Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption
1.DeStefano, S. & DeGraaf, R. M. Exploring the ecology of suburban wildlife. Front. Ecol. Environ. 1, 95 (2003).Article
Google Scholar
2.Treves, A., Wallace, R. B., Naughton-Treves, L. & Morales, A. Co-managing human–wildlife conflicts: a review. Hum. Dimens. Wildl. 11, 383–396 (2006).Article
Google Scholar
3.Oberosler, V., Groff, C., Iemma, A., Pedrini, P. & Rovero, F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 87, 50–61 (2017).Article
Google Scholar
4.Tyler, N. J. C. Short-term behavioural responses of Svalbard reindeer Rangifer tarandus platyrhynchus to direct provocation by a snowmobile. Biol. Conserv. 56, 179–194 (1991).Article
Google Scholar
5.Tolvanen, A. & Kangas, K. Tourism, biodiversity and protected areas—review from northern Fennoscandia. J. Environ. Manage. 169, 58–66 (2016).PubMed
Article
PubMed Central
Google Scholar
6.Ballantyne, M. & Pickering, C. M. Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe. Biodivers. Conserv. 22, 3027–3044 (2013).Article
Google Scholar
7.Pickering, C. M., Hill, W., Newsome, D. & Leung, Y. F. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manage. 91, 551–562 (2010).PubMed
Article
PubMed Central
Google Scholar
8.Coppes, J., Ehrlacher, J., Thiel, D., Suchant, R. & Braunisch, V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 48, 1583–1594 (2017).Article
Google Scholar
9.Siikamäki, P., Kangas, K., Paasivaara, A. & Schroderus, S. Biodiversity attracts visitors to national parks. Biodivers. Conserv. 24, 2521–2534 (2015).Article
Google Scholar
10.Gerstenberg, T., Baumeister, C. F., Schraml, U. & Plieninger, T. Hot routes in urban forests: the impact of multiple landscape features on recreational use intensity. Landsc. Urban Plan. 203, 103888 (2020).Article
Google Scholar
11.Fischer, L. K. & Kowarik, I. Dogwalkers’ views of urban biodiversity across five European cities. Sustain. 12, 1–11 (2020).
Google Scholar
12.Lundgren, J. O. Polar tourism: tourism in the Arctic and Antarctic regions. in The tourism space penetration processes in northern Canada and Scandinavia: a comparison 43–61 (1995).13.Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 1–6 (2015).Article
CAS
Google Scholar
14.George, S. L. & Crooks, K. R. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 133, 107–117 (2006).Article
Google Scholar
15.Zhong, L., Zhang, X., Deng, J. & Pierskalla, C. Recreation ecology research in China’s protected areas: progress and prospect. Ecosyst. Heal. Sustain. 6 (2020).16.Mancini, F., Leyshon, B., Manson, F., Coghill, G. M. & Lusseau, D. Monitoring tourists’ specialisation and implementing adaptive governance is necessary to avoid failure of the wildlife tourism commons. Tour. Manag. 81, 104160 (2020).Article
Google Scholar
17.Abate, M., Christidis, P. & Purwanto, A. J. Government support to airlines in the aftermath of the COVID-19 pandemic. J. Air Transp. Manag. 89, 101931 (2020).PubMed
PubMed Central
Article
Google Scholar
18.Castanho, R. A. et al. The impact of SARS-CoV-2 outbreak on the accommodation selection of Azorean tourists. A study based on the assessment of the Azores population’s attitudes. Sustainability 12, 9990 (2020).CAS
Article
Google Scholar
19.Neupane, D. How conservation will be impacted in the COVID-19 pandemic. Wildlife Biol. 2020, 19–21 (2020).Article
Google Scholar
20.Herrero, C. & Villar, A. A synthetic indicator on the impact of COVID-19 on the community’s health. PLoS ONE 15, 1–14 (2020).
