More stories

  • in

    Interspecific interactions alter the metabolic costs of climate warming

    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).Article 
    CAS 

    Google Scholar 
    Seebacher, F., White, C. R. & Franklin, C. E. Physiological plasticity increases resilience of ectothermic animals to climate change. Nat. Clim. Change 5, 61–66 (2015).Article 

    Google Scholar 
    Havird, J. C. et al. Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: why methodology matters. Funct. Ecol. 34, 1015–1028 (2020).Article 

    Google Scholar 
    Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).Article 
    CAS 

    Google Scholar 
    White, C. R., Alton, L. A., Bywater, C. L., Lombardi, E. J. & Marshall, D. J. Metabolic scaling is the product of life history optimization. Science 377, 834–839 (2022).Article 
    CAS 

    Google Scholar 
    Savage, V. M., Gilloly, J. F., Brown, J. H. & Charnov, E. L. Effects of body size and temperature on population growth. Am. Nat. 163, 429–441 (2004).Article 

    Google Scholar 
    Bernhardt, J. R., Sunday, J. M. & O’Connor, M. I. Metabolic theory and the temperature–size rule explain the temperature dependence of population carrying capacity. Am. Nat. 192, 687–697 (2018).Article 

    Google Scholar 
    Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).Article 

    Google Scholar 
    Schuster, L., Cameron, H., White, C. R. & Marshall, D. J. Metabolism drives demography in an experimental field test. Proc. Natl Acad. Sci. USA 118, e2104942118 (2021).Article 
    CAS 

    Google Scholar 
    Amarasekare, P. & Coutinho, R. M. The intrinsic growth rate as a predictor of population viability under climate warming. J. Anim. Ecol. 82, 1240–1253 (2013).Article 

    Google Scholar 
    Amarasekare, P. & Savage, V. A framework for elucidating the temperature dependence of fitness. Am. Nat. 179, 178–191 (2012).Article 

    Google Scholar 
    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).Article 

    Google Scholar 
    Comeault, A. A. & Matute, D. R. Temperature-dependent competitive outcomes between the fruit flies Drosophila santomea and Drosophila yakuba. Am. Nat. 197, 312–323 (2021).Article 

    Google Scholar 
    Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. & Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature 391, 783–786 (1998).Article 
    CAS 

    Google Scholar 
    Davis, A. J., Lawton, J. H., Shorrocks, B. & Jenkinson, L. S. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J. Anim. Ecol. 67, 600–612 (1998).Article 

    Google Scholar 
    Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).Article 

    Google Scholar 
    Janča, M. & Gvoždík, L. Costly neighbours: heterospecific competitive interactions increase metabolic rates in dominant species. Sci. Rep. 7, 5177 (2017).Article 

    Google Scholar 
    Pettersen, A. K., Hall, M. D., White, C. R. & Marshall, D. J. Metabolic rate, context-dependent selection, and the competition–colonization trade-off. Evol. Lett. 4, 333–344 (2020).Article 

    Google Scholar 
    DeLong, J. P., Hanley, T. C. & Vasseur, D. A. Competition and the density dependence of metabolic rates. J. Anim. Ecol. 83, 51–58 (2014).Article 

    Google Scholar 
    Reid, D., Armstrong, J. D. & Metcalfe, N. B. Estimated standard metabolic rate interacts with territory quality and density to determine the growth rates of juvenile Atlantic salmon. Funct. Ecol. 25, 1360–1367 (2011).Article 

    Google Scholar 
    Ayala, F. J. in Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky (eds Hecht, M. K. & Steere, W. C.) 121–158 (Springer, 1970).Atkinson, W. D. & Shorrocks, B. Aggregation of larval Diptera over discrete and ephemeral breeding sites: the implications for coexistence. Am. Nat. 124, 336–351 (1984).Article 

    Google Scholar 
    McKenzie, J. A. & McKechnie, S. W. A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans. Oecologia 40, 299–309 (1979).Article 
    CAS 

    Google Scholar 
    Alton, L. A. et al. Developmental nutrition modulates metabolic responses to projected climate change. Funct. Ecol. 34, 2488–2502 (2020).Article 

    Google Scholar 
    Mitchell, K. A. & Hoffmann, A. A. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol. 24, 694–700 (2010).Article 

    Google Scholar 
    Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am. Nat. 178, S80–S96 (2011).Article 

    Google Scholar 
    Kellermann, V. et al. Comparing thermal performance curves across traits: how consistent are they? J. Exp. Biol. 222, jeb193433 (2019).Article 

    Google Scholar 
    Terblanche, J. S., Clusella-Trullas, S. & Chown, S. L. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation. J. Exp. Biol. 213, 2940–2949 (2010).Article 

    Google Scholar 
    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).Article 
    CAS 

    Google Scholar 
    Bos, M., Burnet, B., Farrow, R. & Woods, R. A. Mutual facilitation between larvae of the sibling species Drosophila melanogaster and D. simulans. Evolution 31, 824–828 (1977).Article 
    CAS 

    Google Scholar 
    Arthur, W. On the complexity of a simple environment: competition, resource partitioning and facilitation in a two-species Drosophila system. Phil. Trans. R. Soc. B 313, 471–508 (1986).
    Google Scholar 
    Hodge, S., Mitchell, P. & Arthur, W. Factors affecting the occurrence of facilitative effects in interspecific interactions: an experiment using two species of Drosophila and Aspergillus niger. Oikos 87, 166–174 (1999).Article 

    Google Scholar 
    Bath, E., Morimoto, J. & Wigby, S. The developmental environment modulates mating-induced aggression and fighting success in adult female Drosophila. Funct. Ecol. 32, 2542–2552 (2018).Article 

    Google Scholar 
    Thibert, J., Farine, J. P., Cortot, J. & Ferveur, J. F. Drosophila food-associated pheromones: effect of experience, genotype and antibiotics on larval behavior. PLoS ONE 11, e0151451 (2016).Article 

    Google Scholar 
    Chown, S. L. et al. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct. Ecol. 21, 282–290 (2007).Article 

    Google Scholar 
    Becker, R. A., Wilks, A. R. & Brownrigg, R. mapdata: extra map databases. R version 2.3.0 https://CRAN.R-project.org/package=mapdata (2018).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Bolker, B. & R Development Core Team bbmle: tools for general maximum likelihood estimation. R version 1.0.25 https://CRAN.R-project.org/package=bbmle (2022).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn (Sage, 2019).Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R version 0.4.6 https://CRAN.R-project.org/package=DHARMa (2022).Messamah, B., Kellermann, V., Malte, H., Loeschcke, V. & Overgaard, J. Metabolic cold adaptation contributes little to the interspecific variation in metabolic rates of 65 species of Drosophilidae. J. Insect Physiol. 98, 309–316 (2017).Article 
    CAS 

    Google Scholar 
    Chamberlain, S. et al. rgbif: interface to the global biodiversity information facility API. R version 3.7.3 https://CRAN.R-project.org/package=rgbif (2022).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J. raster: geographic data analysis and modeling. R version 3.6-3 https://CRAN.R-project.org/package=raster (2022).Alton, L. A. & Kellermann, V. Data for “Interspecific interactions alter the metabolic costs of climate warming”. Zenodo https://doi.org/10.5281/zenodo.7475922 (2023).White, C. R. et al. Geographical bias in physiological data limits predictions of global change impacts. Funct. Ecol. 35, 1572–1578 (2021).Article 

    Google Scholar  More

  • in

    Comparable biophysical and biogeochemical feedbacks on warming from tropical moist forest degradation

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).Article 

    Google Scholar 
    Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).Article 

    Google Scholar 
    Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).Article 

    Google Scholar 
    Houghton, R. A. & Nassikas, A. A. Global and regional fluxes of carbon from land use and land cover change 1850-2015. Glob. Biogeochem. Cycles 31, 456–472 (2017).Article 

    Google Scholar 
    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).Article 

    Google Scholar 
    Longo, M. et al. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon. Glob. Biogeochem. Cycles 30, 1639–1660 (2016).Article 

    Google Scholar 
    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article 

    Google Scholar 
    Smith, I. A., Hutyra, L. R., Reinmann, A. B., Marrs, J. K. & Thompson, J. R. Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Front. Ecol. Environ. 16, 213–221 (2018).Article 

    Google Scholar 
    Franklin, C. M. A., Harper, K. A. & Clarke, M. J. Trends in studies of edge influence on vegetation at human-created and natural forest edges across time and space. Can. J. For. Res. 51, 274–282 (2020).Article 

    Google Scholar 
    Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).Article 

    Google Scholar 
    Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 

    Google Scholar 
    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).Article 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).Article 

    Google Scholar 
    Schoene, D., Killmann, W., Lüpke, H. V. & LoycheWilkie, M. Forests and Climate Change Working Paper 5: Definitional Issues Related to Reducing Emissions from Deforestation in Developing Countries (FAO, 2007).Goetz, S. J. et al. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10, 123001 (2015).Article 

    Google Scholar 
    Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).Article 

    Google Scholar 
    Cadenasso, M. L., Traynor, M. M. & Pickett, S. T. Functional location of forest edges: gradients of multiple physical factors. Can. J. For. Res. 27, 774–782 (1997).Article 

    Google Scholar 
    Schmidt, M., Jochheim, H., Kersebaum, K.-C., Lischeid, G. & Nendel, C. Gradients of microclimate, carbon and nitrogen in transition zones of fragmented landscapes – a review. Agric. For. Meteorol. 232, 659–671 (2017).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 

    Google Scholar 
    Silva Junior, C. H. L. et al. Amazonian forest degradation must be incorporated into the COP26 agenda. Nat. Geosci. 14, 634–635 (2021).Article 

    Google Scholar 
    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).Article 

    Google Scholar 
    Windisch, M. G., Davin, E. L. & Seneviratne, S. I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Change 11, 867–871 (2021).Article 

    Google Scholar 
    Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data 13, 3927–3950 (2021).Article 

    Google Scholar 
    Chuvieco, E. et al. Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 10, 2015–2031 (2018).Article 

    Google Scholar 
    Zhao, Z. et al. Fire enhances forest degradation within forest edge zones in Africa. Nat. Geosci. https://doi.org/10.1038/s41561-021-00763-8 (2021).Cook, M., Schott, J. R., Mandel, J. & Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. https://doi.org/10.3390/rs61111244 (2014).Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).Article 

