More stories

  • in

    Impact of intensifying nitrogen limitation on ocean net primary production is fingerprinted by nitrogen isotopes

    Modelling approachWe used the PISCES-v2 biogeochemical model, attached to the Nucleus for European Modelling of the Ocean version 4.0 (NEMO-v4) general ocean circulation model29. PISCES-v2 includes five nutrients pools (nitrate, ammonium, phosphate, silicic acid and dissolved iron), dissolved oxygen, the full carbon system and accounts for two phytoplankton (nanophytoplankton and diatoms) and two zooplankton types (microzooplankton and mesozooplankton). Bioavailable nitrogen in our simulations is considered to be the combination of nitrate and ammonium. Its nitrogen cycle includes nitrogen fixation, nitrification, burial, denitrification in both the water column and sediments, and coupled nitrification–denitrification. Nitrogen isotopes were integrated within PISCES-v2 for the purposes of this study, using nine new tracers (Supplementary Note 1). Horizontal model resolution varied between ~0.5° at the equator and poles, and 2° in the subtropics, whereas vertical resolution varied between 10 and 500 m thickness over 31 levels.We conducted simulations under both preindustrial control and climate change scenarios. The preindustrial control scenario from 1801 to 2100 maintained preindustrial greenhouse gas concentrations and only included internal modes of variability. The climate change simulation from 1851 to 2100 included natural variability, prescribed changes in land use, as well as historical changes in concentrations of greenhouse gases and aerosols until 2005, after which future concentrations associated with RCP8.5 were imposed30. The biogeochemical model (PISCES-v2) was run offline from the physical model (NEMO-v4) using monthly transports and other physical conditions generated by the low resolution version of the IPSL-CM5A ESM57.Experiments were initialized from biogeochemical fields created from an extensive spin-up of 5000 years under repeat physical forcing, followed by a 300-year simulation under the preindustrial control scenario. The preindustrial control simulation used in analysis was therefore the final 300 years of a 5600-year spin-up involving two repeat simulations of the preindustrial control scenario. We utilized a global compilation of δ15NNO320 supplemented with recent data to assess the isotopic routines in the model and conducted a thorough model-data skill assessment at replicating observed patterns in space (Supplementary Note 2 and Supplementary Figs. 1–3).Anthropogenic nitrogen depositionThe effect of increasing aeolian deposition of nitrogen was assessed in our simulations. Preindustrial nitrogen deposition was prescribed as the preindustrial estimate at 1850, whereas the historical to future deposition was created by linear interpolation between preindustrial (1850) and modern/future fields (2000, 2030, 2050 and 2100). These fields were provided by Hauglustaine et al.8. However, the rapid rise between 1950 and 2000 was maintained, such that 60% of the increase between the preindustrial and modern fields occurred after 1950 (Supplementary Fig. 4).The historical rise in anthropogenic nitrogen deposition was assessed by including it in additional simulations under both preindustrial control and climate change scenarios. Four initial experiments were therefore conducted: preindustrial control; preindustrial control plus anthropogenic nitrogen deposition; climate change; and climate change plus anthropogenic nitrogen deposition.Global model experimentsWe undertook four initial simulations to quantify the impacts of anthropogenic climate change and nitrogen deposition: a preindustrial control simulation from 1801 to 2100; a full anthropogenic scenario from 1851 to 2100; a climate change-only scenario without the increase in anthropogenic nitrogen deposition from 1851 to 2100; and a nitrogen deposition scenario without anthropogenic climate change from 1851 to 2100. Anthropogenic effects to nitrogen cycling were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the final 20 years of the preindustrial control simulation, whereas effects on nitrogen isotopes were quantified by comparing mean conditions over the final 20 years of the twenty-first century (2081–2100) with mean conditions over the historical period (1986–2005) from the same simulation.To understand the direct and indirect effects of climate change, we undertook two additional idealized simulations. First, we imposed temperature changes on biogeochemical rates, while maintaining ocean circulation associated with the preindustrial control scenario, to assess the direct effects of warming on biogeochemical processes. Second, we imposed the preindustrial control temperature field on biogeochemical processes, while altering the circulation in line with the climate change scenario, to assess the indirect effects of climate change (i.e., how changing circulation alters substrate supply to biogeochemical reactions). Each experiment was run from 1851 to 2100 and without the anthropogenic increase in atmospheric nitrogen deposition, parallel with the full climate change simulation.Agreement between the climate change simulation without anthropogenic nitrogen deposition was quantified using a pixel-by-pixel correlation analysis using Spearman’s rank correlation based on the non-parametric nature of the two-dimensional fields used for comparison. Fields were euphotic zone nitrate, twilight zone δ15NNO3, euphotic zone δ15NPOM, and vertically integrated NPP, zooplankton grazing, nitrogen fixation, water column denitrification and sedimentary denitrification.Depth zonesWe assessed changes in biogeochemical variables related to nitrogen cycling in two depth zones defined by light. The euphotic zone was defined by depths between the surface and 0.1% of incident irradiance as recommended by Buesseler et al.42. The twilight zone was also defined using light, as advocated by Kaartvedt et al.58. Depths between 0.1% and 0.0001% of incident irradiance defined the twilight zone. These definitions typically returned euphotic zone thicknesses of 137 ± 23 m (mean ± SD), and twilight zone thicknesses of 233 ± 37 m. The boundary between these depth zones were deepest in oligotrophic tropical and subtropical waters, and were shallowest in equatorial and temperate waters (Supplementary Fig. 7).Time of emergenceToE calculations determined when anthropogenic, anomalous trends emerged from the noise of background variability. ToE was calculated at each grid cell within both the euphotic and twilight zones (depth-averaged) and using annually averaged fields of ocean tracers. We therefore ignored temporal trends and variability at seasonal and sub-seasonal scales. Raw time series were first detrended and normalized using the linear slope and mean of the preindustrial control experiment, such that the preindustrial control time series varied about zero, while anomalous trends in experiments with climate change and/or nitrogen deposition deviated from zero. These detrended and normalized time series were smoothed using a boxcar (flat) moving average with a window of 11 years to filter decadal variability (Supplementary Fig. 12). Differences with the preindustrial control experiment were then computed.To determine whether the differences with the preindustrial control experiment were anomalous, we calculated a measure of noise from the raw, inter-annual time series of the preindustrial control experiment (1801–2100). A signal emerged from the noise if it exceeded 2 SDs, a threshold that represents with 95% confidence that a value was anomalous and is therefore a conservative envelope to distinguish normality from anomaly16.Furthermore, we required that anomalous values must consistently exceed the noise of the preindustrial control experiment until the end of the simulation (2100) to be registered as having emerged. Temporary emergences were therefore rejected, making our ToE estimates more conservative. A graphical representation of this process is shown in Supplementary Fig. 12.Isolating biogeochemical 15NO3 fluxesWe analysed the biogeochemical fluxes of 15NO3 and NO3 into and out of each model grid cell within the twilight zone, to determine whether the trends in δ15NNO3 were related to biogeochemical or physical changes. Fluxes of 15NO3 and NO3 included a net source from nitrification (NO3nitr) and net sinks due to new production (NO3new) and denitrification (NO3den). Although nitrification did not directly alter the 15N : 14N ratio in our simulations, the release of 15NO3 and NO3 by nitrification conveyed an isotopic signature determined by prior fractionation processes that produce ammonium (NH4). These processes include remineralization of particulate and dissolved organic matter, excretion by zooplankton and nitrogen fixation. The isotopic signatures of these processes were thus included implicitly in NO3nitr. For each grid cell, we calculated the biogeochemical tendency to alter δ15NNO3 based on the ratio of inputs minus outputs:$${Delta} {delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{NO3}}}}}}}=left(frac{{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{15}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}{{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{nitr}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{new}}}}}}}-{,{!}^{14}{{{{{rm{N}}}}}}{{{{{rm{O}}}}}}}_{3}^{{{{{{rm{den}}}}}}}}-1right)cdot 1000$$
    (1)
    This calculation excluded any upstream biological changes and circulation changes that might have altered δ15NNO3.0D water parcel modelWe simulated the nitrogen isotope dynamics in a recently upwelled water parcel during transit to the subtropics by building a 0D model. The model simulates state variables of dissolved inorganic nitrogen (DIN), particulate organic nitrogen (PON) and exported particulate nitrogen (ExpN), as well as their heavy isotopes (DI15N, PO15N and Exp15N) in units of mmol N m−3 over 100 days given initial conditions and constants listed in Supplementary Table 1.$$frac{Delta {{{{{rm{DIN}}}}}}}{Delta t}=-{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (2)
    $$frac{Delta {{{{{rm{PON}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (3)
    $$frac{Delta {{{{{rm{ExpN}}}}}}}{Delta t}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (4)
    $$frac{Delta {{{{{rm{DI1}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}=-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}+{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}$$
    (5)
    $$frac{Delta {{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}-{}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (6)
    $$frac{Delta {{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{Delta t}={}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}$$
    (7)
    First, the model calculates maximum potential growth rate of phytoplankton (μmax) in units of day−1 (Eq. 8) using temperature and then finds nitrogen uptake (Nuptake, Eq. 10) using PON and limitation terms for nitrogen (Nlim, Eq. 9), light (Llim, Supplementary Table 1) and iron (Felim, Supplementary Table 1).$${mu }_{{{max }}}=0.6,{{{{{rm{da}}}}}}{y}^{-1}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (8)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}}=frac{{{{{{rm{DIN}}}}}}}{{{{{{rm{DIN}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{DIN}}}}}}}}$$
    (9)
    $${{{{{mathrm{N}}}}}}_{{{{{mathrm{uptake}}}}}}={mu }_{max }cdot {{{{{mathrm{L}}}}}}_{{{{{mathrm{lim}}}}}}cdot ,min ({{{{{mathrm{Fe}}}}}}_{{{{{mathrm{lim}}}}}},{{{{{mathrm{N}}}}}}_{{{{{mathrm{lim}}}}}})cdot {{{{{mathrm{PON}}}}}}$$
    (10)
    At a constant temperature of 18 °C, μmax is equal to ~1.9 day−1. Limitation terms for light and iron are set as constant and are used to prevent unrealistically high nitrogen uptake when nitrogen is high, such as occurs immediately following upwelling in the high-nutrient low-chlorophyll regions of the tropics. Fractionation by phytoplankton is calculated assuming an open system21, in this case where nitrogen can be lost through export of organic matter. To calculate the fractionation associated with uptake (15Nuptake, Eq. 11), we multiply the total nitrogen uptake (Nuptake, Eq. 10) by the heavy to light isotope ratio (({r}_{{{{{{rm{DIN}}}}}}}^{15}), Eq. 12) and the fractionation factor (εphy, Supplementary Table 1), which is converted from units of per mil (‰) to a fraction relative to one. This fractionation factor (εphy) is constant at 5‰ but is decreased towards 0‰ by the nitrogen limitation term (Nlim, Eq. 9), such that when nitrogen is limiting to growth, the fractionation during uptake decreases (last term on the right-hand side approaches 1).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{uptake}}}}}}},=,{{{{{mathrm{N}}}}}}_{{{{{{rm{uptake}}}}}}}cdot {r}_{{{{{{rm{DIN}}}}}}}^{15}cdot left(1-frac{{{{{mathrm{N}}}}}_{{{{{mathrm{lim}}}}}}cdot {varepsilon }_{{{{{{rm{phy}}}}}}}}{1000}right)$$
    (11)
    $${r}_{{{{{{rm{DIN}}}}}}}^{15},=,frac{{{{mathrm{DI}}}}^{15}{{{{{{rm{N}}}}}}}}{{{{{{rm{DIN}}}}}}}$$
    (12)
    At each timestep, a fraction of the PON pool becomes detritus (Eq. 15) and this detritus is instantaneously recycled back to DIN or exported to ExpN and removed from the water parcel. The amount of detritus produced per timestep is calculated as the sum of linear respiration (Eq. 13) and quadratic mortality (Eq. 14) terms, where Presp (units of day−1), Kresp (units of mmol N m−3) and Pmort (units of (mmol N m−3)−1 day−1) are constants (Supplementary Table 1).$${{{{{rm{Respiration}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{resp}}}}}}}cdot {{{{{rm{PON}}}}}}cdot frac{{{{{{rm{PON}}}}}}}{{{{{{rm{PON}}}}}}+{{{{{mathrm{K}}}}}}_{{{{{{rm{resp}}}}}}}}$$
    (13)
    $${{{{{rm{Mortality}}}}}},=,{{{{{mathrm{P}}}}}}_{{{{{{rm{mort}}}}}}}cdot {{{{{rm{PON}}}}}}^{2}$$
    (14)
    $${{{{{rm{Detritus}}}}}},=,{{{{{rm{Respiration}}}}}},+,{{{{{rm{Mortality}}}}}}$$
    (15)
    Once we know the fraction of PON that becomes detritus at any given timestep, we must solve for the fraction of that detritus that becomes DIN through recycling (Eq. 17), and that which becomes ExpN through export (Eq. 18). The fraction of detritus that is recycled back into DIN is temperature dependent (Eq. 16), with higher temperatures increasing rates of recycling above a minimum fraction set by frecmin (Supplementary Table 1). The relationship with temperature is exponential, similar to phytoplankton maximum growth (μmax), but the degree of increase associated with warming is scaled down by a constant factor equal to Trec (Supplementary Table 1). The fraction that is exported to ExpN is the remainder (Eq. 18).$${f}_{{{{{{rm{recycled}}}}}}}={f}_{{{{{{rm{recmin}}}}}}}+{T}_{{{{{{rm{rec}}}}}}}cdot {e}^{Tcdot {T}_{{{{{{rm{growth}}}}}}}}$$
    (16)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{rm{Detritus}}}}}}cdot {f}_{{{{{{rm{recycled}}}}}}}$$
    (17)
    $${{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{rm{Detritus}}}}}}cdot (1-{f}_{{{{{{rm{recycled}}}}}}})$$
    (18)
    The major fluxes of Nuptake, Nrecycled and Nexported are now solved for. All that remains is to calculate the isotopic signatures of the recycling (Eq. 19) and export (Eq. 20) fluxes. These, similar to 15Nuptake (Eq. 11), are solved by multiplying against a standard ratio of heavy to light isotope (({r}_{{{{{{rm{PON}}}}}}}^{15}), Eq. 21).$${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{recycled}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{recycled}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (19)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{exported}}}}}}}={{{{{mathrm{N}}}}}}_{{{{{{rm{exported}}}}}}}cdot {r}_{{{{{{rm{PON}}}}}}}^{15}$$
    (20)
    $${r}_{{{{{{rm{PON}}}}}}}^{15}=frac{{{{{{rm{PO}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{PON}}}}}}}$$
    (21)
    Finally, we calculate the δ15N values of the major pools in the model (DIN, PON and ExpN) as output (Eqs. 22–24). We assume in this model that the major pools of DIN, PON and ExpN represent the total amount of the light isotope (14N), whereas the DI15N, PO15N and Exp15N pools represent the relative enrichment in 15N compared to a standard ratio. For simplicity, we make the standard ratio equal to 1. Therefore, taking the ratio of the DI15N to DIN pools and subtracting one returns the isotopic signature. Multiplying this by 1000 converts this signature to per mil units (‰).$${delta }^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{DIN}}}}}}}=left(frac{{{{{{rm{DI}}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{DIN}}}}}}}-1right)cdot 1000$$
    (22)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{PON}}}}}}}=left(frac{{{{{{{rm{PO}}}}}}}^{15}N}{{{{{{rm{PON}}}}}}}-1right)cdot 1000$$
    (23)
    $${}^{15}{{{{{rm{N}}}}}}_{{{{{{rm{ExpN}}}}}}}=left(frac{{{{{mathrm{Exp}}}}}{}^{15}{{{{{rm{N}}}}}}}{{{{{{rm{ExpN}}}}}}}-1right)cdot 1000$$
    (24) More

