More stories

  • in

    Field evidence for microplastic interactions in marine benthic invertebrates

    1.Geyer, R., Jambeck, J. R. & Law, K. L. Production, use and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).2.Napper, I. E. & Thompson, R. C. Marine plastic pollution: other than microplastic in Waste: A Handbook for Management, Second Edition (ed. Letcher, T. & Vallero, D.) chapter 22, 425–442 (Academic Press, 2019).3.Eriksen, M. et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913 (2014).4.Sharma, S. & Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ. Sci. Pollut. Res. 24, 21530–21547 (2017).Article 

    Google Scholar 
    5.Rocha-Santos, T. & Duarte, A. C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior or microplastics in the environment. TrAC Trends Anal. Chem. 65, 47–53 (2015).CAS 
    Article 

    Google Scholar 
    6.Cózar, A. et al. Plastic accumulation in the mediterranean sea. PLoS ONE 10, e0121762 (2015).7.Suaria, G. & Aliani, S. Floating debris in the Mediterranean Sea. Mar. Pollut. Bull. 86, 494–504 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Auta, H. S., Emenike, C. U. & Fauziah, S. H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165–176 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).10.Kershaw, P., Turra, A. & Galgani, F. Guidelines for the monitoring and assessment of plastic litter in the ocean. GESAMP Reports and Studies No. 99 (2019).11.Desforges, J. P. W., Galbraith, M. & Ross, P. S. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 69, 320–330 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    13.Setälä, O., Norkko, J. & Lehtiniemi, M. Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar. Pollut. Bull. 102, 95–101 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Amelineau, F. et al. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Zhu, J. et al. Cetaceans and microplastics: First report of microplastic ingestion by a coastal delphinid Sousa chinensis. Sci. Total Environ. 659, 649–654 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sbrana, A. et al. Spatial variability and influence of biological parameters on microplastic ingestion by Boops boops (L.) along the Italian coasts (Western Mediterranean Sea). Environ. Pollut. 263, 114429 (2020).17.De Sa, L. C., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).Article 
    CAS 

    Google Scholar 
    18.Gallitelli, L., Cera, A., Cesarini, G., Pietrelli, L. & Scalici, M. Preliminary indoor evidences of microplastic effects on freshwater benthic macroinvertebrates. Sci. Rep. 11, 720 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Karlsson, T. M. et al. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 122, 403–408 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Bour, A., Avio, C. G., Gorbi, S., Regoli, F. & Hylland, K. Presence of microplastics in benthic and epibenthic organisms: Influence of habitat, feeding mode and trophic level. Environ. Pollut. 243, 1217–1225 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Díaz-Castañeda, V., & Reish, D. Polychaetes in environmental studies in Annelids as Model Systems in the Biological Sciences (ed. Shain, D. H.) chapter 11, 205–227 (Wiley, 2009).22.Gusmão, F. et al. In situ ingestion of microfibres by meiofauna from sandy beaches. Environ. Pollut. 216, 584–590 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Missawi, O. et al. Abundance and distribution of small microplastics (≤ 3 μm) in sediments and seaworms from the Southern Mediterranean coasts and characterisation of their potential harmful effects. Environ. Pollut. 263, 114634 (2020).24.Piarulli, S. et al. Do different habits affect microplastics contents in organisms? A trait-based analysis on salt marsh species. Mar. Pollut. Bull. 153, 110983 (2020).25.Knutsen, et al. Microplastic accumulation by tube-dwelling, suspension feeding polychaetes from the sediment surface: A case study from the Norwegian Continental Shelf. Mar. Environ. Res. 161, 105073 (2020).26.Lusher, A. L., Welden, N. A., Sobral, P. & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 9, 1346–1360 (2017).Article 

    Google Scholar 
    27.Foekema, E. M. et al. Plastics in North Sea fish. Environ. Sci. Technol. 47, 8818–8824 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 1–10 (2015).Article 
    CAS 

    Google Scholar 
    29.Avio, C. G., Gorbi, S. & Regoli, F. Experimental development of a new protocol for extraction and characterization of microplastics in fish tissues: First observations in commercial species from Adriatic Sea. Mar. Environ. Res. 111, 18–26 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Li, J., Yang, D., Li, L., Jabeen, K. & Shi, H. Microplastics in commercial bivalves from China. Environ. Pollut. 207, 190–195 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. & Janssen, C. R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70, 227–233 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Bianchi, J. et al. Food preference determines the best suitable digestion protocol for analysing microplastic ingestion by fish. Mar. Pollut. Bull. 154, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    33.Cole, M. et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 4, 4528 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Dehaut, A. et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Phuong, N. N., Poirier, L., Pham, Q. T., Lagarde, F. & Zalouk-Vergnoux, A. Factors influencing the microplastic contamination of bivalves from the French Atlantic coast: Location, season and/or mode of life?. Mar. Pollut. Bull. 129, 664–674 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Valente, T. et al. Exploring microplastic ingestion by three deepwater elasmobranch species: a case study from the Tyrrhenian Sea. Environ. Pollut. 253, 342–350 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Thompson, R. C. et al. Lost at sea: Where is all the plastic?. Science 304, 838 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Mathalon, A. & Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor Nova Scotia. Mar. Pollut. Bull. 81, 69–79 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Jang, M., Shim, W. J., Han, G. M., Song, Y. K. & Hong, S. H. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. Mar. Pollut. Bull. 131, 365–369 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Naidu, S. A., Rao, V. R. & Ramu, K. Microplastics in the benthic invertebrates from the coastal waters of Kochi Southeastern Arabian Sea. Environ. Geochem. Health 40, 1377–1383 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Revel, M. et al. (2018). Accumulation and immunotoxicity of microplastics in the estuarine worm Hediste diversicolor in environmentally relevant conditions of exposure. Environ. Sci. Pollut. Res. 27, 3574–3583 (2018).43.Näkki, P., Setälä, O. & Lehtiniemi, M. Seafloor sediments as microplastic sinks in the northern Baltic Sea-Negligible upward transport of buried microplastics by bioturbation. Environ. Pollut. 249, 74–81 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Amin, R. M., Sohaimi, E. S., Anuar, S. T. & Bachok, Z. Microplastic ingestion by zooplankton in Terengganu coastal waters, southern South China Sea. Mar. Pollut. Bull. 150, 110616 (2020).45.Jang, M. et al. A close relationship between microplastic contamination and coastal area use pattern. Water Res. 171, 115400 (2020).46.Torre, M., Digka, N., Anastasopoulou, A., Tsangaris, C. & Mytilineou, C. Anthropogenic microfibres pollution in marine biota. A new and simple methodology to minimize airborne contamination. Mar. Pollut. Bull. 113, 55–61 (2016).47.Courtene-Jones, W., Quinn, B., Murphy, F., Gary, S. F. & Narayanaswamy, B. E. Optimisation of enzymatic digestion and validation of specimen preservation methods for the analysis of ingested microplastics. Anal. Methods 9, 1437–1445 (2017).CAS 
    Article 

    Google Scholar 
    48.Digka, N., Tsangaris, C., Torre, M., Anastasopoulou, A. & Zeri, C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 135, 30–40 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Ding, J. et al. Detection of microplastics in local marine organisms using a multi-technology system. Anal. Methods 11, 78–87 (2019).CAS 
    Article 

    Google Scholar 
    50.Botterell, Z. L. et al. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut. 245, 98–110 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Huerta Lwanga, E. et al. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 50, 2685–2691 (2016).52.Hurley, R. R., Woodward, J. C. & Rothwell, J. J. Ingestion of microplastics by freshwater Tubifex worms. Environ. Sci. Technol. 51, 12844–12851 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kowalski, N., Reichardt, A. M. & Waniek, J. J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 109, 310–319 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.PlasticsEurope. Plastics – the Facts 2019. An analysis of European plastics production, demand and waste data, p. 42 (2019). FINAL web version Plastics the facts2019 14102019.pdf.55.Horton, T. et al. World Register of Marine Species (2021). https://doi.org/10.14284/170.56.Currie, D. R., McArthur, M. A. & Cohen, B. F. Reproduction and distribution of the invasive European fanworm Sabella spallanzanii (Polychaeta: Sabellidae) in Port Phillip Bay, Victoria Australia. Mar. Biol. 136, 645–656 (2000).Article 

    Google Scholar 
    57.Giangrande, A. et al. Utilization of the filter feeder polychaete Sabella. Aquac. Int. 13, 129–136 (2005).Article 

