Passing rail traffic reduces bat activity
1.Dulac, J. Global land transport infrastructure requirements. (2013).2.Baker, C. J., Chapman, L., Quinn, A. & Dobney, K. Climate change and the railway industry: A review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 519–528 (2010).Article
Google Scholar
3.IEA. The Future of Rail – Opportunities for energy and the environment. (2019). doi:https://doi.org/10.1787/9789264312821-en4.Popp, J. N. & Boyle, S. P. Railway ecology: Underrepresented in science?. Basic Appl. Ecol. 19, 84–93 (2017).Article
Google Scholar
5.IRF. IRF World Road Statistics 2019. (2019).6.UIC. Railisa UIC Statistics. (2019).7.Van Der Ree, R., Smith, D. J. & Grilo, C. Handbook of Road Ecology (Wiley, 2015). https://doi.org/10.1002/9781118568170.Book
Google Scholar
8.Railway Ecology. (Springer Open, 2017). https://doi.org/10.1007/978-3-319-57496-7_199.Barrientos, R. & Borda-de-Água, L. Railways as Barriers for Wildlife: Current Knowledge. in Railway Ecology (eds. Borda-de-Água, L., Barrientos, R., Beja, P. & Pereira, H. M.) 43–64 (Springer Open, 2017).10.Jackson, N. D. & Fahrig, L. Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol. Conserv. 144, 3143–3148 (2011).Article
Google Scholar
11.van der Grift, E. Mammals and railroads: impacts and management implications. Lutra 42, 77–98 (1999).
Google Scholar
12.Heske, E. J. Blood on the Tracks: Track Mortality and Scavenging Rate in Urban Nature Preserves. Urban Nat. 2, 1–13 (2015).
Google Scholar
13.Huber, D., Kusak, J. & Frkovic, A. Traffic kills of brown bears in Gorski kotar, Croatia. Ursus 10, 167–171 (1998).
Google Scholar
14.Waller, J. S. & Servheen, C. Effects of transportation infrastructure on grizzly bears in Northwestern Montana. J. Wildl. Manag. 69, 985–1000 (2005).Article
Google Scholar
15.Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).Article
Google Scholar
16.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14, 21 (2009).Article
Google Scholar
17.Kušta, T., Keken, Z., Ježek, M. & Kůta, Z. Effectiveness and costs of odor repellents in wildlife-vehicle collisions: A case study in Central Bohemia, Czech Republic. Transp. Res. Part D Transp. Environ. 38, 1–5 (2015).Article
Google Scholar
18.UIC. Railway noise in Europe – State of the art report. (2016).19.UIC. Railway induced vibration – State of the art report. (2017).20.Frost, M. & Ison, S. Comparison of noise impacts from urban transport. Proc. Inst. Civ. Eng. Transp. 160, 165–172 (2007).
Google Scholar
21.Thompson, D. Railway Noise and Vibration-Mechanisms (Elsevier Ltd, 2009).
Google Scholar
22.Vandevelde, J. C., Bouhours, A., Julien, J. F., Couvet, D. & Kerbiriou, C. Activity of European common bats along railway verges. Ecol. Eng. 64, 49–56 (2014).Article
Google Scholar
23.Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: similarities and differences. Eur. J. Wildl. Res. 65, (2019).24.Dorsey, B., Olsson, M. & Rew, L. J. Ecological effects of railways on wildlife. Handb. Road Ecol. https://doi.org/10.1002/9781118568170.ch26 (2015).Article
Google Scholar
25.Mickleburgh, S. P., Hutson, A. M. & Racey, P. A. A review of the global conservation status of bats. Oryx 36, 18–34 (2002).Article
Google Scholar
26.Ávila-Flores, R., Bolaina-Badal, A. L., Gallegos-Ruiz, A. & Sánchez-Gómez, W. S. Use of linear features by the common vampire bat (Desmodus rotundus) in a tropical cattle-ranching landscape. Therya 10, 229–234 (2019).Article
Google Scholar
27.Limpens, H. J. G. A. & Kapteyn, K. Bats, their behavior and linear landscape elements. Myotis 29, 39–48 (1991).
Google Scholar
28.Verboom, B. & Huitema, H. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landsc. Ecol. 12, 117–125 (1997).Article
Google Scholar
29.Verboom, B. & Spoelstra, K. Effects of food abundance and wind on the use of tree lines by an insectivorous bat Pipistrellus pipistrellus. Can. J. Zool. 77, 1393–1401 (1999).Article
Google Scholar
30.Zurcher, A. A., Sparks, D. W. & Bennett, V. J. Why the bat did not cross the road?. Acta Chiropterol. 12, 337–340 (2010).Article
Google Scholar
31.Bennett, V. J. & Zurcher, A. A. When corridors collide: Road-related disturbance in commuting bats. J. Wildl. Manage. 77, 93–101 (2013).Article
Google Scholar
32.Anderson, D. & Wheatley, N. Mitigation of Wheel Squeal and Flanging Noise on the Australian Rail Network. in Noise and Vibration Mitigation for Rail Transportation Systems (eds. Schulte-Werning, B. et al.) 399–405 (Springer Berlin Heidelberg, 2007). doi:https://doi.org/10.1007/978-3-540-74893-9_5633.Rudd, M. J. Wheel/rail noise—Part II: Wheel squeal. J. Sound Vib. 46, 381–394 (1976).ADS
Article
Google Scholar
34.Schaub, A., Ostwald, J. & Siemers, B. M. Foraging bats avoid noise. J. Exp. Biol. 211, 3174–3180 (2008).PubMed
Article
Google Scholar
35.Luo, J., Siemers, B. M. & Koselj, K. How anthropogenic noise affects foraging. Glob. Chang. Biol. 21, 3278–3289 (2015).ADS
PubMed
Article
PubMed Central
Google Scholar
36.Siemers, B. M. & Schaub, A. Hunting at the highway: Traffic noise reduces foraging efficiency in acoustic predators. Proc. R. Soc. B Biol. Sci. 278, 1646–1652 (2011).Article
Google Scholar
37.Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).Article
Google Scholar
38.Kaňuch, P., Fornůsková, A., Bartonička, T., Bryja, J. & Řehák, Z. Do two cryptic pipistrelle bat species differ in their autumn and winter roosting strategies within the range of sympatry?. Folia Zool. 59, 102–107 (2010).Article
Google Scholar
39.Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Natural History, 2016).
Google Scholar
40.Schnitzler, H. U. & Kalko, E. K. V. Echolocation by insect-eating bats. Bioscience 51, 557–569 (2001).Article
Google Scholar
41.Russ, J. M. & Montgomery, W. I. Habitat associations of bats in Northern Ireland: Implications for conservation. Biol. Conserv. 108, 49–58 (2002).Article
Google Scholar
42.Rachwald, A., Bradford, T., Borowski, Z. & Racey, P. A. Habitat preferences of soprano Pipistrelle Pipistrellus pygmaeus (Leach, 1825) and common Pipistrelle Pipistrellus pipistrellus (Schreber, 1774) in two different Woodlands in North East Scotland. Zool. Stud. 55, 1–8 (2016).