  • in

    Protected areas are not effective for the conservation of freshwater insects in Brazil

    1.Brooks, T. M. et al. Global biodiversity conservation priorities. Science (80-. ). 313, 58–61 (2006).2.Camacho-Sandoval, J. & Duque, H. Indicators for biodiversity assessment in Costa Rica. Agric. Ecosyst. Environ. 87, 141–150 (2001).Article 

    Google Scholar 
    3.Diniz-Filho, J. A. F. et al. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv. Divers. https://doi.org/10.1111/j.1752-4598.2010.00090.x (2010).Article 

    Google Scholar 
    4.Morse-Jones, S. et al. Stated preferences for tropical wildlife conservation amongst distant beneficiaries: Charisma, endemism, scope and substitution effects. Ecol. Econ. 78, (2012).5.Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. vol. 4 (2011).6.Nóbrega, C. C. & De Marco, P. Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 17, 491–505 (2011).Article 

    Google Scholar 
    7.SNUC, (Sistema Nacional de Unidades de Conservação da Natureza). Lei no 9.985, de 18 de julho de 2000. Mma/Sbf (2000) doi:https://doi.org/10.1017/CBO9781107415324.004.8.Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63 (2007).Article 

    Google Scholar 
    9.Monteiro, C. da S., Esposito, M. C. & Juen, L. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J. Insect Conserv. 20, 643–652 (2016).10.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS 
    Article 

    Google Scholar 
    11.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    12.Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. https://doi.org/10.1111/j.1366-9516.2006.00286.x (2006).Article 

    Google Scholar 
    13.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. https://doi.org/10.1016/S0006-3207(01)00208-7 (2002).Article 

    Google Scholar 
    14.Silva, D. C., Vieira, T. B., da Silva, J. M. & de Cassia Faria, K. Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodivers. Conserv. 27, 815–828 (2018).15.Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).Article 

    Google Scholar 
    16.Juen, L. & de Marco, P. Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers. Conserv. https://doi.org/10.1007/s10531-012-0377-0 (2012).Article 

    Google Scholar 
    17.Mendes, S. L. et al. Protected Areas for the Northern Muriqui, Brachyteles hypoxanthus (Primates, Atelidae). Neotrop. Primates 13, (2005).18.Serra, B. D. V., De Marco Júnior, P., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, apidae): conserving isolated populations in mountain habitats. Nat. a Conserv. 10, 199–206 (2012).19.Mendes, P. & De Marco, P. Bat species vulnerability in Cerrado: integrating climatic suitability with sensitivity to land-use changes. Environ. Conserv. 45, 67–74 (2018).Article 

    Google Scholar 
    20.Brasil, L. S. et al. A niche‐based gap analysis for the conservation of odonate species in the Brazilian Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. aqc.3599 (2021) doi:https://doi.org/10.1002/aqc.3599.21.da Silva, J. G., Vieira, T. B. & Mews, H. A. Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon. Folia Geobot. https://doi.org/10.1007/s12224-021-09390-y (2021).Article 

    Google Scholar 
    22.Doughty, C. R. Freshwater biomonitoring and benthic macroinvertebrates, edited by D. M. Rosenberg and V. H. Resh, Chapman and Hall, New York, 1993. ix + 488pp. ISBN 0412 02251 6. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 92–92 (1994).23.Harper, D. M., Rosenberg, D. A. & Resh, V. H. Freshwater biomonitoring and benthic macroinvertebrates. J. Appl. Ecol. 31, 790 (1994).Article 

    Google Scholar 
    24.Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).Article 

    Google Scholar 
    25.Schuh, R. T. & Slater, J. A. True bugs of the World (Hemiptera: Heteroptera). Classification and Natural History. (Cornell University Press, 1995).26.Giehl, N. F. da S., Dias-Silva, K., Juen, L., Batista, J. D. & Cabette, H. S. R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One 9, e103623 (2014).27.Dias-Silva, K., Cabette, H. S. R., Juen, L. & Jr, P. D. M. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zool. 27, 918–930 (2010).28.Panizzi, A. R. & Grazia, J. True Bugs (Heteroptera) of the Neotropics. True Bugs (Heteroptera) of the Neotropics vol. 2 (Springer Netherlands, 2015).29.Polhemus, J. T. & Polhemus, D. A. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia https://doi.org/10.1007/s10750-007-9033-1 (2008).Article 

    Google Scholar 
    30.Nieser, N. & Melo, A. L. Os Heterópteros Aquáticos de Minas Gerais. (UFMG, Belo Horizonte, 1997).31.Cunha, E. J., de Assis Montag, L. F. & Juen, L. Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol. Indic. 52, 422–429 (2015).32.Cordeiro, I. & Moreira, F. New distributional data on aquatic and semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha & Nepomorpha) from South America. Biodivers. Data J. 3, e4913 (2015).33.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article 

    Google Scholar 
    34.Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes?. Proc. Natl. Acad. Sci. 97, 5954–5959 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    36.Abellan, P., Sanchez-Fernandez, D., Velasco, J. & Millan, A. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodivers. Conserv. 14, 3457–3474 (2005).Article 

    Google Scholar 
    37.Fearnside, P. M. Conservation policy in brazilian amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).Article 

    Google Scholar 
    38.dos Santos, A. J., Vieira, T. B. & Faria, K. de C. Effects of vegetation structure on the diversity of bats in remnants of Brazilian Cerrado savanna. Basic Appl. Ecol. 17, 720–730 (2016).39.Groves, C. R. et al. Planning for biodiversity conservation: putting conservation science into practice. Bioscience https://doi.org/10.1641/0006-3568(2002)052[0499:pfbcpc]2.0.co;2 (2002).Article 

    Google Scholar 
    40.Fearnside, P. M. & Ferraz, J. A conservation gap analysis of Brazil’s Amazonian vegetation. Conserv. Biol. 9, 1134–1147 (1995).Article 

    Google Scholar 
    41.Fearnside, P. M. Introduction: strategies for social and environmental conservation in conservation units. In The Amazon Várzea 233–238 (Springer Netherlands, 2011). doi:https://doi.org/10.1007/978-94-007-0146-5_16.42.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    43.Marini, M. Â. & Garcia, F. I. Bird conservation in Brazil. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2005.00706.x (2005).Article 

    Google Scholar 
    44.Young, B. E. et al. Population declines and priorities for amphibian conservation in Latin America. Conserv. Biol. 15, 1213–1223 (2001).Article 

    Google Scholar 
    45.Dias-Silva, K., Moreira, F. F. F., Giehl, N. F. D. S., Nóbrega, C. C. & Cabette, H. S. R. Gerromorpha (Hemiptera: Heteroptera) of eastern Mato Grosso State, Brazil: checklist, new records, and species distribution modeling. Zootaxa https://doi.org/10.11646/zootaxa.3736.3.1 (2013).Article 
    PubMed 

    Google Scholar 
    46.Ferraz, K. M. P. M. de B., Ferraz, S. F. de B., Paula, R. C. de, Beisiegel, B. & Breitenmoser, C. Species Distribution Modeling for Conservation Purposes. Nat. Conserv. 10, 214–220 (2012).47.Marco-Júnior, P. & Siqueira, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade (2009).48.Hijmans, R. J. et al. DIVA-GIS, version 5.2. A geographic information system for the analysis of biodiversity data. Manual. . vol. 1 (International Potato Center, 2005).49.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. Numerical Ecology with R (Springer New York, 2011). doi:https://doi.org/10.1007/978-1-4419-7976-6.50.Serra, B. D. V., De Marco, P. J., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 ( Hymenoptera, Apidae ): Conserving Isolated Populations in Mountain Habitats. Nat. e Conserv. 10, 199–206 (2012).Article 

    Google Scholar 
    51.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    52.Swets, J. Measuring the accuracy of diagnostic systems. Science (80-. ). 240, 1285–1293 (1988).53.Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Identifying important areas for butterfly conservation in Italy. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00216.x (2009).Article 

    Google Scholar 
    54.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    55.Vieira, T. B., Mendes, P. & Oprea, M. Priority areas for bat conservation in the state of Espírito Santo, southeastern Brazil. Neotrop. Biol. Conserv. 7, 88–96 (2012).Article 

    Google Scholar 
    56.Delgado-Jaramillo, M., Aguiar, L. M. S., Machado, R. B. & Bernard, E. Assessing the distribution of a species-rich group in a continental-sized megadiverse country: Bats in Brazil. Divers. Distrib. 26, 632–643 (2020).Article 

    Google Scholar 
    57.Destro, G. F. G., de Fernandes, V., de Andrade, A. F. A., De Marco, P. & Terribile, L. C. Back home? Uncertainties for returning seized animals to the source-areas under climate change. Glob. Chang. Biol. 25, 3242–3253 (2019).ADS 
    Article 

    Google Scholar 
    58.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). (2006) doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.59.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).60.de Andrade, A. F. A., Velazco, S. J. E. & De Marco, P. Niche mismatches can impair our ability to predict potential invasions. Biol. Invasions 21, 3135–3150 (2019).Article 

    Google Scholar 
    61.Velazco, S. J. E., Villalobos, F., Galvão, F. & De Marco Júnior, P. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25, 660–673 (2019).62.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article 

    Google Scholar 
    63.Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation : methods for large multi-species planning problems. Proc. R. Soc. 272, 1885–1891 (2005).
    Google Scholar 
    64.Moilanen, A. et al. Zonation spatial conservation planning framework and software v. 3.1, User manual. (2012).65.Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134, 571–579 (2007).Article 

    Google Scholar 
    66.Carvalho, A. R. de. Método de Monte Carlo e Aplicações. Repositório Inst. da Univ. Fed. Flum. 84 (2017).67.Feinleib, M. & Zar, J. H. Biostatistical analysis. J. Am. Stat. Assoc. https://doi.org/10.2307/2285423 (1975).Article 

    Google Scholar  More

  • in

    In vitro metabolic capacity of carbohydrate degradation by intestinal microbiota of adults and pre-frail elderly

    Study setupSix adults and six elderly, who were included in a previously conducted in vivo GOS intervention study [11], donated their faecal material for the current study (Fig. S1) at their first visit or at least 4 weeks after the intervention period. Each participant defecated into a stool collector (Excretas Medical BV, Enschede, the Netherlands). Directly after defecation, faecal material was divided into two portions. A small portion (~0.5 g) was frozen immediately. The remaining faeces was anoxically cryo-conserved and used as inoculum for the in vitro incubations. The viability of different microbial groups in the anoxically cryo-conserved faecal material was determined with propidium monoazide (PMA) dye. The in vitro incubations lasted for 24 h with samples collected in duplicate to compare microbiota composition, carbohydrate degradation and metabolite production between age groups (adults vs elderly). The degrading capacity for two typical bifidogenic carbohydrates, i.e., GOS and 2′-FL, was determined for the microbiota of all six adults and six elderly and compared to a non-carbohydrate control. To further extend these experiments, we also studied the degradation of other typical bifidogenic carbohydrates, i.e. FOS, inulin, and IMMP, using the faecal inocula of three adults and three elderly for which sufficient material was still available.ParticipantsThe six adults (20–30 yrs) and six elderly participants (70–85 yrs) of the intervention study [11] were randomly contacted and participated in the current study, who differed significantly in age, but not in sex, BMI, alcohol consumption, smoking, medication use or dietary fibre intake (Table 1). None of the participants took acid inhibitors (e.g., proton pump inhibitors), nor antibiotics 90 days prior to the study, nor did any of the participants have a chronic disorder or major surgery, as these factors potentially could have limited participation, completion of the study, or interfered with the study outcomes. Detailed description of the inclusion and exclusion criteria has been provided previously [11]. Subject codes as shown in the results were randomly assigned in the data analysis phase and cannot be traced back to individual subjects without the specific randomization key. The study was approved by the medical Ethics Committee of the Maastricht University Medical Center+ and registered in the US National Library of Medicine (http://www.clinicaltrials.gov) with the registration number NCT03077529 [11].Table 1 Characteristics of adults (n = 6) and elderly (n = 6) included in this study.Full size tableDietary intakeParticipants in the current study completed the dietary records on 3 consecutive days, after instructed to record their food, beverage and dietary supplement intake based on standard household units. Their nutrient intake was analyzed using the online dietary assessment tool of The Netherlands Nutrition Centre (www.voedingcentrum.nl).CarbohydratesFive different carbohydrates, i.e., GOS, 2′-FL, FOS, inulin and IMMP were used as sole carbon sources in this study. GOS and the human milk oligosaccharide 2′-FL (Fucα1-2Galβ1-4Glc) were kindly provided by Friesland Campina (Amersfoort, The Netherlands). In order to mimic the actual portion of GOS utilized by intestinal microbiota, purified GOS with  0.05) to explain the observed difference, using the prc function in the vegan package [30]. As for the metabolite data, redundancy analysis (RDA) in combination with Monte Carlo permutation was performed to assess to what extent explanatory variables, i.e., incubation time, subject- and carbohydrate-specificity, could explain the overall variation in metabolite data, using the rda function in the vegan package [30]. To assess the effect of age group (adult vs elderly) on the degradation of carbohydrates/concentration of metabolites during incubation, we analyzed the data using two-way mixed ANOVA, with one between-subjects factor (age group) and one within-subjects factor (incubation time), using the anova_test function in the rstatix package [31]. False discovery rate (FDR) correction according to the Benjamini–Hochberg procedure was applied for multiple testing when applicable. A corrected P value < 0.05 was considered to indicate significant difference. More

  • in

    Rebound in China’s coastal wetlands following conservation and restoration

    1.Ma, Z. J. et al. Rethinking China’s new great wall. Science 346, 912–914 (2014).CAS 
    Article 

    Google Scholar 
    2.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565, 222–225 (2019).Article 
    CAS 

    Google Scholar 
    3.Wang, X. et al. Tracking annual changes of coastal tidal flats in China during 1986–2016 through analyses of Landsat images with Google Earth Engine. Remote Sens. Environ. 238, 110987 (2020).Article 

    Google Scholar 
    4.Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).CAS 
    Article 

    Google Scholar 
    5.Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272 (2014).Article 

    Google Scholar 
    6.Gedan, K. B., Silliman, B. R. & Bertness, M. D. Centuries of human-driven change in salt marsh ecosystems. Ann. Rev. Mar. Sci. 1, 117–141 (2009).Article 

    Google Scholar 
    7.Syvitski, J. P. M., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).CAS 
    Article 

    Google Scholar 
    8.Cui, B., He, Q., Gu, B., Bai, J. & Liu, X. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36, 1–9 (2016).Article 

    Google Scholar 
    9.Gong, P. et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 64, 370–373 (2019).Article 

    Google Scholar 
    10.Han, Q., Niu, Z., Wu, M. & Wang, J. Remote-sensing monitoring and analysis of China intertidal zone changes based on tidal correction. Sci. Bull. 64, 456–473 (2019).
    Google Scholar 
    11.Mao, D. et al. National wetland mapping in China: a new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11–25 (2020).Article 

    Google Scholar 
    12.Wang, X. et al. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 163, 312–326 (2020).Article 

    Google Scholar 
    13.Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, e11764 (2017).Article 

    Google Scholar 
    14.Giri, C. et al. Status and distribution of mangrove forests of the world using Earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).Article 

    Google Scholar 
    15.Chen, Y. et al. Effects of reclamation and natural changes on coastal wetlands bordering China’s Yellow Sea from 1984 to 2015. Land Degrad. Dev. 30, 1533–1544 (2019).Article 

    Google Scholar 
    16.Hu, Y. et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS J. Photogramm. Remote Sens. 173, 122–134 (2021).Article 

    Google Scholar 
    17.Zhang, X. et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 247, 111916 (2020).18.Chen, B. Q. et al. A mangrove forest map of China in 2015: analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 131, 104–120 (2017).Article 

    Google Scholar 
    19.Hu, L., Li, W. & Xu, B. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 73, 88–98 (2018).Article 

    Google Scholar 
    20.Jia, M., Wang, Z., Zhang, Y., Mao, D. & Wang, C. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China. Int. J. Appl. Earth Obs. Geoinf. 73, 535–545 (2018).Article 

    Google Scholar 
    21.Jia, M. et al. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 255, 112285 (2021).Article 

    Google Scholar 
    22.Ma, T., Li, X., Bai, J. & Cui, B. Tracking three decades of land use and land cover transformation trajectories in China’s large river deltas. Land Degrad. Dev. 30, 799–810 (2019).Article 

    Google Scholar 
    23.Wang, K. Evolution of Yellow River delta coastline based on remote sensing from 1976 to 2014, China. Chin. Geogr. Sci. 29, 181–191 (2019).Article 

    Google Scholar 
    24.Zhao, Y. F. et al. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Sci. Total Environ. 607, 920–932 (2017).Article 
    CAS 

    Google Scholar 
    25.Yim, J. et al. Analysis of forty years long changes in coastal land use and land cover of the Yellow Sea: the gains or losses in ecosystem services. Environ. Pollut. 241, 74–84 (2018).CAS 
    Article 

    Google Scholar 
    26.Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2016).
    Google Scholar 
    27.Chen, Y. et al. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 6, 24018 (2016).CAS 
    Article 

    Google Scholar 
    28.Yang, M. et al. Spatio-temporal characterization of a reclamation settlement in the Shanghai coastal area with time series analyses of X-, C-, and L-band SAR datasets. Remote Sens. 10, 329 (2018).29.Han, X., Pan, J. & Devlin, A. T. Remote sensing study of wetlands in the Pearl River Delta during 1995–2015 with the support vector machine method. Front. Earth Sci. 12, 521–531 (2018).Article 

    Google Scholar 
    30.Liu, L., Xu, W., Yue, Q., Teng, X. & Hu, H. Problems and countermeasures of coastline protection and utilization in China. Ocean Coast. Manag. 153, 124–130 (2018).Article 

    Google Scholar 
    31.Yunxuan, Z. et al. Degradation of coastal wetland ecosystem in China: drivers, impacts, and strategies. Bull. Chin. Acad. Sci. 31, 1157–1166 (2016).
    Google Scholar 
    32.Jiang, T. T., Pan, J. F., Pu, X. M., Wang, B. & Pan, J. J. Current status of coastal wetlands in China: degradation, restoration, and future management. Estuar. Coast. Shelf Sci. 164, 265–275 (2015).Article 

    Google Scholar 
    33.Sun, Z. et al. China’s coastal wetlands: conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 79, 25–41 (2015).Article 

    Google Scholar 
    34.Ren, C. et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. Geoinf. 82, 101902 (2019).35.Gu, J. et al. Losses of salt marsh in China: trends, threats and management. Estuar. Coast. Shelf Sci. 214, 98–109 (2018).Article 

    Google Scholar 
    36.Wang, W., Liu, H., Li, Y. & Su, J. Development and management of land reclamation in China. Ocean Coast. Manag. 102, 415–425 (2014).Article 

    Google Scholar 
    37.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    38.Barbier, E. B. A global strategy for protecting vulnerable coastal populations. Science 345, 1250–1251 (2014).CAS 
    Article 

    Google Scholar 
    39.He, Q. et al. Economic development and coastal ecosystem change in China. Sci. Rep. 4, 5995 (2014).40.Zhou, C. et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Sci. China Life Sci. 46, 475–486 (2016).
    Google Scholar 
    41.Zhang, Q. et al. Propagule types and environmental stresses matter in saltmarsh plant restoration. Ecol. Eng. 143, 105693 (2020).Article 

    Google Scholar 
    42.Cui, B., Yang, Q., Yang, Z. & Zhang, K. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecol. Eng. 35, 1090–1103 (2009).Article 

    Google Scholar 
    43.Pan, X. Research on Xi Jinping’s thought of ecological civilization and environment sustainable development. IOP Conf. Ser. Earth Environ. Sci. 153, 062067 (2018).44.Hansen, M. H., Li, H. & Svarverud, R. Ecological civilization: interpreting the Chinese past, projecting the global future. Glob. Environ. Change. 53, 195–203 (2018).Article 

    Google Scholar 
    45.Moreno-Mateos, D., Power, M. E., Comín, F. A. & Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).CAS 
    Article 

    Google Scholar 
    46.He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).CAS 
    Article 

    Google Scholar 
    47.Gong, P., Li, X. & Zhang, W. 40-year (1978-2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 64, 756–763 (2019).Article 

    Google Scholar 
    48.Wang, X. et al. Gainers and losers of surface and terrestrial water resources in China during 1989–2016. Nat. Commun. 11, 3471 (2020).49.Zou, Z. H. et al. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl Acad. Sci. USA 115, 3810–3815 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history

    1.Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.010708.154114 (2008).Article 
    PubMed 

    Google Scholar 
    2.Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. https://doi.org/10.1007/s12571-012-0200-5 (2012).Article 

    Google Scholar 
    3.Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.43.113004.133839 (2005).Article 
    PubMed 

    Google Scholar 
    4.Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2004.07.021 (2004).Article 
    PubMed 

    Google Scholar 
    5.Scholthof, K. B. G. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00752.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Stukenbrock, E. H. & Bataillon, T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002893 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Gilligan, C. A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2007.2181 (2008).Article 

    Google Scholar 
    8.Li, L. M., Grassly, N. C. & Fraser, C. Genomic analysis of emerging pathogens: methods, application and future trends. Genome Biol.ogy https://doi.org/10.1186/s13059-014-0541-9 (2014).Article 

    Google Scholar 
    9.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000520 (2009).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001164 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Monjane, A. L. et al. Reconstructing the history of maize streak virus strain A dispersal tor reveal diversification hot spots and its origin in southern Africa. J. Virol. https://doi.org/10.1128/jvi.00640-11 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Trovao, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. https://doi.org/10.1093/ve/vev016 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Rakotomalala, M. et al. Comparing patterns and scales of plant virus phylogeography: rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. https://doi.org/10.1093/ve/vez023 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time – The emerging dimension of plant virus studies. J General Virol. https://doi.org/10.1099/vir.0.015925-0 (2010).Article 

    Google Scholar 
    15.Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war: host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0120-2 (2019).Article 
    PubMed 

    Google Scholar 
    16.Jones, R. A. C., Boonham, N., Adams, I. P. & Fox, A. Historical virus isolate collections: an invaluable resource connecting plant virology’s pre-sequencing and post-sequencing eras. Plant Pathol. 70, 235–248 (2021).Article 

    Google Scholar 
    17.Smith, O. et al. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. https://doi.org/10.1038/srep04003 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01307.x (2007).Article 

    Google Scholar 
    19.Peyambari, M., Warner, S., Stoler, N., Rainer, D. & Roossinck, M. J. A 1000-Year-old RNA virus. J. Virol. 93, e01188-18 (2019).CAS 
    Article 

    Google Scholar 
    20.Adams, I. P. et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00545.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2014.00029 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Massart, S., Olmos, A., Jijakli, H. & Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.029 (2014).Article 
    PubMed 

    Google Scholar 
    23.Roossinck, M. J., Martin, D. P. & Roumagnac, P. Plant virus metagenomics: advances in virus discovery. Phytopathology https://doi.org/10.1094/PHYTO-12-14-0356-RVW (2015).Article 
    PubMed 

