Sublethal effects of bifenazate on biological traits and enzymatic properties in the Panonychus citri (Acari: Tetranychidae)
1.Zhang, Z. Y. et al. A shift pattern of bacterial communities across the life stages of the citrus red mite, Panonychus citri. Front. Microbiol. 11, 1620. https://doi.org/10.3389/fmicb.2020.01620 (2020).Article
PubMed
PubMed Central
Google Scholar
2.Pan, D., Dou, W., Yuan, G. R., Zhou, Q. H. & Wang, J. J. Monitoring the resistance of the citrus red mite (Acari: Tetranychidae) to four acaricides in different citrus orchards in China. J. Econ. Entomol. 113, 918–923. https://doi.org/10.1093/jee/toz335 (2020).CAS
Article
PubMed
Google Scholar
3.Zhang, Y., Guo, L., Atlihan, R., Chi, H. & Chu, D. Demographic analysis of progeny fitness and timing of resurgence of Laodelphax striatellus after insecticides exposure. Entomol. Generalis 39, 221–230. https://doi.org/10.1127/entomologia/2019/0816 (2019).Article
Google Scholar
4.Quesada, C. R. & Sadof, C. S. Field evaluation of insecticides and application timing on natural enemies of selected armored and soft scales. Biol. Control 133, 81–90. https://doi.org/10.1016/j.biocontrol.2019.03.013 (2019).CAS
Article
Google Scholar
5.Ullah, F. et al. Fitness costs in chlorfenapyr-resistant populations of the chive maggot, Bradysia odoriphaga. Ecotoxicology 29, 407–416. https://doi.org/10.1007/s10646-020-02183-7 (2020).CAS
Article
PubMed
Google Scholar
6.Razik, M. A. R. A. M. A. Toxicity and side effects of some insecticides applied in cotton fields on Apis mellifera. Environ. Sci. Pollut. R. 26, 4987–4996. https://doi.org/10.1007/s11356-018-04061-6 (2019).CAS
Article
Google Scholar
7.Ochiai, N. et al. Toxicity of bifenazate and its principal active metabolite, diazene, to Tetranychus urticae and Panonychus citri and their relative toxicity to the predaceous mites, Phytoseiulus persimilis and Neoseiulus californicus. Exp. Appl. Acarol. 43, 181–197. https://doi.org/10.1007/s10493-007-9115-9 (2007).CAS
Article
PubMed
Google Scholar
8.Van Nieuwenhuyse, P. et al. On the mode of action of bifenazate: New evidence for a mitochondrial target site. Pestic. Biochem. Physiol. 104, 88–95. https://doi.org/10.1016/j.pestbp.2012.05.013 (2012).CAS
Article
Google Scholar
9.Wang, R. et al. Lethal and sublethal effects of a novel cis-nitromethylene neonicotinoid insecticide, cycloxaprid, on Bemisia tabaci. Crop Prot. 83, 15–19. https://doi.org/10.1016/j.cropro.2016.01.015 (2016).CAS
Article
Google Scholar
10.Ullah, F., Gul, H., Desneux, N., Gao, X. & Song, D. Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol. Generalis 39, 325–337 (2019).Article
Google Scholar
11.Dong, J., Wang, K., Li, Y. & Wang, S. Lethal and sublethal effects of cyantraniliprole on Helicoverpa assulta (Lepidoptera: Noctuidae). Pestic. Biochem. Physiol. 136, 58–63. https://doi.org/10.1016/j.pestbp.2016.08.003 (2017).ADS
CAS
Article
PubMed
Google Scholar
12.Elzen, G. W. Lethal and sublethal effects of insecticide residues on Orius insidiosus (Hemiptera: Anthocoridae) and Geocoris punctipes (Hemiptera: Lygaeidae). J. Econ. Entomol. 94, 55–59. https://doi.org/10.1603/0022-0493-94.1.55 (2001).CAS
Article
PubMed
Google Scholar
13.Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440 (2007).CAS
Article
PubMed
Google Scholar
14.Deng, D. et al. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology 28, 825–833. https://doi.org/10.1007/s10646-019-02080-8 (2019).CAS
Article
PubMed
Google Scholar
15.Guo, L. et al. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, Plutella xylostella L.. Crop Prot. 48, 29–34. https://doi.org/10.1016/j.cropro.2013.02.009 (2013).CAS
Article
Google Scholar
16.Duke, S. O. et al. (eds) Pesticide Dose: Effects on the Environment and Target and Non-target Organisms 101–119 (American Chemical Society, 2017).
