More stories

  • in

    Population dynamics of the sea snake Emydocephalus annulatus (Elapidae, Hydrophiinae)

    1.Krebs, C. J. Two paradigms of population regulation. Wildl. Res. 22, 1–10 (1995).MathSciNet 
    Article 

    Google Scholar 
    2.McLaren, I. A. Natural Regulation of Animal Populations (Routledge, 2017).Book 

    Google Scholar 
    3.Deffner, D. & McElreath, R. The importance of life history and population regulation for the evolution of social learning. Philos. Trans. R. Soc. B 375, 20190492 (2020).Article 

    Google Scholar 
    4.Leão, S. M., Pianka, E. R. & Pelegrin, N. Is there evidence for population regulation in amphibians and reptiles? J. Herpetol. 52, 28–33 (2018).Article 

    Google Scholar 
    5.Hanski, I. A. Density dependence, regulation and variability in animal populations. Philos. Trans. R. Soc. B 330, 141–150 (1990).ADS 
    Article 

    Google Scholar 
    6.Reznick, D., Bryant, M. J. & Bashey, F. r-and K-selection revisited: The role of population regulation in life-history evolution. Ecology 83, 1509–1520 (2002).Article 

    Google Scholar 
    7.Stenseth, N. C., Falck, W., Bjørnstad, O. N. & Krebs, C. J. Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proc. Natl Acad. Sci. USA 94, 5147–5152 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Lande, R. et al. Estimating density dependence from population time series using demographic theory and life-history data. Am. Nat. 159, 321–337 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Ferguson, G. W., Bohlen, C. H. & Woolley, H. P. Sceloporus undulatus: Comparative life history and regulation of a Kansas population. Ecology 61, 313–322 (1980).Article 

    Google Scholar 
    10.Andrews, R. M. Population stability of a tropical lizard. Ecology 72, 1204–1217 (1991).Article 

    Google Scholar 
    11.Tinkle, D. W., Dunham, A. E. & Congdon, J. D. Life history and demographic variation in the lizard Sceloporus graciosus: A long-term study. Ecology 74, 2413–2429 (1993).Article 

    Google Scholar 
    12.Altwegg, R., Dummermuth, S., Anholt, B. R. & Flatt, T. Winter weather affects asp viper Vipera aspis population dynamics through susceptible juveniles. Oikos 110, 55–66 (2005).Article 

    Google Scholar 
    13.Madsen, T. & Shine, R. Rain, fish and snakes: Climatically driven population dynamics of Arafura filesnakes in tropical Australia. Oecologia 124, 208–215 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Madsen, T., Ujvari, B., Shine, R. & Olsson, M. Rain, rats and pythons: Climate-driven population dynamics of predators and prey in tropical Australia. Austral Ecol. 31, 30–37 (2006).Article 

    Google Scholar 
    15.Brown, G. P. & Shine, R. Rain, prey and predators: Climatically driven shifts in frog abundance modify reproductive allometry in a tropical snake. Oecologia 154, 361–368 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    16.Brown, G. P., Ujvari, B., Madsen, T. & Shine, R. Invader impact clarifies the roles of top-down and bottom-up effects on tropical snake populations. Funct. Ecol. 27, 351–361 (2013).Article 

    Google Scholar 
    17.Massot, M., Clobert, J., Pilorge, T., Lecomte, J. & Barbault, R. Density dependence in the common lizard: Demographic consequences of a density manipulation. Ecology 73, 1742–1756 (1992).Article 

    Google Scholar 
    18.Fordham, D. A., Georges, A. & Brook, B. W. Experimental evidence for density-dependent responses to mortality of snake-necked turtles. Oecologia 159, 271–281 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    19.Burns, G. & Heatwole, H. Home range and habitat use of the olive sea snake, Aipysurus laevis, on the Great Barrier Reef, Australia. J. Herpetol. 32, 350–358 (1998).Article 

    Google Scholar 
    20.Ward, T. M. Age structures and reproductive patterns of two species of sea snake, Lapemis hardwickii Grey (1836) and Hydrophis elegans (Grey 1842), incidentally captured by prawn trawlers in northern Australia. Mar. Freshw. Res. 52, 193–203 (2001).Article 

    Google Scholar 
    21.Dennis, B. & Ponciano, J. M. Density-dependent state-space model for population-abundance data with unequal time intervals. Ecology 95, 2069–2076 (2014).PubMed 
    Article 

    Google Scholar 
    22.Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89, 39–50 (1999).Article 

    Google Scholar 
    23.Yacelga, M., Cayot, L. J. & Jaramillo, A. Dispersal of neonatal Galápagos marine iguanas Amblyrhynchus cristatus from their nesting zone: Natural history and conservation implications. Herpetol. Conserv. Biol. 7, 470–480 (2012).
    Google Scholar 
    24.Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Shine, R., Cogger, H. G., Reed, R. R., Shetty, S. & Bonnet, X. Aquatic and terrestrial locomotor speeds of amphibious sea-snakes (Serpentes, Laticaudidae). J. Zool. 259, 261–268 (2003).Article 

    Google Scholar 
    26.Forsman, A. Body size and net energy gain in gape-limited predators: A model. J. Herpetol. 30, 307–319 (1996).Article 

    Google Scholar 
    27.Shine, R., LeMaster, M. P., Moore, I. T., Olsson, M. M. & Mason, R. T. Bumpus in the snake den: Effects of sex, size and body condition on mortality in red-sided garter snakes. Evolution 55, 598–604 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Sherratt, E., Rasmussen, A. R. & Sanders, K. L. Trophic specialization drives morphological evolution in sea snakes. R. Soc. Open Sci. 5, 172141 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Lemen, C. A. & Voris, H. K. A comparison of reproductive strategies among marine snakes. J. Anim. Ecol. 50, 89–101 (1981).Article 

    Google Scholar 
    30.Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): The effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).Article 

    Google Scholar 
    31.Heatwole, H., Grech, A., Monahan, J. F., King, S. & Marsh, H. Thermal biology of sea snakes and sea kraits. Integr. Comp. Biol. 52, 257–273 (2012).PubMed 
    Article 

    Google Scholar 
    32.Van Dyke, J. U., Beaupre, S. J. & Kreider, D. L. Snakes allocate amino acids acquired during vitellogenesis to offspring: Are capital and income breeding consequences of variable foraging success? Biol. J. Linn. Soc. 106, 390–404 (2012).Article 

