More stories

  • in

    Microbiomes of an oyster are shaped by metabolism and environment

    More detailed methods can be found in the supplementary material. Data from this experiment on the characterisation of the microbial community and its response to climate change has been previously published in Scanes et al.12, therefore, the present study focussed on the interaction of metabolic processes with the microbiome. We examined the links between climate change, metabolism, genotype and microbiome of the Sydney rock oyster, Saccostrea glomerata20. Nine oyster aquacultural breeding lineages (labelled as genotype-lines A–I) of S. glomerata, which are known to differ in their resilience to climate change12 were exposed to ambient and elevated temperature and PCO2 treatments. All seawater used in acclimation and experimental exposure was collected from Little Beach, Port Stephens (152°9′30.00″E, 32°42′43.03″S), filtered through canister filters to a nominal 5 µm, and stored onsite in 38,000 L polyethylene tanks as a stock of filtered seawater.Approximately 72 individual S. glomerata, from each of the nine families (A-I) were collected from intertidal leases in Cromarty Bay, Port Stephens (152° 4′0.69″E, 32°43′19.69″S). Oysters were held on private leases so a collection permit was not required. Oysters were collected in September 2019 for experiments, meaning all oysters were 22 months old when experiments began. Oysters were placed into a 2000 L fibreglass tank and maintained at 24 °C, a salinity of 35 ppt and ambient PCO2 (pH 8.18) for two weeks to acclimate to laboratory conditions. Following acclimation, oysters from each genotype-line were divided among twelve 750 L polyethylene tanks filled with 400 L of filtered seawater (5 µm) at a density of 54 oysters per tank, with each genotype-line represented by six replicate individuals. Treatments consisted of orthogonal combinations of two PCO2 concentrations (ambient [400 µatm]; elevated [1000 µatm]) and two temperature treatments (24 and 28 °C). Each combination was replicated across three tanks. Treatments were selected to represent temperatures and PCO2 concentrations predicted for 2080–2100 by the IPCC27 and reflect measured changes in estuary temperatures reported from south eastern Australia20.Once oysters were transferred to experimental tanks, the PCO2 level and temperature were steadily increased in elevated exposure tanks over one week until the experimental treatment level was reached. The elevated CO2 level was maintained using a pH negative feedback system (Aqua Medic, Aqacenta Pty Ltd, Kingsgrove, NSW, Australia; accuracy ± 0.01 pH units) bubbling food grade CO2 (BOC Australia) through a mixing chamber and into each tank, previously described in18. These PCO2 levels corresponded to a mean ambient pHNBS of (8.18 ± 0.01) and at elevated CO2 levels a mean pHNBS of (7.84 ± 0.01). Temperature was increased and then maintained using 1000 W aquarium heaters in each tank. Oysters were then exposed to their respective treatments for a further four weeks. Oysters were checked daily for mortality; no dead oysters were found in any tanks during the four-week exposure period.Haemolymph sampling for DNA extractionFollowing exposure to experimental conditions, haemolymph was taken from two replicate oysters, from each genotype-line, from each tank for microbial analysis following the methods previously described in Scanes et al.,12. This amounted to six individuals from each genotype-line, in each treatment. Each oyster was opened using an autoclave sterilised shucking knife, ensuring that the pericardial cavity was not ruptured. Excess fluid was tipped off the tissue surface and 200–300 µL of haemolymph was extracted from the pericardial cavity using a new sterile 1 mL needled syringe (Terumo Co.). Samples from two oysters were transferred to two new pre-labelled DNA/RNA free 1 mL tubes (Eppendorf Co.) and immediately frozen at − 80 °C where they were stored until DNA extraction.We used 16 s rRNA amplicon sequencing to characterise the bacterial microbiome of S. glomerata haemolymph following the methods previously described in Scanes et al.12. DNA was extracted from 216 oyster haemolymph samples (9 genotype-lines × 4 treatments × 3 replicate tanks × 2 replicate oysters per tank) using the Qiagen DNeasy Blood and Tissue Kit (Qiagen Australia, Chadstone, VIC), according to the manufacturer’s instructions. The bacterial microbiome of the oyster haemolymph was characterised with 16S rRNA amplicon sequencing, using the 341F (CCTACGGGNGGCWGCAG) and 805R (GACTACHVGGGTATCTAATCC) primer pair28 targeting the V3-V4 variable regions of the 16S rRNA gene with the following cycling conditions: 95 °C for 3 min, 25 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 30 s, and a final extension at 72 °C for 5 min. Amplicons were sequenced on the Illumina Miseq platform (2 × 300 bp) following the manufacturer’s guidelines at the Ramaciotti Centre for Genomics, University of New South Wales. Raw data files in FASTQ format were deposited in NCBI Sequence Read Archive (SRA) under Bioproject number PRJNA663356.Sequence analysisRaw demultiplexed data was processed using the Quantitative Insights into Microbial Ecology (QIIME 2 version 2019.1.0) pipeline. Briefly, paired-end sequences were imported (qiime tools import), trimmed and denoised using DADA2 (version 2019.1.0). Sequences were identified at the single nucleotide threshold (Amplicon Sequence Variants; ASV) and taxonomy was assigned using the classify-sklearn QIIME 2 feature classifier against the Silva v138 database29. Sequences identified as chloroplasts or mitochondria were also removed. Cleaned data were then rarefied at 6,500 counts per sample.Physiological analysisWe measured physiological variables relating to oyster haemolymph metabolic function. These were: extracellular pH (pHe), extracellular CO2 concentrations (PCO2e) and the whole oyster metabolic rate (MR) measured as a standardised rate of oxygen consumption. Physiological measurements were taken from two oysters from each genotype-line in each tank (methods followed that of Parker et al.16,30 and Scanes et al.18). Oysters were immediately opened without rupturing the pericardial cavity. Haemolymph samples were drawn from the interstitial fluid filling the pericardial cavity chamber of an opened oyster using a sealed 1 mL needled syringe. A 0.2 mL sample was drawn carefully to avoid aeration of the haemolymph. Half of the sample was then immediately transferred to an Eppendorf tube where pHe of the sample was measured at 20 °C using a micro pH probe (Metrohm 827 biotrode). The remaining haemolymph was transferred to a gas analyser (CIBA Corning 965) to determine total CO2 (CCO2). The micro pH probe was calibrated prior to use with NBS standards at the acclimation temperature and the gas analyser was calibrated using manufacturer guidelines. Two oysters were sampled per genotype-line in each replicate tank. Partial pressure of CO2 in haemolymph (PCO2e) was calculated from the CCO2 using the modified Henderson-Hasselbalch equation according to Heisler31,32. Metabolic rate (MR) was determined using a closed respiratory system as previously described in Parker et al.16 and Scanes et al.18. Briefly, MR was measured in two oysters per genotype-line, per tank by placing oysters in a closed 500 mL glass chamber containing filtered seawater (5 µm) set at the correct treatment conditions. Oxygen concentrations were then measured within the chamber using a fibre optic dipping probe (PreSens dipping probe DP-PSt3, AS1 Ltd, Regensburg, Germany) and recorded (15 s intervals) until the oxygen concentration had been reduced by 20%, the time taken to reduce oxygen by 20% was recorded. Oysters were removed from the chambers, opened and the tissue was dried at 70 °C for 72 h. Tissue was then weighed on an electronic balance (± 0.001 g), and MR was calculated using Eq. (1):$$MR = frac{{left[ {V_{r} times Delta {text{C}}_{W} O_{2} } right]}}{{Delta t times {text{bw}}}}$$
    (1)

    where MR is oxygen consumption normalised to 1 g of dry tissue mass (mg O2 g−1 dry tissue mass h−1), Vr is the volume of the respiratory chamber minus the volume of the oyster (L), ΔCWO2 is the change in water oxygen concentration measured (mg O2L−1), Δt is the measuring time (h), bw is the dry tissue mass (g). Equation is modified from Parker et al.16.Data analysisIt was not possible to measure all variables in each oyster, but rather three individuals were needed to fulfil one replicate set of measurements. PCO2e and pHe could be measured in the same individual however, MR and the microbiome were measured in separate individuals. This meant that measurements were taken from 6 oysters per genotype-line, per replicate tank (each measurement replicated twice). To align physiological data with microbiome data we took a conservative approach where data from PCO2e and pHe, MR and the microbiome were randomly matched to individuals from the same genotype-line and replicate tank. This gave us the best approximation and is conservative because it increased variability compared to taking all measurements from the same individual. ANOVA was used to determine the significant (n = 210; P  More

  • in

    Parental methyl-enhanced diet and in ovo corticosterone affect first generation Japanese quail (Coturnix japonica) development, behaviour and stress response

    1.Hill, W. L. Importance of prenatal nutrition to the development of a precocial chick. Dev. Psychobiol. 26, 237–249. https://doi.org/10.1002/dev.420260502 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    2.van Emous, R. A., Kwakkel, R. P., van Krimpen, M. M., van den Brand, H. & Hendriks, W. H. Effects of growth patterns and dietary protein levels during rearing of broiler breeders on fertility, hatchability, embryonic mortality, and offspring performance. Poult. Sci. 94, 681–691. https://doi.org/10.3382/ps/pev024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Spratt, R. S. & Leeson, S. Broiler breeder performance in response to diet protein and energy. Poult. Sci. 66, 683–693. https://doi.org/10.3382/ps.0660683 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Walsh, T. J. & Brake, J. The effect of nutrient intake during rearing of broiler breeder females on subsequent fertility. Poult. Sci. 76, 297–305. https://doi.org/10.1093/ps/76.2.297 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Goodwin, K., Lamoreux, W. F. & Dickerson, G. E. Maternal effects in chickens: Performance of daughters from dams of differing ages. Poult. Sci. 43, 1435–1442. https://doi.org/10.3382/ps.0431435 (1964).Article 

    Google Scholar 
    6.Coakley, C. M., Staszewski, V., Herborn, K. A. & Cunningham, E. J. Factors affecting the levels of protection transferred from mother to offspring following immune challenge. Front Zool. 11, 46–46. https://doi.org/10.1186/1742-9994-11-46 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38. https://doi.org/10.1038/npp.2012.112 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Berger, S. L., Kouzarides, T., Shiekhattar, R. & Shilatifard, A. An operational definition of epigenetics. Genes Dev. 23, 781–783. https://doi.org/10.1101/gad.1787609 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Nelson, V. R. & Nadeau, J. H. Transgenerational genetic effects. Epigenomics 2, 797–806. https://doi.org/10.2217/epi.10.57 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Dupont, C., Armant, D. R. & Brenner, C. A. Epigenetics: Definition, mechanisms and clinical perspective. Sem. Reprod. Med. 27, 351–357. https://doi.org/10.1055/s-0029-1237423 (2009).CAS 
    Article 

    Google Scholar 
    11.Burdge, G. C., Hoile, S. P. & Lillycrop, K. A. Epigenetics: Are there implications for personalised nutrition?. Curr. Opin. Clin. Nutr. Metab. Care 15, 442–447. https://doi.org/10.1097/MCO.0b013e3283567dd2 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Anderson, O. S., Sant, K. E. & Dolinoy, D. C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853–859. https://doi.org/10.1016/j.jnutbio.2012.03.003 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Clare, C. E., Brassington, A. H., Kwong, W. Y. & Sinclair, K. D. One-carbon metabolism: Linking nutritional biochemistry to epigenetic programming of long-term development. Ann. Rev. Anim. Biosci. 7, 263–287. https://doi.org/10.1146/annurev-animal-020518-115206 (2019).CAS 
    Article 

    Google Scholar 
    14.Kadayifci, F. Z., Zheng, S. & Pan, Y.-X. Molecular mechanisms underlying the link between diet and DNA methylation. Int. J. Mol. Sci. 19, 4055. https://doi.org/10.3390/ijms19124055 (2018).Article 
    PubMed Central 

    Google Scholar 
    15.Waterland, R. A. & Jirtle, R. L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20, 63–68. https://doi.org/10.1016/j.nut.2003.09.011 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Eklund, M., Bauer, E., Wamatu, J. & Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 18, 31–48. https://doi.org/10.1079/nrr200493 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Ratriyanto, A., Indreswari, R., Dewanti, R. & Wahyuningsih, S. Egg quality of quails fed low methionine diet supplemented with betaine. IOP Conf. Ser. Earth Environ. Sci. 142, 012002. https://doi.org/10.1088/1755-1315/142/1/012002 (2018).Article 

