More stories

  • in

    The answer to the biodiversity crisis is not more debt

    EDITORIAL
    26 October 2021

    The answer to the biodiversity crisis is not more debt

    Funding pledges from China and other countries need to be given in grants — which must include research grants — and not as a reward for taking out loans.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    The Alichur Valley in Tajikistan is among a number of ecologically sensitive areas that researchers say could be affected by China’s Belt and Road Initiative.Credit: Alamy

    Funding for biodiversity is getting some attention at last.In September, nine philanthropic organizations, most of them in the United States, pledged a total of US$5 billion over a decade towards projects that will help to preserve the richness of Earth’s species.This month, Chinese President Xi Jinping announced the allocation of 1.5 billion yuan ($235 million) to the new Kunming Biodiversity Fund. This will have a goal of funding projects, such as protected areas, that will contribute to slowing down and eventually reversing the loss of species and ecosystems.More details are awaited from China, along with further information on a promise made by the European Union to double its funding for biodiversity. Contributions to the Kunming fund should be given as grants, not loans; they should have a research component; and they should be pooled and managed through international organizations. Moreover, the rules for access need to be transparent and fair to all applicants. These are important factors to emphasize, because there seems to be a trend towards providing environmental finance as loans — many of them to some of the world’s poorest countries, which are often already highly indebted.
    The broken $100-billion promise of climate finance – and how to fix it
    The pledges were timed to coincide with the first part of the China-hosted United Nations biodiversity conference, COP15, which ended on 24 October. Collectively, the sums, although not insignificant, will amount to little more than a 1–2% increase on the roughly $133 billion a year that the world currently spends on biodiversity. Well over half of this is spent by China, the EU, Japan and the United States.Spending on biodiversity needs to increase in all regions, according to a report by the UN Environment Programme, published in May (see go.nature.com/3ekaopk). For comparison, money earmarked for tackling climate change totalled $632 billion per year in 2019–20, according to a Nature analysis (Nature 598, 400–402; 2021).The reasons that finance for biodiversity is lower than that for its climate cousin include a relative dearth of finance in low- and middle-income countries and the fact that more than half of all climate funds take the form of loans. Both public and private investors know that in financing projects such as solar energy plants or batteries research and development, they will probably see a return on their investments. By contrast, protecting a watershed or a wetland is more of a public service — and so is more likely to be funded from taxation. Partly as a result, some 86% of biodiversity funding currently comes from public sources, in the form of grants.But that might be about to change. Researchers, corporations, bankers and policymakers have been exploring how to create financial investment products — from both private and public sources — in biodiversity, as well as how to better protect nature from the negative environmental impacts of big infrastructure projects. Most industrial sectors rely on biodiversity to some extent. Food producers, forestry, clothing manufacturers and hydropower, for example, would all struggle without healthy soils, pollinators or predictable water supplies. If nature continues to degrade, the world’s economic output will begin to suffer sooner or later.
    Global climate action needs trusted finance data
    One idea being studied is how to create an internationally agreed reporting system so that any entity — a bank, a government or a corporation — would need to publish data on whether its investments could lead to ecological damage. Such disclosures would probably prompt financiers to think twice before taking on investments that might be environmentally harmful. Earlier this year, an organization called Taskforce on Nature-related Financial Disclosures began work to develop such a system. It is co-chaired by Elizabeth Mrema, the executive secretary of the UN biodiversity convention secretariat, and is based in Montreal, Canada.Another idea under study is called Nature Performance Bonds (NPBs). According to this model, indebted countries would be eligible for more-favourable loan repayment terms if they could commit to spending the cash saved on environmental protection.Last month, a study commissioned by the China Council for International Cooperation on Environment and Development, an organization of policymakers that advises China’s government, recommended that China become a global leader in NPBs (see go.nature.com/3pekzk7). The study says that some 52 low- and middle-income countries owe China a combined total of more than $100 billion in loans. These include loans for projects that are part of China’s Belt and Road Initiative (BRI) to upgrade energy sources, roads, railways and airports, mainly in low- and middle-income countries. Many of China’s BRI investments are in ecologically sensitive areas.The terms of China’s $235-million biodiversity announcement have not yet been confirmed. But it would be wise if this funding were not linked to the debts of countries whose biodiversity is being affected by BRI projects. Otherwise it would seem that China’s main motivation is the greening of its own investments, when, as the host of COP15, it needs to think and act more globally, and work towards creating a fund by and for all nations.
    Where climate cash is flowing and why it’s not enough
    The Kunming Biodiversity Fund needs to be a stand-alone grant fund, ideally managed by a mechanism involving all countries, and with transparent rules of access. It also needs to have a dedicated research component — something that is not possible through loan finance. And other nations must contribute.The need for research funding is especially acute. There are often few funding opportunities from national research bodies for researchers in low- and middle-income countries that are rich in biodiversity. The UN’s official biodiversity funder, the Global Environment Facility, based in Washington DC, does not have a dedicated research facility. It does fund some science, but that is a part of a small-grants programme (see go.nature.com/3mgu8io) that is mainly focused on funding for conservation.It is clear that biodiversity will be getting more finance. But loan finance must not crowd out or replace grant funding. There is a precedent for this. It is already happening in climate finance, for which a much-delayed $100 billion pledged to be provided annually to low- and middle-income countries will be mainly in the form of loans.A step change in biodiversity finance is needed and the Kunming Biodiversity Fund will be a welcome move in the right direction. But it will be inequitable if most of the promised finance ends up committed to loans. Finding an answer to the biodiversity crisis should not mean the poorest countries having to take on yet more debt.

    Nature 598, 539-540 (2021)
    doi: https://doi.org/10.1038/d41586-021-02891-y

    Related Articles

    The broken $100-billion promise of climate finance – and how to fix it

    Where climate cash is flowing and why it’s not enough

    Global climate action needs trusted finance data

    Growing support for valuing ecosystems will help conserve the planet

    Subjects

    Biodiversity

    Climate change

    Economics

    Policy

    Latest on:

    Biodiversity

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Fine-root traits in the global spectrum of plant form and function
    Article 29 SEP 21

    Pollinators contribute to the maintenance of flowering plant diversity
    Article 08 SEP 21

    Climate change

    COP26: set a minimum global carbon price for emissions
    Correspondence 26 OCT 21

    How climate change will make the hottest tropical days even more extreme
    Research Highlight 25 OCT 21

    COP26 climate summit: A scientists’ guide to a momentous meeting
    News Explainer 25 OCT 21

    Economics

    COP26: set a minimum global carbon price for emissions
    Correspondence 26 OCT 21

    Countries of the Indo-Gangetic Plain must unite against air pollution
    Correspondence 19 OCT 21

    The cost of changes in energy use in a warming world
    News & Views 13 OCT 21

    Jobs

    Assistant Professor in Theoretical Neuroscience

    Princeton University
    Princeton, United States

    Assistant, Associate, or Full Professor (Tenure Track Investigator)

    Feinberg School of Medicine, NU
    Chicago, IL, United States

    Assistant Professor in Human Cognitive Neuroscience

    Princeton University
    Princeton, NJ, United States

    Postdoctoral positions in functional and structural studies of ion channels

    Georgetown University Medical Center (GUMC)
    Washington, DC, United States More

  • in

    The largest hoplophonine and a complex new hypothesis of nimravid evolution

    1.Wang, X., White, S. C. & Guan, J. A new genus and species of sabertooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids. J. Syst. Palaeontol. 18, 783–803 (2020).Article 

    Google Scholar 
    2.Barrett, P. Z., Hopkins, S. S. B. & Price, S. A. How many sabertooths? Reevaluating the number of carnivoran sabertooth lineages with total-evidence Bayesian techniques and a novel origin of the Miocene Nimravidae. J. Vertebr. Paleontol. 41, e1923523 (2021).Article 

    Google Scholar 
    3.Robles, J. M. et al. New craniodental remains of the barbourofelid Albanosmilus jourdani (Filhol, 1883) from the Miocene of the Valles-Penedes Basin (NE Iberian Peninsula) and the phylogeny of the Barbourofelini. J. Syst. Palaeontol. 11, 993–1022 (2013).Article 

    Google Scholar 
    4.Bryant, H. N. Nimravidae. In The terrestrial Eocene-Oligocene Transition in North America (eds. Prothero, D. R. & Emry, R. J.) 453–475 (Cambridge University Press, 1996).5.Peigné, S. Systematic review of European Nimravinae (Mammalia, Carnivora, Nimravidae) and the phylogenetic relationships of Palaeogene Nimravidae. Zool. Scr. 32, 199–229 (2003).Article 

    Google Scholar 
    6.Barrett, P. Z. Taxonomic and systematic revisions to the North American Nimravidae (Mammalia, Carnivora). PeerJ 4, e1658 (2016).Article 

    Google Scholar 
    7.Morlo, M., Peigné, S. & Nagel, D. A new species of Prosansanosmilus: Implications for the systematic relationships of the family Barbourofelidae new rank (Carnivora, Mammalia). Zool. J. Linn. Soc. 140, 43–61 (2004).Article 

    Google Scholar 
    8.Geraads, D. & Güleç, E. Relationships of Barbourofelis piveteaui (Ozansoy, 1965), a late miocene nimravid (Carnivora, Mammalia) from Central Turkey. J. Vertebr. Paleontol. 17, 370–375 (1997).Article 

    Google Scholar 
    9.Janis, C. M., Figueirido, B., Desantis, L. & Lautenschlager, S. An eye for a tooth: Thylacosmilus was not a marsupial ‘saber-tooth predator’. PeerJ 8, e9346 (2020).Article 

    Google Scholar 
    10.Slater, G. J. & Van Valkenburgh, B. Long in the tooth: Evolution of sabertooth cat cranial shape. Paleobiology 34, 403–419 (2008).Article 

    Google Scholar 
    11.Wallace, S. C. & Hulbert, R. C. A new machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with comments on the origin of the Smilodontini (Mammalia, Carnivora, Felidae). PLoS One 8, e56173 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Melchionna, M. et al. A method for mapping morphological convergence on three-dimensional digital models: the case of the mammalian sabre-tooth. Palaeontology 64, 573–584 (2021).Article 

    Google Scholar 
    13.Bowdich, T. E. An Analysis of the Natural Classifications of Mammalia, for the Use of Students and Travellers. (Smith, 1821).14.Cope, E. D. On the extinct cats of America. Am. Nat. 14, 833–858 (1880).Article 

    Google Scholar 
    15.Gervais, P. Zoologie et paléontologie générales. Nouvelles recherches sur les animaux vertébrés vivants et fossiles. 2. série. (A. Bertrand, 1876).16.Morea, F. M. On the Species of Hoplophoneus and Eusmilus (Carnivora, Felidae). Department of Geology (South Dakota School of Mines and Technology, 1975).17.Bryant, H. N. Delayed eruption of the deciduous upper canine in the sabertoothed carnivore Barbourofelis lovei (Carnivora, Nimravidae). J. Vertebr. Paleontol. 8, 298–306 (1988).Article 

