More stories

  • in

    Effect of different plant communities on NO2 in an urban road greenbelt in Nanjing, China

    Cui, Y. Z. et al. Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013. Atmos. Chem. Phys. 16, 6207–6221. https://doi.org/10.5194/acp-16-6207-2016 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, J. B. et al. Ground-Level NO2 concentrations over China inferred from the Satellite OMI and CMAQ model simulations. Remote Sens. 9, 519. https://doi.org/10.3390/rs9060519 (2017).Article 
    ADS 

    Google Scholar 
    Cui, Y. Z. et al. Spatio-Temporal heterogeneous impacts of the drivers of NO2 pollution in Chinese cities: Based on satellite observation data. Remote Sens. 14, 3487. https://doi.org/10.3390/rs14143487 (2022).Article 
    ADS 

    Google Scholar 
    Huang, Z. Y., Xu, X. K., Ma, M. G. & Shen, J. W. Assessment of NO2 population exposure from 2005 to 2020 in China. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-022-21420-6 (2022).Article 

    Google Scholar 
    Zheng, Z. H., Yang, Z. W., Wu, Z. F. & Marinello, F. Spatial variation of NO2 and its impact factors in China: An application of sentinel-5P products. Remote Sens. 11, 1939. https://doi.org/10.3390/rs11161939 (2019).Article 
    ADS 

    Google Scholar 
    Bignal, K. L., Ashmore, M. R., Headley, A. D., Stewart, K. & Weigert, K. Ecological impacts of air pollution from road transport on local vegetation. Appl. Geochem. 22, 1265–1271. https://doi.org/10.1016/j.apgeochem.2007.03.017 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhu, Y. J. et al. Spatiotemporally mapping of the relationship between NO2 pollution and urbanization for a megacity in Southwest China during 2005–2016. Chemosphere 220, 155–162. https://doi.org/10.1016/j.chemosphere.2018.12.095 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stieb, D. M. et al. A national study of the association between traffic-related air pollution and adverse pregnancy outcomes in Canada, 1999–2008. Environ. Res. 148, 513–526. https://doi.org/10.1016/j.envres.2016.04.025 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hu, Y. et al. Associations between total mortality and personal exposure to outdoor-originated NO2 in 271 Chinese cities. Atmos. Environ. https://doi.org/10.1016/j.atmosenv.2020.118170 (2021).Article 

    Google Scholar 
    Han, K. M. Temporal analysis of OMI-Observed tropospheric NO2 columns over east Asia during 2006–2015. Atmosphere 10, 658 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    EEA. Air quality in Europe—2016 report. European Environment Agency EEA Report No 28/2016. Retrieved 2 Dec 2016 from: http://www.eea.europa.eu/publications/air-quality-in-europe-2016Ahmad, A. et al. A comparative study on capability of different tree species in accumulating heavy metals from soil and ambient air. Chemosphere 172, 459–467. https://doi.org/10.1016/j.chemosphere.2017.01.045 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Erin, R. D., Bryan, K. P., Amy, X. L. & Ronald, C. C. Laboratory measurements of stomatal NO2 deposition to native California trees and the role of forests in the NOx cycle. Atmos. Chem. Phys. 22, 14023–14041. https://doi.org/10.5194/acp-20-14023-2020 (2020).Article 
    CAS 

    Google Scholar 
    Takahashi, M. et al. Differential assimilation of nitrogen dioxide by 70 taxa of roadside trees at an urban pollution level. Chemosphere 61, 633–639. https://doi.org/10.1016/j.chemosphere.2005.03.033 (2005).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guo, L. L., Li, B. F. & Chen, H. A. A review of urban Micro-climate research on block scale in China. Urban Dev. Stud. 24, 75–81. https://doi.org/10.3969/j.issn.10063862.2017.01.010 (2017).Article 

    Google Scholar 
    Jung, S. & Yoon, S. Analysis of the effects of floor area ratio change in urban street canyons on microclimate and particulate matter. Energies 14, 714. https://doi.org/10.3390/en14030714 (2021).Article 
    CAS 

    Google Scholar 
    Yin, S. et al. Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai, China. Environ. Pollut. 159, 2155–2163. https://doi.org/10.1016/j.envpol.2011.03.009 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lin, C., Feng, X. F. & Heal, M. R. Temporal persistence of intra-urban spatial contrasts in ambient NO2, O3 and Ox in Edinburgh, UK. Atmos. Pollut. Res. 7, 734–741. https://doi.org/10.1016/j.apr.2016.03.008 (2016).Article 

    Google Scholar 
    Brantley, H. L., Hagler, G. S. W., Deshmukh, P. J. & Baldauf, R. W. Field assessment of the effects of roadside vegetation on near-road black carbon and particulate matter. Sci. Total Environ. 468, 120–129. https://doi.org/10.1016/j.scitotenv.2013.08.001 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Irga, P. J., Burchett, M. D. & Torpy, F. R. Does urban forestry have a quantitative effect on ambient air quality in an urban environment?. Atmos. Environ. 120, 173–181. https://doi.org/10.1016/j.atmosenv.2015.08.050 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Tong, Z. M., Baldauf, R. W., Isakov, V., Deshmunk, P. & Zhang, K. M. Roadside vegetation barrier design to mitigate near-road air pollution impacts. Sci. Total Environ. 541, 920–927. https://doi.org/10.1016/j.scitotenv.2015.09.067 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Setälä, H., Viippola, V., Rantalainen, A. L., Pennanen, A. & Yli-Pelkonen, V. Does urban vegetation mitigate air pollution in northern conditions?. Environ. Pollut. 183, 104–112. https://doi.org/10.1016/j.envpol.2012.11.010 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Xing, Y. & Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 201, 73–83. https://doi.org/10.1016/j.atmosenv.2018.12.027 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Xu, C., Wang, Y. P. & Li, L. L. Study on spatiotemporal distribution of the tropospheric NO2 column concentration in China and its relationship to energy consumption based on the time-series data from 2005 to 2013. Energy Sources Part A 42, 2130–2144. https://doi.org/10.1080/15567036.2019.1607931 (2020).Article 
    CAS 

    Google Scholar 
    Xu, J. H., Lindqvist, H., Liu, Q. F., Wang, K. & Wang, L. Estimating the spatial and temporal variability of the ground-level NO2 concentration in China during 2005–2019 based on satellite remote sensing. Atmos. Pollut. Res. 12, 57–67. https://doi.org/10.1016/j.apr.2020.10.008 (2021).Article 
    CAS 

    Google Scholar 
    Daniel, L. G. et al. TROPOMI NO2 in the United States: A detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface NO2 concentrations. Earths Feature 9, 4. https://doi.org/10.1029/2020EF001665 (2021).Article 
    CAS 

    Google Scholar 
    Mavroidis, I. & Chaloulakou, A. Long-term trends of primary and secondary NO2 production in the Athens area. Variation of the NO2/NOx ratio. Atmos. Environ. 45, 6872–6879. https://doi.org/10.1016/j.atmosenv.2010.11.006 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Van der, A. R. J. et al. Detection of the trend and seasonal variation in tropospheric NO2 over China. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006594 (2006).Article 

    Google Scholar 
    Salama, D. S. et al. Satellite observations for monitoring atmospheric NO2 in correlation with the existing pollution sources under arid environment. Model. Earth Syst. Environ. 8, 4103–4121. https://doi.org/10.1007/s40808-022-01352-3 (2022).Article 
    PubMed 

    Google Scholar 
    Ahmad, S. S. & Aziz, N. Spatial and temporal analysis of ground level ozone and nitrogen dioxide concentration across the twin cities of Pakistan. Environ. Monit. Assess. 185, 3133–3147. https://doi.org/10.1007/s10661-012-2778-7 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Khaled, G., Abdulaziz, A., Watheq, A. & Mumin, A. Analysis of NOx, NO and NO2 ambient levels in Dhahran, Saudi Arabia. Urban Clim. 21, 232–242. https://doi.org/10.2495/AIR170081 (2017).Article 

    Google Scholar 
    Casquero-Vera, J. A. et al. Impact of primary NO2 emissions at different urban sites exceeding the European NO2 standard limit. Sci. Total Environ. 646, 1117–1125 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Desyana, R. D., Sulistyantara, B., Nasrullah, N. & Fatimah, I. S. Study of the effectiveness of several tree canopy types on roadside green belt in influencing the distribution of NO2 gas emitted from transportation. EES https://doi.org/10.1088/1755-1315/58/1/012045 (2017).Article 

    Google Scholar 
    Rotach, M. W. Profiles of turbulence statistics in and above an urban street canyon. Atmos. Environ. 29, 1473–1486. https://doi.org/10.1016/1352-2310(95)00084-C (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Luo, M. Study on Air Pollutants Removal Effects of Green Space with Different Community Structures (Huazhong Agricultural University, 2013).
    Google Scholar 
    Rao, M., George, L. A., Rosenstiel, T. N., Shandas, V. & Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environ. Pollut. 194, 96–104. https://doi.org/10.1016/j.envpol.2014.07.011 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yli-Pelkonen, V., Viippola, V., Kotze, D. J. & Setala, H. Greenbelts do not reduce NO2 concentrations in near-road environments. Urban Clim. 21, 306–317. https://doi.org/10.1016/j.uclim.2017.08.005 (2017).Article 

    Google Scholar 
    Fantozzi, F., Monaci, F., Blanusa, T. & Bargagli, R. Spatio-temporal variations of ozone and nitrogen dioxide concentrations under urban trees and in a nearby open area. Urban Clim. 12, 119–127. https://doi.org/10.1016/j.uclim.2015.02.001 (2015).Article 

    Google Scholar 
    Nie, L., Deng, Z. H. & Chen, Q. B. SO2 and NOx purify-cation ability of forest in Kunming City. J. West China For. Sci. 44, 116–120 (2015).
    Google Scholar 
    Baldauf, R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. Part D 52, 354–361. https://doi.org/10.1016/j.trd.2017.03.013 (2017).Article 