    Google Scholar 
    18.Ratriyanto, A., Indreswari, R. & Nuhriawangsa, A. Effects of dietary protein level and betaine supplementation on nutrient digestibility and performance of Japanese quails. Braz. J. Poultry Sci. 19, 445–454 (2017).Article 

    Google Scholar 
    19.Fetterer, R. H., Augustine, P. C., Allen, P. C. & Barfield, R. C. The effect of dietary betaine on intestinal and plasma levels of betaine in uninfected and coccidia-infected broiler chicks. Parasitol. Res. 90, 343–348. https://doi.org/10.1007/s00436-003-0864-z (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Kettunen, H., Tiihonen, K., Peuranen, S., Saarinen, M. T. & Remus, J. C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 759–769. https://doi.org/10.1016/s1095-6433(01)00410-x (2001).CAS 
    Article 

    Google Scholar 
    21.Ratriyanto, A., Mosenthin, R., Bauer, E. & Eklund, M. Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals. Asian-Australas J. Anim. Sci. 22, 1461–1476. https://doi.org/10.5713/ajas.2009.80659 (2009).CAS 
    Article 

    Google Scholar 
    22.Zhan, X. A., Li, J. X., Xu, Z. R. & Zhao, R. Q. Effects of methionine and betaine supplementation on growth performance, carcase composition and metabolism of lipids in male broilers. Braz. Poult. Sci. 47, 576–580. https://doi.org/10.1080/00071660600963438 (2006).CAS 
    Article 

    Google Scholar 
    23.Omer, N. A. et al. Dietary betaine improves egg-laying rate in hens through hypomethylation and glucocorticoid receptor–mediated activation of hepatic lipogenesis-related genes. Poult. Sci. 99, 3121–3132. https://doi.org/10.1016/j.psj.2020.01.017 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Maidin, M. B. M. et al. Dietary betaine reduces plasma homocysteine concentrations and improves bone strength in laying hens. Br. Poult. Sci. https://doi.org/10.1080/00071668.2021.1883550 (2021).Article 
    PubMed 

    Google Scholar 
    25.Chen, R. et al. Betaine improves the growth performance and muscle growth of partridge shank broiler chickens via altering myogenic gene expression and insulin-like growth factor-1 signaling pathway. Poult. Sci. 97, 4297–4305. https://doi.org/10.3382/ps/pey303 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Ratriyanto, A., Nuhriawangsa, A. M. P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. AIP Conf. Proc. 2014, 020011. https://doi.org/10.1063/1.5054415 (2018).Article 

    Google Scholar 
    27.Rao, S. V. R., Raju, M. V. L. N., Panda, A. K., Saharia, P. & Sunder, G. S. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian-Australas J. Anim. Sci. 24, 662–669. https://doi.org/10.5713/ajas.2011.10286 (2011).CAS 
    Article 

    Google Scholar 
    28.Adkins-Regan, E., Banerjee, S. B., Correa, S. M. & Schweitzer, C. Maternal effects in quail and zebra finches: Behavior and hormones. Gen. Comp. Endocrinol. 190, 34–41. https://doi.org/10.1016/j.ygcen.2013.03.002 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Henriksen, R., Rettenbacher, S. & Groothuis, T. G. Prenatal stress in birds: Pathways, effects, function and perspectives. Neurosci. Biobehav. Rev. 35, 1484–1501. https://doi.org/10.1016/j.neubiorev.2011.04.010 (2011).Article 
    PubMed 

    Google Scholar 
    30.Peixoto, M. R. L. V., Karrow, N. A., Newman, A. & Widowski, T. M. Effects of maternal stress on measures of anxiety and fearfulness in different strains of laying hens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2020.00128 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Lay, D. C. Jr. & Wilson, M. E. Development of the chicken as a model for prenatal stress. J. Anim. Sci. 80, 1954–1961. https://doi.org/10.2527/2002.8071954x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Zhang, M. et al. Impacts of heat stress on meat quality and strategies for amelioration: A review. Int. J. Biometeorol. 64, 1613–1628. https://doi.org/10.1007/s00484-020-01929-6 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    33.Boonstra, R. Coping with changing northern environments: The role of the stress axis in birds and mammals. Integr. Comp. Biol. 44, 95–108. https://doi.org/10.1093/icb/44.2.95 (2004).Article 
    PubMed 

    Google Scholar 
    34.Smulders, T. V. The avian hippocampal formation and the stress response. Brain Behav. Evol. 90, 81–91. https://doi.org/10.1159/000477654 (2017).Article 
    PubMed 

    Google Scholar 
    35.Wingfield, J.C. in Perspectives in Comparative Endocrinology (eds Davey, K.G., Peter, R.E. Tobe, S.S.) 520–528 (National Research Council of Canada, 1994).36.Wingfield, J. C. & Romero, L. M. Handbook of Physiology, Section 7: The Endocrine System. In Ch. Coping with the Environment: Neural and Endocrine Mechanisms Vol. 4 (eds McEwen, B. S. & Goodman, H. M.) 211–234 (Oxford University Press, 2001).
    Google Scholar 
    37.Love, O. P. & Williams, T. D. Plasticity in the adrenocortical response of a free-living vertebrate: The role of pre- and post-natal developmental stress. Horm. Behav. 54, 496–505. https://doi.org/10.1016/j.yhbeh.2008.01.006 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. Biol. Sci. 271, 847–852. https://doi.org/10.1098/rspb.2004.2680 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Martins, T. L., Roberts, M. L., Giblin, I., Huxham, R. & Evans, M. R. Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra finches. Horm. Behav. 52, 445–453. https://doi.org/10.1016/j.yhbeh.2007.06.007 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Blas, J., Bortolotti, G. R., Tella, J. L., Baos, R. & Marchant, T. A. Stress response during development predicts fitness in a wild, long lived vertebrate. Proc. Natl. Acad. Sci. U.S.A. 104, 8880–8884. https://doi.org/10.1073/pnas.0700232104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Breuner, C. W., Greenberg, A. L. & Wingfield, J. C. Noninvasive corticosterone treatment rapidly increases activity in Gambel’s white-crowned sparrows (Zonotrichia leucophrys gambelii). Gen. Comp. Endocrinol. 111, 386–394. https://doi.org/10.1006/gcen.1998.7128 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Zimmer, C., Boogert, N. J. & Spencer, K. A. Developmental programming: Cumulative effects of increased pre-hatching corticosterone levels and post-hatching unpredictable food availability on physiology and behaviour in adulthood. Horm. Behav. 64, 494–500. https://doi.org/10.1016/j.yhbeh.2013.07.002 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Morris, K. M. et al. The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. BMC Biol. 18, 14. https://doi.org/10.1186/s12915-020-0743-4 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Phillips, C., Angel, R. & Ashwell, C. in XVth European Poultry Conference 548 (Dubrovnik, 2018).45.Daghir, N. J., Marion, W. W. & Balloun, S. L. Influence of dietary fat and choline on serum and egg yolk cholesterol in the laying chicken1. Poult. Sci. 39, 1459–1466. https://doi.org/10.3382/ps.0391459 (1960).CAS 
    Article 

    Google Scholar 
    46.Griffith, M., Olinde, A. J., Schexnailder, R., Davenport, R. F. & McKnight, W. F. Effect of choline, methionine and vitamin B12 on liver fat, egg production and egg weight in hens. Poult. Sci. 48, 2160–2172. https://doi.org/10.3382/ps.0482160 (1969).CAS 
    Article 

    Google Scholar 
    47.Xiao, X., Wang, Y., Liu, W., Ju, T. & Zhan, X. Effects of different methionine sources on production and reproduction performance, egg quality and serum biochemical indices of broiler breeders. Asian Australas. J. Anim. Sci. 30, 828–833. https://doi.org/10.5713/ajas.16.0404 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Min, Y. N. et al. Effects of methionine hydroxyl analog chelated zinc on laying performance, eggshell quality, eggshell mineral deposition, and activities of Zn-containing enzymes in aged laying hens. Poult. Sci. 97, 3587–3593. https://doi.org/10.3382/ps/pey203 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Woolveridge, I. & Peddie, M. J. The inhibition of androstenedione production in mature thecal cells from the ovary of the domestic hen (Gallus domesticus): Evidence for the involvement of progestins. Steroids 62, 214–220. https://doi.org/10.1016/s0039-128x(96)00209-7 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Herrick, E. H. Some influences of stilbestrol, estrone, and testosterone propionate on the genital tract of young female fowls*. Poult. Sci. 23, 65–66. https://doi.org/10.3382/ps.0230065 (1944).CAS 
    Article 

    Google Scholar 
    51.Berg, C., Holm, L., Brandt, I. & Brunström, B. Anatomical and histological changes in the oviducts of Japanese quail, Coturnix japonica, after embryonic exposure to ethynyloestradiol. Reproduction 121, 155–165. https://doi.org/10.1530/rep.0.1210155 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Ratriyanto, A., Nuhriawangsa, A.M.P., Masykur, A., Prastowo, S. & Widyas, N. Egg production pattern of quails given diets containing different energy and protein contents. 2011, 020011. https://doi.org/10.1063/1.5054415 (2018).53.Taves, M. D., Gomez-Sanchez, C. E. & Soma, K. K. Extra-adrenal glucocorticoids and mineralocorticoids: Evidence for local synthesis, regulation, and function. Am. J. Physiol.-Endocrinol. Metab. 301, E11–E24. https://doi.org/10.1152/ajpendo.00100.2011 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dunnington, E. A. & Siegel, P. B. Age and body weight at sexual maturity in female white leghorn chickens. Poult. Sci. 63, 828–830 (1984).CAS 
    Article 

    Google Scholar 
    55.Saunderson, C. L. & Mackinlay, J. Changes in body-weight, composition and hepatic enzyme activities in response to dietary methionine, betaine and choline levels in growing chicks. Br. J. Nutr. 63, 339–349. https://doi.org/10.1079/BJN19900120 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Zaefarian, F., Abdollahi, M. R., Cowieson, A. & Ravindran, V. Avian liver: The forgotten organ. Animals 9, 63. https://doi.org/10.3390/ani9020063 (2019).Article 
    PubMed Central 

    Google Scholar 
    57.Daisley, J. N., Bromundt, V., Möstl, E. & Kotrschal, K. Enhanced yolk testosterone influences behavioral phenotype independent of sex in Japanese quail chicks Coturnix japonica. Horm. Behav. 47, 185–194. https://doi.org/10.1016/j.yhbeh.2004.09.006 (2005).CAS 
    Article 

    Google Scholar 
    58.Koolhaas, J. M. et al. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23, 925–935. https://doi.org/10.1016/s0149-7634(99)00026-3 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Schwabl, H. Environment modifies the testosterone levels of a female bird and its eggs. J. Exp. Zool. 276, 157–163. https://doi.org/10.1002/(sici)1097-010x(19961001)276:2%3c157::aid-jez9%3e3.0.co;2-n (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Marasco, V., Herzyk, P., Robinson, J. & Spencer, K. A. Pre- and post-natal stress programming: Developmental exposure to glucocorticoids causes long-term brain-region specific changes to transcriptome in the precocial Japanese quail. J. Neuroendocrinol. 28, 1. https://doi.org/10.1111/jne.12387 (2016).CAS 
    Article 

    Google Scholar 
    61.Satterlee, D. G. & Marin, R. H. Stressor-induced changes in open-field behavior of Japanese quail selected for contrasting adrenocortical responsiveness to immobili-zation. Poult. Sci. 85, 404–409 (2006).CAS 
    Article 

    Google Scholar 
    62.Denham, S. G. et al. Development and validation of a method for the determination of steroid profiles in chickens using LC-MS/MS (University of Edinburgh, 2019).
    Google Scholar 
    63.Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. ASReml User Guide Release 3.0 (VSNi, 2009).
    Google Scholar  More

  • in

    Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands

    1.Grant, V. Organismic Evolution (Freeman, 1977).2.Falconer, D. Introduction to Quantitative Genetics (Longmans, 1981).3.Levin, D. in Plant Evolutionary Biology pp. 305–329 (Chapman and Hall, 1988).4.Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    5.Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Simpson, G. The Baldwin effect. Evolution 7, 110–117 (1953).Article 

    Google Scholar 
    7.Williams, G. C. Adaptation and Natural Selection (Princeton Univ. Press, 1966).8.Kingsolver, J. G. & Huey, R. B. Evolutionary analyses of morphological and physiological plasticity in thermally variable environments. Am. Zool. 38, 545–560 (1998).Article 

