1.Gartner, T., Mulligan, J., Schmidt, R. & Gunn, J. Natural Infrastructure (World Resources Institute, 2013).2.McDonald, R. I. et al. Water on an urban planet: urbanization and the reach of urban water infrastructure. Glob. Environ. Change 27, 96–105 (2014).Article
Google Scholar
3.Vorosmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).CAS
Article
Google Scholar
4.Grill, G. et al. Mapping the world’s free-flowing rivers. Nature 569, 215–221 (2019).CAS
Article
Google Scholar
5.Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).CAS
Article
Google Scholar
6.Palmer, M. A. Water resources: beyond infrastructure. Nature 467, 534–535 (2010).CAS
Article
Google Scholar
7.Michalak, A. M. Study role of climate change in extreme threats to water quality. Nature 535, 349–350 (2016).CAS
Article
Google Scholar
8.McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113, 9117–9122 (2016).CAS
Article
Google Scholar
9.Romulo, C. L. et al. Global state and potential scope of investments in watershed services for large cities. Nat. Commun. 9, 4375 (2018).Article
CAS
Google Scholar
10.Tellman, B. et al. Opportunities for natural infrastructure to improve urban water security in Latin America. PLoS ONE 13, e0209470 (2018).Article
Google Scholar
11.United Nations World Water Assessment Programme/UN-Water The United Nations World Water Development Report 2018: Nature-Based Solutions for Water (UNESCO, 2018).12.Palmer, M. A., Liu, J., Matthews, J. H., Mumba, M. & D’Odorico, P. Manage water in a green way. Science 349, 584–585 (2015).CAS
Article
Google Scholar
13.Ziv, G., Baran, E., Nam, S., Rodríguez-Iturbe, I. & Levin, S. A. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proc. Natl Acad. Sci. USA 109, 5609–5614 (2012).CAS
Article
Google Scholar
14.Harrison, I. J. et al. Protected areas and freshwater provisioning: a global assessment of freshwater provision, threats and management strategies to support human water security. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 103–120 (2016).Article
Google Scholar
15.The World Database on Protected Areas (IUCN and UNEP-WCMC, 2017); http://www.protectedplanet.net16.Huber-Stearns, H. R., Goldstein, J. H., Cheng, A. S. & Toombs, T. P. Institutional analysis of payments for watershed services in the western United States. Ecosyst. Serv. 16, 83–93 (2015).Article
Google Scholar
17.Moran, E. F., Lopez, M. C., Moore, N., Müller, N. & Hyndman, D. W. Sustainable hydropower in the 21st century. Proc. Natl Acad. Sci. USA 115, 11891–11898 (2018).CAS
Article
Google Scholar
18.Zheng, H. et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. Proc. Natl Acad. Sci. USA 110, 16681–16686 (2013).CAS
Article
Google Scholar
19.Adamowicz, W. et al. Assessing ecological infrastructure investments. Proc. Natl Acad. Sci. USA 116, 201802883 (2019).Article
CAS
Google Scholar
20.McDonald R. I. Conservation for Cities: How to Plan & Build Natural Infrastructure (Island Press, 2015).21.Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015).Article
Google Scholar
22.Poff, N. L. & Schmidt, J. C. How dams can go with the flow. Science 353, 1099–1100 (2016).CAS
Article
Google Scholar
23.Liu, J. & Yang, W. Integrated assessments of payments for ecosystem services programs. Proc. Natl Acad. Sci. USA 110, 16297–16298 (2013).CAS
Article
Google Scholar
24.Muller, M., Biswas, A., Martin-Hurtado, R. & Tortajada, C. Built infrastructure is essential. Science 349, 585–586 (2015).CAS
Article
Google Scholar
25.Veldkamp, T. I. E. et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 8, 15697 (2017).CAS
Article
Google Scholar
26.Cohen, S., Kettner, A. J. & Syvitski, J. P. M. Global suspended sediment and water discharge dynamics between 1960 and 2010: continental trends and intra-basin sensitivity. Glob. Planet. Change 115, 44–58 (2014).Article
Google Scholar
27.Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 94, 87–102 (2016).Article
Google Scholar
28.Byers L. et al. A Global Database of Power Plants (World Resources Institute, 2018); https://www.wri.org/publication/global-power-plant-database29.Liu, J. Integration across a metacoupled world. Ecol. Soc. 22, 29 (2017).Article
Google Scholar
30.Vercruysse, K., Grabowski, R. C. & Rickson, R. J. Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth Sci. Rev. 166, 38–52 (2017).Article
Google Scholar
31.Wu, X.-X., Gu, Z.-J., Luo, H., Shi, X.-Z. & Yu, D.-S. Analyzing forest effects on runoff and sediment production using leaf area index. J. Mt. Sci. 11, 119–130 (2014).Article
Google Scholar
32.Wang, Y. et al. Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology 4, 277–287 (2011).CAS
Article
Google Scholar
33.Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861 (2008).CAS
Article
