More stories

  • in

    Multivariate trait analysis reveals diatom plasticity constrained to a reduced set of biological axes

    Culture maintenance and growthTwelve strains of Thalassiosira spp. were obtained from the Provasoli-Guillard National Centre of Marine Phytoplankton (NCMA, https://ncma.bigelow.org/), and one strain from the Australian National Culture Collection, representing 7 species in total (Supplementary Table 1). Cultures were maintained in polystyrene tissue culture flasks in artificial seawater with f/2 media [37] at 20 °C, with 60 µmolm−2s−1 of light on a 12:12 light cycle.Three strains originally identified as Thalassiosira sp. in the NCMA collection were further classified to the species level using sequencing of the ITS2 gene region (Supplementary Table 1): CCMP1055 as T. auguste-lineata (84.64% similarity; [38]) and CCMP2929 as T. weisflogii (98.37% similarity to Strain 1587 used in our study; [39]). Strain CCMP1059 was tentatively identified as Cyclotella striata (94.17% identity match to clone ZX28-3-40; [40]) also from order Thalassiosirales, but this assignment requires further investigation.Experimental set upExperimental cultures (200 mL) were grown in 250 mL polystyrene tissue culture flasks in triplicate, at a starting concentration of 2500 cells ml−1. All 13 strains were grown in a “standard” environment (identical to maintenance conditions) with 9 phenotypic traits measured to describe the initial trait-scape. Five strains (1010, 1059, 2929, 3264, and 3367) were grown in two additional environments in triplicate: a high temperature and light treatment (HT: 30 °C, 200 µmol photons m−2s−1 of light, 12:12 light:dark), and a low nutrient treatment (LN: f/400 media with an adjusted N:P ratio of 10:1 achieved by reducing the nitrate concentration from 4.4 to 1.8 µM, 60 µmol photons m−2s−1 of light, 12:12 light:dark). Cultures for the two additional treatments were inoculated with 10,000 cells ml−1 (LN) and 5,000 cells ml−1 (HT) in anticipation of limited growth.Growth was tracked daily using in vivo fluorescence as a proxy for cell density [41]. One mL aliquots of experimental cultures were measured for chlorophyll-a fluorescence using a plate reader (TECAN Infinite M1000 Pro, Männedorf, Switzerland) using 455/680 nm excitation/emission spectra. Phenotypic traits were measured at mid-late exponential phase, assessed by visually examining in vivo fluorescence growth curves. In the case of the low nutrient treatment, where growth was limited to 3–5 days, cultures were harvested in early stationary phase. Duration of growth for each experiment is summarised in Supplementary Table 2.Phenotypic trait measurement methodsPhenotypic traits were selected to capture different commonly measured base physiological functions, and to include traits that are used in biogeochemical models. We also selected traits that demonstrated independence and orthogonality (i.e., not all co-varying), based on pilot studies, in order to successfully define the multivariate trait-scape [42].Growth rateGrowth rates for each time step were calculated from the daily in vivo fluorescence measurements according to the calculation:$$mu = frac{{{{{{{{{mathrm{ln}}}}}}}}left( {F_2} right)-{{{{{{{mathrm{ln}}}}}}}}left( {F_1} right)}}{{t_2 – t_1}}$$Maximum growth rates were determined by the average growth over 2–4 consecutive steps depending on the duration of exponential growth.Flow cytometry traitsFor flow cytometry trait measures (growth rate, size, chlorophyll a content, lipid content), 1 mL aliquots of experimental culture were fixed with EM grade paraformaldehyde (0.8% final concentration, Electron Microscopy Sciences, Ft Washington, PA) in 1.6 mL cryopreservation tubes (CryoPure, Sarstedt), frozen in liquid nitrogen, then stored at −80 °C prior to analysis. All measures were performed using a Cytoflex LX (Beckman Coulter, CA, USA).Cell counts and sizeCell counts were done by gating the diatom population using chlorophyll a (488 nm excitation, 690/50 nm detector) and forward scatter channel thresholds. Cell size was estimated using forward scatter values calibrated against spherical beads (2, 4, 6, 10, 15 µM diameters; Invitrogen, CA). This resulted in a conversion equation of equivalent spherical diameter (ESD) = (FSC + 194636)/75775, which was used to assess relative changes in cell size [43].Chlorophyll a contentChlorophyll a (Chl-a) fluorescence of the gated diatom population was quantified using 488 nm excitation, 690/50 nm detection. A standard bead (Cytoflex Daily QC Fluorospheres; Beckman Coulter) was used to calibrate the performance of the instrument and ensure comparable measures across samples. Chlorophyll values were divided by ESD to account for cell size differences.Side scatter/granularitySide scatter is an indicator of the internal complexity of a cell or “granularity”. This trait is measured in tandem with other flow cytometry measures and was included as a phenotypic trait. The interpretation of this trait is not straight forward, but is independent of other flow cytometry traits measured and has been used in other flow cytometry studies of microalgae [44]. This trait was divided by ESD to account for cell size differences.Neutral lipidsRelative neutral lipid content was determined using the fluorescent stain BODIPY™ 505/515 (Thermo Fisher, MA, USA) which is commonly used to assess neutral lipid content in phytoplankton [45,46,47]. Background fluorescence (488 nm excitation, 525/40 nm detector) of PFA-fixed cells was measured in tandem with the size, chlorophyll a, and side scatter. After this, 10 µL of BODIPY stain (2 mg mL−1 in DMSO) was added to each sample, resulting in a final BODIPY concentration of 2 μg mL−1. Samples were incubated for 10 min in the dark before being read again on the flow cytometer. Neutral lipid content was defined as the difference in median fluorescence per cell between the pre- and post-stained sample. This value was then divided by the ESD size to account for size-related effects.Photophysiological traitsPhotophysiological measures were taken by conducting a rapid light curve [48] with a water PAM (Water-PAM; Walz GmbH, Effeltrich, Germany) using 1 mL of experimental culture diluted in artificial seawater. The rapid light curve protocol exposes the culture to 8 steps of increasing irradiance for 10 seconds each, measuring the photophysiological response at each step. Maximum electron transport rate (ETRmax), Ik (half saturation irradience), and alpha (the photosynthetic rate during the light-limited linear region) were calculated using the regression fit function in the PAM WinControl software. Photophysiology measurements were taken between 4–5 h after the start of the photoperiod.Reactive oxygen speciesThe development of reactive oxygen species (ROS) was measured using the fluorescent probe 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA; Thermo Fisher, MA, USA) which has been used in a number of phytoplankton studies [49,50,51]. Two 1 mL aliquots of experimental culture were transferred to a 48 well tissue culture plate; 2 µL of stain (2.5 mg mL−1 H2DCFDA was made in DMSO) was added to one aliquot, with the other acting as a blank. The plates were sealed (Breathe-Easy, Diversified Biotech) and incubated in the dark at growth temperature (20 or 30 °C) for 2 h. Incubation was done in the dark because of the effects of light on the dye itself, therefore the effects of the excess light treatment were not captured in this trait. Fluorescence of H2DCFDA was read using a plate reader with 488 nm excitation 525 nm emission (TECAN Infinite M1000 Pro, Männedorf, Switzerland). ROS concentration was estimated as the difference in fluorescence units per cell between the stained and unstained aliquots of each culture. This metric was also divided by ESD size to account for size effects.Taxonomic confirmation of strainsDNA from stock cultures (10 mL) was extracted using a DNeasy PowerSoil kit (QIAGEN Inc., CA, USA) and checked for quality with a NanopDrop™ 2000 (ThermoFIsher Scientific, MA, USA), before amplification and sequencing at the Australian Genome Research Facility (AGRF, Sydney, Australia). PCR conditions and primers used were those developed by Chappell et al. [52] for the ITS region: forward primer: 5ʹ-RCGAAYTGCAGAACCTCG-3ʹ, reverse primer: 5ʹ-TACTYAATCTGAGATYCA-3ʹ.Bioinformatics processing was conducted using Geneious Prime (Version 2020.0.5; Biomatters Ltd.). Strain sequences were compared to GenBank using the BLAST function to confirm species identity. Nucleotide sequences were aligned using the MUSCLE alignment [53], followed by Bayesian inference analysis using MrBayes [54] to generate a phylogenetic tree. The out-group for the tree was a strain of Chaetoceros atlanticus isolate TPV2 1146 obtained from GenBank. Percentage similarity between strains according to the alignment was used as a metric of genetic relatedness.Statistical analysisWe assessed the multivariate phenotypes for the Thalassiosira strains using principal component analysis (PCA). The input variables were the 9 independent trait measurements made on each replicate culture (n = 36, 3 biological replicates per strain). Trait data was standardized (mean = 0, SD = 1) for each trait prior to PCA analysis to account for differences in the units and scale of measurements. The resulting PCA plot was defined as the ‘trait-scape’.Hierarchical clustering analysis was performed on the 9-trait dataset used to assess similarity in multivariate phenotypes between each replicate for each strain (n = 3 per strain).To compare genetic vs. phenotypic similarity, percentage similarity between strains was correlated against the distance between strain centroids (multivariate means) within the trait-scape. Distances between multivariate means (centroids) were calculated using the equation:$${{{{{{{mathrm{distance}}}}}}}} = sqrt {left( {{{{{{{{mathrm{{Delta}}}}}}}PC}}1.{{{{{{{mathrm{a}}}}}}}}} right)^2,+,left( {{{{{{{{mathrm{{Delta}}}}}}}PC}}2.{{{{{{{mathrm{b}}}}}}}}} right)^2}$$ΔPC1 is the difference in PC1 co-ordinates between the two strains, a is the % variance explained by PC1, ΔPC2 is the difference in PC2 co-ordinates between the two strains, b is the % variance explained by PC2.To assess whether a trait-scape generated using fewer input traits (4 rather than 9) was representative of the full, 9-trait plot, we conducted PCA using 4 input traits, and then assessed whether the inter-strain distances (distances between centroids) within the plot were correlated using linear regression. This provided a quantitative assessment of whether the strains were in the same relative positions to each other within the trait-scape.Covariation of traitsTo compare the pairwise relationships between traits across the strains, correlation matrices were made using data collected in the standard environment, and for the HT and LN environments.Phenotypic plasticityThe change in phenotypes in the new environments were assessed firstly by conducting PCA on the full dataset, including trait data from the 13 strains grown in the standard environment, plus the 5 strains grown in the two additional environments. This generated an “expanded trait-scape”. In addition, correlation matrices were generated for the new environments’ trait dataset to assess differences in trait-trait relationships between the ‘standard’ and “expanded” datasets.Relative changes in trait values for each trait in the new environments were calculated as follows:$$ {{{{{{{mathrm{Relative}}}}}}}},{{{{{{{mathrm{change}}}}}}}} \ = frac{{{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{new}}}}}}}},{{{{{{{mathrm{environment}}}}}}}} – overline {{{{{{{mathrm{x}}}}}}}} ,,{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{standard}}}}}}}},{{{{{{{mathrm{environment}}}}}}}}}}{{overline {{{{{{{mathrm{x}}}}}}}} ,,{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{standard}}}}}}}},{{{{{{{mathrm{environment}}}}}}}}}}$$We used PCA to assess whether the relative changes in trait values were consistent between strains in the two different environments. i.e., was the relative change in whole phenotype consistent. If the changes were consistent across strains, we expected to see clustering in the PCA based on treatment.Statistical softwareStatistical analyses were performed in R [55], Matlab, and Microsoft Excel. Hierarchical clustering analysis with multiscale bootstrap resampling (1000 replicates) on trait values from biological replicates was done with the ‘pvclust’ package in R [56] using Euclidean distance and the average (UPGMA) method. Principal component analysis was used to generate the multivariate trait-scape was done using the “vegan package” in R [57]. The contributions of each trait to the PC axes (loadings) were extracted using the “factoextra” package in R [58]. Trait correlation matrices were generated using the “corrplot” package in R [59]. More

