More stories

  • in

    Two wild carnivores selectively forage for prey but not amino acids

    Raubenheimer, D., Simpson, S. J. & Mayntz, D. Nutrition, ecology and nutritional ecology: Toward an integrated framework. Funct. Ecol. 23, 4–16 (2009).Article 

    Google Scholar 
    Behmer, S. T. & Joern, A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. U. S. A. 105, 1977–1982. https://doi.org/10.1073/pnas.0711870105 (2008).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lihoreau, M. et al. Nutritional ecology beyond the individual: A conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273–286 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 367, 1628–1646. https://doi.org/10.1098/rstb.2012.0007 (2012).Article 
    CAS 

    Google Scholar 
    von Liebig, J. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. (Vieweg, 1841).Simpson, C., Simpson, S. & Abisgold, J. In Symposium Biologica Hungarica. 39–46.Boersma, M. & Elser, J. Too much of a good thing: On stoichiometrically balanced diets and maximal growth. Ecology 87, 1325–1330 (2006).Article 
    PubMed 

    Google Scholar 
    Simpson, S. J. & Raubenheimer, D. A multi-level analysis of feeding behaviour: The geometry of nutritional decisions. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 342, 381–402. https://doi.org/10.1098/rstb.1993.0166 (1993).Article 
    ADS 

    Google Scholar 
    Zanotto, F. P., Raubenheimer, D. & Simpson, S. J. Haemolymph amino acid and sugar levels in locust fed nutritionally unbalanced diets. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 166, 223–229 (1996).Article 
    CAS 

    Google Scholar 
    Kohl, K. D., Coogan, S. C. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37, 701–709. https://doi.org/10.1002/bies.201400171 (2015).Article 
    PubMed 

    Google Scholar 
    Remonti, L., Balestrieri, A., Raubenheimer, D. & Saino, N. Functional implications of omnivory for dietary nutrient balance. Oikos 125, 1233–1240 (2016).Article 
    CAS 

    Google Scholar 
    McIntyre, P. B. & Flecker, A. S. In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society, Symposium. 539–558 (Citeseer).DeGabriel, J. L. et al. Translating nutritional ecology from the laboratory to the field: Milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 123, 298–308 (2014).Article 

    Google Scholar 
    Nielsen, S. E., Larsen, T. A., Stenhouse, G. B. & Coogan, S. C. P. Complementary food resources of carnivory and frugivory affect local abundance of an omnivorous carnivore. Oikos 126, 369–380. https://doi.org/10.1111/oik.03144 (2017).Article 
    CAS 

    Google Scholar 
    Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S. & Simpson, S. J. Nutrient-specific foraging in invertebrate predators. Science 307, 111–113 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anderson, T. R., Boersma, M. & Raubenheimer, D. Stoichiometry: Linking elements to biochemicals. Ecology 85, 1193–1202 (2004).Article 

    Google Scholar 
    McManamay, R. A., Webster, J. R., Valett, H. M. & Dolloff, C. A. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. J. N. Am. Benthol. Soc. 30, 84–102. https://doi.org/10.1899/09-152.1 (2011).Article 

    Google Scholar 
    Vivas, M., Sánchez-Vázquez, F., García García, B. & Madrid, J. Macronutrient self-selection in European sea bass in response to dietary protein or fat restriction. Aquac. Res. 34, 271–280 (2003).Article 

    Google Scholar 
    Rubio, V., Navarro, D. B., Madrid, J. & Sánchez-Vázquez, F. Macronutrient self-selection in Solea senegalensis fed macronutrient diets and challenged with dietary protein dilutions. Aquaculture 291, 95–100 (2009).Article 
    CAS 

    Google Scholar 
    Mayntz, D. et al. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349–355 (2009).Article 

    Google Scholar 
    Al Shareefi, E. & Cotter, S. C. The nutritional ecology of maturation in a carnivorous insect. Behav. Ecol. 30, 256–266 (2019).Article 

    Google Scholar 
    Jensen, K. et al. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112, 1226–1233. https://doi.org/10.1017/S0007114514001664 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hayward, M., Jędrzejewski, W. & Jedrzejewska, B. Prey preferences of the tiger Panthera tigris. J. Zool. 286, 221–231 (2012).Article 

    Google Scholar 
    Whitney, T. D., Sitvarin, M. I., Roualdes, E. A., Bonner, S. J. & Harwood, J. D. Selectivity underlies the dissociation between seasonal prey availability and prey consumption in a generalist predator. Mol. Ecol. 27, 1739–1748 (2018).Article 
    PubMed 

    Google Scholar 
    Potter, T. I., Stannard, H. J., Greenville, A. C. & Dickman, C. R. Understanding selective predation: Are energy and nutrients important?. PLoS One 13, e0201300 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machovsky-Capuska, G. E. et al. Sex-specific macronutrient foraging strategies in a highly successful marine predator: The Australasian gannet. Mar. Biol. 163, 75 (2016).Article 

    Google Scholar 
    Remonti, L., Balestrieri, A. & Prigioni, C. Percentage of protein, lipids, and carbohydrates in the diet of badger (Meles meles) populations across Europe. Ecol. Res. 26, 487–495 (2011).Article 
    CAS 

    Google Scholar 
    Wilder, S. M. et al. Three-dimensional diet regulation and the consequences of choice for weight and activity level of a marsupial carnivore. J. Mammal. 97, 1645–1651 (2016).Article 

    Google Scholar 
    Yu, D.-H. et al. Effect of partial replacement of fish meal with soybean meal and feeding frequency on growth, feed utilization and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus (Bleeker). Aquac. Res. 44, 388–394. https://doi.org/10.1111/j.1365-2109.2011.03043.x (2013).Article 
    CAS 

    Google Scholar 
    Kaushik, S. J. & Seiliez, I. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac. Res. 41, 322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x (2010).Article 
    CAS 

    Google Scholar 
    Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    McCullagh, J., Gaye-Siessegger, J. & Focken, U. Determination of underivatized amino acid delta(13)C by liquid chromatography/isotope ratio mass spectrometry for nutritional studies: The effect of dietary non-essential amino acid profile on the isotopic signature of individual amino acids in fish. Rapid Commun. Mass Spectrom. RCM 22, 1817–1822. https://doi.org/10.1002/rcm.3554 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gao, K. et al. Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42, 2207–2214 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wu, G. et al. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2, 387–417. https://doi.org/10.1146/annurev-animal-022513-114113 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J., Silvester, E. & Rees, G. N. Prey amino acid composition affects rates of protein synthesis and N wastage of a freshwater carnivore. Mar. Freshw. Res. 71, 229–237. https://doi.org/10.1071/MF18410 (2020).Article 
    CAS 

    Google Scholar 
    Kremen, N. et al. Body composition and amino acid concentrations of select birds and mammals consumed by cats in northern and central California. J. Anim. Sci. 91, 1270–1276 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goodman-Lowe, G., Carpenter, J., Atkinson, S. & Ako, H. Nutrient, fatty acid, amino acid and mineral analysis of natural prey of the Hawaiian monk seal, Monachus schauinslandi. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 123, 137–146 (1999).Article 
    CAS 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J., Rees, G. N., Shackleton, M. & Silvester, E. A predicted change in the amino acid landscapes available to freshwater carnivores. Freshw. Sci. 37, 000–000 (2018).Article 

    Google Scholar 
    Kolmakova, A. A. et al. Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river. Freshw. Biol. 58, 2180–2195. https://doi.org/10.1111/fwb.12200 (2013).Article 
    CAS 

    Google Scholar 
    Thera, J. C., Kidd, K. A. & Bertolo, R. F. Amino acids in freshwater food webs: Assessing their variability among taxa, trophic levels, and systems. Freshw. Biol. 65, 1101–1113 (2020).Article 
    CAS 

    Google Scholar 
    Fargallo, J. A., Navarro-López, J., Palma-Granados, P. & Nieto, R. M. Foraging strategy of a carnivorous-insectivorous raptor species based on prey size, capturability and nutritional components. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    Shakya, M., Silvester, E., Holland, A. & Rees, G. Taxonomic, seasonal and spatial variation in the amino acid profile of freshwater macroinvertebrates. Aquat. Sci. 83, 1–15 (2021).Article 

    Google Scholar 
    Martinez, J. B., Chatzifotis, S., Divanach, P. & Takeuchi, T. Effect of dietary taurine supplementation on growth performance and feed selection of sea bass Dicentrarchus labrax fry fed with demand-feeders. Fish. Sci. 70, 74–79 (2004).Article 

    Google Scholar 
    Yamamoto, T. et al. Self-selection and feed consumption of diets with a complete amino acid composition and a composition deficient in either methionine or lysine by rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res. 32, 83–91 (2001).Article 
    CAS 

    Google Scholar 
    Dabrowski, K., Arslan, M., Terjesen, B. F. & Zhang, Y. The effect of dietary indispensable amino acid imbalances on feed intake: Is there a sensing of deficiency and neural signaling present in fish?. Aquaculture 268, 136–142. https://doi.org/10.1016/j.aquaculture.2007.04.065 (2007).Article 
    CAS 

    Google Scholar 
    Caprio, J. Olfaction and taste in the channel catfish: An electrophysiological study of the responses to amino acids and derivatives. J. Comp. Physiol. 123, 357–371 (1978).Article 

    Google Scholar 
    Hazlett, B. A. Crayfish feeding responses to zebra mussels depend on microorganisms and learning. J. Chem. Ecol. 20, 2623–2630. https://doi.org/10.1007/bf02036196 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gietzen, D. W. & Aja, S. M. The brain’s response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol. Neurobiol. 46, 332–348. https://doi.org/10.1007/s12035-012-8283-8 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rees, G. N., Shackleton, M. E., Watson, G. O., Dwyer, G. K. & Stoffels, R. J. Metabarcoding demonstrates dietary niche partitioning in two coexisting blackfish species. Mar. Freshw. Res. 71, 512–517 (2020).Article 
    CAS 

    Google Scholar 
    Antoine, F., Wei, C., Littell, R. & Marshall, M. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 47, 5100–5107 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Santana-Garcon, J. Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecol. Lett. 18, 66–73 (2015).Article 
    PubMed 

    Google Scholar 
    Fountoulakis, M. & Lahm, H.-W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826, 109–134 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    McArdle, B. H. When are rare species not there?. Oikos 57, 276–277 (1990).Article 

    Google Scholar 
    Machovsky-Capuska, G. E., Coogan, S. C., Simpson, S. J. & Raubenheimer, D. Motive for killing: What drives prey choice in wild predators?. Ethology 122, 703–711 (2016).Article 

    Google Scholar 
    Tait, A. H., Raubenheimer, D., Stockin, K. A., Merriman, M. & Machovsky-Capuska, G. E. Nutritional geometry and macronutrient variation in the diets of gannets: The challenges in marine field studies. Mar. Biol. 161, 2791–2801 (2014).Article 
    CAS 

    Google Scholar 
    Bosch, G., Hagen-Plantinga, E. A. & Hendriks, W. H. Dietary nutrient profiles of wild wolves: Insights for optimal dog nutrition?. Br. J. Nutr. 113, S40–S54 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Machovsky-Capuska, G. E., Senior, A. M., Simpson, S. J. & Raubenheimer, D. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355–365 (2016).Article 
    PubMed 

    Google Scholar 
    Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–2218. https://doi.org/10.1098/rspb.2011.2410 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).Article 
    PubMed 

    Google Scholar 
    Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: Implications for nutrient recycling. Ecology 78, 1816–1831 (1997).Article 

    Google Scholar 
    Morosinotto, C., Villers, A., Varjonen, R. & Korpimäki, E. Food supplementation and predation risk in harsh climate: Interactive effects on abundance and body condition of tit species. Oikos 126, 863–873. https://doi.org/10.1111/oik.03476 (2017).Article 

    Google Scholar 
    Österblom, H., Olsson, O., Blenckner, T. & Furness, R. W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).Article 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J. & Pridmore, P. A. Morphology, metabolism and behaviour: responses of three fishes with different lifestyles to acute hypoxia. Freshw. Biol. 59, 819–831. https://doi.org/10.1111/fwb.12306 (2014).Article 
    CAS 

    Google Scholar 
    Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 11034 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ip, Y. K., Lim, C. K., Lee, S. L., Wong, W. P. & Chew, S. F. Postprandial increases in nitrogenous excretion and urea synthesis in the giant mudskipper Periophthalmodon schlosseri. J. Exp. Biol. 207, 3015–3023 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilkie, M. P. Mechanisms of ammonia excretion across fish gills. Comp. Biochem. Physiol. A Physiol. 118, 39–50 (1997).Article 

    Google Scholar 
    Yamamoto, T. et al. Self-selection of diets with different amino acid profiles by rainbow trout (Oncorhynchus mykiss). Aquaculture 187, 375–386 (2000).Article 
    CAS 

    Google Scholar 
    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. J. P. B. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 8, e1000412 (2010).
    Google Scholar  More

