More stories

  • in

    A synthesis and future research directions for tropical mountain ecosystem restoration

    1.Dimitrov, D., Nogués-Bravo, D. & Scharff, N. Why do tropical mountains support exceptionally high biodiversity? The eastern arc mountains and the drivers of saintpaulia diversity. PLoS One 7, e48908 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Spehn, E. & Körner, C. A Global Assessment of Mountain Biodiversity and its Function, vol. 23, 393–400 (2005).3.Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Mengist, W., Soromessa, T. & Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 702, 134581 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    5.Gleeson, E. H. et al. Mountains of our future earth: defining priorities for mountain research: A synthesis from the 2015 Perth III conference. Mt. Res. Dev. 36, 537–548 (2016).
    Google Scholar 
    6.Jacob, M. et al. Land use and cover dynamics since 1964 in the Afro-Alpine vegetation belt: Lib Amba Mountain in North Ethiopia. Land Degrad. Dev. 27, 641–653 (2016).
    Google Scholar 
    7.Dhakal, B. et al. Impacts of cardamom cultivation on montane forest ecosystems in Sri Lanka. For. Ecol. Manag. 274, 151–160 (2012).
    Google Scholar 
    8.Thijs, K. W. et al. Contrasting cloud forest restoration potential between plantations of different exotic tree species. Restor. Ecol. 22, 472–479 (2014).
    Google Scholar 
    9.Long, M. S. et al. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biol. Invasions 19, 749–763 (2017).
    Google Scholar 
    10.Elgar, A. T., Freebody, K., Pohlman, C. L., Shoo, L. P. & Catterall, C. P. Overcoming barriers to seedling regeneration during forest restoration on tropical pasture land and the potential value of woody weeds. Front. Plant Sci. 5, 200 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    11.Rojas-Botero, S., Solorza-Bejarano, J., Kollmann, J. & Teixeira, L. H. Nucleation increases understory species and functional diversity in early tropical forest restoration. Ecol. Eng. 158, 106031 (2020).
    Google Scholar 
    12.Hooper, E., Legendre, P. & Condit, R. Barriers to forest regeneration of deforested and abandoned land in Panama. J. Appl. Ecol. 42, 1165–1174 (2005).
    Google Scholar 
    13.Krishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2013).ADS 

    Google Scholar 
    14.Soh, M. C. K. et al. Impacts of habitat degradation on tropical montane biodiversity and ecosystem services: A systematic map for identifying future research priorities. Front. For. Glob. Change 2, 1–18 (2019).
    Google Scholar 
    15.Tovar, C., Arnillas, C. A., Cuesta, F. & Buytaert, W. Diverging responses of tropical andean biomes under future climate conditions. PLoS One 8, e63634 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    16.Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS One 14, e0213155 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B. & Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142, 2510–2521 (2009).
    Google Scholar 
    18.Christmann, T. & Oliveras, I. Nature of alpine ecosystems in tropical mountains of South America. in Encyclopedia of the World’s Biomes 1–10 (Elsevier Inc., 2020). https://doi.org/10.1016/B978-0-12-409548-9.12481-919.Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).
    Google Scholar 
    20.Young, K. R. & León, B. Tree-line changes along the Andes: Implications of spatial patterns and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 362, 263–272 (2007).
    Google Scholar 
    21.Harsch, M. A. & Bader, M. Y. Treeline form—A potential key to understanding treeline dynamics. Glob. Ecol. Biogeogr. 20, 582–596 (2011).
    Google Scholar 
    22.Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrol. Process. 25, 465–498 (2011).ADS 

    Google Scholar 
    23.Kessler, M. & Kluge, J. Diversity and endemism in tropical montane forests—From patterns to processes. Tropical Mountain Forest: Patterns and Processes in a Biodiversity Hotspot, vol. 2 (2010).24.Aide, T. M. & Grau, H. R. Globalization, migration, and Latin American ecosystems. Science 305, 1915–1917 (2004).PubMed 

    Google Scholar 
    25.Bender, O. Abandoned altitudes? Decrease and expansion of grassland in the Hinterland of Popayán, Southern Colombian Andes. J. Mt. Sci. 12, 123–133 (2015).
    Google Scholar 
    26.Zhang, B., Mo, S., Tan, T., Xiao, F. & Wu, H. Urbanization and De-urbanization in mountain regions of China. Mt. Res. Dev. 24, 206–209 (2004).
    Google Scholar 
    27.Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. https://doi.org/10.1111/gcb.15498 (2021).Article 

    Google Scholar 
    28.International Union for Conservation of Nature. The Bonn Challenge | Bonchallenge. Iucn (2020).29.Society for Ecological Restoration. The SER primer on ecological restoration. Sci. Policy Work. Gr. 2002, 9 (2002).
    Google Scholar 
    30.Holl, K. D. Primer of Ecological Restoration (Island Press, 2020). https://doi.org/10.1007/s13412-020-00621-w.Book 

    Google Scholar 
    31.Chazdon, R. REVIEW: Restoring tropical forests: A practical guide. Ecol. Restor. 33, 118–119 (2015).
    Google Scholar 
    32.Chazdon, R. L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 6, 51–71 (2003).
    Google Scholar 
    33.Ghazoul, J. & Chazdon, R. Degradation and recovery in changing forest landscapes: A multiscale conceptual framework. Annu. Rev. Environ. Resour. 42, 161–188 (2017).
    Google Scholar 
    34.Meli, P. et al. A global review of past land use, climate, and active vs passive restoration effects on forest recovery. PLoS One 12, 1–17 (2017).
    Google Scholar 
    35.Holl, K. D. Restoration of tropical forests. Restor. Ecol. New Front. https://doi.org/10.1002/9781118223130.ch9 (2012).Article 

    Google Scholar 
    36.Meli, P. Tropical forest restoration. Twenty years of academic research. Interciencia 28, 581 (2003).
    Google Scholar 
    37.Venkatesh, B., Lakshman, N. & Purandara, B. K. Hydrological impacts of afforestation—A review of research in India. J. For. Res. 25, 37–42 (2014).
    Google Scholar 
    38.Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. What is the state of tropical montane cloud forest restoration? Tropical Montane Cloud Forests: science for conservation and management. For. Ecol. Manag. https://doi.org/10.1017/CBO9780511778384.010 (2011).Article 

    Google Scholar 
    39.Guariguata, M. R. Restoring tropical montane forests. Forest Restoration in Landscapes: Beyond Planting Trees (2005). https://doi.org/10.1007/0-387-29112-1_4340.Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).PubMed 

    Google Scholar 
    41.Arasumani, M. et al. Not seeing the grass for the trees: Timber plantations and agriculture shrink tropical montane grassland by two-thirds over four decades in the Palani Hills, a Western Ghats Sky Island. PLoS One 13, e0190003 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Raman, T. R. S., Mudappa, D. & Kapoor, V. Restoring rainforest fragments: survival of mixed-native species seedlings under contrasting site conditions in the Western Ghats, India. Restor. Ecol. 17, 137–147 (2009).
    Google Scholar 
    43.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).
    Google Scholar 
    44.Lewin-Koh, N. J. et al. maptools: Tools for reading and handling spatial objects. R package version 0.8-10. http://CRAN.R-project.org/package=maptools (2011).45.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2019). https://www.R-project.org/46.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). ISBN 978-3-319-24277-4. https://ggplot2.tidyverse.org47.Srinivasan, M. P., Bhatia, S. & Shenoy, K. Vegetation-environment relationships in a South Asian tropical montane grassland ecosystem: Restoration implications. Trop. Ecol. 56, 201–217 (2015).
    Google Scholar 
    48.Le Stradic, S., Buisson, E. & Fernandes, G. W. Restoration of Neotropical grasslands degraded by quarrying using hay transfer. Appl. Veg. Sci. 17, 482–492 (2014).
    Google Scholar 
    49.De De Vasconcelos, M. F. O que são campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil?. Rev. Bras. Bot. 34, 241–246 (2011).
    Google Scholar 
    50.Seddon, N. et al. Getting the message right on nature-based solutions to climate change. Glob. Change Biol. https://doi.org/10.1111/gcb.15513 (2021).Article 

    Google Scholar 
    51.Home | Trillion Trees (2020).52.Abadín, J. et al. Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biol. Biochem. 34, 1739–1748 (2002).
    Google Scholar 
    53.Abreu, Z., Llambí, L. D. & Sarmiento, L. Sensitivity of soil restoration indicators during páramo succession in the high tropical andes: Chronosequence and permanent plot approaches. Restor. Ecol. 17, 619–627 (2009).
    Google Scholar 
    54.Bueno, A. & Llambí, L. D. Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl. Veg. Sci. 18, 613–623 (2015).
    Google Scholar 
    55.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 63–74 (2003).
    Google Scholar 
    56.Sarmiento, L., Smith, J. K., Márquez, N., Escalona, A. & Erazo, M. C. Constraints for the restoration of tropical alpine vegetation on degraded slopes of the Venezuelan Andes. Plant Ecol. Divers. 8, 277–291 (2015).
    Google Scholar 
    57.Sarmiento, L. & Bottner, P. Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: Indications for fertility restoration. Appl. Soil Ecol. 19, 79–89 (2002).
    Google Scholar 
    58.Sarmiento, L., Abadín, J., González-Prieto, S. & Carballas, T. Assessing and modeling the role of the native legume Lupinus meridanus in fertility restoration in a heterogeneous mountain environment of the tropical Andes. Agric. Ecosyst. Environ. 159, 29–39 (2012).
    Google Scholar 
    59.Hilário, R. R., Castro, S. A. B., Ker, F. T. O. & Fernandes, G. Unexpected effects of pigeon-peas (Cajanus cajan) in the restoration of rupestrian fields [Efeito Inesperado do Feijão-Guandu (Cajanus cajan) na Restauração de Campos Rupestres]. Planta Daninha 29, 717–723 (2011).
    Google Scholar 
    60.Le Stradic, S., Buisson, E., Negreiros, D., Campagne, P. & Wilson Fernandes, G. The role of native woody species in the restoration of Campos Rupestres in quarries. Appl. Veg. Sci. 17, 109–120 (2014).
    Google Scholar 
    61.Arasumani, M., Bunyan, M. & Robin, V. V. Opportunities and challenges in using remote sensing for invasive tree species management, and in the identification of restoration sites in tropical montane grasslands. J. Environ. Manag. 280, 111759 (2020).
    Google Scholar 
    62.Sarmiento, F. O. Arrested succession in pastures hinders regeneration of Tropandean forests and shreds mountain landscapes. Environ. Conserv. 24, 14–23 (1997).
    Google Scholar 
    63.Wesche, K. et al. Recruitment of trees at tropical alpine treelines: Erica in Africa versus Polylepis in South America. Plant Ecol. Divers. 1, 35–46 (2008).
    Google Scholar 
    64.Middendorp, R. S., Pérez, A. J., Molina, A., Lambin, E. F. & Pérez Castañeda, A. J. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    65.De Guevara, I.H.-L., Rojas-Soto, O. R., López-Barrera, F., Puebla-Olivares, F. & Díaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    66.Lira-Noriega, A., Guevara, S., Laborde, J. & Sanchez-Rios, G. Floristic composition in pastures of Los Tuxtlas, Veracruz, Mexico. ACTA Bot. Mex. 80, 59–87 (2007).
    Google Scholar 
    67.Muniz-Castro, M. A., Williams-Linera, G. & Benayas, J. M. R. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    68.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. in Tropical Montane Cloud Forests: Science for Conservation and Management 584–594 (2011). https://doi.org/10.1017/CBO9780511778384.06369.Violi, H. A. et al. Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. For. Ecol. Manag. 254, 276–290 (2008).
    Google Scholar 
    70.Williams-Linera, G., Alvarez-Aquino, C. & Pedraza, R. A. Forest restoration in the tropical montane cloud forest belt of central veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06771.Cole, R. J., Litton, C. M., Koontz, M. J. & Loh, R. K. Vegetation recovery 16 years after feral pig removal from a wet Hawaiian forest. Biotropica 44, 463–471 (2012).
    Google Scholar 
    72.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125–140 (2014).
    Google Scholar 
    73.Gould, R. K., Mooney, H., Nelson, L., Shallenberger, R. & Daily, G. C. Restoring native forest understory: The influence of ferns and light in a Hawaiian experiment. Sustainability 5, 1317–1339 (2013).
    Google Scholar 
    74.Hart, P. J. Tree growth and age in an ancient Hawaiian wet forest: Vegetation dynamics at two spatial scales. J. Trop. Ecol. 26, 1–11 (2010).
    Google Scholar 
    75.Ibanez, T. & Hart, P. J. Spatial patterns of tree recruitment in a montane Hawaiian wet forest after cattle removal and pig population control. Appl. Veg. Sci. 23, 197–209 (2020).
    Google Scholar 
    76.Pinto, J. R., Davis, A. S., Leary, J. J. K. & Aghai, M. M. Stocktype and grass suppression accelerate the restoration trajectory of Acacia koa in Hawaiian montane ecosystems. New For. 46, 855–867 (2015).
    Google Scholar 
    77.Hylander, K. & Nemomissa, S. Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest [Roles complementarios de jardines doḿesticos y plantaciones de ’arboles ex́oticos como h́abitats alternativos para plan. Conserv. Biol. 23, 400–409 (2009).PubMed 

    Google Scholar 
    78.Roose, E. & Ndayizigiye, F. Agroforestry, water and soil fertility management to fight erosion in tropical mountains of Rwanda. Soil Technol. 11, 109–119 (1997).
    Google Scholar 
    79.Uhlig, S. K. Tropical mountain ecology in Ethiopia as a basis for conservation, management and restoration. Trop. For. Transit. https://doi.org/10.1007/978-3-0348-7256-0_8 (1992).Article 

    Google Scholar 
    80.Carilla, J. & Grau, H. R. 150 years of tree establishment, land use and climate change in Montane grasslands, Northwest Argentina. Biotropica 42, 49–58 (2010).
    Google Scholar 
    81.Camelo, O. J., Urrego, L. E. & Orrego, S. A. Environmental and socioeconomic drivers of woody vegetation recovery in a human-modified landscape in the Rio Grande basin (Colombian Andes). Restor. Ecol. 25, 912–921 (2017).
    Google Scholar 
    82.Wilson, S. J., Coomes, O. T. & Dallaire, C. O. The `ecosystem service scarcity path’ to forest recovery: A local forest transition in the Ecuadorian Andes. Reg. Environ. Change 19, 2437–2451 (2019).
    Google Scholar 
    83.Middendorp, R. S., Pérez, A. J., Molina, A. & Lambin, E. F. The potential to restore native woody plant richness and composition in a reforesting landscape: A modeling approach in the Ecuadorian Andes. Landsc. Ecol. 31, 1581–1599 (2016).
    Google Scholar 
    84.Bingli, L., Weide, Z. & Rongyuan, Z. The rebirth of tropical rainforest – ecological restoration planning for Sanda Mountain of Xishuangbanna, China. Landsc. Archit. Front. 8, 108–125 (2020).
    Google Scholar 
    85.Byers, A. C. Alpine habitat conservation and restoration in tropical and sub-tropical high mountains. Routledge Handb. Ecol. Environ. Restor. https://doi.org/10.4324/9781315685977 (2017).Article 