  • in

    Acrylate protects a marine bacterium from grazing by a ciliate predator

    1.Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Zan, J. et al. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 364, eaaw6732 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Yoch, D. C. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 68, 5804–5815 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. 8, 637 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Curson, A. et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat. Microbiol. 2, 17009 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Williams, B. T. et al. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat. Microbiol. 4, 1815–1825 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Zhang, X. H. et al. Biogenic production of DMSP and its degradation to DMS—their roles in the global sulfur cycle. Sci. China Life. Sci. 62, 1296–1319 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Alstyne, K. L. V., Wolfe, G. V., Freidenburg, T. L., Neill, A. & Hicken, C. Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 213, 53–65 (2001).Article 

    Google Scholar 
    10.Paul, V. J. & Van Alstyne, K. L. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160, 191–203 (1992).CAS 
    Article 

    Google Scholar 
    11.Strom, S. et al. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceangr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    12.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    13.Liu, C. et al. Puniceibacterium antarcticum gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 64, 1566–1572 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Aronson, D. E., Costantini, L. M. & Snapp, E. L. Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Traffic 12, 543–548 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Coppellotti Krupa, O. & Vannucci, D. Citrate synthase from Antarctic ciliates: adaptation to low temperatures and comparison with temperate ciliates. Polar Biol. 26, 452–457 (2003).Article 

    Google Scholar 
    16.Asher, E. C., Dacey, J. W. H., Stukel, M., Long, M. C. & Tortell, P. D. Processes driving seasonal variability in DMS, DMSP, and DMSO concentrations and turnover in coastal Antarctic waters. Limnol. Oceanogr. 62, 104–124 (2017).Article 

    Google Scholar 
    17.Ahmed, M., Stal, L. J. & Hasnain, S. DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM). J. Ind. Microbiol. Biotechnol. 38, 249–255 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hojo, F. et al. Ciliates expel environmental Legionella-laden pellets to stockpile food. Appl. Environ. Microbiol. 78, 5247–5257 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Seymour, J. R., Simo, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Shemi, A. et al. Dimethyl sulfide acts as eat-me signal during microbial predator–prey interactions in the ocean. Research Square https://doi.org/10.21203/rs.3.rs-139243/v1 (2021).21.Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Wang, P. et al. Structural and molecular basis for the novel catalytic mechanism and evolution of DddP, an abundant peptidase-like bacterial dimethylsulfoniopropionate lyase: a new enzyme from an old fold. Mol. Microbiol. 98, 289–301 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Li, C. Y. et al. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide. Proc. Natl Acad. Sci. USA 111, 1026–1031 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.González, J. M., Whitman, W. B., Hodson, R. E. & Moran, M. A. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62, 4433–4440 (1996).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Freier, D., Mothershed, C. P. & Wiegel, J. Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 54, 204–JW211 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Wang, P. et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb. Cell Fact. 14, 11 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Obranic, S., Babic, F. & Maravic-Vlahovicek, G. Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors. Plasmid 70, 263–267 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dinh, T. & Bernhardt, T. G. Using superfolder green fluorescent protein for periplasmic protein localization studies. J. Bacteriol. 193, 4984–4987 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Yu, Z. C. et al. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Microb. Cell Fact. 13, 13 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5–8 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Ansede, J. H., Pellechia, P. J. & Yoch, D. C. Metabolism of acrylate to beta-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol. 65, 5075–5081 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Liu, J. et al. Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front. Microbiol. 9, 3206–3206 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Shao, X. et al. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol. Microbiol. 111, 1057–1073 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Dumon-Seignovert, L., Cariot, G. & Vuillard, L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr. Purif. 37, 203–206 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Barek, J., Pumera, M., Muck, A., Kadeřabkova, M. & Zima, J. Polarographic and voltammetric determination of selected nitrated polycyclic aromatic hydrocarbons. Anal. Chim. Acta 393, 141–146 (1999).CAS 
    Article 

    Google Scholar 
    37.Sherr, B. F., Sherr, E. B. & Fallon, R. D. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53, 958–965 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Perez-Uz, B. Bacterial preferences and growth kinetic variation in Uronema marinum and Uronema nigricans (Ciliophora: Scuticociliatida). Microb. Ecol. 31, 189–198 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Siegmund, L., Schweikert, M., Fischer, M. S. & Wostemeyer, J. Bacterial surface traits influence digestion by Tetrahymena pyriformis and alter opportunity to escape from food vacuoles. J. Eukaryot. Microbiol. 65, 600–611 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Christaki, U. et al. Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnol. Oceanogr. Meth. 9, 329–339 (2011).Article 

    Google Scholar 
    41.Headland, S. E., Jones, H. R., D’Sa, A. S., Perretti, M. & Norling, L. V. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci. Rep. 4, 5237 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Hayduk, W. & Laudie, H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J. 20, 611–615 (1974).CAS 
    Article 

    Google Scholar 
    43.Schotte, W. Prediction of the molar volume at the normal boiling point. Chem. Eng. J. 48, 167–172 (1992).CAS 
    Article 

    Google Scholar 
    44.Carrión, O. et al. A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments. Nat. Commun. 6, 6579 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Zhang, W. et al. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat. Commun. 10, 517 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Hoffman, K. & Stoffel, W. TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).
    Google Scholar 
    48.Bansal, M. S., Alm, E. J. & Kellis, M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28, i283–i291 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Eat me, or don’t eat me?

    1.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Science 281, 237–240 (1998).CAS 
    Article 

    Google Scholar 
    2.Lewis, K. M., Van Duken, G. L. & Arrigo, K. R. Science https://doi.org/10.1126/science.aay8380 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).CAS 
    Article 

    Google Scholar 
    4.Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Science 329, 342–345 (2010).CAS 
    Article 

    Google Scholar 
    5.Shemi, A. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00971-3 (2021).Article 

    Google Scholar 
    6.Teng, Z.-J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00981-1 (2021).Article 

    Google Scholar 
    7.Sieburth, J. M. Science 132, 676–677 (1960).CAS 
    Article 

    Google Scholar 
    8.Strom, S., Wolfe, G., Holmes, J., Stecher, H., Shimeneck, C. & Sarah, L. Limnol. Oceanogr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    9.Wolfe, G. V., Steinke, M. & Kirst, G. O. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    10.Curson, A. R. J. et al. Nat. Microbiol. 2, 17009 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways

    1.Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, Sogin ML, et al. Prevalence of Streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol. 2012;194:4709–17.CAS 
    Article 

    Google Scholar 
    2.Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One. 2012;7:e45001.CAS 
    Article 

    Google Scholar 
    3.Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA. 2012;109:13769–74.CAS 
    Article 

    Google Scholar 
    4.Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, et al. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2011;5:20–9.Article 

    Google Scholar 
    5.Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA. 2007;104:20529–33.CAS 
    Article 

    Google Scholar 
    6.Brown PS, Pope CE, Marsh RL, Qin X, McNamara S, Gibson R, et al. Directly sampling the lung of a young child with cystic fibrosis reveals diverse microbiota. Ann Am Thorac Soc. 2014;11:1049–55.Article 

    Google Scholar 
    7.Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe. 2015;18:307–19.CAS 
    Article 

    Google Scholar 
    8.Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci USA. 2008;105:15070–5.CAS 
    Article 

    Google Scholar 
    9.van der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW, et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 2011;5:780–91.Article 

    Google Scholar 
    10.Zhao J, Carmody LA, Kalikin LM, Li J, Petrosino JF, Schloss PD, et al. Impact of enhanced Staphylococcus DNA extraction on microbial community measures in cystic fibrosis sputum. PLoS One. 2012;7:e33127.CAS 
    Article 

    Google Scholar 
    11.Carmody LA, Zhao J, Schloss PD, Petrosino JF, Murray S, Young VB, et al. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc. 2013;10:179–87.Article 

    Google Scholar 
    12.Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One. 2010;5:e11044.Article 

    Google Scholar 
    13.Stressmann FA, Rogers GB, van der Gast CJ, Marsh P, Vermeer LS, Carroll MP, et al. Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. Thorax. 2012;67:867–73.Article 

    Google Scholar 
    14.Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA. 2012;109:5809–14.CAS 
    Article 

    Google Scholar 
    15.Rogers GB, Bruce KD, Hoffman LR. How can the cystic fibrosis respiratory microbiome influence our clinical decision-making? Curr Opin Pulm Med. 2017;23:536–43.Article 

    Google Scholar 
    16.Widder S, Knapp S. Microbial metabolites in cystic fibrosis: a target for future therapy? Am J Respir Cell Mol Biol. 2019;61:132–3.17.Mahboubi MA, Carmody LA, Foster BK, Kalikin LM, VanDevanter DR, LiPuma JJ. Culture-based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens. J Clin Microbiol. 2016;54:613–9.CAS 
    Article 

    Google Scholar 
    18.Carmody LA, Caverly LJ, Foster BK, Rogers MAM, Kalikin LM, Simon RH, et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis. PLoS One. 2018;13:e0194060.Article 

    Google Scholar 
    19.Zhao J, Li J, Schloss PD, Kalikin LM, Raymond TA, Petrosino JF, et al. Effect of sample storage conditions on cultureindependent bacterial community measures in cystic fibrosis sputum specimens. J Clin Microbiol 2011;49:3717–8.20.Hnizdo E, Yu L, Freyder L, Attfield M, Lefante J & Glindmeyer HW. The precision of longitudinal lung function measurements: Monitoring and interpretation. Occup Environ Med 2005;62:695–701.21.Konstan MW, Wagener JS, VanDevanter DR. Characterizing aggressiveness and predicting future progression of CF lung disease. J Cyst Fibros. 2009;8:S15–19.Article 

    Google Scholar 
    22.Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16s rRNA-based studies. PLoS One. 2011;6:e27310.CAS 
    Article 

    Google Scholar 
    23.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    Article 

    Google Scholar 
    24.Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–145.CAS 
    Article 

    Google Scholar 
    25.Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun 2017;8:15393.26.Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.CAS 
    Article 

    Google Scholar 
    27.Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One. 2012;7:e30126.CAS 
    Article 

    Google Scholar 
    28.Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–60.CAS 
    Article 

    Google Scholar 
    29.Price KE, Hampton TH, Gifford AH, Dolben EL, Hogan DA, Morrison HG, et al. Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 2013;1:27.30.Carmody LA, Zhao J, Kalikin LM, LeBar W, Simon RH, Venkataraman A, et al. The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation. Microbiome 2015;3:12.31.de Dios Caballero J, Vida R, Cobo M, Maiz L, Suarez L, Galeano J, et al. Individual patterns of complexity in cystic fibrosis lung microbiota, including predator bacteria, over a 1-year period. mBio 2017;8::e00959–17.32.Whelan, FJ, Heirali AA, Rossi L, Rabin HR, Parkins MD, & Surette MG. Longitudinal sampling of the lung microbiota in individuals with cystic fibrosis. PLoS One 2017:12:e0172811.33.Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 2016;1.34.Douglas, GM, Maffei, VJ, Zaneveld, JR, Yurgel, SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020;38:685–8.35.Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 2018;46:D633–D639.36.Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv 2018;4:eaau1908.37.Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, et al. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes. 2016;2:4.Article 

    Google Scholar 
    38.Pradeu T, Vivier E. The discontinuity theory of immunity. Sci Immunol. 2016;1:AAG0479.39.Flynn JM, Niccum D, Dunitz JM, Hunter RC. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 2016;12:e1005846.Article 

    Google Scholar 
    40.Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    Article 

    Google Scholar 
    41.Rose MC & Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006;86:245–78.42.Tailford LE, Crost EH, Kavanaugh D. & Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet 2015;6:81.43.Wheeler KM, Carcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux S, et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019;4:2146–54.44.Twomey KB, O’Connell OJ, McCarthy Y, Dow JM, O’Toole GA, Plant BJ, et al. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J 2012;6:939–50.45.Zemanick ET, Wagner BD, Robertson CE, Ahrens RC, Chmiel JF, Clancy JP, et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 2017;50:1700832.46.Lu J, Carmody LA, Opron K, Simon RH, Kalikin LM, Caverly LJ, et al. Parallel analysis of cystic fibrosis sputum and saliva’reveals overlapping communities and an opportunity for sample decontamination. mSystems 2020;5.47.Jones KL, Hegab AH, Hillman BC, Simpson KL, Jinkins PA, Grisham MB, et al. Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr Pulmonol 2000;30:79–85.48.Quinn RA, Lim YW, Maughan H, Conrad D, Rohwer F, Whiteson KL. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. mBio. 2014;5:e00956–00913.Article 

    Google Scholar 
    49.Mirkovic B, Murray MA, Lavelle GM, Molloy K, Azim AA, Gunaratnam C, et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. Am J Respir Crit Care Med. 2015;192:1314–24.CAS 
    Article 

    Google Scholar 
    50.Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) t cell metabolism. Immunity. 2018;48:992–1005.e1008.CAS 
    Article 

    Google Scholar 
    51.Flynn JM, Phan C, Hunter RC. Genome-wide survey of Pseudomonas aeruginosa PA14 reveals a role for the glyoxylate pathway and extracellular proteases in the utilization of mucin. Infect Immun. 2017;85:e00182–17.52.Jorth P, Ehsan Z, Rezayat A, Caldwell E, Pope C, Brewington JJ, et al. Direct lung sampling indicates that established pathogens dominate early infections in children with cystic fibrosis. Cell Rep. 2019;27:1190–204.e1193.CAS 
    Article 

    Google Scholar 
    53.Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol. 2019;37:783–92.CAS 
    Article 

    Google Scholar 
    54.Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio. 2015;6:e00767.CAS 
    Article 

    Google Scholar 
    55.Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020;8:45. More

  • in

    Sociability strongly affects the behavioural responses of wild guanacos to drones

    1.Jones, G. P., Pearlstine, L. G. & Percival, H. F. An assessment of small unmanned aerial vehicles for wildlife research. Wildl. Soc. Bull. 34, 750–758 (2006).Article 

    Google Scholar 
    2.Jones, G. P. The feasibility of using small unmanned aerial vehicles for wildlife research. Masters Thesis. (University of Florida, 2003).3.Watts, A. C. et al. Unmanned aircraft systems (UASs) for ecological research and natural-resource monitoring (Florida). Ecol. Restor. 26, 13–14 (2008).Article 

    Google Scholar 
    4.Chabot, D. Systematic Evaluation of a Stock Unmanned Aerial Vehicle (UAV) System for Small-Scale Wildlife Survey Applications. Masters Thesis. (McGill University, 2009).5.Koski, W. R. et al. Evaluation of an unmanned airborne system for monitoring marine mammals. Aquat. Mamm. 35, 347–357 (2009).MathSciNet 
    Article 

    Google Scholar 
    6.Soriano, P., Caballero, F. & Ollero, A. RF-based particle filter localization for wildlife tracking by using an UAV. Int. Symp. Robot. 40, 239–244 (2009).
    Google Scholar 
    7.Sukkarieh, S. UAV based search for a radio tagged animal using particle filters at Stuttgart. In Australasian Conference on Robotics and Automation (ACRA) (2009).8.Abd-Elrahman, A., Pearlstine, L. & Percival, F. Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surv. L. Inf. Sci. 65, 37–45 (2005).
    Google Scholar 
    9.Singh, K. K., Frazier, A. E. & Frazier, A. E. A meta-analysis and review of unmanned aircraft system (UAS) imagery for terrestrial applications. Int. J. Remote Sens. 00, 1–21 (2018).
    Google Scholar 
    10.Rebolo-Ifran, N., Grilli, M. G. & Lambertucci, S. Drones as a threat to wildlife: YouTube complements science in providing evidence about their effect. Environ. Conserv. https://doi.org/10.1017/S0376892919000080 (2019).Article 

    Google Scholar 
    11.Weston, M. A., O’Brien, C., Kostoglou, K. N. & Symonds, M. R. E. E. Escape responses of terrestrial and aquatic birds to drones: Towards a code of practice to minimize disturbance. J. Appl. Ecol. 57, 777–785 (2020).Article 

    Google Scholar 
    12.Vas, E., Lescroël, A., Duriez, O., Boguszewski, G. & Grémillet, D. Approaching birds with drones: First experiments and ethical guidelines. Biol. Lett. 11, 20140754 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pomeroy, P., O’Connor, L. & Davies, P. Assessing use of and reaction to unmanned aerial systems in gray and harbor seals during breeding and molt in the UK. J. Unmanned Veh. Syst. 3, 102–113 (2015).Article 

    Google Scholar 
    14.Giles, A. B. et al. Responses of bottlenose dolphins (Tursiops spp.) to small drones. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3440 (2020).Article 

    Google Scholar 
    15.Mulero-Pázmány, M. et al. Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE 12, 1–14 (2017).Article 
    CAS 

    Google Scholar 
    16.Bennitt, E., Bartlam-Brooks, H. L. A., Hubel, T. Y. & Wilson, A. M. Terrestrial mammalian wildlife responses to unmanned aerial systems approaches. Sci. Rep. 9, 2142 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Irigoin-Lovera, C., Luna, D. M., Acosta, D. A. & Zavalaga, C. B. Response of colonial Peruvian guano birds to flying UAVs: Effects and feasibility for implementing new population monitoring methods. PeerJ 7, e8129 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.McEvoy, J. F., Hall, G. P. & McDonald, P. G. Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition. PeerJ 2016, e1831 (2016).Article 
    CAS 

    Google Scholar 
    19.Barnas, A. F., Felege, C. J., Rockwell, R. F. & Ellis-Felege, S. N. A pilot(less) study on the use of an unmanned aircraft system for studying polar bears (Ursus maritimus). Polar Biol. 41, 1055–1062 (2018).Article 

    Google Scholar 
    20.Jarrett, D., Calladine, J., Cotton, A., Wilson, M. W. & Humphreys, E. Behavioural responses of non-breeding waterbirds to drone approach are associated with flock size and habitat. Bird Study 67, 190–196 (2020).Article 

    Google Scholar 
    21.Bevan, E. et al. Measuring behavioral responses of sea turtles, saltwater crocodiles, and crested terns to drone disturbance to define ethical operating thresholds. PLoS One 13, e0194460 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Stankowich, T. Ungulate flight responses to human disturbance: A review and meta-analysis. Biol. Conserv. 141, 2159–2173 (2008).Article 

    Google Scholar 
    23.Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269–286 (2012).Article 

    Google Scholar 
    24.Wisdom, M. J., Ager, A. A., Preisler, H. K., Cimon, N. J. & Johnson, B. K. Effects of off-road recreation on mule deer and elk. In Transactions of the 69th North American Wildlife and Natural Resources Conference 531–550 (2004).25.Penny, S. G., White, R. L., Scott, D. M., MacTavish, L. & Pernetta, A. P. Using drones and sirens to elicit avoidance behaviour in white rhinoceros as an anti-poaching tactic. Proc. R. Soc. B Biol. Sci. 286, 20191135 (2019).Article 

