The rumen microbiome inhibits methane formation through dietary choline supplementation
1.Cubasch, U. et al. Climate Change 2013: the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol 1 (eds Stocker, T. F. et al.) 119–158 (Cambridge University Press, 2013).
Google Scholar
2.Jackson, R. B. et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9ed2 (2020).Article
Google Scholar
3.Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623. https://doi.org/10.5194/essd-12-1561-2020 (2020).ADS
Article
Google Scholar
4.Hobson, P. N. & Stewart, C. S. The rumen Microbial Ecosystem (Blackie Academic & Professional, 1997).Book
Google Scholar
5.Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567. https://doi.org/10.1038/srep14567 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
6.Li, Y. et al. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand. Genom. Sci. 11, 59. https://doi.org/10.1186/s40793-016-0183-5 (2016).Article
Google Scholar
7.Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352. https://doi.org/10.1128/AEM.03389-14 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
8.Hoehler, T., Losey, N. A., Gunsalus, R. P. & McInerney, M. J. In Biogenesis of Hydrocarbons (eds Stams, A. & Sousa, D.) 1–26 (Springer, 2018).
Google Scholar
9.Neill, A. R., Grime, D. W. & Dawson, R. M. C. Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem. J. 170, 529–535. https://doi.org/10.1042/bj1700529 (1978).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Erdman, R. A. & Sharma, B. K. Effect of dietary rumen-protected choline in lactating dairy cows. J. Dairy Sci. 74, 1641–1647. https://doi.org/10.3168/jds.S0022-0302(91)78326-4 (1991).CAS
Article
PubMed
Google Scholar
11.Sharma, B. K. & Erdman, R. A. Effects of dietary and abomasally infused choline on milk production responses of lactating dairy cows. J. Nutr. 119, 248–254. https://doi.org/10.1093/jn/119.2.248 (1989).CAS
Article
PubMed
Google Scholar
12.Soliva, C. & Hess, H. In Measuring Methane Production from Ruminants: Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques (eds Makkar, H. P. & Vercoe, P. E.) 15–31 (Springer, 2007).Chapter
Google Scholar
13.Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. PNAS 109, 21307–21312. https://doi.org/10.1073/pnas.1215689109 (2012).ADS
Article
PubMed
PubMed Central
Google Scholar
14.Jameson, E. et al. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis. Environ. Microbiol. 18, 2886–2898. https://doi.org/10.1111/1462-2920.13059 (2016).CAS
Article
PubMed
Google Scholar
15.Herring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K. & Bobik, T. A. A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. J. Bacteriol. 200, e00764-e817. https://doi.org/10.1128/JB.00764-17 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
16.EFSA. Scientific Opinion on safety and efficacy of choline chloride as a feed additive for all animal species. EFSA J. 9, 2353 (2011).
Google Scholar
17.Lewis, D. J. Ammonia toxicity in the ruminant. J. Agric. Sci. 55, 111–117 (1960).CAS
Article
Google Scholar
18.Hogan, J. P. Absorption of ammonia through rumen of sheep. Aust. J. Biol. Sci. 14, 448–450. https://doi.org/10.1071/Bi9610448 (1961).CAS
Article
Google Scholar
19.Sprott, G. D. & Patel, G. B. Ammonia toxicity in pure cultures of methanogenic bacteria. Syst. Appl. Microbiol. 7, 358–363 (1986).CAS
Article
Google Scholar
20.Lewis, D. Ammonia toxicity in the ruminant. J. Agric. Sci. 55(1), 111–117 (1960).CAS
Article
Google Scholar
21.Ungerfeld, E. M., Rust, S. R. & Burnett, R. Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can. J. Microbiol. 53, 496–503. https://doi.org/10.1139/W07-008 (2007).CAS
Article
PubMed
Google Scholar
22.Lundgren, B. R., Sarwar, Z., Pinto, A., Ganley, J. G. & Nomura, C. T. Ethanolamine catabolism in Pseudomonas aeruginosa PAO1 is regulated by the enhancer-binding protein EatR (PA4021) and the alternative sigma factor RpoN. J. Bacteriol. 198, 2318–2329. https://doi.org/10.1128/JB.00357-16 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
23.Rychlik, J. L., LaVera, R. & Russell, J. B. Amino acid deamination by ruminal Megasphaera elsdenii strains. Curr. Microbiol. 45, 340–345. https://doi.org/10.1007/s00284-002-3743-4 (2002).CAS
Article
PubMed
Google Scholar
24.Park, K. & Lee, H. Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies. J. Anim. Sci. Technol. 62, 52–57. https://doi.org/10.5187/jast.2020.62.1.52 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
25.Hobson, P. N., Summers, R., Postgate, J. R. & Ware, D. A. Nitrogen fixation in the rumen of a living sheep. J. Gen. Microbiol. 77, 225–226. https://doi.org/10.1099/00221287-77-1-225 (1973).CAS
