Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history
1.Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.010708.154114 (2008).Article
PubMed
Google Scholar
2.Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. https://doi.org/10.1007/s12571-012-0200-5 (2012).Article
Google Scholar
3.Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.43.113004.133839 (2005).Article
PubMed
Google Scholar
4.Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2004.07.021 (2004).Article
PubMed
Google Scholar
5.Scholthof, K. B. G. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00752.x (2011).Article
PubMed
PubMed Central
Google Scholar
6.Stukenbrock, E. H. & Bataillon, T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002893 (2012).Article
PubMed
PubMed Central
Google Scholar
7.Gilligan, C. A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2007.2181 (2008).Article
Google Scholar
8.Li, L. M., Grassly, N. C. & Fraser, C. Genomic analysis of emerging pathogens: methods, application and future trends. Genome Biol.ogy https://doi.org/10.1186/s13059-014-0541-9 (2014).Article
Google Scholar
9.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000520 (2009).MathSciNet
Article
PubMed
PubMed Central
Google Scholar
10.Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001164 (2010).Article
PubMed
PubMed Central
Google Scholar
11.Monjane, A. L. et al. Reconstructing the history of maize streak virus strain A dispersal tor reveal diversification hot spots and its origin in southern Africa. J. Virol. https://doi.org/10.1128/jvi.00640-11 (2011).Article
PubMed
PubMed Central
Google Scholar
12.Trovao, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. https://doi.org/10.1093/ve/vev016 (2015).Article
PubMed
PubMed Central
Google Scholar
13.Rakotomalala, M. et al. Comparing patterns and scales of plant virus phylogeography: rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. https://doi.org/10.1093/ve/vez023 (2019).Article
PubMed
PubMed Central
Google Scholar
14.Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time – The emerging dimension of plant virus studies. J General Virol. https://doi.org/10.1099/vir.0.015925-0 (2010).Article
Google Scholar
15.Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war: host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0120-2 (2019).Article
PubMed
Google Scholar
16.Jones, R. A. C., Boonham, N., Adams, I. P. & Fox, A. Historical virus isolate collections: an invaluable resource connecting plant virology’s pre-sequencing and post-sequencing eras. Plant Pathol. 70, 235–248 (2021).Article
Google Scholar
17.Smith, O. et al. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. https://doi.org/10.1038/srep04003 (2014).Article
PubMed
PubMed Central
Google Scholar
18.Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01307.x (2007).Article
Google Scholar
19.Peyambari, M., Warner, S., Stoler, N., Rainer, D. & Roossinck, M. J. A 1000-Year-old RNA virus. J. Virol. 93, e01188-18 (2019).CAS
Article
Google Scholar
20.Adams, I. P. et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00545.x (2009).Article
PubMed
PubMed Central
Google Scholar
21.Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2014.00029 (2014).Article
PubMed
PubMed Central
Google Scholar
22.Massart, S., Olmos, A., Jijakli, H. & Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.029 (2014).Article
PubMed
Google Scholar
23.Roossinck, M. J., Martin, D. P. & Roumagnac, P. Plant virus metagenomics: advances in virus discovery. Phytopathology https://doi.org/10.1094/PHYTO-12-14-0356-RVW (2015).Article
PubMed
Google Scholar
24.Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology https://doi.org/10.1016/j.virol.2009.03.024 (2009).Article
PubMed
Google Scholar
25.Pooggin, M. M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02779 (2018).Article
PubMed
PubMed Central
Google Scholar
26.Hartung, J. S. et al. History and diversity of Citrus Leprosis virus recorded in herbarium specimens. Phytopathology https://doi.org/10.1094/PHYTO-03-15-0064-R (2015).Article
PubMed
Google Scholar
27.Golyaev, V., Candresse, T., Rabenstein, F. & Pooggin, M. M. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. https://doi.org/10.1038/s41598-019-55547-3 (2019).Article
PubMed
PubMed Central
Google Scholar
28.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).Article
PubMed
PubMed Central
Google Scholar
29.Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. https://doi.org/10.1016/S0065-3527(06)67010-3 (2006).Article
PubMed
Google Scholar
30.Wang, H. L. et al. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. https://doi.org/10.1094/PDIS-10-15-1228-PDN (2016).Article
PubMed
Google Scholar
31.Minato, N. et al. Surveillance for sri lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One https://doi.org/10.1371/journal.pone.0212780 (2019).Article
PubMed
PubMed Central
Google Scholar
32.Mugerwa, H., Wang, H. L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article
PubMed
Google Scholar
33.Ntawuruhunga, P. et al. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Sci. J. https://doi.org/10.4314/acsj.v15i1.54405 (2010).Article
Google Scholar
34.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. https://doi.org/10.1016/j.cropro.2012.10.010 (2013).Article
Google Scholar
35.Jeske, H. Geminiviruses. Curr. Topics Microbiol. Immunol. https://doi.org/10.1007/978-3-540-70972-5_11 (2009).Article
Google Scholar
36.Vanitharani, R., Chellappan, P. & Fauquet, C. M. Geminiviruses and RNA silencing. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2005.01.005 (2005).Article
PubMed
Google Scholar
37.Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002941 (2012).Article
PubMed
PubMed Central
Google Scholar
38.Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.96.10.5586 (1999).Article
PubMed
PubMed Central
Google Scholar
39.Fauquet, C. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. https://doi.org/10.1094/pd-74-0404 (1990).Article
Google Scholar
40.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. https://doi.org/10.1007/s11103-004-1651-7 (2004).Article
PubMed
Google Scholar
41.De Bruyn, A. et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0749-2 (2016).Article
PubMed
PubMed Central
Google Scholar
42.Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of dna retrieved from plant herbarium specimens. R. Soc. Open Sci. https://doi.org/10.1098/rsos.160239 (2016).Article
PubMed
PubMed Central
Google Scholar
43.Chellappan, P., Vanitharani, R., Ogbe, F. & Fauquet, C. M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. https://doi.org/10.1104/pp.105.066563 (2005).Article
PubMed
PubMed Central
Google Scholar
44.Smith, O. & Gilbert, M. T. P. Ancient RNA. in (2018). doi:https://doi.org/10.1007/13836_2018_17.45.Filloux, D. et al. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. https://doi.org/10.1093/ve/vev002 (2015).Article
PubMed
PubMed Central
Google Scholar
46.Sharma, V. et al. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol. https://doi.org/10.1093/ve/veaa071 (2020).Article
PubMed
PubMed Central
Google Scholar
47.Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. https://doi.org/10.1038/nbt.3535 (2016).Article
PubMed
Google Scholar
48.Serfraz, S. et al. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Front. Plant Sci. https://doi.org/10.3389/fpls.2021.683681 (2021).Article
PubMed
PubMed Central
Google Scholar
49.Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One https://doi.org/10.1371/journal.pone.0019193 (2011).Article
PubMed
PubMed Central
Google Scholar
50.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003 (2015).Article
PubMed
PubMed Central
Google Scholar
51.Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).Article
Google Scholar
52.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-7-214 (2007).Article
PubMed
PubMed Central
Google Scholar
53.Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004028 (2014).Article
PubMed
PubMed Central
Google Scholar
54.Dufrénoy, J. & Hédin, L. . La. Mosaïque des feuilles du Manioc au Cameroun. J. d’agriculture Tradit. Bot. appliquée 94, 361–365 (1929).
Google Scholar
55.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS
Article
Google Scholar
56.Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature https://doi.org/10.1038/nature07390 (2008).Article
PubMed
PubMed Central
Google Scholar
57.Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature https://doi.org/10.1038/s41586-018-0097-z (2018).Article
PubMed
Google Scholar
58.Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. https://doi.org/10.1038/srep17226 (2015).Article
PubMed
PubMed Central
Google Scholar
59.Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.07.005 (2005).Article
PubMed
Google Scholar
60.Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods https://doi.org/10.1016/j.jviromet.2003.11.015 (2004).Article
PubMed
Google Scholar
61.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).Article
PubMed
PubMed Central
Google Scholar
62.Zheng, Y. et al. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology https://doi.org/10.1016/j.virol.2016.10.017 (2017).Article
PubMed
Google Scholar
63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics https://doi.org/10.1093/bioinformatics/btp324 (2009).Article
PubMed
PubMed Central
Google Scholar
64.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25 (2009).Article
PubMed
PubMed Central
Google Scholar
65.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. in Bioinformatics (2013). doi:https://doi.org/10.1093/bioinformatics/btt193.66.Broad Institute. Picard Tools – By Broad Institute. Github (2009).67.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics https://doi.org/10.1093/bioinformatics/btq033 (2010).Article
PubMed
PubMed Central
Google Scholar
68.Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).Article
PubMed
PubMed Central
Google Scholar
69.Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. https://doi.org/10.1038/ng.806 (2011).Article
PubMed
PubMed Central
Google Scholar
70.Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).MathSciNet
Article
PubMed
PubMed Central
Google Scholar
71.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article
PubMed
PubMed Central
Google Scholar
72.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS
Article
Google Scholar
73.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods https://doi.org/10.1038/nmeth.2109 (2012).Article
PubMed
PubMed Central
Google Scholar
74.Jombart, T. & Dray, S. Adephylo: Exploratory analyses for the phylogenetic comparative method. Bioinformatics (2010).75.Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).Article
Google Scholar
76.Rieux, A. & Khatchikian, C. E. Tipdatingbeast: an r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12603 (2017).Article
PubMed
Google Scholar
77.Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika https://doi.org/10.1093/biomet/83.2.251 (1996).MathSciNet
Article
MATH
Google Scholar
78.Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).Article
PubMed
Google Scholar
79.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. (2018) doi:https://doi.org/10.1093/sysbio/syy032. More