1.Collins, M. et al. SPM6 Extremes, abrupt changes and managing risks. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) 589-655 (In press, 2019).2.Hegerl, G. C., Hanlon, H. & Beierkuhnlein, C. Elusive extremes. Nat. Geosci. 4, 142–143 (2011).CAS
Article
Google Scholar
3.Bérard, A., Ben Sassi, M., Renault, P. & Gros, R. Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. J. Soils Sediment. 12, 513–518 (2012).Article
Google Scholar
4.Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed
Article
PubMed Central
Google Scholar
5.Acosta-Martínez, V. et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl. Soil Ecol. 84, 69–82 (2014).Article
Google Scholar
6.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).Article
Google Scholar
7.Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
8.Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).Article
Google Scholar
9.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).Article
Google Scholar
10.Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 9, 3414–3420 (2015).11.Freeland, H. & Ross, T. ‘The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014-2018? Deep Sea Res. Part I: Oceanographic Res. Pap. 150, 103061 (2019).Article
Google Scholar
12.Lorenzo, E. D. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).Article
Google Scholar
13.Peña, M. A., Nemcek, N. & Robert, M. Phytoplankton responses to the 2014–2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).Article
Google Scholar
14.Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).CAS
Article
Google Scholar
15.Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).16.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article
Google Scholar
17.Sarmento, Hugo, Montoya, JoséM., Vázquez-Domínguez, Evaristo, Vaqué, Dolors & Gasol, JosepM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos. Trans. R. Soc. B: Biol. Sci. 365, 2137–2149 (2010).Article
Google Scholar
18.Joint, I. & Smale, D. A. Marine heatwaves and optimal temperatures for microbial assemblage activity. FEMS Microbiol Ecol 93, fiw243 (2017).19.Deschaseaux, E. O., Brien, J., Siboni, N., Petrou, K. & Seymour, J. R. Shifts in dimethylated sulfur concentrations and microbiome composition in the red-tide causing dinoflagellate Alexandrium minutum during a simulated marine heatwave. Biogeosciences 16, 4377–4391 (2019).CAS
Article
Google Scholar
20.Hawley, A. K. et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat. Commun. 8, 1507 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
21.Allers, E. et al. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. ISME J. 7, 256–268 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).PubMed
PubMed Central
Article
Google Scholar
23.Wright, J. J. et al. Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME J. 8, 455–468 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Sherry, N. D., Boyd, P. W., Sugimoto, K. & Harrison, P. J. Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 46, 2557–2578 (1999).25.Harrison, P. J. Station Papa Time Series: insights into ecosystem dynamics. J. Oceanogr. 58, 259–264 (2002).CAS
Article
Google Scholar
26.Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).PubMed
Article
PubMed Central
Google Scholar
29.Freeland, H. J. Evidence of change in the winter mixed layer in the Northeast Pacific Ocean: a problem revisited. Atmos. Ocean 51, 126–133 (2013).CAS
Article
Google Scholar
30.Stevens, H. & Ulloa, O. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. 10, 1244–1259 (2008).CAS
PubMed
Article
Google Scholar
31.Bryant, J. A., Stewart, F. J., Eppley, J. M. & DeLong, E. F. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology 93, 1659–1673 (2012).PubMed
Article
Google Scholar
32.Muck, S. et al. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front. Microbiol. 10, 2141 (2019).33.Medina Faull, L., Mara, P., Taylor, G. T. & Edgcomb, V. P. Imprint of trace dissolved oxygen on prokaryoplankton community structure in an oxygen minimum zone. Front. Mar. Sci. 7, 360 (2020).34.Reji, L., Tolar, B. B., Chavez, F. P. & Francis, C. A. Depth-differentiation and seasonality of planktonic microbial assemblages in the monterey bay upwelling system. Front. Microbiol. 11, 1075 (2020).35.Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).CAS
PubMed
Article
Google Scholar
36.Tsementzi, D. et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536, 179–183 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Choi, D. H., Karen, Selph & Noh, J. H. Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean. ALGAE 30, 223–232 (2015).38.Johnson, Z. I. et al. Niche partitioning among prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).CAS
PubMed
Article
Google Scholar
39.Sohm, J. A. et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 10, 333–345 (2016).CAS
PubMed
Article
Google Scholar
40.Not, F. et al. in Advances in Botanical Research (ed. Piganeau, G.) vol. 64, 1–53 (Academic Press, 2012).41.Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochemical Cycles 16, 11-1–11–18 (2002).