    Google Scholar 
    86.Guariguata, M. R. Restoring tropical montane forests. in Forest Restoration in Landscapes: Beyond Planting Trees 298–302 (2005). https://doi.org/10.1007/0-387-29112-1_4387.González-Espinosa, M. et al. Restoration of forest ecosystems in fragmented landscapes of temperate and montane tropical Latin America. in Biodiversity Loss and Conservation in Fragmented Forest Landscapes: The Forests of Montane Mexico and Temperate South America 335–369 (2007).88.Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. U.S.A. 114, 9635–9640 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Holl, K. D. Research directions in tropical forest restoration. Ann. Mo. Bot. Gard. 102, 237–250 (2017).
    Google Scholar 
    90.Roose, E., Ndayizigiye, F. & Sekayange, L. Agroforestry and land husbandry in Rwanda. How to restore the acid soils productivity in tropical mountains densely populated? [L’agroforesterie et la GCES au Rwanda. Comment restaurer la productivite des terres acides dans une region tropicale de montagn. Cah. ORSTOM Ser. Pedol. 28, 327–349 (1993).
    Google Scholar 
    91.Diego Leon, J., Isabel Gonzalez, M. & Fernando Gallardo, J. Biogeochemical cycles in natural forest and conifer plantations in the high mountains of Colombia. Rev. Biol. Trop. 59, 1883–1894 (2011).
    Google Scholar 
    92.Chazdon, R. L. et al. Erratum: Fostering natural forest regeneration on former agricultural land through economic and policy interventions. Environ. Res. Lett. 15, 043002. https://doi.org/10.1088/1748-9326/ab79e6 (2020).Article 
    ADS 

    Google Scholar 
    93.Miranda-Castro, L. & Padrón, S. From the mountains to the sea: Restoring shaded coffee plantations to protect tropical coastal ecosystems. in Proceedings of MTS/IEEE OCEANS, 2005 vol. 2005 662–669 (2005).94.Hakim, L. & Miyakawa, H. Integrating ecosystem restoration and development of recreation sites in degraded tropical mountain areas in East Java, Indonesia. AIP Conf. Proc. 2019 (2018).95.Gilroy, J. J. et al. Cheap carbon and biodiversity co-benefits from forest regeneration in a hotspot of endemism. Nat. Clim. Change 4, 503–507 (2014).ADS 

    Google Scholar 
    96.Räger, N., Williams-Linera, G. & Huth, A. Modeling the dynamics of tropical montane cloud forest in central Veracruz, Mexico. Tropical Montane Cloud Forests: Science for Conservation and Management (2011). https://doi.org/10.1017/CBO9780511778384.06397.Chen, T.-S., Lin, C.-Y., Ho, S.-H., Lin, C.-Y. & Yang, Y.-L. Evaluation of priority order for the landslide treatment using biodiversity index in a watershed. J. Chin. Soil Water Conserv. 45, 119–127 (2014).
    Google Scholar 
    98.Liu, H., Yi, Y., Blagodatsky, S. & Cadisch, G. Impact of forest cover and conservation agriculture on sediment export: A case study in a montane reserve, south-western China. Sci. Total Environ. 702, 134802 (2020).CAS 
    PubMed 
    ADS 

    Google Scholar 
    99.Crespo, P. et al. Land use change impacts on the hydrology of wet Andean paramo ecosystems. in Status and Perspectives of Hydrology in Small Basins (Proceedings of the Workshop held at Goslar-Hahnenklee, Germany, 30 March–2 April 2009) (IAHS, 2010). doi:https://doi.org/10.13140/2.1.5137.6320100.Muñoz-Villers, L. E. & McDonnell, J. J. Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrol. Earth Syst. Sci. 17, 3543–3560 (2013).ADS 

    Google Scholar 
    101.Calle, Z., Henao-Gallego, N., Giraldo, C. & Armbrecht, I. A comparison of vegetation and ground-dwelling ants in abandoned and restored gullies and landslide surfaces in the Western Colombian Andes. Restor. Ecol. 21, 729–735 (2013).
    Google Scholar 
    102.Posada, J. M., Mitche, T. & Cavelier, J. Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restor. Ecol. 8, 370–379 (2000).
    Google Scholar 
    103.Lemenih, M. & Teketay, D. Changes in soil seed bank composition and density following deforestation and subsequent cultivation of a tropical dry Afromontane forest in Ethiopia. Trop. Ecol. 47, 1–12 (2006).
    Google Scholar 
    104.Galindo, V., Calle, Z., Chará, J. & Armbrecht, I. Facilitation by pioneer shrubs for the ecological restoration of riparian forests in the Central Andes of Colombia. Restor. Ecol. 25, 731–737 (2017).
    Google Scholar 
    105.Slocum, M. G., Aide, T. M., Zimmerman, J. K. & Navarro, L. A strategy for restoration of montane forest in anthropogenic fern thickets in the Dominican Republic. Restor. Ecol. 14, 526–536 (2006).
    Google Scholar 
    106.Rurangwa, M. L., Matthews, T. J., Niyigaba, P., Tobias, J. A. & Whittaker, R. J. Assessing tropical forest restoration after fire using birds as indicators: An afrotropical case study. For. Ecol. Manag. 10, 118765. https://doi.org/10.1016/j.foreco.2020.118765 (2020).Article 

    Google Scholar 
    107.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala Weerasinghe, H. M. S. P. & Burslem, D. F. R. P. Barriers to tree seedling emergence on human-induced grasslands in Sri Lanka. J. Appl. Ecol. 47, 157–165 (2010).
    Google Scholar 
    108.Le Stradic, S., Fernandes, G. W. & Buisson, E. No recovery of campo rupestre grasslands after gravel extraction: implications for conservation and restoration. Restor. Ecol. 26, S151–S159 (2018).
    Google Scholar 
    109.Sanchez-De Leon, Y., Zou, X., Borges, S. & Ruan, H. Recovery of native earthworms in abandoned tropical pastures. Conserv. Biol. 17, 999–1006 (2003).
    Google Scholar 
    110.Wilms, J. & Kappelle, M. Frugivorous birds, habitat preference and seed dispersal in a fragmented Costa Rican montane oak forest landscape. in Ecology and conservation of neotropical montane oak forests 309–324 (Springer, 2006).111.Shoo, L. P., Storlie, C., Vanderwal, J., Little, J. & Williams, S. E. Targeted protection and restoration to conserve tropical biodiversity in a warming world. Glob. Change Biol. 17, 186–193 (2011).ADS 

    Google Scholar 
    112.Edwards, D. P., Massam, M. R., Haugaasen, T. & Gilroy, J. J. Tropical secondary forest regeneration conserves high levels of avian phylogenetic diversity. Biol. Conserv. 209, 432–439 (2017).
    Google Scholar 
    113.Gutierrez-Chacon, C., Valderrama-A, C. & Klein, A.-M. Biological corridors as important habitat structures for maintaining bees in a tropical fragmented landscape. J. Insect Conserv. 24, 187–197 (2020).
    Google Scholar 
    114.Kattan, G. H., Correa, D., Escobar, F. & Medina, C. Leaf-litter arthropods in restored forests in the Colombian Andes: A comparison between secondary forest and tree plantations. Restor. Ecol. 14, 95–102 (2006).
    Google Scholar 
    115.Davies, R. W., Edwards, D. P. & Edwards, F. A. Secondary tropical forests recover dung beetle functional diversity and trait composition. Anim. Conserv. 23, 617–627 (2020).
    Google Scholar 
    116.Marian, F. et al. Conversion of Andean montane forests into plantations: Effects on soil characteristics, microorganisms, and microarthropods. Biotropica https://doi.org/10.1111/btp.12813 (2020).Article 

    Google Scholar 
    117.Brancalion, P. H. S. & Holl, K. D. Functional composition trajectory: A resolution to the debate between Suganuma, Durigan, and Reid. Restor. Ecol. 24, 1–3 (2016).
    Google Scholar 
    118.Matos, I. S., Eller, C. B., Oliveras, I., Mantuano, D. & Rosado, B. H. P. Three eco-physiological strategies of response to drought maintain the form and function of a tropical montane grassland. J. Ecol. https://doi.org/10.1111/1365-2745.13481 (2020).Article 

    Google Scholar 
    119.Eller, C. B., Lima, A. L. & Oliveira, R. S. Cloud forest trees with higher foliar water uptake capacity and anisohydric behavior are more vulnerable to drought and climate change. New Phytol. 211, 489–501 (2016).CAS 
    PubMed 

    Google Scholar 
    120.Barnes, A. D. & Chapman, H. M. Dispersal traits determine passive restoration trajectory of a Nigerian montane forest. Acta Oecol. 56, 32–40 (2014).ADS 

    Google Scholar 
    121.Dimson, M. & Gillespie, T. W. Trends in active restoration of tropical dry forest: Methods, metrics, and outcomes. For. Ecol. Manage. 467, 118150 (2020).
    Google Scholar 
    122.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).
    Google Scholar 
    123.Wilson, S. J. & Rhemtulla, J. M. Acceleration and novelty: Community restoration speeds recovery and transforms species composition in Andean cloud forest. Ecol. Appl. 26, 203–218 (2016).PubMed 

    Google Scholar 
    124.Muñiz-Castro, M. A. et al. Distance effect from cloud forest fragments on plant community structure in abandoned pastures in Veracruz, Mexico. J. Trop. Ecol. 22, 431–440 (2006).
    Google Scholar 
    125.Van Do, T., Osawa, A. & Thang, N. T. Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. For. Ecol. Manag. 259, 1650–1659 (2010).
    Google Scholar 
    126.Joshua Atondo-Bueno, E., Bonilla-Moheno, M. & Lopez-Barrera, F. Cost-efficiency analysis of seedling introduction vs. direct seeding of Oreomunnea mexicana for secondary forest enrichment. For. Ecol. Manag. 409, 399–406 (2018).
    Google Scholar 
    127.Trujillo-Miranda, A. L., Toledo-Aceves, T., Lopez-Barrera, F. & Guenter, S. Tree diversity and timber productivity in planted forests: Pinus patula versus mixed cloud forest species. New For. https://doi.org/10.1007/s11056-020-09787-1 (2020).Article 

    Google Scholar 
    128.Gallegos, S. C., Hensen, I., Saavedra, F. & Schleuning, M. Bracken fern facilitates tree seedling recruitment in tropical fire-degraded habitats. For. Ecol. Manag. 337, 135–143 (2015).
    Google Scholar 
    129.Peláez-Silva, J. A., León-Peláez, J. D. & Lema-Tapias, A. Conifer tree plantations for land rehabilitation: An ecological-functional evaluation. Restor. Ecol. 27, 607–615 (2019).
    Google Scholar 
    130.Ortega-Pieck, A., López-Barrera, F., Ramírez-Marcial, N. & García-Franco, J. G. Early seedling establishment of two tropical montane cloud forest tree species: The role of native and exotic grasses. For. Ecol. Manag. 261, 1336–1343 (2011).
    Google Scholar 
    131.Muniz-Castro, M.-A. et al. Restoring montane cloud forest: Establishment of three Fagaceae species in the old fields of central Veracruz, Mexico. Restor. Ecol. 23, 26–33 (2015).
    Google Scholar 
    132.Zhang, Z. H., Hu, G., Zhu, J. D. & Ni, J. Stand structure, woody species richness and composition of subtropical karst forests in Maolan, south-west China. J. Trop. For. Sci. 24, 498–506 (2012).
    Google Scholar 
    133.Garcia-De La Cruz, Y., Lopez-Barrera, F. & MariaRamos-Prado, J. Germination and seedling emergence of four endangered oak species. Madera y Bosques 22, 77–87 (2016).
    Google Scholar 
    134.Bare, M. C. & Ashton, M. S. Growth of native tree species planted in montane reforestation projects in the Colombian and Ecuadorian Andes differs among site and species. New For. 47, 333–355 (2016).
    Google Scholar 
    135.Borja, P., Molina, A., Govers, G. & Vanacker, V. Check dams and afforestation reducing sediment mobilization in active gully systems in the Andean mountains. CATENA 165, 42–53 (2018).
    Google Scholar 
    136.Gomez-Ruiz, P. A., Saenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine-oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    137.Toledo-Aceves, T. & Del-Val, E. Do plant-herbivore interactions persist in assisted migration plantings? Restor. Ecol. 29, (2020).138.Urgiles, N. et al. Application of mycorrhizal roots improves growth of tropical tree seedlings in the nursery: A step towards reforestation with native species in the Andes of Ecuador. New For. 38, 229–239 (2009).
    Google Scholar 
    139.Braasch, M., Garcia-Barrios, L., Ramirez-Marcial, N., Huber-Sannwald, E. & Cortina-Villar, S. Can cattle grazing substitute fire for maintaining appreciated pine savannas at the frontier of a montane forest biosphere-reserve?. Agric. Ecosyst. Environ. 250, 59–71 (2017).
    Google Scholar 
    140.Hernandez-Ladron De Guevara, I., Rojas-Soto, O. R., Lopez-Barrera, F., Puebla-Olivares, F. & Diaz-Castelazo, C. Seed dispersal by birds in a cloud forest landscape in central Veracruz, Mexico: Its role in passive restoration. Rev. Chil. Hist. Nat. 85, 89–100 (2012).
    Google Scholar 
    141.Holl, K. D., Loik, M. E., Lin, E. H. V. & Samuels, I. A. Tropical montane forest restoration in Costa Rica: Overcoming barriers to dispersal and establishment. Restor. Ecol. 8, 339–349 (2000).
    Google Scholar 
    142.Derroire, G., Coe, R. & Healey, J. R. Isolated trees as nuclei of regeneration in tropical pastures: Testing the importance of niche-based and landscape factors. J. Veg. Sci. 27, 679–691 (2016).
    Google Scholar 
    143.Rhoades, C. C., Eckert, G. E. & Coleman, D. C. Effect of pasture trees on soil nitrogen and organic matter: Implications for tropical montane forest restoration. Restor. Ecol. 6, 262–270 (1998).
    Google Scholar 
    144.Sheldon, K. S. & Nadkarni, N. M. The use of pasture trees by birds in a tropical montane landscape in Monteverde, Costa Rica. J. Trop. Ecol. 29, 459–462 (2013).
    Google Scholar 
    145.Sprenkle-Hyppolite, S. D., Latimer, A. M., Young, T. P. & Rice, K. J. Landscape factors and restoration practices associated with initial reforestation success in Haiti. Ecol. Restor. 34, 306–316 (2016).
    Google Scholar 
    146.Pang, C.-C., Ma, X.K.-K., Hung, T.T.-H. & Hau, B.C.-H. Early ecological succession on landslide trails, Hong Kong, China. Ecoscience 25, 153–161 (2018).
    Google Scholar 
    147.Scowcroft, P. G. & Jeffrey, J. Potential significance of frost, topographic relief, and Acacia koa stands to restoration of mesic Hawaiian forests on abandoned rangeland. For. Ecol. Manag. 114, 447–458 (1999).
    Google Scholar 
    148.Zahawi, R. A. Establishment and growth of living fence species: An overlooked tool for the restoration of degraded areas in the tropics. Restor. Ecol. 13, 92–102 (2005).
    Google Scholar 
    149.Dhakal, B., Pinard, M. A., Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. & Burslem, D. F. R. P. Strategies for restoring tree seedling recruitment in high conservation value tropical montane forests underplanted with cardamom. Appl. Veg. Sci. 18, 121–133 (2015).
    Google Scholar 
    150.Wilson, S. J. & Coomes, O. T. ‘Crisis restoration’ in post-frontier tropical environments: Replanting cloud forests in the Ecuadorian Andes. J. Rural Stud. 67, 152–165 (2019).
    Google Scholar 
    151.Pethiyagoda, R. S. & Manamendra-Arachchi, K. Endangered anurans in a novel forest in the highlands of Sri Lanka. Wildl. Res. 39, 641–648 (2012).
    Google Scholar 
    152.Del Castillo, R. F. & Blanco-Macías, A. Secondary succession under a slash-and-burn regime in a tropical montane cloud forest: soil and vegetation characteristics. Biodivers. loss Conserv. Fragm. For. landscapes. For. Mont. Mex. Temp. South Am. CABI, Wallingford, Oxfordshire, UK 158–180 (2007).153.Bautista-Cruz, A., Del Castillo, R. F., Etchevers-Barra, J. D., Gutiérrez-Castorena, M. D. C. & Baez, A. Selection and interpretation of soil quality indicators for forest recovery after clearing of a tropical montane cloud forest in Mexico. For. Ecol. Manag. 277, 74–80 (2012).
    Google Scholar 
    154.Sarmiento, L., Llambí, L. D., Escalona, A. & Marquez, N. Vegetation patterns, regeneration rates and divergence in an old-field succession of the high tropical Andes. Plant Ecol. 166, 145–156 (2003).
    Google Scholar 
    155.Raman, T. R. S. Effects of habitat structure and adjacent habitats on birds in tropical rainforest fragments and shaded plantations in the Western Ghats, India. Biodivers. Conserv. 15, 1577–1607 (2006).
    Google Scholar 
    156.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Madawala, H. M. S. P. & Burslem, D. F. R. P. Overcoming ecological barriers to tropical lower montane forest succession on anthropogenic grasslands: Synthesis and future prospects. For. Ecol. Manag. 329, 340–350 (2014).
    Google Scholar 
    157.Mendoza-Vega, J., Ku-Quej, V. M., Messing, I. & Pérez-Jiménez, J. C. Effects of native tree planting on soil recovery in tropical montane cloud forests. For. Sci. 66, 700–711 (2020).
    Google Scholar 
    158.Calle, A. & Holl, K. D. Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. For. Ecol. Manag. 452, 117563 (2019).
    Google Scholar 
    159.Holl, K. D. Factors limiting tropical rain forest regeneration in abandoned pasture: Seed rain, seed germination, microclimate, and soil. Biotropica 31, 229–242 (1999).
    Google Scholar 
    160.Mullah, C. J. A., Klanderud, K., Totland, O. & Kigomo, B. Recovery of plant species richness and composition in an abandoned forest settlement area in Kenya. Restor. Ecol. 52, 77–87 (2011).
    Google Scholar 
    161.Liu, X., Lu, Y., Yang, Z. & Zhou, Y. Regeneration and development of native plant species in restored mountain forests, Hainan Island, China. Mt. Res. Dev. 34, 396–404 (2014).CAS 

