More stories

  • in

    Disentangling the mixed effects of soil management on microbial diversity and soil functions: A case study in vineyards

    Ritz, K. & Young, I. M. Interactions between soil structure and fungi. Mycologist 18, 52–59 (2004).Article 

    Google Scholar 
    Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).Article 

    Google Scholar 
    van der Heijden, M. G. A. & Wagg, C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil 363, 1–5 (2013).Article 
    CAS 

    Google Scholar 
    Winter, S. et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: a meta-analysis. J. Appl. Ecol. 55, 2484–2495 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belmonte, S. A. et al. Effect of long-term soil management on the mutual interaction among soil organic matter, microbial activity and aggregate stability in a vineyard. Pedosphere 28, 288–298 (2018).Article 
    CAS 

    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Kratschmer, S. et al. Enhancing flowering plant functional richness improves wild bee diversity in vineyard inter-rows in different floral kingdoms. Ecol. Evol. 11, 7927–7945 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Constancias, F. et al. Microscale evidence for a high decrease of soil bacterial density and diversity by cropping. Agron. Sustain. Dev. 34, 831–840 (2014).Article 
    CAS 

    Google Scholar 
    Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J. & Scow, K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One 13, e0192953 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vink, S. N., Chrysargyris, A., Tzortzakis, N. & Salles, J. F. Bacterial community dynamics varies with soil management and irrigation practices in grapevines (Vitis vinifera L.). Appl. Soil Ecol. 158, 103807 (2021).Article 

    Google Scholar 
    Pingel, M., Reineke, A. & Leyer, I. A 30-years vineyard trial: plant communities, soil microbial communities and litter decomposition respond more to soil treatment than to N fertilization. Agr. Ecosyst. Environ. 272, 114–125 (2019).Article 
    CAS 

    Google Scholar 
    Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S. & Paulitz, T. Long-term no-till: a major driver of fungal communities in dryland wheat cropping systems. PLoS One 12, e0184611 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hungria, M., Franchini, J. C., Brandão-Junior, O., Kaschuk, G. & Souza, R. A. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Appl. Soil. Ecol. 42, 288–296 (2009).Article 

    Google Scholar 
    Pascault, N. et al. In situ dynamics of microbial communities during decomposition of wheat, rape, and alfalfa residues. Microb. Ecol. 60, 816–828 (2010).Article 
    PubMed 

    Google Scholar 
    Tresch, S. et al. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Sci. Total Environ. 658, 1614–1629 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Faust, S., Koch, H.-J., Dyckmans, J. & Joergensen, R. G. Response of maize leaf decomposition in litterbags and soil bags to different tillage intensities in a long-term field trial. Appl. Soil. Ecol. 141, 38–44 (2019).Article 

    Google Scholar 
    Liu, Y.-R. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41 (2018).Article 
    CAS 

    Google Scholar 
    Yang, C., Liu, N. & Zhang, Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 337, 444–452 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruggisser, O. T., Schmidt-Entling, M. H. & Bacher, S. Effects of vineyard management on biodiversity at three trophic levels. Biol. Cons. 143, 1521–1528 (2010).Article 

    Google Scholar 
    Lienhard, P. et al. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 34, 525–533 (2014).Article 

    Google Scholar 
    Schnoor, T. K., Lekberg, Y., Rosendahl, S. & Olsson, P. A. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21, 211–220 (2011).Article 
    PubMed 

    Google Scholar 
    Kazakou, E. et al. A plant trait-based response-and-effect framework to assess vineyard inter-row soil management. Bot. Lett. 163, 373–388 (2016).Article 

    Google Scholar 
    Svensson, J. R., Lindegarth, M., Jonsson, P. R. & Pavia, H. Disturbance-diversity models: What do they really predict and how are they tested?. Proc. Biol. Sci. 279, 2163–2170 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Bao, T. et al. Moderate disturbance increases the PLFA diversity and biomass of the microbial community in biocrusts in the Loess Plateau region of China. Plant Soil 451, 499–513 (2020).Article 
    CAS 

    Google Scholar 
    Liu, J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83, 29–39 (2015).Article 
    CAS 

    Google Scholar 
    Cotton, J. & Acosta-Martínez, V. Intensive tillage converting grassland to cropland immediately reduces soil microbial community size and organic carbon. Agric. Environ. Lett. 3, 180047 (2018).Article 

    Google Scholar 
    Poeplau, C. et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Glob. Change Biol. 17, 2415–2427 (2011).Article 
    ADS 

    Google Scholar 
    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biol. Biochem. 103, 337–348 (2016).Article 
    CAS 

    Google Scholar 
    Steiner, M. et al. Local conditions matter: minimal and variable effects of soil disturbance on microbial communities and functions in European vineyards. PLoS One 18, e0280516 (2023).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).Article 
    CAS 

    Google Scholar 
    Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eisenhauer, N. Plant diversity effects on soil microorganisms: spatial and temporal heterogeneity of plant inputs increase soil biodiversity. Pedobiologia 59, 175–177 (2016).Article 

    Google Scholar 
    Porazinska, D. L. et al. Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology 99, 1942–1952 (2018).Article 
    PubMed 

    Google Scholar 
    Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).Article 
    PubMed 

    Google Scholar 
    Sun, Y.-Q., Wang, J., Shen, C., He, J.-Z. & Ge, Y. Plant evenness modulates the effect of plant richness on soil bacterial diversity. Sci. Total Environ. 662, 8–14 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).Article 
    CAS 

    Google Scholar 
    Huo, C., Luo, Y. & Cheng, W. Rhizosphere priming effect: a meta-analysis. Soil Biol. Biochem. 111, 78–84 (2017).Article 
    CAS 

    Google Scholar 
    Dimassi, B. et al. Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization. Soil Biol. Biochem. 78, 332–339 (2014).Article 
    CAS 

    Google Scholar 
    Prescott, C. E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry 101, 133–149 (2010).Article 
    CAS 

    Google Scholar 
    Petraglia, A. et al. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil 435, 187–200 (2019).Article 
    CAS 

    Google Scholar 
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. (2016).Bani, A. et al. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil. Ecol. 126, 75–84 (2018).Article 

    Google Scholar 
    Bonanomi, G., Capodilupo, M., Incerti, G., Mazzoleni, S. & Scala, F. Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments. Community Ecol. 16, 167–177 (2015).Article 

    Google Scholar 
    Daebeler, A. et al. Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI). SOIL Discuss. [preprint]; 10.5194/soil-2021-110 (2021).Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M. & Hefting, M. M. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 4, 1070–1075 (2013).Article 

    Google Scholar 
    Schaller, K. Praktikum zur Bodenkunde und Pflanzenernährung. Hochschule Geisenheim, (2000).Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ihrmark, K. et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Schoch, C. L. et al. SI: Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U.S.A. 109, 6241–6246 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Joshi, N. A. & Fass, J. N. sickle – A Windowed Adaptive Trimming Tool for FASTQ Files Using Quality. Available at https://github.com/najoshi/sickle (2011).Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Westcott, S. L. & Schloss, P. D. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2, e00073 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gweon, H. S. et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. Available at https://www.R-project.org/ (2019).McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haegeman, B. et al. Robust estimation of microbial diversity in theory and in practice. ISME J. 7, 1092–1101 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scheu, S. Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1113–1118 (1992).Article 

    Google Scholar 
    Mori, T. Validation of the Tea Bag Index as a standard approach for assessing organic matter decomposition: a laboratory incubation experiment. Ecol. Ind. 141, 109077 (2022).Article 
    CAS 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–142. Available at https://CRAN.R-project.org/package=nlme (2019).Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.4.4. Available at https://CRAN.R-project.org/package=emmeans (2020).Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Grace, J. B., Anderson, T. M., Olff, H. & Scheiner, S. M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 80, 67–87 (2010).Article 

    Google Scholar 
    Shipley, B. A new inferential test for path models based on directed acyclic graphs. Struct. Equ. Model. 7, 206–218 (2000).Article 
    MathSciNet 

    Google Scholar  More

  • in

    Spatial ecology of the invasive Asian common toad in Madagascar and its implications for invasion dynamics

    Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford University Press, 2017).Book 
    MATH 

    Google Scholar 
    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).Book 

    Google Scholar 
    Shigesada, N., Kawasaki, K. & Takeda, Y. Modeling stratified diffusion in biological invasions. Am. Nat. 146, 229–251 (1995).Article 

    Google Scholar 
    Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article 
    ADS 

    Google Scholar 
    Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 36 (2020).Article 

    Google Scholar 
    Measey, G. J. et al. A global assessment of alien amphibian impacts in a formal framework. Divers. Distrib. 22, 970–981 (2016).Article 

    Google Scholar 
    Antonelli, A., Smith, R. J., Perrigo, A. L. & Crottini, A. Madagascar’s extraordinary biodiversity: Evolution, distribution, and use. Science 378, eabf0869 (2022).
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, B. M. et al. Widespread vulnerability of Malagasy predators to the toxins of an introduced toad. Curr. Biol. 28, R654–R655 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Licata, F. et al. Toad invasion of Malagasy forests triggers severe mortality of a predatory snake. Biol. Inv. 24, 1189–1198 (2022).Article 

    Google Scholar 
    Licata, F. et al. Abundance, distribution and spread of the invasive Asian toad Duttaphrynus melanostictus in eastern Madagascar. Biol. Inv. 21, 1615–1626 (2019).Article 

    Google Scholar 
    McClelland, P., Reardon, J. T., Kraus, F., Raxworthy, C. J. & Randrianantoandro, C. Asian toad eradication feasibility report for Madagascar (Te Anau, 2015).Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?. Ecography 28, 110–128 (2005).Article 

    Google Scholar 
    Shine, R. et al. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci. Rep. 11, 23574 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).Article 

    Google Scholar 
    Van Petegem, K. H. P. et al. Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evol. Ecol. 29, 299–310 (2015).Article 

    Google Scholar 
    Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Licata, F., Andreone, F., Crottini, A., Harison, R. F. & Ficetola, G. F. Does spatial sorting occur in the invasive Asian toad in Madagascar? Insights into the invasion unveiled by morphological analyses. JZSER 2021, 1–9 (2021).
    Google Scholar 
    Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).Article 

    Google Scholar 
    Brown, G. P., Kelehear, C. & Shine, R. Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet–dry tropics. Funct. Ecol. 25, 1339–1347 (2011).Article 

    Google Scholar 
    Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).Book 

    Google Scholar 
    Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010). https://doi.org/10.7208/9780226893334.Book 

    Google Scholar 
    Shaw, A. K., Kokko, H. & Neubert, M. G. Sex difference and Allee effects shape the dynamics of sex-structured invasions. J. Anim. Ecol. 87, 36–46 (2018).Article 
    PubMed 

    Google Scholar 
    Schwarzkopf, L. & Alford, R. A. Desiccation and shelter-site use in a tropical amphibian: Comparing toads with physical models. Funct. Ecol. 10, 193–200 (1996).Article 

    Google Scholar 
    Wogan, G. O. U., Stuart, B. L., Iskandar, D. T. & McGuire, J. A. Deep genetic structure and ecological divergence in a widespread human commensal toad. Biol. Lett. 12, 20150807 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Licata, F. Exploring the invasion dynamics and impacts of the invasive Asian common toad in Madagascar (University of Porto, 2022).
    Google Scholar 
    Reilly, S. B. et al. Toxic toad invasion of Wallacea: A biodiversity hotspot characterized by extraordinary endemism. Glob. Change Biol. 23, 5029–5031 (2017).Article 
    ADS 

    Google Scholar 
    Jørgensen, C. B., Shakuntala, K. & Vijayakumar, S. Body size, reproduction and growth in a tropical toad, Bufo melanostictus, with a comparison of ovarian cycles in tropical and temperate zone anurans. Oikos 46, 379 (1986).Article 

    Google Scholar 
    Vences, M. et al. Tracing a toad invasion: Lack of mitochondrial DNA variation, haplotype origins, and potential distribution of introduced Duttaphrynus melanostictus in Madagascar. Amphib. Reptilia 38, 197–207 (2017).Article 

    Google Scholar 
    Ngo, B. V. & Ngo, C. D. Reproductive activity and advertisement calls of the Asian common toad Duttaphrynus melanostictus (Amphibia, Anura, Bufonidae) from Bach Ma National Park, Vietnam. Zool. Stud. 52, 12 (2013).Article 

    Google Scholar 
    Licata, F. et al. The Asian toad (Duttaphrynus melanostictus) in Madagascar: A report of an ongoing invasion. In Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions (eds Angelici, F. M. & Rossi, L.) 617–638 (Springer, 2020). https://doi.org/10.1007/978-3-030-42335-3_21.Chapter 

    Google Scholar 
    Moore, M., Solofo Niaina Fidy, J. F. & Edmonds, D. The new toad in town: Distribution of the Asian toad, Duttaphrynus melanostictus, in the Toamasina area of eastern Madagascar. Trop. Conserv. Sci. 8, 440–455 (2015).Article 

    Google Scholar 
    Licata, F. et al. Using public surveys to rapidly profile biological invasions in hard-to-monitor areas. Anim. Conserv. https://doi.org/10.1111/acv.12835 (2023).Article 

    Google Scholar 
    Zhang, M. et al. Automatic high-resolution land cover production in madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sensing 12, 3663 (2020).Article 
    ADS 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4, 439–473 (2007).
    Google Scholar 
    Merkel, A. Toamasina Climate (Madagascar). Accessed 20 July 2022. https://en.climate-data.org/africa/madagascar/toamasina/toamasina-4029/
    (2021).Gordon, A. Secondary sexual characters of Bufo melanostictus schneider. Copeia 1933, 204–207 (1933).Article 