Google Scholar
21.World Health Organization (WHO). Coronavirus Disease (COVID-19) Situation Reports Updates 27 September 2020. World Health Organization Technical Report Series (2020).22.da Silva, F. C. T. & Neto, M. L. R. Psychological effects caused by the COVID-19 pandemic in health professionals: a systematic review with meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 104, 110 (2021).Article
CAS
Google Scholar
23.Sohrabi, C. et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020).PubMed
PubMed Central
Article
Google Scholar
24.Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Heal. 8, e488–e496 (2020).Article
Google Scholar
25.Steidtmann, D., McBride, S. & Mishkind, M. C. Experiences of mental health clinicians and staff in rapidly converting to full-time telemental health and work from home during the COVID-19 pandemic. Telemed. e-Health 27(7), 785–791 (2021).Article
Google Scholar
26.Chiu, W. A., Fischer, R. & Ndeffo-Mbah, M. L. State-level needs for social distancing and contact tracing to contain COVID-19 in the United States. Nat. Hum. Behav. 4, 1080–1090 (2020).PubMed
PubMed Central
Article
Google Scholar
27.Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159 (2020).PubMed
Article
Google Scholar
28.Zellmer, A. J. et al. What can we learn from wildlife sightings during the COVID-19 global shutdown?. Ecosphere 11, e03215 (2020).PubMed
PubMed Central
Article
Google Scholar
29.Ghahremanloo, M., Lops, Y., Choi, Y. & Mousavinezhad, S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 754, 142226 (2021).ADS
CAS
PubMed
Article
Google Scholar
30.Rosenbloom, D. & Markard, J. A COVID-19 recovery for climate. Science 368, 447–447 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
31.Lokhandwala, S. & Gautam, P. Indirect impact of COVID-19 on environment: a brief study in Indian context. Environ. Res. 188, 109807 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Manenti, R. et al. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108728 (2020).PubMed
PubMed Central
Article
Google Scholar
33.Corlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 8–11 (2020).Article
Google Scholar
34.Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108665 (2020).PubMed
PubMed Central
Article
Google Scholar
35.Arias, M., Jurado, C., Gallardo, C., Fernández-Pinero, J. & Sánchez-Vizcaíno, J. M. Gaps in African swine fever: analysis and priorities. Transbound. Emerg. Dis. 65, 235–247 (2018).PubMed
Article
PubMed Central
Google Scholar
36.Galindo, I. & Alonso, C. African swine fever virus: a review. Viruses 9, 103 (2017).PubMed Central
Article
CAS
PubMed
Google Scholar
37.Taylor, R. A. et al. Predicting spread and effective control measures for African swine fever—should we blame the boars?. Transbound Emerg. Dis. https://doi.org/10.1111/tbed.13690 (2020).Article
PubMed
PubMed Central
Google Scholar
38.Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food. 1, 221–228 (2020).PubMed
PubMed Central
Article
Google Scholar
39.Podgórski, T. & Śmietanka, K. Do wild boar movements drive the spread of African Swine Fever?. Transbound. Emerg. Dis. 65, 1588–1596 (2018).PubMed
Article
Google Scholar
40.Petit, K. et al. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound. Emerg. Dis. 67, 1164–1176 (2020).PubMed
Article
PubMed Central
Google Scholar
41.Watanabe, S. & Wahlqvist, M. L. Covid-19 and dietary socioecology: Risk minimisation. Asia Pac. J. Clin. Nutr. 29, 207–219 (2020).CAS
PubMed
PubMed Central
Google Scholar
42.Geng, D., Innes, J., Wu, W. & Wang, G. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J. For. Res. https://doi.org/10.1007/s11676-020-01249-w (2020).Article
Google Scholar
43.Godbersen, H., Hofmann, L. A. & Ruiz-Fernández, S. How people evaluate anti-corona measures for their social spheres: attitude, subjective norm, and perceived behavioral control. Front. Psychol. 11, 1–20 (2020).Article
Google Scholar
44.Cukor, J. et al. Wild boar deathbed choice in relation to ASF : Are there any differences between positive and negative carcasses? Prev. Vet. 177, 1–7 (2020).
Google Scholar
45.McGinlay, J. et al. The impact of COVID-19 on the management of European protected areas and policy implications. Forests 11, 1–15 (2020).Article
Google Scholar
46.Derks, J., Giessen, L. & Winkel, G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 118, 102253 (2020).PubMed
PubMed Central
Article
Google Scholar
47.Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H., Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 1–11 (2020).Article
CAS
Google Scholar
48.Jůza, R., Jarský, V., Riedl, M., Zahradník, D. & Šišák, L. Possibilities for harmonisation between recreation services and their production within the forest sector—a case study of municipal forest enterprise hradec Králové (CZ). Forests 12, 13 (2020).Article
Google Scholar
49.Dellicour, S. et al. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J. Appl. Ecol. 57, 1619–1629 (2020).Article
Google Scholar
50.Carnol, M. et al. Ecosystem services of mixed species forest stands and monocultures: comparing practitioners and scientists perceptions with formal scientific knowledge. Forestry 87, 639–653 (2014).Article
Google Scholar
51.Dušek, D., Kacálek, D., Novák, J. & Slodičák, M. Public perception of recreation needs—a questionnaire study from Ostrava urban forests (Czech Republic). Zpravy Lesn. Vyzk Rep. For. Res. 62, 174–181 (2017).
Google Scholar
52.Meo, I. D., Paletto, A. & Cantiani, M. G. The attractiveness of forests: Preferences and perceptions in a mountain community in Italy. Ann. For. Res. 58, 145–156 (2015).
Google Scholar
53.Sadecký, D., Pejcha, J. & Šišák, L. Analysis of the public opinion on forest and forest management in the žďárské vrchy protected landscape area, czech republic [Analýza názorů veřejnosti na les a lesní hospodářství v chráněné krajinné oblasti žďárské vrchy]. Zpravy Lesn. Vyzk. 59, 11–17 (2014).
Google Scholar
54.Ciuti, S. et al. Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. PLoS ONE 7, 1–16 (2012).Article
CAS
Google Scholar
55.Palacios, M. G., D’Amico, V. L. & Bertellotti, M. Ecotourism effects on health and immunity of Magellanic penguins at two reproductive colonies with disparate touristic regimes and population trends. Conserv. Physiol. 6, 1–13 (2018).Article
CAS
Google Scholar
56.Schuttler, S. G. et al. Deer on the lookout: how hunting, hiking and coyotes affect white-tailed deer vigilance. J. Zool. 301, 320–327 (2017).Article
Google Scholar
57.Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).Article
Google Scholar
58.Creel, S., Winnie, J., Maxwell, B., Hamlin, K. & Creel, M. Elk alter habitat selection as an antipredator response to wolves. Ecology 86, 3387–3397 (2005).Article
Google Scholar
59.French, S. S., Denardo, D. F., Greives, T. J., Strand, C. R. & Demas, G. E. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus). Horm. Behav. 58, 792–799 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Beehner, J. C. & Bergman, T. J. The next step for stress research in primates: to identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 91, 68–83 (2017).CAS
PubMed
Article
Google Scholar
61.Dhabhar, F. S. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res. 58, 193–210 (2014).CAS
PubMed
Article
Google Scholar
62.Almasi, B., Béziers, P., Roulin, A. & Jenni, L. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings. Oecologia 179, 89–101 (2015).ADS
PubMed
Article
Google Scholar
63.Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS
PubMed
Google Scholar
64.Szwagrzyk, J. et al. Effects of species and environmental factors on browsing frequency of young trees in mountain forests affected by natural disturbances. For. Ecol. Manage. 474, 1–13 (2020).Article
Google Scholar
65.Möst, L., Hothorn, T., Müller, J. & Heurich, M. Creating a landscape of management: unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manage. 338, 46–56 (2015).Article
Google Scholar
66.Cukor, J. et al. Effects of bark stripping on timber production and structure of Norway Spruce forests in relation to climatic factors. Forests 10, 13–17 (2019).Article
Google Scholar
67.Vacek, Z. et al. Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For. Ecol. Manage. 474, 118360 (2020).Article
Google Scholar
68.Barrueto, M., Ford, A. T. & Clevenger, A. P. Anthropogenic effects on activity patterns of wildlife at crossing structures. Ecosphere 5, 1–19 (2014).Article
Google Scholar
69.Ignatavičius, G. et al. Temporal patterns of ungulate-vehicle collisions in a sparsely populated country. Eur. J. Wildl. Res. 66, 1–9 (2020).Article
Google Scholar
70.Price, M. V., Strombom, E. H. & Blumstein, D. T. Human activity affects the perception of risk by mule deer. Curr. Zool. 60, 693–699 (2014).Article
Google Scholar
71.Romero, L. M., Dickens, M. J. & Cyr, N. E. The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 55, 375–389 (2009).PubMed
Article
PubMed Central
Google Scholar
72.Cukor, J., Havránek, F., Rohla, J. & Bukovjan, K. Estimation of red deer density in the west part of the Ore Mts (Czech Republic). Zpravy Lesn. Vyzk. Rep. For. Res. 62, 288–295 (2017).
Google Scholar
73.Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95–108 (2021).Article
Google Scholar
74.Iacolina, L., Corlatti, L., Buzan, E., Safner, T. & Šprem, N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm. Rev. 49, 45–59 (2019).Article
Google Scholar
75.Kangas, K., Luoto, M., Ihantola, A., Tomppo, E. & Siikamäki, P. Recreation-induced changes in boreal bird communities in protected areas. Ecol. Appl. 20, 1775–1786 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Tost, D., Strauß, E., Jung, K. & Siebert, U. Impact of tourism on habitat use of black grouse (Tetrao tetrix) in an isolated population in northern Germany. PLoS ONE 15, e0238660 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Köppen, W. Das Geographische System der Klimate, Handbuch der Klimatologie (Gebrüder Borntraeger, 1936).
Google Scholar
78.Rob, F. et al. Compliance, safety concerns and anxiety in patients treated with biologics for psoriasis during the COVID-19 pandemic national lockdown: a multicenter study in the Czech Republic. J. Eur. Acad. Dermatol. Venereol. 76, jdv.16771 (2020).
Google Scholar
79.Government of the Czech Republic. Measures adopted by the Czech Government against the coronavirus. (2021). Available at: https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/. (Accessed: 5th February 2021).80.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (2016). More