    Google Scholar 
    18Radinsky, L. B. Evolution of skull shape in carnivores. 3. The origin and early radiation of the modern carnivore families. Paleobiology 8, 177–195 (1982).Article 

    Google Scholar 
    19.Jepsen, G. L. American eusmiloid sabre-tooth cats of the Oligocene epoch. Proc. Am. Philos. Soc. 72, 355–369 (1933).
    Google Scholar 
    20.Antón, M. Sabertooth. (Indiana University Press, 2013).21.Bryant, H. N. & Russell, A. P. Carnassial functioning in nimravid and felid sabertooths: Theoretical basis and robustness of inferences. In Functional Morphology in Vertebrate Paleontology (ed. Thomason, J.) 116–135 (Cambridge University Press, 1995).22.Van Valkenburgh, B. Skeletal and dental predictors of body mass in carnivores. In Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds. Damuth, J. & MacFadden, B. J.) 181–205 (Cambridge University Press, 1990). https://doi.org/10.1017/CBO9781107415324.004.23.Martin, L. D. Functional morphology and the evolution of cats. Trans. Nebraska Acad. Sci. 8, 141–154 (1980).
    Google Scholar 
    24.Morlo, M. New remains of Barbourofelidae (Mammalia, Carnivora) from the Miocene of Southern Germany: Implications for the history of barbourofelid migrations. Beitr. Paläontol. 30, 339–349 (2006).
    Google Scholar 
    25.Kingdon, J. The Kingdon Field Guide to African mammals 2nd edn. (Princeton University Press, 2015).
    Google Scholar 
    26.Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, 0363–0368 (2007).CAS 

    Google Scholar 
    28.Prothero, D. R. & Emry, R. J. The Chadronian, Orellan, and Whitneyan North American land mammal ages. In Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology (ed. Woodburne, M. O.) 156–168 (Columbia University Press, 2004).29.Boardman, G. S. Paleoecology of Nebraska’s Ungulates During the Eocene-Oligocene Climate Transition. Dissertations & Theses in Earth and Atmospheric Sciences (University of Nebraska-Lincoln, 2013).30.Christiansen, P. Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29, 543–559 (2013).Article 

    Google Scholar 
    31.Morales, J., Pickford, M., Salesa, M. & Soria, D. The systematic status of Kelba, Savage, 1965, Kenyalutra, Schmidt-Kittler, 1987 and Ndamathaia, Jacobs et al., 1987, (Viverridae, Mammalia) and a review of Early Miocene mongoose-like carnivores of Africa. Ann. Paléontol. 86, 243–251 (2000).Article 

    Google Scholar 
    32.Borths, M. R., Holroyd, P. A. & Seiffert, E. R. Hyainailourine and teratodontine cranial material from the late Eocene of Egypt and the application of parsimony and Bayesian methods to the phylogeny and biogeography of Hyaenodonta (Placentalia, Mammalia). PeerJ 4, e2639 (2016).Article 

    Google Scholar 
    33.Borths, M. R. & Stevens, N. J. Simbakubwa kutokaafrika, gen. et sp. Nov. (Hyainailourinae, Hyaenodonta, ‘Creodonta’, Mammalia), a gigantic carnivore from the earliest Miocene of Kenya. J. Vertebr. Paleontol. 39, 1–20 (2019).Article 

    Google Scholar 
    34.Tseng, Z. J., Takeuchi, G. T. & Wang, X. Discovery of the upper dentition of Barbourofelis whitfordi (Nimravidae, Carnivora) and an evaluation of the genus in California. J. Vertebr. Paleontol. 30, 244–254 (2010).Article 

    Google Scholar 
    35.Piras, P. et al. Evolution of the sabertooth mandible: A deadly ecomorphological specialization. Palaeogeogr. Palaeoclimatol. Palaeoecol. 496, 166–174 (2018).Article 

    Google Scholar 
    36.Tedford, R. H. et al. Mammalian biochronology of the Arikareean through Hempillian interval (late Oligocene through Early Pliocene epochs). In Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and geochronology (ed. Woodburne, M. O.) 169–231 (Columbia University Press, 2004).37Bouckaert, R. et al. BEAST2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).Article 

    Google Scholar 
    38.Fan, Y., Wu, R., Chen, M. H., Kuo, L. & Lewis, P. O. Choosing among partition models in Bayesian phylogenetics. Mol. Biol. Evol. 28, 523–532 (2011).CAS 
    Article 

    Google Scholar 
    39Antón, M. et al. Implications of the mastoid anatomy of larger extant felids for the evolution and predatory behaviour of sabertoothed cats (Mammalia, Carnivora, Felidae). Zool. J. Linn. Soc. 140, 207–221 (2004).Article 

    Google Scholar 
    40Meachen-Samuels, J. A. & Van Valkenburgh, B. Radiographs reveal exceptional forelimb strength in the sabertooth cat, Smilodon fatalis. PLoS One 5, e11412 (2010).ADS 
    Article 

    Google Scholar 
    41.Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: From development to deep time. Philos. Trans. R. Soc. B 369, 20130254 (2014).CAS 
    Article 

    Google Scholar 
    42.Stadler, T. Sampling-through-time in birth-death trees. J. Theor. Biol. 267, 396–404 (2010).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    43.Didiera, G., Royer-Carenzib, M. & Laurinc, M. The reconstructed evolutionary process with the fossil record. J. Theor. Biol. 315, 26–37 (2012).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    44.Stadler, T., Künert, D., Bonhoeffer, S. & Drummond, A. J. Birth-death skyline plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV). Proc. Natl. Acad. Sci. U. S. A. 110, 228–233 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).Article 

    Google Scholar 
    46.Wozencraft, W. C. Order Carnivora. In Mammal Species of the World. A Taxonomic and Geographic Reference (eds. Wilson, D. E. & Reeder, D. M.) 532–628 (Johns Hopkins University Press, 2005).47.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901–904(2018).CAS 
    Article 

    Google Scholar 
    48.Morales, J. & Pickford, M. A new barbourofelid mandible (Carnivora, Mammalia) from the Early Miocene of Grillental-6, Sperrgebiet, Namibia. Commun. Geol. Surv. Namibia 18, 113–123 (2018).
    Google Scholar 
    49.Meade, A. & Pagel, M. BayesTraits V3.0.2. (2019). http://www.evolution.rdg.ac.uk/BayesTraitsV3.0.2/BayesTraitsV3.0.2.html. Accessed 9 February 2021.50.Paterson, R. S., Rybczynski, N., Kohno, N. & Maddin, H. C. A total evidence phylogenetic analysis of pinniped phylogeny and the possibility of parallel evolution within a monophyletic framework. Front. Ecol. Evol. 7, 1–16 (2020).Article 

    Google Scholar 
    51Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).Article 

    Google Scholar 
    52.Griffin, R. H. btw: Run BayesTraitsV3 from R. R package version 2.0. http://www.randigriffin.com/projects/btw.html (2018). Accessed 9 February 2021.53.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).Article 

    Google Scholar  More

  • in

    Juvenile hormone analog enhances Zika virus infection in Aedes aegypti

    1.Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Liu, N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Roush, R. T. Occurrence, genetics and management of insecticide resistance. Parasitol. Today 9, 174–179 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Sternberg, E. D. & Thomas, M. B. Insights from agriculture for the management of insecticide resistance in disease vectors. Evol. Appl. 11, 404–414 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Raymond, M., Berticat, C., Weill, M., Pasteur, N. & Chevillon, C. Insecticide resistance in the mosquito Culex pipiens: what have we learned about adaptation? in Microevolution Rate, Pattern, Process 287–296 (Springer, 2001).6.Parker-Crockett, C., Connelly, C. R., Siegfried, B. & Alto, B. W. Influence of pyrethroid resistance on vector competency for Zika virus by Aedes aegypti (Diptera: Culicidae). J. Med. Entomol. 2, 19 (2021).
    Google Scholar 
    7.Muturi, E. J., Kim, C., Alto, B. W., Berenbaum, M. R. & Schuler, M. A. Larval environmental stress alters Aedes aegypti competence for Sindbis virus. Trop. Med. Int. Heal. 16, 955–964 (2011).CAS 
    Article 

    Google Scholar 
    8.James, R. R. & Xu, J. Mechanisms by which pesticides affect insect immunity. J. Invertebr. Pathol. 109, 175–182 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Hauser, G., Thiévent, K. & Koella, J. C. Consequences of larval competition and exposure to permethrin for the development of the rodent malaria Plasmodium berghei in the mosquito Anopheles gambiae. Parasit. Vectors 13, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    10.Hauser, G. & Koella, J. C. Larval exposure to a pyrethroid insecticide and competition for food modulate the melanisation and antibacterial responses of adult Anopheles gambiae. Sci. Rep. 10, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    11.Devillers, J. Fate and ecotoxicological effects of pyriproxyfen in aquatic ecosystems. Environ. Sci. Pollut. Res. 27, 16052–16068 (2020).CAS 
    Article 

    Google Scholar 
    12.Nijhout, H. F. & Williams, C. M. Control of moulting and metamorphosis in the tobacco hornworm, Manduca sexta (L.): growth of the last-instar larva and the decision to pupate. J. Exp. Biol. 61, 481–491 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Nijhout, H. F. & Wheeler, D. E. Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57, 109–133 (1982).CAS 
    Article 

    Google Scholar 
    14.Ishaaya, I. & Horowitz, A. R. Novel phenoxy juvenile hormone analog (pyriproxyfen) suppresses embryogenesis and adult emergence of sweetpotato whitefly (Homoptera: Aleyrodidae). J. Econ. Entomol. 85, 2113–2117 (1992).CAS 
    Article 

    Google Scholar 
    15.Ali, A., Nayar, J. K. & Xue, R.-D. Comparative toxicity of selected larvicides and insect growth regulators to a Florida laboratory population of Aedes albopictus. J. Am. Mosq. Control Assoc. 11, 72–76 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Maoz, D. et al. Community effectiveness of pyriproxyfen as a dengue vector control method: a systematic review. PLoS Negl. Trop. Dis. 11, e0005651 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Hustedt, J. C., Boyce, R., Bradley, J., Hii, J. & Alexander, N. Use of pyriproxyfen in control of Aedes mosquitoes: a systematic review. PLoS Negl. Trop. Dis. 14, e0008205 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Alomar, A. A., Eastmond, B. H. & Alto, B. W. The effects of exposure to pyriproxyfen and predation on Zika virus infection and transmission in Aedes aegypti. PLoS Negl. Trop. Dis. 14, e0008846 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Alomar, A. A. & Alto, B. W. Mosquito responses to lethal and nonlethal effects of predation and an insect growth regulator. Ecosphere 12, e03452 (2021).Article 

    Google Scholar 
    20.Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. 106, 11530–11534 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLoS Negl. Trop. Dis. 9, e0003406 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Buckner, E. A., Williams, K. F., Marsicano, A. L., Latham, M. D. & Lesser, C. R. Evaluating the vector control potential of the In2Care® mosquito trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee County, Florida. J. Am. Mosq. Control Assoc. 33, 193–199 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Fiaz, M. et al. Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. Peer J. 7, e7489 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Kamal, H. A. & Khater, E. I. M. The biological effects of the insect growth regulators; pyriproxyfen and diflubenzuron on the mosquito Aedes aegypti. J. Egypt Soc. Parasitol. 40, 565–574 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    25.Yadav, K., Dhiman, S., Acharya, B. N., Ghorpade, R. R. & Sukumaran, D. Pyriproxyfen treated surface exposure exhibits reproductive disruption in dengue vector Aedes aegypti. PLoS Negl. Trop. Dis. 13, e0007842 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Moltini-Conclois, I., Stalinski, R., Tetreau, G., Després, L. & Lambrechts, L. Larval exposure to the bacterial insecticide Bti enhances dengue virus susceptibility of adult Aedes aegypti mosquitoes. Insects 9, 193 (2018).PubMed Central 
    Article 

    Google Scholar 
    27.Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Heugens, E. H. W., Hendriks, A. J., Dekker, T., van Straalen, N. M. & Admiraal, W. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit. Rev. Toxicol. 31, 247–284 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Zhu, J. & Noriega, F. G. The role of juvenile hormone in mosquito development and reproduction. Adv. In Insect Phys. 51, 93–113 (2016).Article 

    Google Scholar 
    30.El-Shazly, M. M. & Refaie, B. M. Larvicidal effect of the juvenile hormone mimic pyriproxyfen on Culex pipiens. J. Am. Mosq. Control Assoc. News 18, 321–328 (2002).CAS 

    Google Scholar 
    31.Moura, L., de Nadai, B. L. & Corbi, J. J. What does not kill it does not always make it stronger: High temperatures in pyriproxyfen treatments produce Aedes aegypti adults with reduced longevity and smaller females. J. Asia. Pac. Entomol. 23, 529–535 (2020).Article 

    Google Scholar 
    32.Powell, J. R. & Tabachnick, W. J. History of domestication and spread of Aedes aegypti-a review. Mem. Inst. Oswaldo Cruz 108, 11–17 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Baud, D., Gubler, D. J., Schaub, B., Lanteri, M. C. & Musso, D. An update on Zika virus infection. Lancet 390, 2099–2109 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.He, D., Gao, D., Lou, Y., Zhao, S. & Ruan, S. A comparison study of Zika virus outbreaks in French Polynesia, Colombia and the State of Bahia in Brazil. Sci. Rep. 7, 1–6 (2017).Article 
    CAS 

    Google Scholar 
    35.Winokur, O. C., Main, B. J., Nicholson, J. & Barker, C. M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 14, 150 (2020).Article 
    CAS 

    Google Scholar 
    36.Glushakova, L. G. et al. Optimization of cationic (Q)-paper for detection of arboviruses in infected mosquitoes. J. Virol. Methods 261, 71–79 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Burkett-Cadena, N. D. et al. Evaluation of the honey-card technique for detection of transmission of arboviruses in Florida and comparison with sentinel chicken seroconversion. J. Med. Entomol. 53, 1449–1457 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Alto, B. W. et al. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl. Trop. Dis. 11, e0005724 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bustin, S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25, 169–193 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Nasci, R. S. The size of emerging and host-seeking Aedes aegypti and the relation of size to blood-feeding success in the field. J. Am. Mosq. Control Assoc. 2, 61–62 (1986).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Van Handel, E. & Day, J. F. Correlation between wing length and protein content of mosquitoes. J. Am. Mosq. Control Assoc. 5, 180–182 (1989).PubMed 
    PubMed Central 

    Google Scholar 
    42.Grill, C. P. & Juliano, S. A. Predicting species interactions based on behaviour: predation and competition in container-dwelling mosquitoes. J. Anim. Ecol. 6, 63–76 (1996).Article 

    Google Scholar 
    43.Chandrasegaran, K. & Juliano, S. A. How do trait-mediated non-lethal effects of predation affect population-level performance of mosquitoes?. Front. Ecol. Evol. 7, 25 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Knecht, H., Richards, S. L., Balanay, J. A. G. & White, A. V. Impact of mosquito age and insecticide exposure on susceptibility of Aedes albopictus (Diptera: Culicidae) to Infection with Zika Virus. Pathogens 7, 67 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    45.Öhlund, P., Lundén, H. & Blomström, A. L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 55, 127–137 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Antonio, G. E., Sanchez, D., Williams, T. & Marina, C. F. Paradoxical effects of sublethal exposure to the naturally derived insecticide spinosad in the dengue vector mosquito, Aedes aegypti. Pest Manag. Sci. Former. Pestic. Sci. 65, 323–326 (2009).CAS 
    Article 

    Google Scholar 
    47.Muturi, E. J. & Alto, B. W. Larval environmental temperature and insecticide exposure alter Aedes aegypti competence for arboviruses. Vector-Borne Zoonotic Dis. 11, 1157–1163 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Alto, B. W. & Lord, C. C. Transstadial effects of Bti on traits of Aedes aegypti and infection with dengue virus. PLoS Negl. Trop. Dis. 10, e0004370 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Jirakanjanakit, N. et al. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop. Med. Int. Heal. 12, 1354–1360 (2007).CAS 
    Article 

    Google Scholar 
    50.Polson, K. A., Brogdon, W. G., Rawlins, S. C. & Chadee, D. D. Impact of environmental temperatures on resistance to organophosphate insecticides in Aedes aegypti from Trinidad. Rev. Panam. Salud Pública 32, 1–8 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Glunt, K. D., Oliver, S. V., Hunt, R. H. & Paaijmans, K. P. The impact of temperature on insecticide toxicity against the malaria vectors Anopheles arabiensis and Anopheles funestus. Malar. J. 17, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    52.Benelli, G., Wilke, A. B. B., Bloomquist, J. R., Desneux, N. & Beier, J. C. Overexposing mosquitoes to insecticides under global warming: a public health concern?. Sci. Total Environ. 762, 143069 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Alto, B. W. & Bettinardi, D. Temperature and dengue virus infection in mosquitoes: independent effects on the immature and adult stages. Am. J. Trop. Med. Hyg. 88, 497–505 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Mourya, D. T., Yadav, P. & Mishra, A. C. Effect of temperature stress on immature stages and susceptibility of Aedes aegypti mosquitoes to chikungunya virus. Am. J. Trop. Med. Hyg. 70, 346–350 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Adelman, Z. N. et al. Cooler temperatures destabilize RNA interference and increase susceptibility of disease vector mosquitoes to viral infection. PLoS Negl Trop Dis 7, e2239 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Hardy, J. L., Meyer, R. P., Presser, S. B. & Milby, M. M. Temporal variations in the susceptibility of a semi-isolated population of Culex tarsalis to peroral infection with western equine encephalomyelitis and St. Louis encephalitis viruses. Am. J. Trop. Med. Hyg. 42, 500–511 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kay, B. H., Fanning, I. A. N. D. & Mottram, P. Rearing temperature influences flavivirus vector competence of mosquitoes. Med. Vet. Entomol. 3, 415–422 (1989).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Westbrook, C. J., Reiskind, M. H., Pesko, K. N., Greene, K. E. & Lounibos, L. P. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to chikungunya virus. Vector-Borne Zoonotic Dis. 10, 241–247 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Gotelli, N. J. A Primer of Ecology (Sinauer Associate. Inc., 2001).
    Google Scholar  More

  • in

    Multi-trophic markers illuminate the understanding of the functioning of a remote, low coral cover Marquesan coral reef food web

    1.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).Article 

    Google Scholar 
    2.Briand, M. J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. Major sources of organic matter in a complex coral reef lagoon: Identification from isotopic signatures (δ13C and δ15N). PLoS ONE 10, e0131555. https://doi.org/10.1371/journal.pone.0131555 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Fey, P. et al. Sources of organic matter in an atypical phytoplankton rich coral ecosystem, Marquesas Islands: composition and properties. Mar. Biol. 167, 92. https://doi.org/10.1007/s00227-020-03703-z (2020).CAS 
    Article 

    Google Scholar 
    4.Briand, M. J., Bonnet, X., Guillou, G. & Letourneur, Y. Complex food webs in highly diversified coral reefs: insights from δ13C and δ15N stable isotopes. Food Webs 8, 12–22. https://doi.org/10.1016/j.fooweb.2016.07.002 (2016).Article 

    Google Scholar 
    5.Bierwagen, S. L., Heupel, M. R., Chin, A. & Simpfendorfer, C. A. Trophodynamics as a tool for understanding coral reef ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00024 (2018).Article 

    Google Scholar 
    6.Halpern, B. S. et al. A Global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496. https://doi.org/10.1038/s41586-018-0041-2 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Wyatt, A. S. J., Waite, A. M. & Humphries, S. Stable isotope analysis reveals community-level variation in fish trophodynamics across a fringing coral reef. Coral Reefs 31, 1029–1044 (2012).ADS 
    Article 

    Google Scholar 
    10.Letourneur, Y. et al. Identifying carbon sources and trophic position of coral reef fishes using diet and stable isotope (δ15N and δ13C) analyses in two contrasted bays in Moorea, French Polynesia. Coral Reefs 32, 1091–1102. https://doi.org/10.1007/s00338-013-1073-6 (2013).ADS 
    Article 

    Google Scholar 
    11.Zhu, Y., Newman, S. P., Reid, W. D. K. & Polunin, N. V. C. Fish stable isotope community structure of a Bahamian coral reef. Mar. Biol. 166, 160. https://doi.org/10.1007/s00227-019-3599-9 (2019).Article 

    Google Scholar 
    12.McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    13.Skinner, C. et al. Offshore pelagic subsidies dominate carbon inputs to coral reef predators. Sci. Adv. https://doi.org/10.1126/sciadv.abf3792 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Mann, K. H. Production and use of detritus in various freshwater, estuarine and coastal marine ecosystems. Limnol. Oceanogr. 33, 910–930 (1988).ADS 
    CAS 

    Google Scholar 
    15.Antonio, B., Maria Teresa, A.-O. & Manuel, V. Phytoplankton and macrophyte contributions to littoral food webs in the Galician upwelling estimated from stable isotopes. Mar. Ecol. Prog. Ser. 318, 89–102 (2006).Article 

    Google Scholar 
    16.Gazeau, F., Smith, S. V., Gentili, B., Frankignoulle, M. & Gattuso, J.-P. The European coastal zone: characterization and first assessment of ecosystem metabolism. Est. Coast. Shelf Sci. 60, 673–694. https://doi.org/10.1016/j.ecss.2004.03.007 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    18.Hamner, W. M., Colin, P. L. & Hamner, P. P. Export-import dynamics of zooplankton on a coral reef in Palau. Mar. Ecol. Prog. Ser. 334, 83–92 (2007).ADS 
    Article 

    Google Scholar 
    19.Carassou, L., Kulbicki, M., Nicola, T. J. R. & Polunin, N. V. C. Assessment of fish trophic status and relationships by stable isotope data in the coral reef lagoon of New Caledonia, southwest Pacific. Aquat. Living Resour. 21, 1–12 (2008).Article 

    Google Scholar 
    20.Frédérich, B., Fabri, G., Lepoint, G., Vandewalle, P. & Parmentier, E. Trophic niches of thirteen damselfishes (Pomacentridae) at the Grand Récif of Toliara, Madagascar. Ichthyol. Res. 56, 10–17. https://doi.org/10.1007/s10228-008-0053-2 (2009).Article 

    Google Scholar 
    21.Riera, P. & Richard, P. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar. Coast. Shelf Sci. 42, 347–360 (1996).ADS 
    Article 

    Google Scholar 
    22.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Fresh. Wat. Res. 50, 839–866 (1999).
    Google Scholar 
    23.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Roff, G. et al. Porites and the Phoenix effect: unprecedented recovery after a mass coral bleaching event at Rangiroa Atoll, French Polynesia. Mar. Biol. 161, 1385–1393. https://doi.org/10.1007/s00227-014-2426-6 (2014).Article 

    Google Scholar 
    26.Hoey, A. et al. Recent advances in understanding the effects of climate change on coral reefs. Diversity 8, 12 (2016).Article 

    Google Scholar 
    27.Cabioch, G. et al. Successive reef depositional events along the Marquesas foreslopes (French Polynesia) since 26 ka. Mar. Geol. 254, 18–34. https://doi.org/10.1016/j.margeo.2008.04.014 (2008).ADS 
    Article 

    Google Scholar 
    28.Galzin, R., Duron, S. D. & Meyer, J. Y. Biodiversité terrestre et marine des îles Marquises, Polynésie française. (Société française d’Ichtyologie, 2016).29.SO CORAIL. Site d’observation CORAIL, https://sextant.ifremer.fr/record/le51de1b-7979-4487-b5d5-329394d166da (2018).30.Martinez, E., M., R. & Maamaatuaiahutapu, K. in Biodiversité terrestre et marine des îles Marquises, Polynésie française (eds Galzin R., Duron S.-D., & Meyer J.-Y) 123–136 (Société Française d’Ichtyologie, 2016).31.Houk, P. & Musburger, C. Trophic interactions and ecological stability across coral reefs in the Marshall Islands. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).ADS 
    Article 

    Google Scholar 
    32.Raapoto, H., Martinez, E., Petrenko, A., Doglioli, A. M. & Maes, C. Modeling the Wake of the Marquesas Archipelago. J. Geophys. Res. Oceans 123, 1213–1228. https://doi.org/10.1002/2017jc013285 (2018).ADS 
    Article 

    Google Scholar 
    33.Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 8 (2001).
    Google Scholar 
    34.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    35.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2012).Article 
    PubMed 

    Google Scholar 
    36.Pinnegar, J. & Polunin, N. V. C. Differential fractionation of d13C and d15N among fish tissues: implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).Article 

    Google Scholar 
    37.De Niro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 42, 495–506 (1978).ADS 
    Article 

    Google Scholar 
    38.Hannides, C. C. S., Popp, B. N., Landry, M. R. & Graham, B. S. Quantification of zooplankton trophic position in the North Pacific Subtropical Gyre using stable nitrogen isotopes. Limnol. Oceanogr. 54, 50–61. https://doi.org/10.4319/lo.2009.54.1.0050 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Hannides, C. C. S., Popp, B. N., Choy, C. A. & Drazen, J. C. Midwater zooplankton and suspended particle dynamics in the North Pacific Subtropical Gyre: a stable isotope perspective. Limnol. Oceanogr. 58, 1931–1946. https://doi.org/10.4319/lo.2013.58.6.1931 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–710 (2002).Article 

    Google Scholar 
    41.Meziane, T. et al. Inter-specific and geographical variations in the fatty acid composition of mangrove leaves: implications for using fatty acids as a taxonomic tool and tracers of organic matter. Mar. Biol. 150, 1103–1113. https://doi.org/10.1007/s00227-006-0424-z (2007).CAS 
    Article 

    Google Scholar 
    42.Parrish, C. C. et al. in Marine Chemistry (ed P. J. Wangersky) 193–223 (Springer Berlin Heidelberg, 2000).43.Alfaro, A. C., Thomas, F., Sergent, L. & Duxbury, M. Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Est. Coast. Shelf Sci. 70, 271–286. https://doi.org/10.1016/j.ecss.2006.06.017 (2006).ADS 
    Article 

    Google Scholar 
    44.Meyers, P. A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Org. Geochem. 27, 213–250. https://doi.org/10.1016/S0146-6380(97)00049-1 (1997).CAS 
    Article 

    Google Scholar 
    45.Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. in Advances in Marine Biology Vol. 46 225–340 (Academic Press, 2003).46.Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I. & Garland, C. D. Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128, 219–240. https://doi.org/10.1016/0022-0981(89)90029-4 (1989).CAS 
    Article 

    Google Scholar 
    47.Volkman, J. K., Johns, R. B., Gillan, F. T., Perry, G. J. & Bavor, H. J. Microbial lipids of an intertidal sediment—I. Fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 44, 1133–1143. https://doi.org/10.1016/0016-7037(80)90067-8 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Lee, R. F., Hirota, J. & Barnett, A. M. Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Res. A 18, 1147. https://doi.org/10.1016/0011-7471(71)90023-4 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Wakeham, S. G., Hedges, J. I., Lee, C., Peterson, M. L. & Hernes, P. J. Compositions and transport of lipid biomarkers through the water column and surficial sediments of the equatorial Pacific Ocean. Deep Sea Res. Part II 44, 2131–2162. https://doi.org/10.1016/S0967-0645(97)00035-0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Budge, S. M. & Parrish, C. C. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity Bay, Newfoundland. II. Fatty acids. Organic Geochem. 29, 1547–1559. https://doi.org/10.1016/S0146-6380(98)00177-6 (1998).CAS 
    Article 

    Google Scholar 
    51.Meziane, T., Agata, D. F. & Lee, S. Y. Fate of mangrove organic matter along a subtropical estuary: small-scale exportation and contribution to the food of crab communities. Mar. Ecol. Prog. Ser. 312, 15–27 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    Article 

    Google Scholar 
    53.Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672. https://doi.org/10.1371/journal.pone.0009672 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.R Core Team. (R Foundation for Statistical Computing, Vienna, Austria, 2018).55.du Percie, S. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 

    Google Scholar 
    56.Page, H. M. et al. Stable isotopes reveal trophic relationships and diet of consumers in temperate kelp forest and coral reef ecosystems. Oceanography 26, 180–189 (2013).Article 

    Google Scholar 
    57.Morillo-Velarde, P. S. et al. Habitat degradation alters trophic pathways but not food chain length on shallow Caribbean coral reefs. Sci. Rep. 8, 4109. https://doi.org/10.1038/s41598-018-22463-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bellwood, D. R. & Choat, J. H. A functional analysis of grazing in parrotfishes (family Scaridae): The ecological implications. Environ. Biol. Fish. 28, 189–214 (1990).Article 

    Google Scholar 
    59.Choat, J. H., Clements, K. D. & Robbins, W. D. The trophic status of herbivorous fishes on coral reefs. I: Dietary analyses. Mar. Biol. 140, 613–623 (2002).CAS 
    Article 

    Google Scholar 
    60.Dromard, C. R. et al. Resource use of two damselfishes, Stegastes planifrons and Stegastes adustus, on Guadeloupean reefs (Lesser Antilles): Inference from stomach content and stable isotope analysis. J. Exp. Mar. Biol. Ecol. 440, 116–125. https://doi.org/10.1016/j.jembe.2012.12.011 (2013).Article 

    Google Scholar 
    61.Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738. https://doi.org/10.4319/lo.1986.31.4.0717 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327. https://doi.org/10.1007/s00338-020-01964-0 (2020).Article 

    Google Scholar 
    63.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Lin. Soc. 120, 729–751. https://doi.org/10.1111/bij.12914 (2016).Article 

    Google Scholar 
    64.Bradley, C. J., Longenecker, K., Pyle, R. L. & Popp, B. N. Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar. Ecol. Prog. Ser. 558, 65–79 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    65.Raimbault, P., Garcia, N. & Cerutti, F. Distribution of inorganic and organic nutrients in the South Pacific Ocean-evidence for long-term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences 5, 281. https://doi.org/10.5194/bg-5-281-2008 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Savoye, N. et al. Dynamics of particulate organic matter d15N and d13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay of Seine, France). Mar. Ecol. Prog. Ser. 255, 27–41 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    67.Montoya, J. P. & McCarthy, J. J. Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res. 17, 439–464. https://doi.org/10.1093/plankt/17.3.439 (1995).CAS 
    Article 

    Google Scholar 
    68.Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250. https://doi.org/10.1111/ele.12226 (2014).Article 
    PubMed 

    Google Scholar 
    69.Letourneur, Y., Briand, M. J. & Graham, N. A. J. Coral reef degradation alters the isotopic niche of reef fishes. Mar. Biol. 164, 224. https://doi.org/10.1007/s00227-017-3272-0 (2017).CAS 
    Article 

    Google Scholar 
    70.Graham, N. A. J. et al. Extinction vulnerability of coral reef fishes. Ecol. Lett. 14, 341–348 (2011).Article 

    Google Scholar 
    71.Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 25, 1210–1221. https://doi.org/10.1111/ddi.12931 (2019).Article 

    Google Scholar 
    72.Diaz-Pulido, G., Gouezo, M., Tilbrook, B., Dove, S. & Anthony, K. R. N. High CO2 enhances the competitive strength of seaweeds over corals. Ecol. Lett. 14, 156–162. https://doi.org/10.1111/j.1461-0248.2010.01565.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Change Biol. 19, 103–132. https://doi.org/10.1111/j.1365-2486.2012.02791.x (2013).ADS 
    Article 

    Google Scholar 
    74.Ainsworth, T. D. et al. Climate change disables coral bleaching protection on the Great Barrier Reef. Science 352, 338–342. https://doi.org/10.1126/science.aac7125 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Jackson, J. B. C. What is natural in the coastal oceans?. Proc. Natl. Acad. Sci. USA 98, 5411–5418 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: underpinning the health and resilience of Reef ecosystems. Annu. Rev. Microbiol. 70, 317–340. https://doi.org/10.1146/annurev-micro-102215-095440 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521-1527.e1526. https://doi.org/10.1016/j.cub.2019.03.044 (2019).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Optimal virtual water flows for improved food security in water-scarce countries

    Crop production, water productivity, and virtual waterA method to calculate the water needed for crops is the water footprint (WF). The WF has a color-based classification: green water (precipitation), blue water (ground and surface water), and grey water (water to dilute polluted water to accepted water quality standards). A manual on how to calculate WFs has been published12. Calculations of WFs integrate green and blue crop water use (evapotranspiration by crops) over the growing period of specific crops and express results per unit of yield (m3 kg−1). The difference between crop-water use and effective rainfall is applied as a proxy for blue WFs when no data on actual irrigation water supply are available. WFs of specific crops vary greatly among countries, and even within countries45. This means that water can be saved when crops are smartly traded. This may also be possible within a country if crops are grown where water productivity is the highest.Calculation of the water footprintWater footprints (WFs) are calculated as green and blue water footprints (WFgreen, WFblue, respectively) adopting the method from the WF manual12. This study assumes that the difference between crop water requirement and evapotranspiration of green water (ETGreen) in crops is equal to the evapotranspiration of blue water (ETblue); therefore, crop water requirements are met with irrigation water. The crop water requirements are estimated with the Food and Agriculture Organization’s CROPWAT model46. The selected methods for calculating the reference evapotranspiration (ET0) and effective precipitation (Peff) are the FAO Penman–Monteith method47,48 and the USDA’s SCS method48, respectively. Calculations were performed at the provincial scale for each crop. Equations (1) through (4) are applied to calculate WFgreen and WFblue for the crops included in this study:Actual crop evapotranspiration from reference evapotranspiration:$$ ET_{c} = sum_{t} {ET_{0} times K_{c} } $$
    (1)
    Reference evapotranspiration:$$ ET_{0} = frac{{0.408Delta left( {R_{n} – G} right) + gamma frac{900}{{T + 273}}U_{2} left( {e_{a} – e_{d} } right)}}{{Delta + gamma left( {1 + 0.34U_{2} } right)}} $$
    (2)
    $$ WF_{green} = 10 times frac{{min left[ {ET_{c} ,P_{eff} } right]}}{Y} $$
    (3)
    $$ WF_{blue} = 10 times frac{{max left[ {0,ET_{c} – P_{eff} } right]}}{Y} $$
    (4)
    where ETc denotes the actual crop evapotranspiration (mm) during the growth period (t), ET0 represents the reference evapotranspiration (mm day−1), and Kc denotes the crop coefficient based on crop type and development stages (initial, middle, and late stages). In Eq. (2) ea (kPa), ed (kPa), Δ (kPa °C−1), G (MJ m−2 day−1), T (°C), Rn (MJ m−2 day−1), U2 (m s−1), and γ (kPa °C−1) denote the saturation vapor pressure, the actual vapor pressure, the slope of the saturation-vapor pressure curve, the soil heat flux, the average air temperature, the net radiation on the crop surface, the wind speed measured at a height of 2 m above ground level, and the psychrometric constant, respectively. Equations (3) and (4) calculate the green and blue water footprints (m3 ton−1), in which Peff (mm), Y (ton ha−1), and 10, are represent effective precipitation, the crop yield, and a conversion factor from mm to m3 ha−1, respectively. WFgreen and WFblue occur in irrigated cultivation; however, there is only WFgreen in rainfed cultivation.Optimization of crop productionAll the steps of the methods used in this work were coded in MATLAB for use by decision-makers, planners, and interested organizations.Balancing the agricultural systemAn internal trade network was created to organize and remedy the weaknesses of the trade network. The lack of a comprehensive trade network has caused the crops to be exported regardless of the country’s demands, which eventually leads to the import of the same crops. The production and demand amounts of each crop in each province and their WFgreen and WFblue are determined with the following equations applied to N = 51 crops in J = 31 provinces:$$ {CP}_{(i,j)} = {ICP}_{(i,j)} + {RCP}_{(i,j)} $$
    (5)
    $$ {ICP}_{(i,j)} = left( {{BCY}_{(i,j)} times {ICA}_{(i,j)} } right) $$
    (6)
    $$ {RCP}_{(i,j)} = left( {{GCY}_{(i,j)} times {RCA}_{(i,j)} } right) $$
    (7)
    $$ {CD}_{(i,j)} = left( {{PCD}_{i} times {POP}_{J} } right) $$
    (8)
    $$ {TWF}_{blue(i,j)} = {ICP}_{(i,j)} times {WF}_{blue(i,j)} $$
    (9)
    $$ {TWF}_{green(i,j)} = {ICP}_{(i,j)} times {WF}_{green(i,j)} $$
    (10)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) CP(i,j) (ton), ICP(i,j) (ton), RCP(i,j) (ton), BCY(i,j) (ton.ha−1), GCY(i,j) (ton.ha−1), ICA(i,j) (ha), RCA(i,j) (ha), CD(i,j) (ton), PCDi (ton.person−1), POPj (person), TWFblue(i,j) (m3), and TWFgreen(i,j) (m3) denote the production of crop i in province j, crop production of irrigated land, crop production in rainfed cultivation, irrigated crop yield, rainfed crop yield, irrigated acreage, rainfed areas acreage, demand for crop i in province j, per capita diet, population of province j, the blue WF of crop i in province j corresponding to irrigated cultivation, and the green WFs of crop i in province j corresponding to irrigated cultivation, respectively.TWFblue(i,j) equals zero in rainfed cultivation, and TWFgreen(i,j) is calculated with Eq. (10) based on RCP(i,j). The deficit or surplus over the demand of the provinces were determined by comparing CP(i,j) and CD(i,j) for each crop in each province. Equation (11) implies that CS(i,j) is the amount of crop i supplied in province j (ton), which involves the export and import of crops:$$ {CS}_{(i,j)} = {CP}_{(i,j)} – {CD}_{(i,j)} $$
    (11)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J) .The internal trade network is formed once the deficit and surplus for each crop in the provinces is determined, and crops are traded based on the shortest distance between the provinces. The developed trade network would improve the country’s agricultural system and reduce transportation costs between the provinces. Each province adds to or subtracts Ti,j (ton) from its crop amounts, where imports imply an addition and exports a subtraction of crop amounts. The internal exports and imports of WFs and the net water footprints trade (NWFT) in each province are calculated as follows:$$ {WFT}_{(x,r,i)} = T_{(x,r,i)} times left( {{WF}_{green} + {WF}_{blue} } right)_{(x,i)} $$
    (12)
    $$EW{F}_{(x)}={sum }_{r,i}WF{T}_{(x,r,i)}$$
    (13)
    $$ IWF_{(r)} = sumlimits_{x,i} {WFT_{(x,r,i)} } $$
    (14)
    $$ {NWFT}_{(j)} = IWF_{(j)} – EWF_{(j)} $$
    (15)
    where (i=1, 2,ldots , N;j, x=1, 2, ldots, J, r=x-1), WFT(x,r,i) (m3), T(x,r,i) (ton), (WFgreen + WFblue)(x,i) (m3 ton−1), EWF(x) (m3), IWF(r) (m3), and NWFT(j) (m3) denote the WFs traded for crop i from exporting province x to importing province r, the amount of crop i exported from province x to province r, the blue and green WFs related to crop i in exporting province x, the WFs exported from province x by the trade of crops, the WFs imported into province r by the trade of crops, and the net water footprints trade in province j, respectively.The positive and negative values ​​of NWFT(j) represent the import and export of WFs to province j, respectively. The calculation of the internal trade between provinces with Eq. (11) permits determining the deficits and surpluses for each crop in the provinces nationally. At this juncture the provinces may resort to international trade to cope with deficits and surpluses. However, from this work’s premise of improving food security and self-sufficiency the cropping patterns of surplus crops in the provinces are modified as described in the next section.Modifying exports to optimize the cropping patternThe multi-objective optimization approach to increase food security and self-sufficiency redirects the resources to be used to cultivate export crops to the cultivation of crops that are in deficit (i.e., whose production is less than demand). This modification of cropping patterns in the provinces is based on their traditional cropping patterns. For this purpose, the internal trade network is linked to the optimization method to manage cropping patterns of the regions based on the output of the trade network, and on the goals of achieving food security and preventing water crisis. These two goals are pertinent in many countries where water scarcity is a limiting factor to achieve food security49. Therefore, concerning available agricultural water it is imperative to pay attention to the type of water (green or blue) used. Specifically, WFblue can be used in several areas of consumption; however, WFgreen is not controllable in the same manner. The usage of WFgreen by crops depends on the growing season, and the maximum use can be achieved by choosing the optimal crops. Therefore, this work treats WFgreen and WFblue as indicators of water crisis and food security, which were chosen as objective functions. In other words, controlling and managing WFs prevent its waste (thus reducing the water deficit and crisis). Selecting optimal crops based on WFs will increase production and food security. The water crisis and food security serve as the benchmark for comparison between the reference situation (without optimization) and the results of this new method. The reference situation refers to the initial state of food security and water crisis, which occurs before optimizing the cropping patterns.The food-security objective function is expressed as follows:$$F{S}_{i}=frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}}$$
    (16)
    The water-crisis objective function is written as follows:$${WC}_{j}=frac{sum_{i=1}^{N}{TWF}_{blue(i,j)}}{{RWR}_{j}}$$
    (17)
    where (i=1, 2,ldots, N=51;j=1, 2, ldots, J=31,) FSi, CP(i,j) (ton), CD(i,j) (ton), WCj, TWFblue(i,j) (m3), and RWRj (m3) denote the food security for crop i, production of crop i in province j, the demand of crop i in province j, the water crisis in province j, the blue WFs of crop i in province j, and the renewable water resources in province j, respectively.Maximizing the FS index and minimizing the WC index represent the ideal situation. The maximizing function was converted to a minimization function for the purpose of multiobjective optimization. The final form of the objective functions i given by the following equations:$$Min({Z}_{1})=frac{1}{N}{sum }_{i=1}^{N}(1-F{S}_{i})begin{array}{cc},& where,, F{S}_{i}end{array}=Minleft(frac{{sum }_{j=1}^{J}C{P}_{(i,j)}}{{sum }_{j=1}^{J}C{D}_{(i,j)}},1right)$$
    (18)
    $$Min({Z}_{2})=frac{1}{J}{sum }_{j=1}^{J}W{C}_{j}$$
    (19)
    where (i=1, 2,ldots , N=51;j=1, 2, ldots, J=31.) The objective function Z1 is calculated based on the food security index expressed as an average for all crops, and the objective function Z2 is calculated as the average of the water crisis indexes in the 31 provinces. Both objective functions are affected by cropping patterns and cultivation areas. The water and land used must be calculated prior to modifying the cropping patterns. The amounts of surplus crops in the provinces and their equivalent water and land are calculated using the following equations:$$ {SCP}_{(i,j)} = Max({CP}_{(i,j)} – {CD}_{(i,j)} + T_{(i,j)} ,0) $$
    (20)
    $$ {BCY}_{(i,j)} times (X_{1(i,j)} times ICA_{(i,j)} ) + {GCY}_{(i,j)} times (X_{2(i,j)} times RCA_{(i,j)} ) = {SCP}_{(i,j)} $$
    (21)
    where (i=1, 2,ldots, N;j=1, 2, ldots, J,) SCP(i,j), (X_{1(i,j)}), (X_{2(i,j)}) denote the surplus crop i in province j (ton) determined based on demand and trade in the province, and the percentage of crop i in province j that must be removed from irrigated and rainfed cultivation, respectively. The amount of water and land available for new cultivation are calculated as follows:$$ ICA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{1(i,j)} times ICA_{(i,j)} } $$
    (22)
    $$ RCA_{j}^{free} = sumlimits_{i = 1}^{51} {X_{2(i,j)} times RCA_{(i,j)} } $$
    (23)
    $$ TWF_{blue,j}^{free} = sumlimits_{i = 1}^{51} {{WF}_{blue(i,j)} times BCY_{(i,j)} } times ICA_{j}^{free} $$
    (24)
    where (i=1, 2,ldots , N;j=1, 2, ldots, J,) ICAjfree and RCAjfree denote the total available area of ​​irrigated and rainfed cultivation (ha) in province j, respectively, and TWFblue,jfree represents the total amount of blue WFs available in province j (m3). It is noteworthy that the water and land available in irrigated cultivation can be altered. On the other hand, only the available land is controllable under rainfed cultivation.The objective functions of the proposed method [Eqs. (18) and (19)] were subjected to a set of constraints introduced next.

    (i)

    Modification of the cropping patterns

    The available land in each province is allocated to crops that feature a deficit in the country and are part of the traditional cropping patterns of the provinces. The set of cultivable crops is determined using the following equation:$$ P = left{ {pleft| {p in i,sum_{j = 1}^{31} {SCP_{(p,j)} < 0} } right.} right} $$ (25) where p denotes the set of crops with deficit conditions in the country and SCP(i,j) was defined above. Letting traditional irrigated and rainfed cropping patterns be denoted by Aj and Bj in province j, respectively, the set of irrigated and rainfed crops cultivable in province j was calculated as follows:$$ IC_{j} = P cap A_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (26) $$ RC_{j} = P cap B_{j} begin{array}{*{20}c} {} & {(j = 1,2,3,ldots,31)} \ end{array} $$ (27) where (j=1, 2, ldots, J), ICj and RCj denote the irrigated and rainfed crops cultivable in province j, respectively. (ii) Constraint on cultivation area A fraction of ICAjfree can be used in irrigated lands:$$ 0 le M times sumlimits_{i = 1}^{51} {{(X}_{1(i,j)} times ICA_{(i,j)} ) le ICA_{j}^{free} } begin{array}{*{20}c} , & {0 le M le 1} & {} \ end{array} $$ (28) where (j=1, 2, ldots, J), and M denotes the fraction of blue water available. (iii) Constraint on water use The amount of water used to modify the cropping pattern in the provinces is limited:$$ sumlimits_{i = 1}^{51} {TWF_{blue(i,j)}^{m} le RWR_{j} - sumlimits_{i = 1}^{51} {TWF_{blue(i,j)} + } } TWF_{blue,j}^{free} $$ (29) where (left(j=1,2,3,ldots,Jright),) TWFmblue(i,j) denotes the blue WFs used to modify the cultivation in province j, and TWFblue(i,j) represents the initial blue WFs consumed in province j to cultivate crops before changing the cropping pattern.Ideal solution and pareto optimalityThis work applied the multi-objective optimization Non-dominated Sorting Genetic Algorithm-II (NSGA-II). The NSGA is based on the Genetic Evolutionary Algorithm and the Selection, Crossover, and Mutation operations50. The NSGA was introduced by Deb et al.51,Srinivas and Deb52, then improved to the NSGA-II51. The NSGA-II has been widely studied in water resources management53,54,55.The NSGA-II produces a Pareto front of solutions, in which, each point represents a management scenario. The decision-maker selects a scenario based on the objective functions and situational analysis. Multi-criteria decision-making methods (MCDM) can be applied to select an efficient point on the Pareto front curve56,57. This work implements the technique for order preference by similarity to ideal solution (TOPSIS) as the MCDM employed for that purpose. A description of the TOPSIS method is presented in the appendix.The NSGA-II parameters were determined based on a trial-and-error process. Multiple runs of the algorithm were used to adjust the parameters to reduce uncertainty. For this purpose, the population size and maximum iteration were set equal to 400 and 500, respectively, and the crossover and mutation rates were set equal to 0.8 and 0.1, respectively. The flowchart of the proposed approach is displayed in Fig. 1.Figure 1Flowchart of the methodology.Full size image More

  • in

    Functional composition of ant assemblages in habitat islands is driven by habitat factors and landscape composition

    1.Fletcher, R. J. et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 226, 9–15. https://doi.org/10.1016/j.biocon.2018.07.022 (2018).Article 

    Google Scholar 
    2.Feranec, J. et al. (eds) European Landscape Dynamics: CORINE Land Cover Data (CRC Press, 2016).
    Google Scholar 
    3.Deák, B. et al. Fragmented dry grasslands preserve unique components of species and phylogenetic diversity in agricultural landscapes. Biodivers. Conserv. https://doi.org/10.1007/s10531-020-02066-7 (2020).Article 

    Google Scholar 
    4.Fekete, R. et al. Roadside verges and cemeteries: Comparative analysis of anthropogenic orchid habitats in the Eastern Mediterranean. Ecol. Evol. 9, 6655–6664. https://doi.org/10.1002/ece3.5245 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Batáry, P. et al. Biologia Futura: Landscape perspectives on farmland biodiversity conservation. Biol. Fut. 71, 9–18. https://doi.org/10.1007/s42977-020-00015-7 (2020).Article 

    Google Scholar 
    6.Deák, B. et al. Landscape and habitat filters jointly drive richness and abundance of grassland specialist plants in terrestrial habitat islands. Landsc. Ecol. 33, 1117–1132. https://doi.org/10.1007/s10980-018-0660-x (2018).Article 

    Google Scholar 
    7.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574(7780), 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Vanbergen, A. J. & Initiative, T. I. P. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11(5), 251–259. https://doi.org/10.1890/120126 (2013).Article 

    Google Scholar 
    10.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes: Eight hypotheses. Biol. Rev. 87(3), 661–685. https://doi.org/10.1111/j.1469-185X.2011.00216.x (2012).Article 
    PubMed 

    Google Scholar 
    11.Seastedt, T. R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 29(1), 25–46. https://doi.org/10.1146/annurev.en.29.010184.000325 (1984).Article 

    Google Scholar 
    12.Deák, B. et al. Habitat islands outside nature reserves: Threatened biodiversity hotspots of grassland specialist plant and arthropod species. Biol. Conserv. 241, 108254. https://doi.org/10.1016/j.biocon.2019.108254 (2020).Article 

    Google Scholar 
    13.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31(1), 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).Article 

    Google Scholar 
    14.Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32. https://doi.org/10.1111/j.1523-1739.1991.tb00384.x (1991).Article 

    Google Scholar 
    15.Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends. Ecol. Evol. 24, 564–571. https://doi.org/10.1016/j.tree.2009.04.011 (2009).Article 
    PubMed 

    Google Scholar 
    16.Gazol, A. et al. Landscape and small-scale determinants of grassland species diversity: Direct and indirect influences. Ecography 35, 944–951. https://doi.org/10.1111/j.1600-0587.2012.07627.x (2012).Article 

    Google Scholar 
    17.Deák, B. et al. Linking environmental heterogeneity and plant diversity: The ecological role of small natural features in homogeneous landscapes. Sci. Total Env. 763, 144199. https://doi.org/10.1016/j.scitotenv.2020.144199 (2021).CAS 
    Article 

    Google Scholar 
    18.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052 (2015).Article 

    Google Scholar 
    19.Bolger, D. T., Suarez, A. V., Crooks, K. R., Morrison, S. A. & Case, T. J. Arthropods in urban habitat fragments in southern California: Area, age, and edge effects. Ecol. Appl. 10(4), 1230–1248. https://doi.org/10.1890/1051-0761(2000)010[1230:AIUHFI]2.0.CO;2 (2000).Article 

    Google Scholar 
    20.Bommarco, R., Lindborg, R., Marini, L. & Öckinger, E. Extinction debt for plants and flower-visiting insects in landscapes with contrasting land use history. Divers. Distrib. 20(5), 591–599. https://doi.org/10.1111/ddi.12187 (2014).Article 

    Google Scholar 
    21.Marques, L. Collapse of terrestrial biodiversity. In Capitalism and Environmental Collapse 247–273 (Springer, 2020).Chapter 

    Google Scholar 
    22.Biró, M., Bölöni, J. & Molnár, Z. Use of long-term data to evaluate loss and endangerment status of Natura 2000 habitats and effects of protected areas. Conserv. Biol. 32(3), 660–671. https://doi.org/10.1111/cobi.13038 (2018).Article 
    PubMed 

    Google Scholar 
    23.Dembicz, I. et al. Steppe islands in a sea of fields: Where island biogeography meets the reality of a severely transformed landscape. J. Veg. Sci. https://doi.org/10.1111/jvs.12930 (2020).Article 

    Google Scholar 
    24.Deák, B. et al. Cultural monuments and nature conservation: A review of the role of kurgans in the conservation and restoration of steppe vegetation. Biodivers. Conserv. 25(12), 2473–2490. https://doi.org/10.1007/s10531-016-1081-2 (2016).Article 

    Google Scholar 
    25.Dembicz, I. et al. Isolation and patch size drive specialist plant species density within steppe islands: A case study of kurgans in southern Ukraine. Biodivers. Conserv. 25(12), 2289–2307. https://doi.org/10.1007/s10531-016-1077-y (2016).Article 

    Google Scholar 
    26.Tóth, C. A. et al. Iron age burial mounds as refugia for steppe specialist plants and invertebrates: Case study from the Zsolca mounds (NE Hungary). Hacquetia 18(2), 195–206. https://doi.org/10.2478/hacq-2019-0009 (2019).Article 

    Google Scholar 
    27.Lisetskii, F. N., Goleusov, P. V., Moysiyenko, I. I. & Sudnik-Wójcikowska, B. Microzonal distribution of soils and plants along the catenas of mound structures. Contemp. Probl. Ecol. 7(3), 282–293. https://doi.org/10.1134/S1995425514030111 (2014).Article 

    Google Scholar 
    28.Deák, B. et al. The effects of micro-habitats and grazing intensity on the vegetation of burial mounds in the Kazakh steppes. Plant Ecol. Divers. 10(5–6), 509–520. https://doi.org/10.1080/17550874.2018.1430871 (2017).Article 

    Google Scholar 
    29.Marcolin, F., Lakatos, T., Gallé, R. & Batáry, P. Fragment connectivity shapes bird communities through functional trait filtering in two types of grasslands. Glob. Ecol. Conserv. 28, e01687. https://doi.org/10.1016/j.gecco.2021.e01687 (2021).Article 