    Google Scholar 
    33.Masunaga, G., Matsuura, R., Yoshino, T. & Ota, H. Reproductive biology of the viviparous sea snake Emydocephalus ijimae (Reptilia: Elapidae: Hydrophiinae) under a seasonal environment in the Northern Hemisphere. Herpetol. J. 13, 113–119 (2003).
    Google Scholar 
    34.Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 
    Article 

    Google Scholar 
    35.Phillips, B. L. The evolution of growth rates on an expanding range edge. Biol. Lett. 5, 802–804 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).Article 

    Google Scholar 
    37.Goiran, C. & Shine, R. Decline in sea snake abundance on a protected coral reef system in the New Caledonian Lagoon. Coral Reefs 32, 281–284 (2013).ADS 
    Article 

    Google Scholar 
    38.Somaweera, R. et al. Pinpointing drivers of extirpation in sea snakes: A synthesis of evidence from Ashmore Reef. Front. Mar. Sci. 8, 658756 (2021).Article 

    Google Scholar 
    39.Udyawer, V. et al. Future directions in the research and management of marine snakes. Front. Mar. Sci. 5, 399 (2018).Article 

    Google Scholar 
    40.Udyawer, V., Cappo, M., Simpfendorfer, C. A., Heupel, M. R. & Lukoschek, V. Distribution of sea snakes in the Great Barrier Reef Marine Park: Observations from 10 yrs of baited remote underwater video station (BRUVS) sampling. Coral Reefs 33, 777–791 (2014).ADS 
    Article 

    Google Scholar 
    41.Udyawer, V., Goiran, C. & Shine, R. Peaceful coexistence between people and deadly wildlife: Why are recreational users of the ocean so rarely bitten by sea snakes? People Nat. 3, 335–346 (2021).Article 

    Google Scholar 
    42.Shine, R., Goiran, C., Shine, T., Fauvel, T. & Brischoux, F. Phenotypic divergence between seasnake (Emydocephalus annulatus) populations from adjacent bays of the New Caledonian Lagoon. Biol. J. Linn. Soc. 107, 824–832 (2012).Article 

    Google Scholar 
    43.Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).Article 

    Google Scholar 
    44.Li, M., Fry, B. G. & Kini, R. M. Eggs-only diet: Its implications for the toxin profile changes and ecology of the marbled sea snake (Aipysurus eydouxii). J. Mol. Evol. 60, 81–89 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Heatwole, H. Predation on sea snakes. In The Biology of Sea Snakes (ed. Dunson, W. A.) 233–250 (University Park Press, 1975).
    Google Scholar 
    46.Rancurel, P. & Intes, A. L. requin tigre, Galeocerdo cuvieri Lacepede, des eaux neocaledoniennes examen des contenus stomacaux. Tethys 10, 195–199 (1982).
    Google Scholar 
    47.Ineich, I. & Laboute, P. Les Serpents Marins de Nouvelle-Calédonie (IRD éditions, 2002).
    Google Scholar 
    48.Masunaga, G., Kosuge, T., Asai, N. & Ota, H. Shark predation of sea snakes (Reptilia: Elapidae) in the shallow waters around the Yaeyama Islands of the southern Ryukyus, Japan. Mar. Biodivers. Rec. 1, e96 (2008).Article 

    Google Scholar 
    49.Wirsing, A. J. & Heithaus, M. R. Olive-headed sea snakes Disteria major shift seagrass microhabitats to avoid shark predation. Mar. Ecol. Progr. Ser. 387, 287–293 (2009).ADS 
    Article 

    Google Scholar 
    50.White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article 

    Google Scholar 
    51.Brischoux, F., Rolland, V., Bonnet, X., Caillaud, M. & Shine, R. Effects of oceanic salinity on body condition in sea snakes. Integr. Comp. Biol. 52, 235–244 (2012).PubMed 
    Article 

    Google Scholar 
    52.Lovich, J. E. & Gibbons, J. W. A review of techniques for quantifying sexual size dimorphism. Growth Dev. Aging 56, 269–269 (1992).CAS 
    PubMed 

    Google Scholar 
    53.Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L. & Staples, D. F. Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76, 323–341 (2006).Article 

    Google Scholar  More

  • in

    Genomic investigations provide insights into the mechanisms of resilience to heterogeneous habitats of the Indian Ocean in a pelagic fish

    1.Cowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R. & Werner, F. E. Population connectivity in marine systems an overview. Oceanography 20, 14–21 (2007).Article 

    Google Scholar 
    2.Vendrami, D. L. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. UK 9, 1–13 (2019).CAS 

    Google Scholar 
    3.Holsinger, K. & Weir, B. Genetics in geographically structured populations: Defining, estimating and interpreting FST. Nat. Rev. Genet. 10, 639–650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Smedbol, R. K., McPherson, A., Hansen, M. M. & Kenchington, E. Myths and moderation in marine metapopulations?. Fish Fish. 3, 20–35 (2002).Article 

    Google Scholar 
    5.Makinen, H. S., Cano, J. M. & Merila, J. Identifying footprints of directional and balancing selection in marine and freshwater three-spined stickleback (Gasterosteus aculeatus) populations. Mol. Ecol. 17, 3565–3582 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Tine, M. et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5, 5770 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Thompson, P. L. & Fronhofer, E. A. The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proc. Natl. Acad. Sci. 116, 21061–21067 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Samuk, K. et al. Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26, 4378–4390 (2017).PubMed 
    Article 

    Google Scholar 
    9.van Tienderen, P. H., de Haan, A. A., van der Linden, C. G. & Vosman, B. Biodiversity assessment using markers for ecologically important traits. Trends Ecol. Evol. 17, 577–582 (2002).Article 

    Google Scholar 
    10.Cadrin, S. X., Kerr, L. A. & Mariani, S. Interdisciplinary evaluation of spatial population structure for definition of fishery management units. In Stock Identification Methods: Applications in Fishery Science (eds Cadrin, S. X. et al.) (Academic Press, 2014).Chapter 

    Google Scholar 
    11.Hoffmann, A. et al. A framework for incorporating evolutionary genomics into biodiversity conservation and management. Clim. Change Res. 2, 1–24 (2015).Article 