Google Scholar
17.Guedes, N. M. P., Tolledo, J., Correa, A. S. & Guedes, R. N. C. Insecticide-induced hormesis in an insecticide-resistant strain of the maize weevil, Sitophilus zeamais. J. Appl. Entomol. 134, 142–148. https://doi.org/10.1111/j.1439-0418.2009.01462.x (2010).CAS
Article
Google Scholar
18.Haddi, K., Oliveira, E. E., Faroni, L. R., Guedes, D. C. & Miranda, N. N. Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae). J. Econ. Entomol. 108, 2815–2822. https://doi.org/10.1093/jee/tov255 (2015).CAS
Article
PubMed
Google Scholar
19.Chen, X. D., Seo, M. & Stelinski, L. L. Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Prot. 98, 102–107. https://doi.org/10.1016/j.cropro.2017.03.017 (2017).CAS
Article
Google Scholar
20.Wang, L., Zhang, Y., Xie, W., Wu, Q. & Wang, S. Sublethal effects of spinetoram on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Pestic Biochem. Physiol. 132, 102–107. https://doi.org/10.1016/j.pestbp.2016.02.002 (2016).CAS
Article
PubMed
Google Scholar
21.Xiao, L. F. et al. Genome-wide identification, phylogenetic analysis, and expression profiles of ATP-binding cassette transporter genes in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Comp. Biochem. Physiol. D Genomics Proteomics 25, 1–8 (2018).ADS
CAS
Article
Google Scholar
22.Dubovskiy, I. M. et al. Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 1–5 (2008).CAS
Article
Google Scholar
23.Jia, B. T., Hong, S. S., Zhang, Y. C. & Cao, Y. W. Effect of sublethal concentrations of abamectin on protective and detoxifying enzymes in Diagegma semclausum. J. Environ. Entomol. 38, 990 (2016).
Google Scholar
24.Yang, Q., Wang, S., Zhang, W., Yang, T. & Liu, Y. Toxicity of commonly used insecticides and their influences on protective enzyme activity of multicolored Asian lady beetle Harmonia axyridis (Pallas). Acta Phytophylacica Sin. 42, 258–263 (2015).CAS
Google Scholar
25.Zhou, C., Yang, H., Wang, Z., Long, G. Y. & Jin, D. C. Protective and detoxifying enzyme activity and abcg subfamily gene expression in Sogatella furcifera under insecticide stress. Front. Physiol. 9, 1890. https://doi.org/10.3389/fphys.2018.01890 (2018).Article
PubMed
Google Scholar
26.Cui, L., Yuan, H., Wang, Q., Wang, Q. & Rui, C. Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Sci. Rep. 8, 8915. https://doi.org/10.1038/s41598-018-27035-7 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
27.Li, Y. Y. et al. Sublethal effects of bifenazate on life history and population parameters of Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 22, 148–158. https://doi.org/10.11158/saa.22.1.15 (2017).CAS
Article
Google Scholar
28.Wang, Y., Huang, X., Chang, B. H. & Zhang, Z. The survival, growth, and detoxifying enzyme activities of grasshoppers Oedaleus asiaticus (Orthoptera: Acrididae) exposed to toxic rutin. Appl. Entomol. Zool. 55, 385–393. https://doi.org/10.1007/s13355-020-00694-7 (2020).CAS
Article
Google Scholar
29.Rasheed, M. A. et al. Lethal and sublethal effects of chlorpyrifos on biological traits and feeding of the aphidophagous predator Harmonia axyridis. Insects. https://doi.org/10.3390/insects11080491 (2020).Article
PubMed
PubMed Central
Google Scholar
30.Yamamoto, A., Yoneda, H., Hatano, R. & Asada, M. Genetic analysis of hexythiazox resistance in the citrus red mite, Panonychus citri (MCGREGOR). J. Pestic. Sci. 20, 513–519 (1995).CAS
Article
Google Scholar
31.Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Acad. Sin. 24(2), 225–240 (1985).MathSciNet
Google Scholar
32.Chi, H. et al. Age-Stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol. Generalis 40, 103 (2019).Article
Google Scholar
33.Hsin, C. Letter to the editor. J. Econ. Entomol. 108, 1465 (2015).Article
Google Scholar
34.Akköprü, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut Aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378 (2015).Article
Google Scholar
35.Mousavi, M., Ghosta, Y. & Maroofpour, N. Insecticidal activity and sublethal effects of Beauveria bassiana (Bals.-Criv.) Vuill. isolates and essential oils against Aphis gossypii Glover, 1877 (Hemiptera: Aphididae). Acta Agric. Slovenica. https://doi.org/10.14720/aas.2020.115.2.1306 (2020).Article
Google Scholar
36.Rahmani, S. & Bandani, A. R. Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Crop Prot. 54, 168–175. https://doi.org/10.1016/j.cropro.2013.08.002 (2013).CAS
Article
Google Scholar
37.Papachristos, D. P. & Milonas, P. G. Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol. Control 47, 77–81. https://doi.org/10.1016/j.biocontrol.2008.06.009 (2008).CAS
Article
Google Scholar
38.Ranjbar, F., Reitz, S., Jalali, M. A., Ziaaddini, M. & Izadi, H. Lethal and sublethal effects of two commercial insecticides on egg parasitoids (Hymenoptera: Scelionidae) of green stink bugs (Hem: Pentatomidae). J. Econ. Entomol. https://doi.org/10.1093/jee/toaa232 (2020).Article
Google Scholar
39.Zhao, Y. et al. Sublethal concentration of benzothiazole adversely affect development, reproduction and longevity of Bradysia odoriphaga (Diptera: Sciaridae). Phytoparasitica 44, 115–124. https://doi.org/10.1007/s12600-016-0506-5 (2016).CAS
Article
Google Scholar
40.Sani, B., Hamid, G. & Elham, R. Sublethal effects of chlorfenapyr on the life table parameters of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Syst. Appl. Acarol. 23, 1342 (2018).
Google Scholar
41.Leeuwen, T. V., Pottelberge, S. V. & Tirry, L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manage. Sci. 62, 425–433 (2010).Article
Google Scholar
42.Allen, R. G. & Balin, A. K. Oxidative influence on development and differentiation: An overview of a free radical theory of development. Free Radic. Biol. Med. 6, 631–661 (1989).CAS
Article
Google Scholar
43.Bolter, C. J. & Chefurka, W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch. Biochem. Biophys. 278, 65–72 (1990).CAS
Article
Google Scholar
44.Liu, Y., Wang, C., Qi, S., He, J. & Bai, Y. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees (Apis mellifera L.). Environ. Geochem. Health. https://doi.org/10.1007/s10653-020-00736-7 (2020).Article
PubMed
PubMed Central
Google Scholar
45.Zhang, S. et al. Sublethal effects of triflumezopyrim on biological traits and detoxification enzyme activities in the small brown Planthopper Laodelphax striatellus (Hemiptera: Delphacidae). Front. Physiol. 11, 261. https://doi.org/10.3389/fphys.2020.00261 (2020).Article
PubMed
PubMed Central
Google Scholar
46.Ku, C. C., Chiang, F. M., Hsin, C. Y., Yao, Y. E. & Sun, C. N. Glutathione transferase isozymes involved in insecticide resistance of diamondback moth larvae. Pestic. Biochem. Physiol. 50, 191–197 (1994).CAS
Article
Google Scholar
47.Prapanthadara, L., Promtet, N., Koottathep, S., Somboon, P. & Ketterman, A. J. Isoenzymes of glutathione S-transferase from the mosquito Anopheles dirus species B: The purification, partial characterization and interaction with various insecticides. Insect Biochemi. Mol. Biol. 30, 395–403 (2000).CAS
Article
Google Scholar
48.Döker, İ, Kazak, C. & Ay, R. Resistance status and detoxification enzyme activity in ten populations of Panonychus citri (Acari: Tetranychidae) from Turkey. Crop Prot. https://doi.org/10.1016/j.cropro.2020.105488 (2021).Article
Google Scholar
49.Goel, A., Dani, V. & Dhawan, D. K. Protective effects of zinc on lipid peroxidation, antioxidant enzymes and hepatic histoarchitecture in chlorpyrifos-induced toxicity. Chem. Biol. Interact. 156, 131–140. https://doi.org/10.1016/j.cbi.2005.08.004 (2005).CAS
Article
PubMed
Google Scholar
50.Van Leeuwen, T., Van Pottelberge, S. & Tirry, L. Biochemical analysis of a chlorfenapyr-selected resistant strain of Tetranychus urticae Koch. Pest Manage. Sci. 62, 425–433. https://doi.org/10.1002/ps.1183 (2006).CAS
Article
Google Scholar More