More stories

  • in

    A large invasive consumer reduces coastal ecosystem resilience by disabling positive species interactions

    1.Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Vitousek, P. M., DAntonio, C. M., Loope, L. L., Westbrooks, R. & D’Antonio, C. M. Biological invasions as global environmental change. Am. Sci. 84, 468–478 (1996).ADS 

    Google Scholar 
    3.Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).PubMed 
    Article 

    Google Scholar 
    4.Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).Article 

    Google Scholar 
    5.Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. USA 113, 11261–11265 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).ADS 
    Article 

    Google Scholar 
    7.Didham, R. K., Tylianakis, J. M., Hutchison, M. A., Ewers, R. M. & Gemmell, N. J. Are invasive species the drivers of ecological change? Trends Ecol. Evol. 20, 470–474 (2005).PubMed 
    Article 

    Google Scholar 
    8.Simberloff, D. How common are invasion-induced ecosystem impacts? Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    9.Guy-Haim, T. et al. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: a global review and meta-analysis. Glob. Change Biol. https://doi.org/10.1111/gcb.14007 (2018).10.Vander Zanden, M. J., Casselman, J. M. & Rasmussen, J. B. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401, 464–467 (1999).ADS 
    Article 
    CAS 

    Google Scholar 
    11.Bartomeus, I., Vilà, M. & Santamaría, L. Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155, 761–770 (2008).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Aizen, M. A., Morales, C. L. & Morales, J. M. Invasive mutualists erode native pollination webs. PLoS Biol. 6, 0396–0403 (2008).CAS 
    Article 

    Google Scholar 
    13.Olesen, J. M., Eskildsen, L. I. & Venkatasamy, S. Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists. Divers. Distrib. 8, 181–192 (2002).Article 

    Google Scholar 
    14.Carvalheiro, L. G., Barbosa, E. R. M. & Memmott, J. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study. J. Appl. Ecol. 45, 1419–1427 (2008).Article 

    Google Scholar 
    15.Anderson, C. B., Griffith, C. R., Rosemond, A. D., Rozzi, R. & Dollenz, O. The effects of invasive North American beavers on riparian plant communities in Cape Horn, Chile. Biol. Conserv. 128, 467–474 (2006).Article 

    Google Scholar 
    16.Walsh, J. R., Carpenter, S. R. & Vander Zanden, M. J. Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc. Natl Acad. Sci. USA 113, 201600366 (2016).
    Google Scholar 
    17.Wiles, G. J., Bart, J., Beck, R. E. & Aguon, C. F. Impacts of the Brown Tree Snake: patterns of decline and species persistence in Guam’s Avifauna. Conserv. Biol. 17, 1350–1360 (2003).Article 

    Google Scholar 
    18.Ludyanskiy, M., McDonald, D. & MacNeill, D. Impact of the Zebra Mussei, a Bivalve Invader. BioScience 43, 533–544 (1993).Article 

    Google Scholar 
    19.Byrnes, J. E., Reynolds, P. L. & Stachowicz, J. J. Invasions and extinctions reshape coastal marine food webs. PLoS ONE 2, 1–7 (2007).Article 

    Google Scholar 
    20.Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    21.Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities. BioScience 51, 235 (2001).Article 

    Google Scholar 
    22.Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).Article 

    Google Scholar 
    23.Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).Article 

    Google Scholar 
    24.Angelini, C. et al. Foundation species’ overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes. Proc. R. Soc. B Biol. Sci. 282, 20150421 (2015).Article 

    Google Scholar 
    25.Anthelme, F., Cavieres, L. A. & Dangles, O. Facilitation among plants in alpine environments in the face of climate change. Front. Plant Sci. 5 (2014).26.Angelini, C. & Silliman, B. R. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system. Ecology 95, 185–196 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.van der Heide, T. et al. A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336, 1432–1434 (2012).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Nummi, P. & Holopainen, S. Whole-community facilitation by beaver: ecosystem engineer increases waterbird diversity: ecosystem engineer increases waterbird diversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 623–633 (2014).Article 

    Google Scholar 
    29.Rosell, F., Bozser, O., Collen, P. & Parker, H. Ecological impact of beavers Castor fiber and Castor canadensis and their ability to modify ecosystems. Mammal. Rev. 35, 248–276 (2005).Article 

    Google Scholar 
    30.He, Q., Bertness, M. D. & Altieri, A. H. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Lotze, H. K. et al. Depletion, degredation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Grosholz, E. Ecological and evolutionary consequences of coastal invasions. Trends Ecol. Evol. 17, 22–27 (2002).Article 

    Google Scholar 
    36.Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    37.He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    39.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7, 12473 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Bruno, J. F. & Bertness, M. D. Habitat modification and facilitation in benthic marine communities. in Marine Community Ecology (eds Bertness, M. D., Gaines, S. & Hay, M.) 201–216 (Sinauer, 2001).42.De Fouw, J. et al. Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Curr. Biol. 26, 1051–1056 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Ellison, A. M., Farnsworth, E. J. & Twilley, R. R. Facultative mutualism between red mangroves and root‐fouling sponges in belizean mangal. Ecology https://doi.org/10.2307/2265744 (1996).44.Arkema, K. K. et al. Coastal habitats shield people and property from sea-level rise and storms. Nat. Clim. Change 3, 913–918 (2013).ADS 
    Article 

    Google Scholar 
    45.McKee, K. L., Mendelssohn, I. A. & Materne, M. D. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Glob. Ecol. Biogeogr. 13, 65–73 (2004).Article 

    Google Scholar 
    46.Alber, M., Swenson, E. M., Adamowicz, S. C. & Mendelssohn, I. A. Salt Marsh Dieback: an overview of recent events in the US. Estuar. Coast. Shelf Sci. 80, 1–11 (2008).ADS 
    Article 

    Google Scholar 
    47.Wang, H., Fu, R., Kumar, A. & Li, W. Intensification of summer rainfall variability in the southeastern United States during recent decades. J. Hydrometeorol. 11, 1007–1018 (2010).ADS 
    Article 

    Google Scholar 
    48.Stiven, A. E. & Gardner, S. A. Population processes in the ribbed mussel Geukensia demissa (Dillwyn) in a North Carolina salt marsh tidal gradient: spatial pattern, predation, growth and mortality. J. Exp. Mar. Biol. Ecol. 160, 81–102 (1992).Article 

    Google Scholar 
    49.Angelini, C. & Silliman, B. R. Patch size-dependent community recovery after massive disturbance. Ecology 93, 101–110 (2012).PubMed 
    Article 

    Google Scholar 
    50.Mendelssohn, I. & Morris, J. Ecophysiological controls on the productivity of Spartina alterniflora. in Concepts and Controversies in Tidal Marsh Ecology (eds Weinstein, M. & Kreeger, D.) 59–80 (Kluwer Academic Publishers, 1999).51.Bertness, M. D. Ribbed mussels and Spartina alterniflora production in a New England marsh. Ecology 65, 1794–1807 (1984).Article 

    Google Scholar 
    52.Siemann, E., Carrillo, J. A., Gabler, C. A., Zipp, R. & Rogers, W. E. Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. Ecol. Manag. 258, 546–553 (2009).Article 

    Google Scholar 
    53.Campbell, T. A. & Long, D. B. Feral swine damage and damage management in forested ecosystems. Ecol. Manag. 257, 2319–2326 (2009).Article 

    Google Scholar 
    54.Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    55.Graves, H. B. Behavior and ecology of wild and feral swine (Sus-Scrofa). J. Anim. Sci. 58, 482–492 (1984).Article 

    Google Scholar 
    56.Wood, G. W. & Roark, N. D. Food habits of feral hogs in coastal South Carolina. J. Wildl. Manag. 44, 506–511 (1980).Article 

    Google Scholar 
    57.Sharp, S. J. & Angelini, C. The role of landscape composition and disturbance type in mediating salt marsh resilience to feral hog invasion. Biol. Invasions https://doi.org/10.1007/s10530-019-02018-5 (2019).58.Crotty, S. M. et al. Foundation species patch configuration mediates salt marsh biodiversity, stability and multifunctionality. Ecol. Lett. 21, 1681–1692 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Zhu, Z. et al. Historic storms and the hidden value of coastal wetlands for nature-based flood defence. Nat. Sustain. https://doi.org/10.1038/s41893-020-0556-z (2020).60.Thomsen, M. S. et al. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification. Integr. Comp. Biol. 50, 158–175 (2010).PubMed 
    Article 

    Google Scholar 
    61.Silliman, B. R. et al. Facilitation shifts paradigms and can amplify coastal restoration efforts. Proc. Natl Acad. Sci. USA 112, 14295–14300 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Silliman, B. R. et al. Field experiments and meta-analysis reveal wetland vegetation as a crucial element in the coastal protection paradigm. Curr. Biol. 29, 1800–1806 (2019). e3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Rogers, H. S. et al. Effects of an invasive predator cascade to plants via mutualism disruption. Nat. Commun. 8, 14557 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Albins, M. & Hixon, M. Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar. Ecol. Prog. Ser. 367, 233–238 (2008).ADS 
    Article 

    Google Scholar 
    67.Albins, M. Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Mar. Ecol. Prog. Ser. 522, 231–243 (2015).ADS 
    Article 

    Google Scholar 
    68.Ling, S. D. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Johnson, C. R. et al. Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J. Exp. Mar. Biol. Ecol. 400, 17–32 (2011).Article 

    Google Scholar 
    70.Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl Acad. Sci. USA 106, 22341–22345 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Persico, E. P., Sharp, S. J. & Angelini, C. Feral hog disturbance alters carbon dynamics in southeastern US salt marshes. Mar. Ecol. Prog. Ser. 580, 57–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    72.Shaffer, G. P. et al. System response, nutria herbivory, and vegetation recovery of a wetland receiving secondarily-treated effluent in coastal Louisiana. Ecol. Eng. 79, 120–131 (2015).Article 

    Google Scholar 
    73.Fleming, P. A. et al. Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function?: loss of Australian digging mammals and ecosystem function. Mammal. Rev. 44, 94–108 (2014).Article 

    Google Scholar 
    74.Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: decline and extinction of Australian mammals since European settlement. Proc. Natl Acad. Sci. USA 112, 4531–4540 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Croll, D. A. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Siero, E. et al. Grazing away the resilience of patterned ecosystems. Am. Nat. 193, 472–480 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Crotty, S. M. & Angelini, C. Geomorphology and species interactions control facilitation cascades in a salt marsh ecosystem. Curr. Biol. 30, 1562–1571.e4 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Geisser, H. & Reyer, H.-U. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J. Wildl. Manag. 68, 939–946 (2004).Article 

    Google Scholar 
    79.Engeman, R. M. et al. Feral swine management for conservation of an imperiled wetland habitat: Florida’s vanishing seepage slopes. Biol. Conserv. 134, 440–446 (2007).Article 