    Google Scholar 
    Alford, R. & Rowley, J. Techniques for tracking amphibians: The effects of tag attachment, and harmonic direction finding versus radio telemetry. Amphib. Reptilia 28, 367–376 (2007).Article 

    Google Scholar 
    Lassueur, T., Joost, S. & Randin, C. F. Very high resolution digital elevation models: Do they improve models of plant species distribution?. Ecol. Modell. 198, 139–153 (2006).Article 

    Google Scholar 
    Abrams, M., Crippen, R. & Fujisada, H. ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sensing 12, 1156 (2020).Article 
    ADS 

    Google Scholar 
    Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2021).Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article 

    Google Scholar 
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).Article 

    Google Scholar 
    Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the australian semi-desert. PLoS ONE 6, e25979 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, S. J., Sinsch, U. & Alford, R. A. Radio Tracking. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds Heyer, R. et al.) 155–158 (Smithsonian Institution, 1994).
    Google Scholar 
    Altobelli, J. T., Dickinson, K. J. M., Godfrey, S. S. & Bishop, P. J. Methods in amphibian biotelemetry: Two decades in review. Austral. Ecol. 47, 1382–1395 (2022).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002). https://doi.org/10.1007/978-1-4757-2917-7_3.Book 
    MATH 

    Google Scholar 
    Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2021).Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. (2022).Hodges, C. W., Marshall, B. M., Hill, J. G. & Strine, C. T. Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape. bioRxiv https://doi.org/10.1101/2021.09.08.459477 (2021).Article 

    Google Scholar 
    Muller, B. J., Cade, B. S. & Schwarzkopf, L. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts. Ecosphere 9, e02067 (2018).Article 

    Google Scholar 
    Linsenmair, K. E. & Spieler, M. Migration patterns and diurnal use of shelter in a ranid frog of a West African savannah: A telemetric study. Amphib. Reptilia 19, 43–64 (1998).Article 

    Google Scholar 
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).Article 
    PubMed 

    Google Scholar 
    Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane yoads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, W.-S., Lin, J.-Y. & Yu, J.Y.-L. Male reproductive cycle of the toad Bufo melanostictus in Taiwan. Zool. Sci. 14, 497–503 (1997).Article 

    Google Scholar 
    Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).Article 
    PubMed 

    Google Scholar 
    Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).Article 
    PubMed 

    Google Scholar 
    Kot, M., Lewis, M. A. & van den Driessche, P. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996).Article 

    Google Scholar 
    Deguise, I. & Richardson, J. S. Movement behaviour of adult western toads in a fragmented, forest landscape. Can. J. Zool. 87, 1184–1194 (2009).Article 

    Google Scholar 
    Mitrovich, M. J., Gallegos, E. A., Lyren, L. M., Lovich, R. E. & Fisher, R. N. Habitat use and movement of the endangered Arroyo toad (Anaxyrus californicus) in coastal southern California. J. Herpetol. 45, 319–328 (2011).Article 

    Google Scholar 
    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).Article 
    PubMed 

    Google Scholar 
    Enriquez-Urzelai, U., Montori, A., Llorente, G. A. & Kaliontzopoulou, A. Locomotor mode and the evolution of the hindlimb in western mediterranean anurans. Evol. Biol. 42, 199–209 (2015).Article 

    Google Scholar 
    Junior, B. T. & Gomes, F. R. Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLoS ONE 10, e0140761 (2015).Article 

    Google Scholar 
    Klockmann, M., Günter, F. & Fischer, K. Heat resistance throughout ontogeny: Body size constrains thermal tolerance. Glob. Change Biol. 23, 686–696 (2017).Article 
    ADS 

    Google Scholar 
    Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Lévy flight. PNAS 108, 8704–8707 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. PNAS 110, 13452–13456 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, R. et al. New weapons in the toad toolkit: A review of methods to control and mitigate the biodiversity impacts of invasive Cane toads (Rhinella marina). Q. Rev. Biol. 92, 123–149 (2017).Article 
    PubMed 

    Google Scholar 
    Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article 

    Google Scholar 
    DeVore, J. L., Crossland, M. R., Shine, R. & Ducatez, S. The evolution of targeted cannibalism and cannibal-induced defenses in invasive populations of cane toads. Proc. Natl. Acad. Sci. 118, e2100765118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muller, B. J. & Schwarzkopf, L. Relative effectiveness of trapping and hand-capture for controlling invasive cane toads (Rhinella marina). Int. J. Pest Manag. 64, 185–192 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Coastal algal blooms have intensified over the past 20 years

    RESEARCH BRIEFINGS
    01 March 2023

    Global spatial and temporal patterns of coastal phytoplankton blooms were characterized using daily satellite imaging between 2003 and 2020. These blooms were identified on the coast of 126 of the 153 ocean-bordering countries examined. The extent and frequency of blooms have increased globally over the past two decades. More

  • in

    Individual personality predicts social network assemblages in a colonial bird

    Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. Lond. B 365, 4051–4063 (2010).Article 

    Google Scholar 
    Gosling, S. D. From mice to men: What can we learn about personality from animal research?. Psychol. Bull. 127, 45 (2001).Article 
    CAS 

    Google Scholar 
    Dingemanse, N. J., Class, B. & Holtmann, B. Nonrandom mating for behavior in the wild?. Trends Ecol. Evol. 36, 177–179 (2021).Article 

    Google Scholar 
    Croft, D. P. et al. Behavioural trait assortment in a social network: Patterns and implications. Behav. Ecol. Sociobiol. 63, 1495–1503 (2009).Article 

    Google Scholar 
    Morton, F. B., Weiss, A., Buchanan-Smith, H. M. & Lee, P. C. Capuchin monkeys with similar personalities have higher-quality relationships independent of age, sex, kinship and rank. Anim. Behav. 105, 163–171 (2015).Article 

    Google Scholar 
    Su, X. et al. Agonistic behaviour and energy metabolism of bold and shy swimming crabs Portunus trituberculatus. J. Exp. Biol. https://doi.org/10.1242/jeb.188706 (2019).Article 

    Google Scholar 
    Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).Article 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).Article 

    Google Scholar 
    Frost, A. J., Winrow-Giffen, A., Ashley, P. J. & Sneddon, L. U. Plasticity in animal personality traits: Does prior experience alter the degree of boldness?. P. Roy. Soc. B-Biol. Sci. 274, 333–339 (2007).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. Lond. B 365, 4099 (2010).Article 
    CAS 

    Google Scholar 
    David, M., Auclair, Y. & Cézilly, F. Personality predicts social dominance in female zebra finches, Taeniopygia guttata, in a feeding context. Anim. Behav. 81, 219–224 (2011).Article 

    Google Scholar 
    Favati, A., Leimar, O. & Løvlie, H. Personality predicts social dominance in male domestic fowl. PLoS ONE 9, e103535 (2014).Article 
    ADS 

