters used for identifying apices on leaf contours and the number of apices identified for each group.Full size tableIn order to maintain homology, supplementary segmentation points are added to divide all sample profiles into the same number of portions. There is no need to add more segmentation points on the profile that contains the most number of apices (red oak, (j=101)), therefore the total number of segmentation points on each profile is determined to be 34, dividing each profile into 35 portions. In order to reduce the matching error, supplementary segmentation points are distributed as evenly as possible in sub-profiles formed by the primary segmentation points (original apices) using a method developed based on a genetic algorithm (GA). In this problem, the locations of the supplemented segmentation points on the ({j}{text{th}}) profile are determined through the fitness function determined as follows$${F}_{j}=sum_{e=1}^{q}{left({k}_{j}^{e+1}-{k}_{j}^{e}-frac{{N}_{j}-1}{q}right)}^{2}.$$
    (11)
    In Eq. (11), the number of pieces contained in the ({j}{text{th}}) profile (({N}_{j}-1)) divided by the number of portions (q) yields the average number of pieces in each portion. (({k}_{j}^{e+1}-{k}_{j}^{e})) is the number of pieces contained in the ({e}{text{th}}) portion confined by the ({e}{text{th}}) and the ({(e+1)}{text{th}}) segmentation points on the ({j}{text{th}}) profile. After encoding the locations of all segmentation points in the GA and several rounds of optimization based on a certain scale of crossover and mutation, the set of supplementary segmentation points that minimizes the fitness function, Eq. (11), is determined. The original apices (red circles) and supplementary segmentation points (green circles) distributed on samples from different groups are shown in Fig. 9. In this example, each profile is finally divided into 35 portions.Figure 9The original apices (red circles) and supplementary segmentation points (green circles) on leaf contours. (a) Cherry, (b) Dogwood, (c) Gum, (d) Hickory, (e) Mulberry, (f) Red maple, (g) Red oak, (h) Sugar maple, (i) White oak. For each group, the sample that contains the most original apices is presented.Full size imageThe length of each portion varies among profiles, thus M-segments are not applicable. In addition, some portions still contain local burrs and sharp corners, which would not be matched well by C-segments. Therefore, each portion is matched by a G-segment, and the segment vector contains 35 G-segments. The maximum and mean error of 145 leaf profiles are ({E}_{text{max}}=60.6063) and (overline{E }=8.7062) units, respectively. Figure 10 shows the best, the average, and the worst matching results of the leaves according to ({tilde{E }}_{j}). More matches of nine genera of leaves are illustrated in Fig. s3. The result show that given the distribution of apices (primary segmentation points that determine sub-profiles), the GA strategy can automatically determine the distribution of supplementary segmentation points along a profile. With the segmentation points generated from this process, the shape-changing chain matches the leaf contours with small error compared to the random segmentation in the previous study.Figure 10The fitting results of 145 leaves. (a) The best match (the 62nd profile—hickory, ({tilde{E }}_{62}=0.8748)); (b) The average match (the 88th profile—red maple, ({tilde{E }}_{88}=4.0866)); c The worst match (the 110th profile—red oak, ({tilde{E }}_{107}=9.7866)).Full size imageFor classification analysis, 34 orientation differences between neighboring segments are calculated using Eq. (10). Three more variables are employed: The number of primary segmentation points, the number of burrs (detected using the relative angle method with (k=50) and (T=30^circ)), and the arc length of each profile. This sums up to a total of 37 variables. A stepwise DA is performed to classify the 145 leaf samples, and 22 out of the 37 variables are selected for analysis. The variances of the first three canonical functions are 73.5%, 13.3%, and 7.5%, which add up to 94.3% in total. Figures 11 and 12 illustrate the 2D and 3D canonical plots of the nine genus of leaves based on the first three canonical components. The plots show that gum, red maple, and white oak are distinctively separated from other groups. Cherry and mulberry are partially overlapped in the directions of canonical Roots 1 and 2 for their similar overall shapes and serrated edges. There is also an overlap between dogwood and hickory in the directions of canonical Roots 1 and 3 for their similar shapes and smooth edges. The prediction accuracy is 98.6%, and the leave-one-out cross-validation is 97.9%. Only two samples of cherry