    Google Scholar 
    24.Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology https://doi.org/10.1016/j.virol.2009.03.024 (2009).Article 
    PubMed 

    Google Scholar 
    25.Pooggin, M. M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02779 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Hartung, J. S. et al. History and diversity of Citrus Leprosis virus recorded in herbarium specimens. Phytopathology https://doi.org/10.1094/PHYTO-03-15-0064-R (2015).Article 
    PubMed 

    Google Scholar 
    27.Golyaev, V., Candresse, T., Rabenstein, F. & Pooggin, M. M. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. https://doi.org/10.1038/s41598-019-55547-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. https://doi.org/10.1016/S0065-3527(06)67010-3 (2006).Article 
    PubMed 

    Google Scholar 
    30.Wang, H. L. et al. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. https://doi.org/10.1094/PDIS-10-15-1228-PDN (2016).Article 
    PubMed 

    Google Scholar 
    31.Minato, N. et al. Surveillance for sri lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One https://doi.org/10.1371/journal.pone.0212780 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Mugerwa, H., Wang, H. L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article 
    PubMed 

    Google Scholar 
    33.Ntawuruhunga, P. et al. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Sci. J. https://doi.org/10.4314/acsj.v15i1.54405 (2010).Article 

    Google Scholar 
    34.Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. https://doi.org/10.1016/j.cropro.2012.10.010 (2013).Article 

    Google Scholar 
    35.Jeske, H. Geminiviruses. Curr. Topics Microbiol. Immunol. https://doi.org/10.1007/978-3-540-70972-5_11 (2009).Article 

    Google Scholar 
    36.Vanitharani, R., Chellappan, P. & Fauquet, C. M. Geminiviruses and RNA silencing. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2005.01.005 (2005).Article 
    PubMed 

    Google Scholar 
    37.Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002941 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.96.10.5586 (1999).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Fauquet, C. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. https://doi.org/10.1094/pd-74-0404 (1990).Article 

    Google Scholar 
    40.Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. https://doi.org/10.1007/s11103-004-1651-7 (2004).Article 
    PubMed 

    Google Scholar 
    41.De Bruyn, A. et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0749-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of dna retrieved from plant herbarium specimens. R. Soc. Open Sci. https://doi.org/10.1098/rsos.160239 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Chellappan, P., Vanitharani, R., Ogbe, F. & Fauquet, C. M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. https://doi.org/10.1104/pp.105.066563 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Smith, O. & Gilbert, M. T. P. Ancient RNA. in (2018). doi:https://doi.org/10.1007/13836_2018_17.45.Filloux, D. et al. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. https://doi.org/10.1093/ve/vev002 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Sharma, V. et al. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol. https://doi.org/10.1093/ve/veaa071 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. https://doi.org/10.1038/nbt.3535 (2016).Article 
    PubMed 

    Google Scholar 
    48.Serfraz, S. et al. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Front. Plant Sci. https://doi.org/10.3389/fpls.2021.683681 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One https://doi.org/10.1371/journal.pone.0019193 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).Article 

    Google Scholar 
    52.Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-7-214 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004028 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dufrénoy, J. & Hédin, L. . La. Mosaïque des feuilles du Manioc au Cameroun. J. d’agriculture Tradit. Bot. appliquée 94, 361–365 (1929).
    Google Scholar 
    55.Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).CAS 
    Article 

    Google Scholar 
    56.Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature https://doi.org/10.1038/nature07390 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature https://doi.org/10.1038/s41586-018-0097-z (2018).Article 
    PubMed 

    Google Scholar 
    58.Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. https://doi.org/10.1038/srep17226 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.07.005 (2005).Article 
    PubMed 

    Google Scholar 
    60.Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods https://doi.org/10.1016/j.jviromet.2003.11.015 (2004).Article 
    PubMed 

    Google Scholar 
    61.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Zheng, Y. et al. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology https://doi.org/10.1016/j.virol.2016.10.017 (2017).Article 
    PubMed 

    Google Scholar 
    63.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics https://doi.org/10.1093/bioinformatics/btp324 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. in Bioinformatics (2013). doi:https://doi.org/10.1093/bioinformatics/btt193.66.Broad Institute. Picard Tools – By Broad Institute. Github (2009).67.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics https://doi.org/10.1093/bioinformatics/btq033 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. https://doi.org/10.1038/ng.806 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    Article 

    Google Scholar 
    73.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods https://doi.org/10.1038/nmeth.2109 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Jombart, T. & Dray, S. Adephylo: Exploratory analyses for the phylogenetic comparative method. Bioinformatics (2010).75.Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).Article 

    Google Scholar 
    76.Rieux, A. & Khatchikian, C. E. Tipdatingbeast: an r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12603 (2017).Article 
    PubMed 

    Google Scholar 
    77.Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika https://doi.org/10.1093/biomet/83.2.251 (1996).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    78.Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).Article 
    PubMed 

    Google Scholar 
    79.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. (2018) doi:https://doi.org/10.1093/sysbio/syy032. More

  • in

    Xylan utilisation promotes adaptation of Bifidobacterium pseudocatenulatum to the human gastrointestinal tract

    Genome sequencingWe sequenced the genomes of 35 strains of B. pseudocatenulatum (Supplementary Table S1). These strains were isolated at the Yakult Central Institute and the species were identified based on the 16S rRNA gene sequence analysis. These strains have been isolated in the course of various studies over the past few decades, including many studies on infants and adults. B. pseudocatenulatum cultures were anaerobically incubated in modified Gifu anaerobic medium (Nissui Pharmaceutical, Tokyo, Japan) supplemented with lactose and glucose (both 0.5% wt/vol) at 37 °C for 16 h. These culture conditions were applied throughout the study unless stated otherwise. The detailed procedures for genomic DNA extraction, library preparation for MiSeq (Illumina, San Diego, CA, USA), MinION (Oxford Nanopore Technologies, Oxford, UK) and PacBio RS2 (Pacific Biosciences, Menlo Park, CA, USA), and sequencing are described in the Supplementary Methods.Genome assembly, gene prediction and pangenome analysisWe used Unicycler [26] with default parameters for both short-read and hybrid assembly, and Prokka [27] with default parameters for annotating the reconstructed genomes and those downloaded from the RefSeq database. The annotated genomes were then processed with Roary [28] with a default gene identity cut-off parameter of 95% for species level pangenome analysis. A representative sequence from each gene cluster was translated into a protein sequence, and CAZymes were identified using the dbCAN2 server [29]. Proteins were considered CAZymes if they were identified using HMMER, DIAMOND and Hotpep with default parameters. We then built a CAZyme gene distribution matrix (Supplementary Table S2) based on the gene presence-absence table determined using Roary.Carbohydrate utilisation assaysStrains of B. pseudocatenulatum were cultured until they reached the exponential phase, centrifuged, and then, the resulting pellets were suspended to an OD600 of 0.2 in modified peptone yeast extract (PY) medium (100 mM PIPES, pH 6.7, 2 g/L peptone, 2 g/L BBL trypticase peptone, 2 g/L bacto-yeast extract, 8 mg/L CaCl2, 19.2 mg/L MgSO4 ∙ 7H2O, 80 mg/L NaCl, 4.9 mg/L hemin, 0.5 g/L L-cysteine hydrochloride and 100 ng/L vitamin K1). These suspension cultures were inoculated (1% vol/vol) into modified PY medium supplemented with 0.5% (wt/vol) XOS (Xylo-Oligo95P, B Food Science, Aichi, Japan) (PY-XOS), wheat arabinoxylan (Megazyme, Bray, Ireland) (PY-AX) or beechwood xylan (Sigma-Aldrich, Darmstadt, Germany) (PY-XY) and covered with sterile mineral oil (50 μL) to prevent evaporation. Growth was monitored anaerobically by measuring the OD600 using a PowerWave 340 plate reader (BioTek, Winooski, VT, USA) every 30 min in an anaerobic chamber for 48 h. The organic acids produced in PY-XY were analysed using high-pressure liquid chromatography as described [8].Cloning, expression and purification of recombinant BpXyn10AThe GH10 domain of the BpXyn10A gene was amplified by PCR using the primers xynA-GH-F (5’-CATCATCATCATCATGCGGAAGGCGACGCCGTA-3’) and xynA-GH-R (5’-AGCAGAGATTACCTAATCCTTGAATGCGTTCATGC-3’), with the genomic DNA of YIT 11027 as a template. A linearised vector was synthesised by PCR using primers pColdII-F (5’-GTAATCTCTGCTTAAAAGCACAGAATCTA-3’) and pColdII-R (5’-ATGATGATGATGATGATGCACTTTGT-3’), and the pColdII vector (Takara Bio, Otsu, Japan) as a template. These fragments were ligated using In-Fusion HD Cloning Kits (Takara Bio, Otsu, Japan), resulting in pColdII-xynA. Escherichia coli BL21 was transformed with pColdII-xynA and cultured to express recombinant BpXyn10A as described by the manufacturer. Bacterial cells were harvested by centrifugation and lysed with B-PER Bacterial Cell Lysis Reagent (Thermo Fisher Scientific, Waltham, MA, USA) containing lysozyme at 100 µg/mL and 10 U/mL of DNase I. Recombinant BpXyn10A was further purified using Ni-NTA Spin Column (Qiagen, Hilden, Germany) and analysed by SDS-PAGE.Endo-xylanase activity assayB. pseudocatenulatum YIT 11027, YIT 11952 and YIT 4072T cells were grown anaerobically in PY-AX or PY-XOS medium for 16 h. Cultures (1.5 mL) were centrifuged (8000× g for 2 min at room temperature); then, supernatants were sterilised by passage through a 0.22-μm filter. Pelleted cells were washed with modified PY medium and resuspended in 1.5 mL of the same medium. The endo-xylanase activity of the supernatant and the cell fractions were assayed using Xylanase Assay kits (XylX6 method) (Megazyme, Bray, Ireland) as described by the manufacturer. According to the manufacturer, this kit is designed to specifically detect only endo-xylanase activity, and not xylosidase or exo-xylanase enzyme activity.Purified BpXyn10A-added cultureB. pseudocatenulatum YIT 4072T and Ba. ovatus YIT 6161T cells were cultured anaerobically until they reached the exponential phase. Thereafter, cultures (200 μL) were centrifuged (8000× g for 2 min at room temperature), then pelleted cells were resuspended in modified PY medium (500 μL), and inoculated (1% vol/vol) into PY-AX medium supplemented with 0, 10, 100 and 1000 ng/mL purified recombinant BpXyn10A. Growth was monitored anaerobically by measuring the OD600 using the PowerWave 340 plate reader.RNA-seq analysisB. pseudocatenulatum YIT 11952 was cultured in modified PY medium supplemented with 0.5% (wt/vol) lactose, xylose, XOS, beechwood xylan or arabinoxylan and harvested at mid- to late-log phase. The detailed procedures for total RNA extraction, rRNA removal and sequencing using MiSeq are described in the Supplementary Methods. We obtained a total of 23 million paired-end reads. Low-quality bases (average quality More