    Google Scholar 
    Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).Article 

    Google Scholar 
    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).Article 

    Google Scholar 
    Silva Junior, C. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).Article 

    Google Scholar 
    Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).Article 

    Google Scholar 
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).Article 

    Google Scholar 
    Zheng, C., Jia, L. & Hu, G. Global land surface evapotranspiration monitoring by ETMonitor model driven by multi-source satellite Earth observations. J. Hydrol. 613, 128444 (2022).Article 

    Google Scholar 
    Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).Article 

    Google Scholar 
    Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article 

    Google Scholar 
    de Paula, M. D., Costa, C. P. A. & Tabarelli, M. Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge-affected habitats and emergent trees. Trop. Conserv. Sci. 4, 349–358 (2011).Article 

    Google Scholar 
    van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article 

    Google Scholar 
    Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Kozlowski, T. T. Responses of woody plants to flooding and salinity. Tree Physiol. 17, 490–490 (1997).Article 

    Google Scholar 
    Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).Article 

    Google Scholar 
    Sze, J. S., Carrasco, L. R., Childs, D. & Edwards, D. P. Reduced deforestation and degradation in Indigenous lands pan-tropically. Nat. Sustain. 5, 123–130 (2022).Article 

    Google Scholar 
    Masson-Delmotte, V. et al. IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds) (Cambridge Univ. Press, 2021).Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-Ground Biomass for the Years 2010, 2017 and 2018, v3 (NERC EDS Centre for Environmental Data Analysis, 2021); https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).Article 

    Google Scholar 
    Alkama, R. et al. Vegetation-based climate mitigation in a warmer and greener world. Nat. Commun. 13, 606 (2022).Article 

    Google Scholar 
    Duveiller, G., Hooker, J. & Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 9, 679 (2018).Article 

    Google Scholar 
    Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).Article 

    Google Scholar 
    Li, W. et al. Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations. Biogeosciences 14, 5053–5067 (2017).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 

    Google Scholar  More

  • in

    Observed reductions in rainfall due to tropical deforestation

    RESEARCH BRIEFINGS
    01 March 2023

    Tropical deforestation affects local and regional precipitation, but the effects are uncertain and have not been determined using observations. Satellite data sets were used to show reductions in precipitation over areas of tropical forest loss, with stronger reductions seen as the deforested area expands. More

  • in

    Phototrophy by antenna-containing rhodopsin pumps in aquatic environments

    Balashov, S. P. et al. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309, 2061–2064 (2005).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imasheva, E. S., Balashov, S. P., Choi, A. R., Jung, K.-H. & Lanyi, J. K. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48, 10948–10955 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6, 488–494 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vollmers, J. et al. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS ONE 8, e63422 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertsova, Y. V., Arutyunyan, A. M. & Bogachev, A. V. Na+-translocating rhodopsin from Dokdonia sp. PRO95 does not contain carotenoid antenna. Biochem. Mosc. 81, 414–419 (2016).Article 
    CAS 

    Google Scholar 
    Misra, R., Eliash, T., Sudo, Y. & Sheves, M. Retinal–salinixanthin interactions in a thermophilic rhodopsin. J. Phys. Chem. B 123, 10–20 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).Article 
    ADS 
    PubMed 

    Google Scholar 
    Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Atamna-Ismaeel, N. et al. Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J. 2, 656–662 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Frigaard, N.-U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Finkel, O. M., Béjà, O. & Belkin, S. Global abundance of microbial rhodopsins. ISME J. 7, 448–451 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gómez-Consarnau, L. et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeLong, E. F. & Béjà, O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol. 8, e1000359 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munson-McGee, J. H. et al. Decoupling of respiration rates and abundance in marine prokaryoplankton. Nature 612, 764–770 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W.-W., Sineshchekov, O. A., Spudich, E. N. & Spudich, J. L. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278, 33985–33991 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Man, D. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lanyi, J. K. & Balashov, S. P. in Halophiles and Hypersaline Environments (eds. Ventosa, A., Oren, A. & Ma, Y.) 319–340 (Springer, 2011).Balashov, S. P. et al. Reconstitution of Gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49, 9792–9799 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kopejtka, K. et al. A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems. Proc. Natl Acad. Sci. USA 119, e2211018119 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pushkarev, A. & Béjà, O. Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J. 10, 2331–2335 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chazan, A. et al. Diverse heliorhodopsins detected via functional metagenomics in freshwater Actinobacteria, Chloroflexi and Archaea. Environ. Microbiol. 24, 110–121 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bhosale, P. & Bernstein, P. S. Microbial xanthophylls. Appl. Microbiol. Biotechnol. 68, 445–455 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Demmig-Adams, B., Polutchko, S. K. & Adams, W. W. Structure–function–environment relationship of the isomers zeaxanthin and lutein. Photochem 2, 308–325 (2022).Article 

    Google Scholar 
    Barreiro C. & Barredo J. L. Microbial Carotenoids: Methods and Protocols (Humana Press, 2018).Ram, S., Mitra, M., Shah, F., Tirkey, S. R. & Mishra, S. Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges. J. Funct. Foods 67, 103867 (2020).Article 
    CAS 

    Google Scholar 
    Shibata, M. et al. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8, 8262 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl Acad. Sci. USA 105, 16561–16565 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chuon, K. et al. Assembly of natively synthesized dual chromophores into functional actinorhodopsin. Front. Microbiol. 12, 652328 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yoshizawa, S., Kawanabe, A., Ito, H., Kandori, H. & Kogure, K. Diversity and functional analysis of proteorhodopsin in marine Flavobacteria. Environ. Microbiol. 14, 1240–1248 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ahmed, F. et al. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem. 165, 300–306 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shihoya, W. et al. Crystal structure of heliorhodopsin. Nature 574, 132–136 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kishi, K. E. et al. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185, 672–689.e23 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balashov, S. P., Imasheva, E. S., Wang, J. M. & Lanyi, J. K. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys. J. 95, 2402–2414 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lakowicz, J. R. (ed.) in Principles of Fluorescence Spectroscopy 27–61 (Springer, 2006).Dana, J. et al. Testing the fate of nascent holes in CdSe nanocrystals with sub-10 fs pump–probe spectroscopy. Nanoscale 13, 1982–1987 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Polívka, T. et al. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys. J. 96, 2268–2277 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iyer, E. S. S., Gdor, I., Eliash, T., Sheves, M. & Ruhman, S. Efficient femtosecond energy transfer from carotenoid to retinal in Gloeobacter rhodopsin–salinixanthin complex. J. Phys. Chem. B 119, 2345–2349 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doi, S., Tsukamoto, T., Yoshizawa, S. & Sudo, Y. An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli. Sci. Rep. 7, 41879 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagiri, C. et al. Crystal structure of human endothelin ETB receptor in complex with peptide inverse agonist IRL2500. Commun. Biol. 2, 236 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr. D Struct. Biol. 74, 441–449 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine.Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3.eLife 7, e42166 (2018).Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).Article 
    PubMed 

    Google Scholar 
    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D Struct. Biol. 77, 1282–1291 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Inoue, K. et al. Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design. Commun. Biol. 4, 362 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, I.-M. A. et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, D751–D763 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 10, 1196–1199 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wickham, H. in ggplot2 (eds Gentleman, R., Hornik, K. & Parmigiani, G.) 189–201 (Springer, 2016).Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Tropical deforestation causes large reductions in observed precipitation

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).Article 
    ADS 

    Google Scholar 
    Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Resour. 43, 193–218 (2018).Article 

    Google Scholar 
    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Change 8, 539–543 (2018).Article 
    ADS 

    Google Scholar 
    Baker, J. C. A. & Spracklen, D. V. Divergent representation of precipitation recycling in the Amazon and the Congo in CMIP6 models. Geophys. Res. Lett. 49, e2021GL095136 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–854 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chagnon, F. J. F. & Bras, R. L. Contemporary climate change in the Amazon. Geophys. Res. Lett. 32, L13703 (2005).Article 
    ADS 

    Google Scholar 
    Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).Article 
    ADS 

    Google Scholar 
    Garcia-Carreras, L. & Parker, D. J. How does local tropical deforestation affect rainfall? Geophys. Res. Lett. 38, L19802 (2011).Article 
    ADS 

    Google Scholar 
    Leite-Filho, A. T., Soares-Filho, B. S., Davis, J. L., Abrahão, G. M. & Börner, J. Deforestation reduces rainfall and agricultural revenues in the Brazilian Amazon. Nat. Commun. 12, 2591 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McAlpine, C. A. et al. Forest loss and Borneo’s climate. Environ. Res. Lett. 13, 044009 (2018).Chapman, S. et al. Compounding impact of deforestation on Borneo’s climate during El Niño events. Environ. Res. Lett. 15, 084006 (2020).Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).Article 
    ADS 

    Google Scholar 
    Jiang, Y. et al. Modeled response of South American climate to three decades of deforestation. J. Clim. 34, 2189–2203 (2021).Article 
    ADS 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fassoni-Andrade, A. C. et al. Amazon hydrology from space: scientific advances and future challenges. Rev. Geophys. 59, e2020RG000728 (2021).Article 
    ADS 

    Google Scholar 
    Haiden, T., Janousek, M., Vitart, F., Ferranti, L. & Prates, F. Evaluation of ECMWF Forecasts, Including the 2019 Upgrade. ECMWF Technical Memorandum No. 853 (ECMWF, 2019).Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 
    ADS 

    Google Scholar 
    Brum, M. et al. ENSO effects on the transpiration of eastern Amazon trees. Philos. Trans. R. Soc. B 373, 20180085 (2018).Article 

    Google Scholar 
    Bagley, J. E., Desai, A. R., Harding, K. J., Snyder, P. K. & Foley, J. A. Drought and deforestation: has land cover change influenced recent precipitation extremes in the Amazon? J. Clim. 27, 345–361 (2014).Article 
    ADS 

    Google Scholar 
    Wunderling, N. et al. Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest. Proc. Natl Acad. Sci. USA 119, e2120777119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, R. & Li, W. The influence of the land surface on the transition from dry to wet season in Amazonia. Theor. Appl. Climatol. 78, 97–110 (2004).Article 
    ADS 

    Google Scholar 
    Leite-Filho, A. T., de Sousa Pontes, V. Y. & Costa, M. H. Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. J. Geophys. Res. Atmos. 124, 5268–5281 (2019).Article 
    ADS 

    Google Scholar 
    Negri, A. J., Adler, R. F., Xu, L. & Surratt, J. The Impact of Amazonian deforestation on dry season rainfall. J. Clim. 17, 1306–1319 (2004).Article 
    ADS 

    Google Scholar 
    Chagnon, F. J. F., Bras, R. L. & Wang, J. Climatic shift in patterns of shallow clouds over the Amazon. Geophys. Res. Lett. 31, L24212 (2004).Article 
    ADS 

    Google Scholar 
    Chambers, J. Q. & Artaxo, P. Biosphere–atmosphere interactions: deforestation size influences rainfall. Nat. Clim. Change 7, 175–176 (2017).Article 
    ADS 

    Google Scholar 
    Baudena, M., Tuinenburg, O. A., Ferdinand, P. A. & Staal, A. Effects of land-use change in the Amazon on precipitation are likely underestimated. Glob. Change Biol. 27, 5580–5587 (2021).Article 
    CAS 

    Google Scholar 
    Duku, C. & Hein, L. The impact of deforestation on rainfall in Africa: a data-driven assessment. Environ. Res. Lett. 16, 064044 (2021).Akkermans, T., Thiery, W. & Van Lipzig, N. P. M. The regional climate impact of a realistic future deforestation scenario in the Congo basin. J. Clim. 27, 2714–2734 (2014).Article 
    ADS 

    Google Scholar 
    Staal, A. et al. Feedback between drought and deforestation in the Amazon. Environ. Res. Lett. 15, 044024 (2020).Xu, X. et al. Deforestation triggering irreversible transition in Amazon hydrological cycle. Environ. Res. Lett. 17, 034037 (2022).Kooperman, G. J. et al. Forest response to rising CO2 drives zonally asymmetric rainfall change over tropical land. Nat. Clim. Change 8, 434–440 (2018).Article 
    ADS 

    Google Scholar 
    Chen, Z. et al. Global land monsoon precipitation changes in CMIP6 projections. Geophys. Res. Lett. 47, e2019GL086902 (2020).Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).Article 
    ADS 

    Google Scholar 
    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).Article 

    Google Scholar 
    Potapov, P. et al. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 3, 19–28 (2022).Article 

    Google Scholar 
    Li, Y. et al. Deforestation-induced climate change reduces carbon storage in remaining tropical forests. Nat. Commun. 13, 1964 (2022).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B 363, 1779–1785 (2008).Article 

    Google Scholar 
    Marengo, J. A. et al. Changes in climate and land use over the Amazon region: current and future variability and trends. Front. Earth Sci. https://doi.org/10.3389/feart.2018.00228 (2018).Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Change https://doi.org/10.1038/s41558-019-0512-y (2019).Van Der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).Article 
    ADS 

    Google Scholar 
    Sorí, R., Nieto, R., Vicente-Serrano, S. M., Drumond, A. & Gimeno, L. A Lagrangian perspective of the hydrological cycle in the Congo River basin. Earth Syst. Dyn. 8, 653–675 (2017).Article 
    ADS 

    Google Scholar 
    van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, W09525 (2010).ADS 

    Google Scholar 
    Feng, Y. et al. Doubling of annual forest carbon loss over the tropics during the early twenty-first century. Nat. Sustain. 4, 441–451 (2022).
    Google Scholar 
    Tuinenburg, O. A., Bosmans, J. H. C. & Staal, A. The global potential of forest restoration for drought mitigation. Environ. Res. Lett. 17, 034045 (2022).Met Office. Cartopy: a cartographic python library with a Matplotlib interface 2010–2015. Met Office https://scitools.org.uk/cartopy (2022).Hoyer, S. & Hamman, J. xarray: N-D labeled arrays and datasets in Python. J. Open Res. Softw. https://doi.org/10.5334/jors.148 (2017).Zhuang, J. xESMF. Zenodo https://doi.org/10.5281/zenodo.1134365 (2022).Baker, J. C. A. & Spracklen, D. V. Climate benefits of intact Amazon forests and the biophysical consequences of disturbance. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2019.00047 (2019).Schaaf, C. & Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global – 500m V006. NASA EOSDIS Land Processes DAAC https://doi.org/10.5067/modis/mcd43a3.006 (2015).Waskom, M. Seaborn: statistical data visualization. J. Open Source Softw. 6, 3021 (2021).Article 
    ADS 

    Google Scholar 
    Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 150066 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, P. et al. NOAA Climate Data Record (CDR) of CPC Morphing technique (CMORPH) high resolution global precipitation estimates, version 1. NOAA National Centers for Environmental Information https://doi.org/10.25921/w9va-q159 (2019).Xie, P. et al. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 8, 607–626 (2007).Article 
    ADS 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 
    ADS 

    Google Scholar 
    Elke, R., Hänsel, S., Finger, P., Schneider, U. & Ziese, M. GPCC Climatology Version 2022 at 0.25°: monthly land-surface precipitation climatology for every month and the total year from rain-gauges built on GTS-based and historical data. GPCC https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2022_025 (2022).Huffman, G. J. A., Behrangi, R. F., Adler, D. T., Bolvin, E. J. & Nelkin, G. G. Introduction to the new version 3 GPCP monthly global precipitation analysis. GPCP https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/Release_Notes.GPCPV3.2.pdf (2022).Hou, A. Y. et al. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 95, 701–722 (2014).Article 
    ADS 

    Google Scholar 
    Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Japan 93, 5–48 (2015).Article 
    ADS 

    Google Scholar 
    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).Article 
    ADS 

    Google Scholar 
    Chen, M., Xie, P. & Janowiak, J. E. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).Article 
    ADS 

    Google Scholar 
    Nguyen, P. et al. The CHRS data portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Sci. Data 6, 1180296 (2019).Article 

    Google Scholar 
    Ashouri, H. et al. PERSIANN-CDR: daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 96, 69–83 (2015).Article 
    ADS 

    Google Scholar 
    Nguyen, P. et al. Persiann dynamic infrared–rain rate (PDIR-now): a near-real-time, quasi-global satellite precipitation dataset. J. Hydrometeorol. 21, 2893–2906 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadeghi, M. et al. PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies. Sci. Data 8, 157 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).Article 
    ADS 

    Google Scholar 
    Matsuura, K. & Willmott, C. J. Terrestrial precipitation: 1900-2017 gridded monthly time series. Global Precipitation Archive http://climate.geog.udel.edu/~climate/html_pages/Global2017/README.GlobalTsP2017.html (2018). More

  • in

    Coastal phytoplankton blooms expand and intensify in the 21st century

    Data sourcesMODIS on the Aqua satellite provides a global coverage within 1–2 days. All images acquired by this satellite mission from January 2003 to December 2020 were used in our study to detect global coastal phytoplankton blooms, with a total of 0.76 million images. MODIS Level-1A images were downloaded from the Ocean Biology Distributed Active Archive Center (OB.DAAC) at NASA Goddard Space Flight Center (GSFC), and were subsequently processed with SeaDAS software (version 7.5) to obtain Rayleigh-corrected reflectance (Rrc (dimensionless), which was converted using the rhos (in sr−1) product (rhos × π) from SeaDAS)41, remote sensing reflectance (Rrs (sr−1)) and quality control flags (l2_flags). If a pixel was flagged by any of the following, it was then removed from phytoplankton bloom detection: straylight, cloud, land, high sunglint, high solar zenith angle and high sensor zenith angle (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/). MODIS level-3 product for aerosol optical thicknesses (AOT) at 869 nm was also obtained from OB.DAAC NASA GSFC (version R2018.0), which was used to examine the impacts of aerosols on bloom trends.We examined the algal blooms in the EEZs of 153 ocean-bordering countries (excluding the EEZs in the Caspian Sea or around the Antarctic), 126 of which were found with at least one bloom in the past two decades. The EEZ dataset is available at https://www.marineregions.org/download_file.php?name=World_EEZ_v11_20191118.zip. The EEZs are up to 200 nautical miles (or 370 km) away from coastlines, which include all continental shelf areas and offer the majority of marine resources available for human use. Regional statistics of algal blooms were also performed for LMEs. LMEs encompass global coastal oceans and outer edges of coastal currents areas, which are defined by various distinct features of the oceans, including hydrology, productivity, bathymetry and trophically dependent populations42. Of the 66 LMEs identified globally, we excluded the Arctic and Antarctic regions and examined 54 LMEs. The boundaries of LMEs were obtained from https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244.We used HAEDAT to validate our satellite-detected phytoplankton blooms in terms of presence or absence. The HAEDAT dataset (http://haedat.iode.org) is a collection of records of HAB events, maintained under the UNESCO Intergovernmental Oceanographic Commission and with data archives since 1985. For each HAB event, the HAEDAT records its bloom period (ranging from days to months) and geolocation. We merged duplicate entries when both the recorded locations and times of the HAEDAT events were very similar to one another, and a total number of 2,609 HAEDAT events were ultimately selected between 2003 and 2020.We used the ¼° resolution National Oceanic and Atmospheric Administration Optimum Interpolated SST (v. 2.1) data to examine the potential simulating effects of warming on the global phytoplankton trends. We also estimated the SST gradients following the method of Martínez-Moreno33. As detailed in ref. 33, the SST gradient can be used as a proxy for the magnitude of oceanic mesoscale currents (EKE). We used the SST gradient to explore the effects of ocean circulation dynamics on algal blooms.Fertilizer uses and aquaculture production for different countries was used to examine the potential effects of nutrient enrichment from humans on global phytoplankton bloom trends. Annual data between 2003 and 2019 on synthetic fertilizer use, including nitrogen and phosphorus, are available from https://ourworldindata.org/fertilizers. Annual aquaculture production includes cultivated fish and crustaceans in marine and inland waters, and sea tanks, and the data between 2003 and 2018 are available from https://ourworldindata.org/grapher/aquaculture-farmed-fish-production.The MEI, which combines various oceanic and atmospheric variables36, was used to examine the connections between El Niño–Southern Oscillation activities and marine phytoplankton blooms. The dataset is available from https://psl.noaa.gov/enso/mei/.Development of an automated bloom detection methodA recent study by the UNESCO Intergovernmental Oceanographic Commission revealed that globally reported HAB events have increased6. However, such an overall increasing trend was found to be highly correlated with recently intensified sampling efforts6. Once this potential bias was accounted for by examining the ratio between HAB events to the number of samplings5, there was no significant global trend in HAB incidence, though there were increases in certain regions. With synoptic, frequent, and large-scale observations, satellite remote sensing has been extensively used to monitor algal blooms in oceanic environments17,18,19. For example, chlorophyll a (Chla) concentrations, a proxy for phytoplankton biomass, has been provided as a standard product by NASA since the proof-of-concept Coastal Zone Color Scanner (1978–1986) era43,44. The current default algorithm used to retrieve Chla products is based on the high absorption of Chla at the blue band45,46, which often shows high accuracy in the clear open oceans but high uncertainties in coastal waters. This is because, in productive and dynamic coastal oceans, the absorption of Chla in the blue band can be obscured by the presence of suspended sediments and/or coloured dissolved organic matter (CDOM)47. To address this problem, various regionalized Chla algorithms have been developed48. Unfortunately, the concentrations of the water constituents (CDOM, sediment and Chla) can vary substantially across different coastal oceans. As a result, a universal Chla algorithm that can accurately estimate Chla concentrations in global coastal oceans is not currently available.Alternatively, many spectral indices have been developed to identify phytoplankton blooms instead of quantifying their bloom biomass, including the normalized fluorescence line height21 (nFLH), red tide index49 (RI), algal bloom index47 (ABI), red–blue difference (RBD)50, Karenia brevis bloom index50 (KBBI) and red tide detection index51 (RDI). In practice, the most important task for these index-based algorithms is to determine their optimal thresholds for bloom classification. However, such optimal thresholds can be regional-or image-specific20, due to the complexity of optical features in coastal waters and/or the contamination of unfavourable observational conditions (such as thick aerosols, thin clouds, and so on), making it difficult to apply spectral-index-based algorithms at a global scale.To circumvent the difficulty in determining unified thresholds for various spectral indices across global coastal oceans, an approach from a recent study to classify algal blooms in freshwater lakes52 was adopted and modified here. In that study, the remotely sensed reflectance data in three visible bands (red, green and blue) were converted into two-dimensional colour space created by the Commission Internationale del’éclairage (CIE), in which the position on the CIE chromaticity diagram represented the colour perceived by human eyes (Extended Data Fig. 1a). As the algal blooms in freshwater lakes were manifested as greenish colours, the reflectance of bloom-containing pixels was expected to be distributed in the green gamut of the CIE chromaticity diagram; the stronger the bloom, the closer the distance to the upper border of the diagram (the greener the water).Here, the colour of phytoplankton blooms in the coastal oceans can be greenish, yellowish, brownish, or even reddish53, owing to the compositions of bloom species (diatoms or dinoflagellates) and the concentrations of different water constituents. Furthermore, the Chla concentrations of the coastal blooms are typically lower than those in inland waters, thus demanding more accurate classification algorithms. Thus, the algorithm proposed by Hou et al.52 was modified when using the CIE chromaticity space for bloom detection in marine environments. Specifically, we used the following coordinate conversion formulas to obtain the xy coordinate values in the CIE colour space:$$begin{array}{c}x=X/(X+Y+Z)\ y=Y/(X+Y+Z)\ X=2.7689R+1.7517G+1.1302B\ Y=1.0000R+4.5907G+0.0601B\ Z=0.0000R+0.0565G+5.5943Bend{array}$$
    (1)
    where R, G and B represent the Rrc at 748 nm, 678 nm (fluorescence band) and 667 nm in the MODIS Aqua data, respectively. By contrast, the R, G and B channels used in Hou et al.52 were the red, green and blue bands. We used the fluorescence band for the G channel because, for a given region, the 678 nm signal increases monotonically with the Chla concentration for blooms of moderate intensity21, which is similar to the response of greenness to freshwater algal blooms. Thus, the converted y value in the CIE coordinate system represents the strength of the fluorescence. In practice, for pixels with phytoplankton blooms, the converted colours in the chromaticity diagram will be located within the green, yellow or orange–red gamut (see Extended Data Fig. 1a); the stronger the fluorescence signal is, the closer the distance to the upper border of the CIE diagram (larger y value). By contrast, for bloom-free pixels without a fluorescence signal, their converted xy coordinates will be located in the blue or purple gamut. Therefore, we can determine a lower boundary in the CIE two-dimensional coordinate system to separate bloom and non-bloom pixels, similar to the method proposed by Hou et al.52.We selected 53,820 bloom-containing pixels from the MODIS Rrc data as training samples to determine the boundary of the CIE colour space. These sample points were selected from nearshore waters worldwide where frequent phytoplankton blooms have been reported (Extended Data Fig. 2); the algal species included various species of dinoflagellates and diatoms20. A total of 80 images was used, which were acquired from different seasons and across various bloom magnitudes, to ensure that the samples used could almost exhaustively represent the different bloom conditions in the coastal oceans.We combined the MODIS FLHRrc (fluorescence line height based on Rrc) and enhanced red–green–blue composite (ERGB) to delineate bloom pixels manually. The FLHRrc image was calculated as:$$begin{array}{c}{{rm{FLH}}}_{{rm{Rrc}}}={R}_{{rm{rc}}678}times {F}_{678}-[{R}_{{rm{rc}}667}times {F}_{667}+({R}_{{rm{rc}}748}times {F}_{748}\ ,,-,{R}_{{rm{rc}}667}times {F}_{667})times (678-667)/(748-667)]end{array}$$
    (2)
    where Rrc667, Rrc678 and Rrc748 are the Rrc at 667, 678 and 748 nm, respectively, and F667, F678 and F748 are the corresponding extraterrestrial solar irradiance. ERGB composite images were generated using Rrc of three bands at 555 (R), 488 (G) and 443 nm (B). Although phytoplankton-rich and sediment-rich waters have high FLHRrc values, they appear as darkish and bright features in the ERGB images (Extended Data Fig. 3), respectively21. In fact, visual examination with fluorescence signals and ERGB has been widely accepted as a practical way to delineate coastal algal blooms on a limited number of images21,54,55. Note that the FLHRrc here was slightly different from the NASA standard nFLH product56, as the latter is generated using Rrs (corrected for both Rayleigh and aerosol scattering) instead of Rrc (with residual effects of aerosols). However, when using the NASA standard algorithm to further perform aerosol scattering correction over Rrc, 20.7% of our selected bloom-containing pixels failed to obtain valid Rrs (without retrievals or flagged as low quality), especially for those with strong blooms (see examples in Extended Data Fig. 4). Likewise, we also found various nearshore regions with invalid Rrs retrievals. By contrast, Rrc had valid data for all selected samples and showed more coverage in nearshore coastal waters. The differences between Rrs and Rrc were because the assumptions for the standard atmospheric correction algorithm do not hold for bloom pixels or nearshore waters with complex optical properties57. In fact, Rrc has been used as an alternative to Rrs in various applications in complex waters58,59.We converted the Rrc data of 53,820 selected sample pixels into the xy coordinates in the CIE colour space (Extended Data Fig. 1a). As expected, these samples of bloom-containing pixels were located in the upper half of the chromaticity diagram (the green, yellow and orange–red gamut) (Extended Data Fig. 1a). We determined the lower boundary of these sample points in the chromaticity diagram, which represents the lightest colour and thus the weakest phytoplankton blooms; any point that falls above this boundary represents stronger blooms. The method to determine the boundary was similar to Hou et al.52: we first binned the sample points according to the x value in the chromaticity diagram and estimated the 1st percentile (Q1%) of the corresponding Y for each bin; then, we fit the Q1% using two-order polynomial regression. Sensitivity analysis with Q0.3% (the three-sigma value) resulted in minor changes ( 1/3 AND y  > y2), it is classified as a ‘bloom’ pixel.Depending on the local region and application purpose, the meaning of ‘phytoplankton bloom’ may differ. Here, for a global application, the pixelwise bloom classification is based on the relationship (represented using the CIE colour space) between Rrc in the 667-, 678- and 754-nm bands derived from visual interpretation of the 80 pairs of FLHRrc and ERGB imagery. Instead of a simple threshold, we used a lower boundary of the sample points in the chromaticity diagram to define a bloom. In simple words, a pixel is classified as a bloom if its fluorescence signal is detectable (the associated xy coordinate in the CIE colour space located above the lower boundary). Histogram of the nFLH values from the 53,820 training pixels demonstrated the minimum value of ~0.02 mW cm−2 μm−1 (Extended Data Fig. 1a), which is in line with the lower-bound signal of K. brevis blooms on the West Florida shelf21,47. Note that, such a minimum nFLH is determined from the global training pixels, and it does not necessarily represent a unified lower bound for phytoplankton blooms across the entire globe, especially considering that fluorescence efficiency may be a large variable across different regions. Different regions may have different lower bounds of nFLH to define a bloom, and such variability is represented by the predefined boundary in the CIE chromaticity diagram in our study. Correspondingly, although the accuracy of Chla retrievals may have large uncertainties in coastal waters, the histogram of the 53,820 training pixels shows a lower bound of ~1 mg m−3 (Extended Data Fig. 1a). Similarly to nFLH, such a lower bound may not be applicable to all coastal regions, as different regions may have different lower bounds of Chla for bloom definition.Although the MODIS cloud (generated by SeaDAS with Rrc869 0.12) and Index2 ( More

  • in

    Coastal algal blooms have intensified over the past 20 years

    RESEARCH BRIEFINGS
    01 March 2023

    Global spatial and temporal patterns of coastal phytoplankton blooms were characterized using daily satellite imaging between 2003 and 2020. These blooms were identified on the coast of 126 of the 153 ocean-bordering countries examined. The extent and frequency of blooms have increased globally over the past two decades. More

  • in

    Open-source software for geospatial analysis

    Satellite imagery provides insight into where and how Earth’s surface changes, particularly in remote areas where in situ measurements are generally lacking. With the large volumes of data produced by satellites, we need streamlined computational pipelines for optimized processing capabilities. Although a multitude of platforms exists to process satellite data, these often have expensive license requirements that price out much of the geospatial community. Moreover, many of these platforms are propriety, but transparency is key when developing geospatial processing workflows. Open-source programming is critical to the creation of efficient imagery processing pipelines. More