are misidentified as mulberry, and one sample of hickory is discriminated as dogwood. The DA results reveal that the shape-changing method is capable of fitting a large number of profiles that have complicated shapes and different sizes, as well as generating useful variables for statistical analysis. The leave-one-out cross-validation accuracy suggests that this method is also effective with fewer variables. In addition, the shape-changing chain method enables direct observation and comparison of variables that have physical meanings, such as the relative angles between segments.Figure 11The 2D Canonical plots of nine genus of leaves based on 22 variables.Full size imageFigure 12The 3D Canonical plot of nine genus of leaves based on 22 variables.Full size image3D cranial suture curvesThe shape-changing chain method is now applied to 3D suture curves on human infants’ skulls from a study of coronal synostosis18,19. The dataset contains 63 samples categorized into 4 groups, including left unicoronal synostosis (LUCS, (n=8)), right unicoronal synostosis (RUCS, (n=19)), bicoronal synostosis (BCS, (n=16)), and unaffected cases ((n=20)). The original data of each sample consist of 209 anatomical landmarks and curve semilandmarks located on the skull surface, especially along some anatomical lines as sutures. In this work, three curves that characterize the skull deformation are selected for analysis: the coronal suture curve, the lambdoid suture curve, and the sagittal curve which is comprised of anatomical landmarks and curve semilandmarks located on the metopic suture, the sagittal suture, and the mid-line on the occipital bone. Figure 13 shows the three suture curves on a skull surface.Figure 13The location of the coronal suture (magenta), sagittal curve (blue) and the lambdoid suture (red) on a human infant skull. The intersection points between sutures, P1 and P2, divide the sagittal curve into three sub-profiles and the lambdoid suture into two sub-profiles.Full size imageBCS occurs when the coronal sutures on both sides of the skull fuse prematurely, causing the overall head shape to become broad and short. In this case, the relative location of the lambdoid suture on the skull will move forward compared to the unaffected cases, but its shape is not affected as obviously as the coronal suture or the sagittal curve which are directly affected by coronal synostosis. In order to investigate the relative location and orientation in addition to the shape of the suture curves, a standard Procrustes superimposition is performed on the original data so that all skulls represented by the 209 landmarks and semilandmarks are scaled to the same size and aligned. Figure 14 illustrates the mean shapes of the sagittal curves and the lambdoid sutures of each group. It can be observed that for BCS cases, the sagittal curve is shorter in the anterior–posterior direction, the coronal suture becomes wider in the left–right direction, and the lambdoid suture is longer and positioned relatively forward. These differences are in accordance with the overall wider and shorter BCS skull shape. As for LUCS and RUCS cases, all three curves display a symmetrical shape deformation or orientation change about the skull symmetry plane (X = 0).Figure 14Mean shapes of (a) the sagittal curves, (b) the coronal suture, and (c) the lambdoid sutures of four groups: LUCS (red dotted line), BCS (blue solid line), RUCS (green dotted dashed line), and unaffected cases (black dashed line). Notice the symmetry of the suture curves about the skull symmetry plane (X = 0).Full size imageThe anatomical landmarks P1 and P2 (Fig. 13) which are the intersection points between the sutures, are selected as the primary segmentation points. Thus, the sagittal curve, the coronal suture, and the lambdoid suture are divided into three, two, and two sub-profiles, respectively. Since the coronal suture and the lambdoid suture grow symmetrically about the skull symmetry plane, their segment type vectors for two sub-profiles should be symmetric, respectively. In addition, each segment type vector should contain a G- or H-segment to characterize the growth. The segment type vectors of the three curves are designated as:

    Sagittal curve: (left[begin{array}{cc}{text{M}}& {text{G}}end{array}right]), (left[begin{array}{cc}{text{M}}& {text{H}}end{array}right]), (left[begin{array}{cc}{text{M}}& {text{G}}end{array}right]);

    Coronal suture:(left[begin{array}{ccc}{text{M}}& {text{G}}& {text{H}}end{array}right]), (left[begin{array}{ccc}{text{H}}& {text{G}}& {text{M}}end{array}right]);

    Lambdoid suture: (left[begin{array}{cc}{text{G}}& {text{H}}end{array}right]), (left[begin{array}{cc}{text{H}}& {text{G}}end{array}right]).