    Google Scholar 
    Lai, D. Y., Liu, Y. Q., Liao, M. C. & Yu, B. Q. Effects of different tree layouts on outdoor thermal comfort of green space in summer Shanghai. Urban Clim. 47, 101398 (2023).Article 

    Google Scholar 
    Lai, D., Liu, W., Gan, T., Liu, K. & Chen, Q. A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Sci. Total Environ. 661, 337–353 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Alcobiosis, an algal-fungal association on the threshold of lichenisation

    Wilkinson, D. At cross purposes. Nature 412, 485 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Bary, H. A. Über Symbiose [On Symbiosis]. Tageblatt für die Versammlung Dtsch. Naturforscher und Aerzte (in Cassel) [Daily J. Conf. Ger. Sci. Phys.] (in Ger. 51, 121–126 (1878).Lücking, R., Leavitt, S. D. & Hawksworth, D. L. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Div.109, 99–154 (Springer, Netherlands, 2021).de Vries, J. & Archibald, J. M. Plant evolution: Landmarks on the path to terrestrial life. New Phytol. 217, 1428–1434 (2018).Article 
    PubMed 

    Google Scholar 
    Ahmadjian, V. The Lichen Symbiosis (John Wiley & Sons, 1993).
    Google Scholar 
    Lücking, R., Hodkinson, B. P. & Leavitt, S. D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota-approaching one thousand genera. Bryologist 119, 361–416 (2016).Article 

    Google Scholar 
    Schneider, K., Resl, P. & Spribille, T. Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event. Mol. Ecol. 25, 3453–3468 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. New Phytol. 164, 459–465 (2004).Article 

    Google Scholar 
    Muggia, L., Baloch, E., Stabentheiner, E., Grube, M. & Wedin, M. Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. FEMS Microbiol. Ecol. 75, 255–272 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sanders, W. B., Moe, R. L. & Ascaso, C. Ultrastructural study of the brown alga Petroderma maculiforme (Phaeophyceae) in the free-living state and in lichen symbiosis with the intertidal marine fungus Verrucaria tavaresiae (Ascomycotina). Eur. J. Phycol. 40, 353–361 (2005).Article 
    CAS 

    Google Scholar 
    Vondrák, J. et al. From Cinderella to Princess. Preslia 94, 143–181 (2022).Article 

    Google Scholar 
    Hawksworth, D. L. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot. J. Linn. Soc. 96, 3–20 (1988).Article 

    Google Scholar 
    Larsson, K. H. & Ryvarden, L. Corticioid fungi of Europe 1. Acanthobasidium–Gyrodontium. Synop. Fungorum 43, 1–266 (2021).
    Google Scholar 
    Albertini, J. B., von Schweinitz, L. D. Conspectus fungorum in Lusatiae Superioris agro Niskiensi crescentium, e methodo Persooniana. (DE: Sumtibus Kummerianis, Lipsiae 1805) https://doi.org/10.5962/bhl.title.3601.Poelt, J. & Jülich, W. Über die Beziehungen zweier corticioider Basidiomyceten zu Algen. Österr. Bot. Zeitschrift 116, 400–410 (1969).Article 

    Google Scholar 
    Voytsekhovich, A., Ordynets, O. & Akimov, Y. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae) and their photobiont composition. Aктyaльнi Пpoблeми Бoтaнiки Ta Eкoлoгiї. Maтepiaли Miжнapoднoї Кoнфepeнцiї Moлoдиx Учeниx 65 (2013).Voytsekhovich, A., Mikhailyuk, T., Akimov, Y., Ordynets, A., Gustavs, L. Optionally lichenized fungi of Hyphodontia (Agaricomycetes, Schizoporaceae). 8th Congress of the International Symbiosis Society, Lisbon, 12–18 July 2015. Lisbon, PT:, 217 (Conf. abstract) (2015).Gustavs L, Schiefelbein U, Darienko T, P. T. Symbioses of the green algal genera Coccomyxa and Elliptochloris (Trebouxiophyceae, Chlorophyta). in Algal and Cyanobacteria Symbioses (ed. Grube M, Seckbach J) 169–208 (2017).Darienko, T., Gustavs, L., Eggert, A., Wolf, W. & Pröschold, T. Evaluating the species boundaries of green microalgae (Coccomyxa, Trebouxiophyceae, Chlorophyta) using integrative taxonomy and DNA barcoding with further implications for the species identification in environmental samples. PLoS ONE 10, 1–31 (2015).Article 

    Google Scholar 
    Malavasi, V. et al. DNA-based taxonomy in ecologically versatile microalgae: A re-evaluation of the species concept within the coccoid green algal genus Coccomyxa (Trebouxiophyceae, Chlorophyta). PLoS ONE 11, e0151137 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, T. G. A., Nash, T. H. Lichen Biology. In Lichen Biology, Second Edition 152–181 (Cambridge University Press, Cambridge, 2008) https://doi.org/10.1017/CBO9780511790478.Lindgren, H. et al. Cophylogenetic patterns in algal symbionts correlate with repeated symbiont switches during diversification and geographic expansion of lichen-forming fungi in the genus Sticta (Ascomycota, Peltigeraceae). Mol. Phylogenet. Evol. 150, 106860 (2020).Article 
    PubMed 

    Google Scholar 
    Kulichová, J., Škaloud, P. & Neustupa, J. Molecular diversity of green corticolous microalgae from two sub-mediterranean European localities. Eur. J. Phycol. 49, 345–355 (2014).Article 

    Google Scholar 
    Pröschold, T. & Darienko, T. The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus. Phytotaxa 441, 113–142 (2020).Article 

    Google Scholar 
    Meier, F. A., Scherrer, S. & Honegger, R. Faecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomycete Xanthoria parietina and its green algal photobiont. Trebouxia arboricola. Biol. J. Linn. Soc. 76, 259–268 (2002).Article 

    Google Scholar 
    Bernicchia, A. & Gorjón, S. P. Corticiaceae s.l. 1008 (2010), ISBN: 9788890105791.Parmasto, E. Descriptiones taxorum novorum. Combinationes novae. Proc. Acad. Sci. Est. SSR. Biol. 16, 377–394 (1967).
    Google Scholar 
    Hjortstam, K., Larsson, K., Ryvarden, L. & Eriksson, J. The Corticiaceae of North Europe. (Oslo: Fungiflora, 1988).Jaag, O. Coccomyxa schmidle Monographie einer algengattung. Beitr. Kryptogamenflora Schweiz 8, 1–132 (1933).
    Google Scholar 
    Oberwinkler, F. Die gattungen der Basidiolichenen. Vorträge aus dem Gesamtgebiet der Botanik. Herausgegeb. v. d. Deutsch. bot. Ges. Neue Folge 4, 139–169 (1970).
    Google Scholar 
    Poelt, J. Basidienflechten, eine in den Alpen lange übersehene Pflanzengruppe. Jahrb. Vereins Schutze Alpenpfl. Tiere 40, 81–92 (1975).
    Google Scholar 
    Eriksson, J., Hjortstam, K. The Corticiaceae of North Europe. Vol. 6. (Grønlands Eskefabrikk, 1981).Oberwinkler, F. Basidiolichens. In Fungal Association 211–225 (Springer, Berlin Heidelberg, Berlin, 2001). https://doi.org/10.1007/978-3-662-07334-6_12.Chapter 

    Google Scholar 
    Jülich, W. A new lichenized Athelia from Florida. Persoonia 10, 149–151 (1978).
    Google Scholar 
    Zavada, M. S. & Simoes, P. The possible demi-lichenization of the basidiocarps of Trametes Versicolor (L.:Fries) pilat (polyporaceae). Northeast. Nat. 8, 101–112 (2001).
    Google Scholar 
    Neustroeva, N., Mukhin, V., Novakovskaya, I. & Patova, E. Biodiversity of symbiotic algae of wood decay Basidimycetes in the Central Urals. III Russ. Natl. Conf. “Information Technol. Biodivers. Res. 1, 83–92 (2020).
    Google Scholar 
    Zavada, M. S., DiMichele, L. & Toth, C. R. The possible demi-lichenization of Trametes versicolor (L.: Fries) Pilát (Polyporaceae): The transfer of fixed 14CO2 from epiphytic algae to T. versicolor. Northeast. Nat. 11, 33–40 (2004).Article 

    Google Scholar 
    Mukhin, V. A., Patova, E. N., Kiseleva, I. S., Neustroeva, N. V. & Novakovskaya, I. V. Mycetobiont symbiotic algae of wood-decomposing fungi. Russ. J. Ecol. 47, 133–137 (2016).Article 
    CAS 

    Google Scholar 
    Sanders, W. B. & Masumoto, H. Lichen algae: The photosynthetic partners in lichen symbioses. Lichenologist 53, 347–393 (2021).Article 

    Google Scholar 
    Krause, G. & Weis, E. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Biol. 42(1), 313–349 (1991).Article 
    CAS 

    Google Scholar 
    Lüttge, U. & Büdel, B. Resurrection kinetics of photosynthesis in desiccation-tolerant terrestrial green algae (Chlorophyta) on tree bark. Plant Biol. 12, 437–444 (2010).Article 
    PubMed 

    Google Scholar 
    Lange, O. L. Moisture content and CO2 exchange of lichens: I. Influence of temperature on moisture-dependent net photosynthesis and dark respiration in Ramalina maciformis. Oecologia 45, 82–87 (1980).Article 
    ADS 
    PubMed 

    Google Scholar 
    Palmqvist, K. & Sundberg, B. Light use efficiency of dry matter gain in five macrolichens: Relative impact of microclimate conditions and species-specific traits. Plant Cell Environ. 23, 1–14 (2000).Article 

    Google Scholar 
    Vondrak, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45(1), 115 (2013).Article 