    Google Scholar 
    12.Narum, S. R., Buerkle, C. A., Davey, J. W., Miller, M. R. & Hohenlohe, P. A. Genotyping by sequencing in ecological and conservation genomics. Mol. Ecol. 22, 2841–2847 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Davey, J. W. & Blaxter, M. L. RADSeq: Next-generation population genetics. Brief Funct. Genom. 9, 416–423 (2010).CAS 
    Article 

    Google Scholar 
    14.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Valencia, L. M., Martins, A., Ortiz, E. M. & Di Fiore, A. A. RAD-sequencing approach to genome-wide marker discovery, genotyping, and phylogenetic inference in a diverse radiation of primates. PLoS ONE 13, e0201254 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Zalapa, J. E. et al. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am. J. Bot. 99, 193–208 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hohenlohe, P. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. Plos Genet. 6, e1000862 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Emerson, K. J. et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. 107, 16196–16200 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C. & Brumfield, R. T. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 62, 397–406 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Genner, M. J. & Turner, G. F. The mbuna cichlids of Lake Malawi: A model for rapid speciation and adaptive radiation. Fish Fish. 6, 1–34 (2005).Article 

    Google Scholar 
    22.Brawand, D. et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.FAO. Fishery and Aquaculture Statistics Yearbook 2014 (Food and Agriculture Organization, 2016).
    Google Scholar 
    24.CMFRI. Marine Fish Landings in India 2019. Technical Report (ICAR-Central Marine Fisheries Research Institute, 2020).
    Google Scholar 
    25.Longhurst, A. R. & Wooster, W. S. Abundance of oil sardine (Sardinella longiceps) and upwelling in the southwest coast of India. Can. J. Fish Aquat. Sci. 47, 2407–2419 (1990).Article 

    Google Scholar 
    26.Krishnakumar, P. K. et al. How environmental parameters influenced fluctuations in oil sardine and mackerel fishery during 1926–2005 along the southwest coast of India. Mar. Fish. Inf. Service T & E Ser. No. 198, 1–5 (2008).
    Google Scholar 
    27.Xu, C. & Boyce, M. S. Oil sardine (Sardinella longiceps) off the Malabar coast: Density dependence and environmental effects. Fish. Oceanogr. 18, 359–370 (2009).Article 

    Google Scholar 
    28.Checkley, D. M. Jr., Asch, R. G. & Rykaczewski, R. R. Climate, anchovy and sardine. Annu. Rev. Mar. Sci. 9, 469–493 (2017).ADS 
    Article 

    Google Scholar 
    29.Kripa, V. et al. Overfishing and climate drives changes in biology and recruitment of the Indian oil sardine Sardinella longiceps in southeastern Arabian Sea. Front. Mar. Sci. 5, 443 (2018).Article 

    Google Scholar 
    30.Kuthalingam, M. D. K. Observations on the life history and feeding habits of the Indian sardine, Sardinella longiceps (Cuv. & Val.). Treubia 25, 207–213 (1960).
    Google Scholar 
    31.Sebastian, W., Sukumaran, S., Zacharia, P. U. & Gopalakrishnan, A. Genetic population structure of Indian oil sardine, Sardinella longiceps assessed using microsatellite markers. Conserv. Genet. 18, 951–964 (2017).CAS 
    Article 

    Google Scholar 
    32.Sebastian, W. et al. Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish. Sci. Rep. UK 10, 1–14 (2020).Article 
    CAS 

    Google Scholar 
    33.Sukumaran, S., Sebastian, W. & Gopalakrishnan, A. Population genetic structure of Indian oil sardine, Sardinella longiceps along Indian coast. Gene 576, 372–378 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Sukumaran, S. et al. Morphological divergence in Indian oil sardine, Sardinella longiceps Valenciennes, 1847 Does it imply adaptive variation?. J. Appl. Ichthyol. 32, 706–711 (2016).CAS 
    Article 

    Google Scholar 
    35.Burgess, S. C., Treml, E. A. & Marshall, D. J. How do dispersal costs and habitat selection influence realized population connectivity?. Ecology 93, 1378–1387 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Pardoe, H. Spatial and temporal variation in life-history traits of Atlantic cod (Gadus morhua) in Icelandic waters, Reykjavik University of Iceland. PhD thesis https://doi.org/10.13140/RG.2.2.27158.70727 (2009).Article 

    Google Scholar 
    37.Devaraj, M. et al. Status, prospects and management of small pelagic fisheries in India. In Small Pelagic Resources and Their Fisheries in the Asia-Pacific Region: Proceedings of the APFIC Workshop (eds Devaraj, M. & Martosubroto, P.) 91–198 (Asia-Pacific Fishery Commission, Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, 1997).
    Google Scholar 
    38.Mohamed, K. S. et al. Minimum Legal Size (MLS) of capture to avoid growth overfishing of commercially exploited fish and shellfish species of Kerala. Mar. Fish. Inf. Service T & E Ser. No. 220, 3–7 (2014).
    Google Scholar 
    39.Hartl, D. L. & Clark, A. G. Principles of Population Genetics (Sinauer Associates, 2006).
    Google Scholar 
    40.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Chatterjee, A. et al. A new atlas of temperature and salinity for the North Indian Ocean. J. Earth. Syst. Sci. 121, 559–593 (2012).ADS 
    Article 

    Google Scholar 
    42.Nair, A. K. K., Balan, K. & Prasannakumari, B. The fishery of the oil sardine (Sardinella longiceps) during the past 22 years. Indian J. Fish. 20, 223–227 (1973).
    Google Scholar 
    43.Krishnakumar, P. K. & Bhat, G. S. Seasonal and inter annual variations of oceanographic conditions off Mangalore coast (Karnataka, India) in the Malabar upwelling system during 1995–2004 and their influences on the pelagic fishery. Fish. Oceanogr. 17, 45–60 (2008).Article 

    Google Scholar 
    44.Hamza, F., Valsala, V., Mallissery, A. & George, G. Climate impacts on the landings of Indian oil sardine over the south-eastern Arabian Sea. Fish Fish. 22, 175–193 (2021).Article 

    Google Scholar 
    45.Shankar, D., Vinayachandran, P. N. & Unnikrishnan, A. S. The monsoon currents in the north Indian Ocean. Prog. Oceanogr. 52, 63–120 (2002).ADS 
    Article 

