Malaria-driven adaptation of MHC class I in wild bonobo populations
World Health Organization. World malaria report 2022. (2022).Kariuki, S. N. & Williams, T. N. Human genetics and malaria resistance. Hum. Gen. 139, 801–811 (2020).Article
Google Scholar
Watson, J. A., White, N. J. & Dondorp, A. M. Falciparum malaria mortality in sub-Saharan Africa in the pretreatment era. Trends Parasitol. 38, 11–14 (2022).Article
CAS
PubMed
Google Scholar
Sanchez-Mazas, A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med. Wkly. 150, w20214 (2020).PubMed
Google Scholar
Heijmans, C. M. C., de Groot, N. G. & Bontrop, R. E. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int. J. Immunogenet. 47, 243–260 (2020).Article
CAS
PubMed
Google Scholar
Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).Article
CAS
PubMed
Google Scholar
Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).Article
ADS
CAS
PubMed
Google Scholar
Colonna, M. & Samaridis, J. Cloning of Immunoglobulin-Superfamily Members Associated with HLA-C and HLA-B Recognition by Human Natural Killer Cells. Science 268, 405–408 (1995).Article
ADS
CAS
PubMed
Google Scholar
Hill, A. V. et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).Article
ADS
CAS
PubMed
Google Scholar
Sanchez‐Mazas, A. et al. The HLA‐B landscape of Africa: signatures of pathogen‐driven selection and molecular identification of candidate alleles to malaria protection. Mol. Ecol. 26, 6238–6252 (2017).Article
PubMed
Google Scholar
Hill, A. V. et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–439 (1992).Article
ADS
CAS
PubMed
Google Scholar
Norman, P. J. et al. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet. 9, e1003938 (2013).Article
PubMed
PubMed Central
Google Scholar
Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. 74, 39–63 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).Article
ADS
PubMed
Google Scholar
Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evol. 8, 1929–1939 (2016).Article
CAS
PubMed
PubMed Central
Google Scholar
De Nys, H. M. et al. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9, 20121160 (2013).Article
PubMed
PubMed Central
Google Scholar
De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 1–6 (2014).
Google Scholar
Mapua, M. I. et al. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology 142, 890–900 (2015).Article
PubMed
Google Scholar
Scully, E. J. et al. The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs. Commun. Biol. 5, 1020 (2022).Article
CAS
PubMed
PubMed Central
Google Scholar
Herbert, A. et al. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar. J. 14, 1–8 (2015).Article
Google Scholar
De Nys, H. M., Löhrich, T., Wu, D., Calvignac-Spencer, S. & Leendertz, F. H. Wild African great apes as natural hosts of malaria parasites: current knowledge and research perspectives. Primate Biol. 4, 47–59 (2017).Article
PubMed
PubMed Central
Google Scholar
Takemoto, H., Kawamoto, Y. & Furuichi, T. How did bonobos come to range south of the congo river? Reconsideration of the divergence of Pan paniscus from other Pan populations. Evol. Anthropol. 24, 170–184 (2015).Article
PubMed
Google Scholar
Takemoto, H., Kawamoto, Y. & Furuichi, T. The formation of Congo River and the origin of bonobos: A new hypothesis. in Bonobos: unique in mind, brain, and behavior (eds. Hare, B. & Yamamoto, S.) 235-248 (Oxford University Press, 2017).Takemoto, H. et al. The mitochondrial ancestor of bonobos and the origin of their major haplogroups. PLoS One. 12, e0174851 (2017).Article
PubMed
PubMed Central
Google Scholar
Pilbrow, V. & Groves, C. Evidence for divergence in populations of bonobos (Pan paniscus) in the Lomami-Lualaba and Kasai-Sankuru regions based on preliminary analysis of craniodental variation. Int. J. Primatol. 34, 1244–1260 (2013).Article
Google Scholar
de Groot, N. G., Stevens, J. M. & Bontrop, R. E. Does the MHC confer protection against malaria in bonobos? Trends Immunol. 39, 768–771 (2018).Article
PubMed
Google Scholar
Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).Article
PubMed
PubMed Central
Google Scholar
Wroblewski, E. E. et al. Bonobos maintain immune system diversity with three functional types of MHC-B. J. Immunol. 198, 3480–3493 (2017).Article
CAS
PubMed
Google Scholar
Bjorkman, P. et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329, 512–518 (1987).Article
ADS
CAS
PubMed
Google Scholar
Guethlein, L. A., Norman, P. J., Hilton, H. G. & Parham, P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol. Rev. 267, 259–282 (2015).Article
CAS
PubMed
PubMed Central
Google Scholar
Wroblewski, E. E. et al. Signature patterns of MHC diversity in three Gombe communities of wild chimpanzees reflect fitness in reproduction and immune defense against SIVcpz. PLoS. Biol. 13, e1002144 (2015).Article
PubMed
PubMed Central
Google Scholar
Li, Y. et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 18, 10776–10791 (2012).Article
Google Scholar
Yang, C. et al. Sequence variations in the non-repetitive regions of the liver stage-specific antigen-1 (LSA-1) of Plasmodium falciparum from field isolates,. Mol. Biochem Parasitol. 71, 291–294 (1995).Article
CAS
PubMed
Google Scholar
Fidock, D. A. et al. Plasmodium falciparum liver stage antigen-1 is well conserved and contains potent B and T cell determinants. J. Immunol. 153, 190–204 (1994).Article
CAS
PubMed
Google Scholar
Aurrecoechea, C. et al. PlasmoDB: a functional genomic database for malaria parasites. Nucl. Acids Res. 37, D539–D543 (2009).Article
CAS
PubMed
Google Scholar
Hughes, A. L. & Yeager, M. Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32, 415–435 (1998).Article
CAS
PubMed
Google Scholar
Trowsdale, J. The MHC, disease and selection. Immunol. Lett. 137, 1–8 (2011).Article
CAS
PubMed
Google Scholar
Crow, J. & Kimura, M. An Introduction To Population Genetics Theory. (Alpha Editions, 1970).Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471 (2013).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Digitale, J. C. et al. HLA alleles B* 53:01 and C* 06:02 are associated with higher risk of P. falciparum parasitemia in a cohort in Uganda. Front. Immunol. 12, 650028 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Lyke, K. E. et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 77, 562–571 (2011).Article
CAS
PubMed
PubMed Central
Google Scholar
Osafo-Addo, A. D. et al. HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am. J. Trop. Med. 78, 251–255 (2008).Article
Google Scholar
Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat. Genet. 41, 657–665 (2009).Article
CAS
PubMed
PubMed Central
Google Scholar
Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat. Commun. 10, 5732 (2019).Article
ADS
CAS
Google Scholar
Ravenhall, M. et al. Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern Tanzania. PLoS Genet. 14, e1007172 (2018).Article
PubMed
PubMed Central
Google Scholar
Damena, D., Denis, A., Golassa, L. & Chimusa, E. R. Genome-wide association studies of severe P. falciparum malaria susceptibility: progress, pitfalls and prospects. BMC Med. Genom. 12, 1–14 (2019).Article
CAS
Google Scholar
Kennedy, A. E., Ozbek, U. & Dorak, M. T. What has GWAS done for HLA and disease associations? Int. J. Immunogenet. 44, 195–211 (2017).Article
CAS
PubMed
Google Scholar
Tukwasibwe, S. et al. Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell. Mol. Immunol. 17, 799–806 (2020).Article
CAS
PubMed
PubMed Central
Google Scholar
Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Phillips, M. et al. Malaria. Nat. Rev. Dis. Prim. 3, 17050 (2017).Article
PubMed
Google Scholar
Samandary, S. et al. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum. Immunol. 75, 715–729 (2014).Article
CAS
PubMed
PubMed Central
Google Scholar
Miranda-Katz, M. et al. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8+ T cells. Sci. Rep. 11, 20769 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Appanna, R., Ponnampalavanar, S., Lum Chai See, L. & Sekaran, S. D. Susceptible and protective HLA class 1 alleles against dengue fever and dengue hemorrhagic fever patients in a Malaysian population. PloS One 5, e13029 (2010).Article
ADS
PubMed
PubMed Central
Google Scholar
Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. NEJM 344, 1668–1675 (2001).Article
CAS
PubMed
Google Scholar
Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011).Article
PubMed
PubMed Central
Google Scholar
Barbian, H. J. et al. CHIIMP: An automated high‐throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecol. Evol. 8, 7946–7963 (2018).Article
PubMed
PubMed Central
Google Scholar
Sullivan, K. M., Mannucci, A., Kimpton, C. P. & Gill, P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15, 636–638 (1993). 640-631.CAS
PubMed
Google Scholar
de Groot, N. G. et al. Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenet 72, 25–36 (2020).Article
Google Scholar
Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article
CAS
PubMed
Google Scholar
Thomsen, M., Lundegaard, C., Buus, S., Lund, O. & Nielsen, M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenet 65, 655–665 (2013).Article
CAS
Google Scholar
Maibach, V. & Vigilant, L. Reduced bonobo MHC class I diversity predicts a reduced viral peptide binding ability compared to chimpanzees. BMC Evol. Biol. 19, 1–15 (2019).Article
Google Scholar
Wroblewski, E. E., Parham, P. & Guethlein, L. A. Two to tango: co-evolution of hominid natural killer cell receptors and MHC. Front. Immunol. 10 https://doi.org/10.3389/fimmu.2019.00177 (2019).Raymond, M. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article
Google Scholar
Rousset, F. GENEPOP’007: a complete re‐implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).Article
PubMed
Google Scholar
Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014).Article
ADS
CAS
PubMed
Google Scholar
Cheng, L., Samuni, L., Lucchesi, S., Deschner, T. & Surbeck, M. Love thy neighbour: behavioural and endocrine correlates of male strategies during intergroup encounters in bonobos. Anim. Behav. 187, 319–330 (2022).Article
Google Scholar
Lucchesi, S. et al. Beyond the group: how food, mates, and group size influence intergroup encounters in wild bonobos. Behav. Ecol. 31, 519–532 (2020).Article
Google Scholar
Plumptre, A., Robbins, M. M. & Williamson, E. A. Gorilla beringei. The IUCN Red List of Threatened Species 2019: e.T39994A115576640. (2019).Maisels, F., Bergl, R. A. & Williamson, E. A. Gorilla gorilla (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2018: e.T9404A136250858. (2018).Humle, T., Maisels, F., Oates, J.F., Plumptre, A. & Williamson, E.A. Pan troglodytes (errata version published in 2018). The IUCN Red List of Threatened Species 2016: e.T15933A129038584. (2016).Fruth, B. et al. Pan paniscus (errata version published in 2016). The IUCN Red List of Threatened Species 2016: e.T15932A102331567. (2016). More