    Google Scholar 
    9.Woods, H. A. & Harrison, J. F. Interpreting rejections of the beneficial acclimation hypothesis: When is physiological plasticity adaptive? Evolution 56, 1863–1866 (2002).PubMed 
    Article 

    Google Scholar 
    10.Meyer, A. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Chichlidae) and their implications for speciation in cichlid fishes. Evolution 41, 1357 (1987).PubMed 

    Google Scholar 
    11.Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54, 301–305 (2000).CAS 
    PubMed 

    Google Scholar 
    12.Kappeler, P. M. & Fichtel, C. Eco-evo-devo of the lemur syndrome: did adaptive behavioral plasticity get canalized in a large primate radiation? Front. Zool. 12, 1–16 (2015).Article 

    Google Scholar 
    13.Nunney, L. & Cheung, W. The effect of temperature on body size and fecundity in female Drosophila melanogaster: evidence for adaptive plasticity. Evolution 51, 1529 (1997).PubMed 

    Google Scholar 
    14.Price, T. D., Qvarnström, A. & Irwin, D. E. The role of phenotypic plasticity in driving genetic evolution. Proc. R. Soc. B Biol. Sci. 270, 1433–1440 (2003).Article 

    Google Scholar 
    15.Corl, A. et al. The genetic basis of adaptation following plastic changes in coloration in a novel environment. Curr. Biol. 28, 2970–2977.e7 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Levis, N. A., Isdaner, A. J. & Pfennig, D. W. Morphological novelty emerges from pre-existing phenotypic plasticity. Nat. Ecol. Evol. 2, 1289–1297 (2018).PubMed 
    Article 

    Google Scholar 
    17.Whitehead, A., Roach, J. L., Zhang, S. & Galvez, F. Genomic mechanisms of evolved physiological plasticity in killifish distributed along an environmental salinity gradient. Proc. Natl Acad. Sci. USA 108, 6193–6198 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    18.Grant, P. R. & Grant, B. R. Evolutionary Dynamics of a Natural Population (Univ. Chicago Press, 1989).19.Huey, R. B. & Berrigan, D. in Animals and Temperature: Phenotypic and Evolutionary Adaptation pp. 205–238 (Cambridge Univ. Press, 1996).20.Blanckenhorn, W. U. Temperature effects on egg size and their fitness consequences in the yellow dung fly Scathophaga stercoraria. Evol. Ecol. 14, 627–643 (2000).Article 

    Google Scholar 
    21.Woods, H. A. & Harrison, J. F. The beneficial acclimation hypothesis versus acclimation of specific traits: physiological change in water-stressed Manduca sexta caterpillars. Physiol. Biochem. Zool. 74, 32–44 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Storz, J. F., Scott, G. R. & Cheviron, Z. A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213, 4125–4136 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Durmowicz, A. G., Hofmeister, S., Kadyraliev, T. K., Aldashev, A. A. & Stenmark, K. R. Functional and structural adaptation of the yak pulmonary circulation to residence at high altitude. J. Appl. Physiol. 74, 2276–2285 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Ge, R. L., Kubo, K., Kobayashi, T., Sekiguchi, M. & Honda, T. Blunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude. Am. J. Physiol. Hear. Circ. Physiol. 274, 1792–1799 (1998).Article 

    Google Scholar 
    25.Sakai, A. et al. Cardiopulmonary hemodynamics of blue-sheep, Pseudois nayaur, as high-altitude adapted mammals. Jpn J. Physiol. 53, 377–384 (2003).PubMed 
    Article 

    Google Scholar 
    26.Beall, C. M. Two routes to functional adaptation: Tibetan and andean high-altitude natives. Proc. Natl Acad. Sci. USA 1, 239–255 (2007).
    Google Scholar 
    27.Velotta, J. P., Ivy, C. M., Wolf, C. J., Scott, G. R. & Cheviron, Z. A. Maladaptive phenotypic plasticity in cardiac muscle growth is suppressed in high-altitude deer mice. Evolution 72, 2712–2727 (2018).28.Ho, W. C. & Zhang, J. Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nat. Commun. 9, 1–11 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    29.Santangelo,J. S., Ruth Rivkin, L. & Johnson, M. T. J. The evolution of city life. Proc. R. Soc. B Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.1529 (2018).30.Thompson, K. A., Rieseberg, L. H. & Schluter, D. Speciation and the city. Trends Ecol. Evol. 33, 815–826 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Chown, S. L., Slabber, S., McGeoch, M. A., Janion, C. & Leinaas, H. P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. R. Soc. B Biol. Sci. 274, 2531–2537 (2007).Article 

    Google Scholar 
    32.Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    33.Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Oke, T. City size and the urban heat island. Atmos. Environ. 7, 769–779 (1973).Article 
    ADS 

    Google Scholar 
    37.Angilletta, M. J. et al. Urban physiology: city ants possess high heat tolerance. PLoS ONE 2, e258 (2007).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    38.Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Chang. Biol. 23, 5218–5227 (2017).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    39.Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol. J. Linn. Soc. 121, 248–257 (2017).Article 

    Google Scholar 
    40.Hamblin, A. L., Youngsteadt, E. & Frank, S. D. Wild bee abundance declines with urban warming, regardless of floral density. Urban Ecosyst. 21, 419–428 (2018).Article 

    Google Scholar 
    41.Diamond, S. E., Chick, L. D., Perez, A., Strickler, S. A. & Martin, R. A. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.0036 (2018).42.Gibert, P., Debat, V. & Ghalambor, C. K. Phenotypic plasticity, global change, and the speed of adaptive evolution. Curr. Opin. Insect Sci. 35, 34–40 (2019).PubMed 
    Article 

    Google Scholar 
    43.Chick, L. D., Strickler, S. A., Perez, A., Martin, R. A. & Diamond, S. E. Urban heat islands advance the timing of reproduction in a social insect. J. Therm. Biol. 80, 119–125 (2019).PubMed 
    Article 

    Google Scholar 
    44.Pipoly, I., Bókony, V., Seress, G., Szabó, K. & Liker, A. Effects of extreme weather on reproductive success in a temperate-breeding songbird. PLoS ONE 8, e80033 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    45.Tiatragul, S., Kurniawan, A., Kolbe, J. J. & Warner, D. A. Embryos of non-native anoles are robust to urban thermal environments. J. Therm. Biol. 65, 119–124 (2017).PubMed 
    Article 

    Google Scholar 
    46.Kaiser, A., Merckx, T. & Van Dyck, H. The urban heat island and its spatial scale dependent impact on survival and development in butterflies of different thermal sensitivity. Ecol. Evol. 6, 4129–4140 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Hall, J. M. & Warner, D. A. Thermal spikes from the urban heat island increase mortality and alter physiology of lizard embryos. J. Exp. Biol. 221, jeb181552 (2018).PubMed 
    Article 

    Google Scholar 
    48.Johnson, J. C., Urcuyo, J., Moen, C. & Stevens, D. R. Urban heat island conditions experienced by the Western black widow spider (Latrodectus hesperus): extreme heat slows development but results in behavioral accommodations. PLoS ONE 14, 1–13 (2019).
    Google Scholar 
    49.Battles, A. C. & Kolbe, J. J. Miami heat: urban heat islands influence the thermal suitability of habitats for ectotherms. Glob. Chang. Biol. 25, 562–576 (2019).PubMed 
    Article 
    ADS 

    Google Scholar 
    50.Hamblin, A. L., Youngsteadt, E., López-Uribe, M. M. & Frank, S. D. Physiological thermal limits predict differential responses of bees to urban heat-island effects. Biol. Lett. 13, https://doi.org/10.1098/rsbl.2017.0125 (2017).51.Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).Article 

    Google Scholar 
    52.Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).PubMed 
    Article 

    Google Scholar 
    53.Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Wingfield, J. C. & Sapolsky, R. M. Reproduction and resistance to stress: when and how. J. Neuroendocrinol. 15, 711–724 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Angilletta, M. J. Looking for answers to questions about heat stress: researchers are getting warmer. Funct. Ecol. 23, 231–232 (2009).Article 

    Google Scholar 
    56.James, C. D., Whitford, W. G., James, C. D. & Whitford, W. G. An experimental study of phenotypic plasticity in the clutch size of a lizard. Oikos 70, 49–56 (1994).Article 

    Google Scholar 
    57.Sorci, G., Clobert, J. & Belichon, S. Phenotypic plasticity of growth and survival in the common lizard Lacerta vivipara. J. Anim. Ecol. 65, 781 (1996).Article 

    Google Scholar 
    58.Jordan, M. A. & Snell, H. L. Life history trade-offs and phenotypic plasticity in the reproduction of Galápagos lava lizards (Microlophus delanonis). Oecologia 130, 44–52 (2002).PubMed 
    Article 
    ADS 

    Google Scholar 
    59.Gilbert, A. L. & Miles, D. B. Antagonistic responses of exposure to sublethal temperatures: adaptive phenotypic plasticity coincides with a reduction in organismal performance. Am. Nat. 194, 344–355 (2019).PubMed 
    Article 

    Google Scholar 
    60.Campbell-Staton, S. C. et al. Parallel selection on thermal physiology facilitates repeated adaptation of city lizards to urban heat islands. Nat. Ecol. Evol. 4, 652–658 (2020).PubMed 
    Article 

    Google Scholar 
    61.Herrel, A., Vanhooydonck, B., Porck, J. & Irschick, D. Anatomical basis of differences in locomotor behavior in Anolis lizards: a comparison between two ecomorphs. Bull. Mus. Comp. Zool. 159, 213–238 (2008).Article 

    Google Scholar 
    62.Anderson, C. V. & Roberts, T. J. The need for speed: functional specializations of locomotor and feeding muscles in Anolis lizards. J. Exp. Biol. 223, 1–9 (2020).
    Google Scholar 
    63.Cowles, R. & Bogert, C. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 265–296 (1944).
    Google Scholar 
    64.Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can. J. Zool. 75, 1553–1560 (1997).Article 

    Google Scholar 
    65.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Cardiello, J. F., Goodrich, J. A. & Kugel, J. F. Heat shock causes a reversible increase in RNA polymerase II occupancy downstream of mRNA genes, consistent with a global loss in transcriptional termination. Mol. Cell. Biol. 38, 1–18 (2018).CAS 
    Article 

    Google Scholar 
    67.Sandaltzopoulos, R. & Becker, P. B. Heat shock factor increases the reinitiation rate from potentiated chromatin templates. Mol. Cell. Biol. 18, 361–367 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Velichko, A. K., Petrova, N. V., Kantidze, O. L. & Razin, S. V. Dual effect of heat shock on DNA replication and genome integrity. Mol. Biol. Cell. 23, 3450–3460 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Barreiro, L. B., Laval, G., Quach, H., Patin, E. & Quintana-Murci, L. Natural selection has driven population differentiation in modern humans. Nat. Genet. 40, 340–345 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Huey, R. B. & Webster, T. P. Thermal biology of Anolis lizards in a complex fauna: the Christatellus group on Puerto Rico. Ecology 57, 985–994 http://www.jstor.org/stable/1941063 (1976).71.Gorman, G. C. & Hillman, S. Physiological basis for climatic niche partitioning in two species of Puerto Rican Anolis (Reptilia, Lacertilia, Iguanidae). J. Herp 11, 337–340 (1977).Article 

    Google Scholar 
    72.Gunderson, A. R., Mahler, D. L. & Leal, M. Thermal niche evolution across replicated Anolis lizard adaptive radiations. Proc. R. Soc. B Biol. Sci. 285, https://doi.org/10.1098/rspb.2017.2241 (2018).73.McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Huey, R. B., Losos, J. B. & Moritz, C. Are lizards toast? Science 328, 832–833 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    75.Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    76.Van Gestel, J. & Weissing, F. J. Is plasticity caused by single genes? Nature 555, E19–E20 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    77.Turchin, M. C. et al. Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nat. Genet. 44, 1015–1019 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Guo, J. et al. Global genetic differentiation of complex traits shaped by natural selection in humans. Nat. Commun. 9, 1–9 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    79.Mallard, F., Jakšic´, A. M. & Schlötterer, C. Contesting the evidence for non-adaptive plasticity. Nature 555, E21–E22 (2015).Article 
    CAS 