    Google Scholar 
    162.Gunaratne, A. M. T. A., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N., Weerasinghe, H. M. S. P. M. & Burslem, D. F. R. P. Release from root competition promotes tree seedling survival and growth following transplantation into human-induced grasslands in Sri Lanka. For. Ecol. Manag. 262, 229–236 (2011).163.Cole, R. J., Holl, K. D., Keene, C. L. & Zahawi, R. A. Direct seeding of late-successional trees to restore tropical montane forest. For. Ecol. Manag. 261, 1590–1597 (2011).
    Google Scholar 
    164.Alvarez-Aquino, C., Williams-Linera, G. & Newton, A. C. Experimental native tree seedling establishment for the restoration of a Mexican cloud forest. Restor. Ecol. 12, 412–418 (2004).
    Google Scholar 
    165.Joshi, A. A., Ratnam, J. & Sankaran, M. Frost maintains forests and grasslands as alternate states in a montane tropical forest–grassland mosaic; But alien tree invasion and warming can disrupt this balance. J. Ecol. https://doi.org/10.1111/1365-2745.13239 (2019).Article 

    Google Scholar 
    166.Singh, K. P., Mandal, T. N. & Tripathi, S. K. Patterns of restoration of soil physicochemical properties and microbial biomass in different landslide sites in the Sal forest ecosystem of Nepal Himalaya. Ecol. Eng. 17, 385–401 (2001).
    Google Scholar 
    167.Wilcke, W. et al. Soil properties on a chronosequence of landslides in montane rain forest, Ecuador. CATENA 53, 79–95 (2003).
    Google Scholar 
    168.Diaz-Garcia, J. M., Pineda, E., Lopez-Barrera, F. & Moreno, C. E. Amphibian species and functional diversity as indicators of restoration success in tropical montane forest. Biodivers. Conserv. 26, 2569–2589 (2017).
    Google Scholar 
    169.Doust, S. J., Erskine, P. D. & Lamb, D. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For. Ecol. Manag. 234, 333–343 (2006).
    Google Scholar 
    170.Howorth, R. T. & Pendry, C. A. Post-cultivation secondary succession in a Venezuelan lower montane rain forest. Biodivers. Conserv. 15, 693–715 (2006).
    Google Scholar 
    171.Gomes, L. G. L., Oostra, V., Nijman, V., Cleef, A. M. & Kappelle, M. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. Biol. Conserv. 141, 860–871 (2008).
    Google Scholar 
    172.Cole, R. J., Holl, K. D. & Zahawi, R. A. Seed rain under tree islands planted to restore degraded lands in a tropical agricultural landscape. Ecol. Appl. 20, 1255–1269 (2010).CAS 
    PubMed 

    Google Scholar 
    173.Pérez-García, O. & del Castillo, R. F. Shifts in swidden agriculture alter the diversity of young fallows: Is the regeneration of cloud forest at stake in southern Mexico?. Agric. Ecosyst. Environ. 248, 162–174 (2017).
    Google Scholar 
    174.Gallegos, S. C. et al. Factors limiting montane forest regeneration in bracken-dominated habitats in the tropics. For. Ecol. Manag. 381, 168–176 (2016).
    Google Scholar 
    175.Riviere, J.-N. et al. Role of tree ferns in flowering plant settlement in the tropical montane rainforests of La Reunion (Mascarene Archipelago, Indian Ocean). Rev. D Ecol. TERRE LA VIE 63, 199–207 (2008).
    Google Scholar 
    176.Mohandass, D., Chhabra, T., Singh Pannu, R. & Beng, K. C. Recruitment of saplings in active tea plantations of the Nilgiri mountains: Implications for restoration ecology. Trop. Ecol. 57, 101–118 (2016).CAS 

    Google Scholar 
    177.Wassie, A., Bongers, F., Sterck, F. J. & Teketay, D. Church forests—relics of dry afromontane forests of Northern Ethiopia: opportunities and challenges for conservation and restauration. Degrad. For. East. Africa Manag. Restor. 123–133 (2010).178.Townsend, P. A. & Masters, K. L. Lattice-work corridors for climate change: A conceptual framework for biodiversity conservation and social-ecological resilience in a tropical elevational gradient. Ecol. Soc. https://doi.org/10.5751/ES-07324-200201 (2015).Article 

    Google Scholar 
    179.Nogués-Bravo, D., Araújo, M. B., Errea, M. P. & Martínez-Rica, J. P. Exposure of global mountain systems to climate warming during the 21st Century. Glob. Environ. Change 17, 420–428 (2007).
    Google Scholar 
    180.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).ADS 

    Google Scholar 
    181.Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    182.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    183.Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl. Acad. Sci. 112, E6084–E6084 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    184.Gómez-Ruiz, P. A., Sáenz-Romero, C. & Lindig-Cisneros, R. Early performance of two tropical dry forest species after assisted migration to pine–oak forests at different altitudes: strategic response to climate change. J. For. Res. 31, 1215–1223 (2020).
    Google Scholar 
    185.Joppa, L. N. & Pfaff, A. High and far: Biases in the location of protected areas. PLoS One 4, 1–6 (2009).
    Google Scholar 
    186.von Holle, B., Yelenik, S. & Gornish, E. S. Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Curr. Landsc. Ecol. Rep. 5, 85–97 (2020).
    Google Scholar 
    187.Fischer, J., Riechers, M., Loos, J., Martin-Lopez, B. & Temperton, V. M. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends Ecol. Evol. xx, 1–9 (2020).
    Google Scholar 
    188.Monitoring Task Force. Briefing note on the Task Force on Monitoring for the UN Decade on Ecosystem Restoration 2021–2030 (2020).189.Elliott, S. The potential for automating assisted natural regeneration of tropical forest ecosystems. Biotropica 48, 825–833 (2016).
    Google Scholar  More

  • in

    Ecological dependencies make remote reef fish communities most vulnerable to coral loss

    Fish distributionWe rasterized a detailed reef distribution vector map35 at 5 × 5 latitude/longitude degrees (by considering as reef area each cell in the raster intersecting a polygon in the original shapefile). We collected all the occurrences of fish species intersecting the rasterized reef area from both the Ocean Biogeographic Information System36 and the Global Biodiversity Information Facility37. We used taxonomic and biogeographical (i.e., latitudinal/longitudinal extremes for a given species) information from FishBase38 to exclude potential incorrect occurrences (i.e., all the records falling outside the known species ranges). We also restricted the list to all the species for which FishBase provided relevant ecological information (as these were needed to evaluate prey-predator species interactions and identify indirect links between fish species and coral, see below). The filtered list comprises 9143 fish species.For these species, we used occurrence data to generate species ranges. For this, we used the α-hull procedure39, but instead of pre-selecting an α parameter and using it for all species, we developed a procedure to obtain conservative species ranges while including most of the known occurrences. First, we selected a very small α (0.001), to obtain a hull including most of the occurrences. Then, we progressively incremented α in small amounts (0.005) by computing, for each increment, the ratio between the relative reduction in the resulting hull area (in respect to the previous hull), and the relative reduction of occurrences included in the hull (in respect to the total number of available occurrences for the target species). We stopped increasing α when the ratio became 0.97.The random forest predictor was used to assess the probability of trophic interaction between a large list of potential interactions generated by combining all fish species from our reef fish occurrence dataset known to rely mainly or exclusively on fish for their survival (i.e. “true piscivores”, FishBase trophic level  > 3.5), with all the fish in the dataset. The full list included 31,768,450 potential interactions, that we reduced to 6,721,450 interactions by keeping only the interacting pairs identified by the random forest classifier with a probability ≥0.9.(3) If the ecological dependency between two species is actually manifested then the two species must obviously co-occur at some locations, and vice-versa, co-occurrence is a necessary pre-requisite for an ecological dependency. Following this logic, we took a final, additional step to further filter and improve the fish → fish interaction list. In particular, we quantified the tendency for species to co-occur in the same locality as one potential proxy layer for species interactions, complementary to our other approaches. There are various factors that can affect the co-occurrence of two species. In a simplification, this can emerge from stochasticity, shared environmental requirements, shared evolutionary history, and ecological dependencies. We attempted to disentangle the effect of the last factor from the first three.For each target species pair, we computed overlap in distribution as the raw number of reef localities where both target species were found. Then, we compared this number with the null expectation obtained by randomizing the distribution of species occurrences across reef localities. We designed a null model accounting for randomness, species niche and biogeographical history, and hence randomizing the occurrence of species only within areas where they could have possibly occurred according to environmental conditions and biogeographical factors (e.g., in the absence of hard or soft barriers). To implement the null model, we first excluded from the list of potential localities all the areas outside the biogeographical regions where the target species had been recorded, with regions identified according to Spalding et al.49. Then, within the remaining areas, we identified all the reef localities with climate envelopes favourable to target species survival. For this, we identified the min and max of major environmental drivers (mean annual surface temperature, salinity, pH) where the target species occurred, and then we identified all the localities with conditions not exceeding these limits. We generated, for each pairwise species comparison, one thousand randomized sets of species occurrences by rearranging randomly species occurrence within all suitable localities. We quantified co-occurrence between the species pair in each random scenario. Finally, we compared the observed co-occurrence with the random co-occurrences, computing a p-value as the fraction of null models with co-occurrence identical or higher than the observed one. We kept only the pairs with a p-value  More

  • in

    Using a climate attribution statistic to inform judgments about changing fisheries sustainability

    1.Silvy, Y., Guilyardi, E., Sallee, J.-B. & Durack, P. J. Human-induced changes to the global ocean water masses and their time of emergence. Nat. Clim. Change 10, 1030–1036 (2020).ADS 
    CAS 

    Google Scholar 
    2.Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).ADS 

    Google Scholar 
    3.Henson, S. A. et al. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 8, 14682 (2017).ADS 
    PubMed Central 
    PubMed 

    Google Scholar 
    4.Grothmann, T. & Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Change 15, 199–213 (2005).
    Google Scholar 
    5.Adger, W. N. Vulnerability. Glob. Environ. Change 16, 268–281 (2006).
    Google Scholar 
    6.Cinner, J. E. et al. Building adaptive capacity to climate change in tropical coastal communities. Nat. Clim. Change 8, 117–123 (2018).ADS 

    Google Scholar 
    7.van Putten, I. E. et al. Empirical evidence for different cognitive effects in explaining the attribution of marine range shifts to climate change. ICES J. Mar. Sci. 73, 1306–1318 (2016).
    Google Scholar 
    8.Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. in Advances in Marine Biology (ed. Curry, BE) vol. 74, 1–68 (2016).9.Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
    Google Scholar 
    10.Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl. Acad. Sci. U. S. A. 116, 18378–18383 (2019).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    11.Overland, J. E. et al. Climate controls on marine ecosystems and fish populations. J. Mar. Syst. 79, 305–315 (2010).
    Google Scholar 
    12.Merryfield, W. J. et al. Current and emerging developments in subseasonal to decadal prediction. Bull. Am. Meteorol. Soc. 101, E869–E896 (2020).
    Google Scholar 
    13.Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).ADS 

