More stories

  • in

    Multivariate trait analysis reveals diatom plasticity constrained to a reduced set of biological axes

    Culture maintenance and growthTwelve strains of Thalassiosira spp. were obtained from the Provasoli-Guillard National Centre of Marine Phytoplankton (NCMA, https://ncma.bigelow.org/), and one strain from the Australian National Culture Collection, representing 7 species in total (Supplementary Table 1). Cultures were maintained in polystyrene tissue culture flasks in artificial seawater with f/2 media [37] at 20 °C, with 60 µmolm−2s−1 of light on a 12:12 light cycle.Three strains originally identified as Thalassiosira sp. in the NCMA collection were further classified to the species level using sequencing of the ITS2 gene region (Supplementary Table 1): CCMP1055 as T. auguste-lineata (84.64% similarity; [38]) and CCMP2929 as T. weisflogii (98.37% similarity to Strain 1587 used in our study; [39]). Strain CCMP1059 was tentatively identified as Cyclotella striata (94.17% identity match to clone ZX28-3-40; [40]) also from order Thalassiosirales, but this assignment requires further investigation.Experimental set upExperimental cultures (200 mL) were grown in 250 mL polystyrene tissue culture flasks in triplicate, at a starting concentration of 2500 cells ml−1. All 13 strains were grown in a “standard” environment (identical to maintenance conditions) with 9 phenotypic traits measured to describe the initial trait-scape. Five strains (1010, 1059, 2929, 3264, and 3367) were grown in two additional environments in triplicate: a high temperature and light treatment (HT: 30 °C, 200 µmol photons m−2s−1 of light, 12:12 light:dark), and a low nutrient treatment (LN: f/400 media with an adjusted N:P ratio of 10:1 achieved by reducing the nitrate concentration from 4.4 to 1.8 µM, 60 µmol photons m−2s−1 of light, 12:12 light:dark). Cultures for the two additional treatments were inoculated with 10,000 cells ml−1 (LN) and 5,000 cells ml−1 (HT) in anticipation of limited growth.Growth was tracked daily using in vivo fluorescence as a proxy for cell density [41]. One mL aliquots of experimental cultures were measured for chlorophyll-a fluorescence using a plate reader (TECAN Infinite M1000 Pro, Männedorf, Switzerland) using 455/680 nm excitation/emission spectra. Phenotypic traits were measured at mid-late exponential phase, assessed by visually examining in vivo fluorescence growth curves. In the case of the low nutrient treatment, where growth was limited to 3–5 days, cultures were harvested in early stationary phase. Duration of growth for each experiment is summarised in Supplementary Table 2.Phenotypic trait measurement methodsPhenotypic traits were selected to capture different commonly measured base physiological functions, and to include traits that are used in biogeochemical models. We also selected traits that demonstrated independence and orthogonality (i.e., not all co-varying), based on pilot studies, in order to successfully define the multivariate trait-scape [42].Growth rateGrowth rates for each time step were calculated from the daily in vivo fluorescence measurements according to the calculation:$$mu = frac{{{{{{{{{mathrm{ln}}}}}}}}left( {F_2} right)-{{{{{{{mathrm{ln}}}}}}}}left( {F_1} right)}}{{t_2 – t_1}}$$Maximum growth rates were determined by the average growth over 2–4 consecutive steps depending on the duration of exponential growth.Flow cytometry traitsFor flow cytometry trait measures (growth rate, size, chlorophyll a content, lipid content), 1 mL aliquots of experimental culture were fixed with EM grade paraformaldehyde (0.8% final concentration, Electron Microscopy Sciences, Ft Washington, PA) in 1.6 mL cryopreservation tubes (CryoPure, Sarstedt), frozen in liquid nitrogen, then stored at −80 °C prior to analysis. All measures were performed using a Cytoflex LX (Beckman Coulter, CA, USA).Cell counts and sizeCell counts were done by gating the diatom population using chlorophyll a (488 nm excitation, 690/50 nm detector) and forward scatter channel thresholds. Cell size was estimated using forward scatter values calibrated against spherical beads (2, 4, 6, 10, 15 µM diameters; Invitrogen, CA). This resulted in a conversion equation of equivalent spherical diameter (ESD) = (FSC + 194636)/75775, which was used to assess relative changes in cell size [43].Chlorophyll a contentChlorophyll a (Chl-a) fluorescence of the gated diatom population was quantified using 488 nm excitation, 690/50 nm detection. A standard bead (Cytoflex Daily QC Fluorospheres; Beckman Coulter) was used to calibrate the performance of the instrument and ensure comparable measures across samples. Chlorophyll values were divided by ESD to account for cell size differences.Side scatter/granularitySide scatter is an indicator of the internal complexity of a cell or “granularity”. This trait is measured in tandem with other flow cytometry measures and was included as a phenotypic trait. The interpretation of this trait is not straight forward, but is independent of other flow cytometry traits measured and has been used in other flow cytometry studies of microalgae [44]. This trait was divided by ESD to account for cell size differences.Neutral lipidsRelative neutral lipid content was determined using the fluorescent stain BODIPY™ 505/515 (Thermo Fisher, MA, USA) which is commonly used to assess neutral lipid content in phytoplankton [45,46,47]. Background fluorescence (488 nm excitation, 525/40 nm detector) of PFA-fixed cells was measured in tandem with the size, chlorophyll a, and side scatter. After this, 10 µL of BODIPY stain (2 mg mL−1 in DMSO) was added to each sample, resulting in a final BODIPY concentration of 2 μg mL−1. Samples were incubated for 10 min in the dark before being read again on the flow cytometer. Neutral lipid content was defined as the difference in median fluorescence per cell between the pre- and post-stained sample. This value was then divided by the ESD size to account for size-related effects.Photophysiological traitsPhotophysiological measures were taken by conducting a rapid light curve [48] with a water PAM (Water-PAM; Walz GmbH, Effeltrich, Germany) using 1 mL of experimental culture diluted in artificial seawater. The rapid light curve protocol exposes the culture to 8 steps of increasing irradiance for 10 seconds each, measuring the photophysiological response at each step. Maximum electron transport rate (ETRmax), Ik (half saturation irradience), and alpha (the photosynthetic rate during the light-limited linear region) were calculated using the regression fit function in the PAM WinControl software. Photophysiology measurements were taken between 4–5 h after the start of the photoperiod.Reactive oxygen speciesThe development of reactive oxygen species (ROS) was measured using the fluorescent probe 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA; Thermo Fisher, MA, USA) which has been used in a number of phytoplankton studies [49,50,51]. Two 1 mL aliquots of experimental culture were transferred to a 48 well tissue culture plate; 2 µL of stain (2.5 mg mL−1 H2DCFDA was made in DMSO) was added to one aliquot, with the other acting as a blank. The plates were sealed (Breathe-Easy, Diversified Biotech) and incubated in the dark at growth temperature (20 or 30 °C) for 2 h. Incubation was done in the dark because of the effects of light on the dye itself, therefore the effects of the excess light treatment were not captured in this trait. Fluorescence of H2DCFDA was read using a plate reader with 488 nm excitation 525 nm emission (TECAN Infinite M1000 Pro, Männedorf, Switzerland). ROS concentration was estimated as the difference in fluorescence units per cell between the stained and unstained aliquots of each culture. This metric was also divided by ESD size to account for size effects.Taxonomic confirmation of strainsDNA from stock cultures (10 mL) was extracted using a DNeasy PowerSoil kit (QIAGEN Inc., CA, USA) and checked for quality with a NanopDrop™ 2000 (ThermoFIsher Scientific, MA, USA), before amplification and sequencing at the Australian Genome Research Facility (AGRF, Sydney, Australia). PCR conditions and primers used were those developed by Chappell et al. [52] for the ITS region: forward primer: 5ʹ-RCGAAYTGCAGAACCTCG-3ʹ, reverse primer: 5ʹ-TACTYAATCTGAGATYCA-3ʹ.Bioinformatics processing was conducted using Geneious Prime (Version 2020.0.5; Biomatters Ltd.). Strain sequences were compared to GenBank using the BLAST function to confirm species identity. Nucleotide sequences were aligned using the MUSCLE alignment [53], followed by Bayesian inference analysis using MrBayes [54] to generate a phylogenetic tree. The out-group for the tree was a strain of Chaetoceros atlanticus isolate TPV2 1146 obtained from GenBank. Percentage similarity between strains according to the alignment was used as a metric of genetic relatedness.Statistical analysisWe assessed the multivariate phenotypes for the Thalassiosira strains using principal component analysis (PCA). The input variables were the 9 independent trait measurements made on each replicate culture (n = 36, 3 biological replicates per strain). Trait data was standardized (mean = 0, SD = 1) for each trait prior to PCA analysis to account for differences in the units and scale of measurements. The resulting PCA plot was defined as the ‘trait-scape’.Hierarchical clustering analysis was performed on the 9-trait dataset used to assess similarity in multivariate phenotypes between each replicate for each strain (n = 3 per strain).To compare genetic vs. phenotypic similarity, percentage similarity between strains was correlated against the distance between strain centroids (multivariate means) within the trait-scape. Distances between multivariate means (centroids) were calculated using the equation:$${{{{{{{mathrm{distance}}}}}}}} = sqrt {left( {{{{{{{{mathrm{{Delta}}}}}}}PC}}1.{{{{{{{mathrm{a}}}}}}}}} right)^2,+,left( {{{{{{{{mathrm{{Delta}}}}}}}PC}}2.{{{{{{{mathrm{b}}}}}}}}} right)^2}$$ΔPC1 is the difference in PC1 co-ordinates between the two strains, a is the % variance explained by PC1, ΔPC2 is the difference in PC2 co-ordinates between the two strains, b is the % variance explained by PC2.To assess whether a trait-scape generated using fewer input traits (4 rather than 9) was representative of the full, 9-trait plot, we conducted PCA using 4 input traits, and then assessed whether the inter-strain distances (distances between centroids) within the plot were correlated using linear regression. This provided a quantitative assessment of whether the strains were in the same relative positions to each other within the trait-scape.Covariation of traitsTo compare the pairwise relationships between traits across the strains, correlation matrices were made using data collected in the standard environment, and for the HT and LN environments.Phenotypic plasticityThe change in phenotypes in the new environments were assessed firstly by conducting PCA on the full dataset, including trait data from the 13 strains grown in the standard environment, plus the 5 strains grown in the two additional environments. This generated an “expanded trait-scape”. In addition, correlation matrices were generated for the new environments’ trait dataset to assess differences in trait-trait relationships between the ‘standard’ and “expanded” datasets.Relative changes in trait values for each trait in the new environments were calculated as follows:$$ {{{{{{{mathrm{Relative}}}}}}}},{{{{{{{mathrm{change}}}}}}}} \ = frac{{{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{new}}}}}}}},{{{{{{{mathrm{environment}}}}}}}} – overline {{{{{{{mathrm{x}}}}}}}} ,,{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{standard}}}}}}}},{{{{{{{mathrm{environment}}}}}}}}}}{{overline {{{{{{{mathrm{x}}}}}}}} ,,{{{{{{{mathrm{trait}}}}}}}},{{{{{{{mathrm{value}}}}}}}},{{{{{{{mathrm{standard}}}}}}}},{{{{{{{mathrm{environment}}}}}}}}}}$$We used PCA to assess whether the relative changes in trait values were consistent between strains in the two different environments. i.e., was the relative change in whole phenotype consistent. If the changes were consistent across strains, we expected to see clustering in the PCA based on treatment.Statistical softwareStatistical analyses were performed in R [55], Matlab, and Microsoft Excel. Hierarchical clustering analysis with multiscale bootstrap resampling (1000 replicates) on trait values from biological replicates was done with the ‘pvclust’ package in R [56] using Euclidean distance and the average (UPGMA) method. Principal component analysis was used to generate the multivariate trait-scape was done using the “vegan package” in R [57]. The contributions of each trait to the PC axes (loadings) were extracted using the “factoextra” package in R [58]. Trait correlation matrices were generated using the “corrplot” package in R [59]. More