    Google Scholar 
    80.Ghalambor, C. K. et al. Reply to Ghalambor et al. Nature 555, E29 (2015).
    Google Scholar 
    81.Perrier, C., Caizergues, A. & Charmantier, A. in Urban Evolutionary Biology (eds. Szulkin, M., Munshi-South, J. & Charmantier, A.) pp. 74–90 (Oxford Univ. Press, 2020).82.Lambert, M. R., Brans, K. I., Des Roches, S., Donihue, C. M. & Diamond, S. E. Adaptive evolution in cities: progress and misconceptions. Trends Ecol. Evol. 36, 239–257 (2021).PubMed 
    Article 

    Google Scholar 
    83.Grether, G. F. Environmental change, phenotypic plasticity, and genetic compensation. Am. Nat. 166, https://doi.org/10.1086/432023 (2005).84.Velotta, J. P. & Cheviron, Z. A. Remodeling ancestral phenotypic plasticity in local adaptation: a new framework to explore the role of genetic compensation in the evolution of homeostasis. Integr. Comp. Biol. 58, 1098–1110 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Fischer, E. K., Ghalambor, C. K. & Hoke, K. L. Can a network approach resolve how adaptive vs nonadaptive plasticity impacts evolutionary trajectories? Integr. Comp. Biol. 56, 877–888 (2016).PubMed 
    Article 

    Google Scholar 
    86.Huang, Y. & Agrawal, A. F. Experimental evolution of gene expression and plasticity in alternative selective regimes. PLoS Genet. 12, 1–23 (2016).
    Google Scholar 
    87.Leonard, A. M. & Lancaster, L. T. Maladaptive plasticity facilitates evolution of thermal tolerance during an experimental range shift. BMC Evol. Biol. 20, 1–11 (2020).Article 

    Google Scholar 
    88.Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).89.Huey, R. B. & Tewksbury, J. J. Can behavior douse the fire of climate warming? Proc. Natl Acad. Sci. USA 106, 3647–3648 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    90.Winchell, K. M., Reynolds, R. G., Prado-irwin, S. R., Puente-rol, A. R. & Revell, L. J. Phenotypic shifts in urban areas in the tropical lizard Anolis cristatellus. Evolution 70, 1009–1022 (2016).PubMed 
    Article 

    Google Scholar 
    91.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Alföldi, J. et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477, 587–91 (2011).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    93.Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Reimand, J. et al. g:Profiler—web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res. 35, 193–200 (2007).Article 

    Google Scholar 
    95.Robinson, M. D., Mccarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    Article 

    Google Scholar 
    96.Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.McKenna, D. M. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).98.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing, https://www.r-project.org (2017).101.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A multi-proxy approach to exploring Homo sapiens’ arrival, environments and adaptations in Southeast Asia

    1.Sponheimer, M. Isotopic evidence of early hominin diets. Proc. Natl. Acad. Sci. USA 110, 10513–10518 (2013).CAS 
    PubMed Central 
    Article 
    ADS 
    PubMed 

    Google Scholar 
    2.Fleagle, J. G. et al. (eds) Out of Africa I: The first hominin colonization of Eurasia. Vertebrate Paleobiology and Paleoanthropology (Springer, 2010).
    Google Scholar 
    3.Norton, C. J. & Braun, D. R. (eds) Asian Paleoanthropology: From Africa to China and Beyond. Vertebrate Paleobiology and Paleoanthropology (Springer, 2010).
    Google Scholar 
    4.Bettis, E. A. III. et al. Way out of Africa: Early Pleistocene paleoenvironments inhabited by Homo erectus in Sangiran, Java. J. Hum. Evol. 56, 11–24 (2009).PubMed 
    Article 

    Google Scholar 
    5.Ciochon, R. L. Divorcing hominins from the Stegodon-Ailuropoda Fauna: New views on the antiquity of hominins in Asia. In Out of Africa I: The First Hominin Colonization of Eurasia (eds Fleagle, J. G. et al.) 111–126 (Springer, 2010).Chapter 

    Google Scholar 
    6.Sémah, A.-M., Sémah, F., Djubiantono, T. & Brasseur, B. Landscapes and hominids’ environments: Changes between the Lower and the early Middle Pleistocene in Java (Indonesia). Quat. Int. 223, 451–454 (2010).Article 

    Google Scholar 
    7.Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154 (2016).Article 
    ADS 

    Google Scholar 
    8.Rizal, Y. et al. Last appearance of Homo erectus at Ngandong, Java, 117,000–108,000 years ago. Nature 577, 381–385 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    10.Sutikna, T. et al. Revised stratigraphy and chronology for Homo floresiensis at Liang Bua in Indonesia. Nature 532, 366–369 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    11.Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    12.De Vos, J. Reconsideration of Pleistocene cave faunas from South China and their relation to the faunas from Java. Cour. Forsch. Inst. Senckenberg 69, 259–266 (1984).
    Google Scholar 
    13.Schwartz, J. H., Long, V. T., Cuong, N. L., Kha, L. T. & Tattersall, I. A diverse hominoid fauna from the late Middle Pleistocene breccia cave of Tham Kuyen, Socialist Republic of Vietnam. Anthrop. Pap. Am. Mus. Nat. Hist. 74, 1–11 (1994).
    Google Scholar 
    14.Schwartz, J. H., Long, V. T., Cuong, N. L., Kha, L. T. & Tattersall, I. A review of the Pleistocene hominoid fauna of the Socialist Republic of Vietnam. Anthrop. Pap. Am. Mus. Nat. Hist. 76, 1–24 (1995).
    Google Scholar 
    15.Reyes-Centeno, H. Out of Africa and into Asia: Fossil and genetic evidence on modern origins and dispersal. Quat. Int. 416, 249–262 (2016).Article 

    Google Scholar 
    16.Bae, C. J., Douka, K. & Petraglia, M. D. On the origin of modern humans: Asian perspectives. Science 358, 9067 (2017).Article 
    CAS 

    Google Scholar 
    17.Dennell, R., Martinón-Torres, M., Bermúdez de Castro, J.-M. & Xing, G. A demographic history of Late Pleistocene China. Quat. Int. 559, 4–13 (2020).Article 

    Google Scholar 
    18.Westaway, K. E. et al. An early modern human presence in Sumatra 73000–63000 years ago. Nature 548, 322–325 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    19.Bacon, A.-M. et al. Late Pleistocene mammalian assemblages of Southeast Asia: New dating, mortality profiles and evolution of the predator-prey relationships in an environmental context. Palaeogeogr. Palaeoclimatol. Palaeoecol. 422, 101–127 (2015).Article 

    Google Scholar 
    20.Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl. Acad. Sci. USA 117, 4675–4681 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Bacon, A.-M. et al. A rhinocerotid-dominated megafauna at the MIS6-5 transition: The late Middle Pleistocene Coc Muoi assemblage, Lang Son province, Vietnam. Quat. Sci. Rev. 186, 123–141 (2018).Article 
    ADS 

    Google Scholar 
    22.Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited: Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144 (2018).Article 

    Google Scholar 
    23.Suraprasit, K., Jongauttchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 105861 (2019).Article 

    Google Scholar 
    24.Sun, F. et al. Paleoecology of Pleistocene mammals and paleoclimatic change in South China: Evidence from stable carbon and oxygen isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 1–12 (2019).Article 

    Google Scholar 
    25.Demeter, F. et al. Anatomically modern human in Southeast Asia (Laos) by 46 ka. Proc. Natl. Acad. Sci. USA 109, 14375–14380 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    26.Shackelford, L. et al. Additional evidence for early modern human morphological diversity in Southeast Asia at Tam Pà Ling, Laos. Quat. Int. 466, 93–106 (2018).Article 

    Google Scholar 
    27.Petraglia, M. D., Breeze, P. S. & Groucutt, H. S. Blue Arabia: Examining colonisation and dispersal models. In Geological setting, Palaeoenvironment and Archaeology of the Red Sea (eds Rasul, N. M. A. & Stewart, I. C. F.) 675–683 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    28.Cappellini, E. et al. Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny. Nature 574, 103–107 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    29.Welker, F. et al. Enamel proteome shows that Gigantopithecus was an early diverging pongine. Nature 576, 262–265 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    30.Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    31.Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379 (2007).PubMed 
    Article 

    Google Scholar 
    32.Rink, W. J., Wei, W., Bekken, D. & Jones, H. L. Geochronology of Ailuropoda-Stegodon fauna and Gigantopithecus in Guangxi Province, Southern China. Quat. Res. 69, 377–387 (2008).CAS 
    Article 

    Google Scholar 
    33.Norton, C. J., Jin, C., Wang, Y. & Zhang, Y. Rethinking the ¨Palearctic-Oriental biogeographic boundary in Quaternary China. In Asian Paleoanthropology: From Africa to China and Beyond (eds Norton, C. J. & Braun, D. R.) 81–100 (Vertebrate Paleobiology and Paleoanthropology, 2010).
    Google Scholar 
    34.Turvey, S. T., Tong, H., Stuart, A. J. & Lister, A. M. Holocene survival of Late Pleistocene megafauna in China: A critical review of the evidence. Quat. Sci. Rev. 76, 156–166 (2013).Article 
    ADS 

    Google Scholar 
    35.Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167 (2017).Article 

    Google Scholar 
    36.Owen-Smith, R. N. Megaherbivores. The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1988).Book 

    Google Scholar 
    37.Louys, J. & Meijaard, E. Palaeoecology of Southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J. Biogeography 37, 1432–1449 (2010).
    Google Scholar 
    38.Graham, R. W. Diversity and community structure of the late Pleistocene mammal fauna of North America. Acta Zool. Fenn. 170, 181–192 (1985).
    Google Scholar 
    39.Graham, R. W. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    40.Price, G. J. Fossil bandicoots (Marsupiala, Peramelidae) and environmental change during the Pleistocene on the Darling Downs, Southern Queensland, Australia. J. Syst. Palaeontol. 2, 347–356 (2004).Article 

    Google Scholar 
    41.Stewart, J. R. The progressive effect of the individualistic response of species to Quaternary climate change: An analysis of British mammalian faunas. Quat. Sci. Rev. 27, 2499–2508 (2008).Article 
    ADS 

    Google Scholar 
    42.Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl. Acad. Sci. USA 116, 21478–21483 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Zeitoun, V., Chinnawut, W., Debruyne, R., Frère, S. & Auetrakulvit, P. A sustainable review of the Middle Pleistocene benchmark sites including the Ailuropoda-Stegodon faunal complex: The Proboscidean point of view. Quat. Int. 416, 12–26 (2010).Article 

    Google Scholar 
    44.Jablonski, D. & Sepkoski, J. J. Jr. Paleobiology, community ecology and scales of ecological patterns. Ecology 77, 1367–1378 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Graham, R. W. Quaternary mammal communities: Relevance of the individualistic response and non-analogue faunas. In Paleobiogeography: Generating New Insights Into the Coevolution of the Earth and Its Biota (eds Lieberman, B. S. & Stigall, A. L.) 141–157 (Paleontological Society Papers, 2005).
    Google Scholar 
    46.Stewart, J. R. The evolutionary consequence of the individualistic response to climate change. J. Evol. Biol. 22, 2363–2375 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Hofreiter, M. & Stewart, J. Ecological change, range fluctuations and population dynamics during the Pleistocene. Curr. Biol. 19, R584–R594 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Tougard, C. & Montuire, S. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: Focus on fossil faunas from Thailand. Quat. Sci. Rev. 25, 126–141 (2006).Article 
    ADS 

    Google Scholar 
    49.Zeitoun, V. et al. Dating, stratigraphy and taphonomy of the Pleistocene site of Ban Fa Suai II (Northern Thailand): Contributions to the study of paleobiodiversity in Southeast Asia. Ann. Paléontol. 105, 275–285 (2019).Article 

    Google Scholar 
    50.Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).Article 

    Google Scholar 
    51.Bennett, K. D. & Provan, J. What do we mean by refugia? Quat. Sci. Rev. 27, 2449–2455 (2008).Article 
    ADS 

    Google Scholar 
    52.Leonard, J. A., Wayne, R. K. & Cooper, A. Population genetics of Ice Age brown bears. Proc. Natl. Acad. Sci. USA 97, 1651–1654 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    53.Leonard, J. A. et al. Megafaunal extinctions and the disappearance of a specialized wolf ectomorph. Curr. Biol. 17, 1146–1150 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Barnes, I., Matheus, P., Shapiro, B., Jensen, D. & Cooper, A. Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295, 2267–2270 (2002).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    55.Hofreiter, M. et al. Lack of phylogeography in European mammals before the last glaciation. Proc. Natl. Acad. Sci. USA 35, 12963–12968 (2004).Article 
    ADS 

    Google Scholar 
    56.Shapiro, B. et al. Rise and Fall of the Beringian Steppe Bison. Science 306, 1561–1565 (2004).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    57.Rohland, N. et al. The population history of extant and extinct hyenas. Mol. Biol. Evol. 22, 2435–2443 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Gilbert, M. T. P. et al. Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc. Natl. Acad. Sci. USA 105, 8327–8332 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    59.Orlando, L. et al. Revising the recent evolutionary history of equids using ancient DNA. Proc. Natl. Acad. Sci. USA 106, 21754–21759 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    60.Campos, P. F. et al. Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. Proc. Natl. Acad. Sci. USA 107, 5675–5680 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    61.Campos, P. F. et al. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene. Mol. Ecol. 19, 4863–4875 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–365 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    63.Loog, L. et al. Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Mol. Ecol. 29, 1596–1610 (2019).Article 

    Google Scholar 
    64.Lord, E. et al. Pre-extinction demographic stability and genomic signatures of adaptation in the woolly rhinoceros. Curr. Biol. 30, 3871–3879 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Lister, A. M. The impact of Quaternary Ice Ages on mammalian evolution. Phil. Trans. R. Soc. Lond. B 359, 221–241 (2004).Article 

    Google Scholar 
    66.Barnosky, A. D. Effects of Quaternary climatic change on speciation in mammals. J. Mammal. Evol. 12, 247–264 (2005).Article 

    Google Scholar 
    67.Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. R. Soc. B 277, 661–671 (2010).PubMed 
    Article 

    Google Scholar 
    68.Pushkina, D., Bocherens, H., Chaimanee, Y. & Jeager, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake cave in northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    69.Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jeager, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42 (2018).Article 
    ADS 

    Google Scholar 
    70.Suraprasit, K. et al. Long-term isotope evidence on the diet and habitat breadth of Pleistocene to Holocene caprines in Thailand: Implications for the extirpation and conservation of Himalayan gorals. Front. Ecol. Evol. 8, 1–16 (2020).Article 

    Google Scholar 
    71.Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals: Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).Article 

    Google Scholar 
    72.Stacklyn, S. et al. Carbon and oxygen isotopic evidence for diets, environments and niche differentiation of early Pleistocene pandas and associated mammals in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 351–361 (2017).Article 

    Google Scholar 
    73.Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44 (2019).Article 
    ADS 

    Google Scholar 
    74.Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 40, 503–537 (1989).CAS 
    Article 

    Google Scholar 
    75.van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    76.Zazzo, A. et al. Herbivore paleodiet and paleoenvironmental changes in Chad during the Pliocene using stable isotope ratios of tooth enamel carbonate. Paleobiology 26, 294–309 (2000).Article 

    Google Scholar 
    77.Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).Article 
    ADS 

    Google Scholar 
    78.Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research? Geochim. Cosmochim. Acta 48, 385–390 (1984).CAS 
    Article 
    ADS 

    Google Scholar 
    79.Luz, B., Kolodny, Y. & Horowitz, M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48, 1689–1693 (1984).CAS 
    Article 
    ADS 

    Google Scholar 
    80.Fricke, H. C., Clyde, W. C. & O’Neil, J. R. Intra-tooth variations in δ 18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochim. Cosmochim. Acta 62, 1839–1850 (1998).CAS 
    Article 
    ADS 

    Google Scholar 
    81.Fricke, H. C., Clyde, W. C., O’Neil, J. R. & Gingerich, P. D. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: Oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet. Sci. Lett. 160, 193–208 (1998).CAS 
    Article 
    ADS 

    Google Scholar 
    82.Kohn, M. J., Schoeninger, M. J. & Valley, J. W. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    83.Bryant, J. D. & Froelich, P. N. A model of oxygen isotope fractionation in body water of large mammals. Geochim. Cosmochim. Acta 59, 4523–4537 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    84.Kohn, M. J. & Cerling, T. E. Stable isotope compositions of biological apatite. Rev. Mineral. Geochem. 48, 455–488 (2002).CAS 
    Article 

    Google Scholar 
    85.Zheng, Z. & Lei, Z.-Q. A 400,000 years record of vegetational and climatic changes from a volcanic basin, Leizhou Peninsula, southern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 145, 339–362 (1999).Article 

    Google Scholar 
    86.Li, S.-P. et al. Pleistocene vegetation in Guangxi, south China, based on palynological data from seven karst caves. Grana 59, 94–106 (2020).Article 

    Google Scholar 
    87.Wang, Y. et al. Millenial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451, 1090–1093 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    88.Chen, H. et al. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology 34, 217–220 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    89.Kelly, M. J. et al. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination II. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 20–38 (2006).Article 

    Google Scholar 
    90.Milano, S. et al. Environmental conditions framing the first evidence of modern humans at Tam Pà Ling, Laos: A stable isotope record from terrestrial gastropod carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 511, 352–363 (2018).Article 

    Google Scholar 
    91.Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular southeast Asia during the last glacial period: A savanna corridor in Sundaland? Quat. Sci. Rev. 24, 228–242 (2005).Article 

    Google Scholar 
    92.Marwick, B. & Gagan, M. K. Late Pleistocene monsoon variability in northwest Thailand: An oxygen isotope sequence from the bivalve Margaritanopsis laosensis excavated in Mae Hong Son province. Quat. Sci. Rev. 30, 3088–3098 (2011).Article 
    ADS 

    Google Scholar 
    93.Geist, V. On the relationship of social evolution and ecology in ungulates. Am. Zool. 14, 205–220 (1974).Article 

    Google Scholar 
    94.Bacon, A.-M. et al. Testing the savannah corridor hypothesis during MIS2: The Boh Dambang hyena site in southern Cambodia. Quat. Int. 464, 417–439 (2018).Article 

    Google Scholar 
    95.Cannon, C. H., Robert, J., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbances. Proc. Natl. Acad. Sci. USA 106, 11188–11193 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    96.Yuan, D. et al. Timing, duration, and transitions of the Last Interglacial Asian monsoon. Science 304, 575–578 (2004).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    97.Hublin, J.-J. How old are the oldest Homo sapiens in Far East Asia? Proc. Natl. Acad. Sci. USA 118, e2101173118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Boivin, N., Fuller, D. Q., Dennell, R., Allaby, R. & Petraglia, M. D. Human dispersal across diverse environments of Asia during the Upper Pleistocene. Quat. Int. 300, 32–47 (2013).Article 

    Google Scholar 
    99.Perera, N. et al. People of the ancient rainforest: Late Pleistocene foragers at the Batadomba-Iena rockshelter, Sri Lanka. J. Hum. Evol. 61, 254–269 (2011).PubMed 
    Article 

    Google Scholar 
    100.Roberts, P., Boivin, N., Lee-Thorp, J., Petraglia, M. & Stock, J. Tropical forests and the genus Homo. Evol. Anthropol. 25, 306–317 (2016).PubMed 
    Article 

    Google Scholar 
    101.Roberts, P. & Petraglia, M. D. Pleistocene rainforests: Barriers or attractive environments for early human foragers? World Archaeol. 47, 718–739 (2015).Article 

    Google Scholar 
    102.Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nat. Commun. 10, 739 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    103.Barker, G. et al. The “human revolution” in lowland tropical Southeast Asia: The antiquity and behavior of anatomically modern humans at Niah cave (Sarawak, Borneo). J. Hum. Evol. 52, 243–261 (2007).PubMed 
    Article 

    Google Scholar 
    104.Piper, P. J. & Rabett, R. J. Hunting in a tropical rainforest: Evidence from the terminal Pleistocene at Lobang Hangus, Niah caves, Sarawak. Int. J. Osteoarchaeol. 19, 551–565 (2009).Article 

    Google Scholar 
    105.Mellars, P. Going East: New genetic and archaeological perspectives on the modern human colonization of Eurasia. Science 313, 796–800 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    106.Posth, C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial populations turnover in Europe. Curr. Biol. 26, 827–833 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Roberts, P. & Stewart, B. A. Defining the ‘generalist specialist’ niche for Pleistocene Homo sapiens. Nat. Hum. Behav. 2, 542–550 (2018).PubMed 
    Article 

    Google Scholar 
    108.Zachwieja, A. J. et al. Understanding Late Pleistocene human land preference using ecological niche models in an Australasian test case. Quat. Int. 563, 13–28 (2020).Article 

    Google Scholar 
    109.Shea, J. J. Homo sapiens is as Homo sapiens was: Behavioral variability versus “behavioral modernity” in Paleolithic archaeology. Curr. Anthropol. 52, 1–35 (2011).Article 

    Google Scholar 
    110.Sun, X.-F. et al. Ancient DNA and multimethod dating confirm the late arrival of anatomically modern humans in southern China. Proc. Natl. Acad. Sci. USA 118, e2019158118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Martinón-Torres, M. et al. On the misidentification and unreliable context of the new “human teeth” from Fuyan Cave (China). Proc. Natl. Acad. Sci. USA 118, e2102961118 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    112.Timmerman, A. & Friedrich, F. T. Late Pleistocene climate drivers of early human migration. Nature 538, 92–95 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    113.Kealy, S., Louys, J. & O’Connor, S. Least-cost pathway models indicate northern human dispersal from Sunda to Sahul. J. Hum. Evol. 125, 59–70 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.De Deckker, P. et al. Marine Isotope Stage 4 in Australasia: A full glacial culminating 65,000 years ago: Global connections and implications for human dispersal. Quat. Sci. Rev. 204, 187–207 (2019).Article 
    ADS 

    Google Scholar 
    115.Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    116.O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul?. Proc. Natl. Acad. Sci. USA 115, 8482–8490 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    117.Brain, C. K. The Hunters and the Hunted? An Introduction to African Cave Taphonomy (The University of Chicago press, 1981).
    Google Scholar 
    118.Lucchini, V., Meijaard, E., Diong, C. H., Groves, C. P. & Randi, E. New phylogenetic perspectives among species of South-east Asian wild pig (Sus sp.) based on mtDNA sequences and morphometric data. J. Zool. Lond. 266, 25–35 (2006).Article 

    Google Scholar 
    119.Sponheimer, M. et al. Do “savanna” chimpanzees consume C4 resources? J. Hum. Evol. 51, 128–133 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    120.Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl. Acad. Sci. USA 112, 11467–11472 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    121.Tejada-Lara, J. V. et al. Comparative isotope ecology of western Amazonian rainforest mammals. Proc. Natl. Acad. Sci. USA 117, 26263–26272 (2020).Article 
    CAS 

    Google Scholar 
    122.Kohn, M. J. Carbon isotope compositions of terrestrial C3 Plants as Indicators of (Paleo)ecology and (Paleo)climate. Proc. Natl. Acad. Sci. USA 107, 19691–19695 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar  More

  • in

    The spatial configuration of biotic interactions shapes coexistence-area relationships in an annual plant community