  • in

    A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen

    Global genetic structure of the pathogen tracks the historical spread of wheatWe assessed the evolutionary trajectory of the pathogen in conjunction with the history of global wheat cultivation (Fig. 1a). For this, we assembled a worldwide collection of Z. tritici isolates from naturally infected fields (Fig. 1b). We selected isolates covering most wheat production areas, both in the center of origin of the crop (i.e., the Fertile Crescent in the Middle East), and in areas where wheat was introduced during the last millennia (i.e., Europe and North Africa), or last centuries (i.e., the Americas and Oceania; Fig. 1c). We called variants in a set of 1109 high-quality short-read resequencing datasets (Supplementary Data 1, 2) covering 42 countries and a broad range of climates. Using a joint genotyping approach, we produced raw variant calls mapped to the telomere-to-telomere assembled reference genome IPO323. To assess genotyping accuracy, we used eight isolates with replicate sequencing data to analyze discrepancies. We adjusted quality thresholds targeting specifically the type of genotyping errors observed in our data set (Fig. S1). The improved filtering yielded 8,406,818 high-confidence short variants (short indels and SNPs). The final variant set included 5,578,488 biallelic SNPs corresponding to 14.1% of the genome.Fig. 1: Global sampling of the wheat pathogen Zymoseptoria tritici retracing the historical spread of its host.a Schematic representation of the introduction of wheat across continents. b Septoria tritici blotch symptoms caused by Z. tritici on wheat leaves. Pictures taken by B. A. McDonald, ETH Zurich. c Map of the sampling scheme for the global collection of 1109 isolates for whole-genome sequencing.Full size imageWe tested whether global diversity patterns of pathogen populations are likely a consequence of the history of wheat cultivation. We first performed unsupervised clustering of genotypes and identified eleven well-supported clusters (Fig. 2a, Figs. S2,3). Over 90% of the genotypes were clearly assigned to a single cluster (Fig. 2a, Supplementary Data 3). Two clusters were identified among genotypes originating from the pathogen center of origin, distinguishing collections from Iran and Middle Eastern regions. Genotypes from Africa and Europe split into two distinct genetic clusters without any apparent secondary structure within clusters. This lack of any fine-scale structure is remarkable given the extensive geographic sampling of European genotypes and suggests extensive gene flow within the continent. Genotypes from Oceania grouped into three distinct clusters marked by collections from Tasmania, the Australian mainland, and New Zealand. Genotypes from North America formed two clusters along a North-South separation. Finally, South American genotypes formed two clusters split along the Andes (Chile versus Argentina and Uruguay). Some uncertainty exists in the assessment of regional population structure by low coverage of major wheat-producing countries such as Russia and Ukraine. Septoria tritici blotch is only sporadically reported in China. In complementary analyses, we found that a phylogenetic network accounting for the high frequency of recombination consistently reflected the global population structure (Fig. S4). A principal component analysis of all genotypes confirmed the nested genetic structure with differentiation at the continent level, subdivisions within some continents and the existence of admixed genotypes (Fig. 2b, Fig. S5).Fig. 2: Global genetic structure based on 1109 genomes.a Map of the genetic clustering based on a thinned genome-wide SNP dataset using sNMF. Each color represents a different genetic cluster, and the sizes of the slices represent the average attribution to the cluster across the isolates from each location. Fractions representing less than 10% of all genotypes of a location were colored in grey to improve clarity. The large pie chart outside of the map represents the proportion of isolates assigned clearly (≥75%) to a single genetic cluster (pure; in teal) and isolates identified as hybrids (admixed) between clusters (in yellow). Names of the clusters include an abbreviation of continents and a more precise geographical location (MEA: Middle East and Africa; NA: North America; SA: South America; OC: Oceania). b Principal component analysis, showing the first and second component (PCs) based on a subset of variants. Colors and shapes indicate the genomic clusters identified with the sNMF method (with hybrids in grey). The marginal distributions represent the distribution for each PC. PCs 1 to 8 are shown in Fig S4. c Population tree based on Treemix, rooted using two genomes from the sister species Z. passerinii and Z. ardabiliae. The colors are the same as in the previous panels and only samples which were fully assigned to a cluster were used. d Diversity estimated with using pi per genetic cluster. The boxplots are ordered according to the tree of panel. c. The lower and upper hinges correspond to the first and third quartiles, the whiskers to the largest value are within 1.5 times the inter-quartile range, and the central horizontal line defines the median. e Linkage disequilibrium (r2) between variants per genetic cluster. Colors are identical among panels.Full size imageWe analyzed the history of population splits and admixture using allele frequency information (Fig. 2c). The analyses largely supported a genetic structure shaped by the introduction of wheat across continents. The historical relationships between clusters show an early divergence of the Middle Eastern and North African clusters matching the early introduction of agriculture in these regions. Populations in Europe and the Americas share a similar time point of divergence consistent with extensive contributions of European genotypes to the Western hemisphere. Oceanian groups have diverged as a single branch from genotypes most closely related to extant European populations. Matching the introduction of wheat to Oceania from the European continent, the Australian and New Zealand pathogen populations share a common origin rooted in European genetic diversity. Populations from Australia show also a striking loss of diversity and higher linkage disequilibrium compared to European diversity consistent with a significant founder effect (Fig. 2d, e). Similarly, populations in South and North America have reduced genetic diversity compared to extant European populations as suggested previously based on Sanger sequencing16. The highest diversity was found in populations from Africa and the Middle East closest to the center of origin. Overall, the global genetic structure of the pathogen reveals multiple founder events associated with the introduction of wheat to new continents.Ongoing gene flow among regions should lead to admixed genotypes. We found that nearly 10% of all analyzed genotypes showed contributions from at least two clusters. The most significant recent gene flow was detected between Middle Eastern/North African clusters and European clusters in North Africa (i.e., Algeria and Tunisia) as well as Southern and Eastern Europe (i.e., France, Italy, Hungary, Ukraine, Portugal, and Spain; Supplementary Data 3). We found a particularly high incidence of recent immigration in a durum wheat population in the south of France. The population consisted only of hybrids or atypical genotypes suggesting either recent migration from North Africa or host specialization on durum wheat varieties. Additionally, we found hybrid genotypes with European ancestry in both North America and in Oceania. The relatively balanced ancestry proportions in these hybrids suggest very recent gene flow dating back to only a few generations. We further investigated past gene flow between clusters by allowing Treemix to infer migration events, thus creating a population network (Fig. S6a–d). Three distinct recent migration events were best explaining the data with specific migration routes from the Middle East/African clusters to North America, from an Australian cluster to South America and between two Oceanian clusters (Fig. S6d). However, the migration events did not affect the overall shape of the inferred population tree (Fig. 2c, Fig. S6b–d). To better understand effects of long-distance gene flow, we investigated the relationship between relatedness among genotypes (i.e., identity-by-state) and geographic distance. At the continent level, we observed a negative relationship between identity-by-state and geographic distance (Fig. S7). The wide distribution of identity-by-state values shows that although closely related isolates tend to be found at closer geographic distance, distantly related isolates can be found at both far and close geographic distances. Long-distance migration events are most likely caused by international trade similar as for other crop pathogens17,18,19. In combination, our findings show an important role of long-distance dispersal impacting the genetic make-up of populations from individual fields to continental scale genetic diversity.Relaxation of genomic defenses against transposable elements concurrent with global spreadTransposable elements (TEs) are drivers of genome evolution. In Z. tritici, TE activity created beneficial mutations for fungicide resistance and virulence on the wheat host20,21. Rapid recent adaptation of the pathogen has benefitted from the activity of TEs with consequences for genome size22. Unchecked transposition of TEs can be deleterious and an array of defenses mechanisms has evolved to counteract their activity both at the genomic and epigenetic level including targeted mutations and silencing23. To analyze the effectiveness of genomic defenses against active TEs, we screened all genomes for evidence of TE insertions. We mapped short-read sequencing data on the reference genome and a species-specific TE sequence library. We classified evidence for TEs in each of the analyzed isolates as reference TEs (i.e. also present in the reference genome) and non-reference TE (i.e. absent). Detected TEs among isolates were binned into loci (width 100 bp) to account for uncertainties about the precise mapping of the insertion point. We found that the frequency spectrum of TE insertions is heavily skewed towards low frequencies with 77% of TE insertions being found in single isolates (~0.1% frequency) and 96% of insertions were found in ten or fewer isolates ( More

  • in

    Enzyme adaptation to habitat thermal legacy shapes the thermal plasticity of marine microbiomes