  • in

    Acrylate protects a marine bacterium from grazing by a ciliate predator

    1.Yang, J. W. et al. Predator and prey biodiversity relationship and its consequences on marine ecosystem functioning-interplay between nanoflagellates and bacterioplankton. ISME J. 12, 1532–1542 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Zan, J. et al. A microbial factory for defensive kahalalides in a tripartite marine symbiosis. Science 364, eaaw6732 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Yoch, D. C. Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl. Environ. Microbiol. 68, 5804–5815 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. 8, 637 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    5.Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Curson, A. et al. Dimethylsulfoniopropionate biosynthesis in marine bacteria and identification of the key gene in this process. Nat. Microbiol. 2, 17009 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Williams, B. T. et al. Bacteria are important dimethylsulfoniopropionate producers in coastal sediments. Nat. Microbiol. 4, 1815–1825 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Zhang, X. H. et al. Biogenic production of DMSP and its degradation to DMS—their roles in the global sulfur cycle. Sci. China Life. Sci. 62, 1296–1319 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Alstyne, K. L. V., Wolfe, G. V., Freidenburg, T. L., Neill, A. & Hicken, C. Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar. Ecol. Prog. Ser. 213, 53–65 (2001).Article 

    Google Scholar 
    10.Paul, V. J. & Van Alstyne, K. L. Activation of chemical defenses in the tropical green algae Halimeda spp. J. Exp. Mar. Biol. Ecol. 160, 191–203 (1992).CAS 
    Article 

    Google Scholar 
    11.Strom, S. et al. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceangr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    12.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    13.Liu, C. et al. Puniceibacterium antarcticum gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 64, 1566–1572 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Aronson, D. E., Costantini, L. M. & Snapp, E. L. Superfolder GFP is fluorescent in oxidizing environments when targeted via the Sec translocon. Traffic 12, 543–548 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Coppellotti Krupa, O. & Vannucci, D. Citrate synthase from Antarctic ciliates: adaptation to low temperatures and comparison with temperate ciliates. Polar Biol. 26, 452–457 (2003).Article 

    Google Scholar 
    16.Asher, E. C., Dacey, J. W. H., Stukel, M., Long, M. C. & Tortell, P. D. Processes driving seasonal variability in DMS, DMSP, and DMSO concentrations and turnover in coastal Antarctic waters. Limnol. Oceanogr. 62, 104–124 (2017).Article 

    Google Scholar 
    17.Ahmed, M., Stal, L. J. & Hasnain, S. DTAF: an efficient probe to study cyanobacterial-plant interaction using confocal laser scanning microscopy (CLSM). J. Ind. Microbiol. Biotechnol. 38, 249–255 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hojo, F. et al. Ciliates expel environmental Legionella-laden pellets to stockpile food. Appl. Environ. Microbiol. 78, 5247–5257 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Seymour, J. R., Simo, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Shemi, A. et al. Dimethyl sulfide acts as eat-me signal during microbial predator–prey interactions in the ocean. Research Square https://doi.org/10.21203/rs.3.rs-139243/v1 (2021).21.Chen, I. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Wang, P. et al. Structural and molecular basis for the novel catalytic mechanism and evolution of DddP, an abundant peptidase-like bacterial dimethylsulfoniopropionate lyase: a new enzyme from an old fold. Mol. Microbiol. 98, 289–301 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Li, C. Y. et al. Molecular insight into bacterial cleavage of oceanic dimethylsulfoniopropionate into dimethyl sulfide. Proc. Natl Acad. Sci. USA 111, 1026–1031 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.González, J. M., Whitman, W. B., Hodson, R. E. & Moran, M. A. Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62, 4433–4440 (1996).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Freier, D., Mothershed, C. P. & Wiegel, J. Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 54, 204–JW211 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Wang, P. et al. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb. Cell Fact. 14, 11 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Obranic, S., Babic, F. & Maravic-Vlahovicek, G. Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors. Plasmid 70, 263–267 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dinh, T. & Bernhardt, T. G. Using superfolder green fluorescent protein for periplasmic protein localization studies. J. Bacteriol. 193, 4984–4987 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Yu, Z. C. et al. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Microb. Cell Fact. 13, 13 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Walker, J. M. The bicinchoninic acid (BCA) assay for protein quantitation. Methods Mol. Biol. 32, 5–8 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Ansede, J. H., Pellechia, P. J. & Yoch, D. C. Metabolism of acrylate to beta-hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt marsh sediment bacterium, Alcaligenes faecalis M3A. Appl. Environ. Microbiol. 65, 5075–5081 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Liu, J. et al. Novel insights into bacterial dimethylsulfoniopropionate catabolism in the East China Sea. Front. Microbiol. 9, 3206–3206 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Shao, X. et al. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Mol. Microbiol. 111, 1057–1073 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Dumon-Seignovert, L., Cariot, G. & Vuillard, L. The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr. Purif. 37, 203–206 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437, 215–223 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Barek, J., Pumera, M., Muck, A., Kadeřabkova, M. & Zima, J. Polarographic and voltammetric determination of selected nitrated polycyclic aromatic hydrocarbons. Anal. Chim. Acta 393, 141–146 (1999).CAS 
    Article 

    Google Scholar 
    37.Sherr, B. F., Sherr, E. B. & Fallon, R. D. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53, 958–965 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Perez-Uz, B. Bacterial preferences and growth kinetic variation in Uronema marinum and Uronema nigricans (Ciliophora: Scuticociliatida). Microb. Ecol. 31, 189–198 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Siegmund, L., Schweikert, M., Fischer, M. S. & Wostemeyer, J. Bacterial surface traits influence digestion by Tetrahymena pyriformis and alter opportunity to escape from food vacuoles. J. Eukaryot. Microbiol. 65, 600–611 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Christaki, U. et al. Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnol. Oceanogr. Meth. 9, 329–339 (2011).Article 

    Google Scholar 
    41.Headland, S. E., Jones, H. R., D’Sa, A. S., Perretti, M. & Norling, L. V. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci. Rep. 4, 5237 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Hayduk, W. & Laudie, H. Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE J. 20, 611–615 (1974).CAS 
    Article 

    Google Scholar 
    43.Schotte, W. Prediction of the molar volume at the normal boiling point. Chem. Eng. J. 48, 167–172 (1992).CAS 
    Article 

    Google Scholar 
    44.Carrión, O. et al. A novel pathway producing dimethylsulphide in bacteria is widespread in soil environments. Nat. Commun. 6, 6579 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Zhang, W. et al. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nat. Commun. 10, 517 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Hoffman, K. & Stoffel, W. TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 374, 166 (1993).
    Google Scholar 
    48.Bansal, M. S., Alm, E. J. & Kellis, M. Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28, i283–i291 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Eat me, or don’t eat me?

    1.Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Science 281, 237–240 (1998).CAS 
    Article 

    Google Scholar 
    2.Lewis, K. M., Van Duken, G. L. & Arrigo, K. R. Science https://doi.org/10.1126/science.aay8380 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).CAS 
    Article 

    Google Scholar 
    4.Seymour, J. R., Simó, R., Ahmed, T. & Stocker, R. Science 329, 342–345 (2010).CAS 
    Article 

    Google Scholar 
    5.Shemi, A. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00971-3 (2021).Article 

    Google Scholar 
    6.Teng, Z.-J. et al. Nat. Microbiol. https://doi.org/10.1038/s41564-021-00981-1 (2021).Article 

    Google Scholar 
    7.Sieburth, J. M. Science 132, 676–677 (1960).CAS 
    Article 

    Google Scholar 
    8.Strom, S., Wolfe, G., Holmes, J., Stecher, H., Shimeneck, C. & Sarah, L. Limnol. Oceanogr. 48, 217–229 (2003).CAS 
    Article 

    Google Scholar 
    9.Wolfe, G. V., Steinke, M. & Kirst, G. O. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    10.Curson, A. R. J. et al. Nat. Microbiol. 2, 17009 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Association of bacterial community types, functional microbial processes and lung disease in cystic fibrosis airways

    1.Filkins LM, Hampton TH, Gifford AH, Gross MJ, Hogan DA, Sogin ML, et al. Prevalence of Streptococci and increased polymicrobial diversity associated with cystic fibrosis patient stability. J Bacteriol. 2012;194:4709–17.CAS 
    Article 

    Google Scholar 
    2.Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One. 2012;7:e45001.CAS 
    Article 

    Google Scholar 
    3.Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA. 2012;109:13769–74.CAS 
    Article 

    Google Scholar 
    4.Guss AM, Roeselers G, Newton IL, Young CR, Klepac-Ceraj V, Lory S, et al. Phylogenetic and metabolic diversity of bacteria associated with cystic fibrosis. ISME J. 2011;5:20–9.Article 

    Google Scholar 
    5.Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci USA. 2007;104:20529–33.CAS 
    Article 

    Google Scholar 
    6.Brown PS, Pope CE, Marsh RL, Qin X, McNamara S, Gibson R, et al. Directly sampling the lung of a young child with cystic fibrosis reveals diverse microbiota. Ann Am Thorac Soc. 2014;11:1049–55.Article 

    Google Scholar 
    7.Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe. 2015;18:307–19.CAS 
    Article 

    Google Scholar 
    8.Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci USA. 2008;105:15070–5.CAS 
    Article 

    Google Scholar 
    9.van der Gast CJ, Walker AW, Stressmann FA, Rogers GB, Scott P, Daniels TW, et al. Partitioning core and satellite taxa from within cystic fibrosis lung bacterial communities. ISME J. 2011;5:780–91.Article 

    Google Scholar 
    10.Zhao J, Carmody LA, Kalikin LM, Li J, Petrosino JF, Schloss PD, et al. Impact of enhanced Staphylococcus DNA extraction on microbial community measures in cystic fibrosis sputum. PLoS One. 2012;7:e33127.CAS 
    Article 

    Google Scholar 
    11.Carmody LA, Zhao J, Schloss PD, Petrosino JF, Murray S, Young VB, et al. Changes in cystic fibrosis airway microbiota at pulmonary exacerbation. Ann Am Thorac Soc. 2013;10:179–87.Article 

    Google Scholar 
    12.Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. PLoS One. 2010;5:e11044.Article 

    Google Scholar 
    13.Stressmann FA, Rogers GB, van der Gast CJ, Marsh P, Vermeer LS, Carroll MP, et al. Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. Thorax. 2012;67:867–73.Article 

    Google Scholar 
    14.Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA. 2012;109:5809–14.CAS 
    Article 

    Google Scholar 
    15.Rogers GB, Bruce KD, Hoffman LR. How can the cystic fibrosis respiratory microbiome influence our clinical decision-making? Curr Opin Pulm Med. 2017;23:536–43.Article 