  • in

    The effects of low pH on the taste and amino acid composition of tiger shrimp

    1.Pachauri, R. K. et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).2.International Geosphere Biosphere Programme (IGBP). Ocean acidification summary for policymakers (2013).3.Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    4.Vargas, C. A. et al. Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity. Nat. Ecol. Evol. 1, 1–7. https://doi.org/10.1038/s41559-017-0084 (2017).CAS 
    Article 

    Google Scholar 
    5.Dupont, S., Hall, E., Calosi, P. & Lundve, B. First evidence of altered sensory quality in a shellfish exposed to decreased pH relevant to ocean acidification. J. Shellfish Res. 33, 857–861 (2014).Article 

    Google Scholar 
    6.Lemasson, A. J. et al. Sensory qualities of oysters unaltered by a short exposure to combined elevated pCO2 and temperature. Front. Mar. Sci. 4, 352. https://doi.org/10.3389/fmars.2017.00352 (2017).Article 

    Google Scholar 
    7.San Martin, V. A. et al. Linking social preferences and ocean acidification impacts in mussel aquaculture. Sci. Rep. 9, 1–9 (2019).ADS 

    Google Scholar 
    8.Shahidi, F. & Cadwallader, K. R. Flavor and lipid chemistry of seafoods: an overview (1997).9.Nelson, G. et al. An amino acid taste receptor. Nature 416, 199–202 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Guillen, J. et al. Global seafood consumption footprint. Ambio 48(2), 111–122 (2019).Article 

    Google Scholar 
    11.FAO. The state of world fisheries and aquaculture. Contributing to food security and nutrition for all. FAO, Rome (2016).12.FAO. The state of world fisheries and aquaculture—sustainability in action (2020).13.Gerland, P. et al. World population stabilization unlikely this century. Science 346(6206), 234–237 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Minh, N. P., Nhi, T. T. Y., Hiep, P. T. H., Nhan, D. T. & Anh, S. T. Quality characteristics of dried salted black tiger shrimp (Penaeus monodon) affected by different pre-treatment and drying variables. J. Pharm. Sci. Res. 11, 1377–1381 (2019).CAS 

    Google Scholar 
    15.FAO. The state of food and agriculture (1980).16.Solms, J. Taste of amino acids, peptides, and proteins. J. Agric. Food Chem. 17(4), 686–688 (1969).CAS 
    Article 

    Google Scholar 
    17.Jiro, K., Akira, S. & Akimitsu, K. The contribution of peptides and amino acids to the taste of foodstuffs. J. Agric. Food Chem. 17(4), 689–695 (1969).Article 

    Google Scholar 
    18.Schiffman, S. S., Sennewald, K. & Gagnon, J. Comparison of taste qualities and thresholds of D-and L-amino acids. Physiol. Behav. 27(1), 51–59 (1981).CAS 
    Article 

    Google Scholar 
    19.Kawai, M., Sekine-Hayakawa, Y., Okiyama, A. & Ninomiya, Y. Gustatory sensation of L- and D-amino acids in humans. Amino Acids 43, 2349–2358 (2012).CAS 
    Article 

    Google Scholar 
    20.Dissanayake, A., Clough, R., Spicer, J. I. & Jones, M. B. Effects of hypercapnia on acid–base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquat. Biol. 11, 27–36 (2010).Article 

    Google Scholar 
    21.Ries, J., Choen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6, eaax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Corteel, M. et al. Moult cycle of laboratory-raised Penaeus (Litopenaeus) vannamei and P. monodon. Aquac. Int. 20, 13–18 (2011).Article 

    Google Scholar 
    24.Taylor, J. R., Gilleard, J. M., Allen, M. C. & Deheyn, D. D. Effects of CO2-induced pH reduction on the exoskeleton structure and biophotonic properties of the shrimp Lysmata californica. Sci. Rep. 5, 10608 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLean, E. L., Katenka, N. V. & Seibel, B. A. Decreased growth and increased shell disease in early benthic phase Homarus americanus in response to elevated CO2. Mar. Ecol. Prog. Ser. 596, 113–126 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Chen, S. M. & Chen, J. C. Effect of low pH on the acid-base balance, osmolality and ion concentrations of giant freshwater prawn Macrobrachium rosenbergii. J. Fish. Soc. Taiwan 30, 227–239 (2003).
    Google Scholar 
    27.Kurihara, H., Matsui, M., Furukawa, H., Hayashi, M. & Ishimatsu, A. Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J. Exp. Mar. Biol. Ecol. 367, 41–46 (2008).CAS 
    Article 

    Google Scholar 
    28.Findlay, H. S., Kendall, M. A., Spicer, J. I. & Widdicombe, S. Future high CO2 in the intertidal may compromise adult barnacle Semibalanus balanoides survival and embryonic development rate. Mar. Ecol. Prog. Ser. 389, 193–202 (2009).ADS 
    Article 

    Google Scholar 
    29.Cameron, J. N. & Iwama, G. K. Compensation of progressive hypercapnia in channel catfish and blue crabs. J. Exp. Biol. 133, 183–197 (1987).Article 

    Google Scholar 
    30.Pane, E. F. & Barry, J. P. Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar. Ecol. Prog. Ser. 334, 1–9 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Lowder, K. B., Allen, M. C., Day, J. M. D., Deheyn, D. D. & Taylor, J. R. A. Assessment of ocean acidification and warming on the growth, calcification, and biophotonics of a California grass shrimp. ICES J. Mar. Sci. 74, 1150–1158 (2017).Article 

    Google Scholar 
    32.Pörtner, H. O., Langenbunh, M. & Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 60, 705–718 (2004).Article 

    Google Scholar 
    33.Dissanayake, A. & Ishimatsu, A. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeide). ICES J. Mar. Sci. 68, 1147–1154 (2011).Article 

    Google Scholar 
    34.Pan, L. Q., Zhang, L. J. & Liu, H. Y. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae. Aquaculture 273, 711–720 (2007).CAS 
    Article 

    Google Scholar 
    35.Rathburn, C. K. et al. Transcriptomic responses of juvenile Pacific whiteleg shrimp, Litopenaeus vannamei, to hypoxia and hypercapnic hypoxia. Physiol. Genomics 45, 794–807 (2013).CAS 
    Article 

    Google Scholar 
    36.Yu, Q. R. et al. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquacul. Rep. 16, 100280 (2020).Article 

    Google Scholar 
    37.Chen, J. C., Chen, C. T. & Cheng, S. Y. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to different concentrations of ambient ammonia-N at different salinity levels. Mar. Ecol. Prog. Ser. 110, 85–94 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Dayal, J. S., Ambasankar, K., Rajendran, R., Rajaram, V. & Muralidhar, M. Effect of abiotic salinity stress on haemolymph metabolic profiles in cultured tiger shrimp Penaeus monodon. Int. J. Bio-resour. Stress Manag. 4, 339–343 (2013).
    Google Scholar 
    39.Ardo, Y. Flavour formation by amino acid catabolism. Biotechnol. Adv. 24, 238–242 (2006).CAS 
    Article 

    Google Scholar 
    40.Engström-Öst, J. et al. Eco-physiological responses of copepods and pteropods to ocean warming and acidification. Sci. Rep. 9, 4748 (2019).ADS 
    Article 

    Google Scholar 
    41.Liao, H. et al. Impact of ocean acidification on the energy metabolism and antioxidant responses of the Yesso scallop (Patinopecten yessoensis). Front. Physiol. 27, 1967 (2019).Article 

    Google Scholar 
    42.Richard, L. et al. The effect of choline and cystine on the utilisation of methionine for protein accretion, remethylation and trans-sulfuration in juvenile shrimp Penaeus monodon. Br. J. Nutr. 28, 825–835 (2011).Article 

    Google Scholar 
    43.Peng, B., Huang, R. & Zhou, X. oxidation resistance of the sulfur amino acids: methionine and cysteine. Biomed. Res. Int. 2017, 9584932 (2017).
    Google Scholar 
    44.DeVries, M. S. et al. Stress physiology and weapon integrity of intertidal mantis shrimp under future ocean conditions. Sci. Rep. 6, 38637 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Dupont, S. & Thorndyke, M. C. Impact of CO2-driven ocean acidification on invertebrates early life-history—What we know, what we need to know and what we can do. Biogeosci. Discuss. 6, 3109–3131 (2009).ADS 
    Article 

    Google Scholar 
    46.Weerathunga, V. V. et al. Impacts of pH on the fitness and immune system of pacific white shrimp. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.748837 (2021).Article 

    Google Scholar 
    47.Fuller, P. L. et al. Invasion of Asian tiger shrimp, Penaeus monodon Fabricius, 1798, in the western north Atlantic and Gulf of Mexico. Aquat. Invasions 9, 59–70 (2014).Article 

    Google Scholar 
    48.Lewis, E. & Wallace, D. Program developed for CO2 system calculations (Environmental System Science Data Infrastructure for a Virtual Ecosystem, 1998).49.Dickson, A. G. & Millero, F. J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 1733–1743 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    50.AOAC. Method 991.42 & 993.19. Official methods of analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists (1995).51.Motoh, H. Biology and ecology of Penaeus monodon. Iloilo City, Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center (1985).52.Mayor, D. J., Matthews, C., Cook, K., Zuur, A. F. & Hay, S. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350, 91–97 (2007). More

  • in

    Microbial diversity in Mediterranean sponges as revealed by metataxonomic analysis

    1.Joseph, B. & Sujatha, S. Pharmacologically important natural products from marine sponges. J. Nat. Prod. 4, 5–12 (2011).CAS 

    Google Scholar 
    2.Bergmann, W. & Feeney, R. J. Contributions to the study of marine products XXXII The nucleosides of sponges. I. J. Org. Chem. 16, 981–987 (1951).CAS 
    Article 

    Google Scholar 
    3.Munro, M. H. G., Luibrand, R. T. & Blunt, J. W. The search for antiviral and anticancer compounds from marine organisms. in Bioorganic Marine Chemistry (ed. Scheuer, P. J.) vol. 1 93–176 (Springer-Verlag, Berlin, Heidelberg, 1987).4.Fuerst, J. A. Diversity and biotechnological potential of microorganisms associated with marine sponges. Appl. Microbiol. Biotechnol. 98, 7331–7347 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Mehbub, M. F., Lei, J., Franco, C. & Zhang, W. Marine sponge derived natural products between 2001 and 2010: Trends and opportunities for discovery of bioactives. Mar. Drugs 12, 4539–4577 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Piel, J. Metabolites from symbiotic bacteria. Nat. Prod. Rep. 26, 338–362 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. U. S. A. 101, 16222–16227 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Noro, J. C., Kalaitzis, J. A. & Neilan, B. A. Bioactive natural products from Papua New Guinea marine sponges. Chem. Biodivers. 9, 2077–2095 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Schirmer, A. et al. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microbiol. 71, 4840–4849 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    10.Siegl, A. & Hentschel, U. PKS and NRPS gene clusters from microbial symbiont cells of marine sponges by whole genome amplification. Environ. Microbiol. Rep. 2, 507–513 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Graça, A. P. et al. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS ONE 8, e78992 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    12.Santos, O. C. S. et al. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140–147 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Su, P., Wang, D. X., Ding, S. X. & Zhao, J. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp from the coast of Fujian. China. Can. J. Microbiol. 60, 217–225 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Van Soest, R. W. M. et al. World Porifera Database. http://www.marinespecies.org/porifera/. (2020).15.Bertolino, M. et al. Stability of the sponge assemblage of Mediterranean coralligenous concretions along a millennial time span. Mar. Ecol. 35, 149–158 (2014).Article 
    ADS 

    Google Scholar 
    16.Longo, C. et al. Sponges associated with coralligenous formations along the Apulian coasts. Mar. Biodivers. 48, 2151–2163 (2018).Article 

    Google Scholar 
    17.Costa, G. et al. Sponge community variation along the Apulian coasts (Otranto Strait) over a pluri-decennial time span Does water warming drive a sponge diversity increasing in the Mediterranean Sea?. J. Mar. Biol. Assoc. United Kingdom 99, 1519–1534 (2019).Article 

    Google Scholar 
    18.Bertolino, M. et al. Changes and stability of a Mediterranean hard bottom benthic community over 25 years. J. Mar. Biol. Assoc. United Kingdom 96, 341–350 (2016).Article 

    Google Scholar 
    19.Bertolino, M. et al. Have climate changes driven the diversity of a Mediterranean coralligenous sponge assemblage on a millennial timescale?. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 355–363 (2017).Article 

    Google Scholar 
    20.Gerovasileiou, V. et al. New Mediterranean biodiversity records. Mediterr. Mar. Sci. 18, 355–384 (2017).Article 

    Google Scholar 
    21.Ulman, A. et al. A massive update of non-indigenous species records in Mediterranean marinas. PeerJ 2017, e3954 (2017).Article 

    Google Scholar 
    22.Costantini, M. An analysis of sponge genomes. Gene 342, 321–325 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Costantini, S. et al. Anti-inflammatory effects of a methanol extract from the marine sponge Geodia cydonium on the human breast cancer MCF-7 cell line. Mediators Inflamm. https://doi.org/10.1155/2015/204975 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Costantini, S. et al. Evaluating the effects of an organic extract from the mediterranean sponge Geodia cydonium on human breast cancer cell lines. Int. J. Mol. Sci. 18, 2112 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5, e11842 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    26.Marra, M. V. et al. Long-term turnover of the sponge fauna in Faro Lake (North-East Sicily, Mediterranean Sea). Ital. J. Zool. 83, 579–588 (2016).CAS 
    Article 

    Google Scholar 
    27.Cárdenas, P., Xavier, J. R., Reveillaud, J., Schander, C. & Rapp, H. T. Molecular phylogeny of the astrophorida (Porifera, Demospongiaep) reveals an unexpected high level of spicule homoplasy. PLoS ONE 6, e18318 (2011).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Erpenbeck, D. et al. The phylogeny of halichondrid demosponges: past and present re-visited with DNA-barcoding data. Org. Divers. Evol. 12, 57–70 (2012).Article 

    Google Scholar 
    29.Abdul Wahab, M. A., Fromont, J., Whalan, S., Webster, N. & Andreakis, N. Combining morphometrics with molecular taxonomy: How different are similar foliose keratose sponges from the Australian tropics?. Mol. Phylogenet. Evol. 73, 23–39 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wörheide, G. Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar. Biol. 148, 907–912 (2006).Article 
    CAS 

    Google Scholar 
    31.Carella, M., Agell, G., Cárdenas, P. & Uriz, M. J. Phylogenetic reassessment of antarctic tetillidae (Demospongiae, Tetractinellida) reveals new genera and genetic similarity among morphologically distinct species. PLoS ONE 11, 1–33 (2016).
    Google Scholar 
    32.Morrow, C. C. et al. Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Mol. Phylogenet. Evol. 62, 174–190 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Vargas, S. et al. Diversity in a cold hot-spot: DNA-barcoding reveals patterns of evolution among Antarctic demosponges (class demospongiae, phylum Porifera). PLoS ONE 10, 1–17 (2015).
    Google Scholar 
    34.Yang, Q., Franco, C. M. M., Sorokin, S. J. & Zhang, W. Development of a multilocus-based approach for sponge (phylum Porifera) identification: refinement and limitations. Sci. Rep. 7, 1–14 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    35.Cosentino, A., Giacobbe, S. & Potoschi, A. The CSI of Faro coastal lake (Messina): a natural observatory for the incoming of marine alien species. Biol. Mar. Mediterr. 16, 132–133 (2009).
    Google Scholar 
    36.Zagami, G., Costanzo, G. & Crescenti, N. First record in Mediterranean Sea and redescription of the bentho-planktonic calanoid copepod species Pseudocyclops xiphophorus Wells, 1967. J. Mar. Syst. 55, 67–76 (2005).Article 

    Google Scholar 
    37.Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: rapid invasion in lakes Faro and Ganzirri (central Meditteranean Sea). in Trends in copepod studies. Distribution, biology and ecology (ed. Uttieri, M.) 1–55 (Nova Science Publishers, 2017).38.Saccà, A. & Giuffrè, G. Biogeography and ecology of Rhizodomus tagatzi, a presumptive invasive tintinnid ciliate. J. Plankton Res. 35, 894–906 (2013).Article 
    CAS 

    Google Scholar 
    39.Cao, S. et al. Structure and function of the Arctic and Antarctic marine microbiota as revealed by metagenomics. Microbiome 8, 47 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Donnarumma, L. et al. Environmental and benthic community patterns of the shallow hydrothermal area of Secca Delle Fumose (Baia, Naples, Italy). Front. Mar. Sci. 6, 1–15 (2019).Article 

    Google Scholar 
    41.Poli, A., Anzelmo, G. & Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar. Drugs 8, 1779–1802 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Shukla, P. J., Nathani, N. M. & Dave, B. P. Marine bacterial exopolysaccharides [EPSs] from extreme environments and their biotechnological applications. Int. J. Res. Biosci. 6, 20–32 (2017).
    Google Scholar 
    43.Patel, A., Matsakas, L., Rova, U. & Christakopoulos, P. A perspective on biotechnological applications of thermophilic microalgae and cyanobacteria. Bioresour. Technol. 278, 424–434 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Schultz, J. & Rosado, A. S. Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24, 189–206 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gloeckner, V. et al. The HMA-LMA dichotomy revisited: An electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Erwin, P. M., Coma, R., López-Sendino, P., Serrano, E. & Ribes, M. Stable symbionts across the HMA-LMA dichotomy: Low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol. Ecol. 91, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    47.Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, 1–13 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hardoim, C. C. P. & Costa, R. Temporal dynamics of prokaryotic communities in the marine sponge Sarcotragus spinosulus. Mol. Ecol. 23, 3097–3112 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Karimi, E. et al. Metagenomic binning reveals versatile nutrient cycling and distinct adaptive features in alphaproteobacterial symbionts of marine sponges. FEMS Microbiol. Ecol. 94, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    50.Mohamed, N. M. et al. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges. Environ. Microbiol. 10, 75–86 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Thiel, V. & Imhoff, J. F. Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol. Eng. 20, 421–423 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Bibi, F., Yasir, M., Al-Sofyani, A., Naseer, M. I. & Azhar, E. I. Antimicrobial activity of bacteria from marine sponge Suberea mollis and bioactive metabolites of Vibrio sp EA348. Saudi J. Biol. Sci. 27, 1139–1147 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Thakur, A. N. et al. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge-associated bacteria. Mar. Biotechnol. 7, 245–252 (2005).CAS 
    Article 

    Google Scholar 
    54.Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Thomas, T. R. A., Kavlekar, D. P. & LokaBharathi, P. A. Marine drugs from sponge-microbe association—A review. Mar. Drugs 8, 1417–1468 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).Article 
    CAS 

    Google Scholar 
    57.Haber, M. & Ilan, M. Diversity and antibacterial activity of bacteria cultured from Mediterranean Axinella spp sponges. J. Appl. Microbiol. 116, 519–532 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Öner, Ö. et al. Cultivable sponge-associated Actinobacteria from coastal area of eastern Mediterranean Sea. Adv. Microbiol. 04, 306–316 (2014).Article 

    Google Scholar 
    59.Gonçalves, A. C. S. et al. Draft genome sequence of Vibrio sp strain Vb278, an antagonistic bacterium isolated from the marine sponge Sarcotragus spinosulus. Genome Announc. 3, 2014–2015 (2015).Article 

    Google Scholar 
    60.Cheng, C. et al. Biodiversity, anti-trypanosomal activity screening, and metabolomic profiling of actinomycetes isolated from Mediterranean sponges. PLoS ONE 10, 1–21 (2015).
    Google Scholar 
    61.Graça, A. P. et al. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae). Front. Microbiol. 6, 389 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    62.Kuo, J. et al. Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Ann. Microbiol. 69, 253–265 (2019).CAS 
    Article 

    Google Scholar 
    63.Liu, T. et al. Diversity and antimicrobial potential of Actinobacteria isolated from diverse marine sponges along the Beibu Gulf of the South China Sea. FEMS Microbiol. Ecol. 95, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    64.Hentschel, U. et al. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol. Ecol. 35, 305–312 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Chelossi, E., Milanese, M., Milano, A., Pronzato, R. & Riccardi, G. Characterisation and antimicrobial activity of epibiotic bacteria from Petrosia ficiformis (Porifera, Demospongiae). J. Exp. Mar. Bio. Ecol. 309, 21–33 (2004).CAS 
    Article 

    Google Scholar 
    66.Kennedy, J. et al. Isolation and analysis of bacteria with antimicrobial activities from the marine sponge Haliclona simulans collected from irish waters. Mar. Biotechnol. 11, 384–396 (2009).CAS 
    Article 

    Google Scholar 
    67.Penesyan, A., Marshall-Jones, Z., Holmstrom, C., Kjelleberg, S. & Egan, S. Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol. Ecol. 69, 113–124 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Santos, O. C. S. et al. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res. Microbiol. 161, 604–612 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Flemer, B. et al. Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J. Appl. Microbiol. 112, 289–301 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Margassery, L. M., Kennedy, J., O’Gara, F., Dobson, A. D. & Morrissey, J. P. Diversity and antibacterial activity of bacteria isolated from the coastal marine sponges Amphilectus fucorum and Eurypon major. Lett. Appl. Microbiol. 55, 2–8 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Abdelmohsen, U. R. et al. Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar. Drugs 12, 2771–2789 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Montalvo, N. F. & Hill, R. T. Sponge-associated bacteria are strictly maintained in two closely related but geographically distant sponge hosts. Appl. Environ. Microbiol. 77, 7207–7216 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    73.Cleary, D. F. R. et al. Compositional analysis of bacterial communities in seawater, sediment, and sponges in the Misool coral reef system. Indonesia. Mar. Biodivers. 48, 1889–1901 (2018).Article 

    Google Scholar 
    74.Bedard, D. L., Ritalahti, K. M. & Löffler, F. E. The Dehalococcoides population in sediment-free mixed cultures metabolically dechlorinates the commercial polychlorinated biphenyl mixture aroclor 1260. Appl. Environ. Microbiol. 73, 2513–2521 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    75.Taş, N., Van Eekert, M. H. A., De Vos, W. M. & Smidt, H. The little bacteria that can – Diversity, genomics and ecophysiology of ‘Dehalococcoides’ spp in contaminated environments. Microb. Biotechnol. 3, 389–402 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Arnds, J., Knittel, K., Buck, U., Winkel, M. & Amann, R. Development of a 16S rRNA-targeted probe set for Verrucomicrobia and its application for fluorescence in situ hybridization in a humic lake. Syst. Appl. Microbiol. 33, 139–148 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Sizikov, S. et al. Characterization of sponge-associated Verrucomicrobia: microcompartment-based sugar utilization and enhanced toxin–antitoxin modules as features of host-associated Opitutales. Environ. Microbiol. 22, 4669–4688 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Cardman, Z. et al. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl. Environ. Microbiol. 80, 3749–3756 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    79.Cabello-Yeves, P. J. et al. Reconstruction of diverse verrucomicrobial genomes from metagenome datasets of freshwater reservoirs. Front. Microbiol. 8, 2131 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.He, S. et al. Ecophysiology of freshwater Verrucomicrobia inferred from metagenome-assembled genomes. MSphere 2, e00277 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Sichert, A. et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat. Microbiol. 5, 1026–1039 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Shindo, K. et al. Diapolycopenedioic acid xylosyl esters A, B, and C, novel antioxidative glyco-C30-carotenoic acids produced by a new marine bacterium Rubritalea Squalenifaciens. J. Antibiot. (Tokyo) 61, 185–191 (2008).CAS 
    Article 

    Google Scholar 
    83.Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B. & Schlosser, U. Nitrospira marina gen. nov sp nov: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7 (1986).Article 

    Google Scholar 
    84.Daims, H. & Wagner, M. Nitrospira. Trends Microbiol. 26, 462–463 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Off, S., Alawi, M. & Spieck, E. Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge. Appl. Environ. Microbiol. 76, 4640–4646 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    86.Feng, G., Sun, W., Zhang, F., Karthik, L. & Li, Z. Inhabitancy of active Nitrosopumilus-like ammonia-oxidizing archaea and Nitrospira nitrite-oxidizing bacteria in the sponge Theonella swinhoei. Sci. Rep. 6, 1–11 (2016).CAS 
    Article 

    Google Scholar 
    87.Andreo-Vidal, A., Sanchez-Amat, A. & Campillo-Brocal, J. C. The Pseudoalteromonas luteoviolacea L-amino acid oxidase with antimicrobial activity is a flavoenzyme. Mar. Drugs 16, 499 (2018).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    88.Saccà, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiologia 600, 89–104 (2008).Article 

    Google Scholar 
    89.Polese, G. et al. Meiofaunal assemblages of the bay of Nisida and the environmental status of the Phlegraean area (Naples, Southern Italy). Mar. Biodivers. 48, 127–137 (2018).Article 

    Google Scholar 
    90.Gambi, M. C., Tiberti, L. & Mannino, A. M. An update of marine alien species off the Ischia Island (Tyrrhenian Sea) with a closer look at neglected invasions of Lophocladia lallemandii (Rhodophyta). Not. Sibm 75, 58–65 (2019).
    Google Scholar 
    91.Hooper, J. N. A. ‘Sponguide’. Guide to sponge collection and identification. https://www.academia.edu/34258606/SPONGE_GUIDE_GUIDE_TO_SPONGE_COLLECTION_AND_IDENTIFICATION_Version_August_2000. (2000).92.Rützler, K. Sponges in coral reefs. in Coral reefs: Research methods, monographs on oceanographic methodology (eds. Stoddart, D. R. & Johannes, R. E.) 299–313 (Paris: Unesco, 1978).93.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Schmitt, S., Hentschel, U., Zea, S., Dandekar, T. & Wolf, M. ITS-2 and 18S rRNA gene phylogeny of Aplysinidae (Verongida, Demospongiae). J. Mol. Evol. 60, 327–336 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    95.Chombard, C., Boury-Esnault, N. & Tillier, S. Reassessment of homology of morphological characters in Tetractinellid sponges based on molecular data. Syst. Biol. 47, 351–366 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Collins, A. G. Phylogeny of medusozoa and the evolution of cnidarian life cycles. J. Evol. Biol. 15, 418–432 (2002).Article 

    Google Scholar 
    97.Dohrmann, M., Janussen, D., Reitner, J., Collins, A. G. & Wörheide, G. Phylogeny and evolution of glass sponges (Porifera, Hexactinellida). Syst. Biol. 57, 388–405 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Manuel, M. et al. Phylogeny and evolution of calcareous sponges: monophyly of calcinea and calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Syst. Biol. 52, 311–333 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Wörheide, G., Degnan, B., Hooper, J. & Reitner, J. Phylogeography and taxonomy of the Indo-Pacific reef cave dwelling coralline demosponge Astrosclera willeyana: new data from nuclear internal transcribed spacer sequences. Proc. 9th Int. Coral Reef Symp. 1, 339–346 (2002).100.Meyer, C. P., Geller, J. B. & Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution 59, 113–125 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    103.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.R Core Team. A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. (2020).105.Urbanek, S. & Horner, J. Cairo: R Graphics device using Cairo graphics library for creating high-quality bitmap (PNG, JPEG, TIFF), vector (PDF, SVG, PostScript) and display (X11 and Win32) output. R package version 1.5–12.2. https://cran.r-project.org/package=Cairo (2020).106.Chao, B. F. Interannual length-of-the-day variation with relation to the southern oscillation/El Nino. Geophys. Res. Lett. 11, 541–544 (1984).Article 
    ADS 

    Google Scholar 
    107.Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    108.Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, 1949).MATH 

    Google Scholar 
    109.Simpson, E. H. Measurment of diversity. Nature 163, 688 (1949).MATH 
    Article 
    ADS 

    Google Scholar  More