    Google Scholar 
    14.Palmer, T. N. & Stevens, B. The scientific challenge of understanding and estimating climate change. Proc. Natl. Acad. Sci. U. S. A. 116, 24390–24395 (2019).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    15.Parmesan, C. et al. Beyond climate change attribution in conservation and ecological research. Ecol. Lett. 16, 58–71 (2013).
    Google Scholar 
    16.Myers, R. A. When do environment-recruitment correlations work?. Rev. Fish Biol. Fish. 8, 285–305 (1998).
    Google Scholar 
    17.Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855 (2018).
    Google Scholar 
    18.Deyle, E. R. et al. Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. U. S. A. 110, 6430–6435 (2013).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    19.Planque, B. Projecting the future state of marine ecosystems, ‘la grande illusion’?. ICES J. Mar. Sci. 73, 204–208 (2016).MathSciNet 

    Google Scholar 
    20.Schindler, D. E. & Hilborn, R. Prediction, precaution, and policy under global change. Science 347, 953–954 (2015).ADS 
    CAS 

    Google Scholar 
    21.Maguire, K. C., Nieto-Lugilde, D., Fitzpatrick, M. C., Williams, J. W. & Blois, J. L. Modeling species and community responses to past, present, and future episodes of climatic and ecological change. Annu. Rev. Ecol. Evol. Syst. 46, 343–368 (2015).
    Google Scholar 
    22.Glaser, S. M. et al. Complex dynamics may limit prediction in marine fisheries. Fish Fish. 15, 616–633 (2014).
    Google Scholar 
    23.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 

    Google Scholar 
    24.Palmer, M. C., Deroba, J. J., Legault, C. M. & Brooks, E. N. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).ADS 
    CAS 

    Google Scholar 
    25.Swain, D. P., Benoit, H. P., Cox, S. P. & Cadigan, N. G. Comment on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).ADS 
    CAS 

    Google Scholar 
    26.Pershing, A. J. et al. Response to comments on “Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery”. Science 352, 423 (2016).CAS 

    Google Scholar 
    27.Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature 432, 610–614 (2004).ADS 
    CAS 

    Google Scholar 
    28.Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Change 7, 23–41 (2016).
    Google Scholar 
    29.Walsh, J. E. et al. The high latitude heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 99, S39–S43 (2018).
    Google Scholar 
    30.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP85 tracks cumulative CO2 emissions. Proc. Natl. Acad. Sci. U. S. A. 117, 19656–19657 (2020).ADS 
    CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    31.Dorn, M. W. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-walleye-pollock-stock-gulf-alaska (2020).32.Barbeaux, S. J. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. https://www.fisheries.noaa.gov/resource/data/2020-assessment-pacific-cod-stock-gulf-alaska (2020).33.Litzow, M. A. et al. Evaluating ecosystem change as Gulf of Alaska temperature exceeds the limits of preindustrial variability. Prog. Oceanogr. 186, 102393 (2020).
    Google Scholar 
    34.Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500 (1996).
    Google Scholar 
    35.Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska Pacific cod fishery. Front. Mar. Sci. 7, 703 (2020).
    Google Scholar 
    36.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087 (2020).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    37.Harley, C. D. G. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).ADS 

    Google Scholar 
    38.Hsieh, C.-H. et al. Fishing elevates variability in the abundance of exploited species. Nature 443, 859–862 (2006).ADS 
    CAS 

    Google Scholar 
    39.Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650 (2020).
    Google Scholar 
    40.Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).
    Google Scholar 
    41.Rogers, L. A., Wilson, M. T., Duffy-Anderson, J. T., Kimmel, D. G. & Lamb, J. F. Pollock and “the Blob”: Impacts of a marine heatwave on walleye pollock early life stages. Fish. Oceanogr. 30, 142–158 (2021).
    Google Scholar 
    42.Filbee-Dexter, K. et al. Quantifying ecological and social drivers of ecological surprise. J. Appl. Ecol. 55, 2135–2146 (2018).
    Google Scholar 
    43.Allen, M. Liability for climate change. Nature 421, 891–892 (2003).ADS 
    CAS 

    Google Scholar 
    44.Lloyd, E. A. & Oreskes, N. Climate change attribution: When is it appropriate to accept new methods?. Earths Future 6, 311–325 (2018).ADS 

    Google Scholar 
    45.Kirchmeier-Young, M. C., Gillett, N. P., Zwiers, F. W., Cannon, A. J. & Anslow, F. S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 7, 2–10 (2019).ADS 

    Google Scholar 
    46.Frame, D. J. et al. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Change 162, 781–797 (2020).ADS 

    Google Scholar 
    47.Frame, D. J., Wehner, M. F., Noy, I. & Rosier, S. M. The economic costs of Hurricane Harvey attributable to climate change. Clim. Change 160, 271–281 (2020).ADS 

    Google Scholar 
    48.Winkler, A. J. et al. Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).ADS 

    Google Scholar 
    49.Shepherd, T. G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A Math. Phys. Eng. Sci. 475, 20190013 (2019).ADS 

    Google Scholar 
    50.Litzow, M. A. et al. Quantifying a novel climate through changes in PDO-climate and PDO-salmon relationships. Geophys. Res. Lett. 47, 2020GL087972 (2020).ADS 

    Google Scholar 
    51.Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. 193, 102555 (2021).
    Google Scholar 
    52.Bailey, K. M. Shifting control of recruitment of walleye pollock Theragra chalcogramma after a major climatic and ecosystem change. Mar. Ecol. Prog. Ser. 198, 215–224 (2000).ADS 

    Google Scholar 
    53.Jutfelt, F. Metabolic adaptation to warm water in fish. Funct. Ecol. 34, 1138–1141 (2020).
    Google Scholar 
    54.Walsh, J. E. et al. Downscaling of climate model output for Alaskan stakeholders. Environ. Model. Softw. 110, 38–51 (2018).
    Google Scholar 
    55.Lott, F. C. & Stott, P. A. Evaluating simulated fraction of attributable risk using climate observations. J. Clim. 29, 4565–4575 (2016).ADS 

    Google Scholar 
    56.Freeland, H. & Ross, T. `The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014–2018?. Deep-Sea Res. I: Oceanogr. Res. Pap. 150, 103061 (2019).
    Google Scholar 
    57.Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373 (2013).ADS 

    Google Scholar 
    58.Adamson, M. W. & Hilker, F. M. Resource-harvester cycles caused by delayed knowledge of the harvested population state can be dampened by harvester forecasting. Theor. Ecol. 13, 425–434 (2020).
    Google Scholar 
    59.Dorn, M. W. & Zador, S. G. A risk table to address concerns external to stock assessments when developing fisheries harvest recommendations. Ecosyst. Heal. Sustain. 6, 2 (2020).
    Google Scholar 
    60.Rudnick, D. L. & Davis, R. E. Red noise and regime shifts. Deep-Sea Res. I: Oceanogr Res. Pap. 50, 691–699 (2003).ADS 

    Google Scholar 
    61.Lauffenburger, N., Williams, K. & Jones, D. Results of the acoustic-trawl surveys of walleye pollock (Gadus chalcogrammus) in the Gulf of Alaska, March 2019. https://repository.library.noaa.gov/view/noaa/23711/ (2019).62.Stone, D. A., Rosier, S. M. & Frame, D. J. The question of life, the universe and event attribution. Nat. Clim. Change 11, 276–278 (2021).ADS 

    Google Scholar 
    63.Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552 (2003).
    Google Scholar 
    64.Holmes, E. E., Ward, E. J. & Wills, K. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J. 4, 11–19 (2012).
    Google Scholar 
    65.Yau, K. K. W., Wang, K. & Lee, A. H. Zero-inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).MathSciNet 
    MATH 

    Google Scholar 
    66.Zuur, A. F., Ieno, N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 

    Google Scholar 
    67.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Series B Stat. Methodol. 65, 95–114 (2003).MathSciNet 
    MATH 

    Google Scholar 
    68.Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–29 (2017).
    Google Scholar 
    69.R Core Team. R: A language and environment for statistical computing. v4.0.2. http://www.r-project.org/ (2020).70.Buerkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    71.Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Series Stat. Soc. 182, 389–402 (2019).MathSciNet 

    Google Scholar  More

  • in

    Multi-centennial phase-locking between reproduction of a South American conifer and large-scale drivers of climate

    1.Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).CAS 
    PubMed 

    Google Scholar 
    2.Janzen, D. H. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465–492 (1971).
    Google Scholar 
    3.Silvertown, J. W. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14, 235–250 (1980).
    Google Scholar 
    4.Koenig, W. D. Global patterns of environmental synchrony and the Moran effect. Ecography 25, 283–288 (2002).
    Google Scholar 
    5.Moran, P. A. P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).
    Google Scholar 
    6.Ranta, E., Veijo, K. & Lindströom, J. Spatially autocorrelated disturbances and patterns in population synchrony. Proc. R. Soc. Lond. B 266, 1851–1856 (1999).
    Google Scholar 
    7.Liebhold, A., Koenig, W. D. & Bjørnstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).
    Google Scholar 
    8.Sanguinetti, J. Producción y Predación de Semillas, Efectos de Corto y Largo Plazo Sobre el Reclutamiento de Plántulas. Caso de Estudio: Araucaria araucana (Universidad Nacional del Comahue, 2008).9.Schauber, E. M. et al. Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83, 1214–1225 (2002).
    Google Scholar 
    10.Fletcher, M.-S. Mast seeding and the El Niño-Southern Oscillation: a long-term relationship? Plant Ecol. 216, 527–533 (2015).
    Google Scholar 
    11.Koenig, W. D. & Knops, J. M. H. Scale of mast-seeding and tree-ring growth. Nature 396, 225 (1998).CAS 

    Google Scholar 
    12.Hacket-Pain, A. J. et al. Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol. Lett. 21, 1833–1844 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    13.Hadad, M. A., Roig, F. A., Arco Molina, J. G. & Hacket-Pain, A. Growth of male and female Araucaria araucana trees respond differently to regional mast events, creating sex-specific patterns in their tree-ring chronologies. Ecol. Indic. 122, 107245 (2021).
    Google Scholar 
    14.Thompson, D. W. J., Wallace, J. M. & Hegerl, G. C. Annular modes in the extratropical circulation. Part II: trends. J. Clim. 13, 1018–1036 (2000).
    Google Scholar 
    15.Holz, A., Kitzberger, T., Paritsis, J. & Veblen, T. T. Ecological and climatic controls of modern wildfire activity patterns across southwestern South America. Ecosphere 3, 1–25 (2012).
    Google Scholar 
    16.Mundo, I. A., Kitzberger, T., Roig Juñent, F. A., Villalba, R. & Barrera, M. D. Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int. J. Wildland Fire 22, 194–206 (2013).
    Google Scholar 
    17.Mundo, I. A., Roig Juñent, F. A., Villalba, R., Kitzberger, T. & Barrera, M. D. Araucaria araucana tree-ring chronologies in Argentina: spatial growth variations and climate influences. Trees-Struct. Funct. 26, 443–458 (2012).
    Google Scholar 
    18.Veblen, T. T., Kitzberger, T., Villalba, R. & Donnegan, J. Fire history in Northern Patagonia: the roles of humans and climatic variation. Ecol. Monogr. 69, 47–67 (1999).
    Google Scholar 
    19.Sanguinetti, J. & Kitzberger, T. Patterns and mechanisms of masting in the large-seeded southern hemisphere conifer Araucaria araucana. Austral Ecol. 33, 78–87 (2008).
    Google Scholar 
    20.Wigley, T. M. L., Briffa, K. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–213 (1984).
    Google Scholar 
    21.Swetnam, T. W. & Lynch, A. M. Multicentury, regional-scale patterns of Western Spruce budworm outbreaks. Ecol. Monogr. 63, 399–424 (1993).
    Google Scholar 
    22.Kitzberger, T., Veblen, T. T. & Villalba, R. Tectonic influences on tree growth in northern Patagonia, Argentina: the roles of substrate stability and climatic variation. Can. J. Res. 25, 1684–1696 (1995).
    Google Scholar 
    23.Mundo, I. A. et al. Austrocedrus chilensis growth decline in relation to drought events in northern Patagonia, Argentina. Trees Struct. Funct. 24, 561–570 (2010).
    Google Scholar 
    24.Rozas, V. et al. Climatic cues for secondary growth and cone production are sex-dependent in the long-lived dioecious conifer Araucaria araucana. Agric. Meteorol. 274, 132–143 (2019).
    Google Scholar 
    25.Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. New Phytol. 212, 546–562 (2016).CAS 
    PubMed 

    Google Scholar 
    26.Sanguinetti, J. & Kitzberger, T. Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biol. Invasions 12, 689–706 (2010).
    Google Scholar 
    27.Sanguinetti, J. & Kitzberger, T. Efectos de la producción de semillas y de la heterogeneidad vegetal sobre la supervivencia de semillas y el patrón espacio-temporal de establecimiento de plántulas en Araucaria araucana. Rev. Chil. Hist. Nat. 82, 319–335 (2009).
    Google Scholar 
    28.Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).PubMed 

    Google Scholar 
    29.Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).CAS 
    PubMed 

    Google Scholar 
    30.Holmgren, M., Scheffer, M., Ezcurra, E., Gutiérrez, J. R. & Mohren, G. M. J. El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol. 16, 89–94 (2001).CAS 
    PubMed 

    Google Scholar 
    31.Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. J. Clim. 11, 3128–3147 (1998).
    Google Scholar 
    32.Kitzberger, T., Swetnam, T. W. & Veblen, T. T. Inter-hemispheric synchrony of forest fires and the El Niño-Southern Oscillation. Glob. Ecol. Biogeogr. 10, 315–326 (2001).
    Google Scholar 
    33.Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).
    Google Scholar 
    34.Silvestri, G. E. & Vera, C. S. Antarctic Oscillation signal on precipitation anomalies over southeastern South America. Geophys. Res. Lett. 30, 2115 (2003).
    Google Scholar 
    35.Cai, W. et al. Climate impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 1, 215–231 (2020).
    Google Scholar 
    36.Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and climatic variation. Can. J. Bot. 79, 1039–1047 (2001).
    Google Scholar 
    37.Drobyshev, I., Niklasson, M., Mazerolle, M. J. & Bergeron, Y. Reconstruction of a 253-year long mast record of European beech reveals its association with large scale temperature variability and no long-term trend in mast frequencies. Agric. Meteorol. 192–193, 9–17 (2014).
    Google Scholar 
    38.Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The North Atlantic Oscillation synchronises fruit production in western European forests. Ecography 40, 864–874 (2017).
    Google Scholar 
    39.Ascoli, D. et al. Two centuries of masting data for European beech and Norway spruce across the European continent. Ecology 98, 1473 (2017).PubMed 

    Google Scholar 
    40.Thompson, D. W. J. et al. Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat. Geosci. 4, 741–749 (2011).CAS 

