1.Brooks, T. M. et al. Global biodiversity conservation priorities. Science (80-. ). 313, 58–61 (2006).2.Camacho-Sandoval, J. & Duque, H. Indicators for biodiversity assessment in Costa Rica. Agric. Ecosyst. Environ. 87, 141–150 (2001).Article
Google Scholar
3.Diniz-Filho, J. A. F. et al. Ensemble forecasting shifts in climatically suitable areas for Tropidacris cristata (Orthoptera: Acridoidea: Romaleidae). Insect Conserv. Divers. https://doi.org/10.1111/j.1752-4598.2010.00090.x (2010).Article
Google Scholar
4.Morse-Jones, S. et al. Stated preferences for tropical wildlife conservation amongst distant beneficiaries: Charisma, endemism, scope and substitution effects. Ecol. Econ. 78, (2012).5.Verissimo, D., MacMillan, D. C. & Smith, R. J. Toward a systematic approach for identifying conservation flagships. Conserv. Lett. vol. 4 (2011).6.Nóbrega, C. C. & De Marco, P. Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. Divers. Distrib. 17, 491–505 (2011).Article
Google Scholar
7.SNUC, (Sistema Nacional de Unidades de Conservação da Natureza). Lei no 9.985, de 18 de julho de 2000. Mma/Sbf (2000) doi:https://doi.org/10.1017/CBO9781107415324.004.8.Abell, R., Allan, J. D. & Lehner, B. Unlocking the potential of protected areas for freshwaters. Biol. Conserv. 134, 48–63 (2007).Article
Google Scholar
9.Monteiro, C. da S., Esposito, M. C. & Juen, L. Are the adult odonate species found in a protected area different from those present in the surrounding zone? A case study from eastern Amazonia. J. Insect Conserv. 20, 643–652 (2016).10.Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000).CAS
Article
Google Scholar
11.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article
Google Scholar
12.Bini, L. M., Diniz-Filho, J. A. F., Rangel, T. F. L. V. B., Bastos, R. P. & Pinto, M. P. Challenging Wallacean and Linnean shortfalls: knowledge gradients and conservation planning in a biodiversity hotspot. Divers. Distrib. https://doi.org/10.1111/j.1366-9516.2006.00286.x (2006).Article
Google Scholar
13.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. https://doi.org/10.1016/S0006-3207(01)00208-7 (2002).Article
Google Scholar
14.Silva, D. C., Vieira, T. B., da Silva, J. M. & de Cassia Faria, K. Biogeography and priority areas for the conservation of bats in the Brazilian Cerrado. Biodivers. Conserv. 27, 815–828 (2018).15.Salkeld, D. J., Padgett, K. A. & Jones, J. H. A meta-analysis suggesting that the relationship between biodiversity and risk of zoonotic pathogen transmission is idiosyncratic. Ecol. Lett. 16, 679–686 (2013).Article
Google Scholar
16.Juen, L. & de Marco, P. Dragonfly endemism in the Brazilian Amazon: competing hypotheses for biogeographical patterns. Biodivers. Conserv. https://doi.org/10.1007/s10531-012-0377-0 (2012).Article
Google Scholar
17.Mendes, S. L. et al. Protected Areas for the Northern Muriqui, Brachyteles hypoxanthus (Primates, Atelidae). Neotrop. Primates 13, (2005).18.Serra, B. D. V., De Marco Júnior, P., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 (Hymenoptera, apidae): conserving isolated populations in mountain habitats. Nat. a Conserv. 10, 199–206 (2012).19.Mendes, P. & De Marco, P. Bat species vulnerability in Cerrado: integrating climatic suitability with sensitivity to land-use changes. Environ. Conserv. 45, 67–74 (2018).Article
Google Scholar
20.Brasil, L. S. et al. A niche‐based gap analysis for the conservation of odonate species in the Brazilian Amazon. Aquat. Conserv. Mar. Freshw. Ecosyst. aqc.3599 (2021) doi:https://doi.org/10.1002/aqc.3599.21.da Silva, J. G., Vieira, T. B. & Mews, H. A. Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon. Folia Geobot. https://doi.org/10.1007/s12224-021-09390-y (2021).Article
Google Scholar
22.Doughty, C. R. Freshwater biomonitoring and benthic macroinvertebrates, edited by D. M. Rosenberg and V. H. Resh, Chapman and Hall, New York, 1993. ix + 488pp. ISBN 0412 02251 6. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 92–92 (1994).23.Harper, D. M., Rosenberg, D. A. & Resh, V. H. Freshwater biomonitoring and benthic macroinvertebrates. J. Appl. Ecol. 31, 790 (1994).Article
Google Scholar
24.Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).Article
Google Scholar
25.Schuh, R. T. & Slater, J. A. True bugs of the World (Hemiptera: Heteroptera). Classification and Natural History. (Cornell University Press, 1995).26.Giehl, N. F. da S., Dias-Silva, K., Juen, L., Batista, J. D. & Cabette, H. S. R. Taxonomic and Numerical Resolutions of Nepomorpha (Insecta: Heteroptera) in Cerrado Streams. PLoS One 9, e103623 (2014).27.Dias-Silva, K., Cabette, H. S. R., Juen, L. & Jr, P. D. M. The influence of habitat integrity and physical-chemical water variables on the structure of aquatic and semi-aquatic Heteroptera. Zool. 27, 918–930 (2010).28.Panizzi, A. R. & Grazia, J. True Bugs (Heteroptera) of the Neotropics. True Bugs (Heteroptera) of the Neotropics vol. 2 (Springer Netherlands, 2015).29.Polhemus, J. T. & Polhemus, D. A. Global diversity of true bugs (Heteroptera; Insecta) in freshwater. Hydrobiologia https://doi.org/10.1007/s10750-007-9033-1 (2008).Article
Google Scholar
30.Nieser, N. & Melo, A. L. Os Heterópteros Aquáticos de Minas Gerais. (UFMG, Belo Horizonte, 1997).31.Cunha, E. J., de Assis Montag, L. F. & Juen, L. Oil palm crops effects on environmental integrity of Amazonian streams and Heteropteran (Hemiptera) species diversity. Ecol. Indic. 52, 422–429 (2015).32.Cordeiro, I. & Moreira, F. New distributional data on aquatic and semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha & Nepomorpha) from South America. Biodivers. Data J. 3, e4913 (2015).33.Rodrigues, A. S. L. & Brooks, T. M. Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article
Google Scholar
34.Andelman, S. J. & Fagan, W. F. Umbrellas and flagships: Efficient conservation surrogates or expensive mistakes?. Proc. Natl. Acad. Sci. 97, 5954–5959 (2000).ADS
CAS
Article
Google Scholar
35.Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article
Google Scholar
36.Abellan, P., Sanchez-Fernandez, D., Velasco, J. & Millan, A. Conservation of freshwater biodiversity: a comparison of different area selection methods. Biodivers. Conserv. 14, 3457–3474 (2005).Article
Google Scholar
37.Fearnside, P. M. Conservation policy in brazilian amazonia: understanding the dilemmas. World Dev. 31, 757–779 (2003).Article
Google Scholar
38.dos Santos, A. J., Vieira, T. B. & Faria, K. de C. Effects of vegetation structure on the diversity of bats in remnants of Brazilian Cerrado savanna. Basic Appl. Ecol. 17, 720–730 (2016).39.Groves, C. R. et al. Planning for biodiversity conservation: putting conservation science into practice. Bioscience https://doi.org/10.1641/0006-3568(2002)052[0499:pfbcpc]2.0.co;2 (2002).Article
Google Scholar
40.Fearnside, P. M. & Ferraz, J. A conservation gap analysis of Brazil’s Amazonian vegetation. Conserv. Biol. 9, 1134–1147 (1995).Article
Google Scholar
41.Fearnside, P. M. Introduction: strategies for social and environmental conservation in conservation units. In The Amazon Várzea 233–238 (Springer Netherlands, 2011). doi:https://doi.org/10.1007/978-94-007-0146-5_16.42.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article
Google Scholar
43.Marini, M. Â. & Garcia, F. I. Bird conservation in Brazil. Conserv. Biol. https://doi.org/10.1111/j.1523-1739.2005.00706.x (2005).Article
Google Scholar
44.Young, B. E. et al. Population declines and priorities for amphibian conservation in Latin America. Conserv. Biol. 15, 1213–1223 (2001).Article
Google Scholar
45.Dias-Silva, K., Moreira, F. F. F., Giehl, N. F. D. S., Nóbrega, C. C. & Cabette, H. S. R. Gerromorpha (Hemiptera: Heteroptera) of eastern Mato Grosso State, Brazil: checklist, new records, and species distribution modeling. Zootaxa https://doi.org/10.11646/zootaxa.3736.3.1 (2013).Article
PubMed
Google Scholar
46.Ferraz, K. M. P. M. de B., Ferraz, S. F. de B., Paula, R. C. de, Beisiegel, B. & Breitenmoser, C. Species Distribution Modeling for Conservation Purposes. Nat. Conserv. 10, 214–220 (2012).47.Marco-Júnior, P. & Siqueira, M. F. Como determinar a distribuição potencial de espécies sob uma abordagem conservacionista? Megadiversidade (2009).48.Hijmans, R. J. et al. DIVA-GIS, version 5.2. A geographic information system for the analysis of biodiversity data. Manual. . vol. 1 (International Potato Center, 2005).49.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. Numerical Ecology with R (Springer New York, 2011). doi:https://doi.org/10.1007/978-1-4419-7976-6.50.Serra, B. D. V., De Marco, P. J., Nóbrega, C. C. & Campos, L. A. D. O. Modeling potential geographical distribution of the wild nests of Melipona capixaba Moure & Camargo, 1994 ( Hymenoptera, Apidae ): Conserving Isolated Populations in Mountain Habitats. Nat. e Conserv. 10, 199–206 (2012).Article
Google Scholar
51.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article
Google Scholar
52.Swets, J. Measuring the accuracy of diagnostic systems. Science (80-. ). 240, 1285–1293 (1988).53.Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Identifying important areas for butterfly conservation in Italy. Anim. Conserv. https://doi.org/10.1111/j.1469-1795.2008.00216.x (2009).Article
Google Scholar
54.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article
Google Scholar
55.Vieira, T. B., Mendes, P. & Oprea, M. Priority areas for bat conservation in the state of Espírito Santo, southeastern Brazil. Neotrop. Biol. Conserv. 7, 88–96 (2012).Article
Google Scholar
56.Delgado-Jaramillo, M., Aguiar, L. M. S., Machado, R. B. & Bernard, E. Assessing the distribution of a species-rich group in a continental-sized megadiverse country: Bats in Brazil. Divers. Distrib. 26, 632–643 (2020).Article
Google Scholar
57.Destro, G. F. G., de Fernandes, V., de Andrade, A. F. A., De Marco, P. & Terribile, L. C. Back home? Uncertainties for returning seized animals to the source-areas under climate change. Glob. Chang. Biol. 25, 3242–3253 (2019).ADS
Article
Google Scholar
58.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop.). (2006) doi:https://doi.org/10.1111/j.2006.0906-7590.04596.x.59.Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).60.de Andrade, A. F. A., Velazco, S. J. E. & De Marco, P. Niche mismatches can impair our ability to predict potential invasions. Biol. Invasions 21, 3135–3150 (2019).Article
Google Scholar
61.Velazco, S. J. E., Villalobos, F., Galvão, F. & De Marco Júnior, P. A dark scenario for Cerrado plant species: Effects of future climate, land use and protected areas ineffectiveness. Divers. Distrib. 25, 660–673 (2019).62.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).Article
Google Scholar
63.Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation : methods for large multi-species planning problems. Proc. R. Soc. 272, 1885–1891 (2005).
Google Scholar
64.Moilanen, A. et al. Zonation spatial conservation planning framework and software v. 3.1, User manual. (2012).65.Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134, 571–579 (2007).Article
Google Scholar
66.Carvalho, A. R. de. Método de Monte Carlo e Aplicações. Repositório Inst. da Univ. Fed. Flum. 84 (2017).67.Feinleib, M. & Zar, J. H. Biostatistical analysis. J. Am. Stat. Assoc. https://doi.org/10.2307/2285423 (1975).Article
Google Scholar More