    Google Scholar 
    58.Stabili, L., Licciano, M., Giangrande, A., Fanelli, G. & Cavallo, R. A. Sabella spallanzanii filter-feeding on bacterial community: ecological implications and applications. Mar. Environ. Res. 61, 74–92 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Schulze, A., Grimes, C. J. & Rudek, T. E. Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges. J. Mar. Biolog. Assoc. U. K. 97, 1075–1080 (2017).CAS 
    Article 

    Google Scholar 
    60.Jumars, P. A., Dorgan, K. M. & Lindsay, S. M. Diet of worms emended: an update of polychaete feeding guilds. Annu. Rev. Mar. Sci. 7, 497–520 (2015).ADS 
    Article 

    Google Scholar 
    61.Nel, H. A., Hean, J. W., Noundou, X. S. & Froneman, P. W. Do microplastic loads reflect the population demographics along the southern African coastline?. Mar. Pollut. Bull. 115, 115–119 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    62.Stolte, A., Forster, S., Gerdts, G. & Schubert, H. Microplastic concentrations in beach sediments along the German Baltic coast. Mar. Pollut. Bull. 99, 216–229 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 578, 485–494 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Hermsen, E., Mintenig, S. M., Besseling, E. & Koelmans, A. A. Quality criteria for the analysis of microplastic in biota samples: A critical review. Environ. Sci. Technol. 52, 10230–10240 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Developer Core Team, R. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (2019).66.Hui, W., Gel, Y. R. & Gastwirth, J. L. Lawstat: An R package for law, public policy and biostatistics. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    67.Ripley, B. et al. Support Functions and Datasets for Venables and Ripley’s MASS (4th edition) (Springer, 2002).68.Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 56–71 (2017).Article 

    Google Scholar  More

  • in

    Interspecific variation in evaporative water loss and temperature response, but not metabolic rate, among hibernating bats

    1.Lyman, C. P. & Chatfield, P. O. Physiology of hibernation in mammals. Physiol. Rev. 35, 403–425 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Geiser, F. Hibernation. Curr. Biol. 23, R188–R193 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Frick, W. F., Reynolds, D. S. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).PubMed 
    Article 

    Google Scholar 
    6.Willis, C. K. Trade-offs influencing the physiological ecology of hibernation in temperate-zone bats. Integr. Comp. Biol. 57, 1214–1224 (2017).PubMed 
    Article 

    Google Scholar 
    7.Lane, J. E. In Living in a Seasonal World 51–61 (Springer, 2012).8.Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl. Acad. Sci. 97, 1630–1633 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Lane, J. E., Kruuk, L. E., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Feder, M. E. In New Directions in Ecological Physiology (eds M. E. Feder, A. F. Bennett, W. W. Burggren, & R. B Huey) 38–75 (Cambridge University Press, 1987).11.Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274. https://doi.org/10.1146/annurev.physiol.66.032102.115105 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Boyles, J. G. et al. A global heterothermic continuum in mammals. Glob. Ecol. Biogeogr. 22, 1029–1039 (2013).Article 

    Google Scholar 
    13.Ruf, T. & Arnold, W. Effects of polyunsaturated fatty acids on hibernation and torpor: A review and hypothesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1044-1052. https://doi.org/10.1152/ajpregu.00688.2007 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12137 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Heldmaier, G., Ortmann, S. & Elvert, R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir. Physiol. Neurobiol. 141, 317–329 (2004).PubMed 
    Article 

    Google Scholar 
    16.van Breukelen, F. & Martin, S. L. The hibernation continuum: Physiological and molecular aspects of metabolic plasticity in mammals. Physiology 30, 273–281 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Nowack, J., Levesque, D. L., Reher, S. & Dausmann, K. H. Variable climates lead to varying phenotypes: ‘Weird’mammalian torpor and lessons from non-Holarctic species. Front. Ecol. Evol. 8, 60 (2020).Article 

    Google Scholar 
    18.Stawski, C., Willis, C. & Geiser, F. The importance of temporal heterothermy in bats. J. Zool. 292, 86–100 (2014).Article 

    Google Scholar 
    19.Thomas, D. W., Dorais, M. & Bergeron, J.-M. Winter energy budgets and cost of arousals for hibernating little brown bats, Myotis lucifugus. J. Mammal. 71, 475–479 (1990).Article 

    Google Scholar 
    20.Kunz, T. H., Wrazen, J. A. & Burnett, C. D. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Ecoscience 5, 8–17 (1998).Article 

    Google Scholar 
    21.Thomas, D. W. & Cloutier, D. Evaporative water loss by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 65, 443–456 (1992).Article 

    Google Scholar 
    22.Kornfeld, S. F., Biggar, K. K. & Storey, K. B. Differential expression of mature microRNAs involved in muscle maintenance of hibernating little brown bats, Myotis lucifugus: A model of muscle atrophy resistance. Genom. Proteom. Bioinform. 10, 295–301 (2012).CAS 
    Article 

    Google Scholar 
    23.Eddy, S. F., Morin, P. Jr. & Storey, K. B. Differential expression of selected mitochondrial genes in hibernating little brown bats, Myotis lucifugus. J. Exp. Zool. A Comp. Exp. Biol. 305, 620–630 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Brigham, R., Ianuzzo, C., Hamilton, N. & Fenton, M. Histochemical and biochemical plasticity of muscle fibers in the little brown bat (Myotis lucifugus). J. Comp. Physiol. B. 160, 183–186 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.McGuire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R680–R686 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Jonasson, K. A. & Willis, C. K. Hibernation energetics of free-ranging little brown bats. J. Exp. Biol. 215, 2141–2149 (2012).PubMed 
    Article 

    Google Scholar 
    27.Klüg-Baerwald, B. J. & Brigham, R. M. Hung out to dry? Intraspecific variation in water loss in a hibernating bat. Oecologia 183, 977–985 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    28.Dunbar, M. B. & Brigham, R. M. Thermoregulatory variation among populations of bats along a latitudinal gradient. J. Comp. Physiol. B 180, 885–893 (2010).PubMed 
    Article 

    Google Scholar 
    29.Yacoe, M. E. Protein metabolism in the pectoralis muscle and liver of hibernating bats, Eptesicus fuscus. J. Comp. Physiol. 152, 137–144 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Yacoe, M. E. Maintenance of the pectoralis muscle during hibernation in the big brown bat, Eptesicus fuscus. J. Comp. Physiol. 152, 97–104 (1983).Article 

    Google Scholar 
    31.Twente, J. W. & Twente, J. Biological alarm clock arouses hibernating big brown bats, Eptesicus fuscus. Can. J. Zool. 65, 1668–1674 (1987).Article 

    Google Scholar 
    32.Boratyński, J. S., Willis, C. K., Jefimow, M. & Wojciechowski, M. S. Huddling reduces evaporative water loss in torpid Natterer’s bats, Myotis nattereri. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 179, 125–132 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Hope, P. R. & Jones, G. Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studied by radio telemetry. J. Comp. Physiol. B. 182, 569–578 (2012).PubMed 
    Article 

    Google Scholar 
    34.Park, K. J., Jones, G. & Ransome, R. D. Torpor, arousal and activity of hibernating greater horseshoe bats (Rhinolophus ferrumequinum). Funct. Ecol. 14, 580–588 (2000).Article 

    Google Scholar 
    35.Ben-Hamo, M., Muñoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: Rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol. 216, 573–577 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lausen, C. & Barclay, R. Winter bat activity in the Canadian prairies. Can. J. Zool. 84, 1079–1086 (2006).Article 

    Google Scholar 
    37.McGuire, L. P. et al. Similar physiology in hibernating bats across broad geographic ranges. J. Comp. Physiol. B. https://doi.org/10.1007/s00360-021-01400-x (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York, 2009).MATH 
    Book 

    Google Scholar 
    39.Hothorn, T. & Everitt, B. S. A handbook of statistical analyses using R (CRC Press, London, 2014).MATH 
    Book 

    Google Scholar 
    40.United States Fish and Wildlife Service. National white-nose syndrome decontamination protocol-Version 09-13-2018. http://www.whitenosesyndrome.org (2018).41.Canadian Cooperative Wildlife Health Centre. Guidelines for decontamination of equipment and clothing to prevent the spread of white-nose syndrome (the causal fungus: Pseudogymnoascus destructans) in Canada, http://www2.cwhc-rcsf.ca/wns_decontamination.php (2020).42.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).43.McGuire, L. P., Guglielmo, C. G., Mackenzie, S. A. & Taylor, P. D. Migratory stopover in the long-distance migrant silver-haired bat, Lasionycteris noctivagans. J. Anim. Ecol. 81, 377–385 (2012).PubMed 
    Article 