    Google Scholar 
    41.Jacques-Coper, M., Brönnimann, S., Martius, O., Vera, C. & Cerne, B. Summer heat waves in southeastern Patagonia: an analysis of the intraseasonal timescale. Int. J. Climatol. 36, 1359–1374 (2016).
    Google Scholar 
    42.Estudio de la Variabilidad Climáticas en Chile para el Siglo XXI (CONAMA, 2006).43.Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).
    Google Scholar 
    44.Tortorelli, L. A. La explotación racional de los bosques de Araucaria de Neuquén. Su importancia económica. Servir (separata) VI, 1–74 (1942).45.Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A. & Villalba, R. in Ecology of the Southern Conifers (eds Enright, N. J. & Hill, R. S) 120–155 (Melbourne Univ. Press, 1995).46.Lara, A. et al. Mapeo de la Ecoregión de los Bosques Valdivianos de Argentina y Chile, en escala 1:500.000 (Fundación Vida Silvestre Aregentina, 1999).47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).48.Cook, E. R., Briffa, K., Shiyatov, S. & Mazepa, V. in Methods of Dendrochronology—Applications in the Environmental Sciences (eds Cook, E. & Kairiukstis, L. A.) 104–132 (Kluwer Academic Publishers, 1990).49.Yamaguchi, D. K. A simple method for cross-dating increment cores from living trees. Can. J. Res. 21, 414–416 (1991).
    Google Scholar 
    50.Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    51.Visser, H. Note on the relation between ring widths and basal area increments. Forest Sci. 41, 297–304 (1995).52.Pedersen, B. S. The role of stress in the mortality of midwestern oaks as indicated by growth prior to death. Ecology 79, 79–93 (1998).
    Google Scholar 
    53.Cook, E. R. A Time Series Analysis Approach to Tree Ring Standardization (University of Arizona, School of Renewable Natural Resources, 1985).54.Melvin, T. M., Briffa, K. R., Nicolussi, K. & Grabner, M. Time-varying-response smoothing. Dendrochronologia 25, 65–69 (2007).
    Google Scholar 
    55.Biondi, F. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol. Appl. 9, 216–227 (1999).
    Google Scholar 
    56.Battipaglia, G. et al. Long tree-ring chronologies provide evidence of recent tree growth decrease in a Central African tropical forest. PLoS ONE 10, e0120962 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    57.Blasing, T. J., Solomon, A. M. & Duvick, D. N. Response function revisited. Tree-Ring Bull. 44, 1–15 (1984).
    Google Scholar 
    58.Sanguinetti, J. Producción de semillas de Araucaria araucana (Molina) K. Koch durante 15 años en diferentes poblaciones del Parque Nacional Lanín (Neuquén-Argentina). Ecol. Austral 24, 265–275 (2014).
    Google Scholar 
    59.Ficha de Valorización de Resultados. Proyecto Producción, Técnicas de Poscosecha y Desarrollo de Productos a partir del Piñón (FIA, 2011).60.Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).
    Google Scholar 
    61.Villalba, R. et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 5, 793–798 (2012).CAS 

    Google Scholar 
    62.Grissino-Mayer, H. D. Tree-ring Reconstructions of Climate and Fire at El Malpais National Monument, New Mexico (Univ. of Arizona, 1995).63.Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
    Google Scholar 
    64.Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004).
    Google Scholar 
    65.Gouhier, T., Grinsted, A. & Simko, V. Biwavelet: Conduct Univariate and Bivariate Wavelet Analyses. R package version 0.20.19 https://github.com/tgouhier/biwavelet (2019).66.Mundo, I. A. Historia de incendios en bosques de Araucaria araucana (Molina) K. Koch de Argentina a través de un análisis dendroecológico (Universidad Nacional de La Plata, 2011).67.Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating Central Equatorial Pacific SST variability over the past millennium. Part I: methodology and validation. J. Clim. 26, 2302–2328 (2013).
    Google Scholar 
    68.Mundo, I. A. et al. Multi-century tree-ring based reconstruction of the Neuquén River streamflow, northern Patagonia, Argentina. Clim. Past 8, 815–829 (2012).
    Google Scholar  More

  • in

    Strategic Forest Reserves can protect biodiversity in the western United States and mitigate climate change

    1.Ripple, W. J. et al. World Scientists’ Warning of a Climate Emergency 2021. BioScience. https://doi.org/10.1093/biosci/biab079 (2021).2.Liu, P. R. & Raftery, A. E. Country-based rate of emissions reductions should increase by 80% beyond nationally determined contributions to meet the 2 C target. Commun. Earth Environ. 2, 1–10 (2021).
    Google Scholar 
    3.IPBES. (eds Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T.) 56 (IPBES, 2019).4.CBD Secretariat. The Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets Vol. Document UNEP/CBD/COP/DEC/X/2 (Secretariat of the Convention on Biological Diversity, 2010).5.Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 

    Google Scholar 
    6.United State of America. The United States of America Nationally Determined Contribution- Reducing Greenhouse Gases in the United States: A 2030 Emissions Target. 24 (Submitted to the UNFCCC Secretariat under the Paris Agreement; https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/United%20States%20of%20America%20First/United%20States%20NDC%20April%2021%202021%20Final.pdf, 2021).7.Nelson, M. D. et al. Defining the United States land base: a technical document supporting the USDA Forest Service 2020 RPA assessment. Gen. Tech. Rep. NRS-191. 191, 1–70 (2020).
    Google Scholar 
    8.Pörtner, H. O. & et al. IPBES-IPCC co-sponsored workshop report on biodiversity and climate change. (IPBES and IPCC, https://doi.org/10.5281/zenodo.4782538, 2021).9.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).
    Google Scholar 
    10.Dinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).
    Google Scholar 
    11.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).
    Google Scholar 
    12.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. 114, 11645–11650 (2017).CAS 

    Google Scholar 
    13.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    14.Sexton, J. O. et al. Conservation policy and the measurement of forests. Nat. Clim. Chang. 6, 192–196 (2016).
    Google Scholar 
    15.Kreft, H. & Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. 104, 5925–5930 (2007).CAS 

    Google Scholar 
    16.Houghton, R. A., Hall, F. & Goetz, S. J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 114, G00E03 (2009).
    Google Scholar 
    17.Mackey, B. et al. Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitig. Adapt. Strateg. Glob. Chang. 25, 763–787 (2020).
    Google Scholar 
    18.Buotte, P. C., Law, B. E., Ripple, W. J. & Berner, L. T. Carbon sequestration and biodiversity co‐benefits of preserving forests in the western United States. Ecol. Appl.30, e02039 (2020).
    Google Scholar 
    19.Ruefenacht, B. et al. Conterminous US and Alaska forest type mapping using forest inventory and analysis data. Photogramm. Eng. Remote Sensing 74, 1379–1388 (2008).
    Google Scholar 
    20.USGS GAP. Protected Areas Database of the United States (PAD-US) 2.1: U.S. Geological Survey data release, https://doi.org/10.5066/P92QM3NT (2020).21.USGS. Gap Analysis Project Species Habitat Maps CONUS_2001. U.S. Geological Survey, https://doi.org/10.5066/F7V122T2 (2018).22.Wilson, B. T., Lister, A. J., Riemann, R. I. & Griffith, D. M. Live tree species basal area of the contiguous United States (2000-2009). (USDA Forest Service, Rocky Mountain Research Station, 2013).23.Wilson, B. T., Woodall, C. & Griffith, D. Imputing forest carbon stock estimates from inventory plots to a nationally continuous coverage. Carbon Balance Management 8, 1–15 (2013).
    Google Scholar 
    24.Oleson, K. et al. Technical Descriptioin of Version 4.5 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2013).25.Buotte, P. C. et al. Near‐future forest vulnerability to drought and fire varies across the western United States. Glob. Chang. Biol. 25, 290–303 (2019).
    Google Scholar 
    26.Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).
    Google Scholar 
    27.Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation. Proc. Natl Acad. Sci. 95, 14839–14842 (1998).CAS 

    Google Scholar 
    28.Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).
    Google Scholar 
    29.Lecina‐Diaz, J. et al. The positive carbon stocks–biodiversity relationship in forests: co‐occurrence and drivers across five subclimates. Ecol. Appl. 28, 1481–1493 (2018).
    Google Scholar 
    30.Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).
    Google Scholar 
    31.Glaser, C., Romaniello, C. & Moskowitz, K. Costs and consequences: the real price of livestock grazing on America’s public lands. Tucson, AZ: Center for Biological Diversity (2015).32.Flather, C. H. Species endangerment patterns in the United States. Vol. 241 (US Department of Agriculture, Forest Service, Rocky Mountain Forest and …, 1994).33.Beschta, R. L. et al. Adapting to climate change on western public lands: addressing the ecological effects of domestic, wild, and feral ungulates. Environ. Manag. 51, 474–491 (2013).
    Google Scholar 
    34.Betts, M. G., Gutiérrez Illán, J., Yang, Z., Shirley, S. M. & Thomas, C. D. Synergistic effects of climate and land-cover change on long-term bird population trends of the western USA: a test of modeled predictions. Front. Ecol. Evol. 7, https://doi.org/10.3389/fevo.2019.00186 (2019).35.Berner, L. T., Law, B. E., Meddens, A. J. & Hicke, J. A. Tree mortality from fires, bark beetles, and timber harvest during a hot and dry decade in the western United States (2003–2012). Environ. Res. Lett. 12, 065005 (2017).
    Google Scholar 
    36.Law, B. E. et al. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc. Natl Acad. Sci. 115, 3663 (2018).CAS 

    Google Scholar 
    37.Ouren, D. S. et al. Environmental effects of off-highway vehicles on Bureau of land management lands: a literature synthesis, annotated bibliographies, extensive bibliographies, and internet resources. US Geol. Survey Open-File Rep. 1353, 225 (2007).
    Google Scholar 
    38.Talty, M. J., Mott Lacroix, K., Aplet, G. H. & Belote, R. T. Conservation value of national forest roadless areas. Conserv. Sci. Pract. 2, e288 (2020).
    Google Scholar 
    39.Belote, R. T. & Wilson, M. B. Delineating greater ecosystems around protected areas to guide conservation. Conserv. Sci. Pract. 2, e196 (2020).
    Google Scholar 
    40.DellaSala, D. A., Karr, J. R. & Olson, D. M. Roadless areas and clean water. J. Soil Water Conserv. 66, 78–84 (2011).
    Google Scholar 
    41.McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B. & Markusson, N. O. Beyond “net-zero”: a case for separate targets for emissions reduction and negative emissions. Front. Clim. 1, 4 (2019).
    Google Scholar 
    42.Mildrexler, D. J., Berner, L. T., Law, B. E., Birdsey, R. A. & Moomaw, W. R. Large Trees Dominate Carbon Storage in Forests East of the Cascade Crest in the United States Pacific Northwest. Front. For. Glob. Chang. 3, https://doi.org/10.3389/ffgc.2020.594274 (2020).43.Hudiburg, T. W., Luyssaert, S., Thornton, P. E. & Law, B. E. Interactive effects of environmental change and management strategies on regional forest carbon emissions. Environ. Sci. Tech. 47, 13132–13140 (2013).CAS 

    Google Scholar 
    44.Noss, R. F. & Daly, K. M. In Connectivity Conservation (eds K. Crooks & M. Sanjayan) 587–619 (Cambridge Univ. Press, 2010).45.Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).
    Google Scholar 
    46.Omernik, J. M. Perspectives on the nature and definition of ecological regions. Environ. Manag. 34, S27–S38 (2004).
    Google Scholar 
    47.Hudiburg, T. et al. Carbon dynamics of Oregon and Northern California forests and potential land-based carbon storage. Ecol. Appl. 19, 163–180 (2009).
    Google Scholar 
    48.Leu, M., Hanser, S. E. & Knick, S. T. The human footprint in the west: a large‐scale analysis of anthropogenic impacts. Ecol. Appl. 18, 1119–1139 (2008).
    Google Scholar 
    49.Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).
    Google Scholar 
    50.Dobrowski, S. Z. A climatic basis for microrefugia: the influence of terrain on climate. Glob. Chang. Biol. 17, 1022–1035 (2011).
    Google Scholar 
    51.Jantz, P., Goetz, S. & Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Chang. 4, 138–142 (2014).CAS 

    Google Scholar 
    52.McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. 105, 16988–16993 (2008).CAS 

    Google Scholar 
    53.Scott, J. M. et al. Recovery of imperiled species under the Endangered Species Act: the need for a new approach. Front. Ecol. Environ. 3, 383–389 (2005).
    Google Scholar 
    54.Miller, S. L. et al. Recent population decline of the Marbled Murrelet in the Pacific Northwest. Condor 114, 771–781 (2012).
    Google Scholar 
    55.Noon, B. R. & McKelvey, K. S. Management of the spotted owl: a case history in conservation biology. Annu. Rev. Ecol. System. 27, 135–162 (1996).
    Google Scholar 
    56.Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Chang. 4, 2–5 (2014).CAS 

    Google Scholar 
    57.King, T. W. et al. Will Lynx lose their edge? Canada Lynx occupancy in Washington. J. Wildl. Manag. 84, 705–725 (2020).
    Google Scholar 
    58.Cayan, D. R. et al. Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl Acad. Sci. 107, 21271–21276 (2010).CAS 

    Google Scholar 
    59.Rhoades, A. M., Ullrich, P. A. & Zarzycki, C. M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 50, 261–288 (2018).
    Google Scholar 
    60.Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314 (2020).CAS 

    Google Scholar 
    61.Mote, P. W., Hamlet, A. F., Clark, M. P. & Lettenmaier, D. P. Declining mountain snowpack in western north America. Bull. Am. Meteorol. Soc. 86, 39–49 (2005).
    Google Scholar 
    62.Cook, B. et al. Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth’s Futur. 8, e2019EF001461 (2020).
    Google Scholar 
    63.Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).
    Google Scholar 
    64.Johnson, Z. C., Leibowitz, S. G. & Hill, R. A. Revising the index of watershed integrity national maps. Sci. Total Environ. 651, 2615–2630 (2019).CAS 

    Google Scholar 
    65.Anderegg, W. R. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS 

    Google Scholar 
    66.Buotte, P., Levis, S. & Law, B. E. NACP forest carbon stocks, fluxes, and productivity estimates, Western USA, 1979-2099. ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/1662 (2019).67.Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2012).
    Google Scholar 
    68.McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2015).
    Google Scholar 
    69.Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2014).
    Google Scholar 
    70.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).CAS 

    Google Scholar 
    71.Dennison, P. E., Brewer, S. C., Arnold, J. D. & Moritz, M. A. Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett. 41, 2928–2933 (2014).
    Google Scholar 
    72.Balch, J. K. et al. Human-started wildfires expand the fire niche across the United States. Proc. Natl Acad. Sci. 114, 2946–2951 (2017).CAS 

    Google Scholar 
    73.Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. 114, 4582–4590 (2017).CAS 