    In spatial cases, the orientation of each segment is given by 3 parameters, and each G- or H-segment is characterized by an additional length parameter. Therefore, this matching scheme generates 21, 22, and 16 parameters to describe the shape variances for the sagittal curves, the coronal suture curves, and the lambdoid suture curves, respectively. Note that the suture curves are relatively smooth, thus the average value of the maximum error on all segments ({overline{E} }_{j}) is very significant of the matching error of the chain at the ({j}{text{th}}) profile. Therefore, this parameter is chosen to assess the error in this application. Figure 15 shows the best, the average, and the worst matches of the sagittal curves, the coronal sutures, and lambdoid sutures. The overall mean error ((overline{E })) of the sagittal curves, the coronal sutures, and the lambdoid sutures are 0.8728, 0.5060, and 0.3666 units, respectively.Figure 15The fitting results of (a–c) sagittal curves, (d–f) coronal sutures, and (g–i) lambdoid sutures from 63 samples. The left column (a, d, g) is the best match of each group, the middle column (b, e, h) is the average match of each group, and the right column (c, f, i) is the worst match of each group. (a) ({overline{E} }_{s-52}=0.5122) (unaffected); (b) ({overline{E} }_{s-19}=0.8681) (BCS); (c) ({overline{E} }_{s-46}=1.6055) (unaffected); (d) ({overline{E} }_{c-12}=0.2507) (BCS); (e) ({overline{E} }_{c-54}=0.5082) (unaffected); (f) ({overline{E} }_{c-42}=0.9636) (RUCS); g ({overline{E} }_{l-29}=0.1225) (BCS); (h) ({overline{E} }_{l-37}=0.3687) (BCS); (i) ({overline{E} }_{l-28}=1.0997) (RUCS).Full size imageIn order to represent the orientation of the spatial chain, the ({e}{text{th}}) segment at the ({j}{text{th}}) profile is characterized by a unit vector that points from the starting point to the endpoint of the segment as$${mathbf{u}}_{j}^{e}=frac{{overline{mathbf{z}} }_{{j}_{{m}_{j}^{e}+1}}^{e}-{overline{mathbf{z}} }_{{j}_{1}}^{e}}{Vert {overline{mathbf{z}} }_{{j}_{{m}_{j}^{e}+1}}^{e}-{overline{mathbf{z}} }_{{j}_{1}}^{e}Vert }.$$
    (12)
    Since each vector ({mathbf{u}}_{j}^{e}) contains three Cartesian coordinates, each sagittal curve, coronal suture, and lambdoid suture is thus characterized by 18, 18, and 12 variables, respectively. For lambdoid sutures, its relative location which is characterized by the coordinates of point P2 is also analyzed. Therefore, the total number of variables analyzed for a lambdoid suture is 15. This is much fewer than the 209 landmarks and semilandmarks analyzed in the work of Heuzé et al.19. Stepwise DA is conducted with the variables above, and LOOCV is performed to verify the stability of the linear model. In stepwise DA, 6, 7, and 8 variables are selected to be analyzed for sagittal curves, coronal sutures, and lambdoid sutures, respectively. Figure 16 illustrates the canonical plots of the three set of curves. As shown in Fig. 16, all three set of suture curves display strong separation among four classes on the 2D canonical plots. Besides, the LUCS and RUCS curves are distributed in the opposite directions from the BCS and unaffected ones along the first canonical component, while the BCS and unaffected curves differ in the direction of the second canonical component. These plots confirm the symmetrical shape deformation of the suture curves of LUCS and RUCS cases, and the changes in the lengths and relative locations of the suture curves of BCS as observed in Fig. 14.Figure 16The 2D canonical plots of the suture curves selected from 63 skull samples. (a) The sagittal curves based on 6 variables. (b) The coronal sutures based on 7 variables. (c) The lambdoid sutures based on 8 variables.Full size imageThe original DA prediction accuracy and cross-validated accuracy are both 100% for the sagittal curves, which indicates that the shape difference of the sagittal curves can efficiently distinguish specific diagnosis of coronal synostosis. The original DA prediction accuracy and cross-validated accuracy for the coronal sutures are 98.4% and 96.8%, respectively. There are two cases (BCS and RUCS) misclassified as unaffected case. As for the lambdoid sutures, the original DA prediction accuracy and cross-validated accuracy are both 98.4%. The only misclassified case in both predictions is that one BCS lambdoid suture is categorized as unaffected. This suggests that the coronal suture and the lambdoid suture is subjected to both shape deformation and location transformation due to coronal synostosis.These matching and classification results show that the shape-changing chain is efficient in fitting and analyzing 3D curves with a very moderate number of variables compared to other parametric methods. For example, Zhou et al. employed discrete cosine transform (DCT) to analyze the same three sets of suture curves33. In their work, 12, 6, and 6 harmonics are employed to fit the sagittal curves, the coronal suture curves, and the lambdoid suture curves, resulting in 36, 18, and 18 coefficients to be analyzed. Table 5 shows a comparison of the variables used to match the curves and perform statistical analysis with the two methods. A comparison of the classification accuracies of the two methods is not provided because Zhou et al. employed between-group principal component analysis (bgPCA) while the presented work uses stepwise DA. Note that the variables obtained in DCT are mathematical coefficients which are hard to interpret, while the variables in the shape-changing chain method represent the orientations, lengths, or locations of segments, providing direct information of the variance of the curve shapes.Table 5 Numbers of variables used in the shape-changing chain method and in DCT33 for fitting and analyzing suture curves.Full size table More