    Google Scholar 
    16.Widder S, Knapp S. Microbial metabolites in cystic fibrosis: a target for future therapy? Am J Respir Cell Mol Biol. 2019;61:132–3.17.Mahboubi MA, Carmody LA, Foster BK, Kalikin LM, VanDevanter DR, LiPuma JJ. Culture-based and culture-independent bacteriologic analysis of cystic fibrosis respiratory specimens. J Clin Microbiol. 2016;54:613–9.CAS 
    Article 

    Google Scholar 
    18.Carmody LA, Caverly LJ, Foster BK, Rogers MAM, Kalikin LM, Simon RH, et al. Fluctuations in airway bacterial communities associated with clinical states and disease stages in cystic fibrosis. PLoS One. 2018;13:e0194060.Article 

    Google Scholar 
    19.Zhao J, Li J, Schloss PD, Kalikin LM, Raymond TA, Petrosino JF, et al. Effect of sample storage conditions on cultureindependent bacterial community measures in cystic fibrosis sputum specimens. J Clin Microbiol 2011;49:3717–8.20.Hnizdo E, Yu L, Freyder L, Attfield M, Lefante J & Glindmeyer HW. The precision of longitudinal lung function measurements: Monitoring and interpretation. Occup Environ Med 2005;62:695–701.21.Konstan MW, Wagener JS, VanDevanter DR. Characterizing aggressiveness and predicting future progression of CF lung disease. J Cyst Fibros. 2009;8:S15–19.Article 

    Google Scholar 
    22.Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16s rRNA-based studies. PLoS One. 2011;6:e27310.CAS 
    Article 

    Google Scholar 
    23.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    Article 

    Google Scholar 
    24.Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–145.CAS 
    Article 

    Google Scholar 
    25.Sung J, Kim S, Cabatbat JJT, Jang S, Jin YS, Jung GY, et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat Commun 2017;8:15393.26.Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8:e1002687.CAS 
    Article 

    Google Scholar 
    27.Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS One. 2012;7:e30126.CAS 
    Article 

    Google Scholar 
    28.Ding T, Schloss PD. Dynamics and associations of microbial community types across the human body. Nature. 2014;509:357–60.CAS 
    Article 

    Google Scholar 
    29.Price KE, Hampton TH, Gifford AH, Dolben EL, Hogan DA, Morrison HG, et al. Unique microbial communities persist in individual cystic fibrosis patients throughout a clinical exacerbation. Microbiome 2013;1:27.30.Carmody LA, Zhao J, Kalikin LM, LeBar W, Simon RH, Venkataraman A, et al. The daily dynamics of cystic fibrosis airway microbiota during clinical stability and at exacerbation. Microbiome 2015;3:12.31.de Dios Caballero J, Vida R, Cobo M, Maiz L, Suarez L, Galeano J, et al. Individual patterns of complexity in cystic fibrosis lung microbiota, including predator bacteria, over a 1-year period. mBio 2017;8::e00959–17.32.Whelan, FJ, Heirali AA, Rossi L, Rabin HR, Parkins MD, & Surette MG. Longitudinal sampling of the lung microbiota in individuals with cystic fibrosis. PLoS One 2017:12:e0172811.33.Noecker C, Eng A, Srinivasan S, Theriot CM, Young VB, Jansson JK, et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 2016;1.34.Douglas, GM, Maffei, VJ, Zaneveld, JR, Yurgel, SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 2020;38:685–8.35.Caspi R, Billington R, Fulcher CA, Keseler IM, Kothari A, Krummenacker M, et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res 2018;46:D633–D639.36.Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci Adv 2018;4:eaau1908.37.Quinn RA, Whiteson K, Lim YW, Zhao J, Conrad D, LiPuma JJ, et al. Ecological networking of cystic fibrosis lung infections. NPJ Biofilms Microbiomes. 2016;2:4.Article 

    Google Scholar 
    38.Pradeu T, Vivier E. The discontinuity theory of immunity. Sci Immunol. 2016;1:AAG0479.39.Flynn JM, Niccum D, Dunitz JM, Hunter RC. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLoS Pathog. 2016;12:e1005846.Article 

    Google Scholar 
    40.Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    Article 

    Google Scholar 
    41.Rose MC & Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 2006;86:245–78.42.Tailford LE, Crost EH, Kavanaugh D. & Juge N. Mucin glycan foraging in the human gut microbiome. Front Genet 2015;6:81.43.Wheeler KM, Carcamo-Oyarce G, Turner BS, Dellos-Nolan S, Co JY, Lehoux S, et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019;4:2146–54.44.Twomey KB, O’Connell OJ, McCarthy Y, Dow JM, O’Toole GA, Plant BJ, et al. Bacterial cis-2-unsaturated fatty acids found in the cystic fibrosis airway modulate virulence and persistence of Pseudomonas aeruginosa. ISME J 2012;6:939–50.45.Zemanick ET, Wagner BD, Robertson CE, Ahrens RC, Chmiel JF, Clancy JP, et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J 2017;50:1700832.46.Lu J, Carmody LA, Opron K, Simon RH, Kalikin LM, Caverly LJ, et al. Parallel analysis of cystic fibrosis sputum and saliva’reveals overlapping communities and an opportunity for sample decontamination. mSystems 2020;5.47.Jones KL, Hegab AH, Hillman BC, Simpson KL, Jinkins PA, Grisham MB, et al. Elevation of nitrotyrosine and nitrate concentrations in cystic fibrosis sputum. Pediatr Pulmonol 2000;30:79–85.48.Quinn RA, Lim YW, Maughan H, Conrad D, Rohwer F, Whiteson KL. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. mBio. 2014;5:e00956–00913.Article 

    Google Scholar 
    49.Mirkovic B, Murray MA, Lavelle GM, Molloy K, Azim AA, Gunaratnam C, et al. The role of short-chain fatty acids, produced by anaerobic bacteria, in the cystic fibrosis airway. Am J Respir Crit Care Med. 2015;192:1314–24.CAS 
    Article 

    Google Scholar 
    50.Trompette A, Gollwitzer ES, Pattaroni C, Lopez-Mejia IC, Riva E, Pernot J, et al. Dietary fiber confers protection against flu by shaping Ly6c(-) patrolling monocyte hematopoiesis and CD8(+) t cell metabolism. Immunity. 2018;48:992–1005.e1008.CAS 
    Article 

    Google Scholar 
    51.Flynn JM, Phan C, Hunter RC. Genome-wide survey of Pseudomonas aeruginosa PA14 reveals a role for the glyoxylate pathway and extracellular proteases in the utilization of mucin. Infect Immun. 2017;85:e00182–17.52.Jorth P, Ehsan Z, Rezayat A, Caldwell E, Pope C, Brewington JJ, et al. Direct lung sampling indicates that established pathogens dominate early infections in children with cystic fibrosis. Cell Rep. 2019;27:1190–204.e1193.CAS 
    Article 

    Google Scholar 
    53.Charalampous T, Kay GL, Richardson H, Aydin A, Baldan R, Jeanes C, et al. Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection. Nat Biotechnol. 2019;37:783–92.CAS 
    Article 

    Google Scholar 
    54.Cowley ES, Kopf SH, LaRiviere A, Ziebis W, Newman DK. Pediatric cystic fibrosis sputum can be chemically dynamic, anoxic, and extremely reduced due to hydrogen sulfide formation. mBio. 2015;6:e00767.CAS 
    Article 

    Google Scholar 
    55.Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020;8:45. More

  • in

    Oceanographic anomalies coinciding with humpback whale super-group occurrences in the Southern Benguela

    1.Dawbin, W. H. The migrations of humpback whales which pass the New Zealand coast. Trans. R. Soc. New Zeal. 84, 147–196 (1956).
    Google Scholar 
    2.Chittleborough, R. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshw. Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).Article 

    Google Scholar 
    3.Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: Insights from water temperature into the longest mammalian migration. Biol. Let. 3, 302–305. https://doi.org/10.1098/rsbl.2007.0067 (2007).Article 

    Google Scholar 
    4.Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).ADS 
    Article 

    Google Scholar 
    5.Nowacek, D. P. et al. Super-aggregations of krill and humpback whales in Wilhelmina Bay Antarctic Peninsula. PLoS ONE 6, e19173. https://doi.org/10.1371/journal.pone.0019173 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Barendse, J. et al. Transit station or destination? Attendance patterns, movements and abundance estimate of humpback whales off west South Africa from photographic and genotypic matching. Afr. J. Mar. Sci. 33, 353–373. https://doi.org/10.2989/1814232X.2011.637343 (2011).Article 

    Google Scholar 
    7.Best, P. B., Sekiguchi, K. & Findlay, K. P. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Marine Ecol. Progr. Ser. Oldendorf 118, 1–12. https://doi.org/10.3354/meps118001 (1995).ADS 
    Article 

    Google Scholar 
    8.Findlay, K. & Best, P. Summer incidence of humpback whales on the west coast of South Africa. S. Afr. J. Mar. Sci. 15, 279–282. https://doi.org/10.2989/02577619509504851 (1995).Article 

    Google Scholar 
    9.Findlay, K. P. et al. Humpback whale “super-groups”–A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble‐net feeding and the formation of ‘super‐groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. (2021).11.Veitch, J., Penven, P. & Shillington, F. The Benguela: A laboratory for comparative modeling studies. Prog. Oceanogr. 83, 296–302. https://doi.org/10.1016/j.pocean.2009.07.008 (2009).ADS 
    Article 

    Google Scholar 
    12.Preston-Whyte, R. A. & Tyson, P. D. Atmosphere and weather of southern Africa (Oxford University Press, 1988).
    Google Scholar 
    13.Nemoto, T., Best, P., Ishimaru, K. & Takano, H. Diatom films on whales [minke whales and 4 species of toothed whales] in South African waters. Scientific Reports of the Whales Research Institute (1980).14.Hutchings, L., Pitcher, G., Probyn, T. & Bailey, G. in Upwelling in the ocean: modern processes and ancient records Vol. 18 (eds CP Summerhayes et al.) Ch. 3, 65–81 (Wiley & Sons, 1995).15.Clapham, P. J. in Encyclopedia of marine mammals (eds B Würsig, JGM Thewissen, & KM Kovacs) 489–492 (Academic Press, 2018).16.Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93. https://doi.org/10.1007/s40641-015-0008-4 (2015).Article 

    Google Scholar 
    17.Mackas, D. L. & Beaugrand, G. Comparisons of zooplankton time series. J. Mar. Syst. 79, 286–304. https://doi.org/10.1016/j.jmarsys.2008.11.030 (2010).Article 

    Google Scholar 
    18.Mackas, D. et al. Changing zooplankton seasonality in a changing ocean: Comparing time series of zooplankton phenology. Prog. Oceanogr. 97, 31–62. https://doi.org/10.1016/j.pocean.2011.11.005 (2012).ADS 
    Article 

    Google Scholar 
    19.Huggett, J., Verheye, H., Escribano, R. & Fairweather, T. Copepod biomass, size composition and production in the Southern Benguela: Spatio–temporal patterns of variation, and comparison with other eastern boundary upwelling systems. Prog. Oceanogr. 83, 197–207. https://doi.org/10.1016/j.pocean.2009.07.048 (2009).ADS 
    Article 

    Google Scholar 
    20.Verheye, H. M., Lamont, T., Huggett, J. A., Kreiner, A. & Hampton, I. Plankton productivity of the Benguela current large marine ecosystem (BCLME). Environ. Dev. 17, 75–92. https://doi.org/10.1016/j.envdev.2015.07.011 (2016).Article 