Google Scholar
34.Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).CAS
Article
Google Scholar
35.Maltby, E. & Acreman, M. C. Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrol. Sci. J. 56, 1341–1359 (2011).Article
Google Scholar
36.Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E. & Smith, D. R. Impacts of impervious surface on watershed hydrology: a review. Urban Water J. 2, 263–275 (2005).Article
Google Scholar
37.Borrelli, P. et al. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).CAS
Article
Google Scholar
38.Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).Article
CAS
Google Scholar
39.Symes, W. S., Rao, M., Mascia, M. B. & Carrasco, L. R. Why do we lose protected areas? Factors influencing protected area downgrading, downsizing and degazettement in the tropics and subtropics. Glob. Change Biol. 22, 656–665 (2016).Article
Google Scholar
40.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).Article
CAS
Google Scholar
41.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS
Article
Google Scholar
42.Liu, J. et al. China’s environment on a metacoupled planet. Annu. Rev. Environ. Resour. 43, 1–34 (2018).CAS
Article
Google Scholar
43.Viña, A., McConnell, W. J., Yang, H., Xu, Z. & Liu, J. Effects of conservation policy on China’s forest recovery. Sci. Adv. 2, e1500965 (2016).Article
Google Scholar
44.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).Article
Google Scholar
45.Ouyang, Z. et al. Improvements in ecosystem services from investments in natural capital. Science 352, 1455–1459 (2016).CAS
Article
Google Scholar
46.Vörösmarty, C. J. et al. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 18, 317–333 (2018).Article
Google Scholar
47.Liu, J. et al. Nexus approaches to global sustainable development. Nat. Sustain. 1, 466–476 (2018).Article
Google Scholar
48.Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).Article
Google Scholar
49.McDonald, R. I. et al. Urban growth, climate change, and freshwater availability. Proc. Natl Acad. Sci. USA 108, 6312–6317 (2011).CAS
Article
Google Scholar
50.Willner, S. N., Otto, C. & Levermann, A. Global economic response to river floods. Nat. Clim. Change 8, 594–598 (2018).Article
Google Scholar
51.Cattaneo, A., Nelson, A. & McMenomy, T. Global mapping of urban–rural catchment areas reveals unequal access to services. Proc. Natl Acad. Sci. USA 118, e2011990118 (2021).CAS
Article
Google Scholar
52.Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).Article
Google Scholar
53.Schneider, A., Friedl, M. A. & Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4, 044003 (2009).Article
Google Scholar
54.Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. EOS 89, 93–94 (2008).55.Yang, H. et al. A global assessment of the impact of individual protected areas on preventing forest loss. Sci. Total Environ. 777, 145995 (2021).CAS
Article
Google Scholar
56.Smith, A. et al. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 10, 1814 (2019).Article
CAS
Google Scholar
57.Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).CAS
Article
Google Scholar
58.Hanasaki, N. et al. An integrated model for the assessment of global water resources—Part 1: model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008).Article
Google Scholar
59.Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).Article
Google Scholar
60.Pokhrel, Y. N. et al. Incorporation of groundwater pumping in a global Land Surface Model with the representation of human impacts. Water Resour. Res. 51, 78–96 (2015).Article
Google Scholar
61.Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).Article
Google Scholar
62.Müller Schmied, H. et al. Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use. Hydrol. Earth Syst. Sci. 20, 2877–2898 (2016).Article
Google Scholar
63.Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article
Google Scholar
64.Dirmeyer, P. A. et al. GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull. Am. Meteorol. Soc. 87, 1381–1398 (2006).Article
Google Scholar
65.Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article
Google Scholar
66.Bingham, H. C. et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nat. Ecol. Evol. 3, 737–743 (2019).Article
Google Scholar
67.ArcGIS Desktop: Release 10.3.1 (Environmental Systems Research Institution, 2015).68.Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).CAS
Article
Google Scholar
69.Bennett, G. & Ruef, F. Alliances for Green Infrastructure: State of Watershed Investment 2016 (Forest Trends, 2016).70.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).71.Wellman, B. & Frank, K. in Social Capital: Theory and Research (eds Lin, N. et al.) 233–273 (Routledge, 2001).72.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar More