Water column structure influences long-distance latitudinal migration patterns and habitat use of bumphead sunfish Mola alexandrini in the Pacific Ocean
1.Sims, D. W., Queiroz, N., Doyle, T. K., Houghton, J. D. R. & Hays, G. C. Satellite tracking of the world’s largest bony fish, the ocean sunfish (Mola mola L.) in the North East Atlantic. J. Exp. Mar. Biol. Ecol. 370, 127–133 (2009a)2.Sims, D. W., Queiroz, N., Humphries, N. E., Lima, F. P. & Hays, G. C. Long-term GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring. PLoS ONE 4, e7351 (2009b).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
3.Dewar, H. et al. Satellite tracking the world’s largest jelly predator, the ocean sunfish, Mola mola, in the Western Pacific. J. Exp. Mar. Biol. Ecol. 393, 32–42 (2010).Article
Google Scholar
4.Thys, T. M. et al. Ecology of the ocean sunfish, Mola mola, in the southern California current system. J. Exp. Mar. Biol. Ecol. 471, 64–76 (2015).Article
Google Scholar
5.Sousa, L. L., Queiroz, N., Mucientes, G., Humphries, N. E. & Sims, D. W. Environmental influence on the seasonal movements of satellite-tracked ocean sunfish Mola mola in the north-east Atlantic. Anim. Biotelemetry 4, 7 (2016a).Article
Google Scholar
6.Sousa, L. L. et al. Integrated monitoring of Mola mola behaviour in space and time. PLoS ONE 11, e0160404 (2016b).PubMed
PubMed Central
Article
CAS
Google Scholar
7.Chang, C. T. et al. Horizontal and vertical movement patterns of sunfish off eastern Taiwan. Deep-Sea Res. Part II Top. Stud. Oceanogr. 175, 104683 (2020).8.Sawai, E., Yamanoue, Y., Yoshita, Y., Sakai, Y. & Hashimoto, H. Seasonal occurrence patterns of Mola sunfishes (Mola spp. A and B; Molidae) in waters off the Sanriku region, eastern Japan. Japan. J. Ichthyol. 58, 181–187 (2011).
Google Scholar
9.Thys, T. M., Ryan, J. P., Weng, K. C., Erdmann, M. & Tresnati, J. Tracking a marine ecotourism star: Movements of the short ocean sunfish Mola ramsayi in Nusa Penida, Bali, Indonesia. J. Mar. Biol. 2016, 8750193 (2016).Article
Google Scholar
10.Thys, T. M., Hearn, A. R., Weng, K. C., Ryan, J. P. & Peñaherrera-Palma, C. Satellite tracking and site fidelity of short ocean sunfish, Mola ramsayi, in the Galapagos Islands. J. Mar. Biol. 2017, 7097965 (2017).Article
Google Scholar
11.Aspillaga, E. et al. Thermal stratification drives movement of a coastal apex predator. Sci. Rep. 7, 526 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
12.Gaube, P. et al. Mesoscale eddies influence the movements of mature female white sharks in the Gulf Stream and Sargasso Sea. Sci. Rep. 8, 7363 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
13.Nakamura, I., Goto, Y. & Sato, K. Ocean sunfish rewarm at the surface at the surface after deep excursion to forage for siphonophores. J. Anim. Ecol. 84, 590–603 (2015).PubMed
Article
PubMed Central
Google Scholar
14.Tolotti, M. et al. Fine-scale vertical movements of oceanic whitetip sharks (Carcharhinus longimanus). Fish. Bull. 115, 380–395 (2017).Article
Google Scholar
15.Musyl, M. K. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).
Google Scholar
16.Furukawa, S. et al. Vertical movements of Pacific bluefin tuna (Thunnus orientalis) and dolphinfish (Coryphaena hippurus) relative to the thermocline in the northern East China Sea. Fish. Res. 149, 86–91 (2014).Article
Google Scholar
17.Gaube, P. et al. The use of mesoscale eddies by juvenile loggerhead sea turtles (Caretta caretta) in the southwestern Atlantic. PloS ONE 12, e0172839 (2017).18.Braun, C. D., Gaube, P., Sinclair-Taylor, T. H., Skomal, G. B. & Thorrold, S. R. Mesoscale eddies release pelagic sharks from thermal constraints to foraging in the ocean twilight zone. PNAS 116, 17187–17192 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
19.Sawai, E., Yamanoue, Y., Nyegaard, M. & Sakai, Y. Redescription of the bump-head sunfish Mola alexandrini (Ranzani 1839), senior synonym of Mola ramsayi (Giglioli 1883), with designation of a neotype for Mola mola (Linnaeus 1758) (Tetraodontiformes: Molidae). Ichthyol. Res. 65, 142–160 (2018).Article
Google Scholar
20.Sawai, E. & Yamada, M. Bump-head sunfish Mola alexandrini photographed in the north-west Pacific Ocean mesopelagic zone. J. Fish Biol. 96, 278–280 (2020).PubMed
Article
PubMed Central
Google Scholar
21.Kiyofuji, H. et al. Northward migration dynamics of skipjack tuna (Katsuwonus pelamis) associated with the lower thermal limit in the western Pacific Ocean. Progr. Oceanogr. 175, 55–67 (2019).ADS
Article
Google Scholar
22.Fujioka, K. et al. Spatial and temporal variability in the trans-Pacific migration of Pacific bluefin tuna (Thunnus orientalis) revealed by archival tags. Progr. Oceanogr. 162, 52–65 (2018).23.Kobari, T. et al. Variability in taxonomic composition, standing stock, and productivity of the plankton community in the Kuroshio and its neighboring waters in Kuroshio Current: Physical, Biogeochemical, and Ecosystem Dynamics (ed. Nagai, T., Saito, H., Suzuki, K., Takahashi, M.) 223–243 (Hoboken, 2019).24.Queiroz, N., Humphries, N. E., Noble, L. R., Santos, A. M. & Sims, D. W. Short-term movements and diving behaviour of satellite-tracked blue sharks Prionace glauca in the northeastern Atlantic Ocean. Mar. Ecol. Progress Ser. 406, 265–279 (2010).ADS
Article
Google Scholar
25.McMahon, C. R. & Hays, G. C. Thermal niche, large-scale movements and implications of climate change for a critically endangered marine vertebrate. Glob. Change Biol. 12, 1330–1338 (2006).ADS
Article
Google Scholar
26.Nakatsubo, T., Kawachi, M., Mano, N. & Hirose, H. Spawning period of ocean sunfish Mola mola in waters of the eastern Kanto region, Japan. Aquacult. Sci. 55, 613–618 (2007).
Google Scholar
27.Ashida, H., Suzuki, N., Tanabe, T., Suzuki, N. & Aonuma, Y. Reproductive condition, batch fecundity, and spawning fraction of large Pacific bluefin tuna Thunnus orientalis landed at Ishigaki Island, Okinawa, Japan. Environ. Biol. Fish. 98, 1173–1183 (2015).Article
Google Scholar
28.Watai, M. et al. Comparative analysis of the early growth history of Pacific bluefin tuna Thunnus orientalis from different spawning grounds. Mar. Ecol. Progress Ser. 607, 207–220 (2018).ADS
Article
Google Scholar
29.Stevens, J. D., Bradford, R. W. & West, G. J. Satellite tagging of blue sharks (Prionace glauca) and other pelagic sharks off eastern Australia: Depth behaviour, temperature experience and movements. Mar. Biol. 157, 575–591 (2010).Article
Google Scholar
30.Musyl, M. K. et al. Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiian Islands from archival tagging data. Fish. Oceanogr. 12, 152–169 (2003).Article
Google Scholar
31.Lin, S. J. et al. Vertical and horizontal movements of bigeye tuna (Thunnus obesus) in southeastern Taiwan. Mar. Freshw. Behav. Physiol. 54, 1–21 (2021).Article
Google Scholar
32.Yasuda, I. & Kitagawa, D. Locations of early fishing grounds of saury in the northwestern Pacific. Fish. Oceanogr. 5, 63–69 (1996).Article
Google Scholar
33.Godø, O. R. et al. Mesoscale eddies are oases for higher trophic marine life. PloS ONE 7, e30161 (2012). 34.Polovina, J. J. et al. Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central North Pacific Ocean. Fish. Oceanogr. 13, 36–51 (2004).Article
Google Scholar
35.Sbragaglia, V. et al. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Sci. Rep. 9, 1708 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
36.Nakamura, I., Mastumoto, R. & Sato, K. Body temperature stability in the whale shark, the world’s largest fish. J. Exp. Biol. 223, jeb210286 (2020).PubMed
Article
PubMed Central
Google Scholar
37.Brill, R. W., Bigelow, K. A., Musyl, M. K., Fritsches, K. A. & Warrant, E. J. Bigeye tuna (Thunnus obesus) behavior and physiology and their relevance to stock assessments and fishery biology. Col. Vol. Sci. Pap. ICCAT 57, 142–161 (2005).
Google Scholar
38.Stramma, L. et al. Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change 2, 33–37 (2012).ADS
CAS
Article
Google Scholar
39.Brill, R. W. A review of temperature and oxygen tolerance studies of tunas pertinent to fisheries oceanography, movement models and stock assessments. Fish. Oceanogr. 3, 204–216 (1994).Article
Google Scholar
40.Lam, C. H., Kiefer, D. A. & Domeier, M. L. Habitat characterization for striped marlin in the Pacific Ocean. Fish. Res. 166, 80–91 (2015).Article
Google Scholar
41.Carlisle, A. B. et al. Influence of temperature and oxygen on the distribution of blue marlin (Makaira nigricans) in the Central Pacific. Fish. Oceanogr. 26, 34–48 (2017).Article
Google Scholar
42.Madigan D. J. et al. Water column structure defines vertical habitat of twelve pelagic predators in the South Atlantic. ICES J. Mar. Sci. 78, 867–883 (2021).Article
Google Scholar
43.Schlitzer, R. Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data. J. Oceanogr. 60, 53–62 (2004).CAS
Article
Google Scholar
44.Thomsen, S. et al. The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. J. Geophys. Res. 121, 476–501 (2016).ADS
Article
Google Scholar
45.Nakamura, I. & Sato, K. Ontogenetic shift in foraging habit of ocean sunfish Mola mola from dietary and behavioral studies. Mar. Biol. 161, 1263–1273 (2014).Article
Google Scholar
46.QGIS Development Team. Quantum GIS geographic information system. Open Source Geospatial Foundation Project. http://www.qgis.org/en/site/ (2016).47.Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J. & Samelson, R. M. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328–332 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
48.Fiedler, P. C. Comparison of objective descriptions of the thermocline. Limnol. Oceanogr. Methods 8, 313–325 (2010).Article
Google Scholar
49.Zar, J. H. Biostatistical Analysis 4th edn. (Prentice Hall, 1999).
Google Scholar
50.Clarke, K. R., & Gorley, R. N. PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth.51.Wood, S. N. On p-values for smooth components of an extended generalized additive model. Biometrika 100, 221–228 (2013).MathSciNet
MATH
Article
Google Scholar More
