Interactions between parasitic helminths and gut microbiota in wild tropical primates from intact and fragmented habitats
1.Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 38, 5–11 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Cortés, A., Peachey, L. E., Jenkins, T. P., Scotti, R. & Cantacessi, C. Helminths and microbes within the vertebrate gut—not all studies are created equal. Parasitology 146, 1371–1378 (2019).PubMed
PubMed Central
Article
Google Scholar
3.Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
4.Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
5.Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 148, 1258–1270 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
6.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Nat. Acad. Sci. 110, 3229–3236 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
7.Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
8.Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
9.Brown, E. M., Sadarangani, M. & Finlay, B. B. The role of the immune system in governing host-microbe interactions in the intestine. Nat. Immunol. 14, 660–667 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Kim, S., Covington, A. & Pamer, E. G. The intestinal microbiota: Antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279, 90–105 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
11.Ducarmon, Q. R. et al. Gut microbiota and colonization resistance against bacterial enteric infection. Microbiol. Mol. Biol. Rev. 83, e00007-19 (2019).PubMed
PubMed Central
Article
Google Scholar
12.Sorbara, M. T. & Pamer, E. G. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunol. 12, 1–9 (2019).CAS
PubMed
Article
Google Scholar
13.Jourdan, P. M., Lamberton, P. H. L., Fenwick, A. & Addiss, D. G. Soil-transmitted helminth infections. Lancet 391, 252–265 (2018).PubMed
Article
Google Scholar
14.Wammes, L. J., Mpairwe, H., Elliott, A. M. & Yazdanbakhsh, M. Helminth therapy or elimination: Epidemiological, immunological, and clinical considerations. Lancet Infect. Dis. 14, 1150–1162 (2014).CAS
PubMed
Article
Google Scholar
15.Jenkins, T. P. et al. Experimental infection with the hookworm, Necator americanus, is associated with stable gut microbial diversity in human volunteers with relapsing multiple sclerosis. BMC Biol. 19, 1–17 (2021).Article
CAS
Google Scholar
16.Holm, J. B. et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. PLoS ONE 10, e0125495 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Ducarmon, Q. R. et al. Dynamics of the bacterial gut microbiota during controlled human infection with Necator americanus larvae. Gut Microbes 12, 1840764 (2020).PubMed Central
Article
CAS
PubMed
Google Scholar
18.Broadhurst, M. J. et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog. 8, e1003000 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
19.Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140295 (2015).PubMed
PubMed Central
Article
Google Scholar
20.Filyk, H. A. & Osborne, L. C. The multibiome: The intestinal ecosystem’s influence on immune homeostasis, health, and disease. EBioMedicine 13, 46–54 (2016).PubMed
PubMed Central
Article
Google Scholar
21.Cantacessi, C. et al. Impact of experimental hookworm infection on the human gut microbiota. J. Infect. Dis. 210, 1431–1434 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
22.Li, R. W. et al. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect. Immun. 80, 2150–2157 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Reynolds, L. A., Brett Finlay, B. & Maizels, R. M. Cohabitation in the intestine: Interactions among helminth parasites, bacterial microbiota, and host immunity. J. Immunol. 195, 4059–4066 (2015).CAS
PubMed
Article
Google Scholar
24.Lee, S. C. et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 8, e2880 (2014).PubMed
PubMed Central
Article
Google Scholar
25.Rosa, B. A. et al. Differential human gut microbiome assemblages during soil-transmitted helminth infections in Indonesia and Liberia. Microbiome 6, 33 (2018).PubMed
PubMed Central
Article
Google Scholar
26.Newbold, L. K. et al. Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota. ISME J. 11, 663–675 (2017).PubMed
Article
Google Scholar
27.Baxter, N. T. et al. Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl. Environ. Microbiol. 81, 396–404 (2015).ADS
PubMed
Article
CAS
Google Scholar
28.Cooper, P. et al. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS ONE 8, e76573 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
29.Rapin, A. & Harris, N. L. Helminth-bacterial interactions: Cause and consequence. Trends Immunol. 39, 724–733 (2018).CAS
PubMed
Article
Google Scholar
30.Cowlishaw, G. & Dunbar, R. I. Primate Conservation Biology (University of Chicago Press, 2000).Book
Google Scholar
31.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3, e1600946 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
32.Barelli, C. et al. The gut microbiota communities of wild arboreal and ground-feeding tropical primates are affected differently by habitat disturbance. mSystems 5, 3 (2020).Article
Google Scholar
33.Barelli, C. et al. Habitat fragmentation is associated to gut microbiota diversity of an endangered primate: Implications for conservation. Sci. Rep. 5, 14862 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
34.Barelli, C. et al. Altitude and human disturbance are associated with helminth diversity in an endangered primate, Procolobus gordonorum. PLoS ONE 14, e0225142 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Barelli, C. et al. Loss of protozoan and metazoan intestinal symbiont biodiversity in wild primates living in unprotected forests. Sci. Rep. 10, 1–12 (2020).Article
CAS
Google Scholar
36.Aivelo, T. & Norberg, A. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 87, 438–447 (2018).PubMed
Article
PubMed Central
Google Scholar
37.Vlčková, K. et al. Relationships between gastrointestinal parasite infections and the fecal microbiome in free-ranging western lowland gorillas. Front. Microbiol. 9, 1202 (2018).PubMed
PubMed Central
Article
Google Scholar
38.Mann, A. E. et al. Biodiversity of protists and nematodes in the wild nonhuman primate gut. ISME J. 14, 609–622 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
39.de Winter, I. I. et al. Effects of seasonality and previous logging on faecal helminth-microbiota associations in wild lemurs. Sci. Rep. 10, 16818 (2020).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
40.Ghai, R. R. et al. Hidden population structure and cross-species transmission of whipworms (Trichuris sp.) in humans and non-human primates in Uganda. PLoS Negl. Trop. Dis. 8, e3256 (2014).PubMed
PubMed Central
Article
Google Scholar
41.Nutman, T. B. Human infection with Strongyloides stercoralis and other related Strongyloides species. Parasitology 144, 263–273 (2017).PubMed
Article
PubMed Central
Google Scholar
42.Stephenson, L. S., Holland, C. V. & Cooper, E. S. The public health significance of Trichuris trichiura. Parasitology 121, S73–S95 (2000).PubMed
Article
PubMed Central
Google Scholar
43.Viney, M. E. The biology of Strongyloides spp. WormBook https://doi.org/10.1895/wormbook.1.141.2 (2015).Article
PubMed
PubMed Central
Google Scholar
44.Renelies-Hamilton, J. et al. Exploring interactions between Blastocystis sp., Strongyloides spp. and the gut microbiomes of wild chimpanzees in Senegal. Infect. Genet. Evol. 74, 104010 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Afrin, T. et al. Sequential changes in the host gut microbiota during infection with the intestinal parasitic nematode. Front. Cell Infect. Microbiol. 9, 217 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
46.Rubel, M. A. et al. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biol. 21, 122 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Jenkins, T. P. et al. Author Correction: A comprehensive analysis of the faecal microbiome and metabolome of Strongyloides stercoralis infected volunteers from a non-endemic area. Sci. Rep. 9, 8571 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
48.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
49.van der Zande, H. J. P., Zawistowska-Deniziak, A. & Guigas, B. Immune regulation of metabolic homeostasis by helminths and their molecules. Trends Parasitol. 35, 795–808 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
50.Maeda, Y. & Takeda, K. Host–microbiota interactions in rheumatoid arthritis. Exp. Mol. Med. 51, 1–6 (2019).CAS
PubMed
Article
Google Scholar
51.Biddle, A., Stewart, L., Blanchard, J. & Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 5, 627–640 (2013).Article
Google Scholar
52.Brulc, J. M. et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci. USA 106, 1948–1953 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
53.Hale, V. L. et al. Diet versus phylogeny: A comparison of gut microbiota in captive Colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed
Article
Google Scholar
54.Trosvik, P. et al. Multilevel social structure and diet shape the gut microbiota of the gelada monkey, the only grazing primate. Microbiome 6, 84 (2018).PubMed
PubMed Central
Article
Google Scholar
55.Liu, B. et al. Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids Health Dis. 17, 159 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
56.Bhute, S. S. et al. Gut microbial diversity assessment of Indian Type-2-diabetics reveals alterations in Eubacteria, Archaea, and Eukaryotes. Front. Microbiol. 8, 214 (2017).PubMed
PubMed Central
Article
Google Scholar
57.Wang, Y. et al. Phocea, Pseudoflavonifractor and Lactobacillus intestinalis: Three potential biomarkers of gut microbiota that affect progression and complications of obesity-induced Type 2 diabetes Mellitus. Diabetes Metab. Syndr. Obes. 13, 835–850 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
58.Yarahmadi, M. et al. The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro. J. Parasit. Dis. 40, 75–80 (2016).PubMed
Article
Google Scholar
59.Dinleyici, E. C. et al. Clinical efficacy of Saccharomyces boulardii or metronidazole in symptomatic children with Blastocystis hominis infection. Parasitol. Res. 108, 541–545 (2011).PubMed
Article
Google Scholar
60.Lepczyńska, M. & Dzika, E. The influence of probiotic bacteria and human gut microorganisms causing opportunistic infections on ST3. Gut Pathog. 11, 6 (2019).PubMed
PubMed Central
Article
Google Scholar
61.Huseyin, C. E., O’Toole, P. W., Cotter, P. D. & Scanlan, P. D. Forgotten fungi—the gut mycobiome in human health and disease. FEMS Microbiol. Rev. 41, 479–511 (2017).CAS
PubMed
Article
Google Scholar
62.Mittermeier, R. A., Myers, N., Gill, P. C. & Mittermeier, C. G. Hotspots: Earth’s Richest and Most Endangered Terrestrial Ecoregions (CEMEX, 2000).
Google Scholar
63.Platts, P. J. et al. Delimiting tropical mountain ecoregions for conservation. Environ. Conserv. 38, 312–324 (2011).Article
Google Scholar
64.Ruiz-Lopez, M. J. et al. A novel landscape genetic approach demonstrates the effects of human disturbance on the Udzungwa red colobus monkey (Procolobus gordonorum). Heredity 116, 167–176 (2016).CAS
PubMed
Article
Google Scholar
65.Cavada, N., Tenan, S., Barelli, C. & Rovero, F. Effects of anthropogenic disturbance on primate density at the landscape scale. Conserv. Biol. 33, 873–882 (2019).PubMed
Article
Google Scholar
66.Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012).ADS
CAS
PubMed
Article
Google Scholar
67.Rovero, F. et al. Primates decline rapidly in unprotected forests: Evidence from a monitoring program with data constraints. PLoS ONE 10, e0118330 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
68.International Union for the Conservation of Nature and Natural Resources (IUCN). 2021. IUCN red list of threatened species version 2020-2. International Union for the Conservation of Nature and Natural Resources http://www.iucnredlist.org. (Accessed 21 Apr 2021).69.Modrý, D., Pafčo, B., Petrželková, K. J. & Hasegawa, H. Parasites of Apes: An Atlas of Coproscopic Diagnostics (2018).70.Gillespie, T. R. Noninvasive assessment of gastrointestinal parasite infections in free-ranging primates. Int. J. Primatol. 27, 1129–1143 (2006).Article
Google Scholar
71.Hasegawa, H. Methods of collection and identification of minute nematodes from the feces of primates, with special application to coevolutionary study of pinworms. In Primate Parasite Ecology: The Dynamics of Host-parasite Relationships (eds Huffman, M. A. & Chapman, C. A.) 29–46 (Cambridge University Press, 2009).
Google Scholar
72.Mallott, E. K., Malhi, R. S. & Garber, P. A. High-throughput sequencing of fecal DNA to identify insects consumed by wild Weddell’s saddleback tamarins (Saguinus weddelli, Cebidae, Primates) in Bolivia. Am. J. Phys. Anthropol. 156, 474–481 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
73.Mallott, E. K., Garber, P. A. & Malhi, R. S. Integrating feeding behavior, ecological data, and DNA barcoding to identify developmental differences in invertebrate foraging strategies in wild white-faced capuchins (Cebus capucinus). Am. J. Phys. Anthropol. 162, 241–254 (2017).PubMed
Article
PubMed Central
Google Scholar
74.Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
75.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021) https://www.R-project.org.76.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated marginal means, aka least-squares means. R package version, Vol. 1, 3 (2018) https://CRAN.R-project.org/package=emmeans. More