    Google Scholar 
    80.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. BioScience 64, 291–299 (2014).Article 

    Google Scholar 
    81.McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    82.Oldfield, C. A. & Evans, J. P. Twelve years of repeated wild hog activity promotes population maintenance of an invasive clonal plant in a coastal dune ecosystem. Ecol. Evol. 6, 2569–2578 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Ford, M. A. & Grace, J. B. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. J. Ecol. 86, 974–982 (1998).Article 

    Google Scholar 
    84.Hensel, M. J. S. & Silliman, B. R. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc. Natl Acad. Sci. USA 110, 20621–20626 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Silliman, B. R. et al. Are the ghosts of nature’s past haunting ecology today? Curr. Biol. 28, R532–R537 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Morse, N. B. et al. Novel ecosystems in the Anthropocene: a revision of the novel ecosystem concept for pragmatic applications. Ecol. Soc. 19, art12 (2014).Article 

    Google Scholar 
    87.Goigel Turner, M. Effects of grazing by feral horses, clipping, trampling, and burning on a Georgia salt marsh. Estuaries. 10, 54–60 (2014).Article 

    Google Scholar 
    88.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.4. https://CRAN.R-project.org/package=DHARMa (2021).89.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).90.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    91.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    92.AgiSoft PhotoScan Professional. (AgiSoft, 2016).93.Rasband, W. S. ImageJ. (U.S. National Institutes of Health, 1997).94.Kuenzler, E. J. Structure and energy flow of a mussel population in a Georgia salt marsh. Limnol. Oceanogr. 6, 191–204 (1961).ADS 
    Article 

    Google Scholar 
    95.Length, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.7.0. https://CRAN.R-project.org/package=emmeans (2021).96.Guichard, F., Halpin, P. M., Allison, G. W., Lubchenco, J. & Menge, B. A. Mussel disturbance dynamics: signatures of oceanographic forcing from local interactions. Am. Nat. 161, 889–904 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Silliman, B. R., van de Koppel, J., Bertness, M. D., Stanton, L. E. & Mendelssohn, I. A. Drought, snails, and large-scale die-off of southern U.S. salt marshes. Science 310, 1803–1806 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Microevolutionary dynamics show tropical valleys are deeper for montane birds of the Atlantic Forest

    1.Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pyron, R. A., Alexander Pyron, R. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B Biol. Sci. 280, 20131622 (2013).Article 

    Google Scholar 
    3.Pyron, R. A. Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients. Glob. Ecol. Biogeogr. 23, 1126–1134 (2014).Article 

    Google Scholar 
    4.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).Article 

    Google Scholar 
    6.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. Biol. Sci. 278, 1823–1830 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    7.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    8.Cadena, C. D. et al. Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc. R. Soc. B Biol. Sci. 279, 194–201 (2012).Article 

    Google Scholar 
    9.Eo, S. H., Wares, J. P. & Carroll, J. P. Population divergence in plant species reflects latitudinal biodiversity gradients. Biol. Lett. 4, 382–384 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.McCain, C. M. Vertebrate range sizes indicate that mountains may be ‘higher’ in the tropics. Ecol. Lett. 12, 550–560 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Chan, W.-P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Shah, A. A. et al. Climate variability predicts thermal limits of aquatic insects across elevation and latitude. Funct. Ecol. 31, 2118–2127 (2018).14.Kozak, K. H. & Wiens, J. J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. Biol. Sci. 274, 2995–3003 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    15.Smith, B. T., Seeholzer, G. F., Harvey, M. G., Cuervo, A. M. & Brumfield, R. T. A latitudinal phylogeographic diversity gradient in birds. PLoS Biol. 15, e2001073 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Hewitt, G. The genetic legacy of the quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Smith, B. T., Bryson, R. W. Jr, Houston, D. D. & Klicka, J. An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. Ecol. Lett. 15, 1318–1325 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bull, R. A. S. et al. Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol. Ecol. 20, 1092–1107 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Peterman, W. E. ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9, 1638–1647 (2018).Article 

    Google Scholar 
    20.Burney, C. W. & Brumfield, R. T. Ecology predicts levels of genetic differentiation in neotropical birds. Am. Nat. 174, 358–368 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Kipp, F. A. Der Handflügel-Index als flugbiologisches Maß. Vogelwarte 20, 77–86 (1959).
    Google Scholar 
    22.Stotz, D. F., Fitzpatrick, J. W., Parker, T. A., III & Moskovits, D. K. Neotropical Birds: Ecology and Conservation (Univ. Chicago Press, 1996).23.Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C. & Foll, M. Robust demographic inference from genomic and SNP data. PLoS Genet. 9, e1003905 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Bradburd, G. S., Coop, G. M. & Ralph, P. L. Inferring continuous and discrete population genetic structure across space. Genetics 210, 33–52 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Batalha-Filho, H., Cabanne, G. S. & Miyaki, C. Y. Phylogeography of an Atlantic forest passerine reveals demographic stability through the last glacial maximum. Mol. Phylogenet. Evol. 65, 892–902 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Raposo do Amaral, F. et al. Rugged relief and climate promote isolation and divergence between two neotropical cold-associated birds. Evolution 75, 2371–2387 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dunbar, M. B. & Brigham, R. M. Thermoregulatory variation among populations of bats along a latitudinal gradient. J. Comp. Physiol. B 180, 885–893 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Gaitán-Espitia, J. D. et al. Geographic variation in thermal physiological performance of the intertidal crab Petrolisthes violaceus along a latitudinal gradient. J. Exp. Biol. 217, 4379–4386 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    30.Molina-Montenegro, M. A. & Naya, D. E. Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS ONE 7, e47620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Louthan, A. M., Doak, D. F. & Angert, A. L. Where and when do species interactions set range limits? Trends Ecol. Evol. 30, 780–792 (2015).PubMed 
    Article 

    Google Scholar 
    32.Macedo, G., Silva, M., do Amaral, F. R. & Maldonado-Coelho, M. Symmetrical discrimination despite weak song differentiation in 2 suboscine bird sister species. Behav. Ecol. 30, 1205–1215 (2019).Article 

    Google Scholar 
    33.Dhondt, A. A. Interspecific Competition in Birds (OUP, 2012).34.Freeman, B. G. Competitive interactions upon secondary contact drive elevational divergence in tropical birds. Am. Nat. 186, 470–479 (2015).PubMed 
    Article 

    Google Scholar 
    35.Zuloaga, J. & Kerr, J. T. Over the top: do thermal barriers along elevation gradients limit biotic similarity? Ecography 40, 478–486 (2017).Article 

    Google Scholar 
    36.Botero, C. A., Dor, R., McCain, C. M. & Safran, R. J. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol. Ecol. 23, 259–268 (2014).PubMed 
    Article 

    Google Scholar 
    37.Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Harvey, M. G. et al. The evolution of a tropical biodiversity hotspot. Science 370, 1343–1348 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Thom, G. et al. Climatic dynamics and topography control genetic variation in Atlantic Forest montane birds. Mol. Phylogenet. Evol. 148, 106812 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Rabosky, D. L. & Glor, R. E. Equilibrium speciation dynamics in a model adaptive radiation of island lizards. Proc. Natl Acad. Sci. USA 107, 22178–22183 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Weir, J. T. & Price, T. D. Limits to speciation inferred from times to secondary sympatry and ages of hybridizing species along a latitudinal gradient. Am. Nat. 177, 462–469 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Harvey, M. G. et al. Positive association between population genetic differentiation and speciation rates in New World birds. Proc. Natl Acad. Sci. USA 114, 6328–6333 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Eaton, D. A. R. & Overcast, I. ipyrad: interactive assembly and analysis of RADseq datasets. Bioinformatics 36, 2592–2594 (2016).44.Harvey, M. G., Smith, B. T., Glenn, T. C., Faircloth, B. C. & Brumfield, R. T. Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Syst. Biol. 65, 910–924 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Cumer, T. et al. Double-digest RAD-sequencing: do pre- and post-sequencing protocol parameters impact biological results? Mol. Genet. Genomics 296, 457–471 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Jombart, T. & Ahmed, I. adegenet 1.3–1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27, 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Gehara, M. et al. Estimating synchronous demographic changes across populations using hABC and its application for a herpetological community from northeastern Brazil. Mol. Ecol. 26, 4756–4771 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    51.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    52.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).53.Clarke, R. T., Rothery, P. & Raybould, A. F. Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J. Agric. Biol. Environ. Stat. 7, 361 (2002).Article 

    Google Scholar 
    54.Pavlidis, P., Laurent, S. & Stephan, W. msABC: a modification of Hudson’s ms to facilitate multi-locus ABC analysis. Mol. Ecol. Resour. 10, 723–727 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Csilléry, K., François, O. & Blum, M. G. B. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3, 475–479 (2012).Article 

    Google Scholar 
    56.Orme, D. et al. The caper package: comparative analysis of phylogenetics and evolution in R. R. Package Version 5, 1–36 (2013).
    Google Scholar 
    57.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Blomberg, S. P., Garland, T. Jr & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Pavoine, S. adiv: An r package to analyse biodiversity in ecology. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13430 (2020).Article 

    Google Scholar  More

  • in

    Local adaptations of Mediterranean sheep and goats through an integrative approach

    1.Vigne, J.-D. Early domestication and farming: What should we know or do for a better understanding?. Anthropozoologica 50(2), 123–150. https://doi.org/10.5252/az2015n2a5 (2015).Article 

    Google Scholar 
    2.Zeder, M. A. Animal domestication in the Zagros: An update and directions for future research. MOM Édit. 49(1), 243–277 (2008).
    Google Scholar 
    3.Sponenberg, D. P. & Bixby, D. E. Managing Breeds for a Secure Future: Strategies for Breeders and Breed Associations (ALBC, 2007).
    Google Scholar 
    4.Taberlet, P. et al. Are cattle, sheep, and goats endangered species?. Mol. Ecol. 17(1), 275–284. https://doi.org/10.1111/j.1365-294X.2007.03475.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Berihulay, H., Abied, A., He, X., Jiang, L. & Ma, Y. Adaptation mechanisms of small ruminants to environmental heat stress. Anim. Open Access J. MDPI 9(3), 75. https://doi.org/10.3390/ani9030075 (2019).Article 

    Google Scholar 
    6.Leroy, G., Baumung, R., Boettcher, P., Scherf, B. & Hoffmann, I. Review: Sustainability of crossbreeding in developing countries; definitely not like crossing a meadow…. Animal 10(2), 262–273. https://doi.org/10.1017/S175173111500213X (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Edea, Z., Dadi, H., Dessie, T. & Kim, K.-S. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics 41(8), 973–981. https://doi.org/10.1007/s13258-019-00820-y (2019).Article 
    PubMed 

    Google Scholar 
    8.Wei, C. et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 6(1), 26770. https://doi.org/10.1038/srep26770 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Yang, J. et al. Whole-genome sequencing of native sheep provides insights into rapid adaptations to extreme environments. Mol. Biol. Evol. 33(10), 2576–2592. https://doi.org/10.1093/molbev/msw129 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Kim, E. S. et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 116(3), 255–264. https://doi.org/10.1038/hdy.2015.94 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Ciani, E. et al. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet. Sel. Evol. GSE 52, 1–14. https://doi.org/10.1186/s12711-020-00545-7 (2020).Article 

    Google Scholar 
    12.Colli, L. et al. Genome-wide SNP profiling of worldwide goat populations reveals strong partitioning of diversity and highlights post-domestication migration routes. Genet. Sel. Evol. GSE 50, 1–20. https://doi.org/10.1186/s12711-018-0422-x (2018).Article 

    Google Scholar 
    13.Kijas, J. W. et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 4(3), e4668. https://doi.org/10.1371/journal.pone.0004668 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Brisebarre, A. Races ovines, systèmes d’élevage et représentations des éleveurs. in Développement rural, environnement et enjeux territoriaux. Regards croisés Oriental marocain et Sud-Est tunisien (dir. Bonte, P., Elloumi, M., Guillaume, H. & Mahdi, M.) 63–78 (Cérès Ed., 2009).15.Hall, S. J. G. Livestock biodiversity as interface between people, landscapes and nature. People Nat. 1(3), 284–290. https://doi.org/10.1002/pan3.23 (2019).Article 

    Google Scholar 
    16.Caballero, R. et al. Grazing Systems and Biodiversity in Mediterranean Areas: Spain, Italy and Greece (Pastos, 2011).
    Google Scholar 
    17.Collantes, F. The demise of European Mountain Pastoralism: Spain 1500–2000. Nomadic People 13(2), 124–145 (2009).Article 

    Google Scholar 
    18.Luu, K., Bazin, E. & Blum, M. G. B. pcadapt: An R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Resour. 17(1), 67–77. https://doi.org/10.1111/1755-0998.12592 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699. https://doi.org/10.1093/molbev/mst063 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.FAO. The State of the World’s Animal Genetic Resources for Food and Agriculture, edited by B. Rischkowsky & D. Pilling. Rome. (2007).21.François, O. Running Structure-Like Population Genetic Analyses with R. R Tutorials in Population Genetics 1–9 (U. Grenoble-Alpes, 2016).
    Google Scholar 
    22.Dalongeville, A., Benestan, L., Mouillot, D., Lobreaux, S. & Manel, S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics 19, 1–13. https://doi.org/10.1186/s12864-018-4579-z (2018).CAS 
    Article 

    Google Scholar 
    23.De Kort, H., Vandepitte, K., Mergeay, J., Mijnsbrugge, K. V. & Honnay, O. The population genomic signature of environmental selection in the widespread insect-pollinated tree species Frangula alnus at different geographical scales. Heredity 115(5), 415–425. https://doi.org/10.1038/hdy.2015.41 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Capblancq, T., Luu, K., Blum, M. G. B. & Bazin, E. Evaluation of redundancy analysis to identify signatures of local adaptation. Mol. Ecol. Resour. 18(6), 1223–1233. https://doi.org/10.1111/1755-0998.12906 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Bertolini, F. et al. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet. Sel. Evol. 50(1), 57. https://doi.org/10.1186/s12711-018-0421-y (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Fariello, M.-I. et al. Selection signatures in worldwide sheep populations. PLoS ONE 9(8), e103813. https://doi.org/10.1371/journal.pone.0103813 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Manunza, A. et al. Population structure of eleven Spanish ovine breeds and detection of selective sweeps with BayeScan and hapFLK. Sci. Rep. 6(1), 1–10. https://doi.org/10.1038/srep27296 (2016).CAS 
    Article 

    Google Scholar 
    28.Oget, C., Servin, B. & Palhière, I. Genetic diversity analysis of French goat populations reveals selective sweeps involved in their differentiation. Anim. Genet. 50(1), 54–63. https://doi.org/10.1111/age.12752 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Rochus, C. M. et al. Revealing the selection history of adaptive loci using genome-wide scans for selection: An example from domestic sheep. BMC Genomics 19(1), 71. https://doi.org/10.1186/s12864-018-4447-x (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Ruiz-Larrañaga, O. et al. Genomic selection signatures in sheep from the Western Pyrenees. Genet. Sel. Evol. GSE 50, 1–12. https://doi.org/10.1186/s12711-018-0378-x (2018).CAS 
    Article 

    Google Scholar 
    31.Wang, Q., Wang, D., Yan, G., Sun, L. & Tang, C. TRPC6 is required for hypoxia-induced basal intracellular calcium concentration elevation, and for the proliferation and migration of rat distal pulmonary venous smooth muscle cells. Mol. Med. Rep. 13(2), 1577–1585. https://doi.org/10.3892/mmr.2015.4750 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Wang, X. et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 6, 38932. https://doi.org/10.1038/srep38932 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Graae, B. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19. https://doi.org/10.1111/j.1600-0706.2011.19694.x (2011).Article 

    Google Scholar 
    34.Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370. https://doi.org/10.1111/mec.13322 (2015).Article 
    PubMed 

    Google Scholar 
    35.Qi, X. et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol. Evol. 11(1), 72–85. https://doi.org/10.1093/gbe/evy264 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Yang, F., Wang, Q., Wang, M., He, K. & Pan, Y. Associations between gene polymorphisms in two crucial metabolic pathways and growth traits in pigs. Chin. Sci. Bull. 57(21), 2733–2740. https://doi.org/10.1007/s11434-012-5328-3 (2012).CAS 
    Article 

    Google Scholar 
    37.Schmidt, H. et al. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax—A liver transcriptomics approach. Sci. Rep. https://doi.org/10.1038/s41598-017-13905-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Tian, R. et al. Adaptive evolution of energy metabolism-related genes in hypoxia-tolerant mammals. Front. Genet. 8, 205. https://doi.org/10.3389/fgene.2017.00205 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cheng, A. H. et al. SOX2-dependent transcription in clock neurons promotes the robustness of the central circadian pacemaker. Cell Rep. 26(12), 3191-3202.e8. https://doi.org/10.1016/j.celrep.2019.02.068 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Bai, L. et al. Hypoxic and cold adaptation insights from the Himalayan Marmot Genome. IScience 11, 519–530. https://doi.org/10.1016/j.isci.2018.11.034 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Stronen, A. V., Pertoldi, C., Iacolina, L., Kadarmideen, H. N. & Kristensen, T. N. Genomic analyses suggest adaptive differentiation of northern European native cattle breeds. Evol. Appl. https://doi.org/10.1111/eva.12783 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lan, D. et al. Genetic diversity, molecular phylogeny, and selection evidence of Jinchuan Yak revealed by whole-genome resequencing. G3 (Bethesda, Md.) 8(3), 945–952. https://doi.org/10.1534/g3.118.300572 (2018).CAS 
    Article 

    Google Scholar 
    43.Chen, J. et al. Deletion of TRPC6 attenuates NMDA receptor-mediated Ca2+ entry and Ca2+-induced neurotoxicity following cerebral ischemia and oxygen-glucose deprivation. Front. Neurosci. 11, 138. https://doi.org/10.3389/fnins.2017.00138 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Munsch, T., Freichel, M., Flockerzi, V. & Pape, H.-C. Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proc. Natl. Acad. Sci. U. S. A. 100(26), 16065–16070. https://doi.org/10.1073/pnas.2535311100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Duan, J. et al. Structure of the mouse TRPC4 ion channel. Nat. Commun. 9, 1–10. https://doi.org/10.1101/282715 (2018).CAS 
    Article 

    Google Scholar 
    46.Malczyk, M. et al. The role of transient receptor potential channel 6 channels in the pulmonary vasculature. Front. Immunol. 8, 707. https://doi.org/10.3389/fimmu.2017.00707 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Li, S. et al. Crucial role of TRPC6 in maintaining the stability of HIF-1α in glioma cells under hypoxia. J. Cell Sci. 128(17), 3317–3329. https://doi.org/10.1242/jcs.173161 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Xu, L. et al. Chronic hypoxia increases TRPC6 expression and basal intracellular Ca2+ concentration in rat distal pulmonary venous smooth muscle. PLoS ONE 9(11), e112007. https://doi.org/10.1371/journal.pone.0112007 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Deng, L. et al. Prioritizing natural-selection signals from the deep-sequencing genomic data suggests multi-variant adaptation in Tibetan highlanders. Natl. Sci. Rev. 6(6), 1201–1222. https://doi.org/10.1093/nsr/nwz108 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Howard, J. T. et al. Beef cattle body temperature during climatic stress: A genome-wide association study. Int. J. Biometeorol. 58, 1665–1672. https://doi.org/10.1007/s00484-013-0773-5 (2013).Article 
    PubMed 

    Google Scholar 
    51.Kijas, J. W. et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 10(2), e1001258. https://doi.org/10.1371/journal.pbio.1001258 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Wei, C. et al. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genomics 16(1), 1–12. https://doi.org/10.1186/s12864-015-1384-9 (2015).Article 

    Google Scholar 
    53.Chen, M. et al. Genome-wide detection of selection signatures in Chinese indigenous Laiwu pigs revealed candidate genes regulating fat deposition in muscle. BMC Genet. 19, 1–9. https://doi.org/10.1186/s12863-018-0622-y (2018).CAS 
    Article 

    Google Scholar 
    54.Chen, C. et al. Copy number variation in the MSRB3 gene enlarges porcine ear size through a mechanism involving miR-584-5p. Genet. Sel. Evol. GSE 50, 1–18. https://doi.org/10.1186/s12711-018-0442-6 (2018).CAS 
    Article 

    Google Scholar 
    55.Webster, M. T. et al. Linked genetic variants on chromosome 10 control ear morphology and body mass among dog breeds. BMC Genomics 16, 474. https://doi.org/10.1186/s12864-015-1702-2 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Mastrangelo, S. et al. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 14(6), e0209632. https://doi.org/10.1371/journal.pone.0209632 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Xi, Y. et al. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ. Biochem. Biophys. Res. Commun. 472(4), 617–623. https://doi.org/10.1016/j.bbrc.2016.03.015 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Gou, X. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24(8), 1308–1315. https://doi.org/10.1101/gr.171876.113 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Yuan, Z. et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 48(1), 55–66. https://doi.org/10.1111/age.12477 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Zhu, C. et al. GWAS and Post-GWAS to Identification of Genes Associated with Sheep Tail Fat Deposition. Retrieved from https://www.preprints.org/manuscript/201906.0093/v1 (2019).61.Allais-Bonnet, A. et al. Novel insights into the bovine polled phenotype and horn ontogenesis in Bovidae. PLoS ONE 8(5), e63512. https://doi.org/10.1371/journal.pone.0063512 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Johnston, S. E. et al. Genome-wide association mapping identifies the genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep population. Mol. Ecol. 20(12), 2555–2566. https://doi.org/10.1111/j.1365-294X.2011.05076.x (2011).Article 
    PubMed 

    Google Scholar 
    63.Oksenberg, N., Stevison, L., Wall, J. D. & Ahituv, N. Function and regulation of AUTS2, a gene implicated in autism and human evolution. PLoS Genet. 9(1), e1003221. https://doi.org/10.1371/journal.pgen.1003221 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Hayashi, S. & Takeichi, M. Emerging roles of protocadherins: From self-avoidance to enhancement of motility. J. Cell Sci. 128(8), 1455–1464. https://doi.org/10.1242/jcs.166306 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Seong, E., Yuan, L. & Arikkath, J. Cadherins and catenins in dendrite and synapse morphogenesis. Cell Adhes. Migr. 9(3), 202–213. https://doi.org/10.4161/19336918.2014.994919 (2015).CAS 
    Article 

    Google Scholar 
    66.Shin, D.-H. et al. Deleted copy number variation of Hanwoo and Holstein using next generation sequencing at the population level. BMC Genomics 15(1), 240. https://doi.org/10.1186/1471-2164-15-240 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Zeng, X. Angus Cattle at High Altitude: Pulmonary Arterial Pressure, Estimated Breeding Value and Genome-Wide Association Study (PhD thesis). (Colorado State University, 2017).68.Benjelloun, B. Diversité des génomes et adaptation locale des petits ruminants d’un pays méditerranéen : le Maroc (PhD thesis) (Université Grenoble Alpes, France, 2015).69.Onzima, R. B. et al. Genome-wide characterization of selection signatures and runs of homozygosity in Ugandan Goat Breeds. Front. Genet. 9, 318. https://doi.org/10.3389/fgene.2018.00318 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Farzana, F. et al. Neurobeachin regulates glutamate- and GABA-receptor targeting to synapses via distinct pathways. Mol. Neurobiol. 53(4), 2112–2123. https://doi.org/10.1007/s12035-015-9164-8 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Nair, R. et al. Neurobeachin regulates neurotransmitter receptor trafficking to synapses. J. Cell Biol. 200(1), 61–80. https://doi.org/10.1083/jcb.201207113 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Alberto, F. J. et al. Convergent genomic signatures of domestication in sheep and goats. Nat. Commun. 9, 1–9. https://doi.org/10.1038/s41467-018-03206-y (2018).CAS 
    Article 

    Google Scholar 
    73.Iranmehr, A. et al. Novel insight into the genetic basis of high-altitude pulmonary hypertension in Kyrgyz highlanders. Eur. J. Hum. Genet. EJHG 27(1), 150–159. https://doi.org/10.1038/s41431-018-0270-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    74.Newman, J. H. et al. High-altitude pulmonary hypertension in cattle (Brisket disease): Candidate genes and gene expression profiling of peripheral blood mononuclear cells. Pulmon. Circ. 1(4), 462–469. https://doi.org/10.4103/2045-8932.93545 (2011).CAS 
    Article 

    Google Scholar 
    75.Yang, X., Kong, Q., Zhao, C., Cai, Z., & Wang, M. New pathogenic variant of BMPR2 in pulmonary arterial hypertension. Cardiology in the Young, 29(4), 462–466. https://doi.org/10.1017/S1047951119000015 (2019).76.Anderson, L. et al. Bmp2 and Bmp4 exert opposing effects in hypoxic pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298(3), R833–R842. https://doi.org/10.1152/ajpregu.00534.2009 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Ciani, E. et al. Genome-wide analysis of Italian sheep diversity reveals a strong geographic pattern and cryptic relationships between breeds. Anim. Genet. 45(2), 256–266. https://doi.org/10.1111/age.12106 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.ESRI. ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).
    Google Scholar 
    79.Ruiz, M. & Ruiz, J. P. Ecological history of transhumance in Spain. Biol. Conserv. 37, 73–86 (1986).Article 

    Google Scholar 
    80.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    81.Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled seamless SRTM dataV4, International Centre for Tropical Agriculture (CIAT). Available from https://srtm.csi.cgiar.org (2008).82.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018). https://www.R-project.org.83.Brenning, A. Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models. In Hamburger Beitraege zur Physischen Geographie und Landschaftsoekologie (eds Böhner, J. et al.) 23–32 (SAGA, 2008).
    Google Scholar 
    84.Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn (Springer, 2013). http://www.asdar-book.org/.85.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5(2), 9–13. https://CRAN.R-project.org/doc/Rnews/ (2005).86.Keitt, T. H., Bivand, R., Pebesma, E. & Rowlingson, B. rgdal: Bindings for the geospatial data abstraction library. Copy at http://www.tinyurl.com/h8w8n29 (2010).87.Le, S., Josse, J. & Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 (2008).Article 

    Google Scholar 
    88.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81(3), 559–575. https://doi.org/10.1086/519795 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6(8), 925–929. https://doi.org/10.1111/2041-210X.12382 (2015).Article 

    Google Scholar 
    91.Cattell, R. B. The Scree plot test for the number of factors. Multivar. Behav. Res. 1, 140–161 (1966).
    Google Scholar 
    92.Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U. S. A. 100, 9440–9445. https://doi.org/10.1073/pnas.1530509100 (2003).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    93.Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Ablondi, M., Viklund, Å., Lindgren, G., Eriksson, S. & Mikko, S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genomics 20(1), 717. https://doi.org/10.1186/s12864-019-6079-1 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Avila, F., Mickelson, J. R., Schaefer, R. J. & McCue, M. E. Genome-wide signatures of selection reveal genes associated with performance in American Quarter Horse subpopulations. Front. Genet. 9, 249. https://doi.org/10.3389/fgene.2018.00249 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    96.Chen, M. et al. Identification of selective sweeps reveals divergent selection between Chinese Holstein and Simmental cattle populations. Genet. Sel. Evol. 48(1), 76. https://doi.org/10.1186/s12711-016-0254-5 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Cheruiyot, E. K. et al. Signatures of selection in admixed dairy cattle in Tanzania. Front. Genet. 9, 607. https://doi.org/10.3389/fgene.2018.00607 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.López, M. E. et al. Multiple selection signatures in farmed Atlantic Salmon adapted to different environments across hemispheres. Front. Genet. 10, 901. https://doi.org/10.3389/fgene.2019.00901 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Alexander, D. H. & Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).Article 

    Google Scholar 
    101.Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & Francois, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).Article 

    Google Scholar 
    102.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR

    1.Pyron M. Characterizing communities. Nat Educ Knowl. 2010;3:39.
    Google Scholar 
    2.Hatton IA, Heneghan RF, Bar-On YM, Galbraith ED The global ocean size-spectrum from bacteria to whales. bioRxiv 2021; 2021.04.03.438320.3.Karsenti E, Acinas SG, Bork P, Bowler C, De Vargas C, Raes J, et al. A holistic approach to marine Eco-systems biology. PLoS Biol. 2011;9:e1001177.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B. How many species are there on Earth and in the ocean? PLoS Biol. 2011;9:e1001127.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1–12.Article 
    CAS 

    Google Scholar 
    6.Lejzerowicz F, Gooday AJ, Barrenechea Angeles I, Cordier, T, Morard, R, Apothéloz-Perret-Gentil L, et al. Eukaryotic biodiversity and spatial patterns in the Clarion-Clipperton zone and other abyssal regions: insights from sediment DNA and RNA metabarcoding. Front Mar Sci. 2021;8:1–23.Article 

    Google Scholar 
    7.Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:1–8.Article 

    Google Scholar 
    8.Pawlowski J, Kelly-Quinn M, Altermatt F, Apothéloz-Perret-Gentil L, Beja P, Boggero A, et al. The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems. Sci Total Environ. 2018;637–638:1295–310.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv. 2019;17:e00547.Article 

    Google Scholar 
    10.Zinger L, Bonin A, Alsos IG, Bálint M, Bik H, Boyer F, et al. DNA metabarcoding—Need for robust experimental designs to draw sound ecological conclusions. Mol Ecol. 2019;28:1857–62.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Lamb PD, Hunter E, Pinnegar JK, Creer S, Davies RG, Taylor MI. How quantitative is metabarcoding: A meta-analytical approach. Mol Ecol. 2019;28:420–30.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.del Campo J, Kolisko M, Boscaro V, Santoferrara LF, Nenarokov S, Massana R, et al. EukRef: Phylogenetic curation of ribosomal RNA to enhance understanding of eukaryotic diversity and distribution. PLoS Biol. 2018;16:e2005849.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–D604.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Godhe A, Asplund ME, Härnström K, Saravanan V, Tyagi A, Karunasagar I. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol. 2008;74:7174–82.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Gong J, Dong J, Liu X, Massana R. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist. 2013;164:369–79.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Rodríguez-Martínez R, Labrenz M, del Campo J, Forn I, Jürgens K, Massana R. Distribution of the uncultured protist MAST-4 in the Indian Ocean, Drake Passage and Mediterranean Sea assessed by real-time quantitative PCR. Environ Microbiol. 2009;11:397–408.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    17.Zhu F, Massana R, Not F, Marie D, Vaulot D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol. 2005;52:79–92.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Wang Y, Jiang Y, Liu Y, Li Y, Katz LA, Gao F, et al. Comparative studies on the polymorphism and copy number variation of mtSSU rDNA in ciliates (Protista, ciliophora): Implications for phylogenetic, environmental, and ecological research. Microorganisms. 2020;8:316.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Dunthorn M, Stoeck T, Clamp J, Warren A, Mahé F. Ciliates and the rare biosphere: A review. J Eukaryot Microbiol. 2014;61:404–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Mar Sci. 2019;6:1–5.Article 

    Google Scholar 
    21.Kucera M. Chapter six planktonic foraminifera as tracers of past oceanic environments. Dev Mar Geol. 2007;1:213–62.
    Google Scholar 
    22.Morard R, Escarguel G, Weiner AK, André A, Douady CJ, Wade CM, et al. Nomenclature for the nameless: a proposal for an integrative molecular taxonomy of cryptic diversity exemplified by planktonic foraminifera. Syst Biol. 2016;65:925–40.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Darling KF, Wade CM. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar Micropaleontol. 2008;67:216–38.Article 

    Google Scholar 
    24.André A, Quillévéré F, Morard R, Ujiié Y, Escarguel G, de Vargas C, et al. SSU rDNA divergence in planktonic foraminifera: molecular taxonomy and biogeographic implications. PLoS ONE. 2014;9:e104641.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Morard R, Garet-Delmas MJ, Mahé F, Romac S, Poulain J, Kucera M, et al. Surface ocean metabarcoding confirms limited diversity in planktonic foraminifera but reveals unknown hyper-abundant lineages. Sci Rep. 2018;8:1–10. 2539Article 
    CAS 

    Google Scholar 
    26.Morard R, Vollmar NM, Greco M, Kucera M. Unassigned diversity of planktonic foraminifera from environmental sequencing revealed as known but neglected species. PLoS One. 2019;14:e0213936.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Lecroq B, Lejzerowicz F, Bachar D, Christen R, Esling P, Baerlocher L, et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc Natl Acad Sci U S A. 2011;108:13177–82.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Lejzerowicz F, Esling P, Pawlowski J. Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: Insights from high-throughput DNA sequencing. Deep Sea Res Part II Top Stud Oceanogr. 2014;108:17–26.Article 
    CAS 

    Google Scholar 
    29.Shi J, Lei Y, Li Q, Lyu M, Li T. Molecular diversity and spatial distribution of benthic foraminifera of the seamounts and adjacent abyssal plains in the tropical Western Pacific Ocean. Mar Micropaleontol. 2020;156:101850.Article 

    Google Scholar 
    30.Li Q, Lei Y, Morard R, Li T, Wang B. Diversity hotspot and unique community structure of foraminifera in the world’s deepest marine blue hole—Sansha Yongle Blue Hole. Sci Rep. 2020;10:10257.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Cordier T, Barrenechea I, Lejzerowicz F, Reo E, Pawlowski J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog Oceanogr. 2019;178:102175.Article 

    Google Scholar 
    32.Weber AA-T, Pawlowski J. Can Abundance of Protists Be Inferred from Sequence Data: A Case Study of Foraminifera. PLoS One. 2013;8:e56739.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Jonkers L, Meilland J, Rillo MC, de Garidel-Thoron T, Kitchener JA, Kucera M. Linking zooplankton time series to the fossil record. ICES J Mar Sci. 2021:1–8.34.Weiner AKM, Morard R, Weinkauf MFG, Darling KF, André A, Quillévéré F, et al. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution. Front Mar Sci. 2016;3:1–15.Article 

    Google Scholar 
    35.Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, Patel HR. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005;5:209–19.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Barrenechea Angeles I, Lejzerowicz F, Cordier T, Scheplitz J, Kucera M, Ariztegui D, et al. Planktonic foraminifera eDNA signature deposited on the seafloor remains preserved after burial in marine sediments. Sci Rep. 2020;10:1–12.Article 
    CAS 

    Google Scholar 
    37.Morard R, Darling KF, Mahé F, Audic S, Ujiié Y, Weiner AK, et al. PFR2: a curated database of planktonic foraminifera 18S ribosomal DNA as a resource for studies of plankton ecology, biogeography and evolution. Mol Ecol Resour. 2015;15:1472–85.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org/.39.Wickham H ggplot2: Elegant graphics for data analysis. 2009. Springer-Verlag, New York.40.Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, et al. Welcome to the Tidyverse. J Open Source Softw. 2019;4:1686.Article 

    Google Scholar 
    41.Debode F, Marien A, Janssen É, Bragard C, Berben G. The influence of amplicon length on real-time PCR results. Biotechnol Agron Soc Environ. 2017;21:3–11.CAS 

    Google Scholar 
    42.Bé AWH, Lott L. Shell growth and structure of planktonic foraminifera. Science. 1964;145:2–3.Article 

    Google Scholar 
    43.Caromel AGM, Schmidt DN, Fletcher I, Rayfield EJ Morphological change during the ontogeny of the planktic foraminifera. J Micropalaeontology. 2015; 2014–017.44.Darling KF, Kucera M, Kroon D, Wade CM. A resolution for the coiling direction paradox in Neogloboquadrina pachyderma. Paleoceanography. 2006;21:PA2011–n/a.Article 

    Google Scholar 
    45.Parfrey LW, Lahr DJG, Katz LA. The dynamic nature of eukaryotic genomes. Mol Biol Evol. 2008;25:787–94.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    46.Parfrey LW, Katz LA. Dynamic genomes of eukaryotes and the maintenance of genomic integrity. Microbe. 2010;5:156–63.
    Google Scholar 
    47.Parfrey LW, Katz LA. Genome dynamics are influenced by food source in Allogromia laticollaris strain CSH (Foraminifera). Genome Biol Evol. 2010;2:678–85.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. Phytoplankton in a changing world: Cell size and elemental stoichiometry. J Plankton Res. 2010;32:119–37.Article 
    CAS 

    Google Scholar 
    49.Goldstein ST. Gametogenesis and the antiquity of reproductive pattern in the Foraminiferida. J Foraminifer Res. 1997;27:319–28.Article 

    Google Scholar 
    50.Davis CV, Livsey CM, Palmer HM, Hull PM, Thomas E, Hill TM, et al. Extensive morphological variability in asexually produced planktic foraminifera. Sci Adv. 2020;6:1–8.Article 
    CAS 

    Google Scholar 
    51.Takagi H, Kurasawa A, Kimoto K. Observation of asexual reproduction with symbiont transmission in planktonic foraminifera. J Plankton Res. 2020;42:403–10.Article 
    CAS 

    Google Scholar 
    52.Lessa D, Morard R, Jonkers L, Venancio IM, Reuter R, Baumeister A, et al. Distribution of planktonic foraminifera in the subtropical South Atlantic: Depth hierarchy of controlling factors. Biogeosciences. 2020;17:4313–42.Article 
    CAS 

    Google Scholar 
    53.Kucera M, Michael S, Raphaël M, Lukas J, Christiane S, Philipp M, et al. Scales of Population Dynamics, Ecology and Diversity of Planktonic Foraminifera and their Relationship to Particle Flux in the Eastern Tropical Atlantic: Cruise No. M140, 11.8.2017-5.9.2017, Mindelo (Cabo Verde)-Las Palmas (Spain) – FORAMFLUX. 2019. Bonn.54.Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Global Biogeochem Cycles. 2002;16:3-1–3–21.Article 
    CAS 

    Google Scholar 
    55.Meilland J, Schiebel R, Lo Monaco C, Sanchez S, Howa H. Abundances and test weights of living planktic foraminifers across the Southwest Indian Ocean: implications for carbon fluxes. Deep Sea Res Part I Oceanogr Res Pap. 2018;131:27–40.Article 
    CAS 

    Google Scholar 
    56.Pierella Karlusich JJ, Pelletier E, Lombard F, Carsique M, Dvorak E, Colin S, et al. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat Commun. 2021;12:4160.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Contrasting environmental drivers of genetic and phenotypic divergence in an Andean poison frog (Epipedobates anthonyi)

    Adamack AT, Gruber B (2014) PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387Article 

    Google Scholar 
    Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26:420–430CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van Asch B, Pinheiro R, Pereira R, Alves C, Pereira V, Pereira F et al. (2010) A framework for the development of STR genotyping in domestic animal species: characterization and population study of 12 canine X‐chromosome loci. Electrophoresis 31:303–308PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Bates D, Maechler M, Bolker B, Walker S, Bojesen RH, Singmann H et al. (2014) Package Lme4: Linear mixed-effects models using Eigen andS4. R package version 1.1-10Blaszczynski JS (1997) Landform characterization with Geographic Information Systems. Photogramm Eng Remote Sens 63:183–191
    Google Scholar 
    Bolnick DI, Fitzpatrick BM (2007) Sympatric Speciation: Models and Empirical Evidence. Annu Rev Ecol Evol Syst 38:459–487Article 

    Google Scholar 
    Cadena CD, Kozak KH, Gomez JP, Parra JL, McCain CM, Bowie RC et al. (2012) Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc R Soc Lond B Biol Sci 279:194–201
    Google Scholar 
    Caro LM, Caycedo‐Rosales PC, Bowie RCK, Slabbekoorn H, Cadena CD (2013) Ecological speciation along an elevational gradient in a tropical passerine bird? J Evol Biol 26:357–374CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. J Agric Biol Environ Stat 7:361–372Article 

    Google Scholar 
    Crandall KA, Bininda-Emonds OR, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295CAS 
    PubMed 
    Article 

    Google Scholar 
    Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499PubMed 
    Article 

    Google Scholar 
    Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CAS 
    PubMed 
    Article 

    Google Scholar 
    Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al. (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46Article 

    Google Scholar 
    Dreher CE, Cummings ME, Pröhl H (2015) An analysis of predator selection to affect aposematic coloration in a poison frog species. PloS One 10:e0130571PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dugas MB, Halbrook SR, Killius AM, Sol JF, Richards‐Zawacki CL (2015) Colour and escape behaviour in polymorphic populations of an aposematic poison frog. Ethology 121:813–822Article 

    Google Scholar 
    Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361Article 

    Google Scholar 
    Ebersbach J, Posso-Terranova A, Bogdanowicz S, Gómez‐Díaz M, García‐González MX, Bolívar‐García W et al. (2020) Complex patterns of differentiation and gene flow underly the divergence of aposematic phenotypes in Oophaga poison frogs. Mol Ecol 29:1944–1956CAS 
    PubMed 
    Article 

    Google Scholar 
    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos 81:583–585Article 

    Google Scholar 
    Funk WC, Murphy MA (2010) Testing evolutionary hypotheses for phenotypic divergence using landscape genetics. Mol Ecol 19:427–430PubMed 
    Article 

    Google Scholar 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funk WC, Murphy MA, Hoke KL, Muths E, Amburgey SM, Lemmon EM et al. (2016) Elevational speciation in action? Restricted gene flow associated with adaptive divergence across an altitudinal gradient. J Evol Biol 29:241–252CAS 
    PubMed 
    Article 

    Google Scholar 
    Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496CAS 
    PubMed 
    Article 

    Google Scholar 
    Galeano SP, Harms KE (2016) Coloration in the polymorphic frog Oophaga pumilio associates with level of aggressiveness in intraspecific and interspecific behavioral interactions. Behav Ecol Sociobiol 70:83–97Article 

    Google Scholar 
    García-Rodríguez A, Guarnizo CE, Crawford AJ, Garda AA, Costa GC (2021) Idiosyncratic responses to drivers of genetic differentiation in the complex landscapes of Isthmian Central America. Heredity 126:251–265PubMed 
    Article 

    Google Scholar 
    Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modeling and spatial prediction of soil attributes. Int J Geogr Inf Sci 9:421–432Article 

    Google Scholar 
    Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781–1793PubMed 
    Article 

    Google Scholar 
    Guarnizo CE, Cannatella DC (2013) Genetic divergence within frog species is greater in topographically more complex regions. J Zool Syst Evol Res 51:333–340Article 

    Google Scholar 
    Guarnizo CE, Amézquita A, Bermingham E (2009) The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Mol Phylogenet Evol 50:84–92CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen MC, Townshend JRG, DeFries RS, Carroll M (2005) Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int J Remote Sens 26:4359–4380Article 

    Google Scholar 
    Harvey MG, Aleixo A, Ribas CC, Brumfield RT (2017) Habitat association predicts genetic diversity and population divergence in Amazonian birds. Am Nat 190:631–648PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surface for global land areas. Int J Climatol 25:1965–1978Article 

    Google Scholar 
    Hoffman AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485Article 
    CAS 

    Google Scholar 
    Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511–517CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213Article 

    Google Scholar 
    Hutter CR, Lambert SM, Wiens JJ (2017) Rapid diversification and time explain amphibian richness at different scales in the Tropical Andes, Earth’s most biodiverse hotspot. Am Nat 190:828–843PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kalinowski ST (2005) hp‐rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CAS 
    Article 

    Google Scholar 
    Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241Article 

    Google Scholar 
    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keller I, Seehausen O (2012) Thermal adaptation and ecological speciation. Mol Ecol 21:782–799CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Keller I, Alexander JM, Holderegger R, Edwards PJ (2013) Widespread phenotypic and genetic divergence along altitudinal gradients in animals. J Evol Biol 26:2527–2543CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19:1803–1812CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lowe WH, McPeek MA, Likens GE, Cosentino BJ (2012) Decoupling of genetic and phenotypic divergence in a headwater landscape. Mol Ecol 21:2399–2409PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lynch JD, Duellman WE (1997) Frogs of the genus Eleutherodactylus (Leptodactylidae) in western Ecuador: systematics, ecology and biogeography. University of Kansas, Natural History Museum. Special Publication No. 23. University of Kansas Printing Service, Lawrence, KansasMaan ME, Cummings ME (2009) Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proc Natl Acad Sci USA 106:19072–19077CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Márquez R, Linderoth TP, Mejía-Vargas D, Nielsen R, Amézquita A, Kronforst MR (2020) Divergence, gene flow and the origin of leapfrog geographic distributions: The history of color pattern variation in Phyllobates poison-dart frogs. Mol Ecol 29:3702–3719PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayr E (1963) Animal Species and Evolution. Harvard University Press, Cambridge, MABook 

    Google Scholar 
    McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load index. J Veg Sci 13:603–606Article 

    Google Scholar 
    McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291Article 

    Google Scholar 
    McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology and conservation. Ecology 10:2712–2724Article 

    Google Scholar 
    Moore ID, Gessler PE, Nielsen GA, Petersen GA (1993) Terrain attributes: estimation methods and scale effects. In: Jakeman AJ, Beck MB, McAleer M (eds) Modeling Change in Environmental Systems. Wiley, London, p 189–214
    Google Scholar 
    Morrison C, Hero JM (2003) Geographic variation in life‐history characteristics of amphibians: a review. J Anim Ecol 72:270–279Article 

    Google Scholar 
    Muir AP, Biek R, Thomas R, Mable BK (2014) Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Mol Ecol 23:561–574CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Naimi B, Hamm NA, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling. Ecography 37:191–203Article 

    Google Scholar 
    Nali RC, Becker CG, Zamudio KR, Prado CP (2020) Topography, more than land cover, explains genetic diversity in a Neotropical savanna tree frog. Divers Distrib 26:1798–1812Article 

    Google Scholar 
    Noonan BP, Comeault AA (2009) The role of predator selection on polymorphic aposematic poison frogs. Biol Lett 5:51–54PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO‐CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538Article 
    CAS 

    Google Scholar 
    Orr MR, Smith TB (1998) Ecology and speciation. Trends Ecol Evol 13:502–506CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Páez-Vacas MI, Oleas NH (2019) Isolation and characterization of 12 microsatellite loci in Epipedobates anthonyi (Amphibia: Anura: Dendrobatidae) for population genetic analysis. Mol Biol Rep. 46:3519–3522PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pilliod DS, Peterson CR, Ritson PI (2002) Seasonal migration of Columbia spotted frogs (Rana luteiventris) among complementary resources in a high mountain basin. CAN J ZOOL 80:1849–1862Article 

    Google Scholar 
    Pinho C, Hey J (2010) Divergence with gene flow: models and data. Annu Rev Ecol Evol Systs 41:215–230Article 

    Google Scholar 
    Pintanel P, Tejedo M, Ron SR, Llorente GA, Merino‐Viteri A (2019) Elevational and microclimatic drivers of thermal tolerance in Andean Pristimantis frogs. J Biogeogr 46:1664–1675Article 

    Google Scholar 
    Polato NR, Gill BA, Shah AA, Gray MM, Casner KL, Barthelet A et al. (2018) Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc Natl Acad Sci USA 115:12471–12476CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Posso-Terranova A, Andrés JA (2016) Complex niche divergence underlies lineage diversification in Oophaga poison frogs. J Biogeogr 43:2002–2015Article 

    Google Scholar 
    Prates I, Paz A, Brown JL, Carnaval AC (2019) Links between prey assemblages and poison frog toxins: a landscape ecology approach to assess how biotic interactions affect species phenotypes. Ecol Evol 9:14317–14329PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Räsänen K, Hendry AP (2008) Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification. Ecol Lett 11:624–636PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 83:248–249Article 

    Google Scholar 
    Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Richards‐Zawacki CL (2009) Effects of slope and riparian habitat connectivity on gene flow in an endangered Panamanian frog, Atelopus varius. Divers Distrib 15:796–806Article 

    Google Scholar 
    Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22:1322–1340CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Robertson JM, Murphy MA, Pearl CA, Adams MJ, Páez‐Vacas MI, Haig SM, Funk WC (2018) Regional variation in drivers of connectivity for two frog species (Rana pretiosa and R. luteiventris) from the US Pacific Northwest. Mol Ecol 27:3242–3256Article 

    Google Scholar 
    Rojas D, Lima AP, Momigliano P, Simões PI, Dudaniec RY, De Avila-Pires TCS et al. (2020) The evolution of polymorphism in the warning coloration of the Amazonian poison frog Adelphobates galactonotus. Heredity 124:439–456CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Roland AB, Santos JC, Carriker BC, Caty SN, Tapia EE, Coloma LA et al. (2017) Radiation of the polymorphic Little Devil poison frog (Oophaga sylvatica) in Ecuador. Ecol Evol 7:9750–9762PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Row JR, Knick ST, Oyler‐McCance SJ, Lougheed SC, Fedy BC (2017) Developing approaches for linear mixed modeling in landscape genetics through landscape directed dispersal simulations. Ecol Evol 7:3751–3761PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352Article 

    Google Scholar 
    Santos JC, Cannatella DC (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. Proc Natl Acad Sci USA 108:6175–6180CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14:807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741CAS 
    PubMed 
    Article 

    Google Scholar 
    Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CAS 
    PubMed 
    Article 

    Google Scholar 
    Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 26:389–397PubMed 
    Article 

    Google Scholar 
    Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15CAS 
    PubMed 
    Article 

    Google Scholar 
    Shafer AB, Wolf JBW, Alves PC, Bergström L, Bruford MW, Brännström I et al. (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30:78–87PubMed 
    Article 

    Google Scholar 
    Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792CAS 
    PubMed 
    Article 

    Google Scholar 
    Stevens M, Hopkins E, Hinde W, Adcock A, Connolly Y, Troscianko T et al. (2007) Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Anim Behav 74:1215–1227Article 

    Google Scholar 
    Storfer A, Patton A, Fraik AK (2018) Navigating the interface between landscape genetics and landscape genomics. Front Genet 9:68PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Van Strien MJ, Keller D, Holderegger R (2012) A new analytical approach to landscape genetic modelling: least-cost transect analysis and linear mixed models. Mol Ecol 21:4010–4023Article 

    Google Scholar 
    Summers K, Symula R, Clough M, Cronin T (1999) Visual mate choice in poison frogs. Proc R Soc Lond B Biol Sci 266:2141–2145CAS 
    Article 

    Google Scholar 
    Tarvin RD, Powell EA, Santos JC, Ron SR, Cannatella DC (2017) The birth of aposematism: High phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol Phylogenet Evol 109:283–295PubMed 
    Article 

    Google Scholar 
    Thomé MTC, Carstens BC, Rodrigues MT, Galetti Jr PM, Alexandrino J, Haddad CF (2021) A role of asynchrony of seasons in explaining genetic differentiation in a Neotropical toad. Heredity 2021:1–10
    Google Scholar 
    Twomey E, Vestergaard JS, Venegas PJ, Summers K (2016) Mimetic Divergence and the Speciation Continuum in the Mimic Poison Frog Ranitomeya imitator. Am Nat 187:205–224PubMed 
    Article 

    Google Scholar 
    Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison‐dart frog. Mol Ecol 19:447–458PubMed 
    Article 

    Google Scholar 
    Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611Article 

    Google Scholar 
    Willink B, García‐Rodríguez A, Bolaños F, Pröhl H (2014) The interplay between multiple predators and prey colour divergence. Biol J Linn Soc Lond 113:580–589Article 

    Google Scholar 
    Womack MC, Bell RC (2020) Two‐hundred million years of anuran body‐size evolution in relation to geography, ecology and life history. J Evol Biol 33:1–16Article 

    Google Scholar 
    Wright S (1943) Isolation by distance. Genetics 28:114–138CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zamudio KR, Bell RC, Mason NA (2016) Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc Natl Acad Sci USA 113:8041–8048CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency

    1.Chen, J., Sun, S., Li, C. Z., Zhu, Y. G. & Rosen, B. P. Biosensor for organoarsenical herbicides and growth promoters. Environ. Sci. Technol. 48, 1141 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Ghosh, N. & Singh, R. Groundwater Arsenic Contamination in India: Vulnerability and Scope for Remedy (National Institute of Hydrology, 2009).
    Google Scholar 
    3.Luong, J. H. T., Lam, E. & Male, K. B. Recent advances in electrochemical detection of arsenic in drinking and ground waters. Anal. Methods 6, 6157 (2014).CAS 
    Article 

    Google Scholar 
    4.Naujokas, M. F. et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 121, 295 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Ahmad, S. A., Khan, M. H. & Haque, M. Arsenic contamination in groundwater in Bangladesh: Implications and challenges for healthcare policy. Risk Manage. Healthcare Policy 11, 251 (2018).Article 

    Google Scholar 
    6.Sultana, M. et al. Investigation of arsenotrophic microbiome in arsenic-affected Bangladesh groundwater. Groundwater 55, 736 (2017).CAS 
    Article 

    Google Scholar 
    7.Shakoor, M. B. et al. Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 46, 467 (2016).CAS 
    Article 

    Google Scholar 
    8.Natasha, et al. Arsenic environmental contamination status in South Asia. Arsenic Drink. Water Food. https://doi.org/10.1007/978-981-13-8587-2_2 (2020).Article 

    Google Scholar 
    9.Choudhury, M. I. M. et al. Cutaneous malignancy due to arsenicosis in Bangladesh: 12-year study in tertiary level hospital. Biomed. Res. Int. 2018, 4678362 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Arsenic—Banglapedia. https://en.banglapedia.org/index.php/Arsenic. (Accessed 28 June 2021)11.Arsenic Contamination in Water: No proper study done in years|The Daily Star. https://www.thedailystar.net/backpage/news/arsenic-contamination-water-no-proper-study-done-years-2064585. (Accessed 19 June 2021)12.Martinez, V. D., Vucic, E. A., Becker-Santos, D. D., Gil, L. & Lam, W. L. Arsenic exposure and the induction of human cancers. J. Toxicol. 2011, 431287 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Argos, M. et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): A prospective cohort study. Lancet 376, 252 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Mujawar, S. Y., Shamim, K., Vaigankar, D. C. & Dubey, S. K. Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. Biometals 32, 65 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Masscheleyn, P. H., Delaune, R. D. & Patrick, W. H. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25, 1414 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Jain, C. K. & Ali, I. Arsenic: Occurrence, toxicity and speciation techniques. Water Res. 34, 4304 (2000).CAS 
    Article 

    Google Scholar 
    17.Garelick, H., Dybowska, A., Valsami-Jones, E. & Priest, N. D. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments 5, 182 (2005).CAS 
    Article 

    Google Scholar 
    18.Kruger, M. C., Bertin, P. N., Heipieper, H. J. & Arsène-Ploetze, F. Bacterial metabolism of environmental arsenic—Mechanisms and biotechnological applications. Appl. Microbiol. Biotechnol. 97, 3827 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Rahman, A. et al. Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J. Environ. Sci. Health A 49, 1349 (2014).CAS 
    Article 

    Google Scholar 
    20.Halttunen, T., Finell, M. & Salminen, S. Arsenic removal by native and chemically modified lactic acid bacteria. Int. J. Food Microbiol. 120, 173 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Mondal, P., Majumder, C. B. & Mohanty, B. Growth of three bacteria in arsenic solution and their application for arsenic removal from wastewater. J. Basic Microbiol. 48, 521 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Banerjee, S., Datta, S., Chattyopadhyay, D. & Sarkar, P. Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J. Environ. Sci. Health A 46, 1736 (2011).CAS 
    Article 

    Google Scholar 
    23.Bahar, M. M., Megharaj, M. & Naidu, R. Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23, 803 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lozano, L. C. & Dussán, J. Metal tolerance and larvicidal activity of Lysinibacillus sphaericus. World J. Microbiol. Biotechnol. 29, 1383 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Corsini, A. et al. Characterization of As(III) oxidizing Achromobacter sp. strain N2: Effects on arsenic toxicity and translocation in rice. Ann. Microbiol. 68, 295 (2018).CAS 
    Article 

    Google Scholar 
    26.Istiaq, A. et al. Adaptation of metal and antibiotic resistant traits in novel β-Proteobacterium Achromobacter xylosoxidans BHW-15. PeerJ 2019, e6537 (2019).Article 
    CAS 

    Google Scholar 
    27.Hamamura, N. et al. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. Environ. Microbiol. Rep. 6, 476 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Ehrlich, H. L., Newman, D. K. & Kappler, A. Geomicrobiology (CRC Press, 2008).Book 

    Google Scholar 
    29.Bahar, M. M., Megharaj, M. & Naidu, R. Bioremediation of arsenic-contaminated water: Recent advances and future prospects. Water Air Soil Pollut. 224, 1–20 (2013).CAS 
    Article 

    Google Scholar 
    30.Hamamura, N. et al. Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ. Microbiol. 11, 421 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Hamamura, N. Distribution of aerobic arsenite oxidase genes within the aquificales. In Tokyo: TERRAPUB, 47–55 (2010).32.Andreoni, V. et al. Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: Detection of genes involved in arsenite oxidation and CO2 fixation. Curr. Microbiol. 65, 212 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lett, M. C., Muller, D., Lièvremont, D., Silver, S. & Santini, J. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J. Bacteriol. 194, 207 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Zargar, K. et al. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14, 1635 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Engel, A. S., Johnson, L. R. & Porter, M. L. Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser field, Chile. FEMS Microbiol. Ecol. 83, 745 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Drewniak, L. & Sklodowska, A. Arsenic-transforming microbes and their role in biomining processes. Environ. Sci. Pollut. Res. 20, 7728 (2013).CAS 
    Article 

    Google Scholar 
    37.Jiang, Z. et al. Diversity and abundance of the arsenite oxidase gene aioA in geothermal areas of Tengchong, Yunnan, China. Extremophiles 18, 161 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Wu, G. et al. Distribution of arsenite-oxidizing bacteria and its correlation with temperature in hot springs of the Tibetan-Yunnan geothermal zone in western China. Geomicrobiol. J. 32, 482 (2015).CAS 
    Article 

    Google Scholar 
    39.Hernandez-Maldonado, J. et al. The genetic basis of anoxygenic photosynthetic arsenite oxidation. Environ. Microbiol. 19, 130 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Rahman, M. M., Hussain, M. M. & Asiri, A. M. A novel approach towards hydrazine sensor development using SrO·CNT nanocomposites. RSC Adv. 6, 65338 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Rahman, M. M., Hussain, M. M. & Asiri, A. M. Fabrication of 3-methoxyphenol sensor based on Fe3O4 decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses. PLoS ONE 12, e0177817 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Hussain, M. M., Rahman, M. M. & Asiri, A. M. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment. J. Environ. Sci. (China) 53, 27 (2017).CAS 
    Article 

    Google Scholar 
    43.Pous, N. et al. Anaerobic arsenite oxidation with an electrode serving as the sole electron acceptor: A novel approach to the bioremediation of arsenic-polluted groundwater. J. Hazard. Mater. 283, 617 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Watanabe, T., Kojima, H. & Fukui, M. Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: Genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst. Appl. Microbiol. 37, 387 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Mandal, B. Arsenic round the world: A review. Talanta 58, 201 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Mukhopadhyay, R., Rosen, B. P., Phung, L. T. & Silver, S. Microbial arsenic: From geocycles to genes and enzymes. FEMS Microbiol. Rev. 26, 311 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Purakayastha, T. J. Detoxification of Heavy Metals (Springer, 2011).
    Google Scholar 
    49.Silver, S. & Phung, L. T. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50, 753 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Agarwal, M., Rathore, R. S. & Chauhan, A. A rapid and high throughput MIC determination method to screen uranium resistant microorganisms. Methods Protoc. 3(1), 21. https://doi.org/10.3390/mps3010021 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    51.Johnson, D. B., Okibe, N. & Roberto, F. F. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: Physiological and phylogenetic characteristics. Arch. Microbiol. 180, 60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Cai, L., Liu, G., Rensing, C. & Wang, G. Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9, 1–11 (2009).Article 
    CAS 

    Google Scholar 
    53.Achour, A. R., Bauda, P. & Billard, P. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res. Microbiol. 158, 128 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Cervantes, C., Ji, G., Ramirez, J. & Silver, S. Resistance to arsenic compounds in microorganisms. FEMS Microbiol. Rev. 15, 355 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Majumder, A., Ghosh, S., Saha, N., Kole, S. C. & Sarkar, S. Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J. Environ. Biol. 34, 841 (2013).PubMed 

    Google Scholar 
    56.Takeuchi, M. et al. Arsenic resistance and removal by marine and non-marine bacteria. J. Biotechnol. 127, 434 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    58.Pandey, N. & Bhatt, R. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J. Basic Microbiol. 55, 1275 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Zolgharnein, H., Karami, K., Assadi, M. M. & Sohrab, A. D. Molecular characterization and phylogenetic analyses of heavy metal removal bacteria from the Persian gulf. Biotechnology 9, 1–8 (2010).CAS 

    Google Scholar 
    60.Valenzuela, C. et al. Arsenite oxidation by Pseudomonas arsenicoxydans immobilized on zeolite and its potential biotechnological application. Bull. Environ. Contam. Toxicol. 94, 667 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Li, X. et al. Genome sequence of the highly efficient arsenite-oxidizing bacterium Achromobacter arsenitoxydans SY8. J. Bacteriol. 194, 1243 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Fan, H. et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J. Appl. Microbiol. 105, 529 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Liu, G. et al. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation. Environ. Microbiol. 14, 1624 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Yan, G. et al. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr. Genet. 65, 329 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Wang, G., Huang, Y. & Li, J. Bacteria live on arsenic analysis of microbial arsenic metabolism—A review. Acta Microbiol. Sin. 51, 154 (2011).CAS 

    Google Scholar 
    66.Rosen, B. P. Biochemistry of arsenic detoxification. FEBS Lett. 529, 86 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Jahid, I. K., Lee, N. Y., Kim, A. & Ha, S. D. Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in aeromonas hydrophila. J. Food Prot. 76, 239 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Hassan, Z. et al. Ample arsenite bio-oxidation activity in Bangladesh drinking water wells: A bonanza for bioremediation? Microorganisms 7, 246 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    69.Dhar, R. K., Zheng, Y., Rubenstone, J. & Van Geen, A. A rapid colorimetric method for measuring arsenic concentrations in groundwater. Anal. Chim. Acta 526, 203 (2004).CAS 
    Article 

    Google Scholar 
    70.Cummings, D. E., Caccavo, F., Fendorf, S. & Rosenzweig, R. F. Arsenic mobilization by the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY. Environ. Sci. Technol. 33, 723 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Geetanjali, P. & Bhosale, S. P. B. Isolation and characterization of arsenate reducing bacteria from the waste water of an electroplating industry. Int. J. Curr. Microbiol. Appl. Sci. 3, 444–452 (2014).
    Google Scholar 
    72.Sanyal, S. K. et al. Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express 6, 1–11 (2016).CAS 
    Article 

    Google Scholar 
    73.Kumar, S., Stecher, G., Tamura, K. & Dudley, J. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Khan, M. Z. H., Liu, X., Tang, Y. & Liu, X. Ultra-sensitive electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine with poly (L-arginine)/graphene wrapped Au nanoparticles modified electrode. Biosens. Bioelectron. 117, 508 (2018).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Plankton lose fats

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Resistance status of lepidopteran soybean pests following large-scale use of MON 87701 × MON 89788 soybean in Brazil

    1.Macrae, T. C. et al. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensis cry1A gene for control of Lepidoptera. J. Econ. Entomol. 98, 577–587 (2005).Article 

    Google Scholar 
    2.Miklos, J. A. et al. Characterization of soybean exhibiting high expression of a synthetic Bacillus thuringiensis cry1A transgene that confers a high degree of resistance to lepidopteran pests. Crop Sci. 47, 148–157 (2007).CAS 
    Article 