    Google Scholar 
    21.Shannon, L. J. et al. Exploring temporal variability in the Southern Benguela ecosystem over the past four decades using a time-dynamic ecosystem model. Front. Mar. Sci. 7, 540 (2020).ADS 
    Article 

    Google Scholar 
    22.Jarre, A. et al. Synthesis: climate effects on biodiversity, abundance and distribution of marine organisms in the Benguela. Fish. Oceanogr. 24, 122–149. https://doi.org/10.1111/fog.12086 (2015).Article 

    Google Scholar 
    23.Lamont, T., García-Reyes, M., Bograd, S., Van Der Lingen, C. & Sydeman, W. Upwelling indices for comparative ecosystem studies: Variability in the Benguela Upwelling System. J. Mar. Syst. 188, 3–16. https://doi.org/10.1016/j.jmarsys.2017.05.007 (2018).Article 

    Google Scholar 
    24.Tim, N., Zorita, E. & Hünicke, B. Decadal variability and trends of the Benguela upwelling system as simulated in a high-resolution ocean simulation. Ocean Sci. 11, 483–502. https://doi.org/10.5194/os-11-483-2015 (2015).ADS 
    Article 

    Google Scholar 
    25.Lamont, T., Barlow, R. & Brewin, R. Long-term trends in phytoplankton chlorophyll a and size structure in the Benguela Upwelling System. J. Geophys. Res. Oceans 124, 1170–1195. https://doi.org/10.1029/2018JC014334 (2019).ADS 
    Article 

    Google Scholar 
    26.Ragoasha, N. et al. Lagrangian pathways in the southern Benguela upwelling system. J. Mar. Syst. 195, 50–66. https://doi.org/10.1016/j.jmarsys.2019.03.008 (2019).Article 

    Google Scholar 
    27.Shannon, V., Hempel, G., Moloney, C., Woods, J. D. & Malanotte-Rizzoli, P. Benguela: Predicting a Large Marine Ecosystem (Elsevier, 2006).
    Google Scholar 
    28.Veitch, J., Penven, P. & Shillington, F. Modeling equilibrium dynamics of the Benguela current system. J. Phys. Oceanogr. 40, 1942–1964. https://doi.org/10.1175/2010jpo4382.1 (2010).ADS 
    Article 

    Google Scholar 
    29.Lachkar, Z. & Gruber, N. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 9, 293–308. https://doi.org/10.5194/bg-9-293-2012 (2012).ADS 
    Article 

    Google Scholar 
    30.Gruber, N. et al. Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat. Geosci. 4, 787–792. https://doi.org/10.1038/ngeo1273 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Hutchings, L. et al. Multiple factors affecting South African anchovy recruitment in the spawning, transport and nursery areas. S. Afr. J. Mar. Sci. 19, 211–225. https://doi.org/10.2989/025776198784126908 (1998).Article 

    Google Scholar 
    32.Rossi, V., López, C., Sudre, J., Hernández-García, E. & Garçon, V. Comparative study of mixing and biological activity of the Benguela and Canary upwelling systems. Geophys. Res. Lett. https://doi.org/10.1029/2008gl033610 (2008).Article 

    Google Scholar 
    33.Barendse, J. & Best, P. B. Shore-based observations of seasonality, movements, and group behavior of southern right whales in a nonnursery area on the South African west coast. Mar. Mamm. Sci. 30, 1358–1382 (2014).Article 

    Google Scholar 
    34.Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22 (2010).Article 

    Google Scholar 
    35.Gibbons, M. J. An introduction to the Zooplankton of the Benguella current Region. (1997).36.Olsen, Ø. Hvaler og hvalfangst i Sydafrika. 1–56 (Bergens Museums Arbok 1914–1915, 1914).37.Meynecke, J. O. et al. Responses of humpback whales to a changing climate in the Southern Hemisphere: Priorities for research efforts. Mar. Ecol. 41, e12616 (2020).Article 

    Google Scholar 
    38.Stockin, K. A. & Burgess, E. A. Opportunistic Feeding of an Adult Humpback Whale (Megaptera novaeangliae) Migrating Along the Coast of Southeastern Queensland, Australia. Aquat. Mamm. 31, 120. https://doi.org/10.1578/AM.31.1.2005.120 (2005).Article 

    Google Scholar 
    39.Visser, F., Hartman, K. L., Pierce, G. J., Valavanis, V. D. & Huisman, J. Timing of migratory baleen whales at the Azores in relation to the North Atlantic spring bloom. Mar. Ecol. Prog. Ser. 440, 267–279. https://doi.org/10.3354/meps09349 (2011).ADS 
    Article 

    Google Scholar 
    40.Trudelle, L. et al. Influence of environmental parameters on movements and habitat utilization of humpback whales (Megaptera novaeangliae) in the Madagascar breeding ground. R. Soc. Open Sci. 3, 160616. https://doi.org/10.1098/rsos.160616 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Veitch, J., Hermes, J., Lamont, T., Penven, P. & Dufois, F. Shelf-edge jet currents in the southern Benguela: A modelling approach. J. Mar. Syst. 188, 27–38 (2018).Article 

    Google Scholar 
    42.Hutchings, L. et al. The Benguela current: An ecosystem of four components. Prog. Oceanogr. 83, 15–32. https://doi.org/10.1016/j.pocean.2009.07.046 (2009).ADS 
    Article 

    Google Scholar 
    43.Rockwood, R. C., Elliott, M. L., Saenz, B., Nur, N. & Jahncke, J. Modeling predator and prey hotspots: Management implications of baleen whale co-occurrence with krill in Central California. PLoS ONE 15, e0235603 (2020).CAS 
    Article 

    Google Scholar 
    44.Hayward, T. L. & Venrick, E. L. Nearsurface pattern in the California Current: Coupling between physical and biological structure. Deep Sea Res. Part II 45, 1617–1638 (1998).ADS 
    Article 

    Google Scholar 
    45.Croll, D. A. et al. From wind to whales: trophic links in a coastal upwelling system. Mar. Ecol. Prog. Ser. 289, 117–130 (2005).ADS 
    Article 

    Google Scholar 
    46.Walker, D. & Peterson, W. Relationships between hydrography, phytoplankton production, biomass, cell size and species composition, and copepod production in the southern Benguela upwelling system in April 1988. S. Afr. J. Mar. Sci. 11, 289–305 (1991).Article 

    Google Scholar 
    47.Stuart, V. & Pillar, S. Diel grazing patterns of all ontogenetic stages of Euphausia lucens and in situ predation rates on copepods in the southern Benguela upwelling region. Mar. Ecol. Progr. Ser. 2, 227–241 (1990).ADS 
    Article 

    Google Scholar 
    48.Clapham, P. & Baker, C. (Academic, New York, 2002).49.Shannon, L. J., Field, J. G. & Moloney, C. L. Simulating anchovy–sardine regime shifts in the southern Benguela ecosystem. Ecol. Model. 172, 269–281 (2004).Article 

    Google Scholar 
    50.Lett, C., Roy, C., Levasseur, A., Van Der Lingen, C. D. & Mullon, C. Simulation and quantification of enrichment and retention processes in the southern Benguela upwelling ecosystem. Fish. Oceanogr. 15, 363–372. https://doi.org/10.1111/j.1365-2419.2005.00392.x (2006).Article 

    Google Scholar 
    51.Branch, T. A. Humpback whale abundance south of 60°S from three complete circumpolar sets of surveys. J. Cetacean Res. Manage. https://doi.org/10.47536/jcrm.vi.305 (2011).Article 

    Google Scholar 
    52.Findlay, K., Best, P. & Meÿer, M. Migrations of humpback whales past Cape Vidal, South Africa, and an estimate of the population increase rate (1988–2002). Afr. J. Mar. Sci. 33, 375–392. https://doi.org/10.2989/1814232x.2011.637345 (2011).Article 

    Google Scholar 
    53.Henson, S. A., Cole, H. S., Hopkins, J., Martin, A. P. & Yool, A. Detection of climate change-driven trends in phytoplankton phenology. Glob. Change Biol. 24, e101–e111 (2018).ADS 
    Article 

    Google Scholar 
    54.Carvalho, I. et al. Does temporal and spatial segregation explain the complex population structure of humpback whales on the coast of West Africa?. Mar. Biol. 161, 805–819 (2014).Article 

    Google Scholar 
    55.Kershaw, F. et al. Multiple processes drive genetic structure of humpback whale (Megaptera novaeangliae) populations across spatial scales. Mol. Ecol. 26, 977–994 (2017).Article 

    Google Scholar 
    56.Korrûbel, J. An age-structured simulation model to investigate species replacement between pilchard and anchovy populations in the southern Benguela. S. Afr. J. Mar. Sci. 12, 375–391 (1992).Article 

    Google Scholar 
    57.Shannon, L. et al. The 1980s–a decade of change in the Benguela ecosystem. S. Afr. J. Mar. Sci. 12, 271–296 (1992).Article 

    Google Scholar 
    58.Verheye, H., Richardson, A., Hutchings, L., Marska, G. & Gianakouras, D. Long-term trends in the abundance and community structure of coastal zooplankton in the southern Benguela system, 1951–1996. Afr. J. Mar. Sci. 19, 2 (1998).
    Google Scholar 
    59.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Sydeman, W. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Bonino, G., Di Lorenzo, E., Masina, S. & Iovino, D. Interannual to decadal variability within and across the major eastern boundary upwelling systems. Sci. Rep. 9, 1–14 (2019).Article 

    Google Scholar 
    62.Fearon, G. et al. Enhanced vertical mixing in coastal upwelling systems driven by diurnal-inertial resonance: Numerical experiments. J. Geophys. Res. Oceans https://doi.org/10.1002/essoar.10502743.1 (2020).Article 

    Google Scholar 
    63.Xiu, P., Chai, F., Curchitser, E. N. & Castruccio, F. S. Future changes in coastal upwelling ecosystems with global warming: The case of the California Current System. Sci. Rep. 8, 1–9 (2018).
    Google Scholar 
    64.Roxy, M. K. et al. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 43, 826–833 (2016).ADS 
    Article 

    Google Scholar 
    65.Lockerbie, E. M. & Shannon, L. Toward exploring possible future states of the southern Benguela. Front. Mar. Sci. 6, 380 (2019).Article 

    Google Scholar 
    66.Ortega-Cisneros, K., Cochrane, K. L., Fulton, E. A., Gorton, R. & Popova, E. Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework. Fish. Oceanogr. 27, 489–503 (2018).Article 

    Google Scholar 
    67.Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Veitch, J. A. & Penven, P. The role of the A gulhas in the B enguela current system: A numerical modeling approach. J. Geophys. Res. Oceans 122, 3375–3393 (2017).ADS 
    Article 

    Google Scholar 
    69.Beal, L. M., De Ruijter, W. P., Biastoch, A. & Zahn, R. On the role of the Agulhas system in ocean circulation and climate. Nature 472, 429–436 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Beal, L. M. & Elipot, S. Broadening not strengthening of the Agulhas current since the early 1990s. Nature 540, 570–573 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Lilliefors, H. W. On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J. Am. Stat. Assoc. 64, 387–389. https://doi.org/10.1080/01621459.1969.10500983 (1969).Article 

    Google Scholar 
    72.Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002 (2005).ADS 
    Article 

    Google Scholar 
    73.Debreu, L., Marchesiello, P., Penven, P. & Cambon, G. Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Model 49, 1–21. https://doi.org/10.1016/j.ocemod.2012.03.003 (2012).ADS 
    Article 