    Google Scholar 
    26.Frid, A. & Dill, L. M. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    27.Dill, L. M. & Frid, A. Behaviourally mediated biases in transect surveys: A predation risk sensitivity approach. Can. J. Zool. 98, 697–704 (2020).Article 

    Google Scholar 
    28.Pulliam, R. H. On the advantage of flocking. J. Theor. Biol. 38, 419–422 (1973).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Taraborelli, P., Gregorio, P., Moreno, P., Novaro, A. & Carmanchahi, P. Cooperative vigilance: The guanaco’ s (Lama guanicoe) key antipredator mechanism. Behav. Process. 91, 82–89 (2012).Article 

    Google Scholar 
    30.Delm, M. M. Vigilance for predators: Detection and dilution effects. Behav. Ecol. Sociobiol. 26, 337–342 (1990).Article 

    Google Scholar 
    31.Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).Article 

    Google Scholar 
    32.Brunton, E., Bolin, J., Leon, J. & Burnett, S. Fright or flight? Behavioural responses of kangaroos to drone-based monitoring. Drones 3, 1–11 (2019).Article 

    Google Scholar 
    33.Lent, P. C. Mother-infant relationships in ungulates. Behav. Ungulates Relat. Manag. I, 14–55 (1974).
    Google Scholar 
    34.Franklin, W. Contrasting socioecologies of South America´s wild camelids: The vicuña and the guanaco. Adv. Study Mamm. Behav. 7, 573–629 (1983).
    Google Scholar 
    35.Ortega, I. M. & Franklin, W. L. Social organization, distribution and movements of a migratory guanaco population in the Chilean Patagonia. Rev. Chil. Hist. Nat. 68, 489–500 (1995).
    Google Scholar 
    36.Schroeder, N. M., Panebianco, A., Musso, R. G. & Carmanchahi, P. An experimental approach to evaluate the potential of drones in terrestrial mammal research: A gregarious ungulate as a study model. R. Soc. Open Sci. 7, 191482 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Lima, S. L. Back to the basics of anti-predatory vigilance: the group size effect. Anim. Behav. 49, 11–20 (1995).Article 

    Google Scholar 
    38.Marino, A. & Baldi, R. Vigilance patterns of territorial guanacos (Lama guanicoe): The role of reproductive interests and predation risk. Ethology 114, 413–423 (2008).Article 

    Google Scholar 
    39.Taraborelli, P. et al. Different factors that modify anti-predator behaviour in guanacos (Lama guanicoe). Acta Theriol. (Warsz) 59, 529–539 (2014).Article 

    Google Scholar 
    40.Donadio, E. & Buskirk, S. W. Flight behavior in guanacos and vicuñas in areas with and without poaching in western Argentina. Biol. Conserv. 127, 139–145 (2006).Article 

    Google Scholar 
    41.Marino, A. & Johnson, A. Behavioural response of free-ranging guanacos (Lama guanicoe) to land-use change: Habituation to motorised vehicles in a recently created reserve. Wildl. Res. 39, 503–511 (2012).Article 

    Google Scholar 
    42.Malo, J. E., Acebes, P. & Traba, J. Measuring ungulate tolerance to human with flight distance: A reliable visitor management tool?. Biodivers. Conserv. 20, 3477e3488 (2011).Article 

    Google Scholar 
    43.Marino, A. Indirect measures of reproductive effort in a resource-defense polygynous ungulate: Territorial defense by male guanacos. J. Ethol. 30, 83–91 (2012).Article 

    Google Scholar 
    44.Marino, A. & Ricardo, B. Vigilance patterns of territorial guanacos (Lama guanicoe): the role of reproductive interests and predation risk. Ethology 114, 413–423 (2008).Article 

    Google Scholar 
    45.Merino, M. L. & Cajal, C. J. Estructura social de la población de guanacos (Lama guanicoe Muller, 1776) en la costa norte de Península Mitre, Tierra del Fuego, Argentina. Stud. Neotrop. Fauna Environ. 28, 129–138 (1993).Article 

    Google Scholar 
    46.Marino, A. & Baldi, R. Ecological correlates of group-size variation in a resource-defense ungulate, the sedentary Guanaco. PLoS ONE 9, e89060 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Fattorini, N. et al. Temporal variation in foraging activity and grouping patterns in a mountain-dwelling herbivore: Environmental and endogenous drivers. Behav. Process. 167, 103909 (2019).Article 

    Google Scholar 
    48.Blank, D., Ruckstuhl, K. & Yang, W. Influence of population density on group sizes in goitered gazelle (Gazella subgutturosa Guld., 1780). Eur. J. Wildl. Res. 58, 981–989 (2012).Article 

    Google Scholar 
    49.Isvaran, K. Intraspecific variation in group size in the blackbuck antelope: The roles of habitat structure and forage at different spatial scales. Oecologia 154, 435–444 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Mahoney, S. P., Mawhinney, K., McCarthy, C., Anions, D. & Taylor, S. Caribou reactions to provocation by snowmachines in Newfoundland. Rangifer 21, 35 (2001).Article 

    Google Scholar 
    51.Ruiz Blanco, M. et al. Supervivencia y causas de mortalidad durante el primer año de vida de guanacos en el norte de patagonia. In XXVII Jornadas Argentinas de Mastozoología 151 (2014).52.Weimerskirch, H., Prudor, A. & Schull, Q. Flights of drones over sub-Antarctic seabirds show species- and status-specific behavioural and physiological responses. Polar Biol. 41, 259–266 (2018).Article 

    Google Scholar 
    53.McIntosh, R. R., Holmberg, R. & Dann, P. Looking without landing-using Remote Piloted Aircraft to monitor fur seal populations without disturbance. Front. Mar. Sci. 5, (2018).54.Mesquita, G. P., Rodríguez-Teijeiro, J. D., Wich, S. A. & Mulero-Pázmány, M. Measuring disturbance at swift breeding colonies due to the visual aspects of a drone: a quasi-experiment study. Curr. Zool. https://doi.org/10.1093/cz/zoaa038 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Scobie, C. A. & Hugenholtz, C. H. Wildlife monitoring with unmanned aerial vehicles: Quantifying distance to auditory detection. Wildl. Soc. Bull. 40, 781–785 (2016).Article 

    Google Scholar 
    56.Rümmler, M. C., Esefeld, J., Hallabrin, M. T., Pfeifer, C. & Mustafa, O. Emperor penguin reactions to UAVs: First observations and comparisons with effects of human approach. Remote Sens. Appl. Soc. Environ. 23, 100545 (2021).
    Google Scholar 
    57.Zbyryt, A., Dylewski, Ł, Morelli, F., Sparks, T. H. & Tryjanowski, P. Behavioural responses of adult and young White Storks Ciconia ciconia in nests to an unmanned aerial vehicle. Acta Ornithol. 55, 243–251 (2020).
    Google Scholar 
    58.Christiansen, F., Rojano-Doñate, L., Madsen, P. T. & Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 3, 277 (2016).Article 

    Google Scholar 
    59.Arona, L., Dale, J., Heaslip, S. G., Hammill, M. O. & Johnston, D. W. Assessing the disturbance potential of small unoccupied aircraft systems (UAS) on gray seals (Halichoerus grypus) at breeding colonies in Nova Scotia, Canada. PeerJ https://doi.org/10.7717/peerj.4467 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Goebel, M. E. et al. A small unmanned aerial system for estimating abundance and size of Antarctic predators. Polar Biol. 38, 619–630 (2015).Article 

    Google Scholar 
    61.Cracknell, A. P. UAVs: Regulations and law enforcement. Int. J. Remote Sens. 38, 3054–3067 (2017).Article 

    Google Scholar 
    62.ANAC, A. N. de A. C. Reglamento de Vehículos Aéreos no Tripulados (VANT) y de Sistemas de Vehículos Aéreos no Tripulados (SVANT). (2019).63.Brisson-Curadeau, É. et al. Seabird species vary in behavioural response to drone census. Sci. Rep. 7, 17884 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Rümmler, M.-C., Mustafa, O., Maercker, J., Peter, H.-U. & Esefeld, J. Sensitivity of Adélie and Gentoo penguins to various flight activities of a micro UAV. Polar Biol. 41, 2481–2493 (2018).Article 

    Google Scholar 
    65.Ditmer, M. A. et al. Bears habituate to the repeated exposure of a novel stimulus, unmanned aircraft systems. Conserv. Physiol. 7, 1–7 (2019).Article 

    Google Scholar 
    66.Young, J. K. & Franklin, W. L. Territorial Fidelity of male guanacos in the Patagonia of Southern Chile. J. Mammal. 85, 72–78 (2004).Article 

    Google Scholar 
    67.Martínez Carretero, E. La Provincia Fitogeográfica de la Payunia. Boletín la Soc. Argentina Botánica 39, 195–226 (2004).
    Google Scholar 
    68.Schroeder, N. M. et al. Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: Insights from using density surface and null models. PLoS One 9, e85960 (2014).
    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Bolgeri, M. J. Caracterización de movimientos migratorios en guanacos (Lama guanicoe) y patrones de depredación por pumas (Puma concolor) en la Payunia, Mendoza. Phd Thesis. (Universidad Nacional del Comahue, 2016).70.Bolgeri, M. J. & Novaro, A. J. Variación espacial en la depredación por puma (Puma concolor) sobre guanacos (Lama guanicoe) en la Payunia, Mendoza,Argentina. Mastozoología Neotrop. 22, 255–264 (2015).
    Google Scholar 
    71.Candia, R., Puig, S., Dalmasso, A., Videla, F. & Martínez Carretero, E. Diseño del Plan de Manejo para la reserva provincial La Payunia (Malargüe, Mendoza). Multequina 2, 5–87 (1993).
    Google Scholar 
    72.Carmanchahi, P. D. et al. Physiological response of wild guanacos to capture for live shearing. Wildl. Res. 38, 61–68 (2011).Article 

    Google Scholar 
    73.Martin, P. & Bateson, P. Measuring Behaviour. An Introductory Guide. (Cambridge University Press, 2007).74.Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    75.McCullagh, P. & Nelder, J. Generalized Linear Models. Second Edition. (Chapman & Hall, 1989).76.Fox, J. & Monette, G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 87, 178–183 (1992).Article 

    Google Scholar 
    77.Zuur, A. F., Ieno, E. N. & Smith, G. M. Analysing Ecological Data. (Springer, 2007).78.Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models. Cambridge 651 (2007). https://doi.org/10.2277/052186706179.Korner-Nievergelt, F. et al. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan. (2015). https://doi.org/10.1007/s13398-014-0173-7.280.R Core Team. R Development Core Team. R A Lang. Environ. Stat. Comput. 55, 275–286 (2016).81.Fox, J. & Weisberg, S. An R Companion to Applied Regression, 3rd edn. (2019).82.Gelman, A. et al. Data analysis using regression and multilevel/hierarchical models. R package version 1, 10–1 (2018).

    Google Scholar  More

  • in

    Sublethal effects of bifenazate on biological traits and enzymatic properties in the Panonychus citri (Acari: Tetranychidae)

    1.Zhang, Z. Y. et al. A shift pattern of bacterial communities across the life stages of the citrus red mite, Panonychus citri. Front. Microbiol. 11, 1620. https://doi.org/10.3389/fmicb.2020.01620 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Pan, D., Dou, W., Yuan, G. R., Zhou, Q. H. & Wang, J. J. Monitoring the resistance of the citrus red mite (Acari: Tetranychidae) to four acaricides in different citrus orchards in China. J. Econ. Entomol. 113, 918–923. https://doi.org/10.1093/jee/toz335 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Zhang, Y., Guo, L., Atlihan, R., Chi, H. & Chu, D. Demographic analysis of progeny fitness and timing of resurgence of Laodelphax striatellus after insecticides exposure. Entomol. Generalis 39, 221–230. https://doi.org/10.1127/entomologia/2019/0816 (2019).Article 

    Google Scholar 
    4.Quesada, C. R. & Sadof, C. S. Field evaluation of insecticides and application timing on natural enemies of selected armored and soft scales. Biol. Control 133, 81–90. https://doi.org/10.1016/j.biocontrol.2019.03.013 (2019).CAS 
    Article 

    Google Scholar 
    5.Ullah, F. et al. Fitness costs in chlorfenapyr-resistant populations of the chive maggot, Bradysia odoriphaga. Ecotoxicology 29, 407–416. https://doi.org/10.1007/s10646-020-02183-7 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Razik, M. A. R. A. M. A. Toxicity and side effects of some insecticides applied in cotton fields on Apis mellifera. Environ. Sci. Pollut. R. 26, 4987–4996. https://doi.org/10.1007/s11356-018-04061-6 (2019).CAS 
    Article 

    Google Scholar 
    7.Ochiai, N. et al. Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus. Exp. Appl. Acarol. 43, 181–197. https://doi.org/10.1007/s10493-007-9115-9 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Van Nieuwenhuyse, P. et al. On the mode of action of bifenazate: New evidence for a mitochondrial target site. Pestic. Biochem. Physiol. 104, 88–95. https://doi.org/10.1016/j.pestbp.2012.05.013 (2012).CAS 
    Article 

    Google Scholar 
    9.Wang, R. et al. Lethal and sublethal effects of a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Crop Prot. 83, 15–19. https://doi.org/10.1016/j.cropro.2016.01.015 (2016).CAS 
    Article 

    Google Scholar 
    10.Ullah, F., Gul, H., Desneux, N., Gao, X. & Song, D. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol. Generalis 39, 325–337 (2019).Article 

    Google Scholar 
    11.Dong, J., Wang, K., Li, Y. & Wang, S. Lethal and sublethal effects of cyantraniliprole on Helicoverpa assulta (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 136, 58–63. https://doi.org/10.1016/j.pestbp.2016.08.003 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Elzen, G. W. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J. Econ. Entomol. 94, 55–59. https://doi.org/10.1603/0022-0493-94.1.55 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Deng, D. et al. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology 28, 825–833. https://doi.org/10.1007/s10646-019-02080-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Guo, L. et al. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L.. Crop Prot. 48, 29–34. https://doi.org/10.1016/j.cropro.2013.02.009 (2013).CAS 
    Article 

    Google Scholar 
    16.Duke, S. O. et al. (eds) Pesticide Dose: Effects on the Environment and Target and Non-target Organisms 101–119 (American Chemical Society, 2017).
    Google Scholar 
    17.Guedes, N. M. P., Tolledo, J., Correa, A. S. & Guedes, R. N. C. Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J. Appl. Entomol. 134, 142–148. https://doi.org/10.1111/j.1439-0418.2009.01462.x (2010).CAS 
    Article 

    Google Scholar 
    18.Haddi, K., Oliveira, E. E., Faroni, L. R., Guedes, D. C. & Miranda, N. N. Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae). J. Econ. Entomol. 108, 2815–2822. https://doi.org/10.1093/jee/tov255 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Chen, X. D., Seo, M. & Stelinski, L. L. Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Prot. 98, 102–107. https://doi.org/10.1016/j.cropro.2017.03.017 (2017).CAS 
    Article 

    Google Scholar 
    20.Wang, L., Zhang, Y., Xie, W., Wu, Q. & Wang, S. Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem. Physiol. 132, 102–107. https://doi.org/10.1016/j.pestbp.2016.02.002 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Xiao, L. F. et al. Genome-wide identification, phylogenetic analysis, and expression profiles of ATP-binding cassette transporter genes in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Comp. Biochem. Physiol. D Genomics Proteomics 25, 1–8 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Dubovskiy, I. M. et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 1–5 (2008).CAS 
    Article 

    Google Scholar 
    23.Jia, B. T., Hong, S. S., Zhang, Y. C. & Cao, Y. W. Effect of sublethal concentrations of abamectin on protective and detoxifying enzymes in Diagegma semclausum. J. Environ. Entomol. 38, 990 (2016).
    Google Scholar 
    24.Yang, Q., Wang, S., Zhang, W., Yang, T. & Liu, Y. Toxicity of commonly used insecticides and their influences on protective enzyme activity of multicolored Asian lady beetle Harmonia axyridis (Pallas). Acta Phytophylacica Sin. 42, 258–263 (2015).CAS 

    Google Scholar 
    25.Zhou, C., Yang, H., Wang, Z., Long, G. Y. & Jin, D. C. Protective and detoxifying enzyme activity and abcg subfamily gene expression in Sogatella furcifera under insecticide stress. Front. Physiol. 9, 1890. https://doi.org/10.3389/fphys.2018.01890 (2018).Article 
    PubMed 

    Google Scholar 
    26.Cui, L., Yuan, H., Wang, Q., Wang, Q. & Rui, C. Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Sci. Rep. 8, 8915. https://doi.org/10.1038/s41598-018-27035-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Li, Y. Y. et al. Sublethal effects of bifenazate on life history and population parameters of Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 22, 148–158. https://doi.org/10.11158/saa.22.1.15 (2017).CAS 
    Article 

    Google Scholar 
    28.Wang, Y., Huang, X., Chang, B. H. & Zhang, Z. The survival, growth, and detoxifying enzyme activities of grasshoppers Oedaleus asiaticus (Orthoptera: Acrididae) exposed to toxic rutin. Appl. Entomol. Zool. 55, 385–393. https://doi.org/10.1007/s13355-020-00694-7 (2020).CAS 
    Article 

    Google Scholar 
    29.Rasheed, M. A. et al. Lethal and sublethal effects of chlorpyrifos on biological traits and feeding of the aphidophagous predator Harmonia axyridis. Insects. https://doi.org/10.3390/insects11080491 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Yamamoto, A., Yoneda, H., Hatano, R. & Asada, M. Genetic analysis of hexythiazox resistance in the citrus red mite, Panonychus citri (MCGREGOR). J. Pestic. Sci. 20, 513–519 (1995).CAS 
    Article 

    Google Scholar 
    31.Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Acad. Sin. 24(2), 225–240 (1985).MathSciNet 

    Google Scholar 
    32.Chi, H. et al. Age-Stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Generalis 40, 103 (2019).Article 

    Google Scholar 
    33.Hsin, C. Letter to the editor. J. Econ. Entomol. 108, 1465 (2015).Article 

    Google Scholar 
    34.Akköprü, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut Aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378 (2015).Article 

    Google Scholar 
    35.Mousavi, M., Ghosta, Y. & Maroofpour, N. Insecticidal activity and sublethal effects of Beauveria bassiana (Bals.-Criv.) Vuill. isolates and essential oils against Aphis gossypii Glover, 1877 (Hemiptera: Aphididae). Acta Agric. Slovenica. https://doi.org/10.14720/aas.2020.115.2.1306 (2020).Article 

    Google Scholar 
    36.Rahmani, S. & Bandani, A. R. Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Crop Prot. 54, 168–175. https://doi.org/10.1016/j.cropro.2013.08.002 (2013).CAS 
    Article 

    Google Scholar 
    37.Papachristos, D. P. & Milonas, P. G. Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol. Control 47, 77–81. https://doi.org/10.1016/j.biocontrol.2008.06.009 (2008).CAS 
    Article 

    Google Scholar 
    38.Ranjbar, F., Reitz, S., Jalali, M. A., Ziaaddini, M. & Izadi, H. Lethal and sublethal effects of two commercial insecticides on egg parasitoids (Hymenoptera: Scelionidae) of green stink bugs (Hem: Pentatomidae). J. Econ. Entomol. https://doi.org/10.1093/jee/toaa232 (2020).Article 

    Google Scholar 
    39.Zhao, Y. et al. Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae). Phytoparasitica 44, 115–124. https://doi.org/10.1007/s12600-016-0506-5 (2016).CAS 
    Article 

    Google Scholar 
    40.Sani, B., Hamid, G. & Elham, R. Sublethal effects of chlorfenapyr on the life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 23, 1342 (2018).
    Google Scholar 
    41.Leeuwen, T. V., Pottelberge, S. V. & Tirry, L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manage. Sci. 62, 425–433 (2010).Article 

    Google Scholar 
    42.Allen, R. G. & Balin, A. K. Oxidative influence on development and differentiation: An overview of a free radical theory of development. Free Radic. Biol. Med. 6, 631–661 (1989).CAS 
    Article 

    Google Scholar 
    43.Bolter, C. J. & Chefurka, W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch. Biochem. Biophys. 278, 65–72 (1990).CAS 
    Article 

    Google Scholar 
    44.Liu, Y., Wang, C., Qi, S., He, J. & Bai, Y. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.). Environ. Geochem. Health. https://doi.org/10.1007/s10653-020-00736-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Zhang, S. et al. Sublethal effects of triflumezopyrim on biological traits and detoxification enzyme activities in the small brown Planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Front. Physiol. 11, 261. https://doi.org/10.3389/fphys.2020.00261 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Ku, C. C., Chiang, F. M., Hsin, C. Y., Yao, Y. E. & Sun, C. N. Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic. Biochem. Physiol. 50, 191–197 (1994).CAS 
    Article 

    Google Scholar 
    47.Prapanthadara, L., Promtet, N., Koottathep, S., Somboon, P. & Ketterman, A. J. Isoenzymes of glutathione S-transferase from the mosquito Anopheles dirus species B: The purification, partial characterization and interaction with various insecticides. Insect Biochemi. Mol. Biol. 30, 395–403 (2000).CAS 
    Article 

    Google Scholar 
    48.Döker, İ, Kazak, C. & Ay, R. Resistance status and detoxification enzyme activity in ten populations of Panonychus citri (Acari: Tetranychidae) from Turkey. Crop Prot. https://doi.org/10.1016/j.cropro.2020.105488 (2021).Article 

    Google Scholar 
    49.Goel, A., Dani, V. & Dhawan, D. K. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem. Biol. Interact. 156, 131–140. https://doi.org/10.1016/j.cbi.2005.08.004 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Van Leeuwen, T., Van Pottelberge, S. & Tirry, L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manage. Sci. 62, 425–433. https://doi.org/10.1002/ps.1183 (2006).CAS 
    Article 

    Google Scholar  More

  • in

    A robust multiple-objective decision-making paradigm based on the water–energy–food security nexus under changing climate uncertainties

    As stated, the primary goal of this study is to promote an objective decision support framework for water resource planning and management purposes within the context of the WEF security nexus, which takes into account the uncertainties imposed by the climate change phenomenon. Such a framework is “robust” since it takes the multi-dimensionality of water-related problems into account while addressing the uncertainties imposed by climate change projections. The basic components of this decision-making paradigm are depicted in Fig. 1. In principle, while this framework is sensitive to the uncertainties associated with the climate change projections, it can provide a dynamic water resources planning and management scheme promoted within the WEF security network. Thus, in addition to the status quo, a series of climate change projections (i.e., RCP 2.6, RCP 4.5, and RCP 8.5) are also integrated into the proposed decision support framework. In essence, the main components of the proposed framework are simulation and operation of the water resources system based on the standard operation policy (SOP), evaluating the system’s efficiency through a series of quantitative performance criteria, and finally, applying the MADM-based framework to opt for a robust system renovation setting.Figure 1Basic components of the robust decision-making paradigm for water resources planning and management.Full size imageSimulating the water resources systemSOP is a primitive, and perhaps the most-well-known real-time operation policy in water resources planning and management14. The core principle here is to minimize the prioritized water shortage at the current time step with no conservation policy (e.g., hedging rules) in place. SOP, as a standard rule curve (RC), determines how the operator should behave at any given state of a reservoir15,16. This rule curve is established as an attempt to balance various water demands including but not limited to flood control, hydropower, water supply, and recreation17. A SOP operating system attempts to release water to meet a water demand at the current time, with no regard to the future.In general, SOP can be mathematically expressed as18:$$R_{t} = left{ {begin{array}{*{20}c} {D_{t} } \ {AW_{t} } \ 0 \ end{array} – S_{min } } right.begin{array}{*{20}c} {} & {if} & {AW_{t} > S_{min } } \ {} & {if} & {AW_{t} > S_{min } } \ {} & {if} & {AW_{t} le S_{min } } \ end{array} begin{array}{*{20}c} {} & {and} & {AW_{t} – S_{min } ge D_{t} } \ {} & {and} & {AW_{t} – S_{min } < D_{t} } \ {} & {} & {} \ end{array} quad t = { 1},{ 2},{ 3}, , ... , ,T$$ (1a) where$$AW_{t} = S_{t} + Q_{t} - Loss_{t}$$ (1b) in which Rt = amount of water supplied during the tth time step; Dt = consumers’ water demand during the tth time step; AWt = amount of available water during the tth time step; St = amount of stored water during the tth time step; Smin = dead storage of the reservoir; Qt = inflow during the tth time step; Losst = net water loss (i.e., precipitation minus evaporation) of the reservoir during the tth time step; and T = total number of time steps in the operational horizon.In practice, however, a different type of water demand leads to a different interpretation of water shortage. There are cases in which the stakeholders’ needs are represented by a set of volumetric demand targets, and the decision-makers’ objective would be to minimize the water deficit based on a set of priorities for these demands. This is a typical case for agricultural, domestic, industrial, and environmental demands. For hydropower generation, however, a conventional interpretation of SOP would be to generate maximum electricity permitted by the power plant capacity (PPC) at each given time step19. For a hydropower system, the amount of water needed to reach a power plant capacity is given by19:$$R_{t} = frac{{86400 times PF times Countday_{t} times PPC}}{{gamma_{w} times g times eta times Delta H_{t} }}$$ (2) in which, γw = water specific weight; g = gravitational acceleration; η = efficiency of the hydropower system; ΔHt = height difference between the reservoir water level and the tailwater level at time step t; Countdayt = number of days within time step t; and PF = plant factor of the hydropower system.As stated earlier, applying an SOP-based plan requires a set of pre-defined priorities to advise decision-makers concerning the order, in which each of these demands is to be met. The major water demands include drinking, industry, environment, agriculture, and hydropower. Thus, according to the SOP’s principle, the decision-makers, first, allocate the available water to meet the demand of the stakeholder with the highest priority (i.e., the domestic and industrial demand). After this first water demand is fully satisfied, the available water can be used for the next demand. Such an allocation process continues until no water is available. It should be noted, however, that if the released water in each stage passes through the penstock equipped with the turbines, electricity can be generated. The amount of energy generated in previous stages must be accounted for before computing the amount of water released for hydropower purposes.Performance criteriaPerformance criteria are, in essence, quantitative measures that can provide a practical insight for the decision-makers regarding the status of a system. This definition covers a broad spectrum of mathematical representations, which can range from simple mathematical formulas such as the average of a specific output to more complex and probability-based entities20,21. The most fundamental and universal probability-based performance criteria are reliability, resiliency, and vulnerability22,23,24. In essence, reliability is the probability of successful function of a system; resiliency measures the probability of successful functioning following a system failure; and vulnerability quantifies the severity of failure during an operation horizon25. It should be noted that these three criteria assess different aspects of a water resources system, and as such, they complement one another26. For more information regarding these probabilistic performance criteria, the readers can refer to Sandoval-Solis et al.27 and Zolghadr-Asli et al.20.In this study, the concept of levelized cost of energy (LCOE) is utilized for economic evaluation. The LCOE of a given hydropower system is the ratio of lifetime costs to lifetime electricity generation, both of which are discounted back to a common year using a discount rate that reflects the average cost of capital28. The LCOE of renewable energy systems depends on the technology, geographic criteria, capital and operating costs, and the efficiency of the system. The LCOE can be mathematically expressed as follows29:$$LCOE = frac{{sumnolimits_{t = 1}^{n} {frac{{I_{t} + M_{t} + F_{t} }}{{left( {1 + r} right)^{t} }}} }}{{sumnolimits_{t = 1}^{n} {frac{{E_{t} }}{{left( {1 + r} right)^{t} }}} }}$$ (3) in which It = investment expenditures in year t; Mt = operation and maintenance expenditures in year t; Ft = fuel expenditures in year t; Et = electricity generation in year t; r = discount rate; and n = economic life expectancy of the system.MADMMADM is an umbrella term to describe a series of frameworks, which aim to help individuals or a group of individuals to prioritize a series of discretely defined alternatives with regard to a set of evaluation attributes30,31. MADM can provide the necessary means to conduct planning and management under changing circumstances such as those under climate change conditions10,32. According to one of the basic principles of MADM, the decision-maker can use the similarity of the feasible alternatives and the preferential result and/or incongruity of the undesirable alternatives. The notion mentioned above is, chiefly, the core principle of the reference-dependent theory33. Accordingly, the reference-based branch of the MADM methods can, itself, be classified into two major groups: screening methods and ranking methods. Screening methods eliminate alternatives that cannot satisfy the pre-determined conditions for the desirable solution, while ranking methods order all the alternatives from the best to the worst34.Pioneered by Hwang and Yoon35, the technique for order references by similarity to an ideal solution (TOPSIS) is a compensatory, objective MADM solving method rooted from the basic principles of the reference-dependent theory. The core idea is that the chosen alternative should have the shortest distance from the ideal solution and the farthest distance from the negative-ideal solution36. The basic computation algorithm of TOPSIS can be summarized as follows37,38:Step I: Construct the original decision matrix (X), where m feasible alternatives are to be evaluated based on n evaluation criteria:$$X = left[ {begin{array}{*{20}c} {x_{11} } & {x_{12} } & cdots & {x_{1n} } \ {x_{21} } & {x_{22} } & cdots & {x_{2n} } \ vdots & vdots & ddots & vdots \ {x_{m1} } & {x_{m2} } & cdots & {x_{mn} } \ end{array} } right]$$ (4) in which xij = the element of the ith alternative concerning the jth criterion.Step II: Defining the reference alternatives [i.e., the ideal solution (s+) and the negative-ideal solution (s−)]. To do so, first, the elements of the decision matrix that are associated with negative criteria must be redefined by using the following equation:$$x_{ij}^{ * } = frac{1}{{x_{ij} }}$$ (5a) The elements of the decision matrix that are associated with positive criteria would remain the same:$$x_{ij}^{ * } = x_{ij}$$ (5b) The ideal alternative is an arbitrarily defined vector, which describes the aspired solution to the given problem, while the inferior alternative is an arbitrarily defined solution that represents the most undesirable option for the given MADM problem. Here, the ideal and negative-ideal solutions would be represented with two separate vectors where each pair of the corresponding elements in these vectors is, respectively, the maximum and minimum values of (x_{ij}^{ * }) with regard to each of the evaluation criteria.Step III: Each element of the decision matrix should be normalized by using the following equation:$$p_{ij} = frac{{x_{ij}^{ * } }}{{sqrt {sumnolimits_{i = 1}^{m} {x_{ij}^{ * 2} } } }}$$ (6) in which pij = the normalized performance value for the ith alternative with respect to the jth criterion.Step IV: The weighted normalized preference value (zij) can be computed as follows:$$z_{ij} = p_{ij} times w_{j} quad forall i,j$$ (7) in which wj = the weight (i.e., the importance value) of the jth criterion. The weights assigned to the evolution criteria reflect their relative importance to the decision-makers. The higher the weights are, the more crucial their roles would be in the selection process. Chiefly, these weighting mechanisms are either subjective in nature or follow an objective procedure. In the subjective approaches, the weights of the attributes are assigned based on the performance information given by the decision-maker, whereas in the objective approaches, the weights of the evaluation attributes would be obtained by using the objective information extracted from the decision matrix39. Shannon’s Entropy method, used in this study as the weight assignment mechanism, is a well-known objective weighting technique40. This method tends to assign the highest weight to an evaluation attribute with the highest dispersity in its values. For more information on the computational framework of this method, the readers can refer to Lotfi and Fallahnejad41.Step V: In this step, every given alternative is compared to the reference points, namely, the ideal and inferior alternatives. The described procedure, which is known as the separation measurement in TOPSIS, can be mathematically expressed as follows35:$$D_{i}^{ + } = sqrt {sumlimits_{j = 1}^{n} {left( {z_{ij} - z_{j}^{ + } } right)^{2} } }$$ (8) And$$D_{i}^{ - } = sqrt {sumlimits_{j = 1}^{n} {left( {z_{ij} - z_{j}^{ - } } right)^{2} } }$$ (9) in which (D_{j}^{ + }) and (D_{j}^{ - }) = separation measurements of the jth criterion with respect to the ideal and inferior alternatives, respectively.Step VI: The relative closeness to the ideal solution (χi), which can be used to rank the desirability of the feasible alternative, can be computed as follows35:$$chi_{i} = frac{{D_{i}^{ - } }}{{D_{i}^{ + } + D_{i}^{ - } }}quad forall i$$ (10) The further this distance (i.e., larger values of χi), the more desirable the alternative would be.Robust multi-attribute frameworkAs stated, each climate change scenario depicts a unique future with regard to the changing climate, which in turn introduces an element of uncertainty to the projected performance of water resources systems during their operation horizon. Furthermore, downscaling methods, which link these projected changes in the global climatic pattern to a local or regional scale, can be another source of uncertainty. Naturally, for long-lasting water infrastructure such as a hydropower system, addressing these uncertainties in a proper and timely manner can be one of the key components of a robust project. Thus, this study aims to not only evaluate the system’s performance under the status quo but also assess the credibility of the system under the projected climate change conditions.The other characteristic one might expect from a robust project is its ability to take into account the multi-dimensionality nature of water-related infrastructure. Most notably, addressing the WEF security nexus must be a priority in water resources planning and management. Resultantly, any robust decision-making paradigm for water resources planning and management purposes should also account for the other pillars of the WEF nexus (i.e., energy and food sectors), as they would be consequentially affected by such decisions. It is also important to note that these sectors could be affected by the climate change phenomenon. The other crucial feature of a robust decision-making paradigm is that it should be able to account for the socio-economic, environmental, and technical factors that determine the overall quality of the project. Such a decision-making paradigm is depicted in Fig. 2. This notion in practice, however, can typically lead to a mega decision matrix composed of numerous criteria and alternatives that can be overwhelming if the subjective MADM methods are to be employed. This study, thus, employs an objective MADM framework (i.e., TOPSIS/Entropy) to help overcome the above-described problem. The basic idea is to promote a universal and practical decision support framework that enables the water resources planners and managers to account for the intricacies of the WEF security nexus while simultaneously taking the uncertainties of climate change projections into account. Figure 3 illustrates the flowchart of the proposed decision support framework.Figure 2Schematic diagram of the MADM problem.Full size imageFigure 3Flowchart of the proposed framework.Full size image More

  • in

    Oceanographic anomalies coinciding with humpback whale super-group occurrences in the Southern Benguela

    1.Dawbin, W. H. The migrations of humpback whales which pass the New Zealand coast. Trans. R. Soc. New Zeal. 84, 147–196 (1956).
    Google Scholar 
    2.Chittleborough, R. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshw. Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).Article 

    Google Scholar 
    3.Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: Insights from water temperature into the longest mammalian migration. Biol. Let. 3, 302–305. https://doi.org/10.1098/rsbl.2007.0067 (2007).Article 

    Google Scholar 
    4.Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).ADS 
    Article 

    Google Scholar 
    5.Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina Bay Antarctic Peninsula. PLoS ONE 6, e19173. https://doi.org/10.1371/journal.pone.0019173 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Barendse, J. et al. Transit station or destination? Attendance patterns, movements and abundance estimate of humpback whales off west South Africa from photographic and genotypic matching. Afr. J. Mar. Sci. 33, 353–373. https://doi.org/10.2989/1814232X.2011.637343 (2011).Article 

    Google Scholar 
    7.Best, P. B., Sekiguchi, K. & Findlay, K. P. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Marine Ecol. Progr. Ser. Oldendorf 118, 1–12. https://doi.org/10.3354/meps118001 (1995).ADS 
    Article 

    Google Scholar 
    8.Findlay, K. & Best, P. Summer incidence of humpback whales on the west coast of South Africa. S. Afr. J. Mar. Sci. 15, 279–282. https://doi.org/10.2989/02577619509504851 (1995).Article 

    Google Scholar 
    9.Findlay, K. P. et al. Humpback whale “super-groups”–A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble‐net feeding and the formation of ‘super‐groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. (2021).11.Veitch, J., Penven, P. & Shillington, F. The Benguela: A laboratory for comparative modeling studies. Prog. Oceanogr. 83, 296–302. https://doi.org/10.1016/j.pocean.2009.07.008 (2009).ADS 
    Article 

    Google Scholar 
    12.Preston-Whyte, R. A. & Tyson, P. D. Atmosphere and weather of southern Africa (Oxford University Press, 1988).
    Google Scholar 
    13.Nemoto, T., Best, P., Ishimaru, K. & Takano, H. Diatom films on whales [minke whales and 4 species of toothed whales] in South African waters. Scientific Reports of the Whales Research Institute (1980).14.Hutchings, L., Pitcher, G., Probyn, T. & Bailey, G. in Upwelling in the ocean: modern processes and ancient records Vol. 18 (eds CP Summerhayes et al.) Ch. 3, 65–81 (Wiley & Sons, 1995).15.Clapham, P. J. in Encyclopedia of marine mammals (eds B Würsig, JGM Thewissen, & KM Kovacs) 489–492 (Academic Press, 2018).16.Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93. https://doi.org/10.1007/s40641-015-0008-4 (2015).Article 

    Google Scholar 
    17.Mackas, D. L. & Beaugrand, G. Comparisons of zooplankton time series. J. Mar. Syst. 79, 286–304. https://doi.org/10.1016/j.jmarsys.2008.11.030 (2010).Article 

    Google Scholar 
    18.Mackas, D. et al. Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Prog. Oceanogr. 97, 31–62. https://doi.org/10.1016/j.pocean.2011.11.005 (2012).ADS 
    Article 

    Google Scholar 
    19.Huggett, J., Verheye, H., Escribano, R. & Fairweather, T. Copepod biomass, size composition and production in the Southern Benguela: Spatio–temporal patterns of variation, and comparison with other eastern boundary upwelling systems. Prog. Oceanogr. 83, 197–207. https://doi.org/10.1016/j.pocean.2009.07.048 (2009).ADS 
    Article 

    Google Scholar 
    20.Verheye, H. M., Lamont, T., Huggett, J. A., Kreiner, A. & Hampton, I. Plankton productivity of the Benguela current large marine ecosystem (BCLME). Environ. Dev. 17, 75–92. https://doi.org/10.1016/j.envdev.2015.07.011 (2016).Article 

    Google Scholar 
    21.Shannon, L. J. et al. Exploring temporal variability in the Southern Benguela ecosystem over the past four decades using a time-dynamic ecosystem model. Front. Mar. Sci. 7, 540 (2020).ADS 
    Article 

    Google Scholar 
    22.Jarre, A. et al. Synthesis: climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish. Oceanogr. 24, 122–149. https://doi.org/10.1111/fog.12086 (2015).Article 

    Google Scholar 
    23.Lamont, T., García-Reyes, M., Bograd, S., Van Der Lingen, C. & Sydeman, W. Upwelling indices for comparative ecosystem studies: Variability in the Benguela Upwelling System. J. Mar. Syst. 188, 3–16. https://doi.org/10.1016/j.jmarsys.2017.05.007 (2018).Article 

    Google Scholar 
    24.Tim, N., Zorita, E. & Hünicke, B. Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation. Ocean Sci. 11, 483–502. https://doi.org/10.5194/os-11-483-2015 (2015).ADS 
    Article 

    Google Scholar 
    25.Lamont, T., Barlow, R. & Brewin, R. Long-term trends in phytoplankton chlorophyll a and size structure in the Benguela Upwelling System. J. Geophys. Res. Oceans 124, 1170–1195. https://doi.org/10.1029/2018JC014334 (2019).ADS 
    Article 

    Google Scholar 
    26.Ragoasha, N. et al. Lagrangian pathways in the southern Benguela upwelling system. J. Mar. Syst. 195, 50–66. https://doi.org/10.1016/j.jmarsys.2019.03.008 (2019).Article 

    Google Scholar 
    27.Shannon, V., Hempel, G., Moloney, C., Woods, J. D. & Malanotte-Rizzoli, P. Benguela: Predicting a Large Marine Ecosystem (Elsevier, 2006).
    Google Scholar 
    28.Veitch, J., Penven, P. & Shillington, F. Modeling equilibrium dynamics of the Benguela current system. J. Phys. Oceanogr. 40, 1942–1964. https://doi.org/10.1175/2010jpo4382.1 (2010).ADS 
    Article 

    Google Scholar 
    29.Lachkar, Z. & Gruber, N. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 9, 293–308. https://doi.org/10.5194/bg-9-293-2012 (2012).ADS 
    Article 

    Google Scholar 
    30.Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792. https://doi.org/10.1038/ngeo1273 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Hutchings, L. et al. Multiple factors affecting South African anchovy recruitment in the spawning, transport and nursery areas. S. Afr. J. Mar. Sci. 19, 211–225. https://doi.org/10.2989/025776198784126908 (1998).Article 

    Google Scholar 
    32.Rossi, V., López, C., Sudre, J., Hernández-García, E. & Garçon, V. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. Geophys. Res. Lett. https://doi.org/10.1029/2008gl033610 (2008).Article 

    Google Scholar 
    33.Barendse, J. & Best, P. B. Shore-based observations of seasonality, movements, and group behavior of southern right whales in a nonnursery area on the South African west coast. Mar. Mamm. Sci. 30, 1358–1382 (2014).Article 

    Google Scholar 
    34.Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22 (2010).Article 

    Google Scholar 
    35.Gibbons, M. J. An introduction to the Zooplankton of the Benguella current Region. (1997).36.Olsen, Ø. Hvaler og hvalfangst i Sydafrika. 1–56 (Bergens Museums Arbok 1914–1915, 1914).37.Meynecke, J. O. et al. Responses of humpback whales to a changing climate in the Southern Hemisphere: Priorities for research efforts. Mar. Ecol. 41, e12616 (2020).Article 

    Google Scholar 
    38.Stockin, K. A. & Burgess, E. A. Opportunistic Feeding of an Adult Humpback Whale (Megaptera novaeangliae) Migrating Along the Coast of Southeastern Queensland, Australia. Aquat. Mamm. 31, 120. https://doi.org/10.1578/AM.31.1.2005.120 (2005).Article 

    Google Scholar 
    39.Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the Azores in relation to the North Atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279. https://doi.org/10.3354/meps09349 (2011).ADS 
    Article 

    Google Scholar 
    40.Trudelle, L. et al. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground. R. Soc. Open Sci. 3, 160616. https://doi.org/10.1098/rsos.160616 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Veitch, J., Hermes, J., Lamont, T., Penven, P. & Dufois, F. Shelf-edge jet currents in the southern Benguela: A modelling approach. J. Mar. Syst. 188, 27–38 (2018).Article 

    Google Scholar 
    42.Hutchings, L. et al. The Benguela current: An ecosystem of four components. Prog. Oceanogr. 83, 15–32. https://doi.org/10.1016/j.pocean.2009.07.046 (2009).ADS 
    Article 

    Google Scholar 
    43.Rockwood, R. C., Elliott, M. L., Saenz, B., Nur, N. & Jahncke, J. Modeling predator and prey hotspots: Management implications of baleen whale co-occurrence with krill in Central California. PLoS ONE 15, e0235603 (2020).CAS 
    Article 

    Google Scholar 
    44.Hayward, T. L. & Venrick, E. L. Nearsurface pattern in the California Current: Coupling between physical and biological structure. Deep Sea Res. Part II 45, 1617–1638 (1998).ADS 
    Article 

    Google Scholar 
    45.Croll, D. A. et al. From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).ADS 
    Article 

    Google Scholar 
    46.Walker, D. & Peterson, W. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela upwelling system in April 1988. S. Afr. J. Mar. Sci. 11, 289–305 (1991).Article 

    Google Scholar 
    47.Stuart, V. & Pillar, S. Diel grazing patterns of all ontogenetic stages of Euphausia lucens and in situ predation rates on copepods in the southern Benguela upwelling region. Mar. Ecol. Progr. Ser. 2, 227–241 (1990).ADS 
    Article 

    Google Scholar 
    48.Clapham, P. & Baker, C. (Academic, New York, 2002).49.Shannon, L. J., Field, J. G. & Moloney, C. L. Simulating anchovy–sardine regime shifts in the southern Benguela ecosystem. Ecol. Model. 172, 269–281 (2004).Article 

    Google Scholar 
    50.Lett, C., Roy, C., Levasseur, A., Van Der Lingen, C. D. & Mullon, C. Simulation and quantification of enrichment and retention processes in the southern Benguela upwelling ecosystem. Fish. Oceanogr. 15, 363–372. https://doi.org/10.1111/j.1365-2419.2005.00392.x (2006).Article 

    Google Scholar 
    51.Branch, T. A. Humpback whale abundance south of 60°S from three complete circumpolar sets of surveys. J. Cetacean Res. Manage. https://doi.org/10.47536/jcrm.vi.305 (2011).Article 

    Google Scholar 
    52.Findlay, K., Best, P. & Meÿer, M. Migrations of humpback whales past Cape Vidal, South Africa, and an estimate of the population increase rate (1988–2002). Afr. J. Mar. Sci. 33, 375–392. https://doi.org/10.2989/1814232x.2011.637345 (2011).Article 

    Google Scholar 
    53.Henson, S. A., Cole, H. S., Hopkins, J., Martin, A. P. & Yool, A. Detection of climate change-driven trends in phytoplankton phenology. Glob. Change Biol. 24, e101–e111 (2018).ADS 
    Article 

    Google Scholar 
    54.Carvalho, I. et al. Does temporal and spatial segregation explain the complex population structure of humpback whales on the coast of West Africa?. Mar. Biol. 161, 805–819 (2014).Article 

    Google Scholar 
    55.Kershaw, F. et al. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol. Ecol. 26, 977–994 (2017).Article 

    Google Scholar 
    56.Korrûbel, J. An age-structured simulation model to investigate species replacement between pilchard and anchovy populations in the southern Benguela. S. Afr. J. Mar. Sci. 12, 375–391 (1992).Article 

    Google Scholar 
    57.Shannon, L. et al. The 1980s–a decade of change in the Benguela ecosystem. S. Afr. J. Mar. Sci. 12, 271–296 (1992).Article 

    Google Scholar 
    58.Verheye, H., Richardson, A., Hutchings, L., Marska, G. & Gianakouras, D. Long-term trends in the abundance and community structure of coastal zooplankton in the southern Benguela system, 1951–1996. Afr. J. Mar. Sci. 19, 2 (1998).
    Google Scholar 
    59.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Sydeman, W. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Bonino, G., Di Lorenzo, E., Masina, S. & Iovino, D. Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci. Rep. 9, 1–14 (2019).Article 

    Google Scholar 
    62.Fearon, G. et al. Enhanced vertical mixing in coastal upwelling systems driven by diurnal-inertial resonance: Numerical experiments. J. Geophys. Res. Oceans https://doi.org/10.1002/essoar.10502743.1 (2020).Article 

    Google Scholar 
    63.Xiu, P., Chai, F., Curchitser, E. N. & Castruccio, F. S. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci. Rep. 8, 1–9 (2018).
    Google Scholar 
    64.Roxy, M. K. et al. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43, 826–833 (2016).ADS 
    Article 

    Google Scholar 
    65.Lockerbie, E. M. & Shannon, L. Toward exploring possible future states of the southern Benguela. Front. Mar. Sci. 6, 380 (2019).Article 

    Google Scholar 
    66.Ortega-Cisneros, K., Cochrane, K. L., Fulton, E. A., Gorton, R. & Popova, E. Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fish. Oceanogr. 27, 489–503 (2018).Article 

    Google Scholar 
    67.Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Veitch, J. A. & Penven, P. The role of the A gulhas in the B enguela current system: A numerical modeling approach. J. Geophys. Res. Oceans 122, 3375–3393 (2017).ADS 
    Article 

    Google Scholar 
    69.Beal, L. M., De Ruijter, W. P., Biastoch, A. & Zahn, R. On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429–436 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Beal, L. M. & Elipot, S. Broadening not strengthening of the Agulhas current since the early 1990s. Nature 540, 570–573 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Lilliefors, H. W. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc. 64, 387–389. https://doi.org/10.1080/01621459.1969.10500983 (1969).Article 

    Google Scholar 
    72.Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002 (2005).ADS 
    Article 

    Google Scholar 
    73.Debreu, L., Marchesiello, P., Penven, P. & Cambon, G. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Model 49, 1–21. https://doi.org/10.1016/j.ocemod.2012.03.003 (2012).ADS 
    Article 

    Google Scholar 
    74.Shchepetkin, A. F. & McWilliams, J. C. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather Rev. 126, 1541–1580. https://doi.org/10.1175/1520-0493(1998)126%3C1541:qmasbo%3E2.0.co;2 (1998).ADS 
    Article 

    Google Scholar 
    75.Warner, J. C., Sherwood, C. R., Arango, H. G. & Signell, R. P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model 8, 81–113. https://doi.org/10.1016/j.ocemod.2003.12.003 (2005).ADS 
    Article 

    Google Scholar 
    76.Saha, S. et al. NCEP Climate Forecast System Reanalysis (CFSR) 6-Hourly Products, January 1979 to December 2010 (Boulder, 2010).
    Google Scholar 
    77.Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. D61C61TXF (Boulder, 2011).
    Google Scholar 
    78.Burchard, H. & Hofmeister, R. A dynamic equation for the potential energy anomaly for analysing mixing and stratification in estuaries and coastal seas. Estuar. Coast. Shelf Sci. 77, 679–687. https://doi.org/10.1016/j.ecss.2007.10.025 (2008).ADS 
    Article 

    Google Scholar 
    79.Yamaguchi, R., Suga, T., Richards, K. J. & Qiu, B. Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific. Clim. Dyn. 53, 4667–4681. https://doi.org/10.1007/s00382-019-04816-y (2019).Article 

    Google Scholar 
    80.Lennard, C., Hahmann, A. N., Badger, J., Mortensen, N. G. & Argent, B. Development of a numerical wind atlas for South Africa. Energy Proc. 76, 128–137. https://doi.org/10.1016/j.egypro.2015.07.873 (2015).Article 

    Google Scholar 
    81.Thomson, R. E. & Emery, W. J. Data Analysis Methods in Physical Oceanography 3rd edn. (Elsevier, 2014).
    Google Scholar  More