Google Scholar
43.Nicholls, B. & Racey, A. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography (Cop.) 29, 697–708 (2006).Article
Google Scholar
44.Ciechanowski, M. Habitat preferences of bats in anthropogenically altered, mosaic landscapes of northern Poland. Eur. J. Wildl. Res. 61, 415–428 (2015).Article
Google Scholar
45.Mathews, F. et al. Barriers and benefits: Implications of artificial night-lighting for the distribution of common bats in britain and ireland. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).46.Spoelstra, K. et al. Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).47.Brown, A. M. An investigation of the cochlear microphonic response of two species of echolocating bats: Rousettus aegyptiacus (geoffroy) and Pipistrellus pipistrellus (Schreber). J. Comp. Physiol. 83, 407–413 (1973).Article
Google Scholar
48.Wong, J. G. & Waters, D. A. The synchronisation of signal emission with wingbeat during the approach phase in soprano pipistrelles (Pipistrellus pygmaeus). J. Exp. Biol. 204, 575–583 (2001).CAS
PubMed
Article
Google Scholar
49.Adams, A. M., Jantzen, M. K., Hamilton, R. M. & Fenton, M. B. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol. Evol. 3, 992–998 (2012).Article
Google Scholar
50.Lintott, P. R. et al. Ecobat: An online resource to facilitate transparent, evidence-based interpretation of bat activity data. Ecol. Evol. 8, 935–941 (2018).PubMed
Article
PubMed Central
Google Scholar
51.Shaw-Taylor, L. & You, X. The development of the railway network in Britain 1825–1911. in The Online Historical Atlas of Transport, Urbanization and Economic Development in England and Wales c.1680–1911 (eds. Shaw-Taylor, L., Bogart, D. & Satchell, M.) (2018).52.Hatano, L., Smith, R. A. & Hillmansen, S. International railway comparisons. Proc. Inst. Mech Eng. Part F J. Rail Rapid Transit 221, 117–123 (2007).Article
Google Scholar
53.Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article
Google Scholar
54.Myczko, Ł et al. Effects of local roads and car traffic on the occurrence pattern and foraging behaviour of bats. Transp. Res. Part D Transp. Environ. 56, 222–228 (2017).Article
Google Scholar
55.Ueda, K., Sekoguchi, T. & Yanagisawa, H. How predictability affects habituation to novelty ?. Biorxiv https://doi.org/10.1101/2020.07.24.219253 (2020).Article
PubMed
PubMed Central
Google Scholar
56.JNCC & Bat Conservation Trust. National Bat Monitoring Programme annual report. (2019).57.Voigt, C. C. & Kingston, T. Bats in the Anthropocene. in Bats in the Anthropocene: Conservation of Bats in a Changing World 245–262 (2015). doi:https://doi.org/10.1007/978-3-319-25220-9_958.Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there?. J. Mammal. 99, 1–14 (2018).Article
Google Scholar
59.Frick, W. F., Kingston, T. & Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14045 (2019).Article
PubMed
PubMed Central
Google Scholar
60.Fenton, M. B. A technique for monitoring bat activity with results obtained from different environments in southern Ontario. Can. J. Zool. 48, 847–851 (1970).Article
Google Scholar
61.Švec, J. G. & Granqvist, S. Tutorial and guidelines on measurement of sound pressure level in voice and speech. J. Speech Lang. Hear. Res. 61, 441–461 (2018).PubMed
Article
PubMed Central
Google Scholar
62.Boersma, P. & Weenink, D. Praat: doing phonetics by computer. (2019).63.Sueur, J., Aubin, T. & Simonis, C. Seewave, a free and modular tool for sound analysis and synthesis. Bioacoustics-the Int. J. Anim. Sound Its Rec. 18, 213–226 (2008).
Google Scholar
64.Harrell, F. E. Hmisc: Harrell Miscellaneous. (2014).65.Met Office. MIDAS: UK Hourly Weather Observation Data. NCAS Br. Atmos. Data Cent. (2019).66.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2019).67.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article
Google Scholar
68.Swift, S. M. Activity patterns of Pipistrelle bats (Pipistrellus pipistrellus) in north-east Scotland. J. Zool. 190, 285–295 (2009).Article
Google Scholar
69.Petrželková, K. J., Downs, N. C., Zukal, J. & Racey, P. A. A comparison between emergence and return activity in pipistrelle bats Pipistrellus pipistrellus and P. pygmaeus. Acta Chiropterol. 8, 381–390 (2006).Article
Google Scholar
70.Ciechanowski, M., Zając, T., Biłas, A. & Dunajski, R. Spatiotemporal variation in activity of bat species differing in hunting tactics: Effects of weather, moonlight, food abundance, and structural clutter. Can. J. Zool. 85, 1249–1263 (2007).Article
Google Scholar
71.Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. Impact assessment research: Use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Mar. Ecol. Prog. Ser. 395, 177–185 (2009).ADS
Article
Google Scholar
72.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed
Article
Google Scholar
73.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
Google Scholar
74.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article
Google Scholar
75.Barton, K. MuMIn: Multi-Model Inference (R Package v3). (2017).76.Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182, 2 (2013).Article
Google Scholar
77.Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. (2015).78.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. (2020).79.Lüdecke, D. sjPlot: Data visualization for statistics in social science. (2020). More