    Google Scholar 
    74.Shchepetkin, A. F. & McWilliams, J. C. Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Weather Rev. 126, 1541–1580. https://doi.org/10.1175/1520-0493(1998)126%3C1541:qmasbo%3E2.0.co;2 (1998).ADS 
    Article 

    Google Scholar 
    75.Warner, J. C., Sherwood, C. R., Arango, H. G. & Signell, R. P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model 8, 81–113. https://doi.org/10.1016/j.ocemod.2003.12.003 (2005).ADS 
    Article 

    Google Scholar 
    76.Saha, S. et al. NCEP Climate Forecast System Reanalysis (CFSR) 6-Hourly Products, January 1979 to December 2010 (Boulder, 2010).
    Google Scholar 
    77.Saha, S. et al. NCEP Climate Forecast System Version 2 (CFSv2) 6-hourly Products. D61C61TXF (Boulder, 2011).
    Google Scholar 
    78.Burchard, H. & Hofmeister, R. A dynamic equation for the potential energy anomaly for analysing mixing and stratification in estuaries and coastal seas. Estuar. Coast. Shelf Sci. 77, 679–687. https://doi.org/10.1016/j.ecss.2007.10.025 (2008).ADS 
    Article 

    Google Scholar 
    79.Yamaguchi, R., Suga, T., Richards, K. J. & Qiu, B. Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific. Clim. Dyn. 53, 4667–4681. https://doi.org/10.1007/s00382-019-04816-y (2019).Article 

    Google Scholar 
    80.Lennard, C., Hahmann, A. N., Badger, J., Mortensen, N. G. & Argent, B. Development of a numerical wind atlas for South Africa. Energy Proc. 76, 128–137. https://doi.org/10.1016/j.egypro.2015.07.873 (2015).Article 

    Google Scholar 
    81.Thomson, R. E. & Emery, W. J. Data Analysis Methods in Physical Oceanography 3rd edn. (Elsevier, 2014).
    Google Scholar  More

  • in

    Prokaryotic responses to a warm temperature anomaly in northeast subarctic Pacific waters

    1.Collins, M. et al. SPM6 Extremes, abrupt changes and managing risks. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds. Pörtner, H.-O. et al.) 589-655 (In press, 2019).2.Hegerl, G. C., Hanlon, H. & Beierkuhnlein, C. Elusive extremes. Nat. Geosci. 4, 142–143 (2011).CAS 
    Article 

    Google Scholar 
    3.Bérard, A., Ben Sassi, M., Renault, P. & Gros, R. Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. J. Soils Sediment. 12, 513–518 (2012).Article 

    Google Scholar 
    4.Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Acosta-Martínez, V. et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl. Soil Ecol. 84, 69–82 (2014).Article 

    Google Scholar 
    6.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).Article 

    Google Scholar 
    7.Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).Article 

    Google Scholar 
    9.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).Article 

    Google Scholar 
    10.Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 9, 3414–3420 (2015).11.Freeland, H. & Ross, T. ‘The Blob’—or, how unusual were ocean temperatures in the Northeast Pacific during 2014-2018? Deep Sea Res. Part I: Oceanographic Res. Pap. 150, 103061 (2019).Article 

    Google Scholar 
    12.Lorenzo, E. D. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).Article 

    Google Scholar 
    13.Peña, M. A., Nemcek, N. & Robert, M. Phytoplankton responses to the 2014–2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).Article 

    Google Scholar 
    14.Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).CAS 
    Article 

    Google Scholar 
    15.Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).16.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article 

    Google Scholar 
    17.Sarmento, Hugo, Montoya, JoséM., Vázquez-Domínguez, Evaristo, Vaqué, Dolors & Gasol, JosepM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos. Trans. R. Soc. B: Biol. Sci. 365, 2137–2149 (2010).Article 

    Google Scholar 
    18.Joint, I. & Smale, D. A. Marine heatwaves and optimal temperatures for microbial assemblage activity. FEMS Microbiol Ecol 93, fiw243 (2017).19.Deschaseaux, E. O., Brien, J., Siboni, N., Petrou, K. & Seymour, J. R. Shifts in dimethylated sulfur concentrations and microbiome composition in the red-tide causing dinoflagellate Alexandrium minutum during a simulated marine heatwave. Biogeosciences 16, 4377–4391 (2019).CAS 
    Article 

    Google Scholar 
    20.Hawley, A. K. et al. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat. Commun. 8, 1507 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Allers, E. et al. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. ISME J. 7, 256–268 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Wright, J. J. et al. Genomic properties of Marine Group A bacteria indicate a role in the marine sulfur cycle. ISME J. 8, 455–468 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Sherry, N. D., Boyd, P. W., Sugimoto, K. & Harrison, P. J. Seasonal and spatial patterns of heterotrophic bacterial production, respiration, and biomass in the subarctic NE Pacific. Deep Sea Res. Part II Top. Stud. Oceanogr. 46, 2557–2578 (1999).25.Harrison, P. J. Station Papa Time Series: insights into ecosystem dynamics. J. Oceanogr. 58, 259–264 (2002).CAS 
    Article 

    Google Scholar 
    26.Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Cram, J. A. et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 9, 563–580 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Freeland, H. J. Evidence of change in the winter mixed layer in the Northeast Pacific Ocean: a problem revisited. Atmos. Ocean 51, 126–133 (2013).CAS 
    Article 

    Google Scholar 
    30.Stevens, H. & Ulloa, O. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. 10, 1244–1259 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Bryant, J. A., Stewart, F. J., Eppley, J. M. & DeLong, E. F. Microbial community phylogenetic and trait diversity declines with depth in a marine oxygen minimum zone. Ecology 93, 1659–1673 (2012).PubMed 
    Article 

    Google Scholar 
    32.Muck, S. et al. Niche differentiation of aerobic and anaerobic ammonia oxidizers in a high latitude deep oxygen minimum zone. Front. Microbiol. 10, 2141 (2019).33.Medina Faull, L., Mara, P., Taylor, G. T. & Edgcomb, V. P. Imprint of trace dissolved oxygen on prokaryoplankton community structure in an oxygen minimum zone. Front. Mar. Sci. 7, 360 (2020).34.Reji, L., Tolar, B. B., Chavez, F. P. & Francis, C. A. Depth-differentiation and seasonality of planktonic microbial assemblages in the monterey bay upwelling system. Front. Microbiol. 11, 1075 (2020).35.Wright, J. J., Konwar, K. M. & Hallam, S. J. Microbial ecology of expanding oxygen minimum zones. Nat. Rev. Microbiol. 10, 381–394 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Tsementzi, D. et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature 536, 179–183 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Choi, D. H., Karen, Selph & Noh, J. H. Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean. ALGAE 30, 223–232 (2015).38.Johnson, Z. I. et al. Niche partitioning among prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Sohm, J. A. et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 10, 333–345 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Not, F. et al. in Advances in Botanical Research (ed. Piganeau, G.) vol. 64, 1–53 (Academic Press, 2012).41.Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochemical Cycles 16, 11-1–11–18 (2002).
    Google Scholar 
    42.Richardson, T. L., Jackson, G. A., Ducklow, H. W. & Roman, M. R. Carbon fluxes through food webs of the eastern equatorial Pacific: an inverse approach. Deep Sea Res. Part I: Oceanographic Res. Pap. 51, 1245–1274 (2004).CAS 
    Article 

    Google Scholar 
    43.Michaels, A. F. & Silver, M. W. Primary production, sinking fluxes and the microbial food web. Deep Sea Res. Part A. Oceanographic Res. Pap. 35, 473–490 (1988).Article 

    Google Scholar 
    44.Dufrêne, M. & Legendre, P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).
    Google Scholar 
    45.Cáceres, M. D., Legendre, P. & Moretti, M. Improving indicator species analysis by combining groups of sites. Oikos 119, 1674–1684 (2010).Article 

    Google Scholar 
    46.Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5, e01371-14 (2014).47.Thrash, J. C. et al. Metabolic Roles of Uncultivated Bacterioplankton lineages in the Northern Gulf of Mexico “Dead Zone”. mBio 8, e01017-17 (2017).48.Kirchman, D. L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol Ecol. 39, 91–100 (2002).CAS 
    PubMed 

    Google Scholar 
    49.Alonso, C., Warnecke, F., Amann, R. & Pernthaler, J. High local and global diversity of Flavobacteria in marine plankton. Environ. Microbiol. 9, 1253–1266 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Teeling, H. et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife 5, e11888 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Selje, N., Simon, M. & Brinkhoff, T. A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427, 445 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Buchan, A., González, J. M. & Moran, M. A. Overview of the marine Roseobacter lineage. Appl. Environ. Microbiol. 71, 5665–5677 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Luo, H. & Moran, M. A. Evolutionary ecology of the marine roseobacter clade. Microbiol. Mol. Biol. Rev. 78, 573–587 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Simon, M. et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11, 1483–1499 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Sato, S. et al. Genome-enabled phylogenetic and functional reconstruction of an araphid pennate diatom Plagiostriata sp. CCMP470, previously assigned as a radial centric diatom, and its bacterial commensal. Sci. Rep. 10, 9449 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Annu. Rev. Mar. Sci. 6, 339–367 (2014).Article 

    Google Scholar 
    57.Landa, M. et al. Sulfur metabolites that facilitate oceanic phytoplankton–bacteria carbon flux. ISME J. 13, 2536–2550 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Georges, A. A., El-Swais, H., Craig, S. E., Li, W. K. & Walsh, D. A. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 8, 1301–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome 3, 14 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Andrei, A.-Ş. et al. Niche-directed evolution modulates genome architecture in freshwater Planctomycetes. ISME J 13, 1056–1071 (2019).61.Fukunaga, Y. et al. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. J. Gen. Appl. Microbiol. 55, 267–275 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Gade, D., Stührmann, T., Reinhardt, R. & Rabus, R. Growth phase dependent regulation of protein composition in Rhodopirellula baltica. Environ. Microbiol. 7, 1074–1084 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Luecker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol. 4, 27 (2013).64.Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).Article 

    Google Scholar 
    65.Brown, M. V. et al. Global biogeography of SAR11 marine bacteria. Mol. Syst. Biol. 8, 595 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Haro‐Moreno, J. M. et al. Ecogenomics of the SAR11 clade. Environ. Microbiol 22, 1748–1763 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Grote, J. et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio 3, e00252–12 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Giovannoni, S. J. SAR11 Bacteria: The Most Abundant Plankton in the Oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).Article 

    Google Scholar 
    69.Getz, E. W., Tithi, S. S., Zhang, L. & Aylward, F. O. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio. 9, e01089-18 (2018).70.Aylward, F. O. & Santoro, A. E. Heterotrophic thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415-20 (2020).71.Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Santoro, A. E., Casciotti, K. L. & Francis, C. A. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol. 12, 1989–2006 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Horak, R. E. A. et al. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. ISME J. 7, 2023–2033 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Qin, W. et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. PNAS 111, 12504–12509 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Rinke, C. et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 13, 663 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Haro-Moreno, J. M., Rodriguez-Valera, F., López-García, P., Moreira, D. & Martin-Cuadrado, A.-B. New insights into marine group III Euryarchaeota, from dark to light. ISME J. 11, 1102–1117 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Orsi, W. D. et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 10, 2158–2173 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Orsi, W. D. et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 9, 1747–1763 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Hugoni, M. et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc. Natl Acad. Sci. USA 110, 6004–6009 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Matheus Carnevali, P. B. et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat. Commun. 10, 463 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Saw, J. H. W. et al. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11, e02975-19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Alonso‐Sáez, L., Díaz‐Pérez, L. & Morán, X. A. G. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ. Microbiol. 17, 3766–3780 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Lambert, S. et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 13, 388–401 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Mehrshad, M., Rodriguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Mullins, T. D., Britschgi, T. B., Krest, R. L. & Giovannoni, S. J. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40, 148–158 (1995).CAS 
    Article 