    Google Scholar 
    Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: Incorporating acclimation to temperature and CO2. Glob. Chang. Biol. 19, 45–63 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Medeiros, P. M. & Simoneit, B. R. T. Analysis of sugars in environmental samples by gas chromatography-mass spectrometry. J. Chromatogr. A 1141, 271–278 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Honegger, R. Functional aspects of the lichen symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 553–578 (1991).Article 
    CAS 

    Google Scholar 
    Honegger, R. The lichen symbiosis—What is so spectacular about it?. Lichenologist 30, 193–212 (1998).Article 

    Google Scholar 
    Kirk, P. M. et al. (eds) Dictionary of the Fungi 10th edn. (CABI, Netherlands, 2008).
    Google Scholar 
    Ahmadjian, V. The lichen alga Trebouxia: Does it occur free-living?. Plant Syst. Evol. 158, 243–247 (1988).Article 

    Google Scholar 
    Sanders, W. B. Complete life cycle of the lichen fungus Calopadia puiggarii (Pilocarpaceae, Ascomycetes) documented in situ: Propagule dispersal, establishment of symbiosis, thallus development, and formation of sexual and asexual reproductive structures. Am. J. Bot. 101, 1836–1848 (2014).Article 
    PubMed 

    Google Scholar 
    Rindi, F. & Guiry, M. Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43, 225–235 (2004).Article 

    Google Scholar 
    Stonyeva, M. P., Uzunov, B. A. & Gärtner, G. Aerophytic green algae, epimycotic on Fomes fomentarius (L. ex Fr.) Kickx. Annu. Sofia Univ “St. Kliment Ohridski”. Fac. Biol. 99, 19–25 (2015).
    Google Scholar 
    Aras, S. & Cansaran, D. Isolation of DNA for sequence analysis from herbarium material of some lichen specimens. Turk. J. Bot. 30, 449–453 (2006).
    Google Scholar 
    Hall, T. BioEdit: A userfriendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vondrák, J. & Kubásek, J. Algal stacks and fungal stacks as adaptations to high light in lichens. Lichenol. 45, 115–124 (2013).Article 

    Google Scholar 
    Kubásek, J., Hájek, T. & Glime, J. M. Bryophyte photosynthesis in sunflecks: Greater relative induction rate than in tracheophytes. J. Bryol. 36, 110–117 (2014).Article 

    Google Scholar 
    Kubásek, J. et al. Moss stomata do not respond to light and CO2 concentration but facilitate carbon uptake by sporophytes: A gas exchange, stomatal aperture, and C-13-labelling study. New Phytol. 230, 1815–1828 (2021).Article 
    PubMed 

    Google Scholar 
    Feige, G. & Kremer, B. Unusual carbohydrate pattern in Trentepohlia species. Phytochemistry 19, 1844–1845 (1980).Article 
    CAS 

    Google Scholar 
    Tonon, T., Li, Y. & McQueen-Mason, S. Mannitol biosynthesis in algae: More widespread and diverse than previously thought. New Phytol. 213, 1573–1579 (2017).Article 
    PubMed 

    Google Scholar 
    Gustavs, L., Görs, M. & Karsten, U. Polyol patterns in biofilm-forming aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). J. Phycol. 47, 533–537 (2011).Article 
    PubMed 

    Google Scholar  More

  • in

    Shifts from cooperative to individual-based predation defense determine microbial predator-prey dynamics

    In co-culture with the bacterivorous flagellate Poteriospumella lacustris, the prey bacterium Pseudomonas putida exhibited a characteristic succession of predation defenses. The initial and the final defense differed substantially from one another with regard to their mechanism and their population-level benefits to the bacteria.Our results strongly indicate that the initial bacterial defense falls into the category of chemical defense, and is regulated by phenotypic plasticity. This would require P. putida to be able to sense predator density and to regulate the excretion of inhibitory substances accordingly. Because a considerable proportion of the P. putida genome is known to be involved in regulation and signal transduction allowing for very flexible responses to environmental triggers [41] both conditions are likely to be met. The filtrate exposure tests (Fig. 3) provide specific evidence for the ability of P. putida KT2440 to up- and downregulate the excretion of compounds inhibiting flagellate growth in response to grazing pressure. Previous research [25] corroborated the ability of P. putida to escape grazing from bacterivorous flagellates through induced responses like aggregation or biofilm formation.To provide a possible characterization for the apparent bacterial toxin, the whole-genome sequences of P. putida KT2440 obtained here were aligned against the antiSMASH [42] database. The output suggests the existence of non-ribosomal peptide synthetase clusters mediating the production of pyoverdines, a particular class of siderophores. The latter are molecules released by bacteria into the environment, which enhance the uptake of essential metals like, e.g., iron under deficient conditions. Specific pyoverdines associated with P. putida KT2440 have previously been identified [43]. Recent findings have shown that the benefits from siderophore production are not limited to competitive advantages gained from enhanced resource exploitation [44]. Pyoverdines were also demonstrated to determine the virulence of Pseudomonads via the damage of mitochondria in colonized hosts [45]. Moreover, pyoverdines were shown to be involved in the inducible defense of P. putida against predatory myxobacteria [46]. Such multiple functions have been reported for a number of bacterial metabolites, especially in Pseudomonads [47], and the particular combination of pyoverdin effects would explain the observed simultaneous flagellate inhibition and promoted bacterial growth.In contrast to the initial chemical defense of P. putida, the subsequent filamentation clearly provides an example of rapid evolution. Although the responsible mutation(s) could only be pinpointed in a few isolates so far (Table S1), there is no doubt about the genetic manifestation and heritability of the filamentous phenotype due to its demonstrated non-reversible nature.Only recently, similar observations were made by long-term co-cultivation of Pseudomonas fluorescence with the amoeboid predator Neaglena grubei [48]. In that system, protective adaptations like enhanced biofilm formation and altered motility were traced down to mutations in two particular genes (wspF, amrZ).From the perspective of the bacterial population, filamentation appears to be a much less efficient defense mechanism than toxin production. This is clearly reflected by the ratio of prey to predator biomass, which differed by two orders of magnitude between the initial and final defense (Table 6). It raises the question of why bacteria would abandon a highly effective form of defense in favor of a much less effective one. As demonstrated experimentally, adaptation of predators to the toxin can be excluded as a cause (Fig. 4). Moreover, it was not instantly evident how the small-sized flagellate was ultimately able to persist in large numbers given a very high proportion of completely inedible prey individuals (Fig. 1D and Fig. S2).Table 6 Average abundance of predator and prey during the temporary steady state following the initial bacterial defense (day 13–16) and during the final steady state (beyond day 30).Full size tableTo develop a comprehensive understanding of the system addressing the questions raised above, we set up a semi-continuous differential equation model to simulate the dynamics of predator and prey phenotypes. The model considers seven state variables (carbon, densities of four bacterial phenotypes, flagellate density, and toxin concentration) whose dynamics are controlled by nine processes (Table 3, Fig. 2). In addition to microbial growth and grazing, the model implements a phenotypically plastic predation defense (toxin production) as well as a genetic defense (filamentation) which arises via mutation. The particular assumptions implemented in the model are as follows:Dual effect of bacterial metabolitesIn line with the above discussion on siderophore-like compounds, secondary metabolites excreted by P. putida were assumed to exhibit a dual function, both inhibiting the growth of flagellates and allowing for a more efficient exploitation of the resources by bacteria. The inhibition of predators was demonstrated directly (Figs. 3 and 4) while enhanced resource exploitation was inferred from bacterial abundances in co-cultures exceeding the carrying capacity observed in predator-free controls (Fig. 1A, day 11–18).Metabolite production is costlyThe production of bacterial metabolites was assumed to be associated with a slight fitness cost [49] since resources are diverted from reproduction, thus resulting in a lowered growth rate of toxin-producing bacteria. The assumed fitness cost of 11% (parameter cBx in Table 5) allowed for the best agreement between simulated and observed data and is in agreement with data on the cost of pyoverdine production by P. aeruginosa [50]. The cost only manifests when toxin production is upregulated.Predator recognition and quorum sensing interactIn the model, the production of bacterial metabolites is upregulated when the two conditions of high flagellate abundance and high bacterial abundance coincide. That is, the expression of the toxin-based bacterial defense is assumed to be jointly controlled by predator recognition and quorum sensing (QS). Examples for such joint control of bacterial defenses have been reported previously [8, 26, 51]. The involvement of QS in chemical defense strategies is particularly likely as effective toxin concentrations can only be reached when producers are highly abundant. While multiple QS systems have been described for other Pseudomonads, only a single system has been identified in P. putida KT2440 so far [52, 53].Mutation rates are conditional on stressThe emergence of mutations resulting in the filamentation of P. putida was assumed to be conditional on a high ambient concentration of bacterial metabolites. The latter was considered as a proxy for bacterial stress which can affect mutagenesis either directly or indirectly by a variety of mechanisms [54,55,56]. Without this assumption, the almost synchronous appearance of filaments in all replicates at a late point in time would be very difficult to explain. Specifically, if mutation frequencies were high, filaments would become the predominant phenotype early (Fig. S3) which contradicts observations. On the other hand, if frequencies were low but unconditional, the timing of filament appearance should vary between replicates, which is in contrast to observations either (Fig. 1B).Filamentation is associated with a fitness costMeasurements of growth rate constants revealed a significant fitness disadvantage of filamentous isolates in comparison to single-celled, undefended isolates (p  More

  • in

    Beyond the limits of the unassigned protist microbiome: inferring large-scale spatio-temporal patterns of Syndiniales marine parasites

    Forster D, Bittner L, Karkar S, Dunthorn M, Romac S, Audic S, et al. Testing ecological theories with sequence similarity networks: marine ciliates exhibit similar geographic dispersal patterns as multicellular organisms. BMC Biol. 2015;13:16. http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-015-0125-5.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galperin MY, Koonin EV. From complete genome sequence to ‘complete’ understanding? Trends Biotechnol. 2010;28:398–406. https://linkinghub.elsevier.com/retrieve/pii/S0167779910000892.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Modha S, Robertson DL, Hughes J, Orton RJ. Quantifying and cataloguing unknown sequences within human microbiomes. mSystems. 2022;7:e01468–21. https://journals.asm.org/doi/10.1128/msystems.01468-21.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wyman SK, Avila-Herrera A, Nayfach S, Pollard KS. A most wanted list of conserved microbial protein families with no known domains. PLoS One. 2018;13:e0205749. https://dx.plos.org/10.1371/journal.pone.0205749.Bernard G, Pathmanathan JS, Lannes R, Lopez P, Bapteste E. Microbial dark matter investigations: how microbial studies transform biological knowledge and empirically sketch a logic of scientific discovery. Genome Biol Evol. 2018;10:707–15. https://academic.oup.com/gbe/article/10/3/707/4840377.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vanni C, Schechter MS, Acinas SG, Barberán A, Buttigieg PL, Casamayor EO, et al. Unifying the known and unknown microbial coding sequence space. eLife. 2022;11:e67667. https://elifesciences.org/articles/67667.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, et al. Exploration of uncharted regions of the protein universe. PLoS Biol. 2009;7:e1000205. https://dx.plos.org/10.1371/journal.pbio.1000205.Meng A, Corre E, Probert I, Gutierrez-Rodriguez A, Siano R, Annamale A, et al. Analysis of the genomic basis of functional diversity in dinoflagellates using a transcriptome-based sequence similarity network. Mol Ecol. 2018;27:2365–80. https://onlinelibrary.wiley.com/doi/10.1111/mec.14579.Article 
    CAS 
    PubMed 

    Google Scholar 
    Meng A, Marchet C, Corre E, Peterlongo P, Alberti A, Da Silva C, et al. A de novo approach to disentangle partner identity and function in holobiont systems. Microbiome. 2018;6:105. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-018-0481-9.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Tara Oceans Coordinators et al. A global ocean atlas of eukaryotic genes. Nat Commun. 2018;9:373. http://www.nature.com/articles/s41467-017-02342-1.Ramond P, Sourisseau M, Simon N, Romac S, Schmitt S, Rigaut-Jalabert F, et al. Coupling between taxonomic and functional diversity in protistan coastal communities: functional diversity of marine protists. Environ Microbiol. 2019;21:730–49. http://doi.wiley.com/10.1111/1462-2920.14537.Article 
    CAS 
    PubMed 

    Google Scholar 
    Zamkovaya T, Foster JS, de Crécy-Lagard V, Conesa A. A network approach to elucidate and prioritize microbial dark matter in microbial communities. ISME J. 2021;15:228–44. https://www.nature.com/articles/s41396-020-00777-x.Article 
    PubMed 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359–1261359. https://www.sciencemag.org/lookup/doi/10.1126/science.1261359.Article 
    PubMed 

    Google Scholar 
    de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605–1261605. https://www.sciencemag.org/lookup/doi/10.1126/science.1261605.Article 
    PubMed 

    Google Scholar 
    Strassert JFH, Karnkowska A, Hehenberger E, del Campo J, Kolisko M, Okamoto N, et al. Single cell genomics of uncultured marine alveolates shows paraphyly of basal dinoflagellates. ISME J. 2018;12:304–8. http://www.nature.com/articles/ismej2017167.Article 
    CAS 
    PubMed 

    Google Scholar 
    Burki F, Sandin MM, Jamy M. Diversity and ecology of protists revealed by metabarcoding. Curr Biol. 2021;31:R1267–80. https://linkinghub.elsevier.com/retrieve/pii/S0960982221010563.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:2531. http://www.nature.com/articles/s41598-020-59524-z.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singer D, Seppey CVW, Lentendu G, Dunthorn M, Bass D, Belbahri L, et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ Int. 2021;146:106262. https://linkinghub.elsevier.com/retrieve/pii/S0160412020322170.Article 
    CAS 
    PubMed 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65. https://onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2008.01731.x.Article 
    CAS 
    PubMed 

    Google Scholar 
    Clarke LJ, Bestley S, Bissett A, Deagle BE. A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J. 2019;13:734–7. http://www.nature.com/articles/s41396-018-0306-7.Article 
    CAS 
    PubMed 

    Google Scholar 
    Cleary AC, Durbin EG. Unexpected prevalence of parasite 18S rDNA sequences in winter among Antarctic marine protists. J Plankton Res. 2016;38:401–17. https://academic.oup.com/plankt/article-lookup/doi/10.1093/plankt/fbw005.Article 
    CAS 

    Google Scholar 
    Anderson SR, Harvey EL. Temporal variability and ecological interactions of parasitic marine syndiniales in coastal protist communities. mSphere. 2020;5. https://journals.asm.org/doi/10.1128/mSphere.00209-20.Käse L, Metfies K, Neuhaus S, Boersma M, Wiltshire KH, Kraberg AC. Host-parasitoid associations in marine planktonic time series: can metabarcoding help reveal them? Amato A, editor. PLoS One. 2021;16:e0244817. https://dx.plos.org/10.1371/journal.pone.0244817.Jephcott TG, Alves-de-Souza C, Gleason FH, van Ogtrop FF, Sime-Ngando T, Karpov SA, et al. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecology. 2016; https://linkinghub.elsevier.com/retrieve/pii/S175450481500032X.Siano R, Alves-de-Souza C, Foulon E, Bendif EM, Simon N, Guillou L, et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78. https://bg.copernicus.org/articles/8/267/2011/.Article 

    Google Scholar 
    Moran MA, Ferrer‐González FX, Fu H, Nowinski B, Olofsson M, Powers MA, et al. The Ocean’s labile DOCsupply chain. Limnol Oceanogr. 2022;lno.12053. https://onlinelibrary.wiley.com/doi/10.1002/lno.12053.Chambouvet A, Morin P, Marie D, Guillou L. Control of toxic marine dinoflagellate blooms by serial parasitic killers. Science. 2008;322:1254–7. https://www.science.org/doi/10.1126/science.1164387.Article 
    CAS 
    PubMed 

    Google Scholar 
    Shadrin AM, Kholodova MV, Pavlov DS. Geographic distribution and molecular genetic identification of the parasite of the genus Ichthyodinium causing mass mortality of fish eggs and larvae in coastal waters of Vietnam. Dokl Biol Sci. 2010;432:220–3. http://link.springer.com/10.1134/S0012496610030154.Article 
    CAS 
    PubMed 

    Google Scholar 
    Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1. https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-020-00927-9.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chambouvet A, Alves-de-Souza C, Cueff V, Marie D, Karpov S, Guillou L. Interplay between the parasite Amoebophrya sp. (Alveolata) and the cyst formation of the red tide Dinoflagellate Scrippsiella trochoidea. Protist. 2011;162:637–49. https://linkinghub.elsevier.com/retrieve/pii/S1434461011000022.Article 
    PubMed 

    Google Scholar 
    Okamura B, Hartigan A, Naldoni J. Extensive uncharted biodiversity: the parasite dimension. integrative and comparative biology. 2018. https://academic.oup.com/icb/advance-article/doi/10.1093/icb/icy039/5026008.Rohde K. Ecology and Biogeography, Future Perspectives: Example Marine Parasites. Geoinfor Geostat Overview. 2016;4; http://www.scitechnol.com/peer-review/ecology-and-biogeography-future-perspectives-example-marine-parasites-wRny.php?article_id=4869.Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, et al. CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 2012;10:e1001419. https://dx.plos.org/10.1371/journal.pbio.1001419.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo J, Sieracki ME, Molestina R, Keeling P, Massana R, Ruiz-Trillo I. The others: our biased perspective of eukaryotic genomes. Trends Ecol Evol. 2014;29:252–9. https://linkinghub.elsevier.com/retrieve/pii/S0169534714000640.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sibbald SJ, Archibald JM. More protist genomes needed. Nat Ecol Evol. 2017;1:0145. http://www.nature.com/articles/s41559-017-0145.Article 

    Google Scholar 
    Egge E, Elferink S, Vaulot D, John U, Bratbak G, Larsen A, et al. An 18S V4 rRNA metabarcoding dataset of protist diversity in the Atlantic inflow to the Arctic Ocean, through the year and down to 1000 m depth. Earth Syst Sci Data. 2021;13:4913–28. https://essd.copernicus.org/articles/13/4913/2021/.Article 

    Google Scholar 
    Mugnai F, Meglécz E, Abbiati M, Bavestrello G, Bertasi F, Bo M, et al. Are well-studied marine biodiversity hotspots still blackspots for animal barcoding? Global Ecol Conserv. 2021;32:e01909. https://linkinghub.elsevier.com/retrieve/pii/S2351989421004595.Article 

    Google Scholar 
    Bittner L, Gobet A, Audic S, Romac S, Egge ES, Santini S, et al. Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay. Mol Ecol. 2013;22:87–101. https://onlinelibrary.wiley.com/doi/10.1111/mec.12108.Article 
    CAS 
    PubMed 

    Google Scholar 
    Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci USA. 2016;113. https://pnas.org/doi/full/10.1073/pnas.1509523113.Kochin BF, Bull JJ, Antia R. Parasite evolution and life history theory. PLoS Biol. 2010;8:e1000524. https://dx.plos.org/10.1371/journal.pbio.1000524.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sheath DJ, Dick JTA, Dickey JWE, Guo Z, Andreou D, Britton JR. Winning the arms race: host–parasite shared evolutionary history reduces infection risks in fish final hosts. Biol Lett. 2018;14:20180363. https://royalsocietypublishing.org/doi/10.1098/rsbl.2018.0363.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahé F, de Vargas C, Bass D, Czech L, Stamatakis A, Lara E, et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat Ecol Evol. 2017;1:0091. http://www.nature.com/articles/s41559-017-0091.Article 

    Google Scholar 
    Blanco-Bercial L, Parsons R, Bolaños L, Johnson R, Giovannoni S, Curry R. The protist community mirrors seasonality and mesoscale hydrographic features in the oligotrophic Sargasso Sea. 2022. https://www.authorea.com/users/453879/articles/551657-the-protist-community-mirrors-seasonality-and-mesoscale-hydrographic-features-in-the-oligotrophic-sargasso-sea?commit=ba32b47ec0dffb4865eb448dd0b5dd27d5f8cd15.Lepère C, Domaizon I, Debroas D. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol. 2008;74:2940–9. https://journals.asm.org/doi/10.1128/AEM.01156-07.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Decelle J, Martin P, Paborstava K, Pond DW, Tarling G, Mahé F, et al. Diversity, ecology and biogeochemistry of cyst-forming acantharia (radiolaria) in the Oceans. PLoS One. 2013;8:e53598. https://dx.plos.org/10.1371/journal.pone.0053598.Stern RF, Horak A, Andrew RL, Coffroth MA, Andersen RA, Küpper FC, et al. Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS One. 2010;5:e13991. https://dx.plos.org/10.1371/journal.pone.0013991.Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner HW, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Eco. 2010;19:21–31. http://doi.wiley.com/10.1111/j.1365-294X.2009.04480.x.Article 
    CAS 

    Google Scholar 
    Chambouvet A, Gower DJ, Jirků M, Yabsley MJ, Davis AK, Leonard G, et al. Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists. Proc Natl Acad Sci USA. 2015;112. https://pnas.org/doi/full/10.1073/pnas.1500163112.Chauvet M, Debroas D, Moné A, Dubuffet A, Lepère C. Temporal variations of Microsporidia diversity and discovery of new host–parasite interactions in a lake ecosystem. Environ Microbiol. 2022;1462-2920.15950. https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.15950.Bjorbækmo MFM, Evenstad A, Røsæg LL, Krabberød AK, Logares R. The planktonic protist interactome: where do we stand after a century of research? ISME J. 2020;14:544–59. http://www.nature.com/articles/s41396-019-0542-5.Article 
    PubMed 

    Google Scholar 
    Dallas TA, Han BA, Nunn CL, Park AW, Stephens PR, Drake JM. Host traits associated with species roles in parasite sharing networks. Oikos. 2019;128:23–32. https://onlinelibrary.wiley.com/doi/10.1111/oik.05602.Article 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073. https://www.science.org/doi/10.1126/science.1262073.Article 
    PubMed 

    Google Scholar 
    Hayashi A, Crombie A, Lacey E, Richardson A, Vuong D, Piggott A, et al. Aspergillus Sydowii marine fungal bloom in Australian coastal waters, its metabolites and potential impact on symbiodinium dinoflagellates. Marine Drugs. 2016;14:59. http://www.mdpi.com/1660-3397/14/3/59.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite–mutualist continuum. Nat Rev Microbiol. 2021;19:623–38. https://www.nature.com/articles/s41579-021-00550-7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hehenberger E, Tikhonenkov D, Cooney E, Jacko-Reynolds V, Irwin N, Keeling P. Free-living relatives of highly abundant unicellular marine parasites elucidate plastid loss. 2022. https://www.researchsquare.com/article/rs-1472581/v1.Sures B, Nachev M, Selbach C, Marcogliese DJ. Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Parasites Vectors. 2017;10:65. http://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-017-2001-3.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne RJ. Seven reasons why protists make useful bioindicators. Acta Protozoologica. 2013;52:105–13. https://doi.org/10.4467/16890027AP.13.0011.1108Article 

    Google Scholar 
    Vaulot D, Sim CWH, Ong D, Teo B, Biwer C, Jamy M, et al. metaPR 2: a database of eukaryotic 18S rRNAmetabarcodes with an emphasis on protists. Mol Ecol Resour. 2022;1755-0998.13674. https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13674.Vernette C, Henry N, Lecubin J, Vargas C, Hingamp P, Lescot M. The Ocean barcode atlas: a web service to explore the biodiversity and biogeography of marine organisms. Mol Ecol Resour. 2021;21:1347–58. https://onlinelibrary.wiley.com/doi/10.1111/1755-0998.13322.Article 
    CAS 
    PubMed 

    Google Scholar 
    Chust G, Vogt M, Benedetti F, Nakov T, Villéger S, Aubert A, et al. Mare incognitum: a glimpse into future plankton diversity and ecology research. Front Mar Sci. 2017;4. http://journal.frontiersin.org/article/10.3389/fmars.2017.00068/full.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucl Acids Res. 2012;41:D597–604. http://academic.oup.com/nar/article/41/D1/D597/1064851/The-Protist-Ribosomal-Reference-database-PR2-a.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coppola L, Raimbault P, Mortier L, Testor P. Monitoring the Environment in the Northwestern Mediterranean Sea. Eos 2019;100. https://doi.org/10.1029/2019EO125951.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43;. http://www.nature.com/articles/ismej2017119.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: integrated development for R. Boston, MA: RStudio, PBC; 2020. http://www.rstudio.com/.Caracciolo M, Rigaut‐Jalabert F, Romac S, Mahé F, Forsans S, Gac J, et al. Seasonal dynamics of marine protist communities in tidally mixed coastal waters. Mol Ecol. 2022;31:3761–83. https://onlinelibrary.wiley.com/doi/10.1111/mec.16539.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, et al. Quantifying long‐term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35. https://onlinelibrary.wiley.com/doi/10.1111/mec.14929.Article 
    PubMed 

    Google Scholar 
    Giner CR, Pernice MC, Balagué V, Duarte CM, Gasol JM, Logares R, et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 2020;14:437–49. http://www.nature.com/articles/s41396-019-0506-9.Article 
    PubMed 

    Google Scholar 
    Lambert S, Tragin M, Lozano JC, Ghiglione JF, Vaulot D, Bouget FY, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401. http://www.nature.com/articles/s41396-018-0281-z.Article 
    PubMed 

    Google Scholar 
    Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome. 2020;8:55. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-020-00827-8.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 2016;10:945–58. http://www.nature.com/articles/ismej2015170.Article 
    PubMed 

    Google Scholar 
    Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing: protist diversity in European coastal areas. Environ Microbiol. 2015;17:4035–49. http://doi.wiley.com/10.1111/1462-2920.12955.Article 
    CAS 
    PubMed 

    Google Scholar 
    Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.
    Google Scholar 
    Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecol Monographs. 1957;27:325–49. https://onlinelibrary.wiley.com/doi/10.2307/1942268.Article 

    Google Scholar 
    Robert P, Escoufier Y. A unifying tool for linear multivariate statistical methods: the RV- coefficient. J R Stat Soc Ser C Appl Stat. 1976;25:257–65. https://doi.org/10.2307/2347233Article 

    Google Scholar 
    Ruf T. The lomb-scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biol Rhythm Res. 1999;30:178–201. https://www.tandfonline.com/doi/full/10.1076/brhm.30.2.178.1422.Article 

    Google Scholar  More

  • in

    Freeze-thaw cycles alter the growth sprouting strategy of wetland plants by promoting denitrification

    Campbell, J. L. & Laudon, H. Carbon response to changing winter conditions in northern regions: current understanding and emerging research needs. Environ. Rev. 27, 545–566 (2019).Article 

    Google Scholar 
    Groffman, P. M. et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56, 191–213 (2001).Article 
    CAS 

    Google Scholar 
    Song, C. et al. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environ. Res. Lett. 7, 034009 (2012).Article 

    Google Scholar 
    Chen, H. et al. Methane emissions during different freezing-thawing periods from a fen on the Qinghai-Tibetan Plateau: Four years of measurements. Agric. Ecosyst. Environ. 297, 108279 (2021).
    Google Scholar 
    Bao, T., Xu, X., Jia, G., Billesbach, D. P. & Sullivan, R. C. Much stronger tundra methane emissions during autumn freeze than spring thaw. Glob. Chang. Biol. 27, 376–387 (2021).Article 
    CAS 

    Google Scholar 
    Yu, J. et al. Enhanced net formations of nitrous oxide and methane underneath the frozen soil in Sanjiang wetland, northeastern China. J. Geophys. Res 112, D07111 (2007).Article 

    Google Scholar 
    Kreyling, J., Peršoh, D., Werner, S., Benzenberg, M. & Wöllecke, J. Short-term impacts of soil freeze-thaw cycles on roots and root-associated fungi of Holcus lanatus and Calluna vulgaris. Plant Soil 353, 19–31 (2012).Article 
    CAS 

    Google Scholar 
    Min, K., Chen, K. & Arora, R. Effect of short-term versus prolonged freezing on freeze–thaw injury and post-thaw recovery in spinach: Importance in laboratory freeze–thaw protocols. Environ. Exp. Bot. 106, 124–131 (2014).Article 
    CAS 

    Google Scholar 
    Kennedy, A. Photosynthetic response of the Antarctic moss Polytrichum alpestre Hoppe to low temperatures and freeze-thaw stress. Polar Biol. 13, 271–279 (1993).Article 

    Google Scholar 
    Sanders-DeMott, R., Sorensen, P. O., Reinmann, A. B. & Templer, P. H. Growing season warming and winter freeze–thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 137, 337–349 (2018).Article 
    CAS 

    Google Scholar 
    Vankoughnett, M. R. & Henry, H. A. L. Soil freezing and N deposition: transient vs. multi-year effects on extractable C and N, potential trace gas losses and microbial biomass. Soil Biol. Biochem. 77, 170–178 (2014).Article 
    CAS 

    Google Scholar 
    Kreyling, J., Beierkuhnlein, C., Pritsch, K., Schloter, M. & Jentsch, A. Recurrent soil freeze-thaw cycles enhance grassland productivity. New Phytol. 177, 938–945 (2008).Article 

    Google Scholar 
    Song, Y., Zou, Y., Wang, G. & Yu, X. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: a meta-analysis. Soil Biol. Biochem. 109, 35–49 (2017).Article 
    CAS 

    Google Scholar 
    Vankoughnett, M. R. & Henry, H. A. L. Soil freezing and N deposition: transient vs multi-year effects on plant productivity and relative species abundance. New Phytol. 202, 1277–1285 (2014).Article 
    CAS 

    Google Scholar 
    Luan, Z. & Cao, H. Response of fine root growth and nitrogen and phosphorus contents to soil freezing in Calamagrostis angustifolia wetland, Sanjiang Plain, Northeast China. J. Food Agric. Environ. 10, 1495–1499 (2012).
    Google Scholar 
    Garcia, M. O. et al. Soil microbes trade-off biogeochemical cycling for stress tolerance traits in response to year-round climate change. Front. Microbiol. 11, 616 (2020).Article 

    Google Scholar 
    Tang, H., Bai, J., Chen, F., Liu, Y. & Lou, Y. Effects of salinity and temperature on tuber sprouting and growth of Schoenoplectus nipponicus. Ecosphere 12, e03448 (2021).Article 

    Google Scholar 
    Satyanti, A., Guja, L. K. & Nicotra, A. B. Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb. Oecologia 189, 407–419 (2019).Article 

    Google Scholar 
    Harrison, J. L., Schultz, K., Blagden, M., Sanders-DeMott, R. & Templer, P. H. Growing season soil warming may counteract trend of nitrogen oligotrophication in a northern hardwood forest. Biogeochemistry 151, 139–152 (2020).Article 
    CAS 

    Google Scholar 
    Semenchuk, P. R. et al. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra. Biogeochemistry 124, 81–94 (2015).Article 

    Google Scholar 
    Song, Y., Zou, Y., Wang, G. & Yu, X. Stimulation of nitrogen turnover due to nutrients release from aggregates affected by freeze-thaw in wetland soils. Phys. Chem. Earth 97, 3–11 (2017).Article 

    Google Scholar 
    Keith, D. A., Rodoreda, S. & Bedward, M. Decadal change in wetland-woodland boundaries during the late 20th century reflects climatic trends. Glob. Chang. Biol. 16, 2300–2306 (2010).Article 

    Google Scholar 
    Wang, J., Song, C., Hou, A. & Xi, F. Methane emission potential from freshwater marsh soils of Northeast China: response to simulated freezing-thawing cycles. Wetlands 37, 437–445 (2017).Article 

    Google Scholar 
    Yu, X. et al. Wetland plant litter decomposition occurring during the freeze season under disparate flooded conditions. Sci. Total Environ. 706, 136091 (2020).Article 
    CAS 

    Google Scholar 
    Dong, X. et al. Variations in active layer soil hydrothermal dynamics of typical wetlands in permafrost region in the Great Hing’an Mountains, northeast China. Ecol. Indic. 129, 107880 (2021).Article 

    Google Scholar 
    Li, Y. et al. Freeze-thaw cycles increase the mobility of phosphorus fractions based on soil aggregate in restored wetlands. CATENA 209, 105846 (2022).Article 
    CAS 

    Google Scholar 
    Song, C., Zhang, J., Wang, Y., Wang, Y. & Zhao, Z. Emission of CO2, CH4 and N2O from freshwater marsh in northeast of China. J. Environ. Manage. 88, 428–436 (2008).Article 
    CAS 

    Google Scholar 
    Wang, G., Liu, J., Zhao, H., Wang, J. & Yu, J. Phosphorus sorption by freeze–thaw treated wetland soils derived from a winter-cold zone (Sanjiang Plain, Northeast China). Geoderma 138, 153–161 (2007).Article 
    CAS 

    Google Scholar 
    Ji, X., Liu, M., Yang, J. & Feng, F. Meta-analysis of the impact of freeze–thaw cycles on soil microbial diversity and C and N dynamics. Soil Biol. Biochem. 168, 108608 (2022).Article 
    CAS 

    Google Scholar 
    Ren, J. et al. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. Sci. Total. Environ. 625, 782–791 (2018).Article 
    CAS 

    Google Scholar 
    Mitsch, W. J. & Gosselink, J. G. Wetlands. 5th edn (Wiley, Hoboken, New Jersey, 2015).Yu, X., Zou, Y., Jiang, M., Lu, X. & Wang, G. Response of soil constituents to freeze–thaw cycles in wetland soil solution. Soil Biol. Biochem. 43, 1308–1320 (2011).Article 
    CAS 

    Google Scholar 
    Sawicka, J. E., Robador, A., Hubert, C., Jørgensen, B. B. & Bruchert, V. Effects of freeze-thaw cycles on anaerobic microbial processes in an Arctic intertidal mud flat. ISME J 4, 585–594 (2010).Article 
    CAS 

    Google Scholar 
    Song, Y. The Freeze-thaw Effect On Soil Mineralization Between Various Moisture States Of Wetlands. Master of Natural Science thesis (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2017).Mason, R. E. et al. Evidence, causes, and consequences of declining nitrogen availability in terrestrial ecosystems. Science 376, eabh3767 (2022).Article 
    CAS 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    Yang, K. et al. Immediate and carry-over effects of increased soil frost on soil respiration and microbial activity in a spruce forest. Soil Biol. Biochem. 135, 51–59 (2019).Article 
    CAS 

    Google Scholar 
    Lambers, H., Chapin, F. S. I. & Pons, T. L. Plant Physiological Ecology. 2nd edn (Springer, 2008).Ott, J. P., Klimešová, J. & Hartnett, D. C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. 123, 1099–1118 (2019).Article 

    Google Scholar 
    Pedersen, E. P., Elberling, B. & Michelsen, A. Foraging deeply: depth‐specific plant nitrogen uptake in response to climate‐induced N‐release and permafrost thaw in the High Arctic. Glob. Chang. Biol. 26, 6523–6536 (2020).Article 

    Google Scholar 
    Dyer, A.R. Maternal and sibling factors induce dormancy in dimorphic seed pairs of Aegilops triuncialis. Plant Ecol. 172, 211–218 (2004).Article 

    Google Scholar 
    Renne, I. J. et al. Eavesdropping in plants: delayed germination via biochemical recognition. J. Ecol. 102, 86–94 (2014).Article 

    Google Scholar 
    Li, H. Eco-physiological Responding Characteristics of Scirpus Planiculmis on Coupling of Water Table Depths and Salinity in Momoge Wetland. Master Dissertation thesis, University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2013).Yu, D. Responses of Sprouting and Growth to Environmental Factors in Bolboschoenus Planiculmis. Master Dissertation thesis (Harbin Normal University, 2022).Zhang, C., Willis, C. G., Donohue, K., Ma, Z. & Du, G. Effects of environment, life-history and phylogeny on germination strategy of 789 angiosperms species on the eastern Tibetan Plateau. Ecol. Indic. 129, 107974 (2021).Article 

    Google Scholar 
    Hoyle, G. L. et al. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits. Front. Plant Sci. 6, 731 (2015).Article 

    Google Scholar 
    Mercer, K. L., Alexander, H. M. & Snow, A. A. Selection on seedling emergence timing and size in an annual plant, Helianthus annuus (common sunflower, Asteraceae). Am. J. Bot. 98, 975–985 (2011).Article 

    Google Scholar 
    Cui, Y. et al. Ecoenzymatic stoichiometry reveals microbial phosphorus limitation decreases the nitrogen cycling potential of soils in semi-arid agricultural ecosystems. Soil Tillage. Res. 197, 104463 (2020).Article 

    Google Scholar 
    Ye, Z. et al. Ecoenzymatic stoichiometry reflects the regulation of microbial carbon and nitrogen limitation on soil nitrogen cycling potential in arid agriculture ecosystems. J. Soils Sediments 22, 1228–1241 (2022).Article 
    CAS 

    Google Scholar 
    Pan, Y. et al. Drivers of plant traits that allow survival in wetlands. Funct. Ecol. 34, 956–967 (2020).Article 

    Google Scholar 
    Pezeshki, S. R. Wetland plant responses to soil flooding. Environ. Exp. Bot. 46, 299–312 (2001).Article 

    Google Scholar 
    Zheng, S. Soil Water-heat Process and Nitrogen Transformation During Freezing and Thawing Period in Wetland of Momoge. Master Dissertation thesis (Jilin Agricultural University, 2019).An, Y., Gao, Y., Zhang, Y., Tong, S. & Liu, X. Early establishment of Suaeda salsa population as affected by soil moisture and salinity: implications for pioneer species introduction in saline-sodic wetlands in Songnen Plain, China. Ecol. Indic. 107, 105654 (2019).Article 
    CAS 

    Google Scholar 
    FAO/IIASA/ISRIC/ISS-CAS/JRC. Harmonized World Soil Database (version 1.2). (FAO, Rome, Italy and IIASA, Laxenburg, Austria, 2012).Jiang, M., Lu, X., Xu, L. & Yang, Q. Estimation on benefit of latent soil nutrient in melmeg reserve wetlands. J. Nat. Resour 20, 279–285 (2005).
    Google Scholar 
    Wang, Y. & Zhang, S. The pH distribution and soil nutrient characteristic at different habitats-a case study of Momoge Wetland. J. Anhui Agric. Sci. 50, 135–139 (2022).
    Google Scholar 
    Hao, M. The Ecological Restoration Research on Momoge Scripus Planiculmis Wetland. Master Dissertation thesis, University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2016).Ma, H. et al. Effect of nitrate supply on the facilitation between two salt-marsh plants (Suaeda salsa and Scirpus planiculmis). J. Plant. Ecol. 13, 204–212 (2020).Article 

    Google Scholar 
    Liu, B. et al. Effects of burial depth and water depth on seedling emergence and early growth of Scirpus planiculmis Fr. Schmidt. Ecol. Eng. 87, 30–33 (2016).Article 

    Google Scholar 
    Zhang, L., Zhang, G., Li, H. & Sun, G. Eco-physiological responses of Scirpus planiculmis to different water-salt conditions in Momoge wetland. Pol. J. Environ. Stud. 23, 1813–1820 (2014).
    Google Scholar 
    Sosnová, M., van Diggelen, R. & Klimešová, J. Distribution of clonal growth forms in wetlands. Aquat. Bot. 92, 33–39 (2010).Article 

    Google Scholar 
    Lu, R. Analytical Methods of Soil Agrochemistry (China Agricultural Science and Technology Press, 2000).Bao, S. Soil and Agricultural Chemistry Analysis. 3 edn. (China Agriculture Press, 2000).Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).Article 
    CAS 

    Google Scholar 
    Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 
    CAS 

    Google Scholar 
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).Article 
    CAS 

    Google Scholar 
    Zhu, W., Lomsadze, A. & Borodovsky, M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132 (2010).Article 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 

    Google Scholar 
    Lauro, F. M. et al. An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5, 879–895 (2011).Article 
    CAS 

    Google Scholar 
    Shen, M. et al. Trophic status is associated with community structure and metabolic potential of planktonic microbiota in Plateau lakes. Front. Microbiol. 10, 2560 (2019).Article 

    Google Scholar 
    Kieft, B. et al. Microbial community structure-function relationships in Yaquina Bay estuary reveal spatially distinct carbon and nitrogen cycling capacities. Front. Microbiol. 9, 1282 (2018).Article 

    Google Scholar 
    Kay, M. Effect Sizes with ART (2021).Mangiafico, S. S. Summary and Analysis of Extension Program Evaluation in R, version 1.18.8 https://rcompanion.org/handbook/ (2016).R Core Team R: A Language and Environment for Statistical Computing (2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression. 3rd edn (Thousand Oaks, Sage, CA, 2019).Kay, M., Elkin, L. A., Higgins, J. J. & Wobbrock, J. O. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs. R package version 0.11.1. https://doi.org/10.5281/zenodo.594511 (2021).Wobbrock, J. O., Findlate, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. 29th Annual Chi Conference on Human Factors in Computing Systems (CHI 2011), p. 143-146. https://doi.org/10.1145/1978942.1978963 (2011).Elkin, L. A., Kay, M., Higgins, J. J. & Wobbrock, J. O. An aligned rank transform procedure for multifactor contrast Tests. Proceedings of the ACM Symposium on User Interface Software and Technology (UIST 2021), p. 754-768. https://doi.org/10.1145/3472749.3474784 (2021).Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.3. (2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2016).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research, Northwestern University, Evanston, Illinois, USA, R package version 2.2.9 (2022).Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a Correlation Matrix (Version 0.90) (2021). More

  • in

    Astragalus-cultivated soil was a suitable bed soil for nurturing Angelica sinensis seedlings from the rhizosphere microbiome perspective

    An, Z., Guo, F., Chen, Y., Bai, G. & Chen, Z. Rhizosphere bacterial and fungal communities during the growth of Angelica sinensis seedlings cultivated in an Alpine uncultivated meadow soil. PeerJ 8, e8541. https://doi.org/10.7717/peerj.8541 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munkholm, L. J., Heck, R. J. & Deen, B. Long-term rotation and tillage effects on soil structure and crop yield. Soil Tillage Res. 127, 85–91. https://doi.org/10.1016/j.still.2012.02.007 (2013).Article 

    Google Scholar 
    Jiao, X. L. et al. Effects of maize rotation on the physicochemical properties and microbial communities of American ginseng cultivated soil. Sci. Rep. 9, 8615. https://doi.org/10.1038/s41598-019-44530-7 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X., Chen, Y., Guo, F., Yuan, H. & Guo, Y. Effects of medicinal crop stubbles on physiological and biochemical characteristics of Angelica sinensis seedings. J. Chin. Med. Mater. 40, 2002–2006 (2017).
    Google Scholar 
    Jin, Y. et al. Effect of various crop residues on growth and disease resisitance of Angelica sinensis seedlings in Min County. Acta Pratacul. Sin. 27, 69–78 (2018).MathSciNet 

    Google Scholar 
    Bai, G., Guo, F., Chen, Y., Yuan, H. & Xiao, W. Differences in physiological resistance traits of Angelica sinensis seedlings from uncultivated and cultivated fields in Min County. Acta Pratacul. Sin. 28, 86–95 (2019).
    Google Scholar 
    Bai, G. et al. Regulated effects of preceding crop on soil property and cultivating seedlings for Angelica sinensis on cultivated farmland. Chin. J. Eco-Agric. 28, 701–712. https://doi.org/10.13930/j.cnki.cjea.190719 (2020).Article 
    CAS 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. Int. Soc. Microb. Ecol. 9, 2349–2359. https://doi.org/10.1038/ismej.2015.41 (2015).Article 
    CAS 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 8, 103. https://doi.org/10.1186/s40168-020-00875-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803. https://doi.org/10.1038/ismej.2013.196 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Uroz, S. et al. Specific impacts of beech and Norway spruce on the structure and diversity of the rhizosphere and soil microbial communities. Sci. Rep. 6, 27756. https://doi.org/10.1038/srep27756 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chamberlain, L. A. et al. Crop rotation, but not cover crops, influenced soil bacterial community composition in a corn-soybean system in southern Wisconsin. Appl. Soil Ecol. 154, 103603. https://doi.org/10.1016/j.apsoil.2020.103603 (2020).Article 

    Google Scholar 
    Classen, A. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?. Ecosphere 6, 130. https://doi.org/10.1890/es15-00217.1 (2015).Article 

    Google Scholar 
    Tiemann, L. K. et al. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771. https://doi.org/10.1111/ele.12453 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maldonado, S. et al. Enhanced crop productivity and sustainability by using native phosphate solubilizing rhizobacteria in the agriculture of arid zones. Front. Sustain. Food Syst. 4, 607355. https://doi.org/10.3389/fsufs.2020.607355 (2020).Article 

    Google Scholar 
    Gómez Expósito, R., de Bruijn, I., Postma, J. & Raaijmakers, J. M. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front. Microbiol.y 8, 2529. https://doi.org/10.3389/fmicb.2017.02529 (2017).Article 

    Google Scholar 
    Li, X., Rui, J., Mao, Y., Yannarell, A. & Mackie, R. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biol. Biochem. 68, 392–401. https://doi.org/10.1016/j.soilbio.2013.10.017 (2014).Article 
    CAS 

    Google Scholar 
    Fierer, N. et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. Int. Soc. Microb. Ecol. 6, 1007–1017. https://doi.org/10.1038/ismej.2011.159 (2012).Article 
    CAS 

    Google Scholar 
    Kuffner, M. et al. Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108, 1471–1484. https://doi.org/10.1111/j.1365-2672.2010.04670.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Corato, U. Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: A critical review. Rhizosphere 13, 100192. https://doi.org/10.1016/j.rhisph.2020.100192 (2020).Article 

    Google Scholar 
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).Article 
    CAS 

    Google Scholar 
    Arnebrant, K. & Schnürer, J. Changes in atp content during and after chloroform fumigation. Soil Biol. Biochem. 22, 875–877 (1990).Article 
    CAS 

    Google Scholar 
    Toju, H. et al. Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecol. Evol. 3, 1281–1293. https://doi.org/10.1002/ece3.546 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59. https://doi.org/10.1038/nmeth.2276 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21, 494–504. https://doi.org/10.1101/gr.112730.110 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. https://doi.org/10.1128/AEM.00062-07 (2007).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272 (2016).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006 (2016).Article 

    Google Scholar 
    Sisk-Hackworth, L., Ortiz-Velez, A., Reed, M. B. & Kelley, S. T. Compositional data analysis of periodontal disease microbial communities. Front. Microbiol. 12, 617949. https://doi.org/10.3389/fmicb.2021.617949 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, M. A. W. et al. Deforestation impacts network co-occurrence patterns of microbial communities in Amazon soils. FEMS Microbiol. Ecol. 95, fiy230. https://doi.org/10.1093/femsec/fiy230 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, B., Zhang, J., Liu, Y., Shi, P. & Wei, G. Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biol. Biochem. 118, 178–186. https://doi.org/10.1016/j.soilbio.2017.12.011 (2018).Article 
    CAS 

    Google Scholar 
    Huang, M., Jiang, L., Zou, Y., Xu, S. & Deng, G. Changes in soil microbial properties with no-tillage in Chinese cropping systems. Biol. Fertil. Soils 49, 373–377. https://doi.org/10.1007/s00374-013-0778-6 (2013).Article 

    Google Scholar 
    Unger, P. W. & Cassel, D. K. Tillage implement disturbance effects on soil properties related to soil and water conservation: A literature review. Soil Tillage Res. 19, 363–382 (1991).Article 

    Google Scholar 
    Alvarez, R. & Steinbach, H. S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 104, 1–15. https://doi.org/10.1016/j.still.2009.02.005 (2009).Article 

    Google Scholar 
    Essel, E. et al. Bacterial and fungal diversity in rhizosphere and bulk soil under different long-term tillage and cereal/legume rotation. Soil Tillage Res. 194, 104302. https://doi.org/10.1016/j.still.2019.104302 (2019).Article 

    Google Scholar 
    Zhu, Q., Wang, N., Duan, B., Wang, Q. & Wang, Y. Rhizosphere bacterial and fungal communities succession patterns related to growth of poplar fine roots. Sci. Total Environ. 756, 143839. https://doi.org/10.1016/j.scitotenv.2020.143839 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guseva, K. et al. From diversity to complexity: Microbial networks in soils. Soil Biol. Biochem. 169, 108604. https://doi.org/10.1016/j.soilbio.2022.108604 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, B. et al. Analysis of microbial community structure and diversity in surrounding rock soil of different waste dump sites in fushun western opencast mine. Chemosphere 269, 128777. https://doi.org/10.1016/j.chemosphere.2020.128777 (2020).Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 
    Liu, J. et al. Pecan plantation age influences the structures, ecological networks, and functions of soil microbial communities. Land Degrad. Dev. 33, 3294–3309. https://doi.org/10.1002/ldr.4389 (2022).Article 

    Google Scholar 
    Lv, X. et al. Strengthening insights in microbial ecological networks from theory to applications. mSystems 4, e00124-19. https://doi.org/10.1128/mSystems.00124-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toju, H., Kishida, O., Katayama, N. & Takagi, K. Networks depicting the fine-scale co-occurrences of fungi in soil Horizons. PLoS ONE 11, e0165987. https://doi.org/10.1371/journal.pone.0165987 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chun, S. J., Cui, Y., Baek, S. H., Ahn, C. Y. & Oh, H. M. Seasonal succession of microbes in different size-fractions and their modular structures determined by both macro- and micro-environmental filtering in dynamic coastal waters. Sci. Total Environ. 784, 147046. https://doi.org/10.1016/j.scitotenv.2021.147046 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cardinale, M., Grube, M., Erlacher, A., Quehenberger, J. & Berg, G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environ. Microbiol. 17, 239–252. https://doi.org/10.1111/1462-2920.12686 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhou, Z. et al. Increases in bacterial community network complexity induced by biochar-based fertilizer amendments to karst calcareous soil. Geoderma 337, 691–700. https://doi.org/10.1016/j.geoderma.2018.10.013 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. U.S.A. 104, 19891–19896. https://doi.org/10.1073/pnas.0706375104 (2007).Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 44641. https://doi.org/10.1038/srep44641 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassan, M. K., McInroy, J. A. & Kloepper, J. W. The interactions of rhizodeposits with plant growth-promoting Rhizobacteria in the rhizosphere: A review. Agriculture 9, 142. https://doi.org/10.3390/agriculture9070142 (2019).Article 
    CAS 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41. https://doi.org/10.1016/j.tplants.2017.09.003 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, F., Xu, X., Wang, G., Wu, B. & Xiao, Y. Medicago sativa and soil microbiome responses to Trichoderma as a biofertilizer in alkaline-saline soils. Appl. Soil Ecol. 153, 103573. https://doi.org/10.1016/j.apsoil.2020.103573 (2020).Article 

    Google Scholar 
    Woźniak, A. Chemical properties and enzyme activity of soil as affected by tillage system and previous crop. Agriculture 9, 262. https://doi.org/10.3390/agriculture9120262 (2019).Article 
    CAS 

    Google Scholar 
    Choudhary, M. et al. Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma 313, 193–204. https://doi.org/10.1016/j.geoderma.2017.10.041 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Ai, C. et al. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 319, 156–166. https://doi.org/10.1016/j.geoderma.2018.01.010 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gałązka, A., Gawyjołek, K., Perzyński, A., Gałązka, R. & Jerzy, K. Changes in enzymatic activities and microbial communities in soil under long-term maize monoculture and crop rotation. Pol. J. Environ. Stud. 26, 39–46. https://doi.org/10.15244/pjoes/64745 (2017).Article 
    CAS 

    Google Scholar 
    Tremblay, C., Deslauriers, A., Lafond, J., Lajeunesse, J. & Paré, M. Effects of soil pH and fertilizers on haskap (Lonicera caerulea L) vegetative growth. Agriculture 9, 56. https://doi.org/10.3390/agriculture9030056 (2019).Article 
    CAS 

    Google Scholar 
    Sirisuntornlak, N. et al. Interactive effects of silicon and soil pH on growth, yield and nutrient uptake of maize. SILICON 13, 289–299. https://doi.org/10.1007/s12633-020-00427-z (2021).Article 
    CAS 

    Google Scholar 
    Xu, Y., Ge, Y., Song, J. & Rensing, C. Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biol. Fertil. Soils 56, 249–260. https://doi.org/10.1007/s00374-019-01406-2 (2019).Article 
    CAS 

    Google Scholar 
    Putranta, H., Permatasari, A. K., Sukma, T. A. & Dwandaru, W. S. B. The effect of pH, electrical conductivity, and nitrogen (N) in the soil at yogyakarta special region on tomato plant growth. TEM J.-Technol. Educ. Manag. Inform. 8, 860–865. https://doi.org/10.18421/TEM83-24 (2019).Article 

    Google Scholar 
    Wang, J. et al. Effects of alternate partial root-zone irrigation on soil microorganism and maize growth. Plant Soil 302, 45–52. https://doi.org/10.1007/s11104-007-9453-8 (2007).Article 
    CAS 

    Google Scholar 
    Yang, X., Zhu, K., Loik, M. E. & Sun, W. Differential responses of soil bacteria and fungi to altered precipitation in a meadow steppe. Geoderma 384, 114812. https://doi.org/10.1016/j.geoderma.2020.114812 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Balota, E. L., Colozzi Filho, A., Andrade, D. S. & Dick, R. P. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res. 77, 137–145. https://doi.org/10.1016/j.still.2003.12.003 (2004).Article 

    Google Scholar 
    Franchini, J., Crispino, C., Souza, R., Torres, E. & Hungria, M. Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil Tillage Res. 92, 18–29. https://doi.org/10.1016/j.still.2005.12.010 (2007).Article 

    Google Scholar 
    Li, X., Wang, T., Chang, S. X., Jiang, X. & Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Sci. Total Environ. 749, 141593. https://doi.org/10.1016/j.scitotenv.2020.141593 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lynch, J. M. & Panting, L. M. Effects of season, cultivation and nitrogen fertiliser on the size of the soil microbial biomass. J. Sci. Food Agric. 33, 249–252 (1982).Article 
    CAS 

    Google Scholar 
    Tan, G. et al. Effects of biochar application with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut cropping system. Environ. Technol. 42, 9–19. https://doi.org/10.1080/09593330.2019.1620344 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, C. et al. Linkages between nutrient ratio and the microbial community in rhizosphere soil following fertilizer management. Environ. Res. 184, 109261. https://doi.org/10.1016/j.envres.2020.109261 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. et al. Film mulching, residue retention and N fertilization affect ammonia volatilization through soil labile N and C pools. Agric. Ecosyst. Environ. 308, 107272. https://doi.org/10.1016/j.agee.2020.107272 (2021).Article 
    CAS 

    Google Scholar 
    Jiao, P. et al. Bacteria are more sensitive than fungi to moisture in eroded soil by natural grass vegetation restoration on the Loess Plateau. Sci. Total Environ. 756, 143899. https://doi.org/10.1016/j.scitotenv.2020.143899 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sommer, J. et al. The tree species matters: Belowground carbon input and utilization in the myco-rhizosphere. Eur. J. Soil Biol. 81, 100–107. https://doi.org/10.1016/j.ejsobi.2017.07.001 (2017).Article 
    CAS 

    Google Scholar 
    Yu, K., Pieterse, C. M. J., Bakker, P. A. H. M. & Berendsen, R. L. Beneficial microbes going underground of root immunity. Plant Cell Environ. 42, 2860–2870. https://doi.org/10.1111/pce.13632 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Varennes, A. & Goss, M. J. The tripartite symbiosis between legumes, rhizobia and indigenous mycorrhizal fungi is more efficient in undisturbed soil. Soil Biol. Biochem. 39, 2603–2607. https://doi.org/10.1016/j.soilbio.2007.05.007 (2007).Article 
    CAS 

    Google Scholar 
    Wang, X. et al. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Mol. Plant 14, 503–516. https://doi.org/10.1016/j.molp.2020.12.002 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, R., Vivanco, J. M. & Shen, Q. The unseen rhizosphere root-soil-microbe interactions for crop production. Curr. Opin. Microbiol. 37, 8–14. https://doi.org/10.1016/j.mib.2017.03.008 (2017).Article 
    PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Better incentives are needed to reward academic software development

    Department of Ecology and Evolutionary Biology and Eversource Energy Center, University of Connecticut, Storrs, CT, USACory MerowDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrad Boyle & Brian J. EnquistDepartment of Geography, Florida State University, Tallahassee, FL, USAXiao FengBiodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, JapanJamie M. KassDepartment of Geography, University at Buffalo, Buffalo, NY, USABrian S. Maitner & Adam M. WilsonSchool of Biology and Ecology, University of Maine, Orono, ME, USABrian McGillMitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USABrian McGillCenter for Macroecology, Evolution and Climate, Globe Institute, University of Copenhagen, Copenhagen, DenmarkHannah OwensFlorida Museum of Natural History, University of Florida, Gainesville, FL, USAHannah OwensDepartment of Biological Sciences, Purdue University, West Lafayette, IN, USADaniel S. ParkPurdue Center for Plant Biology, Purdue University, West Lafayette, IN, USADaniel S. ParkDepartment of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, SwitzerlandAndrea PazDepartment of Biology, City College of the City University of New York, New York, NY, USAGonzalo E. Pinilla-BuitragoPhD Program in Biology, Graduate Center of the City University of New York, New York, NY, USAGonzalo E. Pinilla-BuitragoDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USAMark C. UrbanCenter of Biological Risk, University of Connecticut, Storrs, CT, USAMark C. UrbanDepartamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, SpainSara Varela More

  • in

    Landscapes of pesticide risk

    A large-scale field study finds that different bee species experience different levels of risk from pesticides, depending on how much land is farmed within their foraging range. For bumblebees and solitary bees, more seminatural habitat means less risk from pesticides, but this is not true for honeybees.In the discussion of how to protect bees from pesticides, bees are often treated as a monolith. It is assumed that what is good for one species is good for all, and that pesticides or changes to agricultural landscapes would affect all bee species equally. This is often taken one step further, with the western honeybee (Apis mellifera) being used as a surrogate species for all bees. Yet despite this simplification there are around 2,000 species of bee in Europe1 and 20,000 worldwide2 with a dazzling diversity of niches and life histories. With this in mind, the question arises of how valid the assumption is that honeybees represent a good surrogate species. In this issue of Nature Ecology & Evolution, Knapp et al.3 investigate this question by measuring how three species of bee with differing life histories respond to different agricultural land-use intensities, and find that a species’ foraging range plays a big part in pesticide exposure risk. More