    Google Scholar 
    44.Nagorsen, D. W. & Brigham, R. M. Bats of British Columbia. Vol. 1 (UBC Press, 1993).45.Villa, B. R. & Cockrum, E. L. Migration in the guano bat Tadarida brasiliensis mexicana (Saussure). J. Mammal. 43, 43–64 (1962).Article 

    Google Scholar 
    46.Kunkel, E. L. Ecology and energetics of partial migration and facultative hibernation of Mexican free-tailed bats MS thesis, Texas Tech University (2020).47.Sandel, J. K. et al. Use and selection of winter hibernacula by the eastern pipistrelle (Pipistrellus subflavus) in Texas. J. Mammal. 82, 173–178 (2001).Article 

    Google Scholar 
    48.Jones, C. & Pagels, J. Notes on a population of Pipistrellus subflavus in southern Louisiana. J. Mammal. 49, 134–139 (1968).Article 

    Google Scholar 
    49.McClure, M. M. et al. A hybrid corelative-mechanistic approach for modeling and mapping winter distributions of North American bat species. J. Biogeogr. 48, 2429–2444 (2021).Article 

    Google Scholar 
    50.McClure, M. M. et al. Linking surface and subterranean climate: Implications for the study of hibernating bats and other cave dwellers. Ecosphere 11, E03274 (2020).Article 

    Google Scholar 
    51.Perry, R. W. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev. 21, 28–39. https://doi.org/10.1139/er-2012-0042 (2013).Article 

    Google Scholar 
    52.Hranac, C. R. et al. What is winter? Modelling spatial variation in bat host traits and hibernation and their implications for overwintering energetics. Ecol. Evol. 11, 11604–11614 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.McGuire, L., Muise, K. A., Shrivastav, A. & Willis, C. K. R. No evidence of hyperphagia during prehibernation in a northern population of little brown bats (Myotis lucifugus). Can. J. Zool. 94, 821–827 (2016).CAS 
    Article 

    Google Scholar 
    54.Czenze, Z. J., Jonasson, K. A. & Willis, C. K. Thrifty females, frisky males: Winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511 (2017).PubMed 
    Article 

    Google Scholar 
    55.Kurta, A. The misuse of relative humidity in ecological studies of hibernating bats. Acta Chiropt. 16, 249–254 (2014).Article 

    Google Scholar 
    56.Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS One 13, e0205647 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Gearhart, C., Adams, A. M., Pinshow, B. & Korine, C. Evaporative water loss in Kuhl’s pipistrelles declines along an environmental gradient, from mesic to hyperarid. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 240, 110587 (2020).CAS 
    Article 

    Google Scholar 
    58.Thomas, D. W. & Geiser, F. Periodic arousals in hibernating mammals: Is evaporative water loss involved?. Funct. Ecol. 11, 585–591 (1997).Article 

    Google Scholar 
    59.Haase, C. G. et al. Incorporating evaporative water loss into bioenergetic models of hibernation to test for relative influence of host and pathogen traits on white-nose syndrome. PLoS One 14, e0222311 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Willis, C. K. Conservation physiology and conservation pathogens: White-nose syndrome and integrative biology for host–pathogen systems. Integr. Comp. Biol. 55, 631–641 (2015).PubMed 
    Article 

    Google Scholar 
    61.Frick, W. F. et al. Disease alters macroecological patterns of North American bats. Glob. Ecol. Biogeogr. 24, 741–749 (2015).Article 

    Google Scholar 
    62.Willis, C. K., Menzies, A. K., Boyles, J. G. & Wojciechowski, M. S. Evaporative water loss is a plausible explanation for mortality of bats from white-nose syndrome. Integr. Comp. Biol. 51, 364–373. https://doi.org/10.1093/icb/icr076 (2011).Article 
    PubMed 

    Google Scholar 
    63.Wilder, A. P., Frick, W. F., Langwig, K. E. & Kunz, T. H. Risk factors associated with mortality from white-nose syndrome among hibernating bat colonies. Biol. Lett. 7, 950–953 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057. https://doi.org/10.1111/j.1461-0248.2012.01829.x (2012).Article 
    PubMed 

    Google Scholar 
    65.Voigt, C. C. & Kingston, T. Bats in the Anthropocene: Conservation of Bats in a Changing World (Springer, New York, 2016).Book 

    Google Scholar 
    66.Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar  More

  • in

    Climate change benefits negated by extreme heat

    1.Mueller, N. D. et al. Nat. Food https://doi.org/10.1038/s43016-021-00372-z (2021).2.IPCC Climate Change 2021: The Physical Science Basis Summary for Policymakers (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, in the press).3.Harrison, M. T., Tardieu, F., Dong, Z., Messina, C. D. & Hammer, G. L. Glob. Change Biol. 20, 867–878 (2014).ADS 
    Article 

    Google Scholar 
    4.Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P. & Meinke, H. Crop Pasture Sci. 68, 1158–1169 (2017).Article 

    Google Scholar 
    5.Climate Change and the Global Dairy Cattle Sector: The Role of the Dairy Sector in a Low-Carbon Future (FAO and GDP, 2018).6.World Dairy Map 2020: Shifting Gears in Global Dairy Trade (Rabobank, 2020); https://research.rabobank.com/far/en/sectors/dairy/world-dairy-map-2020.html7.Harrison, M. T., Cullen, B. R. & Armstrong, D. Agric. Syst. 155, 19–32 (2017).Article 

    Google Scholar 
    8.Harrison, M. T. et al. Anim. Prod. Sci. 56, 370–384 (2016).CAS 
    Article 

    Google Scholar 
    9.Harrison, M. T. et al. Glob. Change Biol. https://doi.org/10.1111/gcb.15816 (2021).10.Chang-Fung-Martel, J. et al. Int. J. Biometeorol. https://doi.org/10.1007/s00484-021-02167-0 (2021).11.U.S. Climate Extremes Index (CEI) (NOAA National Centers for Environmental Information, accessed 19 September 2021); https://www.ncdc.noaa.gov/extremes/cei/graph/us/01-12/2 More

  • in

    Exploring the potential effect of COVID-19 on an endangered great ape

    Study site and demographic dataThe study was carried out in Volcanoes National Park, the Rwandan part of the Virunga massif, which is further shared with Uganda and the Democratic Republic of the Congo. We focused on habituated mountain gorilla groups monitored by the Dian Fossey Gorilla Fund’s Karisoke Research Center, often referred to as the Karisoke subpopulation. Since 1967, groups in this subpopulation have been followed on a near daily basis. Through the mid-2000s, the Karisoke groups generally numbered three but over the last decade, group fission events and new group formations resulted in an average of ten groups in the region (see42,43). During daily observations, detailed demographic data are recorded, such as group composition, birthdate and death date, group transfers (for further details see Strier et al.50). The data used for this study covers demographic data from 1967 to 2018 and includes 396 recognized individuals.Epidemiological dataWe obtained published data on four variables that control the disease dynamics of COVID-19 in humans, namely (a) the basic reproductive number (R0)34,35, (b) the infection fatality rate (IFR) based on estimates from China and Italy24,25,36,37, (c) the probability of developing immunity and (d) the duration of immunity37,38,39,41.Stochastic projection modelWe used the stochastic projection model proposed by Colchero et al.51, that models population dynamics for both sexes on fully age-dependent demographic rates. The model incorporates the yearly variance–covariance between demographic rates, while it accounts for infanticide as a function of the number of silverbacks (mature males > 12 years old) in the population51. Because of this relationship between infanticide and number of silverbacks, this source of mortality changes in time and cannot be assumed to be part of the infant mortality rate. To explore the extinction probability for the Karisoke subpopulation as a function of different diseases, we gathered information from the model on the proportion of individuals that died for each disease and the frequency of outbreaks (i.e., how often outbreaks occurred).Demographic-epidemiological projection model for COVID-19We constructed a predictive population model that combines the species’ baseline demographic rates with a model based on the susceptible-infected-recovered-susceptible (SIRS) framework. As the baseline demographic rates, we used the age-specific mortality and fecundity estimated by Colchero et al.51 for mountain gorillas (Karisoke subpopulation). We defined four epidemiological stages, namely (a) susceptible, (b) infected, (c) immune and (d) dead, each of which we further divided into a fully age-specific structure (Fig. 1). Based on recent research on COVID-19 on humans, we assumed that the dynamics of the model allowed for the recovered individuals to be divided into either susceptible or immune37,38,39,41. Furthermore, we incorporated the potential age-specific infection fatality rate (IFR) based on current estimates from medical and epidemiological research24,25,36,37, adjusted to the lifespan of the gorillas by means of the logistic function$$qleft(xright)=frac{{q}_{M}}{1+{text{exp}}left[-0.2left(x-25right)right]},$$
    (1)
    where qM is the maximum infected mortality probability. Similarly, we modeled the probability of developing immunity as a function of the strength of the disease, which, based on recent research, we measured as mirroring Eq. (1) as$$mleft(xright)=frac{{M}_{I}}{1+{text{exp}}left[-0.2left(x-25right)right]},$$
    (2)
    where MI is the maximum immunity probability (Fig. 2B).To explore the potential impact of COVID-19 on the growth rate of the Karisoke mountain gorilla subpopulation, we varied four of the critical epidemiological variables, namely (a) the basic reproductive number, R0, from 0.5 to 6 (which helps to simulate factors such as increased group density, which may increase the likelihood of transmission), (b) the maximum infected mortality probability, qM = (0.3, 0.6) (Fig. 2A), (c) the immunity duration, TI to 1, 3, 6, and 12 months, and (d) the maximum immunity probability, MI, from 0.2 to 0.8 (Fig. 2B). As time units we used year fractions in half months (i.e., t1 − t0 = 0.5/12), which allowed us to simplify the model, based on current information on the average time of serial interval and incubation period in humans21. This implementation assumes that susceptible individuals could become infected at the beginning of the time interval, while infected individuals in time interval t would either recover (immune or susceptible) or die in t + 1.The deterministic structure of the model implies that the number of individuals in each sex, age and epidemiological stage was given by the possible contribution from the other stages 1/2 month before. This is, the number of susceptible individuals of age x at time t is given by the difference equation$$begin{aligned} n_{s,x,t} & = p_{x – 1} left{ {n_{s,x – 1,t – 1} + n_{i,x – 1,t – 1} left[ {1 – qleft( {x – 1} right)} right]left[ {1 – mleft( {x – 1} right)} right]} right} \ & quad + n_{{m,x – T_{i} ,t – T_{i} }} prodlimits_{{j = x – T_{i} :j > 0}}^{x – 1} {p_{j} – n_{i,x,t} } , \ end{aligned}$$where the ns,x,t is the number of susceptible individuals of age x at time t, and subscripts i and m refer to infected and immune individuals, respectively. For simplicity of notation, we do not include a subscript for sex, although the model does distinguish between sexes. The probability px is the age-specific survival probability. Functions q(x) and m(x) are as in Eqs. (1) and (2). Similarly, the number of immune individuals at time t and age x are$${n}_{m,x,t}={n}_{i,x-1,t-1}left[1-qleft(x-1right)right]mleft(xright)+sum_{{j:0le jle {T}_{i}wedge x-j >0}}{p}_{x-j}{n}_{i,x-j,t-j}.$$We incorporated this mechanistic structure into a stochastic model, where all contributions from time t to t + 1 were drawn from binomial or Poisson distributions. For instance, the total new number of infected individuals, Ni,t, was obtained as a random draw from a Poisson distribution with expected value$$Eleft[{N}_{i,t}right]={text{min}}left[{{R}_{0}N}_{i,t-1},{N}_{t}right],$$where Nt is the total number of individuals in the study subpopulation. We then distributed randomly these individuals into different available ages and sex corresponding to the term ni,x,t, in the susceptible equation above. The number of newborns, Bx,t, at each age for which there were available females at time t was drawn from a binomial distribution with expected value$$Eleft[{B}_{x,t}right]=left({n}_{s,x,t}+{n}_{m,x,t}right){f}_{x}$$where fx is the age-specific average female fecundity rate and ns,x,t and nm,x,t refers to the number of susceptible and immune females, respectively, of age x at time t. The sex of each newborn was then determined by means of a Bernoulli draw with probability given by the proportion of males in the population. Thus, if the draw produced 1 for that individual, it became a male, and if 0 a female.For each scenario, we ran stochastic simulations for 2000 iterations for 10 years and recorded the average number of individuals at each age–sex and epidemiological state at every month. We then ran long-term stochastic simulations for four scenarios with R0 = 3 and maximum immunity probability MI = 0.2. For these, we recorded also the number of subpopulations that went extinct at each month. More

  • in

    A global model to forecast coastal hardening and mitigate associated socioecological risks

    1.Dugan, J., Airoldi, L., Chapman, G. & Walker, S. in Treatise on Estuarine and Coastal Science Vol. 8 (eds Wolanski, E. & McLusky, D.) 17–41 (2011).2.Bugnot, A. B. et al. Current and projected global extent of marine built structures. Nat. Sustain. 4, 33–41 (2020).Article 

    Google Scholar 
    3.Connell, S. D. Floating pontoons create novel habitats for subtidal epibiota. J. Exp. Mar. Biol. Ecol. 247, 183–194 (2000).CAS 
    Article 

    Google Scholar 
    4.Glasby, T., Connell, S., Holloway, M. & Hewitt, C. Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar. Biol. 151, 887–895 (2007).Article 

    Google Scholar 
    5.Heery, E. C. et al. Identifying the consequences of ocean sprawl for sedimentary habitats. J. Exp. Mar. Biol. Ecol. 492, 31–48 (2017).Article 

    Google Scholar 
    6.Scherner, F. et al. Coastal urbanization leads to remarkable seaweed species loss and community shifts along the SW Atlantic. Mar. Pollut. Bull. 76, 106–115 (2013).CAS 
    Article 

    Google Scholar 
    7.Malerba, M. E., White, C. R. & Marshall, D. J. The outsized trophic footprint of marine urbanization. Front. Ecol. Environ. 17, 400–406 (2019).Article 

    Google Scholar 
    8.Dafforn, K. A., Glasby, T. M. & Johnston, E. L. Comparing the invasibility of experimental “reefs” with field observations of natural reefs and artificial structures. PLoS ONE 7, e38124 (2012).CAS 
    Article 

    Google Scholar 
    9.Airoldi, L., Turon, X., Perkol-Finkel, S. & Rius, M. Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Divers. Distrib. 21, 755–768 (2015).Article 

    Google Scholar 
    10.Hayes, K. R., Inglis, G. J. & Barry, S. C. The assessment and management of marine pest risks posed by shipping: the Australian and New Zealand experience. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00489 (2019).11.Floerl, O., Inglis, G., Dey, K. L. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).Article 

    Google Scholar 
    12.Kaluza, P., Kolzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1093–1103 (2010).Article 

    Google Scholar 
    13.Aguirre, D. et al. Loved to pieces: toward the sustainable management of the Waitematā Harbour and Hauraki Gulf. Reg. Stud. Mar. Sci. 8, 220–233 (2016).Article 

    Google Scholar 
    14.Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).Article 

    Google Scholar 
    15.Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    Article 

    Google Scholar 
    16.Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—a global assessment. PLoS ONE 10, e0118571 (2015).Article 
    CAS 

    Google Scholar 
    17.Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).CAS 
    Article 

    Google Scholar 
    18.Lombard, A. T. et al. Practical approaches and advances in spatial tools to achieve multi-objective marine spatial planning. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00166 (2019).19.Pelling, M. & Blackburn, S. Megacities and the Coast: Risk, Resilience and Transformation (Routledge, 2013).20.Sutton-Grier, A. E., Wowk, K. & Bamford, H. Future of our coasts: the potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 51, 137–148 (2015).Article 

    Google Scholar 
    21.Keller, R., Drake, J., Drew, M. & Lodge, D. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers. Distrib. 17, 93–102 (2011).Article 

    Google Scholar 
    22.How Can We Meet Increasing Demand for Ports in the Upper North Island? A Report for the Upper North Island Strategic Alliance (PricewaterhouseCoopers, 2012).23.Ernst & Young Port Future Study. A Report Prepared for Auckland Council (Auckland Council, 2016).24.NZIER Bigger Ships—Past, Present and Future Implications for New Zealand Supply Chains (New Zealand Economic Research Institute, 2017).25.Hino, M., Belanger, S. T., Field, C. B., Davies, A. R. & Mach, K. J. High-tide flooding disrupts local economic activity. Sci. Adv. 5, eaau2736 (2019).Article 

    Google Scholar 
    26.United Nations Review of Maritime Transport 109 (United Nations Conference on Trade and Development, 2019).27.Ferrario, F., Iveša, L., Jaklin, A., Perkol-Finkel, S. & Airoldi, L. The overlooked role of biotic factors in controlling the ecological performance of artificial marine habitats. J. Appl. Ecol. 53, 16–24 (2016).Article 

    Google Scholar 
    28.Firth, L. et al. Ocean sprawl: challenges and opportunities for biodiversity management in a changing world. Oceanogr. Mar. Biol. 54, 189–262 (2016).
    Google Scholar 
    29.Mayer-Pinto, M. et al. Functional and structural responses to marine urbanisation. Environ. Res. Lett. 13, 014009 (2018).Article 

    Google Scholar 
    30.Bannister, J., Sievers, M., Bush, F. & Bloecher, N. Biofouling in marine aquaculture: a review of recent research and developments. Biofouling 35, 631–648 (2019).CAS 
    Article 

    Google Scholar 
    31.Colautti, R. I., Bailey, S. A., van Overdijk, C. D. A., Amundsen, K. & MacIsaac, H. J. Characterised and projected costs of nonindigenous species in Canada. Biol. Invasions 8, 45–59 (2006).Article 

    Google Scholar 
    32.Mazur, K., Bath, A., Curtotti, R. & Summerson, R. An Assessment of the Non-market Value of Reducing the Risk of Marine Pest Incursions in Australia’s Waters (Australian Bureau of Agricultural and Resource Economics and Sciences, 2018).33.Hatami, R. et al. Improving New Zealand’s Marine Biosecurity Surveillance Programme Biosecurity New Zealand Technical Paper No. 2021/01 (Ministry for Primary Industries, 2021).34.Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2, 274–282 (2019).Article 

    Google Scholar 
    35.Monios, J., Bergqvist, R. & Woxenius, J. Port-centric cities: the role of freight distribution in defining the port-city relationship. J. Transp. Geogr. 66, 53–64 (2018).Article 

    Google Scholar 
    36.The Ocean Economy in 2030 (Organisation for Economic Co-operation and Development, 2016).37.Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).Article 
    CAS 

    Google Scholar 
    38.Dafforn, K. A. et al. Marine urbanization: an ecological framework for designing multifunctional artificial structures. Front. Ecol. Environ. 13, 82–90 (2015).Article 

    Google Scholar 
    39.Diggon, S. et al. The marine plan partnership: Indigenous community-based marine spatial planning. Mar. Policy https://doi.org/10.1016/j.marpol.2019.04.014 (2019).40.Noble, M. M., Harasti, D., Pittock, J. & Doran, B. Understanding the spatial diversity of social uses, dynamics, and conflicts in marine spatial planning. J. Environ. Manag. 246, 929–940 (2019).Article 

    Google Scholar 
    41.Abhinav, K. A. et al. Offshore multi-purpose platforms for a blue growth: a technological, environmental and socio-economic review. Sci. Total Environ. 734, 138256 (2020).CAS 
    Article 

    Google Scholar 
    42.Jacob, C., Buffard, A., Pioch, S. & Thorin, S. Marine ecosystem restoration and biodiversity offset. Ecol. Eng. 120, 585–594 (2018).Article 

    Google Scholar 
    43.Hopkins, G. A. et al. Continuous bubble streams for controlling marine biofouling on static artificial structures. PeerJ 9, e11323 (2021).Article 

    Google Scholar 
    44.Vucko, M. J. et al. Cold spray metal embedment: an innovative antifouling technology. Biofouling 28, 239–248 (2012).CAS 
    Article 

    Google Scholar 
    45.Atalah, J., Newcombe, E. M., Hopkins, G. A. & Forrest, B. M. Potential biocontrol agents for biofouling on artificial structures. Biofouling 30, 999–1010 (2014).CAS 
    Article 

    Google Scholar 
    46.Airoldi, L. et al. Emerging solutions to return nature to the urban ocean. Ann. Rev. Mar. Sci. 13, 445–477 (2021).Article 

    Google Scholar 
    47.Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Indic. 85, 1044–1057 (2018).CAS 
    Article 

    Google Scholar 
    48.Zaiko, A., Pochon, X., Garcia-Vazquez, E., Olenin, S. & Wood, S. A. Advantages and limitations of environmental DNA/RNA tools for marine biosecurity: management and surveillance of non-indigenous species. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00322 (2018).49.Cristescu, M. E. Can environmental RNA revolutionize biodiversity science? Trends Ecol. Evol. 34, 694–697 (2019).Article 

    Google Scholar 
    50.Chakravarthy, K., Charters, F. & Cochrane, T. The impact of urbanisation on New Zealand freshwater quality. Policy Q. 15, 17–21 (2019).Article 

    Google Scholar 
    51.Gittman, R. K. et al. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Environ. 13, 301–307 (2015).Article 

    Google Scholar 
    52.Hume, T. M., Snelder, T., Weatherhead, M. & Liefting, R. A controlling factor approach to estuary classification. Ocean Coast. Manag. 50, 905–929 (2007).Article 

    Google Scholar 
    53.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    54.Prasad, A. M., Iverson, L. R. & Liaw, A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9, 181–199 (2006).Article 

    Google Scholar 
    55.Olden, J. D., Lawler, J. J. & Poff, N. L. Machine learning methods without tears: a primer for ecologists. Q. Rev. Biol. 83, 171–193 (2008).Article 

    Google Scholar 
    56.Kursa, M. B. & Rudnicki, W. R. Feature selection with the boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    57.Zuur, A. F., Leno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    58.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    59.Kuhn, M. et al. caret: Classification and Regression Training (CRAN, 2019); https://CRAN.R-project.org/package=caret60.Ministry for the Environment & Stats NZ. New Zealand’s Environmental Reporting Series: Environment Aotearoa 2019 (Ministry for the Environment, 2019). More

  • in

    Next-generation ensemble projections reveal higher climate risks for marine ecosystems

    1.IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, 2019).2.Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).Article 

    Google Scholar 
    3.Bindoff, N. L. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch. 5 (IPCC, 2019).4.Griffith, G. P., Fulton, E. A., Gorton, R. & Richardson, A. J. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conserv. Biol. 26, 1145–1152 (2012).Article 

    Google Scholar 
    5.Fu, C. et al. Risky business: the combined effects of fishing and changes in primary productivity on fish communities. Ecol. Modell. 368, 265–276 (2018).Article 

    Google Scholar 
    6.Tittensor, D. P. et al. Integrating climate adaptation and biodiversity conservation in the global ocean. Sci. Adv. https://doi.org/10.1126/sciadv.aay9969 (2019).7.IPBES: Summary for Policymakers. In Global Assessment Report on Biodiversity and Ecosystem Services (eds Díaz, S. et al.) (IPBES Secretariat, 2019).8.Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).CAS 
    Article 

    Google Scholar 
    9.Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282 (2016).Article 

    Google Scholar 
    10.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    11.Tittensor, D. P. et al. A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geosci. Model Dev. 11, 1421–1442 (2018).Article 

    Google Scholar 
    12.Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).CAS 
    Article 

    Google Scholar 
    13.Bryndum-Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).Article 

    Google Scholar 
    14.Bryndum-Buchholz, A. et al. Differing marine animal biomass shifts under 21st century climate change between Canada’s three oceans. Facets 5, 105–122 (2020).Article 

    Google Scholar 
    15.Bryndum-Buchholz, A. et al. Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Mar. Ecol. Prog. Ser. 648, 1–17 (2020).Article 

    Google Scholar 
    16.Ruane, A. C. et al. The vulnerability, impacts, adaptation and climate services advisory board (VIACS AB v1.0) contribution to CMIP6. Geosci. Model Dev. 9, 3493–3515 (2016).Article 

    Google Scholar 
    17.Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    18.Séférian, R. et al. Tracking improvement in simulated marine biogeochemistry between CMIP5 and CMIP6. Curr. Clim. Change Rep. 6, 95–119 (2020).Article 

    Google Scholar 
    19.Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).Article 

    Google Scholar 
    20.Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).Article 

    Google Scholar 
    21.Heneghan, R. F. et al. Disentangling diverse responses to climate change among global marine ecosystem models. Prog. Oceanogr. 198, 102659 (2021).Article 

    Google Scholar 
    22.Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).Article 

    Google Scholar 
    23.Kwiatkowski, L. et al. Emergent constraints on projections of declining primary production in the tropical oceans. Nat. Clim. Change 7, 355–358 (2017).CAS 
    Article 

    Google Scholar 
    24.Cabré, A., Marinov, I. & Leung, S. Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 Earth system models. Clim. Dyn. 45, 1253–1280 (2015).Article 

    Google Scholar 
    25.Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).Article 

    Google Scholar 
    26.Doney, S. C. Plankton in a warmer world. Nature 444, 695–696 (2006).CAS 
    Article 

    Google Scholar 
    27.Rykaczewski, R. R. & Dunne, J. P. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an Earth system model. Geophys. Res. Lett. 37, L21606 (2010).Article 

    Google Scholar 
    28.Laufkötter, C., John, J. G., Stock, C. A. & Dunne, J. P. Temperature and oxygen dependence of the remineralization of organic matter. Glob. Biogeochem. Cycles 31, 1038–1050 (2017).Article 
    CAS 

    Google Scholar 
    29.Coll, M. et al. Advancing global ecological modeling capabilities to simulate future trajectories of change in marine ecosystems. Front. Mar. Sci. 7, 741 (2020).Article 

    Google Scholar 
    30.Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1107 (2009).Article 

    Google Scholar 
    31.Frölicher, T. L., Rodgers, K. B., Stock, C. A. & Cheung, W. W. L. Sources of uncertainties in 21st century projections of potential ocean ecosystem stressors. Glob. Biogeochem. Cycles 30, 1224–1243 (2016).Article 
    CAS 

    Google Scholar 
    32.Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).Article 

    Google Scholar 
    33.The State of World Fisheries and Aquaculture 2020 (FAO, 2020).34.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    Article 

    Google Scholar 
    35.Stuart-Smith, R. D., Edgar, G. J. & Bates, A. E. Thermal limits to the geographic distributions of shallow-water marine species. Nat. Ecol. Evol. 1, 1846–1852 (2017).Article 

    Google Scholar 
    36.Carozza, D. A., Bianchi, D. & Galbraith, E. D. Metabolic impacts of climate change on marine ecosystems: implications for fish communities and fisheries. Glob. Ecol. Biogeogr. 28, 158–169 (2019).Article 

    Google Scholar 
    37.du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).Article 

    Google Scholar 
    38.Piroddi, C. et al. Effects of nutrient management scenarios on marine food webs: a pan-European assessment in support of the marine strategy framework directive. Front. Mar. Sci. 8, 179 (2021).Article 

    Google Scholar 
    39.Maury, O. An overview of APECOSM, a spatialized mass balanced ‘Apex Predators ECOSystem Model’ to study physiologically structured tuna population dynamics in their ecosystem. Prog. Oceanogr. 84, 113–117 (2010).Article 

    Google Scholar 
    40.Maury, O. & Poggiale, J. C. From individuals to populations to communities: a dynamic energy budget model of marine ecosystem size-spectrum including life history diversity. J. Theor. Biol. 324, 52–71 (2013).Article 

    Google Scholar 
    41.Carozza, D. A., Bianchi, D. & Galbraith, E. D. The ecological module of BOATS-1.0: a bioenergetically-constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry. Geosci. Model Dev. 9, 1545–1565 (2016).Article 

    Google Scholar 
    42.Carozza, D. A. et al. Formulation, general features and global calibration of a bioenergetically-constrained fishery model. PLoS ONE 12, e0169763 (2017).Article 
    CAS 

    Google Scholar 
    43.Cheung, W. W. L. et al. Building confidence in projections of the responses of living marine resources to climate change. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsv250 (2016).Article 

    Google Scholar 
    44.Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).Article 

    Google Scholar 
    45.Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Phil. Trans. R. Soc. B 367, 2979–2989 (2012).Article 

    Google Scholar 
    46.Christensen, V. et al. The global ocean is an ecosystem: simulating marine life and fisheries. Glob. Ecol. Biogeogr. 24, 507–517 (2015).Article 

    Google Scholar 
    47.Gascuel, D., Guénette, S. & Pauly, D. The trophic-level-based ecosystem modelling approach: theoretical overview and practical uses. ICES J. Mar. Sci. 68, 1403–1416 (2011).Article 

    Google Scholar 
    48.Petrik, C. M., Stock, C. A., Andersen, K. H., van Denderen, P. D. & Watson, J. R. Bottom-up drivers of global patterns of demersal, forage, and pelagic fishes. Prog. Oceanogr. 176, 102124 (2019).Article 

    Google Scholar 
    49.Jennings, S. & Collingridge, K. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS ONE 10, e0133794 (2015).Article 
    CAS 

    Google Scholar 
    50.Heneghan, R. F. et al. A functional size-spectrum model of the global marine ecosystem that resolves zooplankton composition. Ecol. Modell. 435, 109265 (2020).CAS 
    Article 

    Google Scholar 
    51.Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).Article 

    Google Scholar 
    52.Dunne, J. P. et al. Carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).Article 

    Google Scholar 
    53.Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth system model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).Article 

    Google Scholar 
    54.Dunne, J. P. et al. The GFDL Earth System Model Version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002015 (2020).
    Google Scholar 
    55.Krasting, J. P. et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for MIP6 CMIP Historical Version 20190726 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.859756.John, J. G. et al. NOAA-GFDL GFDL-ESM4 Model Output Prepared for CMIP6 ScenarioMIP ssp585 Version 20180701 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.870657.Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, e2019MS002010 (2020).Article 

    Google Scholar 
    58.Boucher, O. et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 CMIP Version 20180727 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.153459.Boucher, O. et al. IPSL IPSL-CM6A-LR Model Output Prepared for CMIP6 CMIP Historical Version 20180103 (Earth System Grid Federation, 2018); https://doi.org/10.22033/ESGF/CMIP6.5195 More

  • in

    Climatic signatures in the different COVID-19 pandemic waves across both hemispheres