    Google Scholar 
    86.Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore western mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microbiol. 65, 514–522 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Hoarfrost, A. et al. Global ecotypes in the ubiquitous marine clade SAR86. ISME J. 14, 178–188 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C. & Bertilsson, S. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J. 4, 1581–1590 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    89.Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Maldonado, M. T., Boyd, P. W., Harrison, P. J. & Price, N. M. Co-limitation of phytoplankton growth by light and Fe during winter in the NE subarctic Pacific Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2475–2485 (1999).CAS 
    Article 

    Google Scholar 
    91.Peña, M. A. & Varela, D. E. Seasonal and interannual variability in phytoplankton and nutrient dynamics along Line P in the NE subarctic Pacific. Prog. Oceanogr. 75, 200–222 (2007).Article 

    Google Scholar 
    92.Whitney, F. A., Wong, C. S. & Boyd, P. W. Interannual variability in nitrate supply to surface waters of the Northeast Pacific Ocean. Mar. Ecol. Prog. Ser. 170, 15–23 (1998).CAS 
    Article 

    Google Scholar 
    93.Crawford, W., Galbraith, J. & Bolingbroke, N. Line P ocean temperature and salinity, 1956–2005. Prog. Oceanogr. 75, 161–178 (2007).Article 

    Google Scholar 
    94.Whitney, F. A. & Freeland, H. J. Variability in upper-ocean water properties in the NE Pacific Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2351–2370 (1999).CAS 
    Article 

    Google Scholar 
    95.Whitney, F. A., Freeland, H. J. & Robert, M. Persistently declining oxygen levels in the interior waters of the eastern subarctic Pacific. Prog. Oceanogr. 75, 179–199 (2007).Article 

    Google Scholar 
    96.Siegel, D. A. et al. Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan. Front. Mar. Sci. 3, 030 (2016).97.Buesseler, K. O. et al. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elementa: Sci. Anthrop. 8, (2020).98.Stephens, B. M. et al. Organic matter composition at ocean station papa affects its bioavailability, bacterioplankton growth efficiency and the responding taxa. Front. Mar. Sci. 7, 590273 (2020).99.Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M. & Kelly, R. P. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429–3446 (2015).Article 

    Google Scholar 
    100.Fisher, J. et al. Copepod responses to, and recovery from, the recent marine heatwave in the Northeast Pacific. PICES Sci. 2019: Notes Sci. Board Chair 28, 65 (2020).
    Google Scholar 
    101.Batten, S. D. et al. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Sea Res. Part II: Topical Stud. Oceanogr. 147, 58–68 (2018).Article 

    Google Scholar 
    102.Geider, R. & Roche, J. L. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).Article 

    Google Scholar 
    103.Wohlers, J. et al. Changes in biogenic carbon flow in response to sea surface warming. Proc.Natl. Acad. Sci. USA 106, 7067–7072 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Bif, M. B. & Hansell, D. A. Seasonality of dissolved organic carbon in the upper Northeast Pacific Ocean. Glob. Biogeochem. Cycles 33, 526–539 (2019).CAS 
    Article 

    Google Scholar 
    105.Ferrer-González, F. X. et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. https://doi.org/10.1038/s41396-020-00811-y. (2020).106.Gies, E. A., Konwar, K. M., Beatty, J. T. & Hallam, S. J. Illuminating microbial dark matter in meromictic Sakinaw Lake. Appl. Environ. Microbiol. 80, 6807–6818 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    107.Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Ono, T., Shiomoto, A. & Saino, T. Recent decrease of summer nutrients concentrations and future possible shrinkage of the subarctic North Pacific high-nutrient low-chlorophyll region. Global Biogeochemical Cycles 22, GB3027 (2008).110.Walsh, D. A., Zaikova, E. & Hallam, S. J. Small Volume (1-3L) Filtration of Coastal Seawater Samples. JoVE https://doi.org/10.3791/1163 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    111.Barwell-Clarke, J. & Whitney, F. Institute of Ocean Sciences nutrient Methods and Analysis. (1996).112.Zapata, M., Rodríguez, F. & Garrido, J. L. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29–45 (2000).CAS 
    Article 

    Google Scholar 
    113.Nemcek, N. & Peña, M. A. Institute of Ocean Sciences Protocols for Phytoplankton Pigment Analysis by HPLC. (2014).114.Wright, J. J., Lee, S., Zaikova, E., Walsh, D. A. & Hallam, S. J. DNA Extraction from 0.22 μM Sterivex Filters and Cesium Chloride Density Gradient Centrifugation. J. Vis. Exp. e1352, https://doi.org/10.3791/1352 (2009).115.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Rivers, A. R. iTag amplicon sequencing for taxonomix identification at JGI. http://1ofdmq2n8tc36m6i46scovo2e.wpengine.netdna-cdn.com/wp-content/uploads/2013/05/iTagger-methods-1.pdf (2016).117.Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    118.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    122.Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 37, 852–857 (2019).123.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).124.Rstudio Team. Rstudio: Integrated Development Environment for R (Rstudio Inc, 2016).125.Faust, K. & Raes, J. CoNet app: inference of biological association networks using Cytoscape. F1000Res 5, 1519 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    126.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Identification of ecological networks and nodes in Fujian province based on green and blue corridors

    1.Garcia-Garcia, M. J., Christien, L., García-Escalona, E. & González-García, C. Sensitivity of green spaces to the process of urban planning: Three case studies of Madrid (Spain). Cities 100, 102655. https://doi.org/10.1016/j.cities.2020.102655 (2020).Article 

    Google Scholar 
    2.Kondo, M. C., Fluehr, J. M., McKeon, T. & Branas, C. C. Urban green space and its impact on human health. Environ. Res. Public Health 15(3), 445. https://doi.org/10.3390/ijerph15030445 (2018).Article 

    Google Scholar 
    3.Nesbitt, L. et al. The social and economic value of cultural ecosystem services provided by urban forests in North America: A review and suggestions for future research. Urban For. Urban Green. 25, 103–111. https://doi.org/10.1016/j.ufug.2017.05.005 (2017).Article 

    Google Scholar 
    4.Hasan, S. S., Zhen, L., Miah, G., Ahamed, T. & Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 34, 100527. https://doi.org/10.1016/j.envdev.2020.100527 (2020).Article 

    Google Scholar 
    5.Kolodziejczyk, B. et al. Frontiers 2018/19: Emerging issues of environmental concern. United Nations Environment Programme, Nairobi, 24–37 (2019).6.Steffen, W., Crutzen, P. J. & McNeill, J. R. The anthropocene: Are humans now overwhelming the great forces of nature. Hum. Environ. 36(8), 614–621. https://doi.org/10.1579/0044-7447(2007)36[614:TAAHNO]2.0.CO;2 (2007).CAS 
    Article 

    Google Scholar 
    7.CC & SC. Views on Accelerating the Ecological Civilization Construction (2015).8.Ministry of Housing and Urban-Rural Development (MHURD). City Green Space Planning Standards, GB/T51346-2019 (2019).9.Raei, E. et al. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J. Hydrol. 579, 124091. https://doi.org/10.1016/j.jhydrol.2019.124091 (2019).CAS 
    Article 

    Google Scholar 
    10.Tzoulas, K. et al. Promoting ecosystem and human health in urban areas using Green Infrastructure: A literature review. Landsc. Urban Plan. 81(3), 167–178. https://doi.org/10.1016/j.landurbplan.2007.02.001 (2007).Article 

    Google Scholar 
    11.Xiao, F., Shu, J. & Zhang, L. Research on applying minimal cumulative resistance model in urban land ecological suitability assessment: As an example of Xiamen City. Acta Ecol. Sin. 30(2), 421–428 (2010).
    Google Scholar 
    12.Zhao, S., Ma, Y., Wang, J. & You, X. Landscape pattern analysis and ecological network planning of Tianjin City. Urban For. Urban Green. 46, 126479. https://doi.org/10.1016/j.ufug.2019.126479 (2019).Article 

    Google Scholar 
    13.Davies, C. & Lafortezza, R. Urban green infrastructure in Europe: Is greenspace planning and policy compliant? Land Use Policy 69, 93–101. https://doi.org/10.1016/j.landusepol.2017.08.018 (2017).Article 

    Google Scholar 
    14.Central Committee & State Council (CC & SC). Views on establishment and monitoring of Territorial Space Planning system (2019).15.Zhou, Q. et al. China’s Green space system planning: Development, experiences, and characteristics. Urban For. Urban Green. 60, 127017. https://doi.org/10.1016/j.ufug.2021.127017 (2021).Article 

    Google Scholar 
    16.Zhou, X., Zhang, S. & Zhu, D. Impact of urban water networks on microclimate and PM25 distribution in downtown areas: A case study of wuhan. Build. Environ. 203, 108073. https://doi.org/10.1016/j.buildenv.2021.108073 (2021).Article 

    Google Scholar 
    17.Ministry of Natural Resources (MNR). Guidelines for Formulation of Provincial Territorial Space Planning (Trial) (2020).18.Rushdi, A. M. A. & Hassan, A. K. Reliability of migration between habitat patches with heterogeneous ecological corridors. Ecol. Model. 304, 1–10. https://doi.org/10.1016/j.ecolmodel.2015.02.014 (2015).Article 

    Google Scholar 
    19.Wang, T., Li, H. & Huang, Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecol. Ind. 130, 108101. https://doi.org/10.1016/j.ecolind.2021.108101 (2021).Article 

    Google Scholar 
    20.Wu, H. et al. A novel remote sensing ecological vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Ind. 129, 107955. https://doi.org/10.1016/j.ecolind.2021.107955 (2021).Article 

    Google Scholar 
    21.Janauer, G. A. Ecohydrology: Fusing concepts and scales. Ecol. Eng. 16(1), 9–16. https://doi.org/10.1016/S0925-8574(00)00072-0 (2000).Article 

    Google Scholar 
    22.Rinaldo, A., Gatto, M. & Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 112, 27–58. https://doi.org/10.1016/j.advwatres.2017.10.005 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Fletcher, T. D. et al. SUDS, LID, BMPs, WSUD and more: The evolution and application of terminology surrounding urban drainage. Urban Water J. 12(7), 525–542. https://doi.org/10.1080/1573062X.2014.916314 (2015).Article 

    Google Scholar 
    24.Nieuwenhuis, E., Cuppen, E., Langeveld, J. & Bruijn, H. Towards the integrated management of urban water systems: Conceptualizing integration and its uncertainties. J. Clean. Prod. 280(2), 124977. https://doi.org/10.1016/j.jclepro.2020.124977 (2021).Article 

    Google Scholar 
    25.Knaapen, J. P., Scheffer, M. & Harms, B. Estimating habitat isolation in landscape planning. Landscape Urban Plann. 23(1), 1–16. https://doi.org/10.1016/0169-2046(92)90060-D (1992).Article 

    Google Scholar 
    26.Yu, K. Security patterns and surface model in landscape ecological planning. Landscape Urban Plann. 36(1), 1–17. https://doi.org/10.1016/S0169-2046(96)00331-3 (1996).Article 