Google Scholar
42.Richardson, T. L., Jackson, G. A., Ducklow, H. W. & Roman, M. R. Carbon fluxes through food webs of the eastern equatorial Pacific: an inverse approach. Deep Sea Res. Part I: Oceanographic Res. Pap. 51, 1245–1274 (2004).CAS
Article
Google Scholar
43.Michaels, A. F. & Silver, M. W. Primary production, sinking fluxes and the microbial food web. Deep Sea Res. Part A. Oceanographic Res. Pap. 35, 473–490 (1988).Article
Google Scholar
44.Dufrêne, M. & Legendre, P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
Google Scholar
45.Cáceres, M. D., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article
Google Scholar
46.Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5, e01371-14 (2014).47.Thrash, J. C. et al. Metabolic Roles of Uncultivated Bacterioplankton lineages in the Northern Gulf of Mexico “Dead Zone”. mBio 8, e01017-17 (2017).48.Kirchman, D. L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 39, 91–100 (2002).CAS
PubMed
Google Scholar
49.Alonso, C., Warnecke, F., Amann, R. & Pernthaler, J. High local and global diversity of Flavobacteria in marine plankton. Environ. Microbiol. 9, 1253–1266 (2007).CAS
PubMed
Article
Google Scholar
50.Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5, e11888 (2016).PubMed
PubMed Central
Article
Google Scholar
51.Selje, N., Simon, M. & Brinkhoff, T. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427, 445 (2004).CAS
PubMed
Article
Google Scholar
52.Buchan, A., González, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Luo, H. & Moran, M. A. Evolutionary ecology of the marine roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).PubMed
PubMed Central
Article
Google Scholar
54.Simon, M. et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11, 1483–1499 (2017).PubMed
PubMed Central
Article
Google Scholar
55.Sato, S. et al. Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci. Rep. 10, 9449 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6, 339–367 (2014).Article
Google Scholar
57.Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
58.Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. & Walsh, D. A. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 8, 1301–1313 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3, 14 (2015).PubMed
PubMed Central
Article
Google Scholar
60.Andrei, A.-Ş. et al. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J 13, 1056–1071 (2019).61.Fukunaga, Y. et al. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J. Gen. Appl. Microbiol. 55, 267–275 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Gade, D., Stührmann, T., Reinhardt, R. & Rabus, R. Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ. Microbiol. 7, 1074–1084 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Luecker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).64.Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).Article
Google Scholar
65.Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
66.Haro‐Moreno, J. M. et al. Ecogenomics of the SAR11 clade. Environ. Microbiol 22, 1748–1763 (2020).PubMed
Article
CAS
PubMed Central
Google Scholar
67.Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252–12 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Giovannoni, S. J. SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).Article
Google Scholar
69.Getz, E. W., Tithi, S. S., Zhang, L. & Aylward, F. O. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio. 9, e01089-18 (2018).70.Aylward, F. O. & Santoro, A. E. Heterotrophic thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415-20 (2020).71.Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).CAS
PubMed
Article
Google Scholar
72.Santoro, A. E., Casciotti, K. L. & Francis, C. A. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol. 12, 1989–2006 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
73.Horak, R. E. A. et al. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. ISME J. 7, 2023–2033 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
74.Qin, W. et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS 111, 12504–12509 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Haro-Moreno, J. M., Rodriguez-Valera, F., López-García, P., Moreira, D. & Martin-Cuadrado, A.-B. New insights into marine group III Euryarchaeota, from dark to light. ISME J. 11, 1102–1117 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 10, 2158–2173 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Orsi, W. D. et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 9, 1747–1763 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
79.Hugoni, M. et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc. Natl Acad. Sci. USA 110, 6004–6009 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
80.Matheus Carnevali, P. B. et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat. Commun. 10, 463 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Saw, J. H. W. et al. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11, e02975-19 (2020).PubMed
PubMed Central
Article
Google Scholar
82.Alonso‐Sáez, L., Díaz‐Pérez, L. & Morán, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780 (2015).PubMed
Article
PubMed Central
Google Scholar
83.Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).PubMed
Article
PubMed Central
Google Scholar
84.Mehrshad, M., Rodriguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
85.Mullins, T. D., Britschgi, T. B., Krest, R. L. & Giovannoni, S. J. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40, 148–158 (1995).CAS