Article
PubMed
Google Scholar
26.Harada, N., Nishiyama, M. & Matsumoto, S. Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiol. Ecol. 35, 231–238. https://doi.org/10.1111/j.1574-6941.2001.tb00808.x (2001).CAS
Article
PubMed
Google Scholar
27.Haaker, H. & Klugkist, J. The bioenergetics of electron transport to nitrogenase. J FEMS Microbiol. Lett. 46, 57–71 (1987).CAS
Article
Google Scholar
28.Edgren, T. & Nordlund, S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 186, 2052–2060 (2004).CAS
Article
Google Scholar
29.Igai, K. et al. Nitrogen fixation and nifH diversity in human gut microbiota. Sci. Rep. 6, 31942. https://doi.org/10.1038/srep31942 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
30.Ungerfeld, E. M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 6, 37. https://doi.org/10.3389/fmicb.2015.00037 (2015).Article
PubMed
PubMed Central
Google Scholar
31.Leahy, S. C. et al. The complete genome sequence of Methanobrevibacter sp. AbM4. Stand. Genom. Sci. 8, 215–227. https://doi.org/10.4056/sigs.3977691 (2013).CAS
Article
Google Scholar
32.Hoedt, E. C. et al. Differences down-under: Alcohol-fueled methanogenesis by archaea present in Australian macropodids. ISME J. 10, 2376–2388. https://doi.org/10.1038/ismej.2016.41 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
33.Ungerfeld, E. M. & Kohn, R. A. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (eds Sejrsen, K. et al.) 55–85 (Wageningen Academic Publishers, 2006).
Google Scholar
34.van Zijderveld, S. M. et al. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93, 5856–5866. https://doi.org/10.3168/jds.2010-3281 (2010).CAS
Article
PubMed
Google Scholar
35.Lan, W. & Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 654, 1270–1283. https://doi.org/10.1016/j.scitotenv.2018.11.180 (2019).ADS
CAS
Article
PubMed
Google Scholar
36.Loubinoux, J., Bronowicki, J. P., Pereira, I. A., Mougenel, J. L. & Faou, A. E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40, 107–112. https://doi.org/10.1111/j.1574-6941.2002.tb00942.x (2002).CAS
Article
PubMed
Google Scholar
37.Gould, D. H., Cummings, B. A. & Hamar, D. W. In vivo indicators of pathologic ruminal sulphide production in steers with diet-induced polioencephalomalacia. J. Vet. Diagn. Invest. 9, 72–76. https://doi.org/10.1177/104063879700900113 (1997).CAS
Article
PubMed
Google Scholar
38.Anderson, R. C., Rasmussen, M. A., Jensen, N. S. & Allison, M. J. Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int. J. Syst. Evol. Microbiol. 50(Pt 2), 633–638. https://doi.org/10.1099/00207713-50-2-633 (2000).CAS
Article
PubMed
Google Scholar
39.Anderson, R. C. et al. Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro. Front. Vet. Sci. 3, 62. https://doi.org/10.3389/fvets.2016.00062 (2016).ADS
Article
PubMed
PubMed Central
Google Scholar
40.Zhang, Z. W. et al. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: A review. Anim. Feed Sci. Tech. 236, 107–114. https://doi.org/10.1016/j.anifeedsci.2017.12.010 (2018).CAS
Article
Google Scholar
41.Marounek, M., Fliegrova, K. & Bartos, S. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 55, 1570–1573. https://doi.org/10.1128/AEM.55.6.1570-1573.1989 (1989).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
42.Hackmann, T. J., Ngugi, D. K., Firkins, J. L. & Tao, J. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ. Microbiol. 19, 4670–4683. https://doi.org/10.1111/1462-2920.13929 (2017).CAS
Article
PubMed
Google Scholar
43.Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002 (2010).CAS
Article
Google Scholar
44.Greening, C. et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13, 2617–2632. https://doi.org/10.1038/s41396-019-0464-2 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Gilmour, M., Flint, H. J. & Mitchell, W. J. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium. Microbiol. 140(Pt 8), 2077–2084. https://doi.org/10.1099/13500872-140-8-2077 (1994).CAS
Article
Google Scholar
46.Chowdhury, N. P., Kahnt, J. & Buckel, W. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii. FEBS J. 282, 3149–3160. https://doi.org/10.1111/febs.13308 (2015).CAS
Article
PubMed
Google Scholar
47.Weghoff, M. C., Bertsch, J. & Muller, V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ. Microbiol. 17, 670–677. https://doi.org/10.1111/1462-2920.12493 (2015).CAS
Article
PubMed
Google Scholar
48.Hernandez, J., Benedito, J. L., Abuelo, A. & Castillo, C. Ruminal acidosis in feedlot: from aetiology to prevention. Sci. World J. 2014, 702572. https://doi.org/10.1155/2014/702572 (2014).Article