    Study systemWe conducted our study in Caracoles Ranch, located in Doñana National Park (SW Spain 37° 04′ N, 6° 18′ W). The study area has a Mediterranean climate with mild winters and an average 50-year annual rainfall of 550–570 mm. Vegetation is dominated by annual grassland species, with no perennial species present. A subtle topographic gradient (slope 0.16%) is enough to generate vernal pools at the lower border of the ranch from winter (November–January) to spring (March–May), while upper parts do not get flooded except in exceptionally wet seasons. In our study, an extreme flooding event occurred during the growing season of 2018. A strong soil salinity–humidity gradient is structured along this topographic gradient.In September 2014, we established nine plots of 8.5 m × 8.5 m along a 1 km × 200 m area. Three of these nine plots were located in the upper part of the topographic gradient, three at the middle, and the last three at the lower part. The average distance between these three locations was 300 m and the average distance between plots within each location was 30 m (minimum distance 20 m). In addition, each plot was divided into 36 subplots of 1 m × 1 m with aisles of 0.5 m in between to allow access to subplots where measurements were taken (total of 324 subplots). This spatial design was established to parameterize population models including an intrinsic fecundity component and the effect of intra- and interspecific pairwise interactions. Specifically, the core of the observations involved measuring, for each focal individual, per germinant viable seed production as a function of the number and identity of neighbors within a radius of 7.5 cm including individuals of the same species. This radius is a standard distance used in previous studies to measure competitive interactions among annual plant species29,34, and has been validated to capture the outcome of competition interactions at larger scales (1 m²) under locally homogeneous environmental conditions35. From November 2014 to September 2019, we sampled 19 species present in the study area each year. We sampled one individual per subplot for widespread species and several individuals per subplot when species were rare (max. 324 individuals/species). This sampling design ensured that all species are balanced in terms of number of observations, and that we capture the full range of observed spatial interactions among species across the study area. Furthermore, we obtained independent estimates of seed survival and seed germination rates in 2016 (see17 for details on obtaining these rates). These 19 species belong to disparate taxonomic families and exhibit contrasted functional profiles along the growing season (Supplementary Table 1). The earliest species with small size and open flowers, such as C. fuscatum (Asteraceae), peak at beginning of the growing season (February), while late species with succulent leaves, such as S. soda (Amaranthaceae) and S. splendens (Amaranthaceae), grow during summer and peak at the end of the growing season (September-October). All these species represent up to 99% of plant cover in the study area.Estimating species interaction networks and intrinsic growth ratesWe estimated the effect of nearby individuals on individual fecundity via a Ricker model of population dynamics, which allowed us to estimate the strength of positive or negative interactions among pair of species, and therefore, to build a matrix of interactions among species. This approach has been previously applied to study annual plant systems under Mediterranean-type climates36, and it has also recently been shown to have several advantages compared to other formulations34. For example, this model implemented using a negative-binomial distribution for individual fecundities is more flexible in terms of modeling over-dispersion than a Poisson model, while maintaining predictions as positive integers. The model is of the form$${F}_{i,t}={lambda }_{i}{e}^{-({sum }^{}{alpha }_{i,j}{N}_{j,t})}$$
    (1)
    where ({lambda }_{i}) is the number of seeds produced by species i in the absence of interactions, ({alpha }_{i,j}) is the per capita effect of species j over species i (which can be positive or negative, thus allowing both competitive and facilitative effects), and ({N}_{j,t}) is the number of individuals of species j within 7.5 cm of the focal individual at timestep t. We fitted this model to the empirical data using Bayesian multilevel models with a negative-binomial distribution34. For model fitting, we used non-informative priors with MCMC settings of 5000 iterations (of which 2500 were warm-up) and 6 chains. The model was implemented using the brms R package37. The effect of changes in environmental conditions on species persistence can be phenomenologically evaluated by allowing models to vary in their estimates of species’ intrinsic growth rates and the reorganization of species interactions38. In our case, to evaluate the effect of environmental heterogeneity on species persistence (Question 1), we developed two complementary models. In both cases, we modeled the observed viable seed production per individual as a function of the identity and abundance of neighboring species. For the model assuming that plant species interact within a homogeneous environment across plots, we pooled together observations from the whole study area, and allowed the intercept and slope of the relationships to vary across years by including year as a random effect. Thus, the ({lambda }_{i}) and ({alpha }_{i,j}) values in Eq. 1 vary across years, but are homogeneous for the whole study area. We used the means from the obtained posterior distributions as estimates in the subsequent analyses. For the model that assumes that heterogeneous environments across space and time impact species population dynamics, we included an additional crossed random effect “plot”, thus obtaining spatially and temporally differentiated seed production in the absence of neighbors (({lambda }_{i})) and interaction coefficients (({alpha }_{i,j})). Importantly, our modeling approach does not evaluate the magnitude per se of the spatiotemporal variability in our system. It rather evaluates the response of plant species to changes in environmental conditions through their effects on vital rates and interaction coefficients (see39,40,41 for similar approaches). Likewise, this approach does not model the spatial dynamics of the community or spatially explicit mechanisms such as dispersal, but rather uses observed spatially explicit associations of individuals to infer their vital rates and interaction coefficients. In the following, we refer to the two developed models as “homogeneous parameterization” and “heterogeneous parameterization”, respectively (Fig. 1).The statistical methodology generates a posterior distribution of estimates for each parameter inferred, i.e., for each intrinsic fecundity rate (({lambda }_{i})) and interaction coefficient (({alpha }_{i,j})). These means, by definition, do not capture the full variability obtained with the statistical model, and may potentially be biased, especially for species pairs that have comparatively few observations. To ensure that our results were not biased by using the posterior mean as a fixed value in subsequent analyses, we replicated our analyses using random samples from the posterior distributions instead of the mean values. We generated 100 random draws from each parameterization and compared the obtained curves to the ones derived from the posterior means (Supplementary Note 1 and Supplementary Fig. 3).Finally, we assume that the study system presents a rich soil seed bank but we do not explicitly model its direct influence on driving the spatial pattern of species interactions or intrinsic vital rates: rather we use fixed field estimates of seed survival and germination rates in our modeling framework (see section “Analyzing species persistence”). This assumption implies that we cannot evaluate the contribution of a spatially or temporally varying seed bank to the shape of CARs and SARs, which remains an open question for future studies.Analyzing species persistenceTo analyze which species are predicted to persist and coexist with others in our system, we built communities based on the species’ spatial location. At the smallest spatial scale, given a community of S species observed in the field in a given plot and a given year, we calculated the persistence of each species within every community combination, from 2 species to S. Thus, we obtained for each species, plot, and year, two estimates of persistence, one from the homogeneous and another from the heterogeneous parameterization. To scale-up our predictions of species persistence at increasingly large areas, we aggregated species composition and persistence patterns from increasing numbers of plots. We consistently evaluated species persistence using a structuralist approach because prior work has shown it is compatible with the model used to estimate interaction coefficients (Eq. 1)14. Specifically, for a given community we first used the strength of sign of intra- and interspecific interactions to compute its feasibility domain (note that the structuralist approach can accommodate different signs in the interaction coefficients). Broadly speaking the feasibility domain is the structural analog of niche differences, and it represents the possible range of intrinsic species growth rates compatible with the persistence of individual species and of the entire community14. Indeed, the larger the feasibility domain, the larger the likelihood of species to persist. Yet, computing the feasibility domain does not tell us which species can persist. To obtain such information, we need to check whether the vector containing the observed differences in intrinsic growth rates between species fits within the limits of the feasibility domain. If so, then all species are predicted to coexist. If not, then one or more particular species is predicted to be excluded (see14 for a graphical representation).In order to quantify the feasibility of ecological communities, the intrinsic growth rates and interaction coefficients must be formulated according to a linear Lotka-Volterra model, or an equivalent formulation14. We transformed the parameters obtained from Eq. 1 to an equivalent Lotka-Volterra formulation with the following expression (Supplementary Note 2):$${r}_{i}={log}left(frac{1-(1-{g}_{i}){s}_{i}}{{g}_{i}}right)+{lambda }_{i}$$
    (2)
    where ({g}_{i}) is the seed germination rate of species i and ({s}_{i}) is its seed survival rate. Thus, we quantified the feasibility of our communities using the ri intrinsic growth rates from Eq. 2 and the ({alpha }_{i,j}) coefficients, which are not modified. For our main analyses, we used empirical estimates of seed survival and germination rates. We further explored the influence of these vital rates in the transformed intrinsic growth rates in Supplementary Note 2 (see also Supplementary Fig. 4 and Supplementary Table 4).The structuralist methodology further allowed us to dissect which specific configuration of species interactions is behind species persistence in our system (Question 2), among three possibilities: first, a given species may be able to persist by itself, and hinder the long-term persistence of neighboring species (category dominant). Second, pairs of species may be able to coexist through direct interactions (category coexistence of species pairs). The classic example of two-species coexistence is when the stabilizing effect of niche differences that arise because intraspecific competition exceeds interspecific competition overcome fitness differences41. Lastly, species may only be able to coexist in more complex communities (category multispecies coexistence)23, thanks to the effect of indirect interactions on increasing the feasible domain of the community14. A classic example of multispecies coexistence is a rock–paper–scissors configuration in which the three species coexist because no species is best at competing for all resources24,42. Because species may be predicted to persist under different configurations in a given community, we assigned their persistence category to the simplest community configuration. For instance, if we predicted that a three-species combination coexists as well as each of the three pairs separately, we assigned these species to the coexistence of pairs category26,43. Finally, if a species is not predicted to persist but it is observed in the system, we classify it as naturally transient, that is, it will tend to become locally extinct no matter what its surrounding community. In order to ascertain our classification of species as transient, we further analyzed whether these species shared ecological traits known to be common to transient species. In particular, a pervasive characteristic of transient species is their comparatively small population sizes. We explored the relationship between our classification as transient and species abundance through a logistic regression with logit link (supplementary Table 3).In addition to our main analyses, based on the structuralist approach, we explored the local stability44 of the observed communities, which evaluates their asymptotic response to infinitesimal perturbations, and thus provides a complementary view to the potential coexistence of the system (Supplementary Note 3).Species–area and coexistence–area relationshipsTo answer Question 3, we obtained standard SARs for each year, by calculating the average diversity observed when moving from 1 plot (72 m²) to 9 plots (650 m²) of our system. In the classification of SAR types proposed by Scheiner et al.45, the curves from our system are thus of type III-B, i.e., plots in a non-contiguous grid, with diversity values obtained using averages from all possible combinations of plots. Likewise, the yearly CARs were built taking the average number of coexisting species in each combination from 1 to 9 plots. In this case, a species was taken to persist in a given area if it was persisting alone or if it was part of at least one coexisting community within that area. We obtained CARs for the two parameterizations, i.e., assuming homogeneous interaction coefficients and individual fecundity throughout the study area, or explicitly including spatial variability in these terms. We fitted the CARs from Fig. 2 to power-law functions and obtained their associated parameters (Supplementary Table 2) using the mmSAR v1.0 package in R46. In the last step of the analyses, to evaluate the role of species identity in driving these empirical fits of CARs, we compared them to two complementary null models that reshuffle the strengths of per capita interactions between species pairs across the interaction matrix. In particular, as baseline we took the CARs from the homogeneous parameterization, in order to have a unique interaction strength value per species pair. In the first null model, and taking the inferred interaction matrix from a given plot and year, we redistributed the pairwise interaction coefficients randomly. That is, we fixed the number of species observed in a certain plot and year, as well as the structure of the interaction matrix, but randomized the magnitude of observed pairwise interactions (both intra and interspecific interactions) in that community. The second null model is similar, but keeping the diagonal coefficients of the interaction matrix, i.e., the intraspecific terms, fixed. While the first null model accounted for the effect of interspecific competitive responses, as well as self-limiting processes on driving CARs, the second null maintained self-limiting processes fixed by avoiding changes in the diagonal elements of our interaction matrices. We ran 100 replicates of each model for each year, and obtained the average CARs across replicates. All analyses were carried out in R v3.6.3, using packages tidyverse47 v.1.3.1 for data manipulation and visualization, and foreach48 v1.5.1 and doParallel49 v1.0.16 for parallelizing computationally intensive calculations.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The answer to the biodiversity crisis is not more debt

    EDITORIAL
    26 October 2021

    The answer to the biodiversity crisis is not more debt

    Funding pledges from China and other countries need to be given in grants — which must include research grants — and not as a reward for taking out loans.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    The Alichur Valley in Tajikistan is among a number of ecologically sensitive areas that researchers say could be affected by China’s Belt and Road Initiative.Credit: Alamy