    Extraction of total active proteomes from sediment samplesWe sampled 14 sediments along the coastlines of the Irish Sea, the Mediterranean Sea, and the Red Sea (from 16°N to 53°N), applying uniform sampling and storage procedures. Location details and sediment temperature fluctuations are summarized in Supplementary Table S1. We collected sediments (5 Kg) in triplicate and extracted the total proteins using a well-established microbial detachment procedure67, with some modifications. We mixed 100 g of sediment with 300 ml of sterilized saline solution (5 mM sodium pyrophosphate and 35 g L−1 of NaCl) containing 150 mg L−1 of Tween 80 (from Merck Life Science S.L.U., Madrid, Spain) in an ice water bath. After re-suspension, samples were kept in a water bath ultra-sonicator (Bandelin SONOREX, Berlin, Germany) on ice and sonicated (60 W output) for 120 min. We repeated this procedure twice, with an ice water bath incubation of 60 min between each cycle. We then centrifuged the samples at 500 g for 15 min at 4 °C to remove the sediments in a centrifuge 5810 R (Eppendorf AG, Hamburg, Germany). Supernatants were carefully transferred to a new tube, minimizing disruption of the sediments, and the resulting supernatants were centrifuged at 13,000 g for 15 min at 4 °C to produce microbial cell pellets. We used the resulting cell mix to extract the total protein by mixing the cells with 1.2 ml BugBuster® Protein Extraction Reagent (Novagen, Darmstadt, Germany) for 30 min with shaking (250 rpm). Subsequently, samples were disrupted by sonication using a pin Sonicator® 3000 (Misonix, New Highway Farmingdale, NY, USA) for a total time of 2 min (10 watts) on ice (4 cycles × 0.5 min with 1 min ice-cooling between each cycle). Extracts were centrifuged for 10 min at 12,000 g at 4 °C to separate cellular debris and intact cells. Supernatants were carefully aspirated (to avoid disturbing the pellet), transferred to new tubes, and stored at –80 °C until use. The protein solution was filtered at 15 °C for 7 h using Vivaspin filters (Sartorius, Goettingen, Germany) with a molecular weight (MW) cut-off of 3,000 Da to concentrate the proteins up to a final concentration of 10 mg ml−1, according to the Bradford Protein Assay (Bio-Rad Laboratories, S.A., Madrid, Spain)68. The average total amount of proteins extracted per each 100 g of sediment was 612 µg (interquartile range, 31 µg, see details in Supplementary Fig. S2). In all cases, extensive dialysis of protein solutions against 40 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer was performed using a Pur-A-LyzerTM Maxi 1200 dialysis kit (Merck Life Science S.L.U., Madrid, Spain)69, and active proteins stored at a concentration of 10 mg ml−1at –86 °C until use. As reported previously70, 2DE was performed using GE Healthcare reagents and equipment, 11 cm IPG strips in the pH range of 3–10 and molecular weight ranging from 10 to 250 kDa (Precision Plus Protein Dual Color Standards #1610374, Bio-Rad Laboratories, S.A., Madrid, Spain). The 2-DE was performed using a validated pooling strategy71, in which proteins extracted from three independent biological replicates (i.e., sediments) were mixed in equal amounts and a total of 150 µg of protein were further loaded per gel. Staining was performed with SYPRO Ruby Protein Gel Stain (Invitrogen, Waltham, MA, USA). The two-dimensional SDS-PAGE (12% acrylamide) gels of extracted proteins are reported in Supplementary Fig. S2 (original gels in Source Data). The same protocol was applied to extract and analyse by SDS-PAGE the total active proteins extracted from sediment samples with different temperature variability levels (HTV, ITV, and LTV) collected in the Red Sea (Supplementary Table S4). The total amount of protein extracted per each 100 g of sediment is given in Supplementary Table S8. Coomassie-stained one-dimension SDS-PAGE (1-DE) gels of extracted proteins are shown in Supplementary Fig. S9 (original gel in Source Data).Source, expression and purification of esterases and EXDOs from a wide geographical rangeWe recovered 83 enzymes (78 esterases and 5 EXDO) from microbial communities inhabiting marine sediments across ten distinct locations from the latitudinal transect described above: Ancona harbour (Anc), Priolo Gargallo (Pri), Gulf of Genoa, Messina harbour (Mes), Milazo harbour (Mil), Mar Chica lagoon (MCh), Bizerte lagoon (Biz), El-Max site (ElMax), Gulf of Aqaba (Aq), and Menai Strait (MS); further details are provided in Supplementary Data S3. Sources of the enzymes were the corresponding shotgun metagenomes (see Supplementary Table S3) and the metagenome clone libraries generated from the extracted DNA71. The sediment sample from the Gulf of Genoa was not used for activity tests and metaproteome analysis because no raw sample material was available; however, because of the possibility to access its shotgun metagenome (see Supplementary Table S3) and a metagenome clone library72, we used the sample for screening esterases to incorporate an additional latitude in our transect. In the case of Menai Strait (Irish Sea), five additional esterases were retrieved from a metagenome obtained from enriched cultures prepared with samples collected on 22nd June 2019 from Menai Strait (School of Ocean Sciences, Bangor University, St. George’s Pier, Menai Bridge, N53°13′31.3″; W4°09′33.3”). The water temperature was 14 °C and the salinity was 32 p.s.u. Two enrichment cultures were set up at 20 °C: (i) SW: seawater enrichment with 0.1% lignin; the enrichment was set up using 50 ml of the sample as inoculum with the addition of 0.1% lignin (Sigma-Aldrich, Gillingham, United Kingdom) (w/v); (ii) AW: algal surface wash-off in seawater, enriched with 0.1% lignin; the enrichment was set up using 50 ml of surface wash-off after mixing of ca. 10 g of Fucus (brown algae) in the seawater and removal of plant tissue, 0.1% lignin (w/v) was added. After 92 days of incubation, 5 ml of each enrichment cultures were transferred into the new flask containing 45 ml autoclaved and filtered seawater with 0.1% lignin. This procedure was repeated on days 185 and 260, and the incubation was stopped on day 365. The DNA was extracted using 12 months using MetaGnome extraction kit (EpiCentre, Biotechnologies, Madison, WI, USA), sequenced on Illumina MiSeq™ platform (Illumina Inc., San Diego, CA, USA) using paired-end 250 bp reads at the Centre for Environmental Biotechnology (Bangor, UK), and sequencing reads were processed and analysed as described previously73.The screening, cloning and activity of a subset of 35 identified esterases have been reported previously72. The remaining 48 enzymes are reported for the first time in this study and were identified using naive and in silico metagenomic approaches, as detailed below. The environmental site from which each enzyme originated and the method employed for its identification are detailed in Supplementary Data S3. For naive screens addressing the recovery of new sequences encoding esterases and EXDO, the large-insert pCCFOS1 fosmid libraries made using the corresponding DNA samples, the CopyControl Fosmid Library Kit (Epicentre Biotechnologies, Madison, WI, USA) and the Escherichia coli EPI300-T1R strain were used. The nucleic acid extraction, construction and the functional screens of such libraries have been previously described72. In brief, fosmid clones were plated onto large (22.5 × 22.5 cm) Petri plates with Luria Bertani (LB) agar containing chloramphenicol (12.5 µg ml−1) and induction solution (Epicentre Biotechnologies; WI, USA), at a quantity recommended by the supplier to induce a high fosmid copy number. Clones were scored by the ability to hydrolyze α-naphthyl acetate and tributyrin (for esterase activity), and catechol (for EXDO activity)72,74. Positive clones presumed to contain esterases and EXDOs were selected, and their DNA inserts were sequenced using a MiSeq Sequencing System (Illumina, San Diego, USA) with a 2 × 150-bp sequencing v2 kit at Lifesequencing S.L. (Valencia, Spain). After sequencing, the reads were quality-filtered and assembled to generate nonredundant meta-sequences, and genes were predicted and annotated via BLASTP and the PSI-BLAST tool72. For in silico screens, addressing the recovery of new sequences encoding esterases, the predicted protein-coding genes, obtained after the sequencing of DNA material from resident microbial communities in each of the samples, were used. The meta-sequences are available from the National Center for Biotechnology Information (NCBI) nonredundant public database (accession numbers reported in Supplementary Data S3). Protein-coding genes identified from the DNA inserts of positive clones (naive screen) or from the meta-sequences were screened for enzymes of interest using the Blastp algorithm via the DIAMOND v2.0.9 program with default parameters (percentage of identity ≥60%; alignment length ≥70; e-value ≤1e−5)29, against the Lipase Engineering sequence databases (to screen for esterases) and AromaDeg database (for EXDO)74. Since the collection of sediments across locations experiencing different MATs was limited by our sampling capacity, to expand our range of exploration at a global scale and to validate our dataset, we added our single enzyme analysis to the seawater metagenomes retrieved from the Tara Ocean Expedition database (accession number in Supplementary Data S4). Due to the volume of sequences generated, this database provides access to a large number of enzymes, including those studied here through homology search. Esterases were selected as target sequences, and the following pipeline was used. First, we selected a sequence encoding an esterase reported as one of the most substrate-ambiguous esterases out of 145 tested (EH1, Protein Data Bank acc. nr. 5JD4) and well-distributed in the marine environment72. Second, we performed a homology search of this sequence against the Tara Ocean metagenome21 to retrieve similar sequences, using the Blastp algorithm via the DIAMOND v2.0.9 program30 (e-value 98% using SDS-PAGE analysis in a Mini PROTEAN electrophoresis system (Bio-Rad Laboratories, S.A., Madrid, Spain). Purified protein was stored at –86 °C until use at a concentration of 10 mg ml−1 in 40 mM HEPES buffer (pH 7.0). A total of approximately 5–40 mg of total purified recombinant protein was obtained from 1 L of culture. Supplementary Fig. S1 illustrates a schematic representation of the pipeline implemented in this work to investigate enzyme activities in a large set of marine samples, starting from samples collected (sediments) and available metagenomes.Enzyme activity assessmentsAll substrates used for activity tests were of the highest purity and, if not indicated otherwise, were obtained from Merck Life Science S.L.U. (Madrid, Spain): 4-nitrophenyl-propionate (ref. MFCD00024664), 4-nitrophenyl phosphate (ref. 487663), 4-nitrophenyl β-D-galactose (ref. N1252), bis(p-nitrophenyl) phosphate (ref. 123943), benzaldehyde (ref. B1334), 2-(4-nitrophenyl)ethan-1-amine (ref. 184802-5G), pyridoxal phosphate (ref. P9255), acetophenone (ref. A10701), NADPH (ref. N5130) and catechol (ref. PHL82372). We directly tested total protein extracts for esterase, phosphatase, beta-galactosidase, and nuclease activity using 4-nitrophenyl-propionate, 4-nitrophenyl phosphate, 4-nitrophenyl β-D-galactose, and bis(p-nitrophenyl) phosphate, respectively, by following the production of 4-nitrophenol at 348 nm (extinction coefficient [ε], 4147 M−1 cm−1), as previously described69. For determination: [total protein]: 5 μg ml−1; [substrate]: 0.8 mM; reaction volume: 200 μl; T: 4–85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). The hydrolysis of 4-nitrophenyl-propionate was used to determine, under these standard conditions, the effects of temperature on the purified esterase. Transaminase activity was determined using benzaldehyde as amine acceptor, 2-(4-nitrophenyl)ethan-1-amine as amine donor, and pyridoxal phosphate as a cofactor, by following the production of a colour amine at 600 nm (extinction coefficient, 537 M−1 cm−1), as previously described75. For determination, [total protein]: 5 μg ml−1; [substrates]: 25 mM; [pyridoxal phosphate]: 1 mM; reaction volume: 200 μL; T: 4-85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). Aldo-keto reductase activity was determined using acetophenone as a substrate and NADPH as a cofactor, by following the consumption of NADPH at 340 nm (extinction coefficient, 6220 M−1 cm−1), as described76. For determination, [total protein]: 5 μg ml−1; [substrate]: 1 mM; [cofactor]: 1 mM; reaction volume: 200 μL; T: 4–85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). We determined EXDO activity using catechol as substrate, by following the increase of absorbance at 375 nm of the ring fission products (extinction coefficient, 36000 M−1 cm−1), as previously described74. For determination, [protein]: 5 μg ml−1; [catechol]: 0.5 mM; reaction volume: 200 μL; T: 4–85 °C; and pH: 8.0 (50 mM Tris-HCl buffer). The hydrolysis of catechol was used to determine, under these standard conditions, the effects of temperature on the purified EXDOs. All measurements were performed in 96-well plates (ref. 655801, Greiner Bio-One GmbH, Kremsmünster, Austria), in biological triplicates over 180 min in a Synergy HT Multi-Mode Microplate Reader (Biotek Instruments, Winooski, VT, USA) in continuous mode (measurements every 30 s) and determining the absorbance per minute from the slopes generated and applying the formula (1). All values were corrected for nonenzymatic transformation.$${Rate}left(frac{mu {mol}}{{{min }}{mg},{protein}}right)= frac{frac{triangle {{{{{rm{Abs}}}}}}}{{{min }}}}{{{{{{rm{varepsilon }}}}}},{{{{{rm{M}}}}}}-1{{{{{rm{cm}}}}}}-1}*frac{1}{0.4,{cm}}*frac{{10}^{6},mu M}{1{{{{{rm{M}}}}}}}\ *0.0002,L*frac{1}{{mg},{protein}}$$
    (1)
    Shotgun proteomicsProteomics was performed by using total active proteins (extracted as above), which were then subjected to protein precipitation, protein digestion and Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometric (LC-ESI-MS/MS) analysis, as previously described77. High-quality reference metagenomes corresponding to each sample (BioProject number in Supplementary Table S3) were used for protein calling, with a threshold of only one identified peptide per protein identification because False Discovery Rates (FDR) controlled experiments counter-intuitively suffer from the two-peptide rule. The confidence interval for protein identification was set to ≥95% (p  50 °C for which the second phase transition was chosen to focus on the decomposition of the core. It is important to note that applying CNA to MD simulations at room temperature may lead to an evening out of Tp values for esterases that transition around this temperature, i.e., systems with a Tp at or below room temperature might all be influenced similarly by loosening their bonding network. By contrast, systems with a transition temperature at or above room temperature would still be discriminated against. The data generated in this study for analyzing Tp values have been deposited at researchdata.hhu.de under accession code DOI: 10.25838/d5p-42101 [https://doi.org/10.25838/d5p-42].Relationship of temperature-induced changes in enzymeRelationship between MAT and enzyme response to temperature (i.e., Topt, Td and Tp) were evaluated by performing linear regression in R. In the case of enzymes retrieved from the Tara ocean dataset we calculated first the break point (flexus) using the package segmented in R102 and then we computed separately the linear model describing the two linear regressions before and after the breakpoint. To evaluate the possible relation between enzyme thermal response and other environmental parameters, salinity and pH data were retrieved from Bio-ORACLE52 using GPS coordinates of each location.Environmental characterization and sediment collection from different temperature variability levels in the Red SeaWe recorded the temperatures of surface sediments from March 2015 to September 2016 along the coast of the Red Sea using HOBO data loggers (Onset, USA) in nine stations located at 3, 25, and 50 m depth. Details on the location, depth and temperature fluctuations of the studied sediments are reported in Supplementary Table S4 and Source Data. We first assess the differences in the homogeneity of the temperature variance in the three types of sediments to evaluate the magnitude of thermal variation and then we test the difference among their MATs using a non-parametric ANOVA (Dunnett’s multiple comparisons tests). We identified three different levels of temperature variability (Fig. 3a–c; Supplementary Table S5): high, intermediate, and low thermal variability (HTV, ITV, and LTV, respectively), where sediments experienced temperature variations of 12.8 °C, 8.8 °C, and 6.7 °C, respectively. From each station, we sampled 200 g of surface sediment (0–5 cm depth) in triplicate in August and December 2015 with a Van der Venn grab (1 dm3) equipped with a MicroCat 250 Seabird CTD (Conductivity, Temperature, Depth), which was assembled on board the research vessel R/V Explorer (KAUST). During sampling, we measured the temperature of the sediments and the water layer covering the sediments using a digital thermometer and the CTD, respectively. We conducted all sampling in compliance with the guidelines specified by KAUST and Saudi Arabian authorities.Sediment processing for analysis of bacterial communitiesFrom each sample (in triplicate), we immediately removed subsamples of sediment (n = 54, ~10 g) and stored them at –20 °C for molecular analysis. Separately, sediment 25 ± 1 g was transferred to 50 ml tubes and added 30 ml of filtered (0.2 µm) water from the Red Sea. The tubes were shaken at 500 rpm for one hour and then centrifuged them at 300 g for 15 min to detach the microbial cells in the sediments without affecting their vitality103,104. The supernatant containing the extracted cells was collected in sterile tubes and was immediately used to measure microbial growth rates.Evaluation of bacterial growth in sediments at different temperaturesWe evaluated the microbial growth rate of the heterotrophic community extracted from the sediments under HTV, ITV, and LTV at 10 °C, 20 °C, 30 °C, 40 °C and 50 °C, using Marine Broth as the cultivation medium (Zobell Marine Broth 2216) supplemented with 0.1 g/L cycloheximide; a rich-medium was selected to avoid the nutrient limitation effect that can affect bacterial physiology63,105. We inoculated 96-well plates with 200 µl of cultivation medium and 25 µl of the cell suspension extracted from the sediments. We inoculated the three biological replicates from each station and each level of temperature variability in eight wells, giving a total of 72 wells for each plate, with 24 wells used as a negative control inoculated with water. We assembled a total of three plates for each incubation temperature from August and December. Plates were spectrophotometrically measured at 3 h intervals using an optical density of 600 nm (Spectramax® M5) for 72 h. Wells with optical density 90%) for further analysis (Supplementary Tables S9 and S10). We calculated the compositional similarity matrix (Bray-Curtis of the log-transformed OTU table) with Primer 6109. Using the same software, canonical analysis of principal coordinates (CAP)110 was used to compare the temperature variability samples (temperature variability levels: HTV, ITV, and LTV; season levels: August and December) based on the compositional similarity matrix. We applied permutational multivariate analyses of variance to the matrix (PERMANOVA; main and multiple comparison tests). We tested the occurrence of thermal-decay patterns in sediments with different temperature variability levels using linear regression (Prism 9.2 software, La Jolla California USA, www.graphpad.com) between the bacterial community similarities (Bray-Curtis) and the temperature differences among sediments (∆T°C) at the time of sampling. We calculated alphadiversity indices (richness and evenness) using the paleontological statistics (PAST) software, and their correlation with temperature was modelled using linear regression in Prism 9.2. Spearman correlation among temperature and relative abundance of OTUs within each sediment sample was evaluated; OTUs were classified based on their positive (enriched) and negative (depleted) correlation with sediment temperature.Reporting summaryFurther information on research design is available in the Nature Portfolio Reporting Summary linked to this article. More

  • in

    Seasonal activities of the phyllosphere microbiome of perennial crops

    Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes. Sci. (80-.) 356, 1–9 (2017).Article 

    Google Scholar 
    Ma, L. et al. The impact of stand age and fertilization on the soil microbiome of Miscanthus × giganteus. Phytobiomes J. 5, 51–59 (2021).Article 

    Google Scholar 
    Hestrin, R., Lee, M. R., Whitaker, B. K. & Pett-Ridge, J. The switchgrass microbiome: a review of structure, function, and taxonomic distribution. Phytobiomes J. 5, 14–28 (2021).Article 

    Google Scholar 
    Heaton, E. A., Dohleman, F. G. & Long, S. P. Meeting US biofuel goals with less land: The potential of Miscanthus. Glob. Chang. Biol. 14, 2000–2014 (2008).Article 
    ADS 

    Google Scholar 
    Langholtz, M., Stokes, B. & Eaton, L. 2016 billion-ton report: Advancing domestic resources for a thriving bioeconomy (Executive Summary). Ind. Biotechnol. 12, 282–289 (2016).Article 

    Google Scholar 
    Roley, S. S. et al. Associative nitrogen fixation (ANF) across a nitrogen input gradient. PLoS One 13, 1–19 (2018).Article 

    Google Scholar 
    Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 
    PubMed 

    Google Scholar 
    Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, 1–14 (2017).Article 

    Google Scholar 
    Wang, N. R. & Haney, C. H. Harnessing the genetic potential of the plant microbiome. Biochem. (Lond.) 42, 20–25 (2020).Article 
    CAS 

    Google Scholar 
    Haskett, T. L., Tkacz, A. & Poole, P. S. Engineering rhizobacteria for sustainable agriculture. ISME J. 15, 949–964 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gopal, M. & Gupta, A. Microbiome selection could spur next-generation plant breeding strategies. Front. Microbiol. 7, 1971 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hardoim, P. R. et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, J. H. & Harris, R. F. The ecology and biogeography of microorganisms on plant surfaces. Annu. Rev. Phytopathol. 38, 145–180 (2000).Article 
    PubMed 

    Google Scholar 
    Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 50, 120215–034952 (2016).Article 

    Google Scholar 
    Kuzyakov, Y. & Razavi, B. S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 135, 343–360 (2019).Article 
    CAS 

    Google Scholar 
    Bell, T. H. et al. Manipulating wild and tamed phytobiomes: Challenges and opportunities. Phytobiomes J. 3, 3–21 (2019).Article 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580, 653–657 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Koskella, B. The phyllosphere. Curr. Biol. 30, R1143–R1146 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Environ. Microbiol. 69, 1875–1883 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bringel, F. & Couée, I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 6, 486 (2015).Dorokhov, Y. L., Sheshukova, E. V. & Komarova, T. V. Methanol in plant life. Front. Plant Sci. 871, 1–6 (2018).
    Google Scholar 
    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peñuelas, J. & Terradas, J. The foliar microbiome. Trends Plant Sci. 19, 278–280 (2014).Article 
    PubMed 

    Google Scholar 
    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl Acad. Sci. USA. 112, E911–E920 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. 115, E4284–E4293 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).Article 
    PubMed 

    Google Scholar 
    Stopnisek, N. & Shade, A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 15, 2708–2722 (2021).Grady, K. L., Sorensen, J. W., Stopnisek, N., Guittar, J. & Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 10, 4135 (2019).Singer, E., Bonnette, J., Kenaley, S. C., Woyke, T. & Juenger, T. E. Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environ. Microbiol. Rep. 11, 185–195 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bahulikar, R. A., Torres-Jerez, I., Worley, E., Craven, K. & Udvardi, M. K. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of Northern Oklahoma. Appl. Environ. Microbiol. 80, 5636–5643 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roley, S. S., Xue, C., Hamilton, S. K., Tiedje, J. M. & Robertson, G. P. Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biol. Biochem. 129, 90–98 (2019).Article 
    CAS 

    Google Scholar 
    Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yoon, S. H., Ha, S. M., Lim, J., Kwon, S. & Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van. Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 110, 1281–1286 (2017).Article 
    CAS 

    Google Scholar 
    Julsing, M. K., Rijpkema, M., Woerdenbag, H. J., Quax, W. J. & Kayser, O. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Appl. Microbiol. Biotechnol. 75, 1377–1384 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laskowska, E. & Kuczyńska-Wiśnik, D. New insight into the mechanisms protecting bacteria during desiccation. Curr. Genet. 66, 313–318 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zou, H. et al. The metabolism and biotechnological application of betaine in microorganism. Appl. Microbiol. Biotechnol. 100, 3865–3876 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rastogi, G., Coaker, G. L. & Leveau, J. H. J. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol. Lett. 348, 1–10 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Urrejola, C. et al. Genomic features for desiccation tolerance and sugar biosynthesis in the extremophile gloeocapsopsis sp. UTEX B3054. Front. Microbiol. 10, 1–11 (2019).Article 

    Google Scholar 
    Lacerda-Júnior, G. V. et al. Land use and seasonal effects on the soil microbiome of a Brazilian dry forest. Front. Microbiol. 10, 1–14 (2019).Article 

    Google Scholar 
    Dai, J. et al. Unraveling adaptation of Pontibacter korlensis to radiation and infertility in desert through complete genome and comparative transcriptomic analysis. Sci. Rep. 5, 1–9 (2015).Article 

    Google Scholar 
    Harty, C. E. et al. Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in Pseudomonas aeruginosa. J. Bacteriol. 201, 1–21 (2019).Kimmerer, T. W. & MacDonald, R. C. Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiol. 84, 1204–1209 (1987).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferner, E., Rennenberg, H. & Kreuzwieser, J. Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species. Tree Physiol. 32, 135–145 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kimmerer, T. W. & Kozlowski, T. T. Ethylene, ethane, acetaldehyde, and ethanol production by plants under stress. Plant Physiol. 69, 840–847 (1982).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y. et al. Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters. Biotechnol. Biofuels 8, 1–18 (2015).Article 

    Google Scholar 
    Wingler, A. et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol. 158, 1241–1251 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gottschlich, L., Geiser, P., Bortfeld-Miller, M., Field, C. M. & Vorholt, J. A. Complex general stress response regulation in Sphingomonas melonis Fr1 revealed by transcriptional analyses. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Chen, C., Li, S., McKeever, D. R. & Beattie, G. A. The widespread plant-colonizing bacterial species Pseudomonas syringae detects and exploits an extracellular pool of choline in hosts. Plant J. 75, 891–902 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valenzuela-Soto, E. M. & Figueroa-Soto, C. G. Biosynthesis and degradation of glycine betaine and its potential to control plant growth and development. in Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants (eds. Anwar Hossain, M., Kumar, V., Burritt, D. J., Fujita, M. & Makela, P. S. A.) 241–256 (Springer, 2019). https://doi.org/10.1007/978-3-030-27423-8_5.Kerchev, P., De Smet, B., Waszczak, C., Messens, J. & Van Breusegem, F. Redox strategies for crop improvement. Antioxid. Redox Signal 23, 1186–1205 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Considine, M. J. & Foyer, C. H. Redox regulation of plant development. Antioxid. Redox Signal. 21, 1305–1326 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front. Microbiol. 8, 1–14 (2017).Article 

    Google Scholar 
    Lajoie, G., Maglione, R. & Kembel, S. W. Adaptive matching between phyllosphere bacteria and their tree hosts in a neotropical forest. Microbiome 8, 1–10 (2020).Article 

    Google Scholar 
    McGenity, T. J., Crombie, A. T. & Murrell, J. C. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. ISME J. 12, 931–941 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharkey, T. D., Wiberley, A. E. & Donohue, A. R. Isoprene emission from plants: Why and how. Ann. Bot. 101, 5–18 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zuo, Z. et al. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth. Plant Physiol. 180, 124–152 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharkey, T. D. & Yeh, S. Isoprene emission from plants. Plant Mol. Biol. 52, 407–436 (2001).CAS 

    Google Scholar 
    Sharkey, T. D., Loreto, F. & Delwiche, C. High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant, Cell Environ. 14, 333–338 (1991).Article 
    CAS 

    Google Scholar 
    Eller, A. S. D. et al. Volatile organic compound emissions from switchgrass cultivars used as biofuel crops. Atmos. Environ. 45, 3333–3337 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Morrison, E. C., Drewer, J. & Heal, M. R. A comparison of isoprene and monoterpene emission rates from the perennial bioenergy crops short-rotation coppice willow and Miscanthus and the annual arable crops wheat and oilseed rape. GCB Bioenergy 8, 211–225 (2016).Article 
    CAS 

    Google Scholar 
    Sivy, T. L., Shirk, M. C. & Fall, R. Isoprene synthase activity parallels fluctuations of isoprene release during growth of Bacillus subtilis. Biochem. Biophys. Res. Commun. 294, 71–75 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crombie, A. T. et al. Poplar phyllosphere harbors disparate isoprene-degrading bacteria. Proc. Natl Acad. Sci. USA. 115, 13081–13086 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    El Khawand, M. et al. Isolation of isoprene degrading bacteria from soils, development of isoA gene probes and identification of the active isoprene-degrading soil community using DNA-stable isotope probing. Environ. Microbiol. 18, 2743–2753 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nowicka, B. & Kruk, J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta – Bioenerg. 1797, 1587–1605 (2010).Article 
    CAS 

    Google Scholar 
    Kałużna, M. et al. Pseudomonas cerasi sp. nov. (non Griffin, 1911) isolated from diseased tissue of cherry. Syst. Appl. Microbiol. 39, 370–377 (2016).Article 
    PubMed 

    Google Scholar 
    El-Tarabily, K. A., Nassar, A. H., Hardy, G. E. S. J. & Sivasithamparam, K. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol 106, 13–26 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Javed, Z., Tripathi, G. D., Mishra, M. & Dashora, K. Actinomycetes – the microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatal. Agric. Biotechnol. 31, 101893 (2021).Article 
    CAS 

    Google Scholar 
    Anwar, S., Ali, B. & Sajid, I. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front. Microbiol. 7, 1–11 (2016).Article 

    Google Scholar 
    Bao, L. et al. Microbial community overlap between the phyllosphere and rhizosphere of three plants from Yongxing Island, South China Sea. Microbiologyopen 9, 1–18 (2020).Article 

    Google Scholar 
    Remus-Emsermann, M. N. P. & Schlechter, R. O. Phyllosphere microbiology: at the interface between microbial individuals and the plant host. N. Phytol. 218, 1327–1333 (2018).Article 

    Google Scholar 
    Beilsmith, K. et al. Genome-wide association studies on the phyllosphere microbiome: embracing complexity in host–microbe interactions. Plant J. 97, 164–181 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Levy, A., Conway, J. M., Dangl, J. L. & Woyke, T. Elucidating bacterial gene functions in the plant microbiome. Cell Host Microbe 24, 475–485 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Choi, H. et al. Identification of viruses and viroids infecting tomato and pepper plants in vietnam by metatranscriptomics. Int. J. Mol. Sci. 21, 1–16 (2020).Article 
    ADS 

    Google Scholar 
    Marzano, S. Y. L. & Domier, L. L. Novel mycoviruses discovered from metatranscriptomics survey of soybean phyllosphere phytobiomes. Virus Res 213, 332–342 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chao S, et al. Metatranscriptomic sequencing suggests the presence of novel RNA viruses in rice rransmitted by brown planthopper. Viruses. 13, 2464 (2021).Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl Acad. Sci. 106, 16428–16433 (2009).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki, Y., Makino, A. & Mae, T. An efficient method for extraction of RNA from rice leaves at different ages using benzyl chloride. J. Exp. Bot. 52, 1575–1579 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. 108, 4516–4522 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Druzhinina, I. S. et al. Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 14, e1007322 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haridas, S. et al. 101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens. Stud. Mycol. 96, 141–153 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gostinčar, C. et al. Genome sequencing of four Aureobasidium pullulans varieties: Biotechnological potential, stress tolerance, and description of new species. BMC Genomics 15, 549 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gill, U. S. et al. Draft genome sequence resource of switchgrass rust pathogen, puccinia novopanici isolate ard-01. Phytopathology 109, 1513–1515 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bowsher, A. W., Benucci, G. M. N., Bonito, G. & Shade, A. Seasonal dynamics of core fungi in the switchgrass phyllosphere, and co-occurrence with leaf bacteria. Phytobiomes J. 5, 60–68 (2021).Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019, 1–13 (2019).
    Google Scholar 
    Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swan, B. K. et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc. Natl Acad. Sci. USA. 110, 11463–11468 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for’omics data. PeerJ. 2015, 1–29 (2015).
    Google Scholar 
    Lee, M. D. GToTree: a user-friendly workflow for phylogenomics. Bioinformatics 35, 4162–4164 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Blin, K. et al. AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).Article 
    PubMed 

    Google Scholar 
    Zimmermann, J., Kaleta, C. & Waschina, S. Gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 1–35 (2021).Article 

    Google Scholar 
    Tseng, T. T., Tyler, B. M. & Setubal, J. C. Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 9, 1–9 (2009).Article 

    Google Scholar 
    Lucke, M., Correa, M. G. & Levy, A. The role of secretion systems, effectors, and secondary metabolites of beneficial rhizobia in interactions with plants and microbes. Front. Plant Sci. 11, 589416 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palmer, J. L., Hilton, S., Picot, E., Bending, G. D. & Schäfer, H. Tree phyllospheres are a habitat for diverse populations of CO-oxidizing bacteria. Environ. Microbiol. 23, 6309–6327 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Modeling present and future distribution of plankton populations in a coastal upwelling zone: the copepod Calanus chilensis as a study case

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    González, C. E., Medellín-Mora, J. & Escribano, R. Environmental gradients and spatial patterns of calanoid copepods in the southeast pacific. Front. Ecol. Evol. 8, 1–16 (2020).Article 

    Google Scholar 
    Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B Biol. Sci. 276, 3053–3062 (2009).Article 

    Google Scholar 
    Brandão, M. C. et al. Macroscale patterns of oceanic zooplankton composition and size structure. Sci. Rep. 11, 1–19 (2021).
    Google Scholar 
    Mcclain, C. R. & Barry, J. P. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91, 964–976 (2010).Article 
    PubMed 

    Google Scholar 
    Escribano, R. & Rodriguez, L. Life cycle of Calanus chilensis Brodsky in Bay of San Jorge, Antofagasta Chile. Hydrobiologia 292–293, 289–294 (1994).Article 

    Google Scholar 
    Strub, P. T., Mesías, M. J., Montecino, V., Rutllant, J. & Salinas, S. Coastal ocean circulation off western South America coastal segment. Sea 11, 273–313 (1998).
    Google Scholar 
    Montecino, V. & Lange, C. The Humboldt current system: Ecosystem components and processes, fisheries, and sediment studies. Prog. Oceanogr. 83, 65–79 (2009).Article 
    ADS 

    Google Scholar 
    Miloslavich, P. et al. Marine biodiversity in the Atlantic and Pacific coasts of South America: Knowledge and gaps. PLoS ONE 6, e14631 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marín, V., Espinoza, S. & Fleminger, A. Morphometric study of Calanus chilensis males along the Chilean coast. Hydrobiologia 292, 75–80 (1994).Article 

    Google Scholar 
    Escribano, R. & McLaren, I. Production of Calanus chilensis in the upwelling area of Antofagasta Northern Chile. Mar. Ecol. Prog. Ser. 177, 147–156 (1999).Article 
    ADS 

    Google Scholar 
    Escribano, R. & Hidalgo, P. Spatial distribution of copepods in the north of the Humboldt Current region off Chile during coastal upwelling. J. Mar. Biol. Assoc. U. K. 80, 283–290 (2000).Article 

    Google Scholar 
    Hirche, H. J., Barz, K., Ayon, P. & Schulz, J. High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system. Deep Res. I Oceanogr. Res. Pap. 88, 63–73 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Sabatini, M., rez, F. & Martos, P. Distribution pattern and population structure of Calanus australis Brodsky, 1959 over the southern Patagonian Shelf off Argentina in summer. ICES J. Mar. Sci. 57, 1856–1866 (2000).Article 

    Google Scholar 
    Escribano, R. Population dynamics of Calanus chilensis in the Chilean Eastern Boundary Humboldt Current. Fish. Oceanogr. 7, 245–251 (1998).Article 

    Google Scholar 
    Hidalgo, P. et al. Patterns of copepod diversity in the Chilean coastal upwelling system. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 2089–2097 (2010).Article 
    ADS 

    Google Scholar 
    Hidalgo, P., Escribano, R., Fuentes, M., Jorquera, E. & Vergara, O. How coastal upwelling influences spatial patterns of size-structured diversity of copepods off central-southern Chile (summer 2009). Prog. Oceanogr. 92–95, 134–145 (2012).Article 
    ADS 

    Google Scholar 
    Giraldo, A., Escribano, R. & Marin, V. Spatial distribution of Calanus chilensis off Mejillones Peninsula (northern Chile): Ecological consequences upon coastal upwelling. Mar. Ecol. Prog. Ser. 230, 225–234 (2002).Article 
    ADS 

    Google Scholar 
    Gonzalez, A. & Marin, V. Distribution and life cycle of Calanus chilensis and Centropages brachiatus (Copepoda) in Chilean coastal waters: A GIS approach. Mar. Ecol. Prog. Ser. 165, 109–117 (1998).Article 
    ADS 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).Article 
    ADS 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl. Acad. Sci. 118, e2015094118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrier, S., Drielsma, M., Manion, G. & Watson, G. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodivers. Conserv. 11, 2309–2338 (2002).Article 

    Google Scholar 
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49) (Princeton University Press, 2011). https://doi.org/10.2307/j.ctt7stnh.Book 

    Google Scholar 
    Franklin, J. Spatial Inference and Prediction. Mapping Species Distributions Vol. 141 (Cambridge University Press, 2010).Book 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. Ecology Biodiversity and Conservation (Cambridge University Press, 2017). https://doi.org/10.1017/9781139028271.Book 

    Google Scholar 
    Freer, J. J., Partridge, J. C., Tarling, G. A., Collins, M. A. & Genner, M. J. Predicting ecological responses in a changing ocean: The effects of future climate uncertainty. Mar. Biol. 165, 7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).Article 

    Google Scholar 
    Pennino, M. G. et al. Accounting for preferential sampling in species distribution models. Ecol. Evol. 9, 653–663 (2019).Article 
    PubMed 

    Google Scholar 
    Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).Article 

    Google Scholar 
    Stock, B. C. et al. Comparing predictions of fisheries bycatch using multiple spatiotemporal species distribution model frameworks. Can. J. Fish. Aquat. Sci. 77, 146–163 (2019).Article 

    Google Scholar 
    Lezama-Ochoa, N. et al. Spatio-temporal distribution of the spinetail devil ray mobula mobular in the Eastern tropical Atlantic ocean. Endanger. Species Res. 43, 447–460 (2020).Article 

    Google Scholar 
    Marshall, C. E., Glegg, G. A. & Howell, K. L. Species distribution modelling to support marine conservation planning: The next steps. Mar. Policy 45, 330–332 (2014).Article 

    Google Scholar 
    Hunt, T. N., Allen, S. J., Bejder, L. & Parra, G. J. Identifying priority habitat for conservation and management of Australian humpback dolphins within a marine protected area. Sci. Rep. 10, 1–14 (2020).Article 

    Google Scholar 
    Champion, C., Brodie, S. & Coleman, M. A. Climate-driven range shifts are rapid yet variable among recreationally important coastal-pelagic fishes. Front. Mar. Sci. 8, 1–13 (2021).Article 

    Google Scholar 
    Przeslawski, R., Falkner, I., Ashcroft, M. B. & Hutchings, P. Using rigorous selection criteria to investigate marine range shifts. Estuar. Coast. Shelf Sci. 113, 205–212 (2012).Article 
    ADS 

    Google Scholar 
    Januario, S. M., Estay, S. A., Labra, F. A. & Lima, M. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast. PeerJ 3, e1357. https://doi.org/10.7717/peerj.1357 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinochet, J., Rivera, R., Neill, P. E., Brante, A. & Hernández, C. E. Spread of the non-native anemone Anemonia alicemartinae Häussermann & Försterra, 2001 along the Humboldt-current large marine ecosystem: An ecological niche model approach. PeerJ https://doi.org/10.7717/peerj.7156 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lh, G., Rj, R. & Brante, A. One step ahead of sea anemone invasions with ecological niche modeling: Potential distributions and niche dynamics of three successful invasive species. Mar. Ecol. Prog. Ser. 690, 83–95 (2022).Article 

    Google Scholar 
    Allynid, A. J. et al. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS ONE 15, 1–28 (2020).
    Google Scholar 
    Pennino, M. G. et al. Current and future influence of environmental factors on small pelagic fish distributions in the northwestern mediterranean sea. Front. Mar. Sci. 7, 1–20 (2020).Article 

    Google Scholar 
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).Article 

    Google Scholar 
    Rosa, R., Dierssen, H. M., Gonzalez, L. & Seibel, B. A. Ecological biogeography of cephalopod molluscs in the Atlantic Ocean: Historical and contemporary causes of coastal diversity patterns. Glob. Ecol. Biogeogr. 17, 600–610 (2008).Article 

    Google Scholar 
    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rodríguez-Ramos, T., Marañón, E. & Cermeño, P. Marine nano- and microphytoplankton diversity: Redrawing global patterns from sampling-standardized data. Glob. Ecol. Biogeogr. 24, 527–538 (2015).Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2022).Article 
    ADS 

    Google Scholar 
    Busseni, G. et al. Large scale patterns of marine diatom richness: Drivers and trends in a changing ocean. Glob. Ecol. Biogeogr. 29, 1915–1928 (2020).Article 

    Google Scholar 
    Ruz, P. M., Hidalgo, P., Yáñez, S., Escribano, R. & Keister, J. E. Egg production and hatching success of Calanus chilensis and Acartia tonsa in the northern Chile upwelling zone (23°S) Humboldt Current System. J. Mar. Syst. 148, 200–212 (2015).Article 

    Google Scholar 
    Ashlock, L., García-Reyes, M., Gentemann, C., Batten, S. & Sydeman, W. Temperature and patterns of occurrence and abundance of key copepod taxa in the Northeast Pacific. Front. Mar. Sci. 8, 1–10 (2021).
    Article 
    ADS 

    Google Scholar 
    Campbell, M. D. et al. Testing Bergmann’s rule in marine copepods. Ecography 44, 1283–1295 (2021).Article 

    Google Scholar 
    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).Article 
    PubMed 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. U. S. A. 106, 19644–19650 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morales, C. E. et al. Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile. Prog. Oceanogr. 84, 158–173 (2010).Article 
    ADS 

    Google Scholar 
    Gonzalez, R. R. & Quiñones, R. A. Ldh activity in Euphausia mucronata and Calanus chilensis: Implications for vertical migration behaviour. J. Plankton Res. 24, 1349–1356 (2002).Article 
    CAS 

    Google Scholar 
    Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 1083–1094 (2009).Article 
    ADS 

    Google Scholar 
    Fernández-Urruzola, I. et al. Plankton respiration in the Atacama Trench region: Implications for particulate organic carbon flux into the hadal realm. Limnol. Oceanogr. 66, 3134–3148 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).Article 
    PubMed 

    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward~C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17, 455–473 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Gonzalez, A. & Marín, V. H. Distribution and life cycle of Calanus chilensis and Centropages brachiatus (Copepoda) in chilean coastal waters: A GIS approach. Mar. Ecol. Prog. Ser. 165, 109–117 (1998).Article 
    ADS 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Dias, P. C. Sources and sinks in population biology. Trends Ecol. Evol. 11, 326–330 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ding, M., Lin, P., Liu, H., Hu, A. & Liu, C. Lagrangian eddy kinetic energy of ocean mesoscale eddies and its application to the Northwestern Pacific. Sci. Rep. 10, 12791 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morales, C. E. et al. The distribution of chlorophyll-a and dominant planktonic components in the coastal transition zone off Concepción, central Chile, during different oceanographic conditions. Prog. Oceanogr. 75, 452–469 (2007).Article 
    ADS 

    Google Scholar 
    Escribano, R. & Rodriguez, L. Life cycle of Calanus chilensis Brodsky in Bay of San Jorge, Antofagasta Chile. Hydrobiologia 292, 289–294 (1994).Article 

    Google Scholar 
    Hidalgo, P. & Escribano, R. Coupling of life cycles of the copepods Calanus chilensis and Centropages brachiatus to upwelling induced variability in the central-southern region of Chile. Prog. Oceanogr. 75, 501–517 (2007).Article 
    ADS 

    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).Article 
    ADS 

    Google Scholar 
    Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).Article 

    Google Scholar 
    Gelfand, A. et al. Explaining species distribution patterns through hierarchical modeling. Bayesian Anal. https://doi.org/10.1214/06-BA102 (2006).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar 
    Gaul, W. et al. Data quantity is more important than its spatial bias for predictive species distribution modelling. PeerJ 8, e10411 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).Article 

    Google Scholar 
    Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).Article 

    Google Scholar 
    Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl. Acad. Sci. 117, 12891–12896 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, A., Schoeman, D., Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chiba, S., Sugisaki, H., Nonaka, M. & Saino, T. Geographical shift of zooplankton communities and decadal dynamics of the Kuroshio-Oyashio currents in the western North Pacific. Glob. Change Biol. 15, 1846–1858 (2009).Article 
    ADS 

    Google Scholar 
    Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 756–766 (2011).Article 
    ADS 

    Google Scholar 
    Beaugrand, G., Lindley, J. A., Helaouet, P. & Bonnet, D. Macroecological study of Centropages typicus in the North Atlantic Ocean. Prog. Oceanogr. 72, 259–273 (2007).Article 
    ADS 

    Google Scholar 
    Hirche, H. J., Barz, K., Ayon, P. & Schulz, J. High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system. Deep Sea Res. I Oceanogr. Res. Pap. 88, 63–73 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Riquelme-Bugueño, R. et al. The influence of upwelling variation on the spatially-structured euphausiid community off central-southern Chile in 2007–2008. Prog. Oceanogr. 92–95, 146–165 (2012).Article 
    ADS 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Provoost, P. & Bosch, S. robis: Ocean Biodiversity Information System (OBIS) Client (2020).Chamberlain, S. & Oldoni, D. rgbif: Interface to the Global Biodiversity Information Facility API (2021).R Core Team. R: A Language and Environment for Statistical Computing (2021).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.4.1 (Envrionmental Systems Research Institute, 2016).
    Google Scholar 
    De Marco, P. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13, e202403 (2018).Article 

    Google Scholar 
    Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).Article 
    PubMed 

    Google Scholar 
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellison, A. M. Bayesian inference in ecology. Ecol. Lett. 7, 509–520 (2004).Article 

    Google Scholar 
    Pennino, M. G., Muñoz, F., Conesa, D., López-Quílez, A. & Bellido, J. M. Bayesian spatio-temporal discard model in a demersal trawl fishery. J. Sea Res. 90, 44–53 (2014).Article 

    Google Scholar 
    Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article 

    Google Scholar 
    Engler, R., Guisan, A. & Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41, 263–274 (2004).Article 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).Article 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Warren, D. & Dinnage, R. ENMTools: Analysis of Niche Evolution using Niche and Distribution Models (2020).Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Osorio-Olvera, L. et al. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11, 1199–1206 (2020).Article 

    Google Scholar 
    Bosch, S., Tyberghein, L. & De Clerck, O. ‘sdmpredictors’: Species distribution modelling predictor datasets. R package version 0.2.6. R Packag. version 0.2.6 (2018).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble platform for species distribution modeling (2020).Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar  More

  • in

    Brown bear skin-borne secretions display evidence of individuality and age-sex variation

    Zala, S. M., Potts, W. K. & Penn, D. J. Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 15, 338–344 (2004).Article 

    Google Scholar 
    Allen, M. L., Wallace, C. F. & Wilmers, C. C. Patterns in bobcat (Lynx rufus) scent marking and communication behaviors. J. Ethol. 33, 9–14 (2014).Article 

    Google Scholar 
    White, A. M., Swaisgood, R. R. & Zhang, H. The highs and lows of chemical communication in giant pandas (Ailuropoda melanoleuca): Effect of scent deposition height on signal discrimination. Behav. Ecol. Sociobiol. 51, 519–529 (2002).Article 

    Google Scholar 
    Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maynard Smith, J. & Harper, D. Animal Signals (Oxford University Press, 2003).
    Google Scholar 
    Stockley, P., Bottell, L. & Hurst, J. L. Wake up and smell the conflict: Odour signals in female competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20130082 https://doi.org/10.1098/rstb.2013.0082 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petrulis, A. Chemosignals, hormones and mammalian reproduction. Horm. Behav. 63, 723–741 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coombes, H. A., Stockley, P. & Hurst, J. L. Female chemical signalling underlying reproduction in mammals. J. Chem. Ecol. 44, 851–873 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harmsen, B. J., Foster, R. J., Gutierrez, S. M., Marin, S. Y. & Patrick, C. Scrape-marking behavior of jaguars (Panthera onca) and pumas (Puma concolor). J. Mammal. 91, 1225–1234 (2010).Article 

    Google Scholar 
    Lamb, C. T. et al. Density-dependent signaling: An alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore. PLoS ONE 12, e0184176 https://doi.org/10.1371/journal.pone.0184176 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodmansee, K. B., Zabel, C. J., Glickman, S. E., Frank, L. G. & Keppel, G. Scent marking (pasting) in a colony of immature spotted hyenas (Crocuta crocuta): A developmental study. J. Comp. Psychol. 105, 10–14 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rasmussen, L. E. L., Riddle, H. S. & Krishnamurthy, V. Mellifluous matures to malodorous in musth. Nature 415, 975–976 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Surov, A. V. & Maltsev, A. N. Analysis of chemical communication in mammals: Zoological and ecological aspects. Biol. Bull. 43, 1175–1183 (2016).Article 

    Google Scholar 
    Hurst, J. L. Female recognition and assessment of males through scent. Behav. Brain Res. 200, 295–303 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mills, M. G. L. & Gorman, M. L. The scent-marking behaviour of the spotted hyaena Crocuta crocuta in the southern Kalahari. J. Zool. 212, 483–497 (1987).Article 

    Google Scholar 
    Gassett, J. W. et al. Volatile compounds from interdigital gland of male white-tailed deer (Odocoileus virginianus). J. Chem. Ecol. 22, 1689–1696 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeckelhuber, M., Sliwa, A. & Welsch, U. Histo-physiology of the scent-marking glands of the penile pad, anal Pouch, and the forefoot in the aardwolf (Proteles cristatus). Anat. Rec. 259, 312–326 (2000).Article 
    CAS 

    Google Scholar 
    Begg, C. M., Begg, K. S., Du Toit, J. T. & Mills, M. G. L. Scent-marking behaviour of the honey badger, Mellivora capensis (Mustelidae), in the southern Kalahari. Anim. Behav. 66, 917–929 (2003).Article 

    Google Scholar 
    Yasui, T., Tsukise, A. & Meyer, W. Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads. Eur. J. Histochem. 48, 393–402 (2004).CAS 
    PubMed 

    Google Scholar 
    Johnston, R. E. Scent marking by male golden hamsters (Mesocricetus aurutus) I. Effects of odors and social encounters. Z. Tierpsychol. 37, 75–98 (1975).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caspers, B., Wibbelt, G. & Voigt, C. C. Histological examinations of facial glands in Saccopteryx bilineata (Chiroptera, Emballonuridae), and their potential use in territorial marking. Zoomorphology 128, 37–43 (2008).Article 

    Google Scholar 
    Lawson, R. E., Putnam, R. J. & Fielding, A. H. Individual signatures in scent gland secretions of Eurasian deer. J. Zool. 251, 399–410 (2000).Article 

    Google Scholar 
    Smith, T. E., Tomlinson, A. J., Mlotkiewicz, J. A. & Abbott, D. H. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Senses 26, 449–458 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    del Barco-Trillo, J., LaVenture, A. B. & Johnston, R. E. Male hamsters discriminate estrous state from vaginal secretions and individuals from flank marks. Behav. Process. 82, 18–24 (2009).Article 

    Google Scholar 
    Sun, L. & Müller-Schwarze, D. Anal gland secretion codes for family membership in the beaver. Behav. Ecol. Sociobiol. 44, 199–208 (1998).Article 

    Google Scholar 
    Zhang, J. X. et al. Possible coding for recognition of sexes, individuals and species in anal gland volatiles of Mustela eversmanni and M. sibirica. Chem. Senses 28, 381–388 (2003).Article 
    PubMed 

    Google Scholar 
    Kean, E. F., Müller, C. T. & Chadwick, E. A. Otter scent signals age, sex, and reproductive status. Chem. Senses 36, 555–564 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rosell, F. et al. Brown bears possess anal sacs and secretions may code for sex. J. Zool. 283, 143–152 (2011).Article 

    Google Scholar 
    Buesching, C. D., Waterhouse, J. S. & Macdonald, D. W. Gas-chromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles) part I: Chemical differences related to individual parameters. J. Chem. Ecol. 28, 41–56 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yuan, H. et al. Anogenital gland secretions code for sex and age in the giant panda, Ailuropoda melanoleuca. Can. J. Zool. 82, 1596–1604 (2004).Article 

    Google Scholar 
    Kent, L. & Tang-Martínez, Z. Evidence of individual odors and individual discrimination in the raccoon, Procyon lotor. J. Mammal. 95, 1254–1262 (2014).Article 

    Google Scholar 
    Woodley, S. K. & Baum, M. J. Differential activation of glomeruli in the ferret’s main olfactory bulb by anal scent gland odours from males and females: An early step in mate identification. Eur. J. Neurosci. 20, 1025–1032 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, M. L. et al. The role of scent marking in mate selection by female pumas (Puma concolor). PLoS ONE 10, e0139087 https://doi.org/10.1371/journal.pone.0139087 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latour, P. Interactions between free-ranging, adult male polar bears (Ursus maritimus Phipps): A case of adult social play. Can. J. Zool. 59, 1775–1783 (1981).Article 

    Google Scholar 
    Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wei, F. Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behav. Ecol. Sociobiol. 66, 721–730 (2012).Article 

    Google Scholar 
    Clapham, M. & Kitchin, J. Social play in wild brown bears of varying age-sex class. Acta Ethol. 19, 181–188 (2016).Article 

    Google Scholar 
    Stonorov, D. & Stokes, A. W. Social behavior of the Alaska brown bear. Int. Conf. Bear Res. Manag. 2, 232–242 (1972).
    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore. PLoS ONE 7, e35404 https://doi.org/10.1371/journal.pone.0035404 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. The function of strategic tree selectivity in the chemical signalling of brown bears. Anim. Behav. 85, 1351–1357 (2013).Article 

    Google Scholar 
    Owen, M. A. et al. An experimental investigation of chemical communication in the polar bear. J. Zool. 295, 36–43 (2015).Article 

    Google Scholar 
    Sergiel, A. et al. Histological, chemical and behavioural evidence of pedal communication in brown bears. Sci. Rep. 7, 1052 https://doi.org/10.1038/s41598-017-01136-1 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Morphological and histological features of the vomeronasal organ in the brown bear. J. Anat. 231, 749–757 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Testicular regulation of seasonal change in apocrine glands in the back skin of the brown bear (Ursus arctos). J. Vet. Med. Sci. 80, 1034–1040 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Testosterone-related and seasonal changes in sebaceous glands in the back skin of adult male brown bears (Ursus arctos). Can. J. Zool. 96, 205–211 (2018).Article 
    CAS 

    Google Scholar 
    Burst, T. L. & Pelton, M. R. Black bear mark trees in the Smoky mountains. Int. Conf. Bear Res. Manag. 5, 45–53 (1983).
    Google Scholar 
    Mattson, D. J. & Greene, G. I. Tree rubbing by Yellowstone grizzly bears Ursus arctos. Wildl. Biol. 1, 1–9 (2003).
    Google Scholar 
    Nie, Y. et al. Giant panda scent-marking strategies in the wild: Role of season, sex and marking surface. Anim. Behav. 84, 39–44 (2012).Article 

    Google Scholar 
    Revilla, E. et al. Brown bear communication hubs: Patterns and correlates of tree rubbing and pedal marking at a long-term marking site. PeerJ 9, 10447 https://doi.org/10.7717/peerj.10447 (2021).Article 

    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. Scent-marking investment and motor patterns are affected by the age and sex of wild brown bears. Anim. Behav. 94, 107–116 (2014).Article 

    Google Scholar 
    Taylor, A. P., Gunther, M. S. & Allen, M. L. Black bear marking behaviour at rub trees during the breeding season in northern California. Behaviour 152, 1097–1111 (2015).Article 

    Google Scholar 
    Filipczyková, E., Heitkönig, I., Castellanos, A., Hantson, W. & Steyaert, S. Marking behavior of Andean bears in an Ecuadorian cloud forest: A pilot study. Ursus 27, 122–128 (2017).Article 

    Google Scholar 
    Stringham, S. F. Aggressive body language of bears and wildlife viewing: A response to Geist (2011). Hum.-Wildl. Interact. 5, 4 (2011).
    Google Scholar 
    Swaisgood, R. R., Lindburg, D. G. & Zhang, H. Discrimination of oestrous status in giant pandas (Ailuropoda melanoleuca) via chemical cues in urine. J. Zool. 257, 381–386 (2002).Article 

    Google Scholar 
    Wilson, A. E. et al. Behavioral, semiochemical and androgen responses by male giant pandas to the olfactory sexual receptivity cues of females. Theriogenology 114, 330–337 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sillero-Zubiri, C. & Macdonald, D. W. Scent-marking and territorial behaviour of Ethiopian wolves Canis simensis. J. Zool. 245, 351–361 (1998).Article 

    Google Scholar 
    Stępniak, K. M., Niedźwiecka, N., Szewczyk, M. & Mysłajek, R. W. Scent marking in wolves Canis lupus inhabiting managed lowland forests in Poland. Mammal Res. 65, 629–638 (2020).Article 

    Google Scholar 
    Liu, D. et al. Do anogenital gland secretions of giant panda code for their sexual ability? Chin. Sci. Bull. 51, 1986–1995 (2006).Article 
    CAS 

    Google Scholar 
    Tattoni, C., Bragalanti, N., Groff, C. & Rovero, F. Patterns in the use of rub trees by the Eurasian brown bear. Hystrix 26, 118 (2015).
    Google Scholar 
    Zhang, J. X. et al. Potential chemosignals in the anogenital gland secretion of giant pandas, Ailuropoda melanoleuca, associated with sex and individual identity. J. Chem. Ecol. 34, 398–407 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Swaisgood, R. R., Lindburg, D. G., Zhou, X. & Owen, M. A. The effects of sex, reproductive condition and context on discrimination of conspecific odours by giant pandas. Anim. Behav. 60, 227–237 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Swaisgood, R., Lindburg, D. & Zhou, X. Giant pandas discriminate individual differences in conspecific scent. Anim. Behav. 57, 1045–1053 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, D. et al. Do urinary chemosignals code for sex, age, and season in the giant panda, Ailuropoda melanoleuca? in Chemical Signals in Vertebrates. Vol. 12. 207–222 (eds. East, M. L. & Dehnhard, M.). https://doi.org/10.1007/978-1-4614-5927-9_16 (Springer, 2013).Hagey, L. & MacDonald, E. Chemical cues identify gender and individuality in giant pandas (Ailuropoda melanoleuca). J. Chem. Ecol. 29, 1479–1488 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, A. E., Sparks, D. L., Knott, K. K., Willard, S. & Brown, A. Implementing solid phase microextraction (SPME) as a tool to detect volatile compounds produced by giant pandas in the environment. PLoS ONE 13, e0208618 https://doi.org/10.1371/journal.pone.0208618 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. E. et al. Field air analysis of volatile compounds from free-ranging giant pandas. Ursus 29, 75–81 (2019).Article 

    Google Scholar 
    Crupi, A. P., Waite, J. N., Flynn, R. W. & Beier, L. Brown bear population estimation in Yakutat, Southeast Alaska. Alaska Department of Fish and Game https://doi.org/10.13140/RG.2.2.35947.54568 (2017).Article 

    Google Scholar 
    Sikes, R. S., Gannon, W. L. & The Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Matson, G. et al. A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear First Premolar Teeth. Alaska Department of Fish and Game, Division of Wildlife Conservation https://www.adfg.alaska.gov/index.cfm?adfg=librarypublications.wildlifepublicationsdetails&pubidentifier=3374 (1993).Seryodkin, I. V. Marking activity of the Kamchatka brown bear (Ursus arctos piscator). Achiev. Life Sci. 8, 153–161 (2014).
    Google Scholar 
    Peralbo-Molina, A., Calderón-Santiago, M., Jurado-Gámez, B., Luque De Castro, M. D. & Priego-Capote, F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci. Rep. 7, 1421 https://doi.org/10.1038/s41598-017-01564-z (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, D. et al. Male panda (Ailuropoda melanoleuca) urine contains kinship information. Chin. Sci. Bull. 53, 2793–2800 (2008).CAS 

    Google Scholar 
    Kean, E. F., Chadwick, E. A. & Müller, C. T. Scent signals individual identity and country of origin in otters. Mamm. Biol. Z. Säugetierkd. 80, 99–105 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Harris, R. L., Holland, B. R., Cameron, E. Z., Davies, N. W. & Nicol, S. C. Chemical signals in the echidna: Differences between seasons, sexes, individuals and gland types. J. Zool. 293, 171–180 (2014).Article 

    Google Scholar 
    Vaglio, S. et al. Sternal gland scent-marking signals sex, age, rank, and group identity in captive mandrills. Chem. Senses 41, 177–186 (2016).PubMed 

    Google Scholar 
    Knott, K. K. et al. Blood-based biomarkers of selenium and thyroid status indicate possible adverse biological effects of mercury and polychlorinated biphenyls in Southern Beaufort Sea polar bears. Environ. Res. 111, 1124–1136 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. E. et al. Development and validation of protein biomarkers of health in grizzly bears. Conserv. Physiol. 8, coaa056 https://doi.org/10.1093/conphys/coaa056 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2020).Williams, C. L., Ybarra, A. R., Meredith, A. N., Durrant, B. S. & Tubbs, C. W. Gut microbiota and phytoestrogen-associated infertility in Southern White Rhinoceros. MBio 10, e00311-19 https://doi.org/10.1128/mBio.00311-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dill-McFarland, K. A., Breaker, J. D. & Suen, G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Sci. Rep. 7, 40864 https://doi.org/10.1038/srep40864 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, C. L. et al. Dietary changes during weaning shape the gut microbiota of red pandas (Ailurus fulgens). Conserv. Physiol. 6, cox075 https://doi.org/10.1093/conphys/cox075 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolar, K. STAT: interactive document for working with basic statistical analysis. R package version 0.1.0. https://CRAN.R-project.org/package=STAT (2019).Gese, E. & Ruff, R. Scent-marking by coyotes, Canis latrans: The influence of social and ecological factors. Anim. Behav. 54, 1155–1166 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thompson, C. L. et al. What smells? Developing in-field methods to characterize the chemical composition of wild mammalian scent cues. Ecol. Evol. 10, 4691–4701 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J.-M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: Roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).Article 

    Google Scholar 
    Martín, J., Carranza, J., López, P., Alarcos, S. & Pérez-González, J. A new sexual signal in rutting male red deer: Age related chemical scent constituents in the belly black spot. Mamm. Biol. 79, 362–368 (2014).Article 

    Google Scholar 
    Carranza, J. et al. The dark ventral patch: A bimodal flexible trait related to male competition in red deer. PLoS ONE 15, 0241374 https://doi.org/10.1371/journal.pone.0241374 (2020).Article 
    CAS 

    Google Scholar 
    Kean, E. F., Bruford, M. W., Russo, I. R. M., Müller, C. T. & Chadwick, E. A. Odour dialects among wild mammals. Sci. Rep. 7, 13593 https://doi.org/10.1038/s41598-017-12706-8 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marneweck, C., Jürgens, A. & Shrader, A. M. The role of middens in white rhino olfactory communication. Anim. Behav. 140, 7–18 (2018).Article 

    Google Scholar 
    Linklater, W. L., Mayer, K. & Swaisgood, R. R. Chemical signals of age, sex and identity in black rhinoceros. Anim. Behav. 85, 671–677 (2013).Article 

    Google Scholar 
    White, A. M., Swaisgood, R. R. & Zhang, H. Chemical communication in the giant panda (Ailuropoda melanoleuca): The role of age in the signaller and assessor. J. Zool. 259, 171–178 (2003).Article 

    Google Scholar 
    Steiger, S., Schmitt, T. & Schaefer, H. M. The origin and dynamic evolution of chemical information transfer. Proc. R. Soc. B Biol. Sci. 278, 970–979 https://doi.org/10.1098/rspb.2010.2285 (2011).Article 

    Google Scholar 
    Williams, C. L. et al. Wildlife-microbiome interactions and disease: Exploring opportunities for disease mitigation across ecological scales. Drug Discov. Today Dis. Models 28, 105–115 (2018).Article 

    Google Scholar 
    Chiang, Y. R., Wei, S. T. S., Wang, P. H., Wu, P. H. & Yu, C. P. Microbial degradation of steroid sex hormones: Implications for environmental and ecological studies. Microb. Biotechnol. 13, 926–949 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Williams, C. L., Garcia-Reyero, N., Martyniuk, C. J., Tubbs, C. W. & Bisesi, J. H. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen. Comp. Endocrinol. 292, 113437 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Theis, K. R., Venkataraman, A., Wagner, A. P., Holekamp, K. E. & Schmidt, T. M. Age-related variation in the scent pouch bacterial communities of striped hyenas (Hyaena hyaena). Chem. Signals Vertebr. 13, 87–103 (2016).Article 

    Google Scholar 
    Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mammal Rev. 42, 12–34 (2012).Article 

    Google Scholar 
    Bellemain, E. et al. The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proc. R. Soc. B Biol. Sci. 273, 283–291 https://doi.org/10.1098/rspb.2005.3331 (2006).Article 

    Google Scholar 
    Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. Genetic estimates of annual reproductive success in male brown bears: The effects of body size, age, internal relatedness and population density. J. Anim. Ecol. 76, 368–375 (2007).Article 
    PubMed 

    Google Scholar 
    Schwartz, C. C. et al. Reproductive maturation and senescence in the female brown bear. Ursus 14, 109–119 (2003).
    Google Scholar 
    Schulte, B. A., Freeman, E. W., Goodwin, T. E., Hollister-Smith, J. & Rasmussen, L. E. L. Honest signalling through chemicals by elephants with applications for care and conservation. Appl. Anim. Behav. Sci. 102, 344–363 (2007).Article 

    Google Scholar 
    Støen, O.-G., Bellemain, E., Sæbø, S. & Swenson, J. E. Kin-related spatial structure in brown bears Ursus arctos. Behav. Ecol. Sociobiol. 59, 191–197 (2005).Article 

    Google Scholar 
    Egbert, A. L. & Stokes, A. W. The social behaviour of brown bears on an Alaskan salmon stream. Int. Conf. Bear Res. Manag. 3, 41–56 (1976).
    Google Scholar 
    Craighead, J. J., Sumner, J. S. & Mitchell, J. A. The Grizzly Bears of Yellowstone: Their Ecology in the Yellowstone Ecosystem, 1959–1992 (Island Press, 1995).
    Google Scholar 
    Burgener, N., Dehnhard, M., Hofer, H. & East, M. L. Does anal gland scent signal identity in the spotted hyaena? Anim.
    Behav. 77, 707–715 (2009).Article 

    Google Scholar 
    Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45, 823–837 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun, L. & Müller-Schwarze, D. Sibling recognition in the beaver: A field test for phenotype matching. Anim. Behav. 54, 493–502 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thom, M. D. & Hurst, J. L. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787 (2004).
    Google Scholar 
    Roberts, S. A. et al. Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol. 16, 1–19 https://doi.org/10.1186/s12915-018-0512-9 (2018).Article 
    CAS 

    Google Scholar 
    Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. R. Soc. B Biol. Sci. 285, 20181527 https://doi.org/10.1098/rspb.2018.1527 (2018).Article 

    Google Scholar 
    Vogt, K., Boos, S., Breitenmoser, U. & Kölliker, M. Chemical composition of Eurasian lynx urine conveys information on reproductive state, individual identity, and urine age. Chemoecology 26, 205–217 (2016).Article 
    CAS 

    Google Scholar 
    Wyatt, T. D. Pheromones and signature mixtures: Defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 196, 685–700 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, R. E. Chemical communication in rodents: From pheromones to individual recognition. J. Mammal. 84, 1141–1162 (2003).Article 

    Google Scholar 
    Dehnhard, M. Mammal semiochemicals: Understanding pheromones and signature mixtures for better zoo-animal husbandry and conservation. Int. Zoo Yearb. 45, 55–79 (2011).Article 

    Google Scholar 
    Brennan, P. A. & Kendrick, K. M. Mammalian social odours: Attraction and individual recognition. Philos. Trans. R. Soc. B Biol. Sci. 361, 2061–2078 https://doi.org/10.1098/rstb.2006.1931 (2006).Article 
    CAS 

    Google Scholar 
    Bellemain, E., Swenson, J. E. & Taberlet, P. Mating strategies in relation to sexually selected infanticide in a non-social carnivore: The brown bear. Ethology 112, 238–246 (2006).Article 

    Google Scholar 
    Rogers, L. L. Effects of food supply and kinship on social behavior, movements, and population growth of black bears in northeastern Minnesota. Wildl. Monogr. 97, 72 (1987).
    Google Scholar 
    Noyce, K. V. & Garshelis, D. L. Follow the leader: Social cues help guide landscape-level movements of American black bears (Ursus americanus). Can. J. Zool. 92, 1005–1017 (2014).Article 

    Google Scholar 
    Hansen, J. E., Hertel, A. G., Frank, S. C., Kindberg, J. & Zedrosser, A. Social environment shapes female settlement decisions in a solitary carnivore. Behav. Ecol. 33, 137–146 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morehouse, A. T., Loosen, A. E., Graves, T. A. & Boyce, M. S. The smell of success: Reproductive success related to rub behavior in brown bears. PLoS ONE 16, 247964 https://doi.org/10.1371/journal.pone.0247964 (2021).Article 
    CAS 

    Google Scholar 
    Tschanz, B., Meyer-Holzapfel, M. & Bachmann, S. Das informationssystem bei Braunbären. Z. Tierpsychol. 27, 47–72 (1970).Article 

    Google Scholar 
    Tattoni, C., Bragalanti, N., Ciolli, M., Groff, C. & Rovero, F. Behavior of the European brown bear at rub trees. Ursus 32e9, 1–11https://doi.org/10.2192/URSUS-D-20-00022.3 (2021).Article 

    Google Scholar 
    Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).Article 

    Google Scholar  More

  • in

    Malaria-driven adaptation of MHC class I in wild bonobo populations

    World Health Organization. World malaria report 2022. (2022).Kariuki, S. N. & Williams, T. N. Human genetics and malaria resistance. Hum. Gen. 139, 801–811 (2020).Article 

    Google Scholar 
    Watson, J. A., White, N. J. & Dondorp, A. M. Falciparum malaria mortality in sub-Saharan Africa in the pretreatment era. Trends Parasitol. 38, 11–14 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sanchez-Mazas, A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med. Wkly. 150, w20214 (2020).PubMed 

    Google Scholar 
    Heijmans, C. M. C., de Groot, N. G. & Bontrop, R. E. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int. J. Immunogenet. 47, 243–260 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Colonna, M. & Samaridis, J. Cloning of Immunoglobulin-Superfamily Members Associated with HLA-C and HLA-B Recognition by Human Natural Killer Cells. Science 268, 405–408 (1995).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hill, A. V. et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sanchez‐Mazas, A. et al. The HLA‐B landscape of Africa: signatures of pathogen‐driven selection and molecular identification of candidate alleles to malaria protection. Mol. Ecol. 26, 6238–6252 (2017).Article 
    PubMed 

    Google Scholar 
    Hill, A. V. et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–439 (1992).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Norman, P. J. et al. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet. 9, e1003938 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. 74, 39–63 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evol. 8, 1929–1939 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Nys, H. M. et al. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9, 20121160 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 1–6 (2014).
    Google Scholar 
    Mapua, M. I. et al. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology 142, 890–900 (2015).Article 
    PubMed 

    Google Scholar 
    Scully, E. J. et al. The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs. Commun. Biol. 5, 1020 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbert, A. et al. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar. J. 14, 1–8 (2015).Article 

    Google Scholar 
    De Nys, H. M., Löhrich, T., Wu, D., Calvignac-Spencer, S. & Leendertz, F. H. Wild African great apes as natural hosts of malaria parasites: current knowledge and research perspectives. Primate Biol. 4, 47–59 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takemoto, H., Kawamoto, Y. & Furuichi, T. How did bonobos come to range south of the congo river? Reconsideration of the divergence of Pan paniscus from other Pan populations. Evol. Anthropol. 24, 170–184 (2015).Article 
    PubMed 

    Google Scholar 
    Takemoto, H., Kawamoto, Y. & Furuichi, T. The formation of Congo River and the origin of bonobos: A new hypothesis. in Bonobos: unique in mind, brain, and behavior (eds. Hare, B. & Yamamoto, S.) 235-248 (Oxford University Press, 2017).Takemoto, H. et al. The mitochondrial ancestor of bonobos and the origin of their major haplogroups. PLoS One. 12, e0174851 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilbrow, V. & Groves, C. Evidence for divergence in populations of bonobos (Pan paniscus) in the Lomami-Lualaba and Kasai-Sankuru regions based on preliminary analysis of craniodental variation. Int. J. Primatol. 34, 1244–1260 (2013).Article 

    Google Scholar 
    de Groot, N. G., Stevens, J. M. & Bontrop, R. E. Does the MHC confer protection against malaria in bonobos? Trends Immunol. 39, 768–771 (2018).Article 
    PubMed 

    Google Scholar 
    Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wroblewski, E. E. et al. Bonobos maintain immune system diversity with three functional types of MHC-B. J. Immunol. 198, 3480–3493 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bjorkman, P. et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329, 512–518 (1987).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guethlein, L. A., Norman, P. J., Hilton, H. G. & Parham, P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol. Rev. 267, 259–282 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wroblewski, E. E. et al. Signature patterns of MHC diversity in three Gombe communities of wild chimpanzees reflect fitness in reproduction and immune defense against SIVcpz. PLoS. Biol. 13, e1002144 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 18, 10776–10791 (2012).Article 

    Google Scholar 
    Yang, C. et al. Sequence variations in the non-repetitive regions of the liver stage-specific antigen-1 (LSA-1) of Plasmodium falciparum from field isolates,. Mol. Biochem Parasitol. 71, 291–294 (1995).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fidock, D. A. et al. Plasmodium falciparum liver stage antigen-1 is well conserved and contains potent B and T cell determinants. J. Immunol. 153, 190–204 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aurrecoechea, C. et al. PlasmoDB: a functional genomic database for malaria parasites. Nucl. Acids Res. 37, D539–D543 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, A. L. & Yeager, M. Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32, 415–435 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Trowsdale, J. The MHC, disease and selection. Immunol. Lett. 137, 1–8 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crow, J. & Kimura, M. An Introduction To Population Genetics Theory. (Alpha Editions, 1970).Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Digitale, J. C. et al. HLA alleles B* 53:01 and C* 06:02 are associated with higher risk of P. falciparum parasitemia in a cohort in Uganda. Front. Immunol. 12, 650028 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyke, K. E. et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 77, 562–571 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Osafo-Addo, A. D. et al. HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am. J. Trop. Med. 78, 251–255 (2008).Article 

    Google Scholar 
    Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat. Genet. 41, 657–665 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat. Commun. 10, 5732 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ravenhall, M. et al. Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern Tanzania. PLoS Genet. 14, e1007172 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damena, D., Denis, A., Golassa, L. & Chimusa, E. R. Genome-wide association studies of severe P. falciparum malaria susceptibility: progress, pitfalls and prospects. BMC Med. Genom. 12, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Kennedy, A. E., Ozbek, U. & Dorak, M. T. What has GWAS done for HLA and disease associations? Int. J. Immunogenet. 44, 195–211 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tukwasibwe, S. et al. Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell. Mol. Immunol. 17, 799–806 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, M. et al. Malaria. Nat. Rev. Dis. Prim. 3, 17050 (2017).Article 
    PubMed 

    Google Scholar 
    Samandary, S. et al. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum. Immunol. 75, 715–729 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miranda-Katz, M. et al. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8+ T cells. Sci. Rep. 11, 20769 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Appanna, R., Ponnampalavanar, S., Lum Chai See, L. & Sekaran, S. D. Susceptible and protective HLA class 1 alleles against dengue fever and dengue hemorrhagic fever patients in a Malaysian population. PloS One 5, e13029 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. NEJM 344, 1668–1675 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbian, H. J. et al. CHIIMP: An automated high‐throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecol. Evol. 8, 7946–7963 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan, K. M., Mannucci, A., Kimpton, C. P. & Gill, P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15, 636–638 (1993). 640-631.CAS 
    PubMed 

    Google Scholar 
    de Groot, N. G. et al. Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenet 72, 25–36 (2020).Article 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thomsen, M., Lundegaard, C., Buus, S., Lund, O. & Nielsen, M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenet 65, 655–665 (2013).Article 
    CAS 

    Google Scholar 
    Maibach, V. & Vigilant, L. Reduced bonobo MHC class I diversity predicts a reduced viral peptide binding ability compared to chimpanzees. BMC Evol. Biol. 19, 1–15 (2019).Article 

    Google Scholar 
    Wroblewski, E. E., Parham, P. & Guethlein, L. A. Two to tango: co-evolution of hominid natural killer cell receptors and MHC. Front. Immunol. 10 https://doi.org/10.3389/fimmu.2019.00177 (2019).Raymond, M. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: a complete re‐implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).Article 
    PubMed 

    Google Scholar 
    Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cheng, L., Samuni, L., Lucchesi, S., Deschner, T. & Surbeck, M. Love thy neighbour: behavioural and endocrine correlates of male strategies during intergroup encounters in bonobos. Anim. Behav. 187, 319–330 (2022).Article 

    Google Scholar 
    Lucchesi, S. et al. Beyond the group: how food, mates, and group size influence intergroup encounters in wild bonobos. Behav. Ecol. 31, 519–532 (2020).Article 

    Google Scholar 
    Plumptre, A., Robbins, M. M. & Williamson, E. A. Gorilla beringei. The IUCN Red List of Threatened Species 2019: e.T39994A115576640. (2019).Maisels, F., Bergl, R. A. & Williamson, E. A. Gorilla gorilla (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2018: e.T9404A136250858. (2018).Humle, T., Maisels, F., Oates, J.F., Plumptre, A. & Williamson, E.A. Pan troglodytes (errata version published in 2018). The IUCN Red List of Threatened Species 2016: e.T15933A129038584. (2016).Fruth, B. et al. Pan paniscus (errata version published in 2016). The IUCN Red List of Threatened Species 2016: e.T15932A102331567. (2016). More

  • in

    Big dino, little dino: how T. rex’s relatives changed their size

    Theropod dinosaurs such as Tarbosaurus bataar grew large or small in a range of ways.Credit: Marco Ansaloni/SPL

    A sweeping analysis of shin bones has given researchers a glimpse into how some dinosaurs evolved into mega-beasts such as Tyrannosaurus, and others into smaller, bird-like creatures. The work, published this week in Science1, reveals that dinosaurs used more than one evolutionary trick to become larger — or smaller — over time.Prevailing wisdom held that large-bodied animals are bigger than their smaller-bodied relatives because they grow faster during their most rapid period of growth. That trend holds true for modern animals including birds and mammals — elephants and ostriches grow faster than chihuahuas and sparrows, for example.It’s not the case for all animals. Crocodiles and alligators, for instance, become large because they grow for a long time. But palaeontologists had assumed that for theropod dinosaurs — a group that includes the iconic T. rex and which spawned modern birds — large species got big through rapid growth spurts. “It’s kind of become the established idea in dinosaurs,” says palaeontologist Michael D’Emic at Adelphi University in Garden City, New York.But that’s not what D’Emic found when he sawed into the bones of Majungasaurus, a 7-metre-long T. rex relative that lived 66 million years ago on what is now Madagascar. The speed of growth in dinosaurs is recorded in rings laid down each year in their bones. Instead of seeing wide rings corresponding to a rapid adolescent growth spurt, D’Emic found lots of narrow growth rings, suggesting that Majungasaurus had become large over a prolonged period.“I was very surprised,” he says. The next dinosaur he examined, a similar-sized beast called Ceratasaurus, was the opposite — a big dinosaur that grew fast during its growth spurt, says D’Emic.Bone growth ringsOver a decade, D’Emic and his colleagues amassed bone growth-ring measurements from 42 theropod species to see which strategies led to large and small bodies. They found that 31% of theropod species were larger than their ancestors because of faster growth and 28% because of prolonged growth. Meanwhile, 21% became smaller than their ancestors by shortening their growth spurts, and 19% by slowing growth.The study covered theropod species that lived between 230 million years ago and the end of the Cretaceous period 66 million years ago, when a mass-extinction event wiped out the non-avian dinosaurs. It’s “a huge evolutionary timescale”, to include in an analysis, says Vera Weisbecker, an evolutionary biologist at Flinders University in Adelaide, Australia. “That is really impressive,” she says. “It’s just fascinating that there are so many developmental ways to become big or small.”Palaeontologist Kevin Padian at the University of California, Berkeley, says the analysis is the kind of work that needs to be done, animal group by animal group, to understand how body size evolves.Drivers of changeBut Meike Köhler, an evolutionary palaeobiologist at the Catalan Institution for Research and Advanced Studies in Barcelona, Spain, says the findings are not surprising because previous work has shown a range of growth strategies across animal species. Köhler would like to see an analysis that considers what ecological circumstances influenced how animals changed in size over time.Weisbecker says that the growth strategy used might be related to evolutionary pressures. “If you looked at all the ones with explosive early growth, you might be able to test if they happen to be the ones that are more likely to be predated on, for example,” she says.For each species, the growth strategy that led to its individual body size probably related to its unique environment, says Padian. “It’s not a one-size-fits-all, which is a good thing for us to learn,” he says. “We might have thought that, but they’ve documented it.”D’Emic says he and his team are conducting similar analyses on other groups, including mammals — a group that contains many more species to sample — to see whether the diversity is found in other branches of the evolutionary tree. More