    Google Scholar 
    27.Yu, K. Landscape ecological security pattern of biological protection. Acta Ecologica Sinica 1, 3–5 (1999).
    Google Scholar 
    28.Zhang, Z., Meerow, S., Newell, J. P. & Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 38, 305–317. https://doi.org/10.1016/j.ufug.2018.10.014 (2019).Article 

    Google Scholar 
    29.Fu, Y., Shi, X., He, J., Yuan, Y. & Qu, L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Ind. 112, 106030. https://doi.org/10.1016/j.ecolind.2019.106030 (2020).Article 

    Google Scholar 
    30.Kong, F., Yin, H., Nakagoshi, N. & Zong, Y. Urban green space network development for biodiversity conservation: Identification based on graph theory and gravity modeling. Landsc. Urban Plan. 95, 16–27. https://doi.org/10.1016/j.landurbplan.2009.11.001 (2010).Article 

    Google Scholar 
    31.Kong, F. & Yin, H. Construction of Jinan urban green space ecological network. Acta Ecol. Sin. 4, 1711–1719 (2008).
    Google Scholar 
    32.Linehan, J., Gross, M. & Finn, J. Greenway planning: Developing a landscape ecological network approach. Landsc. Urban Plan. 33(1–3), 179–193. https://doi.org/10.1016/0169-2046(94)02017-A (1995).Article 

    Google Scholar 
    33.Yang, H., Chen, W. & Chen, X. Regional ecological network planning for biodiversity conservation: A case study of China’s Poyang lake eco-economic region. Pol. J. Environ. Stud. 26(4), 1825–1833. https://doi.org/10.15244/pjoes/68877 (2017).Article 

    Google Scholar 
    34.Fahrig, L. Rethinking patch size and isolation effects: The habitat amount hypothesis. J. Biogeogr. 40(9), 1649–1663. https://doi.org/10.1111/jbi.12130 (2013).Article 

    Google Scholar 
    35.Gilbert-Norton, L., Wilson, R., Stevens, J. R. & Beard, K. H. A meta-analytic review of corridor effectiveness. Conserv. Biol. 24(3), 660–668. https://doi.org/10.1111/j.1523-1739.2010.01450.x (2010).Article 
    PubMed 

    Google Scholar 
    36.Saura, S. & Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 24(1), 135–139. https://doi.org/10.1016/j.envsoft.2008.05.005 (2009).Article 

    Google Scholar 
    37.Saura, S., Vogt, P., Velázquez, J., Hernando, A. & Tejera, R. Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. For. Ecol. Manag. 262(2), 150–160. https://doi.org/10.1016/j.foreco.2011.03.017 (2011).Article 

    Google Scholar 
    38.Bueno, J. A., Tsihrintzis, V. A. & Alvarez, L. South Florida greenways: a conceptual framework for the ecological reconnectivity of the region. Landsc. Urban Plan. 33(1–3), 247–266. https://doi.org/10.1016/0169-2046(94)02021-7 (1995).Article 

    Google Scholar 
    39.Cook, E. A. Landscape structure indices for assessing urban ecological networks. Landsc. Urban Plan. 58(2–4), 269–280. https://doi.org/10.1016/S0169-2046(01)00226-2 (2002).Article 

    Google Scholar 
    40.Dalton, R., Garlick, J., Minshull, R. & Robinson, A. Networks in Geography (Phillip, 1973).
    Google Scholar 
    41.Forman, R. T. T. & Godron, M. Landscape Ecology (Wiley, 1986).
    Google Scholar 
    42.Haggett, P. & Chorley, R. J. Network Analysis in Geography (Edward Arnold, 1972).
    Google Scholar 
    43.Yu, K. The identification method of landscape ecological strategic points and the surface model of theoretical geography. J. Geog. Sci. S1, 3–5 (1998).
    Google Scholar 
    44.Yu, Q. et al. Optimization of ecological node layout and stability analysis of ecological network in desert oasis: A typical case study of ecological fragile zone located at Deng Kou County (Inner Mongolia). Ecol. Indic. 84, 304–318. https://doi.org/10.1016/j.ecolind.2017.09.002 (2018).Article 

    Google Scholar 
    45.Zhang, Y. & Yu, B. Evaluation of urban ecological network space and its structure optimization. Acta Ecol. Sin. 36(21), 6969–6984 (2016).
    Google Scholar 
    46.Hong, W. et al. Sensitivity evaluation and land-use control of urban ecological corridors: A case study of Shenzhen, China. Land Use Policy 62, 316–325. https://doi.org/10.1016/j.landusepol.2017.01.010 (2017).Article 

    Google Scholar 
    47.Monaco, R., Negrini, G., Salizzoni, E., Soares, A. J. & Voghera, A. Inside-outside park planning: A mathematical approach to assess and support the design of ecological connectivity between Protected Areas and the surrounding landscape. Ecol. Eng. 149, 105748. https://doi.org/10.1016/j.ecoleng.2020.105748 (2020).Article 

    Google Scholar 
    48.Morandi, D. T. et al. Delimitation of ecological corridors between conservation units in the Brazilian Cerrado using a GIS and AHP approach. Ecol. Ind. 115, 106440. https://doi.org/10.1016/j.ecolind.2020.106440 (2020).Article 

    Google Scholar 
    49.Santos, J. S. et al. Delimitation of ecological corridors in the Brazilian Atlantic Forest. Ecol. Ind. 88, 414–424. https://doi.org/10.1016/j.ecolind.2018.01.011 (2018).Article 

    Google Scholar 
    50.Dai, L., Liu, Y., Luo, X. I. & the MCR and, ,. DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141868 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Ferreira, C. S. S. et al. Spatiotemporal variability of hydrologic soil properties and the implications for overland flow and land management in a peri-urban Mediterranean catchment. J. Hydrol. 525, 249–263. https://doi.org/10.1016/j.jhydrol.2015.03.039 (2015).ADS 
    Article 

    Google Scholar 
    52.Kalantari, Z. et al. Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Sci. Total Environ. 661, 393–406. https://doi.org/10.1016/j.scitotenv.2019.01.009 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Kalantari, Z., Ferreira, C. S. S., Walsh, R. P. D., Ferreira, A. J. D. & Destouni, G. Urbanization development under climate change: Hydrological responses in a peri-urban Mediterranean catchment. Land Degrad. Dev. 28, 2207–2221. https://doi.org/10.1002/ldr.2747 (2017).Article 

    Google Scholar 
    54.Grillakis, M. G. et al. Initial soil moisture effects on flash flood generation: A comparison between basins of contrasting hydro-climatic conditions. J. Hydrol. 541(A), 206–217. https://doi.org/10.1016/j.jhydrol.2016.03.007 (2016).ADS 
    Article 

    Google Scholar 
    55.Zhang, K., Fong, T. & Chui, M. A comprehensive review of spatial allocation of LID-BMP-GI practices: Strategies and optimization tools. Sci. Total Environ. 621, 915–929. https://doi.org/10.1016/j.scitotenv.2017.11.281 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Liu, Z., Lin, Y., De Meulder, B. & Wang, S. Heterogeneous landscapes of urban greenways in Shenzhen: Traffic impact, corridor width and land use. Urban For. Urban Green. 126, 785. https://doi.org/10.1016/j.ufug.2020.126785 (2020).Article 

    Google Scholar 
    57.Wakefield, S. Great expectations: Waterfront redevelopment and the Hamilton Harbour Waterfront Trail. Cities 24(4), 298–310. https://doi.org/10.1016/j.cities.2006.11.001 (2007).Article 

    Google Scholar 
    58.Rimaze, D., Machumu, A., Mremi, R. & Eustace, A. Diversity and abundance of wild mammals between different accommodation facilities in the Kwakuchinja Wildlife Corridor, Tanzania. Sci. Afr. 9, e00480. https://doi.org/10.1016/j.sciaf.2020.e00480 (2020).Article 

    Google Scholar 
    59.Franco, D., Mannino, I. & Zanetto, G. The impact of agroforestry networks on scenic beauty estimation: The role of a landscape ecological network on a socio-cultural process. Landsc. Urban Plan. 62(3), 119–138. https://doi.org/10.1016/S0169-2046(02)00127-5 (2003).Article 

    Google Scholar 
    60.Wu, X. et al. Increasing green infrastructure-based ecological resilience in urban systems: A perspective from locating ecological and disturbance sources in a resource-based city. Sustain. Cities Soc. 61, 102354. https://doi.org/10.1016/j.scs.2020.102354 (2020).Article 

    Google Scholar 
    61.Yang, C., Zeng, W. & Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 61, 102271. https://doi.org/10.1016/j.scs.2020.102271 (2020).Article 

    Google Scholar 
    62.Yang, J., Zeng, C. & Cheng, Y. Spatial influence of ecological networks on land use intensity. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.137151 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Théau, J., Bernier, A. & Fournier, R. A. An evaluation framework based on sustainability-related indicators for the comparison of conceptual approaches for ecological networks. Ecol. Indic. 52, 444–457. https://doi.org/10.1016/j.ecolind.2014.12.029 (2015).Article 

    Google Scholar 
    64.Neri, M., Jameli, D., Bernard, E. & Melo, F. P. L. Green versus green? Adverting potential conflicts between wind power generation and biodiversity conservation in Brazil. Perspect. Ecol. Conserv. 17(3), 131–135. https://doi.org/10.1016/j.pecon.2019.08.004 (2019).Article 

    Google Scholar 
    65.Zeng, Y. & Zhong, L. Identifying conflicts tendency between nature-based tourism development and ecological protection in China. Ecol. Indic. 109, 105791. https://doi.org/10.1016/j.ecolind.2019.105791 (2020).Article 

    Google Scholar 
    66.Cunha, N. S. & Magalhães, M. R. Methodology for mapping the national ecological network to mainland Portugal: A planning tool towards a green infrastructure. Ecol. Ind. 104, 802–818. https://doi.org/10.1016/j.ecolind.2019.04.050 (2019).Article 

    Google Scholar 
    67.Dong, J., Peng, J., Liu, Y., Qiu, S. & Han, Y. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities. Landsc. Urban Plan. 199, 103815. https://doi.org/10.1016/j.landurbplan.2020.103815 (2020).Article 

    Google Scholar 
    68.Gasanov, G. et al. Data on the productivity of plant cover of the main types of soils of the North-Western precaspian in connection with the dynamics of ecological factors. Data Brief 24, 103713. https://doi.org/10.1016/j.dib.2019.103713 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Montis, A. D. et al. Resilient ecological networks: A comparative approach. Land Use Policy 89, 104207. https://doi.org/10.1016/j.landusepol.2019.104207 (2019).Article 

    Google Scholar 
    70.Du, H. et al. Urban blue-green space planning based on thermal environment simulation: A case study of Shanghai, China. Ecol. Indic. 106, 105501. https://doi.org/10.1016/j.ecolind.2019.105501 (2020).Article 

    Google Scholar 
    71.Guo, X. et al. The impact of onshore wind power projects on ecological corridors and landscape connectivity in Shanxi, China. J. Clean. Prod. 254, 120075. https://doi.org/10.1016/j.jclepro.2020.120075 (2020).Article 

    Google Scholar 
    72.Li, J., Wang, Y., Ni, Z., Chen, S. & Xia, B. An integrated strategy to improve the microclimate regulation of green-blue-grey infrastructures in specific urban forms. J. Clean. Prod. 271, 122555. https://doi.org/10.1016/j.jclepro.2020.122555 (2020).Article 