    Google Scholar 
    McGhee, K. E. & Travis, J. Repeatable behavioural type and stable dominance rank in the Bluefin killifish. Anim. Behav. 79, 497–507 (2010).Article 

    Google Scholar 
    Krause, J., Croft, D. P. & James, R. Social network theory in the behavioural sciences: Potential applications. Behav. Ecol. Sociobiol. 62, 15–27 (2007).Article 
    CAS 

    Google Scholar 
    Flack, J. C., Girvan, M., de Waal, F. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, 2008).Book 

    Google Scholar 
    Patriquin, K. J., Leonard, M. L., Broders, H. G. & Garroway, C. J. Do social networks of female northern long-eared bats vary with reproductive period and age?. Behav. Ecol. Sociobiol. 64, 899–913 (2010).Article 

    Google Scholar 
    Gomes, A. C. R., Beltrão, P., Boogert, N. J. & Cardoso, G. C. Familiarity, dominance, sex and season shape common waxbill social networks. Behav. Ecol. 33, 526–540 (2022).Article 

    Google Scholar 
    Croft, D. P., Krause, J. & James, R. Social networks in the guppy (Poecilia reticulata). P. Roy. Soc. B-Biol. Sci. 271, S516–S519 (2004).Article 

    Google Scholar 
    Pike, T. W., Samanta, M., Lindström, J. & Royle, N. J. Behavioural phenotype affects social interactions in an animal network. P. Roy. Soc. B-Biol. Sci. 275, 2515–2520 (2008).
    Google Scholar 
    Aplin, L. M. et al. Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol. Lett. 16, 1365–1372 (2013).Article 
    CAS 

    Google Scholar 
    Massen, J. J. & Koski, S. E. Chimps of a feather sit together: Chimpanzee friendships are based on homophily in personality. Evol. Hum. Behav. 35, 1–8 (2014).Article 

    Google Scholar 
    Rault, J.-L. Friends with benefits: Social support and its relevance for farm animal welfare. Appl. Anim. Behav. Sci. 136, 1–14 (2012).Article 

    Google Scholar 
    Schneider, G. & Krueger, K. Third-party interventions keep social partners from exchanging affiliative interactions with others. Anim. Behav. 83, 377–387 (2012).Article 

    Google Scholar 
    Fraser, O. N. & Bugnyar, T. Do ravens show consolation? Responses to distressed others. PLoS ONE 5, e10605 (2010).Article 
    ADS 

    Google Scholar 
    Rose, P. & Croft, D. The potential of social network analysis as a tool for the management of zoo animals. Anim. Welf. 24, 123–138 (2015).Article 

    Google Scholar 
    Clark, F. E. Space to choose: network analysis of social preferences in a captive chimpanzee community, and implications for management. Am. J. Primatol. 73, 748–757 (2011).Article 

    Google Scholar 
    Corner, L., Pfeiffer, D. & Morris, R. Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). Prev. Vet. Med. 59, 147–167 (2003).Article 
    CAS 

    Google Scholar 
    Hansen, H., McDonald, D. B., Groves, P., Maier, J. A. & Ben-David, M. Social networks and the formation and maintenance of river otter groups. Ethology 115, 384–396 (2009).Article 

    Google Scholar 
    Radosevich, L. M., Jaffe, K. E. & Minier, D. E. The utility of social network analysis for informing zoo management: Changing network dynamics of a group of captive hamadryas baboons (Papio hamadryas) following an introduction of two young males. Zoo Biol. 40, 503–516 (2021).Article 

    Google Scholar 
    Pacheco, X. P. & Madden, J. R. Does the social network structure of wild animal populations differ from that of animals in captivity?. Behav. Processes 190, 104446 (2021).Article 

    Google Scholar 
    Watters, J. V. & Powell, D. M. Measuring animal personality for use in population management in zoos: Suggested methods and rationale. Zoo Biol. 31, 1–12 (2012).Article 

    Google Scholar 
    Koski, S. E. Social personality traits in chimpanzees: temporal stability and structure of behaviourally assessed personality traits in three captive populations. Behav. Ecol. Sociobiol. 65, 2161–2174 (2011).Article 

    Google Scholar 
    Račevska, E. & Hill, C. M. Personality and social dynamics of zoo-housed western lowland gorillas (Gorilla gorilla gorilla). J. Zoo Aqua. Res. 5, 116–122 (2017).
    Google Scholar 
    Stoinski, T. S., Jaicks, H. F. & Drayton, L. A. Visitor effects on the behavior of captive western lowland gorillas: The importance of individual differences in examining welfare. Zoo Biol. 31, 586–599 (2012).Article 

    Google Scholar 
    Wielebnowski, N. C. Behavioral differences as predictors of breeding status in captive cheetahs. Zoo Biol. 18, 335–349 (1999).Article 

    Google Scholar 
    Barrett, L. P. et al. Personality assessment of headstart Texas horned lizards (Phrynosoma cornutum) in human care prior to release. Appl. Anim. Behav. Sci. 254, 105690 (2022).Article 

    Google Scholar 
    Rose, P. E., Brereton, J. E. & Croft, D. P. Measuring welfare in captive flamingos: Activity patterns and exhibit usage in zoo-housed birds. Appl. Anim. Behav. Sci. 205, 115–125 (2018).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Social bonds in a flock bird: Species differences and seasonality in social structure in captive flamingo flocks over a 12-month period. Appl. Anim. Behav. Sci. 193, 87–97 (2017).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Quantifying the social structure of a large captive flock of greater flamingos (Phoenicopterus roseus): Potential implications for management in captivity. Behav. Processes 150, 66–74 (2018).Article 

    Google Scholar 
    Rose, P. E., Croft, D. P. & Lee, R. A review of captive flamingo (Phoenicopteridae) welfare: A synthesis of current knowledge and future directions. Intern. Zoo Yearb. 48, 139–155 (2014).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Evaluating the social networks of four flocks of captive flamingos over a five-year period: Temporal, environmental, group and health influences on assortment. Behav. Processes 175, 104118 (2020).Article 

    Google Scholar 
    Munson, A. A., Jones, C., Schraft, H. & Sih, A. You’re just my type: Mate choice and behavioral types. Trends Ecol. Evol. 35, 823–833 (2020).Article 

    Google Scholar 
    Schuett, W., Tregenza, T. & Dall, S. R. Sexual selection and animal personality. Biol. Rev. 85, 217–246 (2010).Article 

    Google Scholar 
    Jackson, W. M. Why do winners keep winning?. Behav. Ecol. Sociobiol. 28, 271–276 (1991).Article 

    Google Scholar 
    Dammhahn, M. & Almeling, L. Is risk taking during foraging a personality trait? A field test for cross-context consistency in boldness. Anim. Behav. 84, 1131–1139 (2012).Article 

    Google Scholar 
    Van Oers, K., Drent, P. J., De Goede, P. & Van Noordwijk, A. J. Realized heritability and repeatability of risk-taking behaviour in relation to avian personalities. P. Roy. Soc. B-Biol. Sci. 271, 65–73 (2004).Article 

    Google Scholar 
    Hinton, M. G. et al. Patterns of aggression among captive American flamingos (Phoenicopterus ruber). Zoo Biol. 32, 445–453 (2013).Article 

    Google Scholar 
    Royer, E. A. & Anderson, M. J. Evidence of a dominance hierarchy in captive Caribbean flamingos and its relation to pair bonding and physiological measures of health. Behav. Processes 105, 60–70 (2014).Article 

    Google Scholar 
    Carere, C., Drent, P. J., Privitera, L., Koolhaas, J. M. & Groothuis, T. G. Personalities in great tits, Parus major: Stability and consistency. Anim. Behav. 70, 795–805 (2005).Article 

    Google Scholar 
    Jouventin, P., Lequette, B. & Dobson, F. S. Age-related mate choice in the wandering albatross. Anim. Behav. 57, 1099–1106 (1999).Article 
    CAS 

    Google Scholar 
    Black, J. M. Partnerships in Birds: The Study of Monogamy (Oxford University Press, USA, 1996).
    Google Scholar 
    Estevez, I., Andersen, I.-L. & Nævdal, E. Group size, density and social dynamics in farm animals. Appl. Anim. Behav. Sci. 103, 185–204 (2007).Article 

    Google Scholar 
    Pickering, S. The comparative breeding biology of flamingos Phoenicopteridae at the Wildfowl and Wetlands Trust Centre, Slimbridge. Intern. Zoo Yearbook 31, 139–146 (1992).Article 

    Google Scholar 
    Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis (University of Chicago Press, 2008).Book 

    Google Scholar 
    Wilson, A. D., Krause, S., Dingemanse, N. J. & Krause, J. Network position: A key component in the characterization of social personality types. Behav. Ecol. Sociobiol. 67, 163–173 (2013).Article 

    Google Scholar 
    Renner, M. J. & Kelly, A. L. Behavioral decisions for managing social distance and aggression in captive polar bears (Ursus maritimus). J. Appl. Anim. Welf. Sci. 9, 233–239 (2006).Article 
    CAS 

    Google Scholar 
    Stevens, E. F. & Pickett, C. Managing the social environments of flamingos for reproductive success. Zoo Biol. 13, 501–507 (1994).Article 

    Google Scholar 
    Franks, D. W., Ruxton, G. D. & James, R. Sampling animal association networks with the gambit of the group. Behav. Ecol. Sociobiol. 64, 493–503 (2010).Article 

    Google Scholar 
    Haddadi, H. et al. Determining association networks in social animals: Choosing spatial–temporal criteria and sampling rates. Behav. Ecol. Sociobiol. 65, 1659–1668 (2011).Article 

    Google Scholar 
    Whitehead, H. & Dufault, S. Techniques for analyzing vertebrate social structure using identified individuals. Adv. Stud. Behav. 28, 33–74 (1999).Article 

    Google Scholar 
    Borgatti, S.P., M., E., G., & C., F.L. UCINET for windows: software for social network analysis. Analytic Technologies: Harvard, MA (2002).Borgatti, S. P. NetDraw: graph visualization software (Analytic Technologies, 2002).
    Google Scholar 
    Bejder, L., Fletcher, D. & Bräger, S. A method for testing association patterns of social animals. Anim. Behav. 56, 719–725 (1998).Article 
    CAS 

    Google Scholar 
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).Article 

    Google Scholar 
    Perdue, B. M., Gaalema, D. E., Martin, A. L., Dampier, S. M. & Maple, T. L. Factors affecting aggression in a captive flock of Chilean flamingos (Phoenicopterus chilensis). Zoo Biol. 30, 59–64 (2011).
    Google Scholar 
    IBMCorp. IBM SPSS Statistics for Windows. IBM Corp: Armonk, NY (2012).Clarke, K.R. & Gorley, R.N. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. (2006).Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. (2020).RCoreTeam. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (2021).Budaev, S. V. Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology 116, 472–480 (2010).Article 

    Google Scholar 
    Whitehead, H. SOCPROG programs: Analysing animal social structures. Behav. Ecol. Sociobiol. 63, 765–778 (2009).Article 

    Google Scholar 
    Whitehead, H. SOCPROG: Programs for analyzing social structure: Whitehead Lab (2019).Hanneman, R.A. & Riddle, M., Chapter 18: Some Statistical Tools. In: Introduction to Social Network Methods. (University of California, Riverside 2005). http://faculty.ucr.edu/~hanneman/.(2005) More

  • in

    Rescuing Botany: using citizen-science and mobile apps in the classroom and beyond

    Global biodiversity has been dramatically declining over the last decades1,2,3,4. The current biodiversity crisis is primarily driven by human-induced factors, the most serious of which are land-use change, habitat fragmentation, and climate change5. While global public awareness of climate change matters is high6,7, public recognition of biodiversity loss has, historically, been low8. The understanding of biodiversity concepts highly varies among countries and social groups9,10,11: in Nigeria, the biodiversity concept was known of 20.5% of non-professional Nigerians (with basic education or no formal training) while among 88.8% of professionals with tertiary education, it reached 88.8%; 60% of participants in a study in Switzerland had never heard the term biodiversity and Chinese farmers in another pilot study have never heard about biodiversity. In the European Union, the global leader of the environmental movement on both the political and discursive levels12,13, in 2018, 71% of EU citizens had heard of biodiversity, but only around 41% of these knew what biodiversity meant14. This illiteracy is a significant constraint for conservation strategies because the development and success of actions to halt and reverse biodiversity loss strongly rely on public support15.If general awareness of biodiversity loss is low, knowledge about plant diversity is even lower16. Plants have traditionally been overlooked, and expressions such as “plant blindness”, defined as a human tendency to ignore plant species17, perfectly illustrate the situation in terms of plant conservation. And yet, current estimates suggest that two out of five plant species are threatened with extinction18. Moreover, plants play a crucial role in the world ecosystems by providing habitat, shelter, oxygen, and food, including for humans19. Local community support boosts the effectiveness of biodiversity conservation actions20,21,22. However, how biodiversity is perceived and the benefits it provides to local populations have a significant influence on this support23. Therefore, stopping the loss of plant biodiversity and the impact it has on ecosystem health and human well-being must also strive to raise public awareness on the importance of plant conservation24.A big challenge, however, is to engage people with conservation. Nowadays, in a world where a large part of the human population lives in urban areas, the contact of people with nature is declining. This is a trend that will be even more accentuated in the future25. Perhaps society’s interest in plants is decreasing because of limited exposure to plants in daily lives, schools, and work. However, by critically examining our roles as plant scientists and educators, we realize that there are probably things we could, and should, do differently. New strategies to connect people to nature are required to spark people’s interest in and knowledge of plants. Citizen science programs and mobile applications (apps) are noteworthy initiatives that are helping to achieve this goal.Citizen science is defined as the general public involvement in scientific research activities and currently is a mainstream approach to collect information and data on a wide range of scientific subjects26,27. The development of mobile technologies and the widespread use of smartphones have boosted citizen science and enabled the development of mobile apps, which are digital tools that integrate, in real-time, data from multiple sources28.The goal of this article is to show how citizen science and mobile apps can be used as educational tools to raise awareness about plant biodiversity and conservation among the general public. We focused on formal education activities, at the Bachelor of Science (BSc) level, that were designed to collect data on various aspects of plant community and functional ecology. We also present the outcomes of two informal education initiatives that used citizen science to gather data on the distribution of plant diversity. We discuss these activities and results in light of their potential to engage the public into biodiversity conservation, and as educational and outreach tools.Formal education: UniversityDuring the COVID-19 pandemic (2021), Ecology practical classes of the Bologna Bachelor Degree in Biology (Faculty of Sciences of the University of Lisbon) had to be adapted to remote learning. Fortunately, during the States of Emergency imposed by the Portuguese Government, citizens were allowed to take brief walks. Taking advantage of citizen’s ability to briefly travel outdoors, we created three activities for students, as alternatives to those typically carried out in the classroom/campus, which we describe below.Activity 1—Analysis of the impact of disturbance on plant diversity in grasslandsThe objective of this activity was for students to explore the impact of disturbance and site attributes (such as soil type) on the diversity of the herbaceous plant community and its associated pollinators. This was undertaken in grasslands located near their homes, within walking distance (due to COVID lockdown movement restrictions). To achieve this goal, we developed a comprehensive sampling protocol that included methods for (i) selecting and characterizing sampling sites based on the level of human perturbation, (ii) soil characterization, (iii) sampling, identifying, and registering plants using the iNaturalist/Biodiversity4All platform and Flora-on web (Box 1), and (iv) pollinator sampling (Supplementary Data 1). To ensure accurate plant and pollinators identification, all observations were verified by professors responsible for each topic.First, each student chose one sampling site and teachers, using photographs, classified all sites regarding their perturbation level (low, medium, and high). Then, using the sampling protocol, students were invited to study different aspects of their sampling site, in loco or at their homes. Soil samples were analysed using simple methods and available household instruments (such as plastic cups, kitchen scale, and oven). Students were introduced to soil biodiversity as well as soil parameters (humidity, texture, structure, infiltration and draining) during the remote classes. Plants were sampled using a home-made 1 m2 quadrat. All species within were counted and identified to the lowest taxonomic level possible, using the mentioned apps and website. Before plant sampling, students were also asked to count and identify pollinators within their quadrats (broad taxonomic groups, bees, butterflies, flies, beetles) for 5 min, again using the apps to aid identification.Following field sampling, students were asked to calculate two taxonomic indices of plant communities. These included species richness, which measures the number of different species that occur in a sample, and the Simpson Diversity Index, which evaluates the probability that two individuals randomly selected from a sample will belong to the same species. Students also calculated functional diversity indices such as Functional Richness and Functional Dissimilarity, since functional diversity explores functional differences between species and how these differences reflect and affect the interactions with the environment and with other species29. Then, students assessed the relation between these indices and perturbation level. They analysed several functional traits of plants that are likely to respond to local perturbation (e.g., height, leaf size). Finally, they attempted to relate plant indices with the occurrence of pollinators.Overall, students sampled 147 grasslands that were affected by low (n = 17); medium (n = 86) and high (n = 40) levels of perturbation, scattered across mainland Portugal (Fig. 1a). In total, 3015 observations corresponding to 543 species of plant and 88 of insects (Fig. 1b) were registered in the iNaturalist/Biodiversity4All project Ecologia2_FCUL, created specifically to record all of the diversity data associated with this activity. Other registered taxa included six species of molluscs and 13 of arachnids, and other occasional soil macrofauna.Fig. 1: Analysis of the impact of disturbance on plant diversity in grasslands.a Location of grasslands sampled; b Banner and overview of main results of the project created in the platform iNaturalist/Biodiversity4All to register the sampled species; c Boxplots include data of the taxonomic diversity indices (plant species richness and Simpson Diversity Index) of sampled grasslands at three different perturbation levels: low, medium and high. Central lines represent median values, box limits indicate the upper and lower quartiles, whiskers correspond to 1.5 × the interquartile range above and below the upper and lower quartiles and points are the outliers. Boxplots with different letters indicate statistically significant differences among perturbation levels based on multiple pairwise comparisons.Full size imageThe results showed that the number of species (richness) decreased consistently with the level of perturbation. Simpson Diversity Index values increased, indicating low diversity values in highly perturbed herbaceous plant communities (Fig. 1c). Results revealed a trend towards an increase in the proportion of species with lower stature as perturbation increased. However, with no clear relationship with either biodiversity or perturbation. Finally, results indicated no clear relation of pollinator abundance or richness with plant richness and diversity, although field records relate a lower number of pollinators as wind intensity increased. In fact, pollinator sampling is extremely weather sensitive, which may have contributed to the lack of consistent relationships between pollinator diversity and perturbation.Box 1 Citizen science platforms and apps used for formal and informal educational activitiesiNaturalist (https://www.inaturalist.org/home): is a social network of naturalists, citizen scientists, and biologists that is based on mapping and sharing biodiversity observations. They describe themselves as “an online social network of people sharing biodiversity information in order to help each other learn about nature”. iNaturalist may be accessed via website or mobile app. Records are validated by the iNaturalist community. Observations reached approximately 110 million as of July 2022. This app allows the development of both open-access and registration-restricted projects. BioDiversity4All (https://www.biodiversity4all.org/) is a Portuguese biodiversity citizen science platform created by the Biodiversity for All Association. This platform was founded in 2010 and is currently linked to the “iNaturalist” network43. All the projects presented in this article were developed on the Biodiversity4All platform.Flora-on (https://flora-on.pt/): this portal contains occurrence data of vascular plants from the Portuguese flora collected by project collaborators (over 575,000 records as of July 2022). Flora-on was created by the Botanical Society of Portugal (SPBotânica), a Portuguese association devoted to the promotion and study of botany in Portugal. Botanists and naturalists provide most of the data, but occasional contributors are welcomed. Records are supervised by the portal editors, ensuring the dataset’s quality level. The portal includes stunning images of leaves, flowers, fruits, and other plant parts for 2299 of the 3300 taxa occurring in Portugal44. Additionally, the portal includes a powerful search engine that allows geographical, morphological, and taxonomical searches.LeafBite (https://zoegp.science/leafbyte): is a free, open-source iPhone app that measures total leaf area as well as consumed leaf area when herbivory is present45.Leaf-IT is a free and simple Android app created for scientific purposes. It was designed to measure leaf area under challenging field conditions. It has simple features for area calculation and data output, and can be used for ecological research and education46.Activity 2—Leaf trait assessment of shrub and tree speciesStudents were asked to assess three leaf traits Specific leaf area (SLA), Specific leaf mass (LMA), and Leaf Water Content (LWC) of two or three shrub or tree species. Each species should ideally fall into one of three functional groups known for their water adaptations, namely Hydrophytes, Mesophytes and Xerophytes. Students were challenged to choose charismatic Mediterranean species that grew nearby, such as Olea europaea, Nerium oleander or Phillyrea angustifolia. Alternatively, they could take the “Quercus challenge”, which involved ranking the Portuguese oak species based on their drought tolerance. A detailed protocol was developed to assist students for this purpose (Supplementary Data 2). In this protocol was demonstrated how to calculate the leaf area using the LeafBite and Leaf-IT apps (Box 1).The students calculated the SLA, LMA, and LWC of a total of 104 species (Supplementary Data 3) belonging to the main functional groups under study. Regarding the “Quercus challenge”, they were able to classify the six most representative oak species in Portugal and confirm the relationship among these indices and their tolerance to drought (Fig. 2).Fig. 2: Leaf trait assessment of shrub and tree species: Quercus challenge.Classification of Portuguese oak species regarding their drought tolerance (higher tolerance, left-up, lower tolerance right-down).Full size imageOne of the students, accomplished to present his own learning experience related to these activities at the XXIII Conference of the Environmental Research Network of Portuguese-speaking Nations – REALP, under the title “Plant Ecology during Confinement – A Digital Approach”.Activity 3—Evaluating the impact on the biodiversity of lawn management at the University of Lisbon campusAlthough, after the lockdown, practical classes returned to the laboratories and the field in 2021/22, we continued to use the iNaturalist/Biodiversity4All platform and the Flora-on website for biodiversity registering and identification, because of the success of the activities, as evidenced by the positive comments we received from students.The goal of this activity was to study the impact of lawn management on plant diversity and pollination on the University of Lisbon campus. To accomplish this, the students described the herbaceous communities and pollinators on four lawns (named C8, RL, RR, and TT) that had different management practices (mowing and irrigation). A comprehensive document with sampling guidelines was developed (Supplementary Data 4).The project Ecologia 2 Relvados 2022 registered 100 plant and 17 pollinator species (Fig. 3a). Given that the sampling took place during a cold and rainy week, which limited pollinator activity, the low number of pollinators registered was expectable (Lawson and Rands 2019). Following these analyses, the TT lawn (Fig. 3b), which had low levels of mowing and no watering, showed a significantly higher value of diversity, indicating it had the best management strategy for these systems (Fig. 3c), if the goal is to increase biodiversity.Fig. 3: Evaluating the impact on the biodiversity of lawn management at the University of Lisbon campus.a Banner and overview of main results of the project Ecologia 2 Relvados created in the platform iNaturalist/BioDiversity4All to register the sampled species; b Location of the lawns sampled in the Campus of the University of Lisbon; c Boxplots include data of the taxonomic diversity indices (plant species richness and Simpson Diversity Index) of sampled grasslands. Central lines represent median values, box limits indicate the upper and lower quartiles, whiskers correspond to 1.5 × the interquartile range above and below the upper and lower quartiles and points are the outliers. Boxplots with different letters indicate statistically significant differences among lawns based on multiple pairwise comparisons.Full size imageInformal education: BioBlitzesIntense biological surveys known as “BioBlitz” are carried out to record all organisms found in certain locations, such as cities, protected areas, or even entire countries. They are being used all over the world to collect and share georeferenced biodiversity data30. We developed two Plant Bioblitzes based on the BioDiversity4All/iNaturalist and Flora-on platforms. Social media, such as Facebook, Instagram, and Twitter, were used to promote these events and engage citizens (Fig. 4). The BioBlitzes were developed by SPBotânica in collaboration with BioDiversity4All.Fig. 4: Bioblitz I & II – Flora of Portugal.Posters created for the promotion of the two Flora of Portugal Bioblitzes.Full size imageBioblitz I & II – Flora of PortugalThe celebration of Fascination of Plants Day (18th of May) served as the backdrop for the organization of two-weekend Bioblitzes: Bioblitz Flora of Portugal I and Bioblitz Flora of Portugal II.In 2021, the Bioblitz was solely focused on project members, which meant that only those who had voluntarily joined the initiative could participate. In total, the 119 project members registered 4234 observations of 890 plant species. In contrast, the 2022 Bioblitz was an open project (no registration required). In total, the 323 observers made 6547 records of 1198 species. To evaluate the impact of the Bioblitz events, we compared the data registered in BioDiverstiy4All during the weekends of both events (2021 and 2022) with (i) the data registered in the platform during the equivalent weekends of 2019 and 2020 and (ii) also during the weekends before both Bioblitzes. The number of species, observations, and observers increased significantly from 2019 to 2020, 2021, and 2022, but, when comparing values from 2020 with 2021 and 2022, this rise was only verified during the Bioblitz weekends, proving the importance of Bioblitzes in this increase (Fig. 5).Fig. 5: Number of observations, species and observers registered on the BioDiversity4All/iNaturalist platform over equivalent weekends in 2019, 2020, 2021, and 2022.Numbers for 2021 and 2022 correspond to the weekends in which Bioblitzes I & II – Flora of Portugal were conducted, as well as previous ones.Full size image More

  • in

    Open-source software for geospatial analysis

    Satellite imagery provides insight into where and how Earth’s surface changes, particularly in remote areas where in situ measurements are generally lacking. With the large volumes of data produced by satellites, we need streamlined computational pipelines for optimized processing capabilities. Although a multitude of platforms exists to process satellite data, these often have expensive license requirements that price out much of the geospatial community. Moreover, many of these platforms are propriety, but transparency is key when developing geospatial processing workflows. Open-source programming is critical to the creation of efficient imagery processing pipelines. More

  • in

    Combining socioeconomic and biophysical data to identify people-centric restoration opportunities

    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IKI. The Bonn Challenge. https://www.bonnchallenge.org/ (2022).UNCCD. Land Degradation Neutrality. https://www.unccd.int/land-and-life/land-degradation-neutrality/overview (2022).Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Brancalion, P. H. S. et al. Global restoration opportunities in tropical rainforest landscapes. Sci. Adv. 5, eaav3223 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fleischman, F. et al. Restoration prioritization must be informed by marginalized people. Nature 607, E5–E6 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chaturvedi, R. et al. Restoration Opportunities Atlas of India. www.india.restorationatlas.org/methodology (2022).McLain, R., Lawry, S., Guariguata, M. R. & Reed, J. Toward a tenure-responsive approach to forest landscape restoration: a proposed tenure diagnostic for assessing restoration opportunities. Land Use Policy 104, 103748 (2021).Article 