Article
Google Scholar
86.Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore western mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microbiol. 65, 514–522 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Hoarfrost, A. et al. Global ecotypes in the ubiquitous marine clade SAR86. ISME J. 14, 178–188 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
88.Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C. & Bertilsson, S. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J. 4, 1581–1590 (2010).PubMed
Article
CAS
PubMed Central
Google Scholar
89.Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
90.Maldonado, M. T., Boyd, P. W., Harrison, P. J. & Price, N. M. Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2475–2485 (1999).CAS
Article
Google Scholar
91.Peña, M. A. & Varela, D. E. Seasonal and interannual variability in phytoplankton and nutrient dynamics along Line P in the NE subarctic Pacific. Prog. Oceanogr. 75, 200–222 (2007).Article
Google Scholar
92.Whitney, F. A., Wong, C. S. & Boyd, P. W. Interannual variability in nitrate supply to surface waters of the Northeast Pacific Ocean. Mar. Ecol. Prog. Ser. 170, 15–23 (1998).CAS
Article
Google Scholar
93.Crawford, W., Galbraith, J. & Bolingbroke, N. Line P ocean temperature and salinity, 1956–2005. Prog. Oceanogr. 75, 161–178 (2007).Article
Google Scholar
94.Whitney, F. A. & Freeland, H. J. Variability in upper-ocean water properties in the NE Pacific Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2351–2370 (1999).CAS
Article
Google Scholar
95.Whitney, F. A., Freeland, H. J. & Robert, M. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75, 179–199 (2007).Article
Google Scholar
96.Siegel, D. A. et al. Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan. Front. Mar. Sci. 3, 030 (2016).97.Buesseler, K. O. et al. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elementa: Sci. Anthrop. 8, (2020).98.Stephens, B. M. et al. Organic matter composition at ocean station papa affects its bioavailability, bacterioplankton growth efficiency and the responding taxa. Front. Mar. Sci. 7, 590273 (2020).99.Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M. & Kelly, R. P. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429–3446 (2015).Article
Google Scholar
100.Fisher, J. et al. Copepod responses to, and recovery from, the recent marine heatwave in the Northeast Pacific. PICES Sci. 2019: Notes Sci. Board Chair 28, 65 (2020).
Google Scholar
101.Batten, S. D. et al. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Sea Res. Part II: Topical Stud. Oceanogr. 147, 58–68 (2018).Article
Google Scholar
102.Geider, R. & Roche, J. L. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).Article
Google Scholar
103.Wohlers, J. et al. Changes in biogenic carbon flow in response to sea surface warming. Proc.Natl. Acad. Sci. USA 106, 7067–7072 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Bif, M. B. & Hansell, D. A. Seasonality of dissolved organic carbon in the upper Northeast Pacific Ocean. Glob. Biogeochem. Cycles 33, 526–539 (2019).CAS
Article
Google Scholar
105.Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. https://doi.org/10.1038/s41396-020-00811-y. (2020).106.Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. 80, 6807–6818 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
107.Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
108.Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
109.Ono, T., Shiomoto, A. & Saino, T. Recent decrease of summer nutrients concentrations and future possible shrinkage of the subarctic North Pacific high-nutrient low-chlorophyll region. Global Biogeochemical Cycles 22, GB3027 (2008).110.Walsh, D. A., Zaikova, E. & Hallam, S. J. Small Volume (1-3L) Filtration of Coastal Seawater Samples. JoVE https://doi.org/10.3791/1163 (2009).Article
PubMed
PubMed Central
Google Scholar
111.Barwell-Clarke, J. & Whitney, F. Institute of Ocean Sciences nutrient Methods and Analysis. (1996).112.Zapata, M., Rodríguez, F. & Garrido, J. L. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29–45 (2000).CAS
Article
Google Scholar
113.Nemcek, N. & Peña, M. A. Institute of Ocean Sciences Protocols for Phytoplankton Pigment Analysis by HPLC. (2014).114.Wright, J. J., Lee, S., Zaikova, E., Walsh, D. A. & Hallam, S. J. DNA Extraction from 0.22 μM Sterivex Filters and Cesium Chloride Density Gradient Centrifugation. J. Vis. Exp. e1352, https://doi.org/10.3791/1352 (2009).115.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
116.Rivers, A. R. iTag amplicon sequencing for taxonomix identification at JGI. http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-content/uploads/2013/05/iTagger-methods-1.pdf (2016).117.Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed
PubMed Central
Article
CAS
Google Scholar
118.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
119.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
120.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
121.Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
122.Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 37, 852–857 (2019).123.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).124.Rstudio Team. Rstudio: Integrated Development Environment for R (Rstudio Inc, 2016).125.Faust, K. & Raes, J. CoNet app: inference of biological association networks using Cytoscape. F1000Res 5, 1519 (2016).PubMed
PubMed Central
Article
Google Scholar
126.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar More