Threatened salmon rely on a rare life history strategy in a warming landscape
1.IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) (Cambridge Univ. Press, 2007).2.Kiehl, J. Lessons from Earth’s past. Science 331, 158–159 (2011).CAS
Google Scholar
3.Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Google Scholar
4.Davis, M. B. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).CAS
Google Scholar
5.Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS
Google Scholar
6.Williams, J. W. & Jackson, S. T. Novel climates, no-analog communities, and ecological surprises. Front. Ecol. Environ. 5, 475–482 (2007).
Google Scholar
7.Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).CAS
Google Scholar
8.Diez, J. M. et al. Forecasting phenology: from species variability to community patterns. Ecol. Lett. 15, 545–553 (2012).
Google Scholar
9.Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ. Rev. 24, 164–186 (2016).
Google Scholar
10.Moran, E. V., Hartig, F. & Bell, D. M. Intraspecific trait variation across scales: implications for understanding global change responses. Glob. Change Biol. 22, 137–150 (2016).
Google Scholar
11.Hilborn, R., Quinn, T. P., Schindler, D. E. & Rogers, D. E. Biocomplexity and fisheries sustainability. Proc. Natl Acad. Sci. USA 100, 6564–6568 (2003).CAS
Google Scholar
12.Greene, C. M., Hall, J. E., Guilbault, K. R. & Quinn, T. P. Improved viability of populations with diverse life-history portfolios. Biol. Lett. https://doi.org/10.1098/rsbl.2009.0780 (2010).13.Moore, J. W., Yeakel, J. D., Peard, D., Lough, J. & Beere, M. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds. J. Anim. Ecol. 83, 1035–1046 (2014).
Google Scholar
14.Fagan, W. F. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83, 3243–3249 (2002).
Google Scholar
15.Fausch, K. D., Torgersen, C. E., Baxter, C. V. & Li, H. W. Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52, 483–498 (2002).
Google Scholar
16.Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246 (2013).
Google Scholar
17.Troia, M. J., Kaz, A. L., Niemeyer, J. C. & Giam, X. Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nat. Ecol. Evol. 3, 1321–1330 (2019).
Google Scholar
18.Beechie, T., Buhle, E., Ruckelshaus, M., Fullerton, A. & Holsinger, L. Hydrologic regime and the conservation of salmon life history diversity. Biol. Conserv. 130, 560–572 (2006).
Google Scholar
19.Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. USA 117, 3648–3655 (2020).CAS
Google Scholar
20.FitzGerald, A. M., John, S. N., Apgar, T. M., Mantua, N. J. & Martin, B. T. Quantifying thermal exposure for migratory riverine species: phenology of Chinook salmon populations predicts thermal stress. Glob. Change Biol. 27, 536–549 (2021).
Google Scholar
21.Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).CAS
Google Scholar
22.Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).CAS
Google Scholar
23.Crozier, L. G. et al. Climate vulnerability assessment for Pacific salmon and steelhead in the California current large marine ecosystem. PLoS ONE 14, e0217711 (2019).CAS
Google Scholar
24.Yoshiyama, R. M., Fisher, F. W. & Moyle, P. B. Historical abundance and decline of Chinook salmon in the Central Valley region of California. North Am. J. Fish. Manag. 18, 487–521 (1998).
Google Scholar
25.Gustafson, R. G. et al. Pacific salmon extinctions: quantifying lost and remaining diversity. Conserv. Biol. 21, 1009–1020 (2007).
Google Scholar
26.McClure, M. M. et al. Evolutionary consequences of habitat loss for Pacific anadromous salmonids: salmonid habitat loss and evolution. Evol. Appl. 1, 300–318 (2008).
Google Scholar
27.Quinn, T. P. The Behavior and Ecology of Pacific Salmon and Trout (Univ. Washington Press, 2018).28.Yoshiyama, R. M., Gerstung, E. R., Fisher, F. W. & Moyle, P. B. in Contributions to the Biology of Central Valley Salmonids (ed. Brown, R. L.) 71–176 (California Department of Fish and Game, 2001).29.Metcalfe, N. B. & Thorpe, J. E. Determinants of geographical variation in the age of seaward-migrating salmon, Salmo salar. J. Anim. Ecol. 59, 135–145 (1990).
Google Scholar
30.Moyle, P. B., Lusardi, R. A., Samuel, P. & Katz, J. State of the Salmonids: Status of California’s Emblematic Fishes 2017 (Center for Watershed Sciences, 2017); https://doi.org/10.13140/RG.2.2.24893.9776131.Hedgecock, D. Microsatellite DNA for the Management and Protection of California’s Central Valley Chinook Salmon (Oncorhynchus tshawytscha) Final Report for the Amendment to Agreement No. B-59638 (Univ. of California, 2002).32.Woodson, L. et al. Size, growth, and origin-dependent mortality of juvenile Chinook salmon Oncorhynchus tshawytscha during early ocean residence. Mar. Ecol. Prog. Ser. 487, 163–175 (2013).
Google Scholar
33.Satterthwaite, W. et al. Match-mismatch dynamics and the relationship between ocean-entry timing and relative ocean recoveries of Central Valley fall run Chinook salmon. Mar. Ecol. Prog. Ser. 511, 237–248 (2014).
Google Scholar
34.Johnson, M. R. & Merrick, K. Juvenile Salmonid Monitoring Using Rotary Screw Traps in Deer Creek and Mill Creek, Tehama County, California Summary Report: 1994–2010 RBFO Technical Report No. 04-2012 (California Department of Fish and Wildlife, 2012).35.Beckman, B. R., Larsen, D. A., Lee-Pawlak, B. & Dickhoff, W. W. Relation of fish size and growth rate to migration of spring Chinook salmon smolts. North Am. J. Fish. Manag. 18, 537–546 (1998).
Google Scholar
36.Myrick, C. A. & Cech, J. J. Temperature Effects on Chinook Salmon and Steelhead Bay-Delta Modeling Forum Technical Publication 01-1 (Bay-Delta Modeling Forum, 2001).37.Cogliati, K. M., Unrein, J. R., Stewart, H. A., Schreck, C. B. & Noakes, D. L. G. Egg size and emergence timing affect morphology and behavior in juvenile Chinook salmon. Oncorhynchus tshawytscha. Ecol. Evol. 8, 778–789 (2018).
Google Scholar
38.Richter, A. & Kolmes, S. A. Maximum temperature limits for Chinook, coho, and chum salmon, and steelhead trout in the Pacific northwest. Rev. Fish. Sci. 13, 23–49 (2005).39.Johnson, R. C. & Lindley, S. T. in Viability Assessment for Pacific Salmon and Steelhead Listed Under the Endangered Species Act: Southwest NOAA Technical Memorandum NMFS-SWFSC-564 (eds Williams, T. H. et al.) 48–63 (U.S. Department of Commerce, 2016).40.Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J. & Cayan, D. R. Atmospheric rivers, floods and the water resources of California. Water 3, 445–478 (2011).
Google Scholar
41.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
Google Scholar
42.Ullrich, P. A. et al. California’s drought of the future: a midcentury recreation of the exceptional conditions of 2012–2017. Earth’s Future 6, 1568–1587 (2018).CAS
Google Scholar
43.Beamish, R. J. & Mahnken, C. A critical size and period hypothesis to explain natural regulation of salmon abundance and the linkage to climate and climate change. Prog. Oceanogr. 49, 423–437 (2001).
Google Scholar
44.Sturrock, A. M. et al. Reconstructing the migratory behavior and long-term survivorship of juvenile Chinook salmon under contrasting hydrologic regimes. PLoS ONE 10, e0122380 (2015).
Google Scholar
45.Michel, C. J., Notch, J. J., Cordoleani, F., Ammann, A. J. & Danner, E. M. Nonlinear survival of imperiled fish informs managed flows in a highly modified river. Ecosphere 12, e03498 (2021).
Google Scholar
46.Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553 (2015).
Google Scholar
47.Ebersole, J. L., Quiñones, R. M., Clements, S. & Letcher, B. H. Managing climate refugia for freshwater fishes under an expanding human footprint. Front. Ecol. Environ. 18, 271–280 (2020).
Google Scholar
48.Klemetsen, A. et al. Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish. 12, 1–59 (2003).
Google Scholar
49.Kovach, R. P., Gharrett, A. J. & Tallmon, D. A. Genetic change for earlier migration timing in a pink salmon population. Proc. R. Soc. B 279, 3870–3878 (2012).
Google Scholar
50.Miettinen, A. et al. A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conserv. Genet. 22, 35–51 (2021).CAS
Google Scholar
51.Birnie-Gauvin, K. et al. Life-history strategies in salmonids: the role of physiology and its consequences. Biol. Rev. 96, 2304–2320 (2021).
Google Scholar
52.Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).
Google Scholar
53.Jonsson, B. & Jonsson, N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish. Biol. 75, 2381–2447 (2009).CAS
Google Scholar
54.Zillig, K. W., Lusardi, R. A., Moyle, P. B. & Fangue, N. A. One size does not fit all: variation in thermal eco-physiology among Pacific salmonids. Rev. Fish. Biol. Fish. 31, 95–114 (2021).
Google Scholar
55.Thorstad, E. B. et al. Atlantic salmon in a rapidly changing environment-facing the challenges of reduced marine survival and climate change. Aquat. Conserv. 31, 2654–2665 (2021).
Google Scholar
56.5-Year Review: Summary and Evaluation of Central Valley Spring-run Chinook Salmon Evolutionarily Significant Unit (National Marine Fisheries Service, 2016); https://repository.library.noaa.gov/view/noaa/1701857.Barnett-Johnson, R., Grimes, C. B., Royer, C. F. & Donohoe, C. J. Identifying the contribution of wild and hatchery Chinook salmon (Oncorhynchus tshawytscha) to the ocean fishery using otolith microstructure as natural tags. Can. J. Fish. Aquat. Sci. 64, 1683–1692 (2007).
Google Scholar
58.Barnett-Johnson, R., Ramos, F. C., Grimes, C. B. & MacFarlane, R. B. Validation of Sr isotopes in otoliths by laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS): opening avenues in fisheries science applications. Can. J. Fish. Aquat. Sci. 62, 2425–2430 (2005).CAS
Google Scholar
59.Barnett-Johnson, R., Pearson, T. E., Ramos, F. C., Grimes, C. B. & MacFarlane, R. B. Tracking natal origins of salmon using isotopes, otoliths, and landscape geology. Limnol. Oceanogr. 53, 1633–1642 (2008).CAS
Google Scholar
60.Hobson, K. A., Barnett-Johnson, R. & Cerling, T. in Isoscapes (eds West, J. B. et al.) 273–298 (Springer, 2010).61.Ingram, B. L. & Weber, P. K. Salmon origin in California’s Sacramento–San Joaquin river system as determined by otolith strontium isotopic composition. Geology 27, 851–854 (1999).
Google Scholar
62.Phillis, C. C., Sturrock, A. M., Johnson, R. C. & Weber, P. K. Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape. Biol. Conserv. 217, 358–362 (2018).
Google Scholar
63.Fielding, A. Cluster and Classification Techniques for the Biosciences (Cambridge Univ. Press, 2007).64.Ramsay, J. & Silverman, B. W. Functional Data Analysis (Springer-Verlag, 1997).65.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).66.Fraley, C. & Raftery, A. E. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002).
Google Scholar
67.Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using gaussian finite mixture models. R J. 8, 289–317 (2016).
Google Scholar
68.Schick, R. S., Edsall, A. L. & Lindley, S. T. Historical and Current Distribution of Pacific Salmonids in the Central Valley, CA NOAA-TM-NMFS-SWFSC-369 (NOAA-NMFS, 2005).69.Isaak, D. J. et al. The NorWeST summer stream temperature model and scenarios for the western U.S.: a crowd-sourced database and new geospatial tools foster a user community and predict broad climate warming of rivers and streams. Water Resour. Res. 53, 9181–9205 (2017).
Google Scholar
70.Bjornn, T. C. & Reiser, D. W. in Influences of Forest and Rangeland Management on Salmonid Fishes and Their Habitats Special Publication 19 (ed. Meehan, W. R.) 83–138 (American Fisheries Society, 1991).71.Cordoleani, F. et al. Threatened salmon rely on a rare life history strategy in a warming landscape. Github https://github.com/floracordoleani/MillDeerOtolithPaper (2021).72.Cordoleani, F. et al. Threatened salmon rely on a rare life history strategy in a warming landscape. Dryad Digital Repository https://doi.org/10.5061/dryad.bk3j9kdc9 (2021). More