    Google Scholar 
    Binod, B., Bhattarcharjee, A. & Ishwar, N. M. Bonn Challenge and India: Progress on Restoration Efforts Across States and Landscapes (IUCN, 2018).Government of India. Aspirational Districts Phase 1 (vikaspedia, 2018).Government of India. Census of India. https://censusindia.gov.in/2011census/dchb/DCHB.html (2011).DeFries, R. et al. Land management can contribute to net zero. Science 376, 1163–1165 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Borah, B., Bhattacharya, A. & Ishwar, N. M. Bonn Challenge and India. Progress On Restoration Efforts Across States and Landscapes. https://www.bonnchallenge.org/pledges/india (2018).Gopalakrishna, T. et al. Existing land uses constrain climate change mitigation potential of forest restoration in India. Conserv. Lett. https://doi.org/10.1111/conl.12867 (2022).Dhyani, S. et al. Agroforestry to achieve global climate adaptation and mitigation targets: are South Asian countries sufficiently prepared? Forests 12, 303 (2021).Article 

    Google Scholar 
    Nerlekar, A. N. et al. Removal or utilization? Testing alternative approaches to the management of an invasive woody legume in an arid Indian grassland. Restor. Ecol. https://doi.org/10.1111/rec.13477 (2022).Coleman, E. A. et al. Limited effects of tree planting on forest canopy cover and rural livelihoods in Northern India. Nat Sustain 4, 997–1004 (2021).Article 

    Google Scholar 
    Ramprasad, V., Joglekar, A. & Fleischman, F. Plantations and pastoralists: afforestation activities make pastoralists in the Indian Himalaya vulnerable. Ecol. Soci. https://doi.org/10.5751/ES-11810-250401 (2020).DeFries, R. et al. Improved household living standards can restore dry tropical forests. Biotropica https://doi.org/10.1111/btp.12978 (2021).Lele, S., Khare, A. & Mokashi, S. Estimating and Mapping CFR Potential (ATREE, 2020).Agarwala, M. et al. Impact of biogas interventions on forest biomass and regeneration in southern India. Global Ecol. Conservation 11, 213–223 (2017).Article 

    Google Scholar 
    Menon, A. & Schmidt-Vogt, D. Effects of the COVID-19 pandemic on farmers and their responses: a study of three farming systems in Kerala. South India. Land 11, 144 (2022).
    Google Scholar 
    Fremout, T. et al. Diversity for Restoration (D4R): Guiding the selection of tree species and seed sources for climate‐resilient restoration of tropical forest landscapes. J. Appl. Ecol. 59, 664–679 (2022).Article 

    Google Scholar 
    Hughes, K. A. et al. Can restoration of the commons reduce rural vulnerability? A Quasi-experimental comparison of COVID-19 livelihood-based coping strategies among rural households in three Indian States. Int. J. Common. 16, 189 (2022).Article 

    Google Scholar 
    Madhusudan, M. D. & Vanak, A. Mapping the Distribution and Extent of India’s Semi-arid Open Natural Ecosystems. https://doi.org/10.1002/essoar.10507612.1 (2021).Vanak, A. T., Hiremath, A. J., Ganesh, T. & Rai, N. D. Filling in the (Forest) Blanks: the Past, Present and Future of India’s Savanna Grasslands (ATREE, 2017).Oxford Poverty & Human Development Initiative. Global Multidimensional Poverty Index 2018. The Most Detailed Picture to Date of the World’s Poorest People. https://ophi.org.uk/wp-content/uploads/G-MPI_2018_2ed_web.pdf (2018).Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling. https://rspatial.org/raster (2023).Bivand, R. et al. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/web/packages/rgdal/index.html (2023).QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2022). More

  • in

    Untitled public forestlands threat Amazon conservation

    There is a recent change in the modus operandi of Brazilian Amazon deforestation. The proportion of illegal deforestation in public land increased from ~43–44% (2015–2018) to ~49–52% (2019–2021)10. Land grabbers occupy public lands (deforesting or raising cattle) in a high-risk expectation of receiving title to the land and/or trading the land with significant returns (land speculation)6,7. Therefore, we argue that it is crucial to rapidly assign most of the Amazon’s UPFs to land tenure regimes associated with conservation. Land-tenure security will bring greater governance and protection to these areas. Achieving this goal requires a combination of three measures: (1) careful attention to the choice of land tenure categories for UPFs, (2) technological improvements, and (3) law enforcement.Choice of land tenure category for UPFsPublic lands in Brazil include several categories, such as conservation areas (with several subcategories under law number 9985/2000), Indigenous lands, and rural settlements, among others. Therefore, the category choice for each undesignated public land area requires studies to determine those lands’ social, environmental, or productive suitability, taking note of their histories of occupation, cultural importance, and potential uses. The unpopulated forest is a myth. Most of the areas in the Amazon have been occupied by human populations—traditional communities, indigenous villages, uncontacted tribes, “riverside” (ribeirinho) peoples, or small farmers—for generations. Ancestral occupation of land without proof or associated studies, however, does not guarantee land rights. Therefore, to avoid unfair competition for land and unilateral political decisions, the best choice of land category for a given UPF to meet social, ecological and economic demands would benefit from active social participation, multidisciplinary scientific studies, in situ observations, and innovative technologies (e.g., remote sensing, data processing capabilities, machine learning, cloud computing) to provide fast, scalable, and quality information.Final allocation decisions, however, must be preceded by participatory and transparent consultation processes to avoid conflicts and safeguard land rights. The measure of assigning tenure categories to the UPFs has a high level of complexity in itself and may benefit from the support of multi-actors (e.g., governments, academia, civil society, private sector) at multi-levels (e.g., studies, participation processes, decision-making processes) and multi-scales (local, regional and national). Despite the complexity, there are examples in the early 2000s of joint efforts to allocate land (“Terra Legal” Program) and create protected areas on a large scale and in a short period of time in the Brazilian Amazon. We emphasize, however, that the tenure categories selected for the UPFs need to maintain forest cover, remain in the public domain in compliance with national laws, and enhance long-term Amazon conservation, respecting the rights of resident populations.Technological improvements to control land grabbing in UPFLasting conservation of the Amazon rainforest depends on ending land-grabbing and illegal deforestation in public forests (designated or undesignated). However, land grabbers are using a self-declaratory tool to declare illegally invaded public lands as private properties, which demands immediate technological improvements to the system.The Rural Environmental Registry (CAR is the Portuguese acronym) is a mechanism of environmental oversight of private lands under the Brazilian Forest Code (Law 12,651/2012). CARs are registered on a web-based platform (Rural Environmental Registry System – SICAR). By law, landowners must self-declare their property boundaries and land use types (e.g., residential, agricultural, protection) in SICAR, respecting legally required protection of certain forest areas and watercourses. Then, a state environmental agency must validate the information. Unfortunately, the validation process has been extremely slow (e.g., More