    Funding for biodiversity is getting some attention at last.In September, nine philanthropic organizations, most of them in the United States, pledged a total of US$5 billion over a decade towards projects that will help to preserve the richness of Earth’s species.This month, Chinese President Xi Jinping announced the allocation of 1.5 billion yuan ($235 million) to the new Kunming Biodiversity Fund. This will have a goal of funding projects, such as protected areas, that will contribute to slowing down and eventually reversing the loss of species and ecosystems.More details are awaited from China, along with further information on a promise made by the European Union to double its funding for biodiversity. Contributions to the Kunming fund should be given as grants, not loans; they should have a research component; and they should be pooled and managed through international organizations. Moreover, the rules for access need to be transparent and fair to all applicants. These are important factors to emphasize, because there seems to be a trend towards providing environmental finance as loans — many of them to some of the world’s poorest countries, which are often already highly indebted.
    The broken $100-billion promise of climate finance – and how to fix it
    The pledges were timed to coincide with the first part of the China-hosted United Nations biodiversity conference, COP15, which ended on 24 October. Collectively, the sums, although not insignificant, will amount to little more than a 1–2% increase on the roughly $133 billion a year that the world currently spends on biodiversity. Well over half of this is spent by China, the EU, Japan and the United States.Spending on biodiversity needs to increase in all regions, according to a report by the UN Environment Programme, published in May (see go.nature.com/3ekaopk). For comparison, money earmarked for tackling climate change totalled $632 billion per year in 2019–20, according to a Nature analysis (Nature 598, 400–402; 2021).The reasons that finance for biodiversity is lower than that for its climate cousin include a relative dearth of finance in low- and middle-income countries and the fact that more than half of all climate funds take the form of loans. Both public and private investors know that in financing projects such as solar energy plants or batteries research and development, they will probably see a return on their investments. By contrast, protecting a watershed or a wetland is more of a public service — and so is more likely to be funded from taxation. Partly as a result, some 86% of biodiversity funding currently comes from public sources, in the form of grants.But that might be about to change. Researchers, corporations, bankers and policymakers have been exploring how to create financial investment products — from both private and public sources — in biodiversity, as well as how to better protect nature from the negative environmental impacts of big infrastructure projects. Most industrial sectors rely on biodiversity to some extent. Food producers, forestry, clothing manufacturers and hydropower, for example, would all struggle without healthy soils, pollinators or predictable water supplies. If nature continues to degrade, the world’s economic output will begin to suffer sooner or later.
    Global climate action needs trusted finance data
    One idea being studied is how to create an internationally agreed reporting system so that any entity — a bank, a government or a corporation — would need to publish data on whether its investments could lead to ecological damage. Such disclosures would probably prompt financiers to think twice before taking on investments that might be environmentally harmful. Earlier this year, an organization called Taskforce on Nature-related Financial Disclosures began work to develop such a system. It is co-chaired by Elizabeth Mrema, the executive secretary of the UN biodiversity convention secretariat, and is based in Montreal, Canada.Another idea under study is called Nature Performance Bonds (NPBs). According to this model, indebted countries would be eligible for more-favourable loan repayment terms if they could commit to spending the cash saved on environmental protection.Last month, a study commissioned by the China Council for International Cooperation on Environment and Development, an organization of policymakers that advises China’s government, recommended that China become a global leader in NPBs (see go.nature.com/3pekzk7). The study says that some 52 low- and middle-income countries owe China a combined total of more than $100 billion in loans. These include loans for projects that are part of China’s Belt and Road Initiative (BRI) to upgrade energy sources, roads, railways and airports, mainly in low- and middle-income countries. Many of China’s BRI investments are in ecologically sensitive areas.The terms of China’s $235-million biodiversity announcement have not yet been confirmed. But it would be wise if this funding were not linked to the debts of countries whose biodiversity is being affected by BRI projects. Otherwise it would seem that China’s main motivation is the greening of its own investments, when, as the host of COP15, it needs to think and act more globally, and work towards creating a fund by and for all nations.
    Where climate cash is flowing and why it’s not enough
    The Kunming Biodiversity Fund needs to be a stand-alone grant fund, ideally managed by a mechanism involving all countries, and with transparent rules of access. It also needs to have a dedicated research component — something that is not possible through loan finance. And other nations must contribute.The need for research funding is especially acute. There are often few funding opportunities from national research bodies for researchers in low- and middle-income countries that are rich in biodiversity. The UN’s official biodiversity funder, the Global Environment Facility, based in Washington DC, does not have a dedicated research facility. It does fund some science, but that is a part of a small-grants programme (see go.nature.com/3mgu8io) that is mainly focused on funding for conservation.It is clear that biodiversity will be getting more finance. But loan finance must not crowd out or replace grant funding. There is a precedent for this. It is already happening in climate finance, for which a much-delayed $100 billion pledged to be provided annually to low- and middle-income countries will be mainly in the form of loans.A step change in biodiversity finance is needed and the Kunming Biodiversity Fund will be a welcome move in the right direction. But it will be inequitable if most of the promised finance ends up committed to loans. Finding an answer to the biodiversity crisis should not mean the poorest countries having to take on yet more debt.

    Nature 598, 539-540 (2021)
    doi: https://doi.org/10.1038/d41586-021-02891-y

    Related Articles

    The broken $100-billion promise of climate finance – and how to fix it

    Where climate cash is flowing and why it’s not enough

    Global climate action needs trusted finance data

    Growing support for valuing ecosystems will help conserve the planet

    Subjects

    Biodiversity

    Climate change

    Economics

    Policy

    Latest on:

    Biodiversity

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Fine-root traits in the global spectrum of plant form and function
    Article 29 SEP 21

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Climate change

    COP26: set a minimum global carbon price for emissions
    Correspondence 26 OCT 21

    How climate change will make the hottest tropical days even more extreme
    Research Highlight 25 OCT 21

    COP26 climate summit: A scientists’ guide to a momentous meeting
    News Explainer 25 OCT 21

    Economics

    COP26: set a minimum global carbon price for emissions
    Correspondence 26 OCT 21

    Countries of the Indo-Gangetic Plain must unite against air pollution
    Correspondence 19 OCT 21

    The cost of changes in energy use in a warming world
    News & Views 13 OCT 21

    Jobs

    Assistant Professor in Theoretical Neuroscience

    Princeton University
    Princeton, United States

    Assistant, Associate, or Full Professor (Tenure Track Investigator)

    Feinberg School of Medicine, NU
    Chicago, IL, United States

    Assistant Professor in Human Cognitive Neuroscience

    Princeton University
    Princeton, NJ, United States

    Postdoctoral positions in functional and structural studies of ion channels

    Georgetown University Medical Center (GUMC)
    Washington, DC, United States More

  • in

    The largest hoplophonine and a complex new hypothesis of nimravid evolution

    1.Wang, X., White, S. C. & Guan, J. A new genus and species of sabertooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids. J. Syst. Palaeontol. 18, 783–803 (2020).Article 

    Google Scholar 
    2.Barrett, P. Z., Hopkins, S. S. B. & Price, S. A. How many sabertooths? Reevaluating the number of carnivoran sabertooth lineages with total-evidence Bayesian techniques and a novel origin of the Miocene Nimravidae. J. Vertebr. Paleontol. 41, e1923523 (2021).Article 

    Google Scholar 
    3.Robles, J. M. et al. New craniodental remains of the barbourofelid Albanosmilus jourdani (Filhol, 1883) from the Miocene of the Valles-Penedes Basin (NE Iberian Peninsula) and the phylogeny of the Barbourofelini. J. Syst. Palaeontol. 11, 993–1022 (2013).Article 

    Google Scholar 
    4.Bryant, H. N. Nimravidae. In The terrestrial Eocene-Oligocene Transition in North America (eds. Prothero, D. R. & Emry, R. J.) 453–475 (Cambridge University Press, 1996).5.Peigné, S. Systematic review of European Nimravinae (Mammalia, Carnivora, Nimravidae) and the phylogenetic relationships of Palaeogene Nimravidae. Zool. Scr. 32, 199–229 (2003).Article 

    Google Scholar 
    6.Barrett, P. Z. Taxonomic and systematic revisions to the North American Nimravidae (Mammalia, Carnivora). PeerJ 4, e1658 (2016).Article 

    Google Scholar 
    7.Morlo, M., Peigné, S. & Nagel, D. A new species of Prosansanosmilus: Implications for the systematic relationships of the family Barbourofelidae new rank (Carnivora, Mammalia). Zool. J. Linn. Soc. 140, 43–61 (2004).Article 

    Google Scholar 
    8.Geraads, D. & Güleç, E. Relationships of Barbourofelis piveteaui (Ozansoy, 1965), a late miocene nimravid (Carnivora, Mammalia) from Central Turkey. J. Vertebr. Paleontol. 17, 370–375 (1997).Article 

    Google Scholar 
    9.Janis, C. M., Figueirido, B., Desantis, L. & Lautenschlager, S. An eye for a tooth: Thylacosmilus was not a marsupial ‘saber-tooth predator’. PeerJ 8, e9346 (2020).Article 

    Google Scholar 
    10.Slater, G. J. & Van Valkenburgh, B. Long in the tooth: Evolution of sabertooth cat cranial shape. Paleobiology 34, 403–419 (2008).Article 

    Google Scholar 
    11.Wallace, S. C. & Hulbert, R. C. A new machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with comments on the origin of the Smilodontini (Mammalia, Carnivora, Felidae). PLoS One 8, e56173 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Melchionna, M. et al. A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth. Palaeontology 64, 573–584 (2021).Article 

    Google Scholar 
    13.Bowdich, T. E. An Analysis of the Natural Classifications of Mammalia, for the Use of Students and Travellers. (Smith, 1821).14.Cope, E. D. On the extinct cats of America. Am. Nat. 14, 833–858 (1880).Article 

    Google Scholar 
    15.Gervais, P. Zoologie et paléontologie générales. Nouvelles recherches sur les animaux vertébrés vivants et fossiles. 2. série. (A. Bertrand, 1876).16.Morea, F. M. On the Species of Hoplophoneus and Eusmilus (Carnivora, Felidae). Department of Geology (South Dakota School of Mines and Technology, 1975).17.Bryant, H. N. Delayed eruption of the deciduous upper canine in the sabertoothed carnivore Barbourofelis lovei (Carnivora, Nimravidae). J. Vertebr. Paleontol. 8, 298–306 (1988).Article 

    Google Scholar 
    18Radinsky, L. B. Evolution of skull shape in carnivores. 3. The origin and early radiation of the modern carnivore families. Paleobiology 8, 177–195 (1982).Article 

    Google Scholar 
    19.Jepsen, G. L. American eusmiloid sabre-tooth cats of the Oligocene epoch. Proc. Am. Philos. Soc. 72, 355–369 (1933).
    Google Scholar 
    20.Antón, M. Sabertooth. (Indiana University Press, 2013).21.Bryant, H. N. & Russell, A. P. Carnassial functioning in nimravid and felid sabertooths: Theoretical basis and robustness of inferences. In Functional Morphology in Vertebrate Paleontology (ed. Thomason, J.) 116–135 (Cambridge University Press, 1995).22.Van Valkenburgh, B. Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds. Damuth, J. & MacFadden, B. J.) 181–205 (Cambridge University Press, 1990). https://doi.org/10.1017/CBO9781107415324.004.23.Martin, L. D. Functional morphology and the evolution of cats. Trans. Nebraska Acad. Sci. 8, 141–154 (1980).
    Google Scholar 
    24.Morlo, M. New remains of Barbourofelidae (Mammalia, Carnivora) from the Miocene of Southern Germany: Implications for the history of barbourofelid migrations. Beitr. Paläontol. 30, 339–349 (2006).
    Google Scholar 
    25.Kingdon, J. The Kingdon Field Guide to African mammals 2nd edn. (Princeton University Press, 2015).
    Google Scholar 
    26.Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, 0363–0368 (2007).CAS 

    Google Scholar 
    28.Prothero, D. R. & Emry, R. J. The Chadronian, Orellan, and Whitneyan North American land mammal ages. In Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology (ed. Woodburne, M. O.) 156–168 (Columbia University Press, 2004).29.Boardman, G. S. Paleoecology of Nebraska’s Ungulates During the Eocene-Oligocene Climate Transition. Dissertations & Theses in Earth and Atmospheric Sciences (University of Nebraska-Lincoln, 2013).30.Christiansen, P. Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29, 543–559 (2013).Article 

    Google Scholar 
    31.Morales, J., Pickford, M., Salesa, M. & Soria, D. The systematic status of Kelba, Savage, 1965, Kenyalutra, Schmidt-Kittler, 1987 and Ndamathaia, Jacobs et al., 1987, (Viverridae, Mammalia) and a review of Early Miocene mongoose-like carnivores of Africa. Ann. Paléontol. 86, 243–251 (2000).Article 

    Google Scholar 
    32.Borths, M. R., Holroyd, P. A. & Seiffert, E. R. Hyainailourine and teratodontine cranial material from the late Eocene of Egypt and the application of parsimony and Bayesian methods to the phylogeny and biogeography of Hyaenodonta (Placentalia, Mammalia). PeerJ 4, e2639 (2016).Article 

    Google Scholar 
    33.Borths, M. R. & Stevens, N. J. Simbakubwa kutokaafrika, gen. et sp. Nov. (Hyainailourinae, Hyaenodonta, ‘Creodonta’, Mammalia), a gigantic carnivore from the earliest Miocene of Kenya. J. Vertebr. Paleontol. 39, 1–20 (2019).Article 

    Google Scholar 
    34.Tseng, Z. J., Takeuchi, G. T. & Wang, X. Discovery of the upper dentition of Barbourofelis whitfordi (Nimravidae, Carnivora) and an evaluation of the genus in California. J. Vertebr. Paleontol. 30, 244–254 (2010).Article 

    Google Scholar 
    35.Piras, P. et al. Evolution of the sabertooth mandible: A deadly ecomorphological specialization. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 166–174 (2018).Article 

    Google Scholar 
    36.Tedford, R. H. et al. Mammalian biochronology of the Arikareean through Hempillian interval (late Oligocene through Early Pliocene epochs). In Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and geochronology (ed. Woodburne, M. O.) 169–231 (Columbia University Press, 2004).37Bouckaert, R. et al. BEAST2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).Article 

    Google Scholar 
    38.Fan, Y., Wu, R., Chen, M. H., Kuo, L. & Lewis, P. O. Choosing among partition models in Bayesian phylogenetics. Mol. Biol. Evol. 28, 523–532 (2011).CAS 
    Article 

    Google Scholar 
    39Antón, M. et al. Implications of the mastoid anatomy of larger extant felids for the evolution and predatory behaviour of sabertoothed cats (Mammalia, Carnivora, Felidae). Zool. J. Linn. Soc. 140, 207–221 (2004).Article 

    Google Scholar 
    40Meachen-Samuels, J. A. & Van Valkenburgh, B. Radiographs reveal exceptional forelimb strength in the sabertooth cat, Smilodon fatalis. PLoS One 5, e11412 (2010).ADS 
    Article 

    Google Scholar 
    41.Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: From development to deep time. Philos. Trans. R. Soc. B 369, 20130254 (2014).CAS 
    Article 

    Google Scholar 
    42.Stadler, T. Sampling-through-time in birth-death trees. J. Theor. Biol. 267, 396–404 (2010).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    43.Didiera, G., Royer-Carenzib, M. & Laurinc, M. The reconstructed evolutionary process with the fossil record. J. Theor. Biol. 315, 26–37 (2012).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    44.Stadler, T., Künert, D., Bonhoeffer, S. & Drummond, A. J. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. U. S. A. 110, 228–233 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).Article 

    Google Scholar 
    46.Wozencraft, W. C. Order Carnivora. In Mammal Species of the World. A Taxonomic and Geographic Reference (eds. Wilson, D. E. & Reeder, D. M.) 532–628 (Johns Hopkins University Press, 2005).47.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901–904(2018).CAS 
    Article 

    Google Scholar 
    48.Morales, J. & Pickford, M. A new barbourofelid mandible (Carnivora, Mammalia) from the Early Miocene of Grillental-6, Sperrgebiet, Namibia. Commun. Geol. Surv. Namibia 18, 113–123 (2018).
    Google Scholar 
    49.Meade, A. & Pagel, M. BayesTraits V3.0.2. (2019). http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.2/BayesTraitsV3.0.2.html. Accessed 9 February 2021.50.Paterson, R. S., Rybczynski, N., Kohno, N. & Maddin, H. C. A total evidence phylogenetic analysis of pinniped phylogeny and the possibility of parallel evolution within a monophyletic framework. Front. Ecol. Evol. 7, 1–16 (2020).Article 

    Google Scholar 
    51Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).Article 

    Google Scholar 
    52.Griffin, R. H. btw: Run BayesTraitsV3 from R. R package version 2.0. http://www.randigriffin.com/projects/btw.html (2018). Accessed 9 February 2021.53.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).Article 

    Google Scholar  More

  • in

    Juvenile hormone analog enhances Zika virus infection in Aedes aegypti

    1.Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Liu, N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Roush, R. T. Occurrence, genetics and management of insecticide resistance. Parasitol. Today 9, 174–179 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Sternberg, E. D. & Thomas, M. B. Insights from agriculture for the management of insecticide resistance in disease vectors. Evol. Appl. 11, 404–414 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Raymond, M., Berticat, C., Weill, M., Pasteur, N. & Chevillon, C. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? in Microevolution Rate, Pattern, Process 287–296 (Springer, 2001).6.Parker-Crockett, C., Connelly, C. R., Siegfried, B. & Alto, B. W. Influence of pyrethroid resistance on vector competency for Zika virus by Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2, 19 (2021).
    Google Scholar 
    7.Muturi, E. J., Kim, C., Alto, B. W., Berenbaum, M. R. & Schuler, M. A. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop. Med. Int. Heal. 16, 955–964 (2011).CAS 
    Article 

    Google Scholar 
    8.James, R. R. & Xu, J. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 109, 175–182 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Hauser, G., Thiévent, K. & Koella, J. C. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae. Parasit. Vectors 13, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    10.Hauser, G. & Koella, J. C. Larval exposure to a pyrethroid insecticide and competition for food modulate the melanisation and antibacterial responses of adult Anopheles gambiae. Sci. Rep. 10, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    11.Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 27, 16052–16068 (2020).CAS 
    Article 

    Google Scholar 
    12.Nijhout, H. F. & Williams, C. M. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last-instar larva and the decision to pupate. J. Exp. Biol. 61, 481–491 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Nijhout, H. F. & Wheeler, D. E. Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57, 109–133 (1982).CAS 
    Article 

    Google Scholar 
    14.Ishaaya, I. & Horowitz, A. R. Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera: Aleyrodidae). J. Econ. Entomol. 85, 2113–2117 (1992).CAS 
    Article 

    Google Scholar 
    15.Ali, A., Nayar, J. K. & Xue, R.-D. Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus. J. Am. Mosq. Control Assoc. 11, 72–76 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Maoz, D. et al. Community effectiveness of pyriproxyfen as a dengue vector control method: a systematic review. PLoS Negl. Trop. Dis. 11, e0005651 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Hustedt, J. C., Boyce, R., Bradley, J., Hii, J. & Alexander, N. Use of pyriproxyfen in control of Aedes mosquitoes: a systematic review. PLoS Negl. Trop. Dis. 14, e0008205 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Alomar, A. A., Eastmond, B. H. & Alto, B. W. The effects of exposure to pyriproxyfen and predation on Zika virus infection and transmission in Aedes aegypti. PLoS Negl. Trop. Dis. 14, e0008846 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Alomar, A. A. & Alto, B. W. Mosquito responses to lethal and nonlethal effects of predation and an insect growth regulator. Ecosphere 12, e03452 (2021).Article 

    Google Scholar 
    20.Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. 106, 11530–11534 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLoS Negl. Trop. Dis. 9, e0003406 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Buckner, E. A., Williams, K. F., Marsicano, A. L., Latham, M. D. & Lesser, C. R. Evaluating the vector control potential of the In2Care® mosquito trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee County, Florida. J. Am. Mosq. Control Assoc. 33, 193–199 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Fiaz, M. et al. Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. Peer J. 7, e7489 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Kamal, H. A. & Khater, E. I. M. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti. J. Egypt Soc. Parasitol. 40, 565–574 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    25.Yadav, K., Dhiman, S., Acharya, B. N., Ghorpade, R. R. & Sukumaran, D. Pyriproxyfen treated surface exposure exhibits reproductive disruption in dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007842 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Moltini-Conclois, I., Stalinski, R., Tetreau, G., Després, L. & Lambrechts, L. Larval exposure to the bacterial insecticide Bti enhances dengue virus susceptibility of adult Aedes aegypti mosquitoes. Insects 9, 193 (2018).PubMed Central 
    Article 

    Google Scholar 
    27.Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Heugens, E. H. W., Hendriks, A. J., Dekker, T., van Straalen, N. M. & Admiraal, W. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol. 31, 247–284 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Zhu, J. & Noriega, F. G. The role of juvenile hormone in mosquito development and reproduction. Adv. In Insect Phys. 51, 93–113 (2016).Article 

    Google Scholar 
    30.El-Shazly, M. M. & Refaie, B. M. Larvicidal effect of the juvenile hormone mimic pyriproxyfen on Culex pipiens. J. Am. Mosq. Control Assoc. News 18, 321–328 (2002).CAS 

    Google Scholar 
    31.Moura, L., de Nadai, B. L. & Corbi, J. J. What does not kill it does not always make it stronger: High temperatures in pyriproxyfen treatments produce Aedes aegypti adults with reduced longevity and smaller females. J. Asia. Pac. Entomol. 23, 529–535 (2020).Article 

    Google Scholar 
    32.Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti-a review. Mem. Inst. Oswaldo Cruz 108, 11–17 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Baud, D., Gubler, D. J., Schaub, B., Lanteri, M. C. & Musso, D. An update on Zika virus infection. Lancet 390, 2099–2109 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.He, D., Gao, D., Lou, Y., Zhao, S. & Ruan, S. A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Sci. Rep. 7, 1–6 (2017).Article 
    CAS 

    Google Scholar 
    35.Winokur, O. C., Main, B. J., Nicholson, J. & Barker, C. M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 14, 150 (2020).Article 
    CAS 

    Google Scholar 
    36.Glushakova, L. G. et al. Optimization of cationic (Q)-paper for detection of arboviruses in infected mosquitoes. J. Virol. Methods 261, 71–79 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Burkett-Cadena, N. D. et al. Evaluation of the honey-card technique for detection of transmission of arboviruses in Florida and comparison with sentinel chicken seroconversion. J. Med. Entomol. 53, 1449–1457 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Alto, B. W. et al. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl. Trop. Dis. 11, e0005724 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Nasci, R. S. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. J. Am. Mosq. Control Assoc. 2, 61–62 (1986).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Van Handel, E. & Day, J. F. Correlation between wing length and protein content of mosquitoes. J. Am. Mosq. Control Assoc. 5, 180–182 (1989).PubMed 
    PubMed Central 

    Google Scholar 
    42.Grill, C. P. & Juliano, S. A. Predicting species interactions based on behaviour: predation and competition in container-dwelling mosquitoes. J. Anim. Ecol. 6, 63–76 (1996).Article 

    Google Scholar 
    43.Chandrasegaran, K. & Juliano, S. A. How do trait-mediated non-lethal effects of predation affect population-level performance of mosquitoes?. Front. Ecol. Evol. 7, 25 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Knecht, H., Richards, S. L., Balanay, J. A. G. & White, A. V. Impact of mosquito age and insecticide exposure on susceptibility of Aedes albopictus (Diptera: Culicidae) to Infection with Zika Virus. Pathogens 7, 67 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    45.Öhlund, P., Lundén, H. & Blomström, A. L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 55, 127–137 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Antonio, G. E., Sanchez, D., Williams, T. & Marina, C. F. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag. Sci. Former. Pestic. Sci. 65, 323–326 (2009).CAS 
    Article 

    Google Scholar 
    47.Muturi, E. J. & Alto, B. W. Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector-Borne Zoonotic Dis. 11, 1157–1163 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Alto, B. W. & Lord, C. C. Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue virus. PLoS Negl. Trop. Dis. 10, e0004370 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Jirakanjanakit, N. et al. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop. Med. Int. Heal. 12, 1354–1360 (2007).CAS 
    Article 

    Google Scholar 
    50.Polson, K. A., Brogdon, W. G., Rawlins, S. C. & Chadee, D. D. Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad. Rev. Panam. Salud Pública 32, 1–8 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Glunt, K. D., Oliver, S. V., Hunt, R. H. & Paaijmans, K. P. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar. J. 17, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    52.Benelli, G., Wilke, A. B. B., Bloomquist, J. R., Desneux, N. & Beier, J. C. Overexposing mosquitoes to insecticides under global warming: a public health concern?. Sci. Total Environ. 762, 143069 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Alto, B. W. & Bettinardi, D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am. J. Trop. Med. Hyg. 88, 497–505 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Mourya, D. T., Yadav, P. & Mishra, A. C. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Am. J. Trop. Med. Hyg. 70, 346–350 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Adelman, Z. N. et al. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis 7, e2239 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Hardy, J. L., Meyer, R. P., Presser, S. B. & Milby, M. M. Temporal variations in the susceptibility of a semi-isolated population of Culex tarsalis to peroral infection with western equine encephalomyelitis and St. Louis encephalitis viruses. Am. J. Trop. Med. Hyg. 42, 500–511 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kay, B. H., Fanning, I. A. N. D. & Mottram, P. Rearing temperature influences flavivirus vector competence of mosquitoes. Med. Vet. Entomol. 3, 415–422 (1989).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Westbrook, C. J., Reiskind, M. H., Pesko, K. N., Greene, K. E. & Lounibos, L. P. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector-Borne Zoonotic Dis. 10, 241–247 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Gotelli, N. J. A Primer of Ecology (Sinauer Associate. Inc., 2001).
    Google Scholar  More