    Global statistical analysisOur first attempt to identify plausible effects of meteorological covariates on COVID-19 spread applied a comparative regression analysis. To this end, we focused on the exponential onset of the disease, as it is the epidemic phase that allows for a better comparison between countries or regions, without the confounding effect of intervention policies. We first determined, for each of the spatial units (either countries or NUTS (nomenclature of territorial units for statistics) 2 regions), the day in which 20 or more cumulative cases were officially reported. We then fitted the first-order polynomial function f(t) = x0 + rt for the next 20 days of log-transformed data, where t represents time (in days) and ({{x}_0}) is the value at initial condition t = 0. The r parameter can be understood as the exponential growth rate, and is then used to estimate the basic reproduction number (R0) using the estimated serial interval T for COVID-19 of 4.7 days53, such that R0 = 1 + rT (ref. 54). (We note that we are interested here in the relationship between the reproductive number and not in the actual inference of R0.) Once R0 was obtained for all our spatial units, we filtered our meteorological data to match the same fitting period (with a 10-day negative delay to account for an incubation and reporting lapse) for every spatial unit. To compute a single average of the meteorological variables per regional unit, we computed a weighted average on the basis of the population contribution of each grid cell to the total population of the region. We did so to have an aggregated value that would better represent the impact of these factors on the population transmission of COVID-19, as the same variation in weather in a high-density urban area is more likely to contribute to a change in population-level transmission than that of an unpopulated rural area. We then averaged the daily values of temperature and AH for each country and computed univariate linear models for each of these variables as predictors of R0. Given the somewhat arbitrary criteria to select the dates to estimate the R0 in each country, a sensitivity analysis was run to test the robustness of the regressions to changes in the related parameters. We tested 70 different combinations of two parameters: the total number of days used for the fit (18–27) and the threshold of cumulative COVID-19 cases used to select the initial day of the fit (15–45). We also calculated the weather averages by shifting the selected dates accordingly. Then, a linear model for each of the estimates was fitted for both T and AH. A summary of the distribution of parameter estimates (the regression slope coefficients and the R2 of the models) is shown in Extended Data Fig. 3.Bivariate time-series analysis with scale-dependent correlationsTo examine associations between cases and climate factors in more detail, SDC was performed on the daily time series of both COVID-19 incidence and a given meteorological variable. SDC is an optimal method for identifying dynamical couplings in short and noisy time series20,21. In general, Spearman correlations between incidence and a meteorological time series assess whether there is a monotonic relation between the variables. SDC analysis was specifically developed to study transitory associations that are local in time at a specified temporal scale corresponding to the size of the time intervals considered (s). The two-way implementation (TW-SDC) is a bivariate method that computes non-parametric Spearman rank correlations between two time series, for different pairs of time intervals along these series. Different window sizes (s) can be used to examine increasingly finer temporal resolution. The results are sensitive to the value of this window size, s, with expected significant and highest correlation values at the scale of the transient coupling between variables. Correlation values decrease in magnitude as window size increases, and averages are computed over too long a time interval. Values can also decrease and become non-significant for small windows when correlations are spurious. Here, the method was applied for windows of different length (from s = 75 to 14 days) and, despite a weekly cycle showing up in some cases for small s, results removing this cycle were robust. We therefore did not remove this cycle.The results are typically displayed in a figure with the following subplots: (1) the two time series, to the left and top of the matrix of correlation values, respectively; (2) the matrix or grid of correlation values itself in the center, with significant correlations colored in blue when positive and in red when negative, with rows and columns corresponding to the temporal localization of the moving window along the time series on the left and top, respectively; (3) a time series at the bottom, below this grid, with the highest significant correlations for a given time (vertically, and therefore for the variable that acts as the driver, here the meteorological time series). To read the results, one starts at the diagonal and moves vertically down from it to identify a given lag for which significant correlations are found (the closest to the main diagonal). In some of the SDC figures, the time intervals with high local correlations are highlighted with boxes. These intervals alternate with other ones (left blank) for which no significant correlation is found. All colored areas correspond to significance levels of at least P  fs/fr, where fs is the sampling rate and fr the minimum frequency. Another strategy is that M be large enough that the M-lagged vector incorporates the temporal scale of the time series that is of interest. The larger the M, the more detailed the resulting decomposition of the signal. In particular, the most detailed decomposition is achieved when the embedding dimension is approximately equal to half of the total signal length. A compromise must be reached, however, as a large M implies increased computation, and too large a value may produce mixing of components. SSA is especially well suited for separating components corresponding to different frequencies in nonlinear systems. Here, we applied it to remove the weekly cycle.MSDC analysisMSDC provides a scan of the SDC analyses over a range of different scales (here, S from 5 to 100 days at 5-day intervals), by selecting the maximum correlation values (positive or negative) closer to the diagonal. The goal is to consider the evolution of transient correlations at all scales pooled together in a single analysis. The MSDC plot displays time on the x axis and scale (S) on the y axis, and positive and negative correlations either jointly or separately. The rationale behind MSDC is that correlations at very small scales can occur by chance because of coincident similar patterns, but that as one moves up to larger scales (by increasing S), the correlation patterns that are spurious tend to vanish, whereas those reflecting mechanistic links increase in strength. This increase in correlation values should occur up to the real scale of interaction, decreasing afterwards. By ‘real’, we mean here the temporal scale covering the extent of the interaction between the driver and the response process (in this case, the response of disease transmission to a given climate factor). Thus, continuity of the same sign correlations together with transitions to larger values are indicative of causal effects, whereas the rapid vanishing of small-scale significant correlations signals spurious ones.Process-based modelDescriptionThe dynamical model is a discrete stochastic model that incorporates seven different compartments: S, E, I, C, Q, R and D. The model structure is illustrated in Fig. 4. The transition probabilities of the stochastic model are based on the corresponding rates of the transitions between classes in the deterministic (mean-field) model (specified in Fig. 4b). These probabilities are defined as follows. P(e) = (1.0 − exp(−β dt)) is the probability of infection exposure of the susceptible class, where β = (1/N)(βII + βQQ) is the infection rate (of the deterministic model). P(i) = (1.0 − exp(−γ dt)) is the probability that an new exposed individual becomes infectious, where γ denotes the incubation rate. P(r) = (1.0 − exp(−Λ dt)) is the recovery probability, where λ0(1 − exp(λ1t)) is the (deterministic) recovery rate. P(p) = (1.0 − exp(−α dt)) is the protection probability, where α = α0exp(α1t). P(d) = (1.0 − exp(−K dt)) is the mortality probability, with K = k0exp(k1t). P(re) = (1.0 − exp(−τ dt)) is the release probability from confinement, where τ = τ0exp(τ1t). Finally, P(q) = (1.0 − exp(−δ  dt)) is the detection probability, where δ is the quarantine rate (for example, at which infected individuals are isolated from the rest of the population).In the model, both infected non-detected and infected detected individuals can infect susceptible ones. In the model incorporating temperature in the transmission rate, the respective values of βI and βQ are calculated as follows:$${beta }_{I}(t)={beta }_{I},T_{mathrm{inv}}(t);quad {beta }_{Q}(t)={beta }_{Q},T_{mathrm{inv}}(t)$$where (T_{mathrm{inv}}=fleft(frac{1-T(t)}{bar{T}}right)), with (bar{T}) corresponding to the overall mean of the temperature time series and f(·) to a Savitzky–Golay filter, used to smooth the temperature series with a window size of 50 data points and a polynomial order of 3. When the infection rate is constant, we simply omit the temperature term. For further comparison, in a third model, β is specified with a sinusoidal function of period equal to 12 months and an estimated phase.The number of individuals transitioning from compartment i to j at time t are determined by means of binomial distributions P(Xi,P(y)), where Xi corresponds to one of the compartments S, E, I, Q, R, D, C, and P(y) to the respective transition probability defined above. Thus,

    e(t) = P(S(t), P(e)), new exposed individuals at time t

    p(t) = P(S(t), P(p)), protected individuals at time t

    i(t) = P(E(t), P(i)), new infected not detected individuals at time t

    q(t) = P(I(t), P(q)), new infected and detected individuals at time t

    r(t) = P(Q(t), P(r)), total recovered individuals at time t

    d(t) = P(Q(t), P(d)), total dead individuals at time t

    re(t) = P(C(t), P(re)), individuals released from confinement at time t

    Then, the final dynamics are given by the following equations:$$S(t)=S(t-{rm{d}}t)-e(t)-p(t)+re(t)$$$$E(t)=E(t-{rm{d}}t)+e(t)-i(t)$$$$I(t)=I(t-{rm{d}}t)+i(t)-q(t)$$$$Q(t)=Q(t-{rm{d}}t)+q(t)-r(t)-d(t)$$$$R(t)=R(t-{rm{d}}t)+r(t)$$$$D(t)=D(t-{rm{d}}t)+d(t)$$$$C(t)=C(t-{rm{d}}t)+p(t)-re(t)$$CalibrationThe model was implemented using Python and calibrated by means of the least squares algorithm of the scipy library. The error function minimized with this algorithm was obtained from the normalized residuals on the basis of total cases (Q + R + D) and deaths (D).To search parameter space, we ran 100 calibrations starting from different initial choices of parameter combinations. The tolerance for termination in the change of the cost function was set to 1 × 10−10. Tolerance for termination by the norm of the gradient was also set to 1 × 10−10, and the tolerance for termination by the change of the independent variables was set to 1 × 10−10. The solver was the lsmr method (which is suitable for problems with sparse and large Jacobian matrices) with a differential step of 1 × 10−5. With this configuration, each fitting run usually converged after ~500 iterations.ValidationTo compare the model including an effect of T in the transmission rate to those without it, we calculated the chi-square, Akaike information criterion (AIC) and Bayesian information criterion (BIC) indices for the residuals obtained from the optimization process. The resulting values are shown in Supplementary Table 1.Our choice of T to modulate the infection rate (β) instead of AH underlies the fact that the temporal dynamics of both factors roughly follow the same shape, with the advantage that T shows less oscillatory behavior than AH. This fact adds stability to the model when the inverse relationship is used in the calculation of β (Supplementary Information). This selection is further reinforced by the results from the SDC analyses, which yielded larger correlations for temperature, even when penalizing for the larger autocorrelation structure.Our choice to modulate β using T instead of AH follows from the fact that the temporal dynamics of both climate variables present roughly the same shape, with the advantage that T exhibits weaker oscillations. This less fluctuating pattern provides stability to the model fitting when the inverse relationship is used in the calculation of β (Supplementary Information). Additionally, the transient correlations obtained with SDC yielded higher values for T than for AH (even when accounting for concurrent levels of autoregression in the two variables). More

  • in

    Climate impacts and adaptation in US dairy systems 1981–2018

    1.Dairy Production and Products: Milk and Milk Products (FAO, 2013); http://www.fao.org/dairy-production-products/production/dairy-animals/cattle/en/2.Background: Corn and Other Feedgrains (USDA ERS, 2018); https://www.ers.usda.gov/topics/animal-products/dairy/background/3.National Agricultural Statistics Service (US Department of Agriculture); https://www.nass.usda.gov/index.php4.Capper, J. L., Cady, R. A. & Bauman, D. E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 87, 2160–2167 (2009).CAS 
    Article 

    Google Scholar 
    5.Niles, M. T. & Wiltshire, S. Tradeoffs in US dairy manure greenhouse gas emissions, productivity, climate, and manure management strategies. Environ. Res. Commun 1, 075003 (2019).Article 

    Google Scholar 
    6.Field, T. G. & Taylor, R. E. Scientific Farm Animal Production: An Introduction, Eleventh Edition (Pearson, 2018).7.Fuquay, J. W. Heat stress as it affects animal production. J. Anim. Sci. 52, 164–174 (1981).CAS 
    Article 

    Google Scholar 
    8.St-Pierre, N. R., Cobanov, B. & Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86, E52–E77 (2003).Article 

    Google Scholar 
    9.Kadzere, C. T., Murphy, M. R., Silanikove, N. & Maltz, E. Heat stress in lactating dairy cows: a review. Livest. Prod. Sci. 77, 59–91 (2002).Article 

    Google Scholar 
    10.Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M. & Belyea, R. The relationship of temperature–humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 51, 479–491 (2002).Article 

    Google Scholar 
    11.West, J. W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 86, 2131–2144 (2003).CAS 
    Article 

    Google Scholar 
    12.Vitali, A. et al. Seasonal pattern of mortality and relationships between mortality and temperature–humidity index in dairy cows. J. Dairy Sci. 92, 3781–3790 (2009).CAS 
    Article 

    Google Scholar 
    13.Pragna, P. et al. Heat stress and dairy cow: impact on both milk yield and composition. Int. J. Dairy Sci. 12, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    14.Hoffmann, I. Climate change and the characterization, breeding and conservation of animal genetic resources. Anim. Genet. 41, 32–46 (2010).Article 

    Google Scholar 
    15.Qi, L., Bravo-Ureta, B. E. & Cabrera, V. E. From cold to hot: a preliminary analysis of climatic effects on the productivity of Wisconsin dairy farms. AgEconSearch https://doi.org/10.22004/ag.econ.172411 (2014).16.Bohmanova, J., Misztal, I. & Cole, J. B. Temperature–humidity indices as indicators of milk production losses due to heat stress. J. Dairy Sci. 90, 1947–1956 (2007).CAS 
    Article 

    Google Scholar 
    17.Field, C. B. et al. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC, 2021); https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/18.Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Chang. 6, 317–322 (2016).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    19.Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nat. Clim. Chang. 4, 161–163 (2014).ADS 
    Article 

    Google Scholar 
    20.Dairy 2014: Dairy Cattle Management Practices in the United States, 2014 (USDA, APHIS, NAHMS, 2016); https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_PartI_1.pdf21.Mondaca, M. R. & Cook, N. B. Modeled construction and operating costs of different ventilation systems for lactating dairy cows. J. Dairy Sci. 102, 896–908 (2019).CAS 
    Article 

    Google Scholar 
    22.Ferreira, F. C., Gennari, R. S., Dahl, G. E. & De Vries, A. Economic feasibility of cooling dry cows across the United States. J. Dairy Sci. 99, 9931–9941 (2016).CAS 
    Article 

    Google Scholar 
    23.Hayhoe, K. et al. Emissions pathways, climate change, and impacts on California. Proc. Natl Acad. Sci. USA 101, 12422–12427 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Klinedinst, P. L., Wilhite, D. A., Hahn, L. G. & Hubbard, K. G. The potential effects of climate change on summer seasonal dairy cattle milk production and reproduction. Clim. Chang. 23, 21–36 (1993).ADS 
    Article 

    Google Scholar 
    25.Mauger, G., Bauman, Y., Nennich, T. & Salathé, E. Impacts of climate change on milk production in the United States. Prof. Geogr. 67, 121–131 (2015).Article 

    Google Scholar 
    26.Key, N. & Sneeringer, S. Potential effects of climate change on the productivity of U.S. dairies. Am. J. Agric. Econ. 96, 1136–1156 (2014).Article 

    Google Scholar 
    27.Ortiz-Bobea, A., Knippenberg, E. & Chambers, R. G. Growing climatic sensitivity of U.S. agriculture linked to technological change and regional specialization. Sci. Adv. 4, eaat4343 (2018).ADS 
    Article 

    Google Scholar 
    28.Butler, E. E., Mueller, N. D. & Huybers, P. Peculiarly pleasant weather for US maize. Proc. Natl Acad. Sci. USA 115, 11935–11940 (2018).CAS 
    Article 

    Google Scholar 
    29.Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Tigchelaar, M., Battisti, D. S., Naylor, R. L. & Ray, D. K. Future warming increases probability of globally synchronized maize production shocks. Proc. Natl Acad. Sci. U. S. A. 115, 6644–6649 (2018).ADS 
    Article 

    Google Scholar 
    31.PRISM Climate Data (Oregon State Univ., 2019); http://www.prism.oregonstate.edu/32.Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. https://doi.org/10.1002/joc.1688 (2008).33.National Research Council. Nutrient Requirements of Dairy Cattle, Seventh Revised Edition (National Academies Press, 2001).34.Auldist, M. J., Walsh, B. J. & Thomson, N. A. Seasonal and lactational influences on bovine milk composition in New Zealand. J. Dairy Res. 65, 401–411 (1998).CAS 
    Article 

    Google Scholar 
    35.Lobell, D. B. Climate change adaptation in crop production: beware of illusions. Glob. Food Sec. 3, 72–76 (2014).Article 

    Google Scholar 
    36.Mukherjee, D., Bravo-Ureta, B. E. & De Vries, A. Dairy productivity and climatic conditions: econometric evidence from South-eastern United States. Aust. J. Agric. Resour. Econ. 57, 123–140 (2013).Article 

    Google Scholar 
    37.Milk Cost of Production Estimates: Cost-of-Production Estimates-2016 Base (USDA ERS, 2021); https://www.ers.usda.gov/data-products/milk-cost-of-production-estimates/milk-cost-of-production-estimates/#Milk38.Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).CAS 
    Article 

    Google Scholar 
    39.Malikov, E., Miao, R. & Zhang, J. Distributional and temporal heterogeneity in the climate change effects on U.S. agriculture. J. Environ. Econ. Manage. 104, 102386 (2020).Article 

    Google Scholar 
    40.MacDonald, J. M., Law, J. & Mosheim, R. Consolidation in U.S. Dairy Farming Economic Research Report No. 274 (ERS, USDA, 2020); https://www.ers.usda.gov/publications/pub-details/?pubid=9890041.Hemme, T. & Otte, J. Pro-Poor Livestock Policy Initiative Status and Prospects for Smallholder Milk Production a Global Perspective (Food and Agriculture Organization of the United Nations, 2010).42.Osei-Amponsah, R. et al. Heat stress impacts on lactating cows grazing Australian summer pastures on an automatic robotic dairy. Animals 10, 869 (2020).Article 

    Google Scholar 
    43.Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P. & Meinke, H. The impact of extreme climatic events on pasture-based dairy systems: a review. Crop Pasture Sci 68, 1158 (2017).Article 

    Google Scholar 
    44.Livestock Hot Weather Stress. Operations Manual (NOAA, 1976); https://scirp.org/reference/referencespapers.aspx?referenceid=191321645.Pinheiro J., Bates D., Debroy S. S. D. Linear and nonlinear mixed effects models, R package nlme version 3.1-152 (2021).46.Conley, T. G. GMM estimation with cross sectional dependence. J. Econom. 92, 1–45 (1999).MathSciNet 
    Article 

    Google Scholar 
    47.Borchers, H. W. pracma: practical numerical math functions, version 2.2.9.1–393 (2019).48.Colin Cameron, A., Gelbach, J. B. & Miller, D. L. Robust inference with multiway clustering. J. Bus. Econ. Stat. 29, 238–249 (2011).MathSciNet 
    Article 

    Google Scholar 
    49.Zeileis, A., Köll, S. & Graham, N. Various versatile variances: an object-oriented implementation of clustered covariances in R. J. Stat. Softw. https://doi.org/10.18637/jss.v095.i01 (2020). More