    Google Scholar 
    74.Law, B. E. & Waring, R. H. Carbon implications of current and future effects of drought, fire and management on Pacific Northwest forests. For. Ecol. Management 355, 4–14 (2015).
    Google Scholar 
    75.Donato, D. C., Campbell, J. L. & Franklin, J. F. Multiple successional pathways and precocity in forest development: can some forests be born complex? J. Veg. Sci. 23, 576–584 (2012).
    Google Scholar 
    76.Campbell, J. L., Harmon, M. E. & Mitchell, S. R. Can fuel‐reduction treatments really increase forest carbon storage in the western US by reducing future fire emissions? Front. Ecol. Environ. 10, 83–90 (2012).
    Google Scholar 
    77.Harris, N. et al. Attribution of net carbon change by disturbance type across forest lands of the conterminous United States. Carbon Balanc. Management 11, 24 (2016).CAS 

    Google Scholar 
    78.Ghimire, B. et al. Large carbon release legacy from bark beetle outbreaks across Western United States. Glob. Chang. Biol. 21, 3087–3101 (2015).
    Google Scholar 
    79.Mitchell, S. R., Harmon, M. E. & O’connell, K. E. Forest fuel reduction alters fire severity and long‐term carbon storage in three Pacific Northwest ecosystems. Ecol. Appl. 19, 643–655 (2009).
    Google Scholar 
    80.Rhodes, J. J. & Baker, W. L. Fire probability, fuel treatment effectiveness and ecological tradeoffs in western US public forests. Open For. Sci. J. 1, 1–7 (2008).
    Google Scholar 
    81.Law, B. E. & Harmon, M. E. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Management 2, 73–84 (2011).
    Google Scholar 
    82.Hudiburg, T. W., Law, B. E., Wirth, C. & Luyssaert, S. Regional carbon dioxide implications of forest bioenergy production. Nat. Clim. Chang. 1, 419–423 (2011).CAS 

    Google Scholar 
    83.Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science 359, eaam8328 (2018).
    Google Scholar 
    84.Law, B. E. Regional analysis of drought and heat impacts on forests: current and future science directions. Glob. Chang. Biol. 20, 3595–3599 (2014).
    Google Scholar 
    85.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 1–22 (2020).
    Google Scholar 
    86.Kullberg, P. & Moilanen, A. How do recent spatial biodiversity analyses support the convention on biological diversity in the expansion of the global conservation area network? Natureza Conservacao 12, 3–10 (2014).
    Google Scholar 
    87.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).88.Hijmans, R. J. raster: Geographic Analysis and Modeling. R package version 3.0-12. http://CRAN.R-project.org/package=raster (2019).89.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4-8. https://CRAN.R-project.org/package=rgdal (2019).90.O’Brien, J. gdalUtilities: Wrappers for ‘GDAL’ Utilities Executables. R package version 1. https://CRAN.R-project.org/package=gdalUtilities (2019).91.Dawle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.8. https://CRAN.R-project.org/package=data.table. (2019).92.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlang New York, 2016).93.Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
    Google Scholar 
    94.Conservation Biology Institute. Protected Areas Database of the United States, CBI Edition Version 2. http://consbio.org/products/projects/pad-us-cbi-edition (2012).95.USDA Forest Service. Forests to Faucets 2.0 [spatial data set]. Retrieved from https://usfs-public.app.box.com/v/Forests2Faucets[Sept 21, 2021] (2019). More

  • in

    Mixoplankton interferences in dilution grazing experiments

    Our results show that Chl a alone is not an adequate proxy for prey growth rates in dilution grazing experiments when mixoplankton are present5,10. Chlorophyll is, in any case, a poor proxy for phototrophic plankton biomass31 because of inter-species variations, and also for the photoacclimation abilities of some species (for which very significant changes can occur within a few hours). The problem extends to the involvement of mixoplanktonic prey and grazers. Nevertheless, even very recent studies continue to rely on this parameter for quantifications of grazing despite acknowledging the dominance, both in biomass and abundance, of mixoplanktonic predators in their system30. Moreover, the detailed analysis of the species-specific dynamics revealed that different prey species are consumed at very different rates. In our experiments, and contrary to expectations (see32,33, and Fig. S1 in the Supplementary Information), C. weissflogii was only actively ingested in the ciliate experiment and, according to the results from the control bottles (Table 2), not by M. rubrum (see Fig. 4 and Fig. S1a).Certainly, it is not the first time that a negative selection against diatoms has been seen; for example, Burkill et al.34 noticed that diatoms were less grazed by protist grazers than other phytoplankton species, as assessed by a dilution technique paired with High-Performance Liquid Chromatography for pigment analysis. Using the same method, Suzuki et al.35 reported that diatoms became the dominant phytoplankton group, which suggests that other groups were preferentially fed upon. Calbet et al.36, in the Arctic, also found only occasional grazing over the local diatoms. In our study, diatoms were not only not consumed, but the presence of dinoflagellates appeared to contribute to their growth (Fig. 4), this relationship being partly dependent on the concentration of the predator (see Fig. 2c, d). This result could be a direct consequence of assimilation and use of compounds (e.g.,37,38) released by microplankton such as ammonium (e.g.,39,40) and urea (e.g.,41), which were not supplied in the growth medium, but which would have supported prey growth. Alternatively, this unexpected outcome may have been a consequence of the selective ingestion of R. salina by the two predators, relieving the competition for nutrients and light and resulting in a higher growth rate of the diatom in the presence of the predators. We cannot rule out the fact that diatoms sink faster than flagellates which, as the bottles were not mixed during most of the incubation period (although gently mixed at every sampling point), may have also involuntarily decreased ingestion rates on C. weissflogii. Still, one C. weissflogii cell contains, on average, ca. 2.5 times more Chl a than one R. salina cell (initial value excluded, see Table 3). Taken together with the preference for R. salina it is not surprising that the proportion of total Chl a represented by the diatoms increased over time, in particular in the L/D treatment (Figs. 6a, c and 7a, c).Table 3 Chl a content (pg Chl a cell−1) of the target species at each sampling point as calculated from the control bottles.Full size tableAnother factor clearly highlighted by our experiments, is that protozooplankton themselves contribute a significant portion of the total chlorophyll of the system (due to ingested Chl a), in particular at the beginning of the incubation (see Figs. 6 and 7); this being invariably ignored in a traditional dilution experiment. The high Chl a detected inside the protozooplanktonic grazers at the beginning of the incubations could suggest that the system was initially not in equilibrium, and that this was the result of superfluous feeding (e.g.,42). This would, nevertheless, be surprising since we required ca. 1 h to collect the initial samples (t = 0 h) after joining all the organisms together (see the section “Dilution grazing experiments” in the “Methods” section); previous studies, like the one on G. dominans and Oxyrrhis marina by Calbet et al.42, showed that the hunger response and consequent vacuole replenishment occurred in ca. 100 min for very high prey concentrations and it is expected to decrease at lower prey concentrations as the ones used in our study. Therefore, even if one assumes that the first 4 h of incubation are a result of superfluous feeding, after 24 h, the “estimated”, “observed”, and “from dilution slope” grazing estimates are not significantly different to those displayed in Fig. 5 (P  > 0.05 in all instances) and, therefore, we can assume that the hunger response was likely irrelevant (e.g.,43) and did not mask our results. In any case, as stated before, an actual field grazing dilution experiment also suffers from similar problems, because grazers and prey are suddenly diluted and not pre-adapted to distinct food concentrations. Nevertheless, this is not novel information, since Chl a and its degradation products have been found inside several protozooplankton species from different phylogenetic groups immediately after feeding44 and even after some days without food45. An increase in intracellular Chl a concentrations immediately after feeding has also been found in mixoplankton46,47, on which this increase is derived both from ingested prey as well as from new synthesis of their own Chl a. Additionally, several experiments with Live Fluorescently Labelled Algae (LFLA) show that predators (irrespective of their trophic mode) seem to maximise the concentration of intracellular prey shortly after the initiation of the incubation (e.g.,48; Ferreira et al., submitted). Indeed, some authors have even been able to measure photosynthesis in protozooplankton, like the ciliates Mesodinium pulex49 and Strombidinopsis sp.50.The fact that Chl a is a poor indicator of phytoplankton biomass and the inherent consequences discussed so far can be solved by the quantification of the prey community abundance (e.g.,51) by microscopy or by the use of signature pigments for each major phytoplankton group. The latter method, however, is not as thorough as the former, since rare are the cases where one pigment is exclusively associated with a single group of organisms (see52 and references therein). In any case, any pigment-based proxy is subject to the same problems, as identified by Kruskopf & Flynn31. Irrespective of the quantification method, it has been made evident that the different algae are consumed at different rates (e.g., pigments10,34,35; microscopy5,36).Prey selection in protistan grazers is a common feature (e.g.,23,26,27,28). Given the diversity of grazers in natural communities and the array of preferred prey that each particular species possesses, it is logical to think that dilution experiments will capture the net community response properly. Likewise, grazers interact with each other through toxins, competition, and intraguild predation among other factors. An example of intraguild predation could be the observed on K. armiger by G. dominans (see Figs. 2f and 4 and Table 1), which caused an average loss of ca. 18.72 pg of K. armiger carbon per G. dominans per hour in the D treatment. Interestingly, in the same treatment, a slight negative effect of K. armiger on its predator G. dominans can also be deduced (i.e., positive g, Table 1), resulting in an average loss of ca. 0.33 pg G. dominans carbon per K. armiger per hour. This could be a consequence of algal toxins, since K. armiger is a known producer of karmitoxin22, whose presence may have negative effects even on metazoan grazers21. Regarding ciliates, none of the species used is a known producer of toxic compounds, which suggests that the average loss of ca. 1.25 pg M. rubrum carbon per hour in the D treatment was due to S. arenicola predation. Altogether, it seems clear from our data that intraguild predation cannot be ignored when analysing dilution experiments (Fig. 4). Furthermore, our results clearly show that single functional responses cannot be used to extrapolate community grazing impacts, as evidenced by the differences in estimated and measured ingestion rates based on the disappearance of prey in combined grazers experiments (Fig. 5). Nevertheless, this is a relatively common procedure (e.g.,53 and references therein). Often in modelling approaches, individual predator’s functional responses have been used to extrapolate prey selectivity and community grazing responses27; in reality complex prey selectivity functions are required to satisfactorily describe prey selectivity and inter-prey allelopathic interactions54.It is, however, also evident that the measured ingestion rates in combined grazers experiments were not the same as those calculated from the slope of the dilution grazing experiment. This raises the question of why was that the case. It is well known that phytoplankton cultures, when extremely diluted, show a lag phase of different duration55 which has been attributed to the net leakage of metabolites56. Assuming that the duration of the lag phase will be dependent on the level of dilution, it seems reasonable to deduce that after ca. 24 h the instantaneous growth rates (µ) in the most diluted treatments will be lower than that of the undiluted treatments. This has consequences, not only for the estimated prey growth rates but also for the whole assessment of the grazing rate, due to the flattening of the regression line (i.e., the decrease in the computed growth rate). This artefact may be more evident in cultures acclimated to very particular conditions (as the laboratory cultures used in this study) than in nature.Another important finding of our research is the importance of light on the correct expression of the feeding activity by both mixoplankton and protozooplankton. We noticed that irrespective of the light conditions, all species exhibited a diurnal feeding rhythm (R. salina panels in Figs. 2 and 3), which is in accordance with earlier observations on protists (e.g.,29,57,58). The presence of light typically increased the ingestion rates. Additionally, the ingestion rates differed during the night period between L/D and D treatments, which implies that receiving light during the day is also vital in modulating the night behaviour of protoozoo- and mixoplankton. In particular, mixoplankton grazing is usually affected by light conditions, typically increasing (e.g.,32,59), but also sometimes decreasing(e.g.,60) in the presence of light. Different irradiance levels can also affect the magnitude of ingestion rates both in protozoo- and mixoplankton (see61 and references therein).For those reasons, we hoped for a rather consistent pattern among our protists that would help us discriminate mixoplankton in dilution grazing experiments. As a matter of fact, based on the results from Arias et al.29, we expected that in the dinoflagellate experiment, the D treatment would have inhibited only the grazing of K. armiger, enabling a simple discrimination between trophic modes. The reality did not meet the expectations since the day and night-time carbon-specific ingestion rates (as assessed using the control bottles, Table 2) of K. armiger were respectively higher and equal than those of G. dominans. Conversely, in the ciliate experiment, protozooplankton were the major grazers in our incubations regardless of the day period and light conditions. This response was not as straightforward as one would expect it to be because M. rubrum has been recently suggested to be a species complex containing at least 7 different species (62 and references therein), which hinders any possible conjecture on their grazing impact. Indeed, the uneven responses found between and within trophic modes precluded such optimistic hypothetical procedure.The D treatment in the present paper illustrated the importance of mimicking natural light conditions, a factor also addressed in the original description of the technique by Landry and Hassett1. It is crucial for the whole interpretation of the dilution technique that incubations should be conducted in similar light (and temperature) conditions as the natural ones to allow for the continued growth of the phototrophic prey. However, here we want to stress another aspect of the incubations: should they start during the day or the night? Considering our (and previous) results on diel feeding rhythms, and on the contribution of each species to the total Chl a pool, it is clear that different results will be obtained if the incubations are started during the day or the night. Besides, whether day or night, organisms are also likely to be in a very different physiological state (either growing or decreasing). Therefore, we recommend that dilution experiments conducted in the field should always be started at the same period of the day to enable comparisons (see also Anderson et al.14 for similar conclusions on bacterivory exerted by small flagellates). Ideally, incubations would be started at different times of the day to capture the intricacies of the community dynamics on a diel cycle. Nevertheless, should the segmented analysis be impossible, we argue that the right time to begin the incubations would be during the night, as this is the time where ingestion rates by protozooplankton are typically lower (e.g.,29,57,58, this study) and would, consequently, reduce their quota of Chl a in the system.Lastly, we want to stress that we are aware that our study does not represent natural biodiversity because our experiments were conducted in the laboratory with a few species. Nevertheless, we attempted to use common species of wide distribution for each major group of protists to provide a better institutionalisation of our conclusions. Further to the choice of predator and prey is their concentrations and proportions. Being a laboratory experiment designed to understand fundamental mechanisms within a dilution grazing experiment, we departed from near saturating food conditions from where we started the dilution series. In nature, the concentrations that we used may be high but are not unrealistic, and actually lower than in many bloom scenarios. We included diatoms at high concentrations, even knowing that they are not the preferred prey of most grazers34, because diatoms are very abundant in many natural ecosystems and to stress the point of food selection within the experiment. For sure, using different proportions of prey would have rendered different results. However, as previously mentioned, our aim was not to seek flaws in the dilution technique, but to understand the role of mixoplankton in these experiments and the complex trophic interactions that may occur within. Ultimately, with our choice of prey and their concentrations, we have proven that when there is no selection for a massively abundant prey, the use of Chl a as a proxy for community abundances may underestimate actual grazing rates.Some other aspects of our experiments may also be criticised because they do not fully match a standard dilution experiment. For instance, we manipulated light, adding complexity to the study. However, this manipulation enabled the deepening into the drivers of the mixoplanktonic and protozooplanktonic grazing responses. Another characteristic, perhaps awkward, of our study is that we allowed the grazers to deplete their prey before starting the experiment. One may argue this procedure does not mimic the natural previous trophic history a grazer may have in nature. Yet, in nature, when facing a dilution experiment, it is impossible to ascertain whether the organisms are encountering novel prey or not. Indeed, they (prey and predator) could have just migrated into such conditions, or be subject to famine, or just moved from a food patch. In any case, it is true that a consistent “hunger response” would have affected our initial grazing values, biasing grazing rate estimates. To overcome this artefact, we let the grazers feed for about one hour before starting the actual dilution assay (see the “Methods” section). From that point on, any dilution is, in fact, an abrupt alteration of the food scenario, which is likely more important than the previous trophic history of the grazer.In summary, with these laboratory experiments, we have presented evidence calling for a revision of the use of chlorophyll in dilution grazing experiments5,10, and we have highlighted the need to observe the organismal composition of both initial and final communities to better understand the dynamics during the dilution grazing experiments51. This approach will not incorporate mixoplanktonic activity into the dilution technique per se however if combined with LFLA (see5,17), a semi-quantitative approach to disentangle the contribution of mixoplankton to community grazing could be achieved (although not perfect). An alternative (and perhaps more elegant) solution could be the integration of the experimental technique with in silico modelling. The modelling approaches of the dilution technique have already been used, for example, to disentangle niche competition63 and to explore nonlinear grazer responses20. We believe that our experimental design and knowledge of the previously indicated data could be of use for the configuration of a dilution grazing model, which could then be validated in the field (and, optimistically, coupled to the ubiquitous application of the dilution technique across the globe). We cannot guarantee that having a properly constructed model that mimics the dilution technique will be the solution to the mixoplankton paradigm. However, it may provide a step towards that goal as it could finally shed much-needed light on the mixo- and heterotrophic contributions to the grazing pressure of a given system. To quote from the commentary of Flynn et al.6, it could provide the answer to the question of whether mixoplankton are de facto “another of the Emperor’s New Suit of Clothes” or, “on the other hand (…) collectively worthy of more detailed inclusion in models”. More