Google Scholar
49.Vuotto, C., Barbanti, F., Mastrantonio, P. & Donelli, G. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis. 20, 668–674. https://doi.org/10.1111/odi.12186 (2014).CAS
Article
PubMed
Google Scholar
50.van Lingen, H. J. et al. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS One 11, e0161362. https://doi.org/10.1371/journal.pone.0161362 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
51.Ungerfeld, E. M., Aedo, M. F., Martinez, E. D. & Saldivia, M. Inhibiting methanogenesis in rumen batch cultures did not increase the recovery of metabolic hydrogen in microbial amino acids. Microorganisms 7, 155. https://doi.org/10.3390/microorganisms7050115 (2019).CAS
Article
Google Scholar
52.Ng, F. et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ. Microbiol. 18, 3010–3021. https://doi.org/10.1111/1462-2920.13155 (2016).CAS
Article
PubMed
Google Scholar
53.Soliva, C. R., Amelchanka, S. L., Duval, S. M. & Kreuzer, M. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Brit. J. Nutr. 106, 114–122. https://doi.org/10.1017/S0007114510005684 (2011).CAS
Article
PubMed
Google Scholar
54.Terranova, M. et al. Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Anim. Feed Sci. Technol. 276, 114796. https://doi.org/10.1016/j.anifeedsci.2020.114790 (2021).CAS
Article
Google Scholar
55.Ehrlich, G. G., Goerlitz, D. F., Bourell, J. H., Eisen, G. V. & Godsy, E. M. Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria. Appl. Environ. Microbiol. 42, 878–885 (1981).ADS
CAS
Article
Google Scholar
56.Bica, R. et al. Nuclear magnetic resonance to detect rumen metabolites associated with enteric methane emissions from beef cattle. Sci. Rep. 10, 5578. https://doi.org/10.1038/s41598-020-62485-y (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
57.Henderson, G. et al. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8, e74787. https://doi.org/10.1371/journal.pone.0074787 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
58.Kittelmann, S. et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8, e47879. https://doi.org/10.1371/journal.pone.0047879 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
59.Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Comm. 10, 1014. https://doi.org/10.1038/s41467-019-08844-4 (2019).ADS
CAS
Article
Google Scholar
60.Paoli, L. et al. Uncharted biosynthetic potential of the ocean microbiome. bioRxiv https://doi.org/10.1101/2021.03.24.436479 (2021).Article
Google Scholar
61.Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. in 9th Annual Genomics of Energy & Environment Meeting. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA, USA). https://www.osti.gov/servlets/purl/1241166 (2014).62.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834. https://doi.org/10.1101/gr.213959.116 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
64.Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359. https://doi.org/10.7717/peerj.7359 (2019).Article
PubMed
PubMed Central
Google Scholar
65.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. https://doi.org/10.1101/gr.186072.114 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
66.Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367. https://doi.org/10.1038/nbt.4110 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
67.Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961. https://doi.org/10.1038/s41587-019-0202-3 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
68.Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119. https://doi.org/10.1186/1471-2105-11-119 (2010).CAS
Article
Google Scholar
69.Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
70.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acid Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS
Article
PubMed
PubMed Central
Google Scholar
71.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).CAS
Article
PubMed
Google Scholar
72.Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189. https://doi.org/10.1101/gr.1224503 (2003).CAS
Article
PubMed
PubMed Central
Google Scholar
73.Allen, B., Drake, M., Harris, N. & Sullivan, T. Using KBase to assemble and annotate prokaryotic genomes. Curr. Protoc. Microbiol. 46, 1E 13 11-11E 13 18. https://doi.org/10.1002/cpmc.37 (2017).Article
Google Scholar
74.RStudio Team. R Studio: Integrated development environment for R. Version 1.4.1106 (2021).75.Oksanen, J. et al. The vegan package. Community Ecol. Pack. 10, 631–637 (2007).
Google Scholar
76.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar More