More stories

  • in

    Antibiotic resistance in the environment

    1.D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011). This study shows that different ARGs are present in 30,000-year-old permafrost.
    Google Scholar 
    2.Bhullar, K. et al. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS ONE 7, e34953 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Lugli, G. A. et al. Ancient bacteria of the Ötzi’s microbiome: a genomic tale from the Copper Age. Microbiome 5, 5 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    4.Perry, J., Waglechner, N. & Wright, G. The prehistory of antibiotic resistance. Cold Spring Harb. Perspect. Med. 6, a025197 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    5.Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010). This authoritative and educational review discusses in an insightful way the evolution of resistance, including its origins and future implications.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 

    Google Scholar 
    7.Martinez, J. L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. R. Soc. B Biol. Sci. 276, 2521–2530 (2009).
    Google Scholar 
    8.Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz935 (2019).Article 
    PubMed Central 

    Google Scholar 
    9.Mackenzie, J. S. & Jeggo, M. The one health approach — why is it so important? Trop. Med. Infect. Dis. 4, 88 (2019).PubMed Central 

    Google Scholar 
    10.Buschhardt, T. et al. A one health glossary to support communication and information exchange between the human health, animal health and food safety sectors. One Health 13, 100263 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    11.Berendonk, T. U. et al. Tackling antibiotic resistance: the environmental framework. Nat. Rev. Microbiol. 13, 310–317 (2015).CAS 
    PubMed 

    Google Scholar 
    12.Wellington, E. M. et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect. Dis. 13, 155–165 (2013).CAS 
    PubMed 

    Google Scholar 
    13.Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fux053 (2017).Article 
    PubMed Central 

    Google Scholar 
    14.Chow, L. K. M., Ghaly, T. M. & Gillings, M. R. A survey of sub-inhibitory concentrations of antibiotics in the environment. J. Environ. Sci. 99, 21–27 (2021).
    Google Scholar 
    15.Andersson, D. I. et al. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol. Rev. 44, 171–188 (2020).CAS 
    PubMed 

    Google Scholar 
    16.Singer, A. C., Shaw, H., Rhodes, V. & Hart, A. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01728 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.United Nations Environment Programme. Frontiers 2017: emerging issues of environmental concern, https://www.unenvironment.org/resources/frontiers-2017-emerging-issues-environmental-concern (2017).18.Access to Medicines Foundation. 2020 antimicrobial resistance benchmark, https://accesstomedicinefoundation.org/publications/2020-antimicrobial-resistance-benchmark (2020).19.Review on Antimicrobial Resistance. Antimicrobials in agriculture and the environment: reducing unnecessary waste, https://amr-review.org/Publications.html (2015).20.European Parliament. Strategic approach to pharmaceuticals in the environment, https://www.europarl.europa.eu/doceo/document/TA-9-2020-0226_EN.pdf (2020).21.WHO. Technical brief on water, sanitation, hygiene (WASH) and wastewater management to prevent infections and reduce the spread of antimicrobial resistance (AMR)., https://www.who.int/water_sanitation_health/publications/wash-wastewater-management-to-prevent-infections-and-reduce-amr/en/ (2020).22.Graham, D. W. et al. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 1441, 17–30 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    23.Smalla, K., Cook, K., Djordjevic, S. P., Klümper, U. & Gillings, M. Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy195 (2018).Article 
    PubMed 

    Google Scholar 
    24.Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).CAS 
    PubMed 

    Google Scholar 
    25.Schulz, F. et al. Towards a balanced view of the bacterial tree of life. Microbiome https://doi.org/10.1186/s40168-017-0360-9 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012). This study demonstrates numerous identical resistance gene loci between multiresistant soil bacteria and diverse human pathogens, providing evidence for recent gene exchange across species and environments.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Berglund, F. et al. Identification of 76 novel B1 metallo-beta-lactamases through large-scale screening of genomic and metagenomic data. Microbiome 5, 134 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    28.Dantas, G., Sommer, M. O. A., Oluwasegun, R. D. & Church, G. M. Bacteria subsisting on antibiotics. Science 320, 100–103 (2008).CAS 
    PubMed 

    Google Scholar 
    29.Berglund, F. et al. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microb. Genomics https://doi.org/10.1099/mgen.0.000455 (2020).Article 

    Google Scholar 
    30.Pawlowski, A. C. et al. A diverse intrinsic antibiotic resistome from a cave bacterium. Nat. Commun. 7, 13803 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Morar, M. & Wright, G. D. The genomic enzymology of antibiotic resistance. Annu. Rev. Genet. 44, 25–51 (2010).CAS 
    PubMed 

    Google Scholar 
    32.Andersson, D. I., Jerlström-Hultqvist, J. & Näsvall, J. Evolution of new functions de novo and from preexisting genes. Cold Spring Harb. Perspect. Biol. 7, a017996 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    33.Razavi, M., Kristiansson, E., Flach, C.-F. & Larsson, D. G. J. The association between insertion sequences and antibiotic resistance genes. mSphere https://doi.org/10.1128/msphere.00418-20 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. https://doi.org/10.1128/cmr.00088-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Gillings, M. et al. The evolution of class 1 integrons and the rise of antibiotic resistance. J. Bacteriol. 190, 5095–5100 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Razavi, M. et al. Discovery of the fourth mobile sulfonamide resistance gene. Microbiome https://doi.org/10.1186/s40168-017-0379-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Flach, C.-F. et al. Does antifouling paint select for antibiotic resistance? Sci. Total Environ. 590–591, 461–468 (2017).PubMed 

    Google Scholar 
    38.Shintani, M. et al. Plant species-dependent increased abundance and diversity of IncP-1 plasmids in the rhizosphere: new insights into their role and ecology. Front. Microbiol. 11, 590776 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Baquero, F., Coque, T. M., Martínez, J.-L., Aracil-Gisbert, S. & Lanza, V. F. Gene transmission in the one health microbiosphere and the channels of antimicrobial resistance. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02892 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Vandecraen, J., Chandler, M., Aertsen, A. & Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43, 709–730 (2017).CAS 
    PubMed 

    Google Scholar 
    41.Depardieu, F., Podglajen, I., Leclercq, R., Collatz, E. & Courvalin, P. Modes and modulations of antibiotic resistance gene expression. Clin. Microbiol. Rev. 20, 79–114 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Jutkina, J., Marathe, N. P., Flach, C. F. & Larsson, D. G. J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 616-617, 172–178 (2018).CAS 
    PubMed 

    Google Scholar 
    43.Scornec, H., Bellanger, X., Guilloteau, H., Groshenry, G. & Merlin, C. Inducibility of Tn916 conjugative transfer in Enterococcus faecalis by subinhibitory concentrations of ribosome-targeting antibiotics. J. Antimicrob. Chemother. 72, 2722–2728 (2017).CAS 
    PubMed 

    Google Scholar 
    44.Aminov, R. I. Horizontal gene exchange in environmental microbiota. Front. Microbiol. https://doi.org/10.3389/fmicb.2011.00158 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Knöppel, A., Näsvall, J. & Andersson, D. I. Evolution of antibiotic resistance without antibiotic exposure. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01495-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Kimura, M. & Ohta, T. The average number of generations until fixation of a mutant gene in a finite population. Genetics 61, 763–771 (1969).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Letten, A. D., Hall, A. R. & Levine, J. M. Using ecological coexistence theory to understand antibiotic resistance and microbial competition. Nat. Ecol. Evol. 5, 431–441 (2021).PubMed 

    Google Scholar 
    48.Waglechner, N. & Wright, G. D. Antibiotic resistance: it’s bad, but why isn’t it worse? BMC Biol. https://doi.org/10.1186/s12915-017-0423-1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Ebmeyer, S., Erik, K. & Larsson, D. G. J. A framework for identifying the recent origins of mobile antibiotic resistance genes. Commun. Biol. https://doi.org/10.1038/s42003-020-01545-5 (2021). This study amends, summarizes and scrutinizes current evidence for proposed recent origin species for mobile ARGs.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Andersson, D. I. & Hughes, D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol. Rev. 35, 901–911 (2011).CAS 
    PubMed 

    Google Scholar 
    51.Wang, J., Chu, L., Wojnárovits, L. & Takács, E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: an overview. Sci. Total. Environ. 744, 140997 (2020).CAS 
    PubMed 

    Google Scholar 
    52.Tran, N. H., Reinhard, M. & Gin, K. Y.-H. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Res. 133, 182–207 (2018).CAS 
    PubMed 

    Google Scholar 
    53.Szymańska, U. et al. Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchem. J. 147, 729–740 (2019).
    Google Scholar 
    54.Anwar, M., Iqbal, Q. & Saleem, F. Improper disposal of unused antibiotics: an often overlooked driver of antimicrobial resistance. Expert Rev. Antiinfect Ther. https://doi.org/10.1080/14787210.2020.1754797 (2020).Article 

    Google Scholar 
    55.Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).PubMed 

    Google Scholar 
    56.Cabello, F. C., Godfrey, H. P., Buschmann, A. H. & Dölz, H. J. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 16, e127–e133 (2016).PubMed 

    Google Scholar 
    57.Taylor, P. & Reeder, R. Antibiotic use on crops in low and middle-income countries based on recommendations made by agricultural advisors. CABI Agric. Biosci. https://doi.org/10.1186/s43170-020-00001-y (2020).Article 

    Google Scholar 
    58.Larsson, D. G. J. Pollution from drug manufacturing: review and perspectives. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130571 (2014).
    Google Scholar 
    59.Larsson, D. G. J., De Pedro, C. & Paxeus, N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 148, 751–755 (2007).CAS 
    PubMed 

    Google Scholar 
    60.Milaković, M. et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ. Int. 123, 501–511 (2019).PubMed 

    Google Scholar 
    61.Bielen, A. et al. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Res. 126, 79–87 (2017).CAS 
    PubMed 

    Google Scholar 
    62.Fick, J. et al. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 28, 2522–2527 (2009).CAS 
    PubMed 

    Google Scholar 
    63.Bengtsson-Palme, J. & Larsson, D. G. J. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environ. Int. 86, 140–149 (2016). This study uses a simplified approach based on available MIC data for many species to predict concentrations of 111 antibiotics that are not likely to select for resistance.CAS 
    PubMed 

    Google Scholar 
    64.Gullberg, E. et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 7, e1002158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Karkman, A., Pärnänen, K. & Larsson, D. G. J. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. https://doi.org/10.1038/s41467-018-07992-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Yang, Y., Li, B., Zou, S., Fang, H. H. P. & Zhang, T. Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res. 62, 97–106 (2014).CAS 
    PubMed 

    Google Scholar 
    67.Bengtsson-Palme, J. et al. Elucidating selection processes for antibiotic resistance in sewage treatment plants using metagenomics. Sci. Total Environ. 572, 697–712 (2016).CAS 
    PubMed 

    Google Scholar 
    68.Manaia, C. M. et al. Antibiotic resistance in wastewater treatment plants: tackling the black box. Environ. Int. 115, 312–324 (2018).CAS 
    PubMed 

    Google Scholar 
    69.Flach, C. F., Genheden, M., Fick, J. & Joakim Larsson, D. G. A comprehensive screening of Escherichia coli isolates from Scandinavia’s largest sewage treatment plant indicates no selection for antibiotic resistance. Environ. Sci. Technol. 52, 11419–11428 (2018).CAS 
    PubMed 

    Google Scholar 
    70.Kraupner, N. et al. Evidence for selection of multi-resistant E. coli by hospital effluent. Environ. Int. 150, 106436 (2021).CAS 
    PubMed 

    Google Scholar 
    71.Flach, C. F. et al. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. J. Antimicrob. Chemother. 70, 2709–2717 (2015).CAS 
    PubMed 

    Google Scholar 
    72.Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. J. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. https://doi.org/10.3389/fmicb.2014.00648 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Marathe, N. P. et al. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. Environ. Int. 112, 279–286 (2018).CAS 
    PubMed 

    Google Scholar 
    74.Thiele-Bruhn, S. Pharmaceutical antibiotic compounds in soils–a review. J. Plant Nutr. Soil Sci. 166, 145–167 (2003).CAS 

    Google Scholar 
    75.Li, W., Shi, Y., Gao, L., Liu, J. & Cai, Y. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China. Sci. Total. Environ. 445–446, 306–313 (2013).PubMed 

    Google Scholar 
    76.Reinthaler, F. F. et al. Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. J. Water Health 11, 13–20 (2013).PubMed 

    Google Scholar 
    77.Rutgersson, C. et al. Long-term application of Swedish sewage sludge on farmland does not cause clear changes in the soil bacterial resistome. Environ. Int. 137, 105339 (2020).CAS 
    PubMed 

    Google Scholar 
    78.Jechalke, S., Heuer, H., Siemens, J., Amelung, W. & Smalla, K. Fate and effects of veterinary antibiotics in soil. Trends Microbiol. 22, 536–545 (2014).CAS 
    PubMed 

    Google Scholar 
    79.Boxall, A. B. et al. Pharmaceuticals and personal care products in the environment: what are the big questions? Environ. Health Perspect. 120, 1221–1229 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    80.Song, J., Rensing, C., Holm, P. E., Virta, M. & Brandt, K. K. Comparison of metals and tetracycline as selective agents for development of tetracycline resistant bacterial communities in agricultural soil. Environ. Sci. Technol. 51, 3040–3047 (2017).CAS 
    PubMed 

    Google Scholar 
    81.Jechalke, S. et al. Plasmid-mediated fitness advantage of Acinetobacter baylyi in sulfadiazine-polluted soil. FEMS Microbiol. Lett. 348, 127–132 (2013). This study shows that a commonly used antibiotic in pig farming has the potential to select for a resistant Acinetobacter strain in manure-amended soils.CAS 
    PubMed 

    Google Scholar 
    82.Pal, C. et al. Metal resistance and its association with antibiotic resistance. Adv. Microb. Physiol. 70, 261–313 (2017).CAS 
    PubMed 

    Google Scholar 
    83.Wales, A. & Davies, R. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4, 567–604 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    84.Pal, C., Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics https://doi.org/10.1186/s12864-015-2153-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Klümper, U. et al. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner. ISME J. 11, 152–165 (2017).PubMed 

    Google Scholar 
    86.Jutkina, J., Rutgersson, C., Flach, C. F. & Joakim Larsson, D. G. An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance. Sci. Total. Environ. 548–549, 131–138 (2016).PubMed 

    Google Scholar 
    87.Wang, Y. et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 14, 2179–2196 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    88.Klumper, U. et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 9, 934–945 (2015). This study shows that plasmids that are common in pathogens can easily be taken up by diverse environmental bacteria, thereby providing pathways for the exchange of resistance genes.CAS 
    PubMed 

    Google Scholar 
    89.Gillings, M. R., Paulsen, I. T. & Tetu, S. G. Genomics and the evolution of antibiotic resistance. Ann. N. Y. Acad. Sci. 1388, 92–107 (2017).PubMed 

    Google Scholar 
    90.Heuer, H. & Smalla, K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol. Rev. 36, 1083–1104 (2012).CAS 
    PubMed 

    Google Scholar 
    91.Bengtsson-Palme, J. & Larsson, D. G. Antibiotic resistance genes in the environment: prioritizing risks. Nat. Rev. Microbiol. 13, 396 (2015).CAS 
    PubMed 

    Google Scholar 
    92.Leonard, A. F. C. et al. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 114, 326–333 (2018). This is one of few studies showing that people more likely to ingest surface waters are also more prone to be carriers of resistant bacteria compared with matched controls.PubMed 

    Google Scholar 
    93.Manaia, C. M. Assessing the risk of antibiotic resistance transmission from the environment to humans: non-direct proportionality between abundance and risk. Trends Microbiol. 25, 173–181 (2017).CAS 
    PubMed 

    Google Scholar 
    94.Schijven, J. F., Blaak, H., Schets, F. M. & De Roda Husman, A. M. Fate of extended-spectrum β-lactamase-producing Escherichia coli from faecal sources in surface water and probability of human exposure through swimming. Environ. Sci. Technol. 49, 11825–11833 (2015).CAS 
    PubMed 

    Google Scholar 
    95.Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. & Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet. Health 2, e398–e405 (2018).PubMed 

    Google Scholar 
    96.Dancer, S. J. Controlling hospital-acquired infection: focus on the role of the environment and new technologies for decontamination. Clin. Microbiol. Rev. 27, 665–690 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    97.Weber, D. J., Anderson, D. & Rutala, W. A. The role of the surface environment in healthcare-associated infections. Curr. Opin. Infect. Dis. 26, 338–344 (2013).PubMed 

    Google Scholar 
    98.Søraas, A., Sundsfjord, A., Sandven, I., Brunborg, C. & Jenum, P. A. Risk factors for community-acquired urinary tract infections caused by ESBL-producing Enterobacteriaceae –a case–control study in a low prevalence country. PLoS ONE 8, e69581 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    99.Zhou, S.-Y.-D. et al. Prevalence of antibiotic resistome in ready-to-eat salad. Front. Public Health https://doi.org/10.3389/fpubh.2020.00092 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    100.Uyttendaele, M. et al. Microbial hazards in irrigation water: standards, norms, and testing to manage use of water in fresh produce primary production. Compr. Rev. Food Sci. Food Saf. 14, 336–356 (2015).
    Google Scholar 
    101.Reid, C. J., Blau, K., Jechalke, S., Smalla, K. & Djordjevic, S. P. Whole genome sequencing of Escherichia coli from store-bought produce. Front. Microbiol. 10, 3050 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    102.Blau, K. et al. The transferable resistome of produce. mBio 9, e01300-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    103.Zhu, Y.-G. et al. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 131, 105059 (2019).PubMed 

    Google Scholar 
    104.Pal, C., Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. The structure and diversity of human, animal and environmental resistomes. Microbiome 4, 54 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    105.Kozajda, A., Jeżak, K. & Kapsa, A. Airborne Staphylococcus aureus in different environments — a review. Environ. Sci. Pollut. Res. 26, 34741–34753 (2019).CAS 

    Google Scholar 
    106.Ashbolt, N. J. et al. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environ. Health Perspect. 121, 993–1001 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    107.Franz, E., Schijven, J., De Roda Husman, A. M. & Blaak, H. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water. Environ. Sci. Technol. 48, 6763–6771 (2014).CAS 
    PubMed 

    Google Scholar 
    108.Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug. Discov. 12, 371–387 (2013).CAS 
    PubMed 

    Google Scholar 
    109.Linton, K. B., Richmond, M. H., Bevan, R. & Gillespie, W. A. Antibiotic resistance and R factors in coliform bacilli isolated from hospital and domestic sewage. J. Med. Microbiol. 7, 91–103 (1974).CAS 
    PubMed 

    Google Scholar 
    110.Huijbers, P., Joakim Larsson, D. G. & Flach, C. F. Surveillance of antibiotic resistant Escherichia coli in human populations through urban wastewater in ten European countries. Environ. Pollut. 261, 114200 (2020).CAS 
    PubMed 

    Google Scholar 
    111.Hutinel, M. et al. Population-level surveillance of antibiotic resistance in Escherichia coli through sewage analysis. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2019.24.37.1800497 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Aarestrup, F. M. & Woolhouse, M. E. J. Using sewage for surveillance of antimicrobial resistance. Science 367, 630–632 (2020).CAS 
    PubMed 

    Google Scholar 
    113.Kwak, Y. K. et al. Surveillance of antimicrobial resistance among Escherichia coli in wastewater in Stockholm during 1 year: does it reflect the resistance trends in the society? Int. J. Antimicrob. Agents 45, 25–32 (2015).CAS 
    PubMed 

    Google Scholar 
    114.Parnanen, K. M. M. et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 5, eaau9124 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    115.Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019). This is the most comprehensive survey of ARGs in sewage across the world to date, showing distinct differences between regions.PubMed 
    PubMed Central 

    Google Scholar 
    116.Huijbers, P. M. C., Flach, C. F. & Larsson, D. G. J. A conceptual framework for the environmental surveillance of antibiotics and antibiotic resistance. Environ. Int. 130, 104880 (2019).CAS 
    PubMed 

    Google Scholar 
    117.Böhm, M.-E., Razavi, M., Marathe, N. P., Flach, C.-F. & Larsson, D. G. J. Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. Microbiome https://doi.org/10.1186/s40168-020-00814-z (2020). Using a functional assay targeting mobile genes, this study explores environment communities and finds a completely novel resistance gene that had escaped discovery in clinics despite its presence in pathogens on different continents.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Flach, C.-F., Hutinel, M., Razavi, M., Åhrén, C. & Larsson, D. G. J. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 200, 117261 (2021).CAS 
    PubMed 

    Google Scholar 
    119.Karkman, A., Berglund, F., Flach, C.-F., Kristiansson, E. & Larsson, D. G. J. Predicting clinical resistance prevalence using sewage metagenomic data. Commun. Biol. https://doi.org/10.1038/s42003-020-01439-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    120.European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2017 (Stockholm, Sweden, 2018).121.Hovi, T. et al. Role of environmental poliovirus surveillance in global polio eradication and beyond. Epidemiol. Infect. 140, 1–13 (2012).CAS 
    PubMed 

    Google Scholar 
    122.Agrawal, S., Orschler, L. & Lackner, S. Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in southern Germany. Sci. Rep. https://doi.org/10.1038/s41598-021-84914-2 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Medema, G., Heijnen, L., Elsinga, G., Italiaander, R. & Brouwer, A. Presence of SARS-coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ. Sci. Technol. Lett. 7, 511–516 (2020).CAS 

    Google Scholar 
    124.Lundstrom, S. V. et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci. Total Environ. 553, 587–595 (2016).PubMed 

    Google Scholar 
    125.McCann, C. M. et al. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ. Int. 125, 497–504 (2019).CAS 
    PubMed 

    Google Scholar 
    126.Pruden, A., Arabi, M. & Storteboom, H. N. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ. Sci. Technol. 46, 11541–11549 (2012).CAS 
    PubMed 

    Google Scholar 
    127.Zhu, Y.-G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).CAS 
    PubMed 

    Google Scholar 
    128.Zhu, Y.-G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. USA 110, 3435–3440 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    129.Knapp, C. W., Dolfing, J., Ehlert, P. A. I. & Graham, D. W. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environ. Sci. Technol. 44, 580–587 (2010).CAS 
    PubMed 

    Google Scholar 
    130.Nesme, J. & Simonet, P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ. Microbiol. 17, 913–930 (2015).PubMed 

    Google Scholar 
    131.Finley, R. L. et al. The scourge of antibiotic resistance: the important role of the environment. Clin. Infect. Dis. 57, 704–710 (2013).PubMed 

    Google Scholar 
    132.Sjölund, M. et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg. Infect. Dis. 14, 70–72 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    133.Zhu, G. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. https://doi.org/10.1038/s41396-020-00780-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    134.Nichols, D. et al. Use of Ichip for high-throughput in situ cultivation of “Uncultivable” microbial species. Appl. Environ. Microbiol. 76, 2445–2450 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    135.Ashton, P. M. et al. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33, 296–300 (2015).CAS 
    PubMed 

    Google Scholar 
    136.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS 
    PubMed 

    Google Scholar 
    137.Rice, E. W., Wang, P., Smith, A. L. & Stadler, L. B. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ. Sci. Technol. Lett. 7, 282–291 (2020).CAS 

    Google Scholar 
    138.Sivalingam, P., Poté, J. & Prabakar, K. Extracellular DNA (eDNA): neglected and potential sources of antibiotic resistant genes (ARGs) in the aquatic environments. Pathogens 9, 874 (2020).CAS 
    PubMed Central 

    Google Scholar 
    139.Bengtsson-Palme, J., Larsson, D. G. J. & Kristiansson, E. Using metagenomics to investigate human and environmental resistomes. J. Antimicrob. Chemother. 72, 2690–2703 (2017).CAS 
    PubMed 

    Google Scholar 
    140.Karkman, A. et al. High-throughput quantification of antibiotic resistance genes from an urban wastewater treatment plant. FEMS Microbiol. Ecol. 92, https://doi.org/10.1093/femsec/fiw014 (2016).141.Gillings, M. R. et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9, 1269–1279 (2015).CAS 
    PubMed 

    Google Scholar 
    142.Gaze, W. H., Abdouslam, N., Hawkey, P. M. & Wellington, E. M. H. Incidence of Class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob. Agents Chemother. 49, 1802–1807 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Sommer, M. O. A., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol. 15, 689–696 (2017). This article highlights the needs to consider the environmental gene reservoir and other factors influencing resistance evolution in the development process for new antibiotics.CAS 
    PubMed 

    Google Scholar 
    144.Pehrsson, E. C., Forsberg, K. J., Gibson, M. K., Ahmadi, S. & Dantas, G. Novel resistance functions uncovered using functional metagenomic investigations of resistance reservoirs. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00145 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    145.Kim, C., Ryu, H.-D., Chung, E. G., Kim, Y. & Lee, J.-K. A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: sample preparation, liquid chromatography, and mass spectrometry. J. Environ. Manag. 217, 629–645 (2018).CAS 

    Google Scholar 
    146.Fahrenfeld, N. & Bisceglia, K. J. Emerging investigators series: sewer surveillance for monitoring antibiotic use and prevalence of antibiotic resistance: urban sewer epidemiology. Environ. Sci. Water Res. Technol. 2, 788–799 (2016).CAS 

    Google Scholar 
    147.Anliker, S. et al. Assessing emissions from pharmaceutical manufacturing based on temporal high-resolution mass spectrometry data. Environ. Sci. Technol. 54, 4110–4120 (2020). This recent study elegantly uses the erratic emission profiles of drugs from manufacturing plants to attribute a large portion of the pharmaceutical residues found in a Swiss river to industrial emissions, further showing that curbing such pollution is an ongoing, worldwide challenge.CAS 
    PubMed 

    Google Scholar 
    148.Klümper, U. et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 13, 2927–2937 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    149.Kraupner, N. et al. Selective concentrations for trimethoprim resistance in aquatic environments. Environ. Int. 144, 106083 (2020).CAS 
    PubMed 

    Google Scholar 
    150.Murray, A. K. et al. Novel insights into selection for antibiotic resistance in complex microbial communities. mBio https://doi.org/10.1128/mbio.00969-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    151.Government of India. Environment (Protection) Amendment Rules, 2020 – Inviting comments/suggestions on Environmental Standards for Bulk Drug and Formulation (Pharmaceutical) Industry, http://moef.gov.in/g-s-r-44-e-date-23-01-2020-environment-protection-amendment-rules-2020-inviting-commentssuggestions-on-environmental-standards-for-bulk-drug-and-formulation-pharmaceutical-indu/ (2020).152.Tell, J. et al. Science-based targets for antibiotics in receiving waters from pharmaceutical manufacturing operations. Integr. Environ. Assess. Manag. 15, 312–319 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Greenfield, B. K. et al. Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01686-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    154.Murray, A. K. et al. The ‘Selection end points in Communities of bacTeria’ (SELECT) method: a novel experimental assay to facilitate risk assessment of selection for antimicrobial resistance in the environment. Environ. Health Perspect. 128, 107007 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    155.Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271 (2010).CAS 
    PubMed 

    Google Scholar 
    156.Stanton, I. C., Murray, A. K., Zhang, L., Snape, J. & Gaze, W. H. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun. Biol. https://doi.org/10.1038/s42003-020-01176-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Nijsingh, N., Munthe, C. & Larsson, D. G. J. Managing pollution from antibiotics manufacturing: charting actors, incentives and disincentives. Environ. Health 18, 95 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    158.Sundin, G. W. & Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 56, 161–180 (2018).CAS 
    PubMed 

    Google Scholar 
    159.Government of Sweden. Uppdrag angående försöksverksamhet för en miljöpremie i läkemedelsförmånssystemet, https://www.regeringen.se/499677/contentassets/36dcec65be904fd58e5e6b01c2f99709/uppdrag-angaende-forsoksverksamhet-for-en-miljopremie-i-lakemedelsformanssystemet-tlv.pdf (2021).160.Norwegian Hospital Procurement Trust. New environmental criteria for the procurement of pharmaceuticals, https://sykehusinnkjop.no/nyheter/new-environmental-criteria-for-the-procurement-of-pharmaceuticals (2019).161.Swedish Procurement Agency. Pharmaceuticals, https://www.upphandlingsmyndigheten.se/kriterier/sjukvard-och-omsorg/lakemedel/ (2021).162.G7. G7 Health Ministers’ Declaration, Oxford, 4 June 2021, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/992268/G7-health_ministers-communique-oxford-4-june-2021_5.pdf (2021).163.Årdal, C. et al. Supply chain transparency and the availability of essential medicines. Bull. World Health Organ. 99, 319–320 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    164.Graham, D., Giesen, M. & Bunce, J. Strategic approach for prioritising local and regional sanitation interventions for reducing global antibiotic resistance. Water 11, 27 (2018).
    Google Scholar 
    165.Margot, J. et al. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon? Sci. Total. Environ. 461–462, 480–498 (2013).PubMed 

    Google Scholar 
    166.Larsson, D. G. J. et al. Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistance. Environ. Int. 117, 132–138 (2018).PubMed 

    Google Scholar 
    167.Laxminarayan, R. et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect. Dis. 20, e51–e60 (2020).PubMed 

    Google Scholar 
    168.Ahammad, Z. S., Sreekrishnan, T. R., Hands, C. L., Knapp, C. W. & Graham, D. W. Increased waterborne blaNDM-1 resistance gene abundances associated with seasonal human pilgrimages to the upper Ganges River. Environ. Sci. Technol. 48, 3014–3020 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    169.Kookana, R. S. et al. Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low-, middle- and high-income countries. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130586 (2014).
    Google Scholar  More

  • in

    Functional forest restoration

    1.Becoming #GenerationRestoration: Ecosystem Restoration for People, Nature and Climate (United Nations Environment Programme, 2021).2.Bongers, F. J. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01564-3 (2021).Article 

    Google Scholar 
    3.Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar 
    4.Guerrero-Ramírez, N. R. et al. Nat. Ecol. Evol. 1, 1639–1642 (2017).Article 

    Google Scholar 
    5.Fargione, J. et al. Proc. R. Soc. B 274, 871–876 (2007).Article 

    Google Scholar 
    6.Montagnini, F. & Piotto, D. In Silviculture in the Tropics (eds Günter, S. et al.) 501–511 (Springer-Verlag, 2011).7.Aerts, R. & Honnay, O. BMC Ecol. 11, 29 (2011).Article 

    Google Scholar 
    8.Messier, C. et al. Conserv. Lett. https://doi.org/gk82nr (2021).9.Sacco, A. D. et al. Global Change Biol. 27, 1328–1348 (2021).Article 

    Google Scholar 
    10.Coleman, E. A. et al. Nat. Sustain. https://doi.org/gzhx (2021).11.Forrester, D. I. For. Ecol. Manage. 312, 282–292 (2014).Article 

    Google Scholar 
    12.Eisenhauer, N., Reich, P. B. & Scheu, S. Basic Appl. Ecol. 13, 571–578 (2012).Article 

    Google Scholar 
    13.Zemp, D. C. et al. Agric. Ecosyst. Environ. 283, 106564 (2019).Article 

    Google Scholar 
    14.Laughlin, D. C. et al. Nat. Ecol. Evol. 5, 1123–1134 (2021).Article 

    Google Scholar 
    15.Rodrigues, R. R. et al. Práticas de restauração nos diferentes biomas brasileiros. in BPBES/IIS: Relatório Temático sobre Restauração de Paisagens e Ecossistemas (eds. Crouzeilles, R. et al.) (Editora Cubo, 2019). More

  • in

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    1.Global Assessment Report on Biodiversity and Ecosystem Services (IPBES, 2019).2.Bastin, J. F. et al. The global tree restoration potential. Science 366, 76–79 (2019).
    Google Scholar 
    3.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Zhang, J., Fu, B., Stafford-smith, M., Wang, S. & Zhao, W. Improve forest restoration initiatives to meet Sustainable Development Goal 15. Nat. Ecol. Evol. 5, 10–13 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Messier, C. et al. For the sake of resilience and multifunctionality, let’s diversify planted forests! Conserv. Lett. https://doi.org/10.1111/conl.12829 (2021).8.Baeten, L. et al. Identifying the tree species compositions that maximize ecosystem functioning in European forests. J. Appl. Ecol. 56, 733–744 (2019).
    Google Scholar 
    9.Schuldt, A. et al. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    10.Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Liu, X. et al. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. R. Soc. B 285, 20181240 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    14.Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    15.Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).
    Google Scholar 
    16.Staples, T. L., Dwyer, J. M., England, J. R. & Mayfield, M. M. Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Glob. Ecol. Biogeogr. 28, 1417–1429 (2019).
    Google Scholar 
    17.Cheesman, A. W., Preece, N. D., van Oosterzee, P., Erskine, P. D. & Cernusak, L. A. The role of topography and plant functional traits in determining tropical reforestation success. J. Appl. Ecol. 55, 1029–1039 (2018).CAS 

    Google Scholar 
    18.Ma, L. et al. Species identity and composition effects on community productivity in a subtropical forest. Basic Appl. Ecol. 55, 87–97 (2021).
    Google Scholar 
    19.Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017)..20.Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    21.Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Diaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Bruelheide, H. et al. Global trait— environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    24.van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    25.Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).
    Google Scholar 
    26.Chiang, J. M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    27.Roscher, C. et al. Using plant functional traits to explain diversity–productivity relationships. PLoS ONE 7, e36760 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    29.Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Turnbull, L., Isbell, F., Purves, D. W., Loreau, M. & Hector, A. Understanding the value of plant diversity for ecosystem functioning through niche theory. Proc. R. Soc. B 283, 20160536 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    31.Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).
    Google Scholar 
    32.Bruelheide, H. et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods Ecol. Evol. 5, 74–89 (2014).
    Google Scholar 
    33.Chen, Y. et al. Directed species loss reduces community productivity in a subtropical forest biodiversity experiment. Nat. Ecol. Evol. 4, 550–559 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    34.Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    35.Allan, E. et al. A comparison of the strength of biodiversity effects across multiple functions. Oecologia 173, 223–237 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    36.Luo, S. et al. Community-wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).
    Google Scholar 
    37.Lu, H., Mohren, G. M. J., den Ouden, J., Goudiaby, V. & Sterck, F. J. Overyielding of temperate mixed forests occurs in evergreen–deciduous but not in deciduous–deciduous species mixtures over time in the Netherlands. For. Ecol. Manag. 376, 321–332 (2016).
    Google Scholar 
    38.Toïgo, M. et al. Difference in shade tolerance drives the mixture effect on oak productivity. J. Ecol. 106, 1073–1082 (2018).
    Google Scholar 
    39.Forrester, D. I., Bauhus, J., Cowie, A. L. & Vanclay, J. K. Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: a review. For. Ecol. Manag. 233, 211–230 (2006).
    Google Scholar 
    40.Montagnini, F. & Piotto, D. in Silviculture in the Tropics (eds Günter. S. et al.) 501–511 (Springer, 2011).41.Trogisch, S. et al. The significance of tree–tree interactions for forest ecosystem functioning. Basic Appl. Ecol. 55, 33–52 (2021).
    Google Scholar 
    42.Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Guerrero-Ramírez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    44.Kunz, M. et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecol. Lett. 22, 2130–2140 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Martínez-Garza, C., Bongers, F. & Poorter, L. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? For. Ecol. Manag. 303, 35–45 (2013).
    Google Scholar 
    47.Mayoral, C., van Breugel, M., Cerezo, A. & Hall, J. S. Survival and growth of five Neotropical timber species in monocultures and mixtures. For. Ecol. Manag. 403, 1–11 (2017).
    Google Scholar 
    48.Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    49.Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    50.Brancalion, P. H. S. & Holl, K. D. Guidance for successful tree planting initiatives. J. Appl. Ecol. 57, 2349–2361 (2020).
    Google Scholar 
    51.Ruiz-Jaen, M. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    52.Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    53.Kambach, S. et al. How do trees respond to species mixing in experimental compared to observational studies? Ecol. Evol. 9, 11254–11265 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    54.Finegan, B. et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. J. Ecol. 103, 191–201 (2015).
    Google Scholar 
    55.Piston, N. et al. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. J. Ecol. 107, 2317–2328 (2019).
    Google Scholar 
    56.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    57.O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol. 54, 1669–1686 (2017).
    Google Scholar 
    58.Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytol. https://doi.org/10.1111/nph.17072 (2020).59.Jucker, T. et al. Good things take time—diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 108, 2198–2211 (2020).
    Google Scholar 
    60.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    61.Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).
    Google Scholar 
    62.Fiedler, S., Perring, M. P. & Tietjen, B. Integrating trait-based empirical and modeling research to improve ecological restoration. Ecol. Evol. 8, 6369–6380 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    63.Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).
    Google Scholar 
    64.Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Change Biol. 25, 4257–4272 (2019).
    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).66.Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum—a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211 (2014).67.Eichenberg, D., Purschke, O., Ristok, C., Wessjohann, L. & Bruelheide, H. Trade-offs between physical and chemical carbon-based leaf defence: of intraspecific variation and trait evolution. J. Ecol. 103, 1667–1679 (2015).CAS 

    Google Scholar 
    68.Krober, W., Heklau, H. & Bruelheide, H. Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biol. 17, 373–383 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Sokal, R. R. & Rohlf, F. J. Biometry (W.H. Freeman and Company, 1995).70.Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110 (2017).
    Google Scholar  More

  • in

    Bottlenose dolphins (Tursiops truncatus) aggressive behavior towards other cetacean species in the western Mediterranean

    1.Norris, K. S. & Dohl, T. P. The Structure and Functions of Cetacean Schools (1979).2.Frantzis, A. & Herzing, D. L. Mixed-species associations of striped dolphins (Stenella coeruleoalba), short-beaked common dolphins (Delphinus delphis), and Risso’s dolphins (Grampus griseus) in the Gulf of Corinth (Greece, Mediterranean Sea).” Aquatic Mammals 28.2 (2002): 188–197.3.Crossman, C., Barrett-Lennard, L. & Taylor, E. Population structure and intergeneric hybridization in harbour porpoises Phocoena phocoena in British Columbia, Canada. Endang. Species. Res. 26, 1–12 (2014).Article 

    Google Scholar 
    4.Espada, R., Olaya-Ponzone, L., Haasova, L., Martín, E. & García-Gómez, J. C. Hybridization in the wild between Tursiops truncatus (Montagu 1821) and Delphinus delphis (Linnaeus 1758). PLoS ONE 14, e0215020 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Herzing, D. L., Moewe, K. & Brunnick, B. J. Interspecies interactions between Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus, on Great Bahama Bank Bahamas. Aquat. Mamm. 29, 335–341 (2003).Article 

    Google Scholar 
    6.Herzing, D. L. Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat. Mamm. 22, 61–80 (1996).
    Google Scholar 
    7.Herzing, D. L. & Johnson, C. M. Interspecific interactions between Atlantic spotted dolphins (Stenella frontalis) and bottlenose dolphins (Tursiops truncatus) in the Bahamas 1985–1995. Aquat. Mamm. 23, 85–99 (1997).
    Google Scholar 
    8.Orr, J. R. & Harwood, L. A. Possible aggressive behavior between a narwhal (Monodon monoceros) and a beluga (Delphinapterus leucas). Mar. Mamm. Sci. 14, 182–185 (1998).Article 

    Google Scholar 
    9.Puig-Lozano, R. et al. Retrospective study of traumatic intra-interspecific interactions in stranded cetaceans, Canary Islands. Front. Vet. Sci. 7, 107 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Shane, S. Relationship between pilot whales and Risso’s dolphins at Santa Catalina Island, California, USA. Mar. Ecol. Prog. Ser. 123, 5–11 (1995).ADS 
    Article 

    Google Scholar 
    11.Haelters, J. & Everaarts, E. Two cases of physical interaction between white-beaked dolphins (Lagenorhynchus albirostris) and juvenile harbour porpoises (Phocoena phocoena) in the southern North Sea. Aquat. Mamm. 37, 198 (2011).Article 

    Google Scholar 
    12.Jepson, P. D. & Baker, J. R. Bottlenosed dolphins (Tursiops truncatus) as a possible cause of acute traumatic injuries in porpoises (Phocoena phocoena). Vet. Rec. 143, 614–615 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Patterson, I. A. P., Reid, R. J., Wilson, B., Grellier, K. & Ross, H. M. Evidence for infanticide in bottlenose dolphins: An explanation for violent interactions with harbour porpoises?. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 1167–1170 (1998).CAS 
    Article 

    Google Scholar 
    14.Ross, H. M. & Wilson, B. Violent interactions between bottlenose dolphins and harbour porpoises. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263, 283–286 (1996).ADS 
    Article 

    Google Scholar 
    15.Wilson, B., Reid, R. J., Grellier, K., Thompson, P. M. & Hammond, P. S. Considering the temporal when managing the spatial: A population range expansion impacts protected areas-based management for bottlenose dolphins. Anim. Conserv. 7, 331–338 (2004).Article 

    Google Scholar 
    16.Alonso, J. M., López, A., González, A. F. & Santos, M. B. Evidence of violent interactions between bottlenose dolphin (Tursiops truncatus) and other cetacean species in NW Spain. In Proceedings of the 14th Annual Conference of The European Cetacean Society (2000).17.López, A. & Rodriguez, A. Agresion de arroas (Tursiops truncatus) a toniña (Phocoena phocoena). Eubalaena 6, 23–27 (1995).
    Google Scholar 
    18.Methion, S. & Díaz López, B. Spatial segregation and interspecific killing of common dolphins (Delphinus delphis) by bottlenose dolphins (Tursiops truncatus). Acta Ethol. 24, 95–106 (2021).Article 

    Google Scholar 
    19.Parsons, K. M., Durban, J. W. & Claridge, D. E. Male-male aggression renders bottlenose dolphin (Tursiops truncatus) unconscious. Aquat. Mamm. 29, 360–362 (2003).Article 

    Google Scholar 
    20.Robinson, K. P. Agonistic intraspecific behavior in free-ranging bottlenose dolphins: Calf-directed aggression and infanticidal tendencies by adult males. Mar. Mamm. Sci. 30, 381–388 (2014).Article 

    Google Scholar 
    21.Scott, E. M., Mann, J., Watson-Capps, J. J., Sargeant, B. L., & Connor, R. C. Aggression in bottlenose
    dolphins: evidence for sexual coercion, male-male competition, and female tolerance through analysis of tooth-rake
    marks and behaviour. Behaviour 21–44 (2005).22.Díaz López, B., López, A., Methion, S. & Covelo, P. Infanticide attacks and associated epimeletic behaviour in free-ranging common bottlenose dolphins (Tursiops truncatus). J. Mar. Biol. Assoc. 98, 1159–1167 (2018).Article 

    Google Scholar 
    23.Cotter, M. P., Maldini, D. & Jefferson, T. A. “Porpicide” in California: Killing of harbor porpoises (Phocoena phocoena) by coastal bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 28, E1–E15 (2012).Article 

    Google Scholar 
    24.Forney, K. A. Environmental models of cetacean abundance: Reducing uncertainty in population trends. Conserv. Biol. 14, 1271–1286 (2000).Article 

    Google Scholar 
    25.Gowans, S., Würsig, B. & Karczmarski, L. The social structure and strategies of delphinids: predictions based on an ecological framework. In Advances in Marine Biology Vol. 53, 195–294 (Elsevier, 2007).26.Miller, E. H. Territorial behavior. In Encyclopedia of marine mammals 1156–1166 (Academic Press, 2009).27.Díaz López, B. Bottlenose dolphins and aquaculture: Interaction and site fidelity on the north-eastern coast of Sardinia (Italy). Mar. Biol. 159, 2161–2172 (2012).Article 

    Google Scholar 
    28.Bearzi, G., Piwetz, S. & Reeves, R. R. Odontocete adaptations to human impact and vice versa. In Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B.) 211–235 (Springer International Publishing, 2019) https://doi.org/10.1007/978-3-030-16663-2_10.Chapter 

    Google Scholar 
    29.Bonizzoni, S. et al. Fish farming and its appeal to common bottlenose dolphins: Modelling habitat use in a Mediterranean embayment: Fish farming appeal to bottlenose dolphins. Aquatic Conserv. Mar. Freshw. Ecosyst. 24, 696–711 (2014).Article 

    Google Scholar 
    30.Díaz López, B. Bottlenose dolphin (Tursiops truncatus) predation on a marine fin fish farm: Some underwater observations. Aquat. Mamm. 32, 305–310 (2006).Article 

    Google Scholar 
    31.Díaz López, B., Marini, L. & Polo, F. The impact of a fish farm on a bottlenose dolphin population in the Mediterranean Sea. Thalassas 21, 65–70 (2005).
    Google Scholar 
    32.Piroddi, C., Bearzi, G. & Christensen, V. Marine open cage aquaculture in the eastern Mediterranean Sea: A new trophic resource for bottlenose dolphins. Mar. Ecol. Prog. Ser. 440, 255–266 (2011).ADS 
    Article 

    Google Scholar 
    33.Díaz López, B. The bottlenose dolphin Tursiops truncatus foraging around a fish farm: Effects of prey abundance on dolphins’ behavior. Curr. Zool. 55, 243–248 (2009).Article 

    Google Scholar 
    34.Castellote, M., Brotons, J. M., Chicote, C., Gazo, M. & Cerdà, M. Long-term acoustic monitoring of bottlenose dolphins, Tursiops truncatus, in marine protected areas in the Spanish Mediterranean Sea. Ocean Coast. Manag. 113, 54–66 (2015).Article 

    Google Scholar 
    35.Aznar, F. et al. Long-term changes (1990–2012) in the diet of striped dolphins Stenella coeruleoalba from the western Mediterranean. Mar. Ecol. Prog. Ser. 568, 231–247 (2017).ADS 
    Article 

    Google Scholar 
    36.Calzada, N., Aguilar, A., Grau, E. & Lockyer, C. Patterns of growth and physical maturity in the western Mediterranean striped dolphin, Stenella coeruleoalba (Cetacea: Odontoceti). Can. J. Zool. 75, 632–637 (1997).Article 

    Google Scholar 
    37.Meissner, A. M., MacLeod, C. D., Richard, P., Ridoux, V. & Pierce, G. Feeding ecology of striped dolphins, Stenella coeruleoalba, in the north-western Mediterranean Sea based on stable isotope analyses. J. Mar. Biol. Assoc. 92, 1677–1687 (2012).CAS 
    Article 

    Google Scholar 
    38.Chen, I., Watson, A. & Chou, L.-S. Insights from life history traits of Risso’s dolphins (Grampus griseus) in Taiwanese waters: Shorter body length characterizes northwest Pacific population. Mar. Mamm. Sci. 27, E43–E64 (2011).Article 

    Google Scholar 
    39.Barnett, J. et al. Postmortem evidence of interactions of bottlenose dolphins (Tursiops truncatus) with other dolphin species in south-west England. Vet. Rec. 165, 441–444 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Townsend, F. I. & Staggs, L. Atlas of Skin Diseases of Small Cetaceans (Todd Speakman, 2020).
    Google Scholar 
    41.Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: Predation to co-existence. Mamm. Rev. 21, 151–180 (1991).Article 

    Google Scholar 
    42.Weller, D. W. et al. Observations of an interaction between sperm whales and short-finned pilot whales in the Gulf of Mexico. Mar. Mamm. Sci. 12, 588–594 (1996).ADS 
    Article 

    Google Scholar 
    43.Baird, R. W. An interaction between Pacific white-sided dolphins and a neonatal harbor porpoise. Mammalia 62, 129–133 (1998).
    Google Scholar 
    44.Wedekin, L. L., Daura-Jorge, F. G. & Simoes-Lopes, P. C. An aggressive interaction between bottlenose dolphins (Tursiops truncatus) and estuarine dolphins (Sotalia guianensis) in southern Brazil. Aquat. Mamm. 30, 391–397 (2004).Article 

    Google Scholar 
    45.Campbell-Malone, R. et al. Gross and histologic evidence of sharp and blunt trauma in north Atlantic right whales (Eubalaena glacialis) killed by vessels. J. Zoo Wildl. Med. 39, 37–55 (2008).PubMed 
    Article 

    Google Scholar 
    46.Moore, M. et al. Criteria and case definitions for serious injury and death of pinnipeds and cetaceans caused by anthropogenic trauma. Dis. Aquat. Org. 103, 229–264 (2013).CAS 
    Article 

    Google Scholar 
    47.Read, A. & Murray, K. Gross Evidence of Human-Induced Mortality in Small Cetaceans (2000).48.Gozalbes, P. et al. Cetáceos y tortugas marinas en la Comunitat Valenciana. 20 años de seguimiento (2010).49.Gómez de Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. 88, 1185–1192 (2008).Article 

    Google Scholar 
    50.Cañadas, A., Sagarminaga, R., De Stephanis, R., Urquiola, E. & Hammond, P. S. Habitat preference modelling as a conservation tool: Proposals for marine protected areas for cetaceans in southern Spanish waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 495–521 (2005).Article 

    Google Scholar 
    51.Gannier, A. Diel variations of the striped dolphin distribution off the French Riviera (Northwestern Mediterranean Sea). Aquat. Mamm. 25, 123–134 (1999).
    Google Scholar 
    52.Blanco, C., Aznar, J. & Raga, J. A. Cephalopods in the diet of the striped dolphin Stenella coeruleoalba from the western Mediterranean during an epizootic in 1990. J. Zool. 237, 151–158 (1995).Article 

    Google Scholar 
    53.Archer II, F. I. Striped dolphin: Stenella coeruleoalba. In Encyclopedia of Marine Mammals 1127–1129 (Academic Press, 2009).54.Fraija-Fernández, N. et al. Long term boat-based surveys in the Central Spanish Mediterranean (2003–2013): Cetacean diversity and distribution. In Proceeding of the 29th Conference of the European Cetacean Society (2015).55.Blanco, C., Salomón, O. & Raga, J. A. Diet of the bottlenose dolphin (Tursiops truncatus) in the western Mediterranean Sea. J. Mar. Biol. Assoc. 81, 1053–1058 (2001).Article 

    Google Scholar 
    56.Praca, E. & Gannier, A. Ecological niches of three teuthophageous odontocetes in the northwestern Mediterranean Sea. Ocean Sci. 4, 49–59 (2008).ADS 
    Article 

    Google Scholar 
    57.Bearzi, G., Fortuna, C. M. & Reeves, R. R. Ecology and conservation of common bottlenose dolphins Tursiops truncatus in the Mediterranean Sea. Mamm. Rev. 39, 92–123 (2009).Article 

    Google Scholar 
    58.Epperly, S. P. et al. Beach strandings as an indicator of at-sea mortality of sea turtles. Bull. Mar. Sci. 59(2), 289–297 (1996).
    Google Scholar 
    59.Peltier, H. et al. The significance of stranding data as indicators of cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecol. Ind. 18, 278–290 (2012).Article 

    Google Scholar 
    60.Martínez-Cedeira, J. A. et al. How many strand? Offshore marking and coastal recapture of cetacean carcasses. In Abstract Book—25th Conference of the European Cetacean Society 332 (2011).61.Gulland, F. M., Dierauf, L. A. & Whitman, K. L. CRC Handbook of Marine Mammal medicine (CRC Press, 2018).
    Google Scholar 
    62.Isidoro-Ayza, M. et al. Brucella ceti infection in dolphins from the Western Mediterranean sea. BMC Vet. Res. 10, 206 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Rubio-Guerri, C. et al. Unusual striped dolphin mass mortality episode related to cetacean morbillivirus in the Spanish Mediterranean sea. BMC Vet. Res. 9, 106 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kuiken, T. & Hartmann, M. G. Proceedings of the First ECS Workshop on Cetacean Pathology: Dissection Techniques and Tissue Sampling. Vol. 17 (1991).65.Geraci, J. R. & Lounsbury, V. J. Marine Mammals Ashore: A Field guide for Strandings (National Aquarium in Baltimore, 2005).
    Google Scholar 
    66.Pugliares, K. R. et al. Marine Mammal Necropsy: An Introductory Guide for Stranding Responders and Field Biologists (Woods Hole Oceanographic Institution, 2007) https://doi.org/10.1575/1912/1823.Book 

    Google Scholar 
    67.Long, D. J. & Jones, R. E. White shark predation and scavenging on cetaceans in the eastern North Pacific Ocean. In Great White Sharks: The Biology of Carcharodon carcharias 293–307 (1996).68.Rubio-Guerri, C. et al. Simultaneous diagnosis of Cetacean morbillivirus infection in dolphins stranded in the Spanish Mediterranean sea in 2011 using a novel Universal Probe Library (UPL) RT-PCR assay. Vet. Microbiol. 165, 109–114 (2013).PubMed 
    Article 

    Google Scholar 
    69.Van Devanter, D. R. et al. Detection and analysis of diverse herpesviral species by consensus primer PCR. J. Clin. Microbiol. 34, 1666–1671 (1996).CAS 
    Article 

    Google Scholar 
    70.Alton, G. G., Jones, L. M., Angus, R. D. & Verger, J. M. Techniques for the Brucellosis Laboratory (Institut National de la Recherche Agronomique (INRA), 1988).
    Google Scholar  More

  • in

    Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach

    1.Schäferna, K. Amphipoda balcanica, spolu s poznámkami o jiných sladkovodních Amphipodech. Mem. Soc. R. Sci. Boheme Prague 12, 1–111 (1922).
    Google Scholar 
    2.Martynov, A. B. Zur Kenntnis der Amphipoden der Krim. Zool. Jahrb. 60, 573–606 (1931).
    Google Scholar 
    3.Karaman, S. L. Beitrag zur Kenntni s der Susswasseramphiopden. Bull. Soc. Scien Skoplje IX, 93–107 (1931).
    Google Scholar 
    4.Schellenberg, A. Schlussel und Diagnosen der dem Susswasser-Gammarus nahestehenden Einheiten ausschlisslich der Arten des Baikalsees und Australiens. Zool. Anz. 117, 267–280 (1937).
    Google Scholar 
    5.Barnard, J. L. & Karaman, S. G. Classificatory revisions in gammaridean amphipoda (Crustacea), Part 2. Proc. Biol. Soc. Wash. 95, 167–187 (1982).
    Google Scholar 
    6.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (CrustaceaAmphipoda): Part I: Gammarus pulex-group and related species. Bijdr Dierkd 47, 1–97 (1977).Article 

    Google Scholar 
    7.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea Amphipoda): Part II: Gammarus roeseli-group and related species. Bijdr Dierkd 47, 165–196 (1977).Article 

    Google Scholar 
    8.Karaman, G. & Pinkster, S. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda): Part III: Gammarus balcanicus-group and related species. Bijdr Dierkd 57, 207–260 (1987).Article 

    Google Scholar 
    9.Jażdżewski, K. Remarks on Gammarus lacustris G.O. Sars, 1863, with description of Gammarus varsoviensis n. sp. Bijdr Dierkd 45, 71–86 (1975).Article 

    Google Scholar 
    10.Jażdżewski, K. & Konopacka, A. Gammarus leopoliensis nov. sp. (Crustacea, Amphipoda) from Eastern Carpathians. Bull. Zoölogisch Museum 11, 185–196 (1989).
    Google Scholar 
    11.Karaman, G. S. New species of the family Gammaridae from Ohrid Lake basin, Gammarus sketi, n. sp., with emphasis on the subterranean members of genus Gammarus Fabr. (Contribution to the knowledge of the Amphipoda 191). Glasnik Odjeljenja prirodnih nauka, Crnogorska akademija nauka i umjetnosti 7, 53–71 (1989).
    Google Scholar 
    12.Iannilli, V. & Ruffo, S. Apennine and Sardinian species of Gammarus, with the description of Gammarus elvirae n. sp. (Crustacea Amphipoda, Gammaridae). Boll. Acc. Gioenia Sci. Nat 35, 519–532 (2002).
    Google Scholar 
    13.Alther, R., Fišer, C. & Altermatt, F. Description of a widely distributed but overlooked amphipod species in the European Alps. Zool. J. Linn Soc.-Lond. https://doi.org/10.1111/zoj.12477 (2016).Article 

    Google Scholar 
    14.Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc.-Lond. 20, 1–14. https://doi.org/10.1093/zoolinnean/zlw025 (2017).Article 

    Google Scholar 
    15.Hupalo, K., Mamos, T., Wrzesinska, W. & Grabowski, M. First endemic freshwater Gammarus from Crete and its evolutionary history-an integrative taxonomy approach. PeerJ 6, e4457. https://doi.org/10.7717/peerj.4457 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. Nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).Article 

    Google Scholar 
    17.Hou, Z., Sket, B. & Li, S. Phylogenetic analyses of Gammaridae crustacean reveal different diversification patterns among sister lineages in the Tethyan region. Cladistics https://doi.org/10.1111/cla.12055 (2014).Article 

    Google Scholar 
    18.Hou, Z. & Sket, B. A review of Gammaridae (Crustacea: Amphipoda): The family extent, its evolutionary history, and taxonomic redefinition of genera. Zool. J. Linn. Soc.-Lond. 176, 323–348. https://doi.org/10.1111/zoj.12318 (2016).Article 

    Google Scholar 
    19.Sket, B. & Hou, Z. Family Gammaridae (Crustacea: Amphipoda), mainly its Echinogammarus clade in SW Europe. Further elucidation of its phylogeny and taxonomy. ABS 61 (2018).20.Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).Article 
    PubMed 

    Google Scholar 
    21.Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, 1922 (Crustacea: Amphipoda). J. Zoolog. Syst. Evol. Res. 52, 237–248. https://doi.org/10.1111/jzs.12062 (2014).Article 

    Google Scholar 
    22.Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Copilaş-Ciocianu, D., Zimţa, A.-A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372. https://doi.org/10.1111/zsc.12285 (2018).Article 

    Google Scholar 
    24.Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432. https://doi.org/10.1111/jbi.12853 (2017).Article 

    Google Scholar 
    25.Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536. https://doi.org/10.1038/s41598-020-73739-0 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Meier, R. & Wheeler, Q. D. in The New Taxonomy (ed Q. D. Wheeler) 256 (CRC Press, 2008).27.Coleman, C. O. Taxonomy in times of the taxonomic impediment: Examples from the community of experts on amphipod crustaceans. J. Crustacean Biol. 35, 729–740. https://doi.org/10.1163/1937240x-00002381 (2015).Article 

    Google Scholar 
    28.Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 
    PubMed 

    Google Scholar 
    29.Kondracki, J. Karpaty. (WSiP, 1989).30.Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary and spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. https://doi.org/10.1111/bij.12918 (2016).Article 

    Google Scholar 
    31.Balint, M. et al. Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas 189–205 (Springer, 2011).Book 

    Google Scholar 
    32.Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: The rule and not the exception?. Front Zool. https://doi.org/10.1186/1742-9994-9-22 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ronikier, M. Biogeography of high-mountain plants in the Carpathians: An emerging phylogeographical perspective. Taxon 60, 373–389. https://doi.org/10.1002/tax.602008 (2011).Article 

    Google Scholar 
    34.Hájková, P. et al. Using multi-proxy palaeoecology to test a relict status of refugial populations of calcareous-fen species in the Western Carpathians. The Holocene 25, 702–715. https://doi.org/10.1177/0959683614566251 (2015).ADS 
    Article 

    Google Scholar 
    35.Malicky, H. Chorological patterns and biome types of European Trichoptera and other freshwater insects. Arch. Hydrobiol. 96, 223–244 (1983).
    Google Scholar 
    36.Malicky, H. Arealdynamik und Biomgrundtypen am Beispiel der Köcherfliegen (Trichoptera). Entom Basi 22, 235–259 (2000).
    Google Scholar 
    37.Keresztes, L., Kolcsár, L.-P., Török, E. & Dénes, A.-L. in The Carpathians as speciation centres and barriers: From case studies to general patterns (eds L Keresztes & B. Markó) 168 (Cluj University Press, 2011).38.Bozáová, J., Čiamporová Zat’ovičová, Z., Čiampor, F., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ 8, e10039. https://doi.org/10.7717/peerj.10039 (2020).Article 

    Google Scholar 
    39.Copilas-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027 (2017).Article 
    PubMed 

    Google Scholar 
    40.Grabowski, M. & Mamos, T. Contact Zones, Range Boundaries, and Vertical Distribution of Three Epigean Gammarids (Amphipoda) in the Sudeten and Carpathian Mountains (Poland). Crustaceana 84, 153–168. https://doi.org/10.1163/001121611×554328 (2011).Article 

    Google Scholar 
    41.Jażdżewski, K. Morfologia, taksonomia i występowanie w Polsce kiełży z rodzajów Gammarus Fabr. i Chaetogammarus Mart. (Crustacea, Amphipoda). 185 (Acta Universitatis Lodziensis, 1975).42.Jażdżewski, K. & Konopacka, A. Notes on the Gammaridean Amphipoda of the Dniester River Basin and Eastern Carpathians. Crustaceana. Supplement, 72–89 (1988).43.Zieliński, D. Life History of Gammarus balcanicus Schäferna, 1922 from the Bieszczady Mountains (Eastern Carpathians, Poland). Crustaceana 68(1), 61–72 (1995).Article 

    Google Scholar 
    44.Zieliński, D. Life Cycle and Altitude Range of Gammarus leopoliensis Jażdżewski & Konopacka, 1989 (Amphipoda) in South-Eastern Poland. Crustaceana 71 (1998).45.Konopacka A., Jażdżewski K., Jędryczkowski W. In Monografie Bieszczadzkie, vol. VII (ed. Pawłowski, J.) (2000).46.Straškraba, M. Předběžná zpráva o rozšíření rodu Gammarus v ČSR. Věstník Československé Společnosti Zoologické 17, 212–227 (1953).
    Google Scholar 
    47.Straškraba, M. Beitrag zur Kenntnis der Amphipodenfauna Karpatenrusslands (USSR). Věstník Československé Společnosti Zoologické 21, 256–272 (1957).
    Google Scholar 
    48.Micherdziński, W. Kiełże rodzaju Gammarus Fabricius (Amphipoda) w wodach Polski. Acta Zoologica Cracoviensia 4, 527–637 (1959).
    Google Scholar 
    49.Straškraba, M. Amphipoden der Tschechoslovakei nach den Sammlungen von. Prof. Hrabě. I. Věstník Československé Společnosti Zoologické 26, 117–145 (1962).50.Provan, J. & Bennett, K. D. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571. https://doi.org/10.1016/j.tree.2008.06.010 (2008).Article 
    PubMed 

    Google Scholar 
    51.Tzedakis, P. C., Emerson, B. C. & Hewitt, G. M. Cryptic or mystic? Glacial tree refugia in northern Europe. Trends Ecol. Evol. 28, 696–704. https://doi.org/10.1016/j.tree.2013.09.001 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Harl, J., Duda, M., Kruckenhauser, L., Sattmann, H. & Haring, E. In Search of Glacial Refuges of the Land Snail Orcula dolium (Pulmonata, Orculidae): An Integrative Approach Using DNA Sequence and Fossil Data. PLoS ONE 9, e96012. https://doi.org/10.1371/journal.pone.0096012 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Juřičková, L., Horáčková, J. & Ložek, V. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils. Quaternary Res. 82, 222–228. https://doi.org/10.1016/j.yqres.2014.01.015 (2014).ADS 
    Article 

    Google Scholar 
    54.Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6 (2008).Article 

    Google Scholar 
    55.Zasadni, J. & Kłapyta, P. The tatra mountains during the last glacial maximum. J. Maps 10, 440–456. https://doi.org/10.1080/17445647.2014.885854 (2014).Article 

    Google Scholar 
    56.Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: The role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshwater Biol. 65, 1028–1046. https://doi.org/10.1111/fwb.13487 (2020).CAS 
    Article 

    Google Scholar 
    57.Ratnasingham, S. & Hebert, P. Bold: The barcode of life data system. Mol. Ecol. Not. 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).CAS 
    Article 

    Google Scholar 
    58.Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. STOTEN 678, 499–524. https://doi.org/10.1016/j.scitotenv.2019.04.247 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Katouzian, A.-R. et al. Drastic underestimation of amphipod biodiversity in the endangered Irano-Anatolian and Caucasus biodiversity hotspots. Sci. Rep. 6, 22507. https://doi.org/10.1038/srep22507 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004 (2007).Article 
    PubMed 

    Google Scholar 
    61.Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 3391. https://doi.org/10.1038/s41598-017-02938-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536. https://doi.org/10.2307/2413694 (1997).Article 

    Google Scholar 
    63.Nosil, P. Speciation with gene flow could be common. Mol. Ecol. 17, 2103–2106. https://doi.org/10.1111/j.1365-294X.2008.03715.x (2008).Article 
    PubMed 

    Google Scholar 
    64.Berner, D. & Salzburger, W. The genomics of organismal diversification illuminated by adaptive radiations. Trends Genet. 31, 491–499. https://doi.org/10.1016/j.tig.2015.07.002 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. .Biol 215, 403–410. https://doi.org/10.1006/jmbi.1990.9999 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Xia, X. DAMBE5: A comprehensive software package for data analysis. Mol. Biol. Evol. 30, 1720–1728. https://doi.org/10.1093/molbev/mst064 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Saitou, N. & Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 (1987).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. https://doi.org/10.1007/bf01731581 (1980).Article 
    PubMed 

    Google Scholar 
    72.Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evol. Int. J. Org. Evol. 39, 783–791 (1985).Article 

    Google Scholar 
    73.Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The barcode index number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. Plos Comput. Biol. 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42. https://doi.org/10.1186/s12862-017-0890-6 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609. https://doi.org/10.1080/10635150600852011 (2006).Article 
    PubMed 

    Google Scholar 
    79.Ezard, T., Fujisawa, T. & Barraclough, T. G. SPLITS: SPecies’ LImits by Threshold Statistics. R package version 1.0–18/r45 Available from: http://R-Forge.R-project.org/projects/splits/ (2009).80.Team, R. C. R: A language and environment for statistical computing, https://www.R-project.org/ (2020).81.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Jones, G. Algorithmic improvements to species delimitation and phylogeny estimation under the multispecies coalescent. J. Math. Biol. 74, 447–467. https://doi.org/10.1007/s00285-016-1034-0 (2017).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    84.Jones, G., Aydin, Z. & Oxelman, B. DISSECT: An assignment-free Bayesian discovery method for species delimitation under the multispecies coalescent. Bioinformatics 31, 991–998. https://doi.org/10.1093/bioinformatics/btu770 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    85.Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543. https://doi.org/10.1371/journal.pone.0089543 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    86.Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707. https://doi.org/10.1111/2041-210X.12199 (2014).Article 

    Google Scholar 
    87.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    88.Heled, J. & Drummond, A. Bayesian inference of population size history from multiple loci. BMC Evol. Biol. 8, 289 (2008).Article 

    Google Scholar 
    89.Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    90.Flot, J. F., Couloux, A. & Tillier, S. Haplowebs as a graphical tool for delimiting species: A revival of Doyle’s “field for recombination” approach and its application to the coral genus Pocillopora in Clipperton. BMC Evol. Biol. 10, 1. https://doi.org/10.1186/1471-2148-10-372 (2010).Article 

    Google Scholar 
    91.Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989. https://doi.org/10.1086/319501 (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Spöri, Y. & Flot, J.-F. HaplowebMaker and CoMa: Two web tools to delimit species using haplowebs and conspecificity matrices. Methods Ecol. Evol. 11, 1434–1438. https://doi.org/10.1111/2041-210X.13454 (2020).Article 

    Google Scholar  More

  • in

    The proximity of a highway increases CO2 respiration in forest soil and decreases the stability of soil organic matter

    1.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science (80-). 304, 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Janzen, H. H. Carbon cycling in earth systems—A soil science perspective. Agric. Ecosyst. Environ. 104, 399–417 (2004).CAS 
    Article 

    Google Scholar 
    3.Leinweber, P., Jandl, G., Baum, C., Eckhardt, K. U. & Kandeler, E. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol. Biochem. 40, 1496–1505 (2008).CAS 
    Article 

    Google Scholar 
    4.Kosugi, Y. et al. Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agric. For. Meteorol. 147, 35–47 (2007).ADS 
    Article 

    Google Scholar 
    5.Epron, D. Separating autotrophic and heterotrophic components of soil respiration: Lessons learned from trenching and related root-exclusion experiments. Soil Carbon Dyn. Integr. Methodol. https://doi.org/10.1017/CBO9780511711794.009 (2010).Article 

    Google Scholar 
    6.Musselman, R. C. & Fox, D. G. A review of the role of temperate forests in the global CO2 balance. J. Air Waste Manag. Assoc. 41, 798–807 (1991).CAS 
    Article 

    Google Scholar 
    7.Lal, R. Carbon sequestration. Philos. Trans. R. Soc. B Biol. Sci. 363, 815–830 (2008).CAS 
    Article 

    Google Scholar 
    8.Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 220, 242–258 (2005).Article 

    Google Scholar 
    9.Kaiser, K., Guggenberger, G. & Zech, W. Sorption of DOM and DOM fractions to forest soils. Geoderma 74, 281–303 (1996).ADS 
    Article 

    Google Scholar 
    10.Hassink, J. A model of the physical protection of organic matter in soils the capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191, 77–87 (1997).CAS 
    Article 

    Google Scholar 
    11.Saidy, A. R. et al. Effects of clay mineralogy and hydrous iron oxides on labile organic carbon stabilisation. Geoderma 173–174, 104–110 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Mueller, K. E. et al. Tree species effects on coupled cycles of carbon, nitrogen, and acidity in mineral soils at a common garden experiment. Biogeochemistry 111, 601–614 (2012).CAS 
    Article 

    Google Scholar 
    13.Mulder, J., De Wit, H. A., Boonen, H. W. J. & Bakken, L. R. Increased levels of aluminium in forest soils: Effects on the stores of soil organic carbon. Water Air. Soil Pollut. 130, 989–994 (2001).ADS 
    Article 

    Google Scholar 
    14.Gruba, P. & Socha, J. Exploring the effects of dominant forest tree species, soil texture, altitude, and pHH2O on soil carbon stocks using generalized additive models. For. Ecol. Manag. 447, 105–114 (2019).Article 

    Google Scholar 
    15.Chrzan, A. Zawartość wybranych metali ciężkich w glebie i faunie glebowej. Proc. ECOpole. 7, 23–26 (2013).
    Google Scholar 
    16.Ampoorter, E., Van Nevel, L., De Vos, B., Hermy, M. & Verheyen, K. Assessing the effects of initial soil characteristics, machine mass and traffic intensity on forest soil compaction. For. Ecol. Manag. 260, 1664–1676 (2010).Article 

    Google Scholar 
    17.Meriano, M., Eyles, N. & Howard, K. W. F. Hydrogeological impacts of road salt from Canada’s busiest highway on a Lake Ontario watershed (Frenchman’s Bay) and lagoon, City of Pickering. J. Contam. Hydrol. 107, 66–81 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Barbier, L., Suaire, R., Durickovic, I., Laurent, J. & Simonnot, M. O. Is a road stormwater retention pond able to intercept deicing salt?. Water Air. Soil Pollut. 229, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    19.Willmert, H. M., Osso, J. D., Twiss, M. R. & Langen, T. A. Winter road management effects on roadside soil and vegetation along a mountain pass in the Adirondack Park, New York, USA. J. Environ. Manag. 225, 215–223 (2018).CAS 
    Article 

    Google Scholar 
    20.General Directorate for National Roads and Motorways. Detailed technical specifications. Winter maintenance of the road network administered by the General Directorate for National Roads and Motorways, Lublin Branch in the years: 2012÷2016 (in Polish). (2012).21.Durickovic, I. NaCl material for winter maintenance and its environmental effect. Salt Earth https://doi.org/10.5772/intechopen.86907 (2020).Article 

    Google Scholar 
    22.General Directorate for National Roads and Motorways. We’ll recap the winter of 2019/2020 and explain what road maintenance is all about (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/37500/Podsumujemy-zime-20192020-i-wyjasnimy-o-co-chodzi-w-utrzymaniu-drog. Accessed on October 20, 2021.23.General Directorate for National Roads and Motorways. Ready for all weather. The 2020/2021 winter season has begun (in Polish). (2020). https://www.archiwum.gddkia.gov.pl/pl/a/40259/Gotowi-na-kazda-pogode-Zaczal-sie-sezon-zimowy-20202021. Accessed on October 20, 2021.24.General Directorate for National Roads and Motorways. Average annual daily traffic (AADT) at measuring points in 2015 on state roads (in Polish). (2015). https://www.archiwum.gddkia.gov.pl/pl/2551/GPR-2015. Accessed on October 20, 2021.25.QGIS Association. QGIS Geographic Information System. (2021). http://www.qgis.org Accessed on October 20, 2021.26.Woś, A. The Climate of Poland (in Polish) (Polish Scientific Publishers PWN, 1999).
    Google Scholar 
    27.Polish State Forests. Nature and forest conditions of Suchedniów Forest Inspectorate (in Polish). A report. (2011). https://suchedniow.radom.lasy.gov.pl/documents/11058/18775352/warunki+przyrodniczo-lesne.pdf Accessed on October 20, 2021.28.Hopkins, D. W. Carbon mineralization. In Soil Sampling and Methods of Analysis (eds. Carter, M. R. & Gregorich, E. G.) (CRC Press, 2008).29.Buurman, P., van Lagen, B. & Velthorst, E. J. Manual for Soil and Water Analysis (Backhuys Publishers, 1996).
    Google Scholar 
    30.R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Accessed on October 20, 2021..31.Navrátil, T. et al. Soil mercury distribution in adjacent coniferous and deciduous stands highly impacted by acid rain in the Ore Mountains, Czech Republic. Appl. Geochem. 75, 63–75 (2016).Article 
    CAS 

    Google Scholar 
    32.Gruba, P., Pietrzykowski, M. & Pasichnyk, D. Tree species affects the concentration of total mercury (Hg) in forest soils: Evidence from a forest soil inventory in Poland. Sci. Total Environ. 647, 141–148 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Obrist, D. et al. Mercury distribution across 14 U.S. Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environ. Sci. Technol. 45, 3974–3981 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Kupka, D., Kania, M., Pietrzykowski, M., Łukasik, A. & Gruba, P. Multiple factors influence the accumulation of heavy metals (Cu, Pb, Ni, Zn) in forest soils in the vicinity of roadways. Water Air Soil Pollut. 232, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    35.Borchers, J. G. & Perry, A. D. The influence of soil texture and aggregation on carbon and nitrogen dynamics in southwest Oregon forests and clearcuts. Can. J. For. Res. 22, 298–305 (1992).CAS 
    Article 

    Google Scholar 
    36.Chantigny, M. H., Angers, D. A., Kaiser, K. & Kalbitz, K. Extraction and characterization of dissolved organic matter. In Soil Sampling and Methods of Analysis (eds. Carter, M. & Gregorich, E. G.) (CRC Press, 2008).37.Zehetner, F., Rosenfellner, U., Mentler, A. & Gerzabek, M. H. Distribution of road salt residues, heavy metals and polycyclic aromatic hydrocarbons across a highway-forest interface. Water Air Soil Pollut. 198, 125–132 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Grigalaviciene, I., Rutkoviene, V. & Marozas, V. The accumulation of heavy metals Pb, Cu and Cd at roadside forest soil. Polish J. Environ. Stud. 14, 109–115 (2005).CAS 

    Google Scholar 
    39.Bäckström, M., Bäckman, L., Folkeson, L., Karlsson, S. & Lind, B. Mobilisation of heavy metals by deicing salts in a roadside environment. Water Res. 38, 720–732 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Singh, D. V., Bhat, J. I. A., Bhat, R. A., Dervash, M. A. & Ganei, S. A. Vehicular stress a cause for heavy metal accumulation and change in physico-chemical characteristics of road side soils in Pahalgam. Environ. Monit. Assess. 190, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    41.Doelman, P. & Haanstra, L. Short-term and long-term effects of cadmium, chromium, copper, nickel, lead and zinc on soil microbial respiration in relation to abiotic soil factors. Plant Soil 79, 317–327 (1984).CAS 
    Article 

    Google Scholar 
    42.Hattori, H. Influence of heavy metals on soil mcrobial activities. Soil Sci. Plant Nutr. 38, 93–100 (1992).CAS 
    Article 

    Google Scholar 
    43.Gülser, F. & Erdoǧan, E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess. 145, 127–133 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Lofgren, S. The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut. 130, 863–868 (2001).ADS 
    Article 

    Google Scholar 
    45.Mason, C. F., Norton, S. A., Fernandez, I. J. & Katz, L. E. Deconstruction of the chemical effects of road salt on stream water chemistry. J. Environ. Qual. 28, 82–91 (1999).CAS 
    Article 

    Google Scholar 
    46.Robinson, H. K., Hasenmueller, E. A. & Chambers, L. G. Soil as a reservoir for road salt retention leading to its gradual release to groundwater. Appl. Geochem. 83, 72–85 (2017).CAS 
    Article 

    Google Scholar 
    47.Rhodes, A. L. & Guswa, A. J. Storage and release of road-salt contamination from a calcareous lake-basin fen, western Massachusetts, USA. Sci. Total Environ. 545–546, 525–545 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Cunningham, M. A., Snyder, E., Yonkin, D., Ross, M. & Elsen, T. Accumulation of deicing salts in soils in an urban environment. Urban Ecosyst. 11, 17–31 (2008).Article 

    Google Scholar 
    49.Berggren, D., Mulder, J. & Westerhof, R. Prolonged leaching of mineral forest soils with dilute HCl solutions: The solubility of Al and soil organic matter. Eur. J. Soil Sci. 49, 305–316 (1998).CAS 
    Article 

    Google Scholar 
    50.Prenzel, J. & Schulte-Bisping, H. Some chemical parameter relations in a population of German forest soils. Geoderma 64, 309–326 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Reuss, J. O., Walthall, P. M., Roswall, E. C. & Hopper, R. W. E. Aluminum solubility, calcium-aluminum exchange, and pH in acid forest soils. Soil Sci. Soc. Am. J. 54, 374–380 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Hobbie, S. E. et al. Tree species effects on soil organic matter dynamics: The role of soil cation composition. Ecosystems 10, 999–1018 (2007).CAS 
    Article 

    Google Scholar 
    53.Scheel, T., Jansen, B., Van Wijk, A. J., Verstraten, J. M. & Kalbitz, K. Stabilization of dissolved organic matter by aluminium: A toxic effect or stabilization through precipitation?. Eur. J. Soil Sci. 59, 1122–1132 (2008).CAS 
    Article 

    Google Scholar 
    54.Lützow, M. V. et al. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 57, 426–445 (2006).Article 
    CAS 

    Google Scholar 
    55.Gruba, P. & Socha, J. Effect of parent material on soil acidity and carbon content in soils under silver fir (Abies alba Mill.) stands in Poland. CATENA 140, 90–95 (2016).CAS 
    Article 

    Google Scholar 
    56.Gruba, P. & Mulder, J. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils. Sci. Total Environ. 511, 655–662 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Reich, P. B. et al. Linking litter calcium, earthworms and soil properties: A common garden test with 14 tree species. Ecol. Lett. 8, 811–818 (2005).Article 

    Google Scholar  More

  • in

    A seagrass harbours a nitrogen-fixing bacterial partner

    NEWS AND VIEWS
    03 November 2021

    A seagrass harbours a nitrogen-fixing bacterial partner

    How underwater seagrasses obtain the nitrogen they need has been unclear. Evidence has now emerged of a partnership with a bacterium that might be analogous to the system used by many land plants to gain nitrogen.

    Douglas G. Capone

     ORCID: http://orcid.org/0000-0002-3968-736X

    0

    Douglas G. Capone

    Douglas G. Capone is in the Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Seagrass meadows are a prominent feature of many shallow coastal areas of the temperate through to the tropical ocean. Seagrasses provide a crucial habitat for invertebrates and juvenile fish, stabilize sediments and buffer the shoreline against erosion1. Moreover, they contribute directly and positively to the ‘blue economy’ of the oceans through their long-term storage of carbon2. Lush and highly productive seagrass beds often thrive in nutrient-deficient waters, and attempts to solve the enigma of how they accomplish this feat have driven considerable research over the years. Writing in Nature, Mohr et al.3 provide crucial evidence indicating that the success of a seagrass called Posidonia oceanica (Fig. 1), which proliferates throughout the warm waters of the Mediterranean Sea (and elsewhere), might be attributed to the development of a highly integrated partnership with a bacterium. This system is reminiscent of those found in some terrestrial plants.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02956-y

    References1.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. (eds) Seagrasses: Biology, Ecology and Conservation (Springer, 2006).
    Google Scholar 
    2.Lovelock, C. E. & Duarte, C. M. Biol. Lett. 15, 20180781 (2019).PubMed 
    Article 

    Google Scholar 
    3.Mohr, W. et al. Nature https://doi.org/10.1038/s41586-021-04063-4 (2021).Article 

    Google Scholar 
    4.Thies, J. E. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J., Fuhrmann, J. J.& Zuberer, D. A.) 455–487 (Elsevier, 2021).
    Google Scholar 
    5.Zuberer, D. A. in Principles and Applications of Soil Microbiology 3rd edn (eds Gentry, T. J., Fuhrmann, J. J.& Zuberer, D. A.) 423–453 (Elsevier, 2021).
    Google Scholar 
    6.Larkum, A. W. D., Waycott, M. & Conran, J. G. in Seagrasses of Australia: Structure, Ecology and Conservation (eds Larkum, A. W. D., Kendrick, G. A. & Ralph, P. J.) 3–29 (Springer, 2018).
    Google Scholar 
    7.Welsh, D. T. Ecol. Lett. 3, 58–71 (2000).Article 

    Google Scholar 
    8.Cramer, M. J., Haghshenas, N., Bagwell, C. E., Matsui, G. Y. & Lovell, C. R. Int. J. Syst. Evol. Microbiol. 61, 1053–1060 (2011).PubMed 
    Article 

    Google Scholar 
    9.Clúa, J., Roda, C., Zanetti, M. E. & Blanco, F. A. Genes 9, 125 (2018).Article 

    Google Scholar 
    10.Evans, S. M., Griffin, K. J., Blick, R. A. J., Poore, A. G. B. & Vergés, A. PLoS ONE 13, e0190370 (2018).PubMed 
    Article 

    Google Scholar 
    Download references

    Competing Interests
    The author declares no competing interests.

    Related Articles

    Read the paper: Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium

    From sea to sea

    Consistent patterns of nitrogen fixation identified in the ocean

    See all News & Views

    Subjects

    Microbiology

    Plant sciences

    Ecology

    Latest on:

    Microbiology

    African scientists race to test COVID drugs — but face major hurdles
    News Feature 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Why scientists worldwide are watching UK COVID infections
    News Explainer 02 NOV 21

    Plant sciences

    Cold-induced Arabidopsis FRIGIDA nuclear condensates for FLC repression
    Article 03 NOV 21

    From the archive
    News & Views 02 NOV 21

    Cell surface and intracellular auxin signalling for H+ fluxes in root growth
    Article 27 OCT 21

    Ecology

    Baleen whale prey consumption based on high-resolution foraging measurements
    Article 03 NOV 21

    A whale of an appetite revealed by analysis of prey consumption
    News & Views 03 NOV 21

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium
    Article 03 NOV 21

    Jobs

    Global Scholar Recruitment Campaign

    City University of Hong Kong (CityU)
    Hong Kong, China

    Postdoctoral Training Fellow – Papagiannopoulos Laboratory

    Francis Crick Institute
    London, United Kingdom

    Postdoc – X-ray cross-correlation analysis

    German Electron Synchrotron (DESY)
    Hamburg, Germany

    Postdoc – Coherent X-ray Diffraction Imaging

    German Electron Synchrotron (DESY)
    Hamburg, Germany More

  • in

    Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium

    Etymology‘Candidatus Celerinatantimonas neptuna’ (nep.tu’na L. fem. n.), pertaining to Neptunus (L. masc. n. Neptune), the Roman god of the seas and the Neptune grass, Posidonia oceanica.SamplingA P. oceanica meadow at 8 m water depth and nearby sandy sediments in Fetovaia Bay, Elba, Italy13 were sampled between June 2014 and September 2019; individual sampling months and years are indicated in the sections below and/or in the figures and tables. In May 2017, a P. oceanica meadow at the island of Pianosa, Italy was also sampled. All of the samples were obtained via SCUBA diving.Complete plants of P. oceanica were carefully separated from the meadow by hand and stored in seawater-filled containers until arrival at the shore-based laboratory. Sediment for use in the laboratory-based aquaria was scooped into containers from nearby sandy patches. Seawater was pumped through a hose (placed at about 0.5 m above the P. oceanica meadow) into several 50 l barrels onboard the boat and was later used in the laboratory for the aquarium and the incubation experiments.The sediment within the seagrass meadow was sampled with stainless steel core tubes (length, 50 cm), which were drilled into the sediment by divers, and the cores were briefly stored at 22 °C (ambient temperature, September 2019) in a seawater-filled barrel until further processing at the shore-based laboratory.Porewater nutrient samples were obtained using stainless steel lances41 at intervals of around 10 cm. Water column nutrient samples were obtained from above the seagrass meadow at the start or end of sampling. Nutrient samples were collected in 15 ml or 50 ml centrifuge tubes and were stored in a cooler box until further processing.Nutrient measurementsWater column nutrients were measured during several sampling campaigns as indicated in Extended Data Table 1a. Ammonium (NH4+) concentrations were measured fluorometrically42 in the nearby shore-based laboratory, and the remaining water was frozen (−20 °C) for later analyses of nitrate (NO3−), nitrite (NO2−), phosphate (PO43−) and silicate (SiO44−) using an autoanalyser (QuAAtro, Seal Analytical). Porewater samples were obtained in June 2019 and were processed the same as the water column nutrient samples with the exception that ammonium was not measured on site but at the home laboratory at the same time as the other nutrients. Dissolved inorganic nitrogen (ammonium plus NOx−) concentrations in the porewater were averaged for the upper 20 cm (Extended Data Table 1b).Net primary production measurements using the EC methodNet carbon dioxide (CO2) fluxes were calculated on the basis of oxygen (O2) fluxes determined using the aquatic eddy covariance (EC) method. In this non-invasive approach, turbulence-induced transport is resolved using high-frequency current meters combined with fast O2 microsensors. Under the assumption of stationarity, the instantaneous turbulent flux contributions are calculated by correlating vertical current fluctuations to oxygen fluctuations. Our EC system was equipped with an acoustic Doppler velocimeter (ADV, Nortek) and ultra-fast responding optode microsensors with a tip diameter of 430 µm (t90  More