    Google Scholar 
    30.Crist, T. O. Biodiversity, species interactions, and functional roles of ants (Hymenoptera: Formicidae) in fragmented landscapes: A review. Myrmecol. News. 12, 3–13 (2009).
    Google Scholar 
    31.Sobrinho, T. G., Schoereder, J. H., Sperber, C. F. & Madureira, M. S. Does fragmentation alter species composition in ant communities (Hymenoptera: Formicidae)?. Sociobiology 42, 329–342 (2003).
    Google Scholar 
    32.Underwood, E. C. & Fisher, B. L. The role of ants in conservation monitoring: If, when, and how. Biol. Conserv. 132(2), 166–182. https://doi.org/10.1016/j.biocon.2006.03.022 (2006).Article 

    Google Scholar 
    33.Hölldobler, B. & Wilson, E. O. The Ants 732 (Belknap of Harvard University Press, 1990).Book 

    Google Scholar 
    34.Konečná, et al. Anthills as habitat islands in a sea of temperate pasture. Biodivers. Conserv. 30, 1–19. https://doi.org/10.1007/s10531-021-02134-6 (2021).Article 

    Google Scholar 
    35.Philpott, S. M., Perfecto, I., Armbrecht, I. & Parr, C. L. Ant diversity and function in disturbed and changing habitats. In Ant Ecology (eds Lach, L. et al.) 37–156 (Oxford University Press, 2010).
    Google Scholar 
    36.Stadler, B. & Dixon, T. Mutualism Ants and Their Insect Partners (Cambridge University Press, 2008).Book 

    Google Scholar 
    37.Frouz, J. & Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 11(11), 191–199 (2008).
    Google Scholar 
    38.Folgarait, P. J. Ant biodiversity and its relationship to ecosystem functioning: A review. Biodivers. Conserv. 7(9), 1221–1244. https://doi.org/10.1023/A:1008891901953 (1998).Article 

    Google Scholar 
    39.Azcárate, F. M., Alameda-Martín, A., Escudero, A. & Sánchez, A. M. Ant communities resist even in small and isolated gypsum habitat remnants in a Mediterranean agroecosystem. Front. Ecol. Evol. 9, 33. https://doi.org/10.3389/fevo.2021.619215 (2021).Article 

    Google Scholar 
    40.Bátori, Z. et al. Karst dolines provide diverse microhabitats for different functional groups in multiple phyla. Sci. Rep. 9(1), 1–13. https://doi.org/10.1038/s41598-019-43603-x (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Hoffmann, B. D. & Andersen, A. N. Responses of ants to disturbance in Australia, with particular reference to functional groups. Austral. Ecol. 28(4), 444–464. https://doi.org/10.1046/j.1442-9993.2003.01301.x (2003).Article 

    Google Scholar 
    42.Csősz, S. et al. The myrmecofauna (Hymenoptera: Formicidae) of Hungary: Survey of ant species with an annotated synonymic inventory. Insects 12(1), 78. https://doi.org/10.3390/insects12010078 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Dröse, W., Podgaiski, L. R., Dias, C. F. & Mendonca, M. D. S. Jr. Local and regional drivers of ant communities in forest-grassland ecotones in South Brazil: A taxonomic and phylogenetic approach. PLoS ONE 14(4), e0215310. https://doi.org/10.1371/journal.pone.0215310 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Bátori, Z. et al. Managing climate change microrefugia for vascular plants in forested karst landscapes. For. Ecol. Manag. 496, 119446. https://doi.org/10.1016/j.foreco.2021.119446 (2021).Article 

    Google Scholar 
    45.Mata, L. et al. Conserving herbivorous and predatory insects in urban green spaces. Sci. Rep. 7, 40970. https://doi.org/10.1038/srep40970 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.King, J. R., Warren, R. J., Maynard, D. S. & Bradford, M. A. Ants: Ecology and impacts in Dead Wood. In Saproxylic Insects. Zoological Monographs Vol. 1 (ed. Ulyshen, M.) (Springer, 2018).
    Google Scholar 
    47.Tölgyesi, C. et al. Underground deserts below fertility islands? Woody species desiccate lower soil layers in sandy drylands. Ecography 43, 848–859. https://doi.org/10.1111/ecog.04906 (2020).Article 

    Google Scholar 
    48.Vítková, M., Müllerová, J., Sádlo, J., Pergl, J. & Pyšek, P. Black locust (Robinia pseudoacacia) beloved and despised: A story of an invasive tree in Central Europe. Forest Ecol. Manag. 384, 287–302. https://doi.org/10.1016/j.foreco.2016.10.057 (2017).Article 

    Google Scholar 
    49.Pacheco, R., Vasconcelos, H. L., Groc, S., Camacho, G. P. & Frizzo, T. L. The importance of remnants of natural vegetation for maintaining ant diversity in Brazilian agricultural landscapes. Biodivers. Conserv. 22, 983–997. https://doi.org/10.1007/s10531-013-0463-y (2013).Article 

    Google Scholar 
    50.Pihlgren, A., Lenoir, L. & Dahms, H. Ant and plant species richness in relation to grazing, fertilisation and topography. J. Nat. Conserv. 18(2), 118–125. https://doi.org/10.1016/j.jnc.2009.06.002 (2010).Article 

    Google Scholar 
    51.Bátori, Z. et al. Karstic microrefugia host functionally specific ant assemblages. Front. Ecol. Evol. 8, 482. https://doi.org/10.3389/fevo.2020.613738 (2020).Article 

    Google Scholar 
    52.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    53.Seifert, B. The Ants of Central and North Europe 408( – lutra Verlags – und Vertriebsgesellschaft, 2018).54.Czechowski, W., Radchenko, A., Czechowska, W. & Vepsäläinen, K. The Ants of Poland with Reference to the Myrmecofauna of Europe 496 (Natura optima dux Foundation, 2012).55.EOTR (Uniform National Mapping System of Hungary) 1:10,000 Scale Topographic Maps. FÖMI (Institute of Geodesy, Cartography and Remote Sensing).56.Ministry of Agriculture. Ökoszisztéma Alaptérkép és Adatmodell Kialakítása. (Ecosystem Basemap and Datamodel Design). https://doi.org/10.34811/osz.alapterkep (2019).57.Lanan, M. Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera: Formicidae). Myrmecol. News 20, 53 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    58.QGIS Development Team. QGIS Geographic Information System, Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).59.Faraway, J. J. Linear Models with R 2nd edn. (Chapman and Hall/CRC, London, 2014).MATH 

    Google Scholar 
    60.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-3. (R Foundation for Statistical Computing, 2016).61.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305. https://doi.org/10.1890/08-2244.1 (2010).Article 
    PubMed 

    Google Scholar 
    62.Galipaud, M., Gillingham, M. A. & Dechaume-Moncharmont, F. X. A farewell to the sum of Akaike weights: The benefits of alternative metrics for variable importance estimations in model selection. Methods Ecol. Evol. 8(12), 1668–1678. https://doi.org/10.1111/2041-210X.12835 (2017).Article 

    Google Scholar 
    63.Hegyi, G. & Garamszegi, L. Z. Using information theory as a substitute for stepwise regression in ecology and behavior. Behav. Ecol. Sociobiol. 65(1), 69–76. https://doi.org/10.1007/s00265-010-1036-7 (2011).Article 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/. More

  • in

    Dimethyl sulfide mediates microbial predator–prey interactions between zooplankton and algae in the ocean

    1.Simó, R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 16, 287–294 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).CAS 
    Article 

    Google Scholar 
    3.Wang, S., Maltrud, M. E., Burrows, S. M., Elliott, S. M. & Cameron-Smith, P. Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle. Glob. Biogeochem. Cycles 32, 1005–1026 (2018).Article 
    CAS 

    Google Scholar 
    4.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    5.Seymour, J., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Alcolombri, U. et al. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. Science 348, 1466–1469 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Alcolombri, U., Lei, L., Meltzer, D., Vardi, A. & Tawfik, D. S. Assigning the algal source of dimethylsulfide using a selective lyase inhibitor. ACS Chem. Biol. 12, 41–46 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. Atmos. 105, 26793–26808 (2000).CAS 
    Article 

    Google Scholar 
    9.Carpenter, L. J., Archer, S. D. & Beale, R. Ocean–atmosphere trace gas exchange. Chem. Soc. Rev. 41, 6473–6506 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Franklin, D. J., Steinke, M., Young, J., Probert, I. & Malin, G. Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulphide (DMS) in 10 species of coccolithophore. Mar. Ecol. Prog. Ser. 410, 13–23 (2010).CAS 
    Article 

    Google Scholar 
    11.Keller, M. D. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol. Oceanogr. 6, 375–382 (1989).
    Google Scholar 
    12.Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Kirst, G. O. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Kiene, R. P. et al.) 121−129 (Springer, 1996).15.Darroch, L. et al. Effect of short-term light- and UV-stress on DMSP, DMS, and DMSP lyase activity in Emiliania huxleyi. Aquat. Microb. Ecol. 74, 173–185 (2015).16.Barak-Gavish, N. et al. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci. Adv. 4, eaau5716 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Garcés, E., Alacid, E., Reñé, A., Petrou, K. & Simó, R. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J. 7, 1065–1068 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Steinke, M., Stefels, J. & Stamhuis, E. Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51, 1925–1930 (2006).CAS 
    Article 

    Google Scholar 
    20.Breckels, M., Bode, N., Codling, E. & Steinke, M. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus. Mar. Drugs 11, 2486 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Procter, J., Hopkins, F. E., Fileman, E. S. & Lindeque, P. K. Smells good enough to eat: dimethyl sulfide (DMS) enhances copepod ingestion of microplastics. Mar. Pollut. Bull. 138, 1–6 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Foretich, M. A., Paris, C. B., Grosell, M., Stieglitz, J. D. & Benetti, D. D. Dimethyl sulfide is a chemical attractant for reef fish larvae. Sci. Rep. 7, 2498 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Savoca, M. S. & Nevitt, G. A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc. Natl Acad. Sci. USA 111, 4157–4161 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Wright, K. L. B., Pichegru, L. & Ryan, P. G. Penguins are attracted to dimethyl sulphide at sea. J. Exp. Biol. 214, 2509–2511 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Owen, K. et al. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass. Commun. Biol. 4, 149 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Wolfe, G. V. & Steinke, M. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160 (1996).CAS 
    Article 

    Google Scholar 
    27.Simó, R. et al. The quantitative role of microzooplankton grazing in dimethylsulfide (DMS) production in the NW Mediterranean. Biogeochemistry 141, 125–142 (2018).Article 

    Google Scholar 
    28.Evans, C., Kadner, S. V. & Darroch, L. J. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol. Oceanogr. 52, 1036–1045 (2007).Article 

    Google Scholar 
    29.Kiene, R. P. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56, 3292–3297 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00637 (2017).31.Strom, S. et al. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    32.Calbet, A. & Landry, M. R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51–57 (2004).CAS 
    Article 

    Google Scholar 
    33.Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).Article 

    Google Scholar 
    34.Steinke, M., Wolfe, G. V. & Kirst, G. O. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. 175, 215–225 (1998).CAS 
    Article 

    Google Scholar 
    35.Breckels, M. N., Roberts, E. C., Archer, S. D., Malin, G. & Steinke, M. The role of dissolved infochemicals in mediating predator–prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina. J. Plankton Res. 33, 629–639 (2011).Article 

    Google Scholar 
    36.Saló, V., Simó, R., Vila-Costa, M. & Calbet, A. Sulfur assimilation by Oxyrrhis marina feeding on a 35S-DMSP-labelled prey. Environ. Microbiol. 11, 3063–3072 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    37.Raina, J. B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Franklin, D. J. et al. Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol. Oceanogr. 57, 305–317 (2012).CAS 
    Article 

    Google Scholar 
    39.Kettles, N. L., Kopriva, S. & Malin, G. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. PLoS ONE 9, e94795 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Poulsen, N., Chesley, P. M. & Kröger, N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae). J. Phycol. 42, 1059–1065 (2006).Article 

    Google Scholar 
    41.Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Apt, K. E. et al. In vivo characterization of diatom multipartite plastid targeting signals. J. Cell Sci. 115, 4061–4069 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.McParland, E. L., Wright, A., Art, K., He, M. & Levine, N. M. Evidence for contrasting roles of dimethylsulfoniopropionate production in Emiliania huxleyi and Thalassiosira oceanica. New Phytol. 226, 396–409 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Olson, M. B. & Strom, S. L. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea Res. II 49, 5969–5990 (2002).CAS 
    Article 

    Google Scholar 
    47.Challenger, F. & Simpson, M. I. Studies on biological methylation; a precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata; dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. 3, 1591–1597 (1948).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Haas, P. The liberation of methyl sulphide by seaweed. Biochem. J. 29, 1297–1299 (1935).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Stefels, J. & Dijkhuizen, L. Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. 131, 307–313 (1996).CAS 
    Article 

    Google Scholar 
    50.Wolfe, G. V., Sherr, E. B. & Sherr, B. F. Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Mar. Ecol. 111, 111–119 (1994).CAS 
    Article 

    Google Scholar 
    51.Reisch, C. R., Moran, M. A. & Whitman, W. B. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2, 172 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.von Dassow, P. et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 10, R114 (2009).Article 
    CAS 

    Google Scholar 
    53.Strom, S., Wolfe, G., Slajer, A., Lambert, S. & Clough, J. Chemical defense in the microplankton II: inhibition of protist feeding by β-dimethylsulfoniopropionate (DMSP). Limnol. Oceanogr. 48, 230–237 (2003).CAS 
    Article 

    Google Scholar 
    54.Li, W. Eat-me signals: keys to molecular phagocyte biology and “appetite” control. J. Cell. Physiol. 227, 1291–1297 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Tyssebotn, I. M. B. et al. Concentrations, biological uptake, and respiration of dissolved acrylate and dimethylsulfoxide in the northern Gulf of Mexico. Limnol. Oceanogr. 62, 1198–1218 (2017).Article 

    Google Scholar 
    56.Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Spiese, C. E., Le, T., Zimmer, R. L. & Kieber, D. J. Dimethylsulfide membrane permeability, cellular concentrations and implications for physiological functions in marine algae. J. Plankton Res. 38, 41–54 (2015).Article 
    CAS 

    Google Scholar 
    58.Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A. & Green, D. H. Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea. Biogeochemistry 110, 131–146 (2012).CAS 
    Article 

    Google Scholar 
    59.Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Endres, C. S. & Lohmann, K. J. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a possible mechanism for locating high-productivity oceanic regions for foraging. J. Exp. Biol. 215, 3535–3538 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Savoca, M. S. Chemoattraction to dimethyl sulfide links the sulfur, iron, and carbon cycles in high-latitude oceans. Biogeochemistry 138, 1–21 (2018).CAS 
    Article 

    Google Scholar 
    62.Steinke, M., Malin, G. & Liss, P. Trophic interactions in the sea: an ecological role for climate relevant volatiles? J. Phycol. 38, 630–638 (2002).CAS 
    Article 

    Google Scholar 
    63.Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Lewis, N. et al. Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry 110, 303–313 (2012).CAS 
    Article 

    Google Scholar 
    65.Lewis, N. D., Breckels, M. N., Steinke, M. & Codling, E. A. Role of infochemical mediated zooplankton grazing in a phytoplankton competition model. Ecol. Complex. 16, 41–50 (2013).Article 

    Google Scholar 
    66.Hansen, F. C., Reckermann, M., Breteler, W. C. M. K. & Riegman, R. Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser. 102, 51–57 (1993).Article 

    Google Scholar 
    67.Levasseur, M. et al. Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing. Mar. Biol. 126, 609–618 (1996).CAS 
    Article 

    Google Scholar 
    68.Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. https://doi.org/10.3354/ame01753 (2015).71.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Frost, B. W. Effects of size and concentration of food particles on the feeding and behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).Article 

    Google Scholar 
    75.Johnson, M. D., Michelle, R. & Stoecker, D. K. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr. 48, 238–248 (2003).Article 

    Google Scholar 
    76.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw200 (2017).78.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Slamovits, C. H., Saldarriaga, J. F., Larocque, A. & Keeling, P. J. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J. Mol. Biol. 372, 356–368 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep-Sea Res. I 94, 72–86 (2014).Article 

    Google Scholar  More

  • in

    Acrylate protects a marine bacterium from grazing by a ciliate predator

    1.Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Zan, J. et al. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 364, eaaw6732 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Yoch, D. C. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 68, 5804–5815 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. 8, 637 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Curson, A. et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat. Microbiol. 2, 17009 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Williams, B. T. et al. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat. Microbiol. 4, 1815–1825 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Zhang, X. H. et al. Biogenic production of DMSP and its degradation to DMS—their roles in the global sulfur cycle. Sci. China Life. Sci. 62, 1296–1319 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Alstyne, K. L. V., Wolfe, G. V., Freidenburg, T. L., Neill, A. & Hicken, C. Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 213, 53–65 (2001).Article 

    Google Scholar 
    10.Paul, V. J. & Van Alstyne, K. L. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160, 191–203 (1992).CAS 
    Article 

    Google Scholar 
    11.Strom, S. et al. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceangr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    12.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    13.Liu, C. et al. Puniceibacterium antarcticum gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 64, 1566–1572 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Aronson, D. E., Costantini, L. M. & Snapp, E. L. Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Traffic 12, 543–548 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Coppellotti Krupa, O. & Vannucci, D. Citrate synthase from Antarctic ciliates: adaptation to low temperatures and comparison with temperate ciliates. Polar Biol. 26, 452–457 (2003).Article 

    Google Scholar 
    16.Asher, E. C., Dacey, J. W. H., Stukel, M., Long, M. C. & Tortell, P. D. Processes driving seasonal variability in DMS, DMSP, and DMSO concentrations and turnover in coastal Antarctic waters. Limnol. Oceanogr. 62, 104–124 (2017).Article 

    Google Scholar 
    17.Ahmed, M., Stal, L. J. & Hasnain, S. DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM). J. Ind. Microbiol. Biotechnol. 38, 249–255 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hojo, F. et al. Ciliates expel environmental Legionella-laden pellets to stockpile food. Appl. Environ. Microbiol. 78, 5247–5257 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Seymour, J. R., Simo, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Shemi, A. et al. Dimethyl sulfide acts as eat-me signal during microbial predator–prey interactions in the ocean. Research Square https://doi.org/10.21203/rs.3.rs-139243/v1 (2021).21.Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Wang, P. et al. Structural and molecular basis for the novel catalytic mechanism and evolution of DddP, an abundant peptidase-like bacterial dimethylsulfoniopropionate lyase: a new enzyme from an old fold. Mol. Microbiol. 98, 289–301 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Li, C. Y. et al. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide. Proc. Natl Acad. Sci. USA 111, 1026–1031 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.González, J. M., Whitman, W. B., Hodson, R. E. & Moran, M. A. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62, 4433–4440 (1996).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Freier, D., Mothershed, C. P. & Wiegel, J. Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 54, 204–JW211 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Wang, P. et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb. Cell Fact. 14, 11 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Obranic, S., Babic, F. & Maravic-Vlahovicek, G. Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors. Plasmid 70, 263–267 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dinh, T. & Bernhardt, T. G. Using superfolder green fluorescent protein for periplasmic protein localization studies. J. Bacteriol. 193, 4984–4987 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Yu, Z. C. et al. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Microb. Cell Fact. 13, 13 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5–8 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Ansede, J. H., Pellechia, P. J. & Yoch, D. C. Metabolism of acrylate to beta-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol. 65, 5075–5081 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Liu, J. et al. Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front. Microbiol. 9, 3206–3206 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Shao, X. et al. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol. Microbiol. 111, 1057–1073 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Dumon-Seignovert, L., Cariot, G. & Vuillard, L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr. Purif. 37, 203–206 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Barek, J., Pumera, M., Muck, A., Kadeřabkova, M. & Zima, J. Polarographic and voltammetric determination of selected nitrated polycyclic aromatic hydrocarbons. Anal. Chim. Acta 393, 141–146 (1999).CAS 
    Article 

    Google Scholar 
    37.Sherr, B. F., Sherr, E. B. & Fallon, R. D. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53, 958–965 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Perez-Uz, B. Bacterial preferences and growth kinetic variation in Uronema marinum and Uronema nigricans (Ciliophora: Scuticociliatida). Microb. Ecol. 31, 189–198 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Siegmund, L., Schweikert, M., Fischer, M. S. & Wostemeyer, J. Bacterial surface traits influence digestion by Tetrahymena pyriformis and alter opportunity to escape from food vacuoles. J. Eukaryot. Microbiol. 65, 600–611 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Christaki, U. et al. Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnol. Oceanogr. Meth. 9, 329–339 (2011).Article 

    Google Scholar 
    41.Headland, S. E., Jones, H. R., D’Sa, A. S., Perretti, M. & Norling, L. V. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci. Rep. 4, 5237 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Hayduk, W. & Laudie, H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J. 20, 611–615 (1974).CAS 
    Article 

    Google Scholar 
    43.Schotte, W. Prediction of the molar volume at the normal boiling point. Chem. Eng. J. 48, 167–172 (1992).CAS 
    Article 

    Google Scholar 
    44.Carrión, O. et al. A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments. Nat. Commun. 6, 6579 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Zhang, W. et al. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat. Commun. 10, 517 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Hoffman, K. & Stoffel, W. TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).
    Google Scholar 
    48.Bansal, M. S., Alm, E. J. & Kellis, M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28, i283–i291 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More