Predicting metabolomic profiles from microbial composition through neural ordinary differential equations
Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).Article
Google Scholar
Koppel, N., Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017).Myhrstad, M. C., Tunsjø, H., Charnock, C. & Telle-Hansen, V. H. Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients 12, 859 (2020).Article
Google Scholar
Lin, R., Liu, W., Piao, M. & Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49, 2083–2090 (2017).Article
Google Scholar
Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).Article
Google Scholar
Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).Article
Google Scholar
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).Article
Google Scholar
Yang, Q. et al. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv. 9, 37245–37257 (2019).Article
Google Scholar
Castelli, F. A. et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal. Bioanal. Chem. 414, 759–789 (2022).Article
Google Scholar
Dias-Audibert, F. L. et al. Combining machine learning and metabolomics to identify weight gain biomarkers. Front. Bioeng. Biotechnol. 8, 6 (2020).Article
Google Scholar
Zheng, C., Zhang, S., Ragg, S., Raftery, D. & Vitek, O. Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics 27, 1637–1644 (2011).Article
Google Scholar
Information Resources Management Association. Bioinformatics: Concepts, Methodologies, Tools, and Applications (IGI Global, 2013).Johnson, C. H. & Gonzalez, F. J. Challenges and opportunities of metabolomics. J. Cell. Physiol. 227, 2975–2981 (2012).Article
Google Scholar
Ayling, M., Clark, M. D. & Leggett, R. M. New approaches for metagenome assembly with short reads. Brief. Bioinform. 21, 584–594 (2020).Article
Google Scholar
Brumfield, K. D., Huq, A., Colwell, R. R., Olds, J. L. & Leddy, M. B. Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available neon data. PLoS ONE 15, e0228899 (2020).Article
Google Scholar
Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018).Article
Google Scholar
Noecker, C. et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems 1, e00013–15 (2016).Article
Google Scholar
Yin, X. et al. A comparative evaluation of tools to predict metabolite profiles from microbiome sequencing data. Front. Microbiol. 11, 3132 (2020).Article
Google Scholar
Kettle, H., Louis, P., Holtrop, G., Duncan, S. H. & Flint, H. J. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 17, 1615–1630 (2015).Article
Google Scholar
Quinn, R. A. et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci. Adv. 4, eaau1908 (2018).Article
Google Scholar
Wang, T., Goyal, A., Dubinkina, V. & Maslov, S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput. Biol. 15, e1007524 (2019).Article
Google Scholar
Goyal, A., Wang, T., Dubinkina, V. & Maslov, S. Ecology-guided prediction of cross-feeding interactions in the human gut microbiome. Nat. Commun. 12, 1335 (2021).Mallick, H. et al. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 10, 3136 (2019).Article
Google Scholar
Le, V., Quinn, T. P., Tran, T. & Venkatesh, S. Deep in the bowel: highly interpretable neural encoder–decoder networks predict gut metabolites from gut microbiome. BMC Genom. 21, 256 (2020).Reiman, D., Layden, B. T. & Dai, Y. MiMeNet: exploring microbiome–metabolome relationships using neural networks. PLoS Comput. Biol. 17, e1009021 (2021).Article
Google Scholar
Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).Article
Google Scholar
Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. Neural ordinary differential equations. In Advances in Neural Information Processing Systems 31, 6572–6583 (NeurIPS, 2018).Lu, Y., Zhong, A., Li, Q. & Dong, B. Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In International Conference on Machine Learning 3276–3285 (PMLR, 2018).Qiu, C., Bendickson, A., Kalyanapu, J. & Yan, J. Accuracy and architecture studies of residual neural network solving ordinary differential equations. Preprint at arXiv https://doi.org/10.48550/arXiv.2101.03583 (2021).Dutta, S., Rivera-Casillas, P. & Farthing, M. W. Neural ordinary differential equations for data-driven reduced order modeling of environmental hydrodynamics. Preprint at https://doi.org/10.48550/arXiv.2104.13962 (2021).Marsland III, R. et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).Article
Google Scholar
Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).Article
Google Scholar
Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 19 (2018).Article
Google Scholar
Litonjua, A. A. et al. Effect of prenatal supplementation with vitamin D on asthma or recurrent wheezing in offspring by age 3 years: the VDAART randomized clinical trial. JAMA 315, 362–370 (2016).Article
Google Scholar
Litonjua, A. A. et al. Six-year follow-up of a trial of antenatal vitamin D for asthma reduction. N. Engl. J. Med. 382, 525–533 (2020).Article
Google Scholar
Lee-Sarwar, K. A. et al. Integrative analysis of the intestinal metabolome of childhood asthma. J. Allergy Clin. Immunol. 144, 442–454 (2019).Article
Google Scholar
Lee-Sarwar, K. et al. Association of the gut microbiome and metabolome with wheeze frequency in childhood asthma. J. Allergy Clin. Immunol. 147, AB53 (2021).Article
Google Scholar
Harvard Willett Food Frequency Questionnaire (T.H. Chan School of Public Health, Department of Nutrition, Harvard Univ., 2015).Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–94 (National Centre for Health Statistics, 1994).Nelson, K. M., Reiber, G. & Boyko, E. J. Diet and exercise among adults with type 2 diabetes: findings from the third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 25, 1722–1728 (2002).Article
Google Scholar
Marriott, B. P., Olsho, L., Hadden, L. & Connor, P. Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003-2006. Crit. Rev. Food Sci. Nutr. 50, 228–258 (2010).Article
Google Scholar
Moshfegh, A. Food and Nutrient Database for Dietary Studies (US Department of Agriculture, Agricultural Research Service, Food Surveys Research Group, 2022); http://www.ars.usda.gov/nea/bhnrc/fsrgRidlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).Article
Google Scholar
Bachmann, V. et al. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl. Trop. Dis. 9, e0004031 (2015).Article
Google Scholar
Ramírez-Pérez, O., Cruz-Ramón, V., Chinchilla-López, P. & Méndez-Sánchez, N. The role of the gut microbiota in bile acid metabolism. Ann. Hepatol. 16, 21–26 (2018).Article
Google Scholar
Jia, W., Xie, G. & Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).Article
Google Scholar
Heinken, A. et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 7, 75 (2019).Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013).Article
Google Scholar
Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 246 (2022).Kristal, A. R., Peters, U. & Potter, J. D. Is it time to abandon the food frequency questionnaire? Cancer Epidemiol. Biomarkers Prev. 14, 2826–2828 (2005).Article
Google Scholar
Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).Article
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article
Google Scholar
Callahan, B. J. et al. DADA: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article
Google Scholar
Evans, A. M. et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4, 1 (2014).
Google Scholar
Blum, R. E. et al. Validation of a food frequency questionnaire in Native American and Caucasian children 1 to 5 years of age. Matern. Child Health J. 3, 167–172 (1999).Article
Google Scholar
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).Wang, T. wt1005203/mnode: initial release. Zenodo https://doi.org/10.5281/zenodo.7602940 (2023). More