    Google Scholar 
    73.Afriyanie, D. et al. Re-framing urban green spaces planning for flood protection through socio-ecological resilience in Bandung City, Indonesia. Cities 101, 102710. https://doi.org/10.1016/j.cities.2020.102710 (2020).Article 

    Google Scholar 
    74.Ioan-Cristian, I. et al. Integrating urban blue and green areas based on historical evidence. Urban For. Urban Green. 34, 217–225. https://doi.org/10.1016/j.ufug.2018.07.001 (2019).Article 

    Google Scholar 
    75.Jaung, W. L., Carrasco, R., Ahmad, S., Tan, P. Y. & Richards, D. R. Temperature and air pollution reductions by urban green spaces are highly valued in a tropical city-state. Urban For. Urban Green. https://doi.org/10.1016/j.ufug.2020.126827 (2020).Article 

    Google Scholar 
    76.La Sorte, F. A., Aronson, M. F. J., Lepczyk, C. A. & Horton, K. G. Area is the primary correlate of annual and seasonal patterns of avian species richness in urban green spaces. Landsc. Urban Plan. 203, 103892. https://doi.org/10.1016/j.landurbplan.2020.103892 (2020).Article 

    Google Scholar 
    77.Moradpour, M. & Hosseini, V. An investigation into the effects of green space on air quality of an urban area using CFD modeling. Urban Clim. 34, 100686. https://doi.org/10.1016/j.uclim.2020.100686 (2020).Article 

    Google Scholar 
    78.Nouri, H., Borujeni, S. C. & Hoekstra, A. Y. The blue water footprint of urban green spaces: An example for Adelaide, Australia. Landsc. Urban Plan. 190, 103613. https://doi.org/10.1016/j.landurbplan.2019.103613 (2019).Article 

    Google Scholar 
    79.Sikuzani, Y. U. et al. Tree diversity and structure on green space of urban and peri-urban zones: The case of Lubumbashi City in the Democratic Republic of Congo. Urban For. Urban Green. 41, 67–74. https://doi.org/10.1016/j.ufug.2019.03.008 (2019).Article 

    Google Scholar  More

  • in

    Field evidence for microplastic interactions in marine benthic invertebrates

    1.Geyer, R., Jambeck, J. R. & Law, K. L. Production, use and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).2.Napper, I. E. & Thompson, R. C. Marine plastic pollution: other than microplastic in Waste: A Handbook for Management, Second Edition (ed. Letcher, T. & Vallero, D.) chapter 22, 425–442 (Academic Press, 2019).3.Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).4.Sharma, S. & Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ. Sci. Pollut. Res. 24, 21530–21547 (2017).Article 

    Google Scholar 
    5.Rocha-Santos, T. & Duarte, A. C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior or microplastics in the environment. TrAC Trends Anal. Chem. 65, 47–53 (2015).CAS 
    Article 

    Google Scholar 
    6.Cózar, A. et al. Plastic accumulation in the mediterranean sea. PLoS ONE 10, e0121762 (2015).7.Suaria, G. & Aliani, S. Floating debris in the Mediterranean Sea. Mar. Pollut. Bull. 86, 494–504 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Auta, H. S., Emenike, C. U. & Fauziah, S. H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165–176 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).10.Kershaw, P., Turra, A. & Galgani, F. Guidelines for the monitoring and assessment of plastic litter in the ocean. GESAMP Reports and Studies No. 99 (2019).11.Desforges, J. P. W., Galbraith, M. & Ross, P. S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 69, 320–330 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    13.Setälä, O., Norkko, J. & Lehtiniemi, M. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar. Pollut. Bull. 102, 95–101 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Amelineau, F. et al. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Zhu, J. et al. Cetaceans and microplastics: First report of microplastic ingestion by a coastal delphinid Sousa chinensis. Sci. Total Environ. 659, 649–654 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sbrana, A. et al. Spatial variability and influence of biological parameters on microplastic ingestion by Boops boops (L.) along the Italian coasts (Western Mediterranean Sea). Environ. Pollut. 263, 114429 (2020).17.De Sa, L. C., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).Article 
    CAS 

    Google Scholar 
    18.Gallitelli, L., Cera, A., Cesarini, G., Pietrelli, L. & Scalici, M. Preliminary indoor evidences of microplastic effects on freshwater benthic macroinvertebrates. Sci. Rep. 11, 720 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Karlsson, T. M. et al. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 122, 403–408 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Bour, A., Avio, C. G., Gorbi, S., Regoli, F. & Hylland, K. Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environ. Pollut. 243, 1217–1225 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Díaz-Castañeda, V., & Reish, D. Polychaetes in environmental studies in Annelids as Model Systems in the Biological Sciences (ed. Shain, D. H.) chapter 11, 205–227 (Wiley, 2009).22.Gusmão, F. et al. In situ ingestion of microfibres by meiofauna from sandy beaches. Environ. Pollut. 216, 584–590 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Missawi, O. et al. Abundance and distribution of small microplastics (≤ 3 μm) in sediments and seaworms from the Southern Mediterranean coasts and characterisation of their potential harmful effects. Environ. Pollut. 263, 114634 (2020).24.Piarulli, S. et al. Do different habits affect microplastics contents in organisms? A trait-based analysis on salt marsh species. Mar. Pollut. Bull. 153, 110983 (2020).25.Knutsen, et al. Microplastic accumulation by tube-dwelling, suspension feeding polychaetes from the sediment surface: A case study from the Norwegian Continental Shelf. Mar. Environ. Res. 161, 105073 (2020).26.Lusher, A. L., Welden, N. A., Sobral, P. & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 9, 1346–1360 (2017).Article 

    Google Scholar 
    27.Foekema, E. M. et al. Plastics in North Sea fish. Environ. Sci. Technol. 47, 8818–8824 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 1–10 (2015).Article 
    CAS 

    Google Scholar 
    29.Avio, C. G., Gorbi, S. & Regoli, F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Mar. Environ. Res. 111, 18–26 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Li, J., Yang, D., Li, L., Jabeen, K. & Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 207, 190–195 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. & Janssen, C. R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70, 227–233 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Bianchi, J. et al. Food preference determines the best suitable digestion protocol for analysing microplastic ingestion by fish. Mar. Pollut. Bull. 154, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    33.Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Dehaut, A. et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Phuong, N. N., Poirier, L., Pham, Q. T., Lagarde, F. & Zalouk-Vergnoux, A. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life?. Mar. Pollut. Bull. 129, 664–674 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Valente, T. et al. Exploring microplastic ingestion by three deepwater elasmobranch species: a case study from the Tyrrhenian Sea. Environ. Pollut. 253, 342–350 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Thompson, R. C. et al. Lost at sea: Where is all the plastic?. Science 304, 838 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Mathalon, A. & Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor Nova Scotia. Mar. Pollut. Bull. 81, 69–79 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Jang, M., Shim, W. J., Han, G. M., Song, Y. K. & Hong, S. H. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. Mar. Pollut. Bull. 131, 365–369 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Naidu, S. A., Rao, V. R. & Ramu, K. Microplastics in the benthic invertebrates from the coastal waters of Kochi Southeastern Arabian Sea. Environ. Geochem. Health 40, 1377–1383 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Revel, M. et al. (2018). Accumulation and immunotoxicity of microplastics in the estuarine worm Hediste diversicolor in environmentally relevant conditions of exposure. Environ. Sci. Pollut. Res. 27, 3574–3583 (2018).43.Näkki, P., Setälä, O. & Lehtiniemi, M. Seafloor sediments as microplastic sinks in the northern Baltic Sea-Negligible upward transport of buried microplastics by bioturbation. Environ. Pollut. 249, 74–81 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Amin, R. M., Sohaimi, E. S., Anuar, S. T. & Bachok, Z. Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Mar. Pollut. Bull. 150, 110616 (2020).45.Jang, M. et al. A close relationship between microplastic contamination and coastal area use pattern. Water Res. 171, 115400 (2020).46.Torre, M., Digka, N., Anastasopoulou, A., Tsangaris, C. & Mytilineou, C. Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. Mar. Pollut. Bull. 113, 55–61 (2016).47.Courtene-Jones, W., Quinn, B., Murphy, F., Gary, S. F. & Narayanaswamy, B. E. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Anal. Methods 9, 1437–1445 (2017).CAS 
    Article 

    Google Scholar 
    48.Digka, N., Tsangaris, C., Torre, M., Anastasopoulou, A. & Zeri, C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 135, 30–40 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Ding, J. et al. Detection of microplastics in local marine organisms using a multi-technology system. Anal. Methods 11, 78–87 (2019).CAS 
    Article 

    Google Scholar 
    50.Botterell, Z. L. et al. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 245, 98–110 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Huerta Lwanga, E. et al. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 50, 2685–2691 (2016).52.Hurley, R. R., Woodward, J. C. & Rothwell, J. J. Ingestion of microplastics by freshwater Tubifex worms. Environ. Sci. Technol. 51, 12844–12851 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kowalski, N., Reichardt, A. M. & Waniek, J. J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 109, 310–319 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.PlasticsEurope. Plastics – the Facts 2019. An analysis of European plastics production, demand and waste data, p. 42 (2019). FINAL web version Plastics the facts2019 14102019.pdf.55.Horton, T. et al. World Register of Marine Species (2021). https://doi.org/10.14284/170.56.Currie, D. R., McArthur, M. A. & Cohen, B. F. Reproduction and distribution of the invasive European fanworm Sabella spallanzanii (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria Australia. Mar. Biol. 136, 645–656 (2000).Article 

    Google Scholar 
    57.Giangrande, A. et al. Utilization of the filter feeder polychaete Sabella. Aquac. Int. 13, 129–136 (2005).Article 

    Google Scholar 
    58.Stabili, L., Licciano, M., Giangrande, A., Fanelli, G. & Cavallo, R. A. Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Mar. Environ. Res. 61, 74–92 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Schulze, A., Grimes, C. J. & Rudek, T. E. Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges. J. Mar. Biolog. Assoc. U. K. 97, 1075–1080 (2017).CAS 
    Article 

    Google Scholar 
    60.Jumars, P. A., Dorgan, K. M. & Lindsay, S. M. Diet of worms emended: an update of polychaete feeding guilds. Annu. Rev. Mar. Sci. 7, 497–520 (2015).ADS 
    Article 

    Google Scholar 
    61.Nel, H. A., Hean, J. W., Noundou, X. S. & Froneman, P. W. Do microplastic loads reflect the population demographics along the southern African coastline?. Mar. Pollut. Bull. 115, 115–119 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    62.Stolte, A., Forster, S., Gerdts, G. & Schubert, H. Microplastic concentrations in beach sediments along the German Baltic coast. Mar. Pollut. Bull. 99, 216–229 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 578, 485–494 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Hermsen, E., Mintenig, S. M., Besseling, E. & Koelmans, A. A. Quality criteria for the analysis of microplastic in biota samples: A critical review. Environ. Sci. Technol. 52, 10230–10240 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Developer Core Team, R. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (2019).66.Hui, W., Gel, Y. R. & Gastwirth, J. L. Lawstat: An R package for law, public policy and biostatistics. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    67.Ripley, B. et al. Support Functions and Datasets for Venables and Ripley’s MASS (4th edition) (Springer, 2002).68.Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 56–71 (2017).Article 

    Google Scholar  More