    Google Scholar 
    3.Spark. BIP soja 2021. Spark Smarter Decisions, Valinhos, SP. http://spark-ie.com.br (2021).4.Bernardi, O. et al. Assessment of the high dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 68, 1083–1091 (2012).CAS 
    Article 

    Google Scholar 
    5.Bernardi, O. et al. High levels of biological activity of Cry1Ac protein expressed on MON 87701 × MON 89788 soybean against Heliothis virescens (Lepidoptera: Noctuidae). Pest Manag. Sci. 70, 588–594 (2014).CAS 
    Article 

    Google Scholar 
    6.Dourado, P. M. et al. High susceptibility to Cry1Ac and low resistance allele frequency reduce the risk of resistance of Helicoverpa armigera to Bt soybean in Brazil. PLoS ONE 11, e0161388 (2016).Article 

    Google Scholar 
    7.Horikoshi, R. J. et al. Large-scale assessment of lepidopteran soybean pests and efficacy of Cry1Ac soybean in Brazil. Sci. Rep. 11, 15956 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726 (1998).CAS 
    Article 

    Google Scholar 
    9.Tabashnik, B. E., Van Rensburg, J. B. J. & Carrière, Y. Field-evolved insect resistance to Bt crops: Definition, theory and data. J. Econ. Entomol. 102, 2011–2025 (2009).CAS 
    Article 

    Google Scholar 
    10.Yano, S. A. et al. High susceptibility and low resistance allele frequency of Chrysodeixis includens (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Manag. Sci. 72, 1578–1584 (2015).Article 

    Google Scholar 
    11.Tabashnik, B. E. & Carrière, Y. Surge in insect resistance to transgenic crops and prospects for sustainability. Nat. Biotechnol. 35, 926–935 (2017).CAS 
    Article 

    Google Scholar 
    12.CTNBio– Comissão Técnica Nacional de Biossegurança. Technical Opinion No. 2542/2010-Commercial release of genetically modified insect-resistant and herbicide-tolerant soy containing genetically modified events MON 87701 and MON 89788. http://ctnbio.mctic.gov.br/en/liberacao-comercial#/liberacao-comercial/consultar-processo (2010).13.Van Rensburg, J. B. J. First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S. Afr. J. Plant Soil 24, 147–151 (2007).Article 

    Google Scholar 
    14.Storer, N. P. et al. Discovery and characterization of field resistance to Bt maize: Spodoptera frugiperda (Lepidoptera: Noctuidae) in Puerto Rico. J. Econ. Entomol. 103, 1031–1038 (2010).Article 

    Google Scholar 
    15.Dhurua, S. & Gujar, G. T. Field-evolved resistance to Bt toxin Cry1Ac in the pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), from India. Pest Manag. Sci. 67, 898–903 (2011).CAS 
    Article 

    Google Scholar 
    16.Gassmann, A. J., Petzold-Maxwell, J. L., Keweshan, R. S. & Dunbar, M. W. Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6, e22629 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Farias, J. R. et al. Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot. 64, 150–158 (2014).ADS 
    Article 

    Google Scholar 
    18.Bernardi, D. et al. Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hybrids in Brazil. PLoS ONE 10, e0140130 (2015).Article 

    Google Scholar 
    19.Mohan, K. S., Ravi, K. C., Suresh, P. J., Sumerford, D. & Head, G. P. Field resistance to the Bacillus thuringiensis protein Cry1Ac expressed in Bollgard hybrid cotton in pink bollworm, Pectinophora gossypiella (Saunders), populations in India. Pest Manag. Sci. 72, 738–746 (2016).CAS 
    Article 

    Google Scholar 
    20.Omoto, C. O. et al. Field-evolved resistance to Cry1Ab maize by Spodoptera frugiperda in Brazil. Pest Manag. Sci. 72, 1727–1736 (2016).CAS 
    Article 

    Google Scholar 
    21.Naik, V. C., Kumbhare, S., Kranthi, S., Satija, U. & Kranthi, K. R. Field-evolved resistance of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), to transgenic Bacillus thuringiensis (Bt) cotton expressing crystal 1Ac (Cry1Ac) and Cry2Ab in India. Pest Manag. Sci. 74, 2544–2554 (2018).CAS 
    Article 

    Google Scholar 
    22.Sanchez, N. E. & Pereyra, P. C. Life tables of the soybean looper Rachiplusia nu (Lepidoptera: Noctuidae) in the laboratory. Rev. Soc. Entomol. Arg. 54, 89–96 (1995).
    Google Scholar 
    23.Sánchez, N. E., Pereyra, P. C. & Gentile, M. V. Population parameters of Epinotia aporema (Lepidoptera: Tortricidae) on soybean. Rev. Soc. Entomol. Arg. 56, 151–153 (1997).
    Google Scholar 
    24.Barrionuevo, M. J., Murúa, M. G., Goane, L., Meagher, R. & Navarro, F. Life table studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) includens (Walker) (Lepidoptera: Noctuidae) on artificial diet. Fla. Entomol. 95, 944–951 (2012).Article 

    Google Scholar 
    25.Ferreira, B. S. C. Sampling Epinotia aporema on Soybean in Sampling Methods in Soybean Entomology (eds. Kogan, M. & Herzog, D. C) 374–381 (Springer 1980).26.Specht, A. et al. Biotic potential and life tables of Chrysodeixis includens (Lepidoptera: Noctuidae), Rachiplusia nu, and Trichoplusia ni on soybean and forage turnip. J. Insect Sci. 19, 1–8 (2019).Article 

    Google Scholar 
    27.Santos, S. R. D., Specht, A., Carneiro, E. & Casagrande, M. M. The influence of agricultural occupation and climate on the spatial distribution of Plusiinae (Lepidoptera: Noctuidae) on a latitudinal gradient in Brazil. Rev. Bras. Entomol. 65, e20200103 (2021).Article 

    Google Scholar 
    28.Greene, G. L., Leppla, N. C. & Dickerson, W. A. Velvetbean caterpillar: A rearing procedure and artificial medium. J. Econ. Entomol. 69, 487–488 (1976).Article 

    Google Scholar 
    29.Andow, D. A. & Alstad, D. N. F2 screen for rare resistance alleles. J. Econ. Entomol. 91, 572–578 (1998).Article 

    Google Scholar 
    30.Andow, D. A. & Alstad, D. N. Credibility interval for rare resistance allele frequencies. J. Econ. Entomol. 92, 755–758 (1999).Article 

    Google Scholar 
    31.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.32.Herzog, D. C. Sampling soybean looper on soybean. In Sampling Methods in Soybean Entomology (eds. Koogan, M. & Herzog, D. C.) 141–168 (Springer, 1980).33.Navarrro, F. R., Saini, E. D. & Leiva, P. D. Clave pictórica de polillas de interés agrícola. INTA, EEA PERGAMINO, Pergamino, Buenos Aires, Argentina (2009).34.Gilligan, T. M. & Passoa, S. C. LepIntercept–An identification resource for intercepted Lepidoptera larvae. (Identification Technology Program (ITP), 2014). http://idtools.org/id/leps/lepintercept/key.html (2014).35.Chen, D. et al. Bacillus thuringiensis chimeric proteins Cry1A. 2 and Cry1B. 2 to control soybean lepidopteran pests: New domain combinations enhance insecticidal spectrum of activity and novel receptor contributions. PLoS ONE 16, e0249150 (2021).CAS 
    Article 

    Google Scholar 
    36.SAS Institute Inc., SAS/STAT: 9.1. Statistical Analysis System: getting started with the SAS learning. SAS Institute, Cary, NC (2002).37.Farias, J. R. B., Nepomuceno, A. L., Neumaier, N. Ecofisiologia da soja. Londrina: Embrapa-Centro Nacional de Pesquisa de Soja, Circular Técnica, 48 (2007).38.Sosa-Gómez, D. R. et al. Manual de Identificação de Insetos e Outros Invertebrados da Cultura da Soja. (Embrapa Soja-Documentos (INFOTECA-E), 2014).39.Kaster, M. & Farias, J. R. B. Regionalização dos Testes de Valor de Cultivo e Uso e da indicação de Cultivares de Soja-terceira Aproximação (Embrapa Soja-Documentos (INFOTECA-E), 2012).40.IBGE. Divisão Regional do Brasil em Mesorregiões e Microrregiões Geográficas. v. 1. (IBGE, 1990).41.GraphPad Prism. GraphPad Prism version 8.1.2 for Windows, GraphPad Software, San Diego. www.graphpad.com.42.Huang, F., Parker, R., Leonard, R., Yong, Y. & Liu, J. Frequency of resistance alleles to Bacillus thuringiensis-corn in Texas populations of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae). Crop Prot. 28, 174–180 (2009).CAS 
    Article 

    Google Scholar 
    43.Rodrigues-Silva, N. et al. Negative cross-resistance between structurally different Bacillus thuringiensis toxins may favor resistance management of soybean looper in transgenic Bt cultivars. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    44.Yano, S. A. C. et al. Tolerância de Anticarsia gemmatalis Hübner, Pseudoplusia includens (Walker) e Rachiplusia nu (Guenée) à proteína Cry1Ac. In: Embrapa Soja-Artigo em anais de congresso (ALICE). (Embrapa, 2012).45.Perini, C. R. et al. Genetic structure of two Plusiinae species suggests recent expansion of Chrysodeixis includens in the American continent. Agric. For. Entomol. 23, 250–260 (2020).Article 

    Google Scholar 
    46.Bueno, A. F. et al. Challenges for adoption of integrated pest management (IPM): The soybean example. Neotrop. Entomol. 50, 5–20 (2021).CAS 
    Article 

    Google Scholar 
    47.Carrière, Y. et al. Governing evolution: A socio-ecological comparison of resistance management for insecticidal transgenic Bt crops among four countries. Ambio 49, 1–16 (2020).Article 

    Google Scholar 
    48.Heinrichs, E. A. & Silva, R. F. P. Estudo de níveis de população de Anticarsia gemmatalis Hubner, 1818 e Plusia sp. em soja no Rio Grande do Sul. Agron. Sulriograndense 11, 29–35 (1975).
    Google Scholar 
    49.Guedes, J. V. C. Lagartas da soja: das lições do passado ao manejo do futuro. Rev. Plantio Direto 144, 10–22 (2015).
    Google Scholar 
    50.Silva, C. S. et al. Population expansion and genomic adaptation to agricultural environments of the soybean looper, Chrysodeixis includens. Evol. Appl. 13, 2071–2085 (2020).Article 

    Google Scholar 
    51.Bacalhau, F. B. et al. Performance of genetically modified soybean expressing the Cry1A. 105, Cry2Ab2, and Cry1Ac proteins against key Lepidopteran pests in Brazil. J. Econ. Entomol. 113, 2883–2889 (2020).CAS 
    Article 

    Google Scholar  More