  • in

    Estimating and predicting snakebite risk in the Terai region of Nepal through a high-resolution geospatial and One Health approach

    Our results showed that covariates at different geographical scales (national and local) may have important effects on the risk of snakebite, both for humans and animals. The results indicate that the risk of snakebite in the Terai varies at national scale between clusters and at local scale between households. The evaluation of the final models without spatial random components and the worsening of the models’ goodness of fit as a result highlighted how snakebite risk and its determining factors are indeed spatially structured.A strong association between high snakebite incidence and mortality, and poverty was established from the analysis of 138 countries affected by the disease32. In this study, we identified the PPI, an indicator for poverty, as a highly influential risk-increasing factor for humans. This not only confirms the critical role of poverty as a driver for this Neglected Tropical Disease, but also offers the possibility to use a standardized index at individual household scale for similar studies. Chaves et al.33 used the Poverty Gap, which is a simpler index expressing how far a person is from the average national poverty line, but to our knowledge, no study has used PPI for snakebite in any way. Applying PPI as a snakebite risk predictor also addresses previous expert calls for an Ecohealth approach to consider the relationship between the structural characteristics of houses, poverty, and snakebite34.Three of the survey covariates had significant effects on the odds of snakebite. Food storage and straw storage increased them, while sleeping on the floor reduce them. The effect of the first two covariates is likely to be related to prey availability, represented by rodents, which are attracted by food and shelter sources. Both food and straw are very often stored near dwellings, which in the end multiply the number of possible encounters between humans, domestic animals, and the hunting snakes20. The expected snakebite risk reduction effect by sleeping on the floor is more complex though. Previously, a higher snakebite incidence was reported among rural Hindus in Maharashtra, India, due to their custom of sleeping on the floor35,36, while in Nepal, Chappuis et al. did not find any protective effect or significant difference in snakebite cases between sleeping on a cot or on the floor37. This result, nevertheless, might be influenced again by regional customs that make sleeping on the floor more common in eastern Terai (71.1% of all affirmative answers to this question), and second, by the commonly acknowledged prevalence of kraits (Bungarus spp.) in western Terai, which are the species most commonly linked to bites to people sleeping on the floor while hunting at night inside houses22,38. This geographic separation, between the human behaviour and the distribution of the species considered to cause most bites linked to it, could explain the observed shift in the odds towards a reduction effect. This effect should be further explored in localized studies designed to capture behavioural differences in humans and snakes.For both the general human risk model and its equivalent prediction model, the covariate Distance to water had a significant risk-increasing effect. For each additional km in distance from permanent water sources, the odds of snakebite increased by 1.38 and 1.51 times, respectively. From a human perspective and in this socio-economic framework, it would be important to consider not only the distance to water, but also the path taken to get the water (or any other resource). If this path would lead a person through grasslands and open fields, this could imply an increased risk of snakebite. From an ecological perspective, there are two important aspects to consider in relation to water sources. One is, as in this study, the distance from large, constant water sources, which usually represent stable environments subject to less hydric stress. The second (not considered here) are the human-made water sources, such as ponds, reservoirs, and paddy fields that change often, are usually closer to human dwellings, and are known to attract some medically important venomous snakes (MIVS)5. Studies on snake migration and home range use have concluded that depending on species and ecological conditions, snakes can move between a few tens of meters per day and more than 10 km between seasons, while searching for water and prey resources38,39,40,41. In sub-tropical regions like the Terai, snakes living closer to continuous sources of water and vegetation should have easier access to a wider variety of prey. On the contrary, those living in agricultural areas might need to scout farther in the search for resources, encountering human-made waterbodies and prey, such as rodents42 and amphibians, abundant in this region10. Further studies considering all sources of water, and species ecology, biology and richness would be necessary to completely understand the effect of this and similar eco-physiological covariates.Another important factor was the NDVI, which is a commonly used value to express photosynthetic activity, leaf production and in summary the ‘greenness’ of the environment43. As is the case for other covariates, its interpretation depends on the study circumstances. In Iran, it was considered an indicator of prey availability for snakes and linked to snake habitat suitability14. Elevated NDVI values have been associated with higher number of hospitalizations in Nigeria and northern Ghana, in particular during the periods of high agricultural activity, which is also related to higher snake-human contact and higher snakebite incidence43. In our study, its ‘protective’ effect can indeed be the consequence of better access to prey associated with healthier ecosystems, explained in the Terai by the higher NDVI values of the multiple dense forests distributed along the region. In addition, the averaged NDVI values for agricultural areas should be lower than those for perennial forests, because they include the highs and lows of production and harvest.Environmental drivers like temperature and precipitation are common factors in geospatial analyses of snakebite13,14,17,44. They are found in many cases to be the main factors modulating the incidence or risk of snakebite, while varying in importance according to study conditions. For example, in Iran, precipitation seasonality was the most prevalent climatic covariate determining the habitat suitability leading to snakebite risk14, while in Mozambique, temperature seasonality was the predominant covariate13. Despite the Terai’s sub-tropical climate, the range of the average minimum temperature of the coldest month (BIO6) was 1.8–10.9 °C. For our snakebite risk analysis in animals, an increase of 10 °C of BIO6 between any two points represented an increase in the odds of snakebite of 23.41 times. For snakes, this range could be the difference between total lethargy and partial activity45, which could lead to increased numbers of snakebites. In addition, and according to the production and holding practices of domestic animals in the Terai, this temperature range can also represent the difference between animals (mainly ruminants) being kept in sheds when at the lower range limits, or being let out of them at the upper limits, which would again increase the chances of encounters with snakes.Similarly, for the animal model, pig density and sheep density, significantly influenced the variation in the risk of snakebite for animals in the Terai. This could be due to the conditions in which the animals and their feed are kept, favouring environments that are beneficial for either snakes or their prey. At more local scales, rather than the distribution, the presence of other animal species could instead be the factor associated with higher snakebite rates12. However, since the available data on domestic animal density was produced more than 10 years ago, and the animal population has grown substantially in the last years in Nepal, this outcome should be interpreted with caution.For the animal risk, the possession of an animal shed also significantly increased the odds of snakebite. Similar to straw storage, animal sheds and similar constructions offer some shelter and at the same time attract small (prey) animals, both of which are likely to attract snakes, increasing snakebite risk for the animals using the shed. If in addition, the sheds function as poultry coops, the snake hunting behaviour might be instead targeted towards chicks and chickens12. Mitigation measures such as raising the coop’s floor or securing openings with fine metal mesh have been suggested to reduce this risk12.The human modification of terrestrial systems was the only non-significant covariate in the animal risk model. However, as its strong, risk-reducing effect still seems to explain a lot of the response variation, it was retained. Its change in one unit, i.e., going from a pristine to fully modified environment, decreased the odds of snakebite by 0.13 (equivalent to 7.69 times), which agrees with previous national survey results from Sri Lanka21.For our human risk prediction model, four covariates were either significant or helped to explain the changes in the response. Distance to water and NDVI were clearly significant, and precipitation of the driest quarter (BIO17) and the mean annual temperature (BIO1) helped to explain some of the response variation with convincing, unambiguous effects. For BIO17, an increase of 100 mm of rain during the driest months of the year represented an odds-reduction effect equivalent to 8.33 times. This agrees with the results of distance to water, suggesting that the additional availability of resources during water shortage periods, i.e., almost four times more rain (BIO17 range: 18–71 mm), could locally improve ecological conditions for snakes also leading to less scouting and fewer human encounters. Previous studies have analysed the multilevel ecological effects of droughts, e.g., reducing snake prey and leading snakes to engage in riskier behaviours46,47. For BIO1, the protective effect was weaker. An increase of 10 °C represented a reduction of the odds of snakebite equivalent to 3.57 times. Average temperatures for specific locations are difficult to interpret, since they might depend on mild highs and lows, strong highs and lows, or relative combinations of both. Thus, despite having a relatively important effect on the response, this effect still might be the consequence of confounding and unknown interactions.Several other evaluated covariates, for both humans and animals, showed a negligible effect on describing the response, were not significant while having very large uncertainties, or both. Consequently, they were discarded as predicting factors. For the list of baseline covariates evaluated, see supplementary Table S1. For a complete list of available survey covariates, see Alcoba et al.27.Some of our discarded covariates have been important in other studies, for example, to quantify snakebite risk based on reclassification methods of covariates such as habitat suitability, species presence, or envenoming severity13,14,17,44,48. These methods are especially relevant when one species (or very few) is the cause of most snakebite cases, and has differentiated optimal and sub-optimal habitats. In Nepal, and particularly in the Terai, there are at least two, and sometimes more than 10 MIVS with overlapping distributions49. Thus, it could be said that practically the whole region offers suitable habitat for multiple MIVS. In addition, the impossibility of reliably identifying the species having bitten the surveyed victims hindered the use of single species in the analysis. In our analysis, species richness was removed, as it showed almost no effect on the response. A recent meta-analysis reported an equivalent result at global scale, finding no significant difference between the number of venomous snake species in tropical and temperate locations, while the number of snakebites is clearly higher in tropical areas50. These results suggested that high incidence of snakebite is unrelated to species richness, but instead related to other factors like the number of people working in agricultural environments21,32,50. Another important driver of snakebite incidence has been population density50. In our study, however, any possible effect from population density on the risk was diminished by the random selection of households at specific numbers during study design. This was later confirmed by the minimal effect of population density as covariate in the human risk analysis.This study presents a few limitations. For instance, despite the capacity of the INLA method to borrow strength from neighbouring observations and areas, the selection of adequate covariates with enough explanatory power still depends greatly on the number of snakebite cases, which even for a national scale study like this remains small. Also, some of the covariates with the strongest explanatory power came from our household survey, which prevented their use for generalized spatial prediction models. Concerning the animal risk analysis, due to the small number of snakebite cases we opted to aggregate all animal species and consider a grouped response. Thus, for a spatial analysis of animal risk, it was not worth it to consider each species, since that would dilute further an already sparse dataset in individual models and selection processes. Moreover, the data gathered for animals was dependent on the random selection of (human) households and unrelated to the current distribution of animal populations. This, in addition to the possible number of dry bites that go unnoticed, might be responsible for the low number of animal victims recorded (even combined across all species), making a more detailed analysis unfeasible.Despite the large number of covariates examined during our analysis, very few were useful to predict snakebite risk along the Terai. It is possible that confounders or other difficult-to-measure covariates could better explain the complex relationship between the ecology and biology of MIVS, socio-economic factors, human behavioural traits, and the circumstances around domestic animal keeping. This needs to be further explored, following a recent call for an overarching One Health and Ecohealth approach to better understand the drivers for snakebite risk, incidence, and mortality under specific situations34.In conclusion, snakebite is a multi-factorial disease and there is no possible universal approach to model its risk. Each model should be individually designed for each set of socio-economical, geographic, ecological, cultural, and environmental circumstances19. To better understand and address the snakebite problem, it is necessary to approach it, whenever possible, with local data collected at a national scale, so that the conclusions drawn can fuel appropriate national public health policies and actions. As long as people work, live, and keep their domestic animals in close contact with natural environments with MIVS, the risk of snakebite will be present. However, better understanding of the factors influencing that risk at the most granular scale possible, and the estimation of the populations at risk, can help to better target prevention and mitigation measures. For humans, this evidence can channel efforts towards improved access to treatment through the optimized stockpiling of antivenom, and the improvement, relocation or new construction of treating facilities, but more importantly, towards community education and sensitization in preventive campaigns51. Part of that preventive and educative efforts can be done at household level, by promoting and facilitating the use of protective equipment such as rubber boots, or the guidance on how to improve and adapt their immediate surroundings to make them ecologically less attractive for snakes and their prey. For domestic animals, this information could help better target awareness-raising activities for animal owners and implement mitigation strategies. For animals at higher risk, tailored interventions such as the improvement of housing conditions, regular cleaning of sheds and surrounding areas (e.g., from food waste and surrounding vegetation), and using light when animals are walked out of the enclosure at night could be deployed specifically as snakebite prevention measures52. It is also important to highlight that many of the factors analysed in this study affect most directly the snakes themselves, not only as snakebite agents, but also as a diverse group of species, differently affected by ecological, climatic and environmental factors in a multiplicity of settings shared with humans and domestic animals. It is therefore necessary to further investigate how those factors influence the behavioural and ecological traits of MIVS in order to truly understand this disease from a One Health viewpoint. At stake is the reduction of snakebite envenoming incidence rates in humans and animals, and of its possible long-term sequelae on human populations. More

  • in

    Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system

    1.Muok AR, Briegel A. Intermicrobial hitchhiking: how nonmotile microbes leverage communal motility. Trends Microbiol. 2021;29:542–50.CAS 
    PubMed 

    Google Scholar 
    2.Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.CAS 
    PubMed 

    Google Scholar 
    3.Simon A, Bindschedler S, Job D, Wick LY, Filippidou S, Kooli WM, et al. Exploiting the fungal highway: development of a novel tool for the in situ isolation of bacteria migrating along fungal mycelium. FEMS Microbiol Ecol. 2015;91:fiv116.PubMed 

    Google Scholar 
    4.Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.CAS 
    PubMed 

    Google Scholar 
    5.Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9:177.CAS 
    PubMed 

    Google Scholar 
    6.Otten W, Hall D, Harris K, Ritz K, Young IM, Gilligan CA. Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. N. Phytol. 2001;151:459–68.
    Google Scholar 
    7.Sun B, Chen X, Zhang X, Liang A, Whalen JK, McLaughlin NB. Greater fungal and bacterial biomass in soil large macropores under no-tillage than mouldboard ploughing. Eur J Soil Biol. 2020;97:103155.CAS 

    Google Scholar 
    8.Otto S, Bruni EP, Harms H, Wick LY. Catch me if you can: dispersal and foraging of Bdellovibrio bacteriovorus 109J along mycelia. ISME J. 2017;11:386–93.PubMed 

    Google Scholar 
    9.Kjeldgaard B, Listian SA, Ramaswamhi V, Richter A, Kiesewalter HT, Kovács ÁT. Fungal hyphae colonization by Bacillus subtilis relies on biofilm matrix components. Biofilm. 2019;1:100007.PubMed 
    PubMed Central 

    Google Scholar 
    10.Narr A, Nawaz A, Wick LY, Harms H, Chatzinotas A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front Microbiol. 2017;8:1975.PubMed 
    PubMed Central 

    Google Scholar 
    11.Rosner A, Gutstein R. Adsorption of actinophage Pal 6 to developing mycelium of Streptomyces albus. Can J Microbiol. 1981;27:254–7.CAS 
    PubMed 

    Google Scholar 
    12.Ghanem N, E. Stanley C, Harms H, Chatzinotas A,Y, Wick L. Mycelial effects on phage retention during transport in a microfluidic platform. Environ Sci Technol. 2019;53:11755–63.CAS 
    PubMed 

    Google Scholar 
    13.Dennehy JJ. What ecologists can tell virologists. Annu Rev Microbiol. 2014;68:117–35.CAS 
    PubMed 

    Google Scholar 
    14.Hurst CJ, Gerba CP, Cech I. Effects of environmental variables and soil characteristics on virus survival in soil. Appl Environ Microbiol. 1980;40:1067–79.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Yeager JG, Brien RT. Enterovirus inactivation in soil. Appl Environ Microbiol. 1979;38:694–701.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Schwartz DA, Lindell D. Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them. ISME J. 2017;11:1836–51.PubMed 
    PubMed Central 

    Google Scholar 
    17.Shan J, Ramachandran A, Thanki AM, Vukusic FBI, Barylski J, Clokie MRJ. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci Rep. 2018;8:5091.PubMed 
    PubMed Central 

    Google Scholar 
    18.Chaudhry W, Lee E, Worthy A, Weiss Z, Grabowicz M, Vega NM, et al. Mucoidy, a general mechanism for maintaining lytic phage in populations of bacteria. FEMS Microbiology Ecology. 2020;96:fiaa162.19.Yu Z, Schwarz C, Zhu L, Chen L, Shen Y, Yu P. Hitchhiking behavior in bacteriophages facilitates phage infection and enhances carrier bacteria colonization. Environ Sci Technol. 2020;55:2462–72.PubMed 

    Google Scholar 
    20.Tarafder AK, von Kügelgen A, Mellul AJ, Schulze U, Aarts DGAL, Bharat TAM. Phage liquid crystalline droplets form occlusive sheaths that encapsulate and protect infectious rod-shaped bacteria. Proc Natl Acad Sci. 2020;117:4724–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Callaway RM, Ridenour WM. Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ. 2004;2:436–43.
    Google Scholar 
    22.Granato ET, Meiller-Legrand TA, Foster KR. The evolution and ecology of bacterial warfare. Curr Biol. 2019;29:521–37.
    Google Scholar 
    23.Gama JA, Reis AM, Domingues I, Mendes-Soares H, Matos AM, Dionisio F. Temperate Bacterial viruses as double-edged swords in bacterial warfare. PLoS One. 2013;8:e59043.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Dragoš A, Andersen AJC, Lozano-Andrade CN, Kempen PJ, Kovács ÁT, Strube ML. Phages carry interbacterial weapons encoded by biosynthetic gene clusters. Curr Biol. 2021;31:3479–89.PubMed 

    Google Scholar 
    25.Pyšek P, Bacher S, Kühn I, Novoa A, Catford JA, Hulme PE, et al. Macroecological framework for invasive aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota. 2020;62:407–61.
    Google Scholar 
    26.Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, et al. A proposed unified framework for biological invasions. Trends Ecol Evol. 2011;26:333–9.PubMed 

    Google Scholar 
    27.Richardson DM, Pyšek P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog Phys Geogr Earth Environ. 2006;30:409–31.
    Google Scholar 
    28.Williamson M. Explaining and predicting the success of invading species at different stages of invasion. Biol Invasions. 2006;8:1561–8.
    Google Scholar 
    29.Demerec M, Adelberg EA, Clark AJ, Hartman PE. A proposal for a uniform nomenclature in bacterial genetics. Genetics 1966;54:61–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Dechesne A, Wang G, Gülez G, Or D, Smets BF. Hydration-controlled bacterial motility and dispersal on surfaces. Proc Natl Acad Sci. 2010;107:14369–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Defao G. Influence of enhanced antibiotic production in Pseudomanas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathol. 1992;82:190–5.CAS 

    Google Scholar 
    32.Schamfuß S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol. 2013;47:6908–15.PubMed 

    Google Scholar 
    33.Bichet MC, Chin WH, Richards W, Lin Y-W, Avellaneda-Franco L, Hernandez CA, et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience. 2021;24:102287.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Lu F, Wu S-H, Hung Y, Mou C-Y. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small. 2009;5:1408–13.CAS 
    PubMed 

    Google Scholar 
    35.Fortier L-C, Moineau S Phage production and maintenance of stocks, including expected stock Lifetimes. In: Clokie MRJ, Kropinski AM, editors. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Totowa: Humana Press; 2009. p. 203–19.36.Mazzocco A, Waddell TE, Lingohr E, Johnson RP Enumeration of Bacteriophages Using the Small Drop Plaque Assay System In: Clokie MRJ, Kropinski AM, editors. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions Totowa: Humana Press; 2009. p. 81–85.37.Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP Enumeration of Bacteriophages by Double Agar Overlay Plaque Assay In: Clokie MRJ, Kropinski AM, editors. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions. Totowa: Humana Press; 2009. p. 69–76.38.Thanki AM, Taylor-Joyce G, Dowah A, Yakubu Nale J, Malik D, Rebecca Jane Clokie M. Unravelling the Links between Phage Adsorption and Successful Infection in Clostridium difficile. Viruses. 2018;10:441.39.Nair RR, Fiegna F, Velicer GJ. Indirect evolution of social fitness inequalities and facultative social exploitation. Proc R Soc B Biol Sci. 2018;285:20180054.
    Google Scholar 
    40.Postma M, Goedhart J. PlotsOfData—A web app for visualizing data together with their summaries. PLOS Biol. 2019;17:e3000202.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Wood M. Statistical inference using bootstrap confidence intervals. Significance. 2004;1:180–2.
    Google Scholar 
    42.Cumming G, Finch S. Inference by eye: confidence interval and how to read pictures of data. Am Psychol. 2005;60:170–80.PubMed 

    Google Scholar 
    43.Frada MJ, Schatz D, Farstey V, Ossolinski JE, Sabanay H, Ben-Dor S, et al. Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean. Curr Biol. 2014;24:2592–7.CAS 
    PubMed 

    Google Scholar 
    44.Frada MJ, Vardi A. Algal viruses hitchhiking on zooplankton across phytoplankton blooms. Commun Integr Biol. 2015;8:e1029210.PubMed 
    PubMed Central 

    Google Scholar 
    45.Totsche KU, Kögel-Knabner I. Mobile organic sorbent affected contaminant transport in soil: numerical case studies for enhanced and reduced mobility. Vadose Zo J. 2004;3:352–67.CAS 

    Google Scholar 
    46.Reche I, D’Orta G, Mladenov N, Winget DM, Suttle CA. Deposition rates of viruses and bacteria above the atmospheric boundary layer. ISME J. 2018;12:1154–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Lehmann K, Lehmann R, Totsche KU. Event-driven dynamics of the total mobile inventory in undisturbed soil account for significant fluxes of particulate organic carbon. Sci Total Environ. 2021;756:143774.CAS 
    PubMed 

    Google Scholar 
    48.Storms ZJ, Sauvageau D. Modeling tailed bacteriophage adsorption: insight into mechanisms. Virology. 2015;485:355–62.CAS 
    PubMed 

    Google Scholar 
    49.Shan Y, Harms H, Wick LY. Electric field effects on bacterial deposition and transport in porous media. Environ Sci Technol. 2018;52:14294–301.CAS 
    PubMed 

    Google Scholar 
    50.Junier P, Cailleau G, Palmieri I, Vallotton C, Trautschold OC, Junier T, et al. Democratization of fungal highway columns as a tool to investigate bacteria associated with soil fungi. FEMS Microbiol Ecol. 2021;97:fiab003.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Furuno S, Remer R, Chatzinotas A, Harms H, Wick LY. Use of mycelia as paths for the isolation of contaminant-degrading bacteria from soil. Micro Biotechnol. 2012;5:142–8.CAS 

    Google Scholar 
    52.Jiang F, Zhang L, Zhou J, George TS, Feng G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. N. Phytol. 2021;230:304–15.CAS 

    Google Scholar 
    53.Jansa J, Hodge A. Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. N. Phytol. 2021;230:14–16.
    Google Scholar 
    54.Zhang Y, Kastman EK, Guasto JS, Wolfe BE. Fungal networks shape dynamics of bacterial dispersal and community assembly in cheese rind microbiomes. Nat Commun. 2018;9:336.PubMed 
    PubMed Central 

    Google Scholar 
    55.Ping D, Wang T, Fraebel DT, Maslov S, Sneppen K, Kuehn S. Hitchhiking, collapse, and contingency in phage infections of migrating bacterial populations. ISME J 2020;14:2007–18.PubMed 
    PubMed Central 

    Google Scholar 
    56.Testa S, Berger S, Piccardi P, Oechslin F, Resch G, Mitri S. Spatial structure affects phage efficacy in infecting dual-strain biofilms of Pseudomonas aeruginosa. Commun Biol. 2019;2:405.PubMed 
    PubMed Central 

    Google Scholar 
    57.May T, Tsuruta K, Okabe S. Exposure of conjugative plasmid carrying Escherichia coli biofilms to male-specific bacteriophages. ISME J. 2011;5:771–5.CAS 
    PubMed 

    Google Scholar 
    58.Abedon ST. Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages. AIMS Microbiol. 2017;3:186.PubMed 
    PubMed Central 

    Google Scholar 
    59.Adams MH Bacteriophages (Interscience Publishers, Inc., New York – London, 1959)60.Schrader HS, Schrader JO, Walker JJ, Bruggeman NB, Vanderloop JM, Shaffer JJ, et al. Effects of host starvation on bacteriophage dynamics. Bact Oligotrophic Environ Starvation-Survival Lifestyle. 1997; 368-85.61.Schrader HS, Schrader JO, Walker JJ, Wolf TA, Nickerson KW, Kokjohn TA. Bacteriophage infection and multiplication occur in Pseudomonas aeruginosa starved for 5 years. Can J Microbiol. 1997;43:1157–63.CAS 
    PubMed 

    Google Scholar 
    62.Łoś M, Golec P, Łoś JM, Węglewska-Jurkiewicz A, Czyż A, Węgrzyn A, et al. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol. 2007;7:13.PubMed 
    PubMed Central 

    Google Scholar 
    63.Bryan D, El-Shibiny A, Hobbs Z, Porter J, Kutter EM. Bacteriophage T4 infection of stationary phase E. coli: life after log from a phage perspective. Front Microbiol. 2016;7:1391.PubMed 
    PubMed Central 

    Google Scholar 
    64.Yin J. A quantifiable phenotype of viral propagation. Biochem Biophys Res Commun. 1991;174:1009–14.CAS 
    PubMed 

    Google Scholar 
    65.Chatterjee A, Willett JLE, Dunny GM, Duerkop BA. Phage infection and sub-lethal antibiotic exposure mediate Enterococcus faecalis type VII secretion system dependent inhibition of bystander bacteria. PLOS Genet. 2021;17:e1009204.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Berthold T, Centler F, Hübschmann T, Remer R, Thullner M, Harms H, et al. Mycelia as a focal point for horizontal gene transfer among soil bacteria. Sci Rep. 2016;6:36390.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Lee KL, Hubbard LC, Hern S, Yildiz I, Gratzl M, Steinmetz NF. Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct. Biomater Sci. 2013;1. https://doi.org/10.1039/C3BM00191A.68.Hudson P, Greenman J. Competition mediated by parasites: biological and theoretical progress. Trends Ecol Evol. 1998;13:387–90.CAS 
    PubMed 

    Google Scholar 
    69.Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, et al. Ecological and evolutionary insights from species invasions. Trends Ecol Evol. 2007;22:465–71.PubMed 

    Google Scholar 
    70.Wagner PL, Waldor MK. Bacteriophage control of bacterial virulence. Infect Immun. 2020;70:3985–93.
    Google Scholar 
    71.Chantrey J, Dale TD, Read JM, White S, Whitfield F, Jones D, et al. European red squirrel population dynamics driven by squirrelpox at a gray squirrel invasion interface. Ecol Evol. 2014;4:3788–99.PubMed 
    PubMed Central 

    Google Scholar 
    72.Essl F, Bacher S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, et al. Which taxa are alien? Criteria, applications, and uncertainties. Bioscience 2018;68:496–509.
    Google Scholar 
    73.Seebens H, Gastner MT, Blasius B. The risk of marine bioinvasion caused by global shipping. Ecol Lett. 2013;16:782–90.CAS 
    PubMed 

    Google Scholar 
    74.Seebens H, Essl F, Blasius B. The intermediate distance hypothesis of biological invasions. Ecol Lett. 2017;20:158–65.PubMed 

    Google Scholar 
    75.Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, et al. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol. 2008;45:403–14.
    Google Scholar 
    76.Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ. 2012;10:135–43.
    Google Scholar  More