    Google Scholar 
    46.Shetye, S. R. & Gouveia, A. D. Coastal Circulation in the North Indian Ocean: Coastal Segment (14, SW) (Wiley, 1998).
    Google Scholar 
    47.Kumar, S. P. et al. High biological productivity in the central Arabian Sea during the summer monsoon driven by Ekman pumping and lateral advection. Curr. Sci. India 1, 1633–1638 (2001).
    Google Scholar 
    48.Frichot, E. & Francois, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).Article 

    Google Scholar 
    49.Raja, A. B. T. The Indian Oil Sardine. Kochi. Central Mar. Fish. Res. Inst. Bull. No. 16, 151 (1969).
    Google Scholar 
    50.Nair, R. V. & Chidambaram, K. Review of the oil sardine fishery. Proc. Natl. Acad. Sci. India 17, 71–85 (1951).
    Google Scholar 
    51.Rijavec, L., Krishna Rao, K. & Edwin, D. G. P. Distribution and Abundance of Marine Fish Resources Off the Southwest Coast of India (Results of Acoustic Surveys, 1976–1978) (Food and Agriculture Organization of the United Nations, 1982).
    Google Scholar 
    52.Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: Ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).Article 

    Google Scholar 
    53.Catchen, J. et al. The population structure and recent colonisation history of Oregon threespine stickleback determined using restriction-site associated DNA-sequencing. Mol. Ecol. 22, 2864–2883 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Schott, F. A. & McCreary, J. P. Jr. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001).ADS 
    Article 

    Google Scholar 
    55.Aykanat, T. et al. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population. Mol. Ecol. 24, 5158–5174 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Xu, J. et al. Genomic basis of adaptive evolution: the survival of Amur ide (Leuciscus waleckii) in an extremely alkaline environment. Mol. Biol. Evol. 34, 145–149 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Pappas, F. & Palaiokostas, C. Genotyping strategies using ddRAD sequencing in farmed arctic charr (Salvelinus alpinus). Animals 11, 899 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Gleason, L. U. & Burton, R. S. Genomic evidence for ecological divergence against a background of population homogeneity in the marine snail Chlorostoma funebralis. Mol. Ecol. 25, 3557–3573 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Bailey, D. A., Lynch, A. H. & Hedstrom, K. S. Impact of ocean circulation on regional polar climate simulations using the Arctic Region Climate System Model. Ann. Glaciol. 25, 203–207 (1997).ADS 
    Article 

    Google Scholar 
    60.Oomen, R. A. & Hutchings, J. A. Variation in spawning time promotes genetic variability in population responses to environmental change in a marine fish. Conserv. Physiol. 3, p.cov027 (2015).Article 
    CAS 

    Google Scholar 
    61.Cury, P. et al. Small pelagics in upwelling systems: Patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).Article 

    Google Scholar 
    62.Marshall, D. J. & Morgan, S. G. Ecological and evolutionary consequences of linked life-history stages in the sea. Curr. Biol. 21, R718–R725 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Churchill, J. H., Runge, J. & Chen, C. Processes controlling retention of spring-spawned Atlantic cod (Gadus morhua) in the western Gulf of Maine and their relationship to an index of recruitment success. Fish Oceanogr. 20, 32–46 (2011).Article 

    Google Scholar 
    64.John, S., Muraleedharan, K. R., Azeez, S. A. & Cazenave, P. W. What controls the flushing efficiency and particle transport pathways in a tropical estuary? Cochin Estuary, Southwest Coast of India. Water 12, 908 (2020).Article 

    Google Scholar 
    65.Seena, G., Muraleedharan, K. R., Revichandran, C., Azeez, S. A. & John, S. Seasonal spreading and transport of buoyant plumes in the shelf off Kochi, South west coast of India A modeling approach. Sci. Rep. UK 9, 1–15 (2019).ADS 

    Google Scholar 
    66.Marshall, D. J., Monro, K., Bode, M., Keough, M. J. & Swearer, S. Phenotype environment mismatches reduce connectivity in the sea. Ecol. Lett. 13, 128–140 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Gruss, A. & Robinson, J. Fish populations forming transient spawning aggregations: Should spawners always be the targets of spatial protection efforts?. ICES J. Mar. Sci. 72, 480–497 (2015).Article 

    Google Scholar 
    68.Chollett, I., Priest, M., Fulton, S. & Heyman, W. D. Should we protect extirpated fish spawning aggregation sites?. Biol. Conserv. 241, 108395 (2020).Article 

    Google Scholar 
    69.Nielsen, E. E., Hemmer-Hansen, J. A. K. O. B., Larsen, P. F. & Bekkevold, D. Population genomics of marine fishes: Identifying adaptive variation in space and time. Mol. Ecol. 18, 3128–3150 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Johannesson, K., Smolarz, K., Grahn, M. & Andre, C. The future of Baltic Sea populations: Local extinction or evolutionary rescue?. Ambio 40, 179–190 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Wang, L. et al. Population genetic studies revealed local adaptation in a high gene-flow marine fish, the small yellow croaker (Larimichthys polyactis). PLoS ONE 8, e83493 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Brennan, R. S., Hwang, R., Tse, M., Fangue, N. A. & Whitehead, A. Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope. Comp. Biochem. Phys. B 196, 11–19 (2016).CAS 
    Article 

    Google Scholar 
    73.Fan, S., Elmer, K. R. & Meyer, A. Genomics of adaptation and speciation in cichlid fishes: Recent advances and analyses in African and Neotropical lineages. Philos. T. R. Soc. B. 367, 385–394 (2012).Article 

    Google Scholar 
    74.Turner, T. L. & Hahn, M. W. Genomic islands of speciation or genomic islands and speciation?. Mol. Ecol. 19, 848–850 (2010).PubMed 
    Article 

    Google Scholar 
    75.Seehausen, O. et al. Genomics and the origin of species. Nat. Rev. Genet. 15, 176 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Wolf, J. B. & Ellegren, H. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18, 87 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Christensen, C., Jacobsen, M. W., Nygaard, R. & Hansen, M. M. Spatiotemporal genetic structure of anadromous Arctic char (Salvelinus alpinus) populations in a region experiencing pronounced climate change. Conserv. Genet. 19, 687–700 (2018).Article 

    Google Scholar 
    79.Nielsen, E. E. et al. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua). BMC Evol. Biol. 9, 1–11 (2009).Article 
    CAS 

    Google Scholar 
    80.Vivekanandan, E., Rajagopalan, M. & Pillai, N. G. K. Recent trends in sea surface temperature and its impact on oil sardine. In Global Climate Change and Indian Agriculture (eds Aggarwal, P. K. et al.) 89–92 (Indian Council of Agricultural Research, 2009).
    Google Scholar 
    81.DeTolla, L. J. et al. Guidelines for the care and use of fish in research. Ilar J. 1(37), 159–173 (1995).Article 

    Google Scholar 
    82.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Andrews, S. FASTQC. A Quality Control Tool for High Throughput Sequence Data (Babraham Institute, 2010).
    Google Scholar 
    84.Paris, J. R., Stevens, J. R. & Catchen, J. M. Lost in parameter space: A road map for stacks. Methods Ecol. Evol. 8, 1360–1373 (2017).Article 

    Google Scholar 
    85.Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    86.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Felsenstein, J. PHYLIP—Phylogeny inference package (Version 3.2). Cladistics 5, 164–166 (1989).
    Google Scholar 
    89.Andrew, R. Tree Figure Drawing Tool Version 1.4.2 2006–2014 (Institute of Evolutionary, Biology University of Edinburgh, 2014).
    Google Scholar 
    90.Bonnet, E. & Van de Peer, Y. zt: A sofware tool for simple and partial mantel tests. J. Stat. Softw. 7, 1 (2002).Article 

    Google Scholar 
    91.Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145, 1219–1228 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Lischer, H. E. & Excoffier, L. PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics 28, 298–299 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Chen, C., Liu, H. & Beardsley, R. C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 20, 159–186 (2003).ADS 
    Article 

    Google Scholar  More

  • in

    Effects of global warming on Mediterranean coral forests

    1.Heron, S. F., Maynard, J. A., van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the World’s coral reefs 1985–2012. Sci. Rep. 6, 38402 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS 
    Article 

    Google Scholar 
    3.Glynn, P. W. Widespread coral mortality and the 1982–83 El Nino warming events. Environ. Conserv. 11, 133–146 (1984).Article 

    Google Scholar 
    4.Spalding, M. D. & Brown, B. E. Warm-water coral reefs and climate change. Science 350, 769–771 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Eakin, C. M. et al. Global coral bleaching 2014–2017. Reef Curr. 31, 1 (2016).
    Google Scholar 
    6.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Rossi, S., Bramanti, L., Gori, A. & Orejas, C. An overview of the animal forests of the world. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–26 (Springer, 2017).Chapter 

    Google Scholar 
    8.Chimienti, G. Vulnerable forests of the pink sea fan Eunicella verrucosa in the Mediterranean Sea. Diversity 12, 176 (2020).Article 

    Google Scholar 
    9.Chimienti, G., De Padova, D., Mossa, M. & Mastrototaro, F. A mesophotic black coral forest in the Adriatic Sea. Sci. Rep. 10, 8504 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.FAO, Food and Agricultural Organization. International Guidelines for the Management of Deep-Sea Fisheries in the High Seas (FAO, 2009).
    Google Scholar 
    11.Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5(8), e11842 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Lejeusne, C., Chevaldonne, P., Pergent-Martini, C., Boudouresque, C.-F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25(4), 250–260 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Marbà, N., Jordà, G., Agustí, S., Girard, C. & Duarte, C. M. Footprints of climate change on Mediterranean Sea biota. Front. Mar. Sci. 2, 56 (2015).Article 

    Google Scholar 
    14.Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).ADS 
    Article 

    Google Scholar 
    15.Albano, P. G. et al. Native biodiversity collapse in the eastern Mediterranean. Proc. R. Soc. B 288, 20202469 (2021).PubMed 
    Article 

    Google Scholar 
    16.Harmelin, J. G. Biologie du corail rouge. Paramètres de populations, croissance et mortalité naturelle. Etat des connaissances en France. FAO Fish. Rep. 306, 99–103 (1984).
    Google Scholar 
    17.Bavestrello, G. & Boero, F. Necrosi e rigenerazione in Eunicella cavolinii (Anthozoa, Cnidaria) in Mar Ligure. Boll. Mus. Ist. Biol. Univ. Genova 52, 295–300 (1986).
    Google Scholar 
    18.Cerrano, C. et al. Catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), Summer 1999. Ecol. Lett. 3, 284–293 (2000).Article 

    Google Scholar 
    19.Linares, C. et al. Immediate and delayed effects of a mass mortality event on gorgonian population dynamics and benthic community structure in the NW Mediterranean Sea. Mar. Ecol. Prog. Ser. 305, 127–137 (2005).ADS 
    Article 

    Google Scholar 
    20.Coma, R. et al. Consequences of a mass mortality in populations of Eunicella singularis (Cnidaria: Octocorallia) in Menorca (NW Mediterranean). Mar. Ecol. Prog. Ser. 327, 51–60 (2006).ADS 
    Article 

    Google Scholar 
    21.Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).ADS 
    Article 

    Google Scholar 
    22.Huete-Stauffer, C. et al. Paramuricea clavata (Anthozoa, Octocorallia) loss in the Marine Protected Area of Tavolara (Sardinia, Italy) due to a mass mortality event. Mar. Ecol. 32, 107–116 (2011).ADS 
    Article 

    Google Scholar 
    23.Rubio-Portillo, E. et al. Effects of the 2015 heat wave on benthic invertebrates in the Tabarca Marine Protected Area (southeast Spain). Mar. Environ. Res. 122, 135–142 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Crisci, C., Bensoussan, N., Romano, J. C. & Garrabou, J. Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS ONE 6, e23814 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Turicchia, E., Abbiati, M., Sweet, M. & Ponti, M. Mass mortality hits gorgonian forests at Montecristo Island. Dis. Aquat. Org. 131, 79–85 (2018).Article 

    Google Scholar 
    26.von Schuckmann, K. et al. Copernicus Marine Service Ocean State Report, issue 3. J. Oper. Oceanogr. 12(1), S1–S123 (2019).
    Google Scholar 
    27.Garrabou, J. et al. Collaborative database to track mass mortality events in the Mediterranean Sea. Front. Mar. Sci. 6, 707 (2019).Article 

    Google Scholar 
    28.Linares, C., Doak, D. F., Coma, R., Díaz, D. & Zabala, M. Life history and viability of a long-lived marine invertebrate: The octocoral Paramuricea clavata. Ecology 88, 918–928 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Linares, C., Coma, R., Garrabou, J., Díaz, D. & Zabala, M. Size distribution, density and disturbance in two Mediterranean gorgonians: Paramuricea clavata and Eunicella singularis. J. Appl. Ecol. 45(2), 688–699 (2008).Article 

    Google Scholar 
    30.Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1153–1166 (2018).Article 

    Google Scholar 
    31.Otero, M. M. et al. Overview of the conservation status of Mediterranean anthozoans. IUCN, x + 73 p (2017).32.Pastor, F., Valiente, J. A. & Khodayar, S. A. Warming Mediterranean: 38 years of increasing sea surface temperature. Remote Sens. 12(17), 2687 (2020).ADS 
    Article 

    Google Scholar 
    33.DHI. Mike 3 Flow Model: Hydrodynamic Module-Scientific Documentation (DHI Software 2016, 2016).
    Google Scholar 
    34.Moore, S. K. et al. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Health 7(2), S4 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Piazza, G. et al. Prime osservazioni sul bloom mucillaginoso dell’estate 2018 sui fondali a coralligeno delle Isole Tremiti. Biol. Mar. Mediterr. 26(1), 320–321 (2019).
    Google Scholar 
    36.van de Water, J. A. J. M., Allemand, D. & Ferrier-Pagès, C. Host-microbe interactions in octocoral holobionts—Recent advances and perspectives. Microbiome 6, 64 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Bavestrello, G. et al. Mass mortality of Paramuricea clavata (Anthozoa: Cnidaria) on Portofino Promontory cliffs (Ligurian Sea). Mar. Life 4, 15–19 (1994).
    Google Scholar 
    38.Mistri, M. & Ceccherelli, V. U. Damage and partial mortality in the gorgonian Paramuricea clavata in the Strait of Messina (Tyrrhenian Sea). Mar. Life 5, 43–49 (1995).
    Google Scholar 
    39.Cerrano, C. & Bavestrello, G. Medium-term effects of dieoff of rocky benthos in the Ligurian Sea. What can we learn from gorgonians?. Chem. Ecol. 24, 73–82 (2008).Article 

    Google Scholar 
    40.Guiry, M. D. & Guiry, G. M. AlgaeBase (World-Wide Electronic Publication, National University of Ireland, 2021).
    Google Scholar 
    41.Cormaci, M., Furnari, G., Alongi, G., Catra, M. & Serio, D. The benthic algal flora on rocky substrata of the Tremiti Islands (Adriatic Sea). Plant Biosyst. 134(2), 133–152 (2000).Article 

    Google Scholar 
    42.Cebrian, E., Linares, C., Marschal, C. & Garrabou, J. Exploring the effects of invasive algae on the persistence of gorgonian populations. Biol. Invasions 14, 2647–2656 (2012).Article 

    Google Scholar 
    43.Verlaque, M., Ruitton, S., Mineur, F. & Boudouresque, C.-F. CIESM Atlas of Exotic Species of the Mediterranean: Macrophytes 1–362 (CIESM Publishers, 2015).
    Google Scholar 
    44.Ghabbourl, E. A. et al. Isolation of humic acid from the brown alga Pilayella littoralis. J. Appl. Phycol. 6, 459–468 (1994).Article 

    Google Scholar 
    45.Raberg, S., Jönsson, R. B., Björn, A., Granél, E. & Kautsky, L. Effects of Pilayella littoralis on Fucus vesiculosus recruitment: Implications for community composition. Mar. Ecol. Prog. Ser. 289, 131–139 (2005).ADS 
    Article 

    Google Scholar 
    46.Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 45(9–10), 2775–2802 (2015).Article 

    Google Scholar 
    47.Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).Article 

    Google Scholar 
    48.Bavestrello, G., Cerrano, C., Zanzi, D. & Cattaneo-Vietti, R. Damage by fishing activities in the gorgonian coral Paramuricea clavata in the Ligurian Sea. Aquat. Conserv. 7, 253–262 (1997).Article 

    Google Scholar 
    49.Linares, C. & Doak, D. F. Forecasting the combined effects of disparate disturbances on the persistence of long-lived gorgonians: A case study of Paramuricea clavata. Mar. Ecol. Prog. Ser. 402, 59–68 (2010).ADS 
    Article 

    Google Scholar 
    50.Chimienti, G. et al. An explorative assessment of the importance of Mediterranean Coralligenous habitat to local economy: The case of recreational diving. J. Environ. Account. Manag. 5(4), 310–320 (2017).
    Google Scholar 
    51.Di Camillo, C. G., Ponti, M., Bavestrello, G., Krzelj, M. & Cerrano, C. Building a baseline for habitat-forming corals by a multi-source approach, including web ecological knowledge. Biodivers. Conserv. 27, 1257–1276 (2018).Article 

    Google Scholar 
    52.Ingrosso, G. et al. Mediterranean bioconstructions along the Italian coast. Adv. Mar. Biol. 79, 61–136 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Chimienti, G., Angeletti, L., Rizzo, L., Tursi, A. & Mastrototaro, F. ROV vs trawling approaches in the study of benthic communities: The case of Pennatula rubra (Cnidaria: Pennatulacea). J. Mar. Biol. Assoc. U. K. 98(8), 1859–1869 (2018).Article 

    Google Scholar 
    54.Chimienti, G., Angeletti, L., Furfaro, G., Canese, S. & Taviani, M. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep-Sea Res. Pt. I 165, 103364 (2020).Article 

    Google Scholar 
    55.Mastrototaro, F. et al. Mesophotic rocks dominated by Diazona violacea: A Mediterranean codified habitat. Eur. Zool. J. 87(1), 688–695 (2020).Article 

    Google Scholar 
    56.Walton, C. C., Pichel, W. G., Sapper, J. F. & May, D. A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. 103(C12), 27999–28012 (1998).ADS 
    Article 

    Google Scholar 
    57.Kilpatrick, K. A. et al. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 165, 27–41 (2015).ADS 
    Article 

    Google Scholar 
    58.Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
    Google Scholar 
    59.Simoncelli, S. et al. Mediterranean Sea Physical Reanalysis (CMEMS MED-Physics) (Copernicus Monitoring Environment Marine Service (CMEMS), 2019). https://doi.org/10.25423/MEDSEA_REANALYSIS_PHYS_006_004.60.Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (Copernicus Climate Change Service Climate Data Store (CDS), 2017). https://cds.climate.copernicus.eu/cdsapp#!/home.61.Xie, P. & Arkin, P. A. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteor. Soc. 78, 2539–2558 (1997).ADS 
    Article 

    Google Scholar 
    62.Rodi, W. Examples of calculation methods for flow and mixing in stratified fluids. J. Geophys. Res. Ocean 92(C5), 5305–5328 (1987).ADS 
    Article 

    Google Scholar 
    63.Galperin, B. & Orszag, S. A. Large Eddy Simulation of Complex Engineering and Geophysical Flows 3–36 (Cambridge University Press, 1993).
    Google Scholar 
    64.De Padova, D., De Serio, F., Mossa, M. & Armenio, E. Investigation of the current circulation offshore Taranto by using field measurements and numerical model. In Proceedings of the IEEE International Instrumentation and Measurement Technology Conference 1–5 (IEEE, 2017).65.Armenio, E., De Padova, D., De Serio, F. & Mossa, M. Monitoring system for the sea: Analysis of meteo, wave and current data. In Workshop on Metrology for the Sea, MetroSea 2017: Learning to Measure Sea Health Parameters 143–148 (IMEKO TC19, 2017).66.Armenio, E., Ben Meftah, M., De Padova, D., De Serio, F. & Mossa, M. Monitoring systems and numerical models to study coastal sites. Sensors 19(7), 1552 (2019).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    67.Chu, P. C. & Fan, C. Global ocean synoptic thermocline gradient, isothermal-layer depth, and other upper ocean parameters. Sci. Data 6, 119 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Clementi, E. et al. Mediterranean Sea Analysis and Forecast (CMEMS MED-Currents, EAS5 System) (Copernicus Monitoring Environment Marine Service (CMEMS), 2019). https://doi.org/10.25423/CMCC/MEDSEA_ANALYSIS_FORECAST_PHY_006_013_EAS5. More

  • in

    Passing rail traffic reduces bat activity

    1.Dulac, J. Global land transport infrastructure requirements. (2013).2.Baker, C. J., Chapman, L., Quinn, A. & Dobney, K. Climate change and the railway industry: A review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 224, 519–528 (2010).Article 

    Google Scholar 
    3.IEA. The Future of Rail – Opportunities for energy and the environment. (2019). doi:https://doi.org/10.1787/9789264312821-en4.Popp, J. N. & Boyle, S. P. Railway ecology: Underrepresented in science?. Basic Appl. Ecol. 19, 84–93 (2017).Article 

    Google Scholar 
    5.IRF. IRF World Road Statistics 2019. (2019).6.UIC. Railisa UIC Statistics. (2019).7.Van Der Ree, R., Smith, D. J. & Grilo, C. Handbook of Road Ecology (Wiley, 2015). https://doi.org/10.1002/9781118568170.Book 

    Google Scholar 
    8.Railway Ecology. (Springer Open, 2017). https://doi.org/10.1007/978-3-319-57496-7_199.Barrientos, R. & Borda-de-Água, L. Railways as Barriers for Wildlife: Current Knowledge. in Railway Ecology (eds. Borda-de-Água, L., Barrientos, R., Beja, P. & Pereira, H. M.) 43–64 (Springer Open, 2017).10.Jackson, N. D. & Fahrig, L. Relative effects of road mortality and decreased connectivity on population genetic diversity. Biol. Conserv. 144, 3143–3148 (2011).Article 

    Google Scholar 
    11.van der Grift, E. Mammals and railroads: impacts and management implications. Lutra 42, 77–98 (1999).
    Google Scholar 
    12.Heske, E. J. Blood on the Tracks: Track Mortality and Scavenging Rate in Urban Nature Preserves. Urban Nat. 2, 1–13 (2015).
    Google Scholar 
    13.Huber, D., Kusak, J. & Frkovic, A. Traffic kills of brown bears in Gorski kotar, Croatia. Ursus 10, 167–171 (1998).
    Google Scholar 
    14.Waller, J. S. & Servheen, C. Effects of transportation infrastructure on grizzly bears in Northwestern Montana. J. Wildl. Manag. 69, 985–1000 (2005).Article 

    Google Scholar 
    15.Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).Article 

    Google Scholar 
    16.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: An empirical review and synthesis. Ecol. Soc. 14, 21 (2009).Article 

    Google Scholar 
    17.Kušta, T., Keken, Z., Ježek, M. & Kůta, Z. Effectiveness and costs of odor repellents in wildlife-vehicle collisions: A case study in Central Bohemia, Czech Republic. Transp. Res. Part D Transp. Environ. 38, 1–5 (2015).Article 

    Google Scholar 
    18.UIC. Railway noise in Europe – State of the art report. (2016).19.UIC. Railway induced vibration – State of the art report. (2017).20.Frost, M. & Ison, S. Comparison of noise impacts from urban transport. Proc. Inst. Civ. Eng. Transp. 160, 165–172 (2007).
    Google Scholar 
    21.Thompson, D. Railway Noise and Vibration-Mechanisms (Elsevier Ltd, 2009).
    Google Scholar 
    22.Vandevelde, J. C., Bouhours, A., Julien, J. F., Couvet, D. & Kerbiriou, C. Activity of European common bats along railway verges. Ecol. Eng. 64, 49–56 (2014).Article 

    Google Scholar 
    23.Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: similarities and differences. Eur. J. Wildl. Res. 65, (2019).24.Dorsey, B., Olsson, M. & Rew, L. J. Ecological effects of railways on wildlife. Handb. Road Ecol. https://doi.org/10.1002/9781118568170.ch26 (2015).Article 

    Google Scholar 
    25.Mickleburgh, S. P., Hutson, A. M. & Racey, P. A. A review of the global conservation status of bats. Oryx 36, 18–34 (2002).Article 

    Google Scholar 
    26.Ávila-Flores, R., Bolaina-Badal, A. L., Gallegos-Ruiz, A. & Sánchez-Gómez, W. S. Use of linear features by the common vampire bat (Desmodus rotundus) in a tropical cattle-ranching landscape. Therya 10, 229–234 (2019).Article 

    Google Scholar 
    27.Limpens, H. J. G. A. & Kapteyn, K. Bats, their behavior and linear landscape elements. Myotis 29, 39–48 (1991).
    Google Scholar 
    28.Verboom, B. & Huitema, H. The importance of linear landscape elements for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landsc. Ecol. 12, 117–125 (1997).Article 

    Google Scholar 
    29.Verboom, B. & Spoelstra, K. Effects of food abundance and wind on the use of tree lines by an insectivorous bat Pipistrellus pipistrellus. Can. J. Zool. 77, 1393–1401 (1999).Article 

    Google Scholar 
    30.Zurcher, A. A., Sparks, D. W. & Bennett, V. J. Why the bat did not cross the road?. Acta Chiropterol. 12, 337–340 (2010).Article 

    Google Scholar 
    31.Bennett, V. J. & Zurcher, A. A. When corridors collide: Road-related disturbance in commuting bats. J. Wildl. Manage. 77, 93–101 (2013).Article 

    Google Scholar 
    32.Anderson, D. & Wheatley, N. Mitigation of Wheel Squeal and Flanging Noise on the Australian Rail Network. in Noise and Vibration Mitigation for Rail Transportation Systems (eds. Schulte-Werning, B. et al.) 399–405 (Springer Berlin Heidelberg, 2007). doi:https://doi.org/10.1007/978-3-540-74893-9_5633.Rudd, M. J. Wheel/rail noise—Part II: Wheel squeal. J. Sound Vib. 46, 381–394 (1976).ADS 
    Article 

    Google Scholar 
    34.Schaub, A., Ostwald, J. & Siemers, B. M. Foraging bats avoid noise. J. Exp. Biol. 211, 3174–3180 (2008).PubMed 
    Article 

    Google Scholar 
    35.Luo, J., Siemers, B. M. & Koselj, K. How anthropogenic noise affects foraging. Glob. Chang. Biol. 21, 3278–3289 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Siemers, B. M. & Schaub, A. Hunting at the highway: Traffic noise reduces foraging efficiency in acoustic predators. Proc. R. Soc. B Biol. Sci. 278, 1646–1652 (2011).Article 

    Google Scholar 
    37.Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).Article 

    Google Scholar 
    38.Kaňuch, P., Fornůsková, A., Bartonička, T., Bryja, J. & Řehák, Z. Do two cryptic pipistrelle bat species differ in their autumn and winter roosting strategies within the range of sympatry?. Folia Zool. 59, 102–107 (2010).Article 

    Google Scholar 
    39.Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Natural History, 2016).
    Google Scholar 
    40.Schnitzler, H. U. & Kalko, E. K. V. Echolocation by insect-eating bats. Bioscience 51, 557–569 (2001).Article 

    Google Scholar 
    41.Russ, J. M. & Montgomery, W. I. Habitat associations of bats in Northern Ireland: Implications for conservation. Biol. Conserv. 108, 49–58 (2002).Article 

    Google Scholar 
    42.Rachwald, A., Bradford, T., Borowski, Z. & Racey, P. A. Habitat preferences of soprano Pipistrelle Pipistrellus pygmaeus (Leach, 1825) and common Pipistrelle Pipistrellus pipistrellus (Schreber, 1774) in two different Woodlands in North East Scotland. Zool. Stud. 55, 1–8 (2016).
    Google Scholar 
    43.Nicholls, B. & Racey, A. Habitat selection as a mechanism of resource partitioning in two cryptic bat species Pipistrellus pipistrellus and Pipistrellus pygmaeus. Ecography (Cop.) 29, 697–708 (2006).Article 

    Google Scholar 
    44.Ciechanowski, M. Habitat preferences of bats in anthropogenically altered, mosaic landscapes of northern Poland. Eur. J. Wildl. Res. 61, 415–428 (2015).Article 

    Google Scholar 
    45.Mathews, F. et al. Barriers and benefits: Implications of artificial night-lighting for the distribution of common bats in britain and ireland. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).46.Spoelstra, K. et al. Experimental illumination of natural habitat—an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos. Trans. R. Soc. B Biol. Sci. 370, (2015).47.Brown, A. M. An investigation of the cochlear microphonic response of two species of echolocating bats: Rousettus aegyptiacus (geoffroy) and Pipistrellus pipistrellus (Schreber). J. Comp. Physiol. 83, 407–413 (1973).Article 

    Google Scholar 
    48.Wong, J. G. & Waters, D. A. The synchronisation of signal emission with wingbeat during the approach phase in soprano pipistrelles (Pipistrellus pygmaeus). J. Exp. Biol. 204, 575–583 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Adams, A. M., Jantzen, M. K., Hamilton, R. M. & Fenton, M. B. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol. Evol. 3, 992–998 (2012).Article 

    Google Scholar 
    50.Lintott, P. R. et al. Ecobat: An online resource to facilitate transparent, evidence-based interpretation of bat activity data. Ecol. Evol. 8, 935–941 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Shaw-Taylor, L. & You, X. The development of the railway network in Britain 1825–1911. in The Online Historical Atlas of Transport, Urbanization and Economic Development in England and Wales c.1680–1911 (eds. Shaw-Taylor, L., Bogart, D. & Satchell, M.) (2018).52.Hatano, L., Smith, R. A. & Hillmansen, S. International railway comparisons. Proc. Inst. Mech Eng. Part F J. Rail Rapid Transit 221, 117–123 (2007).Article 

    Google Scholar 
    53.Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article 

    Google Scholar 
    54.Myczko, Ł et al. Effects of local roads and car traffic on the occurrence pattern and foraging behaviour of bats. Transp. Res. Part D Transp. Environ. 56, 222–228 (2017).Article 

    Google Scholar 
    55.Ueda, K., Sekoguchi, T. & Yanagisawa, H. How predictability affects habituation to novelty ?. Biorxiv https://doi.org/10.1101/2020.07.24.219253 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.JNCC & Bat Conservation Trust. National Bat Monitoring Programme annual report. (2019).57.Voigt, C. C. & Kingston, T. Bats in the Anthropocene. in Bats in the Anthropocene: Conservation of Bats in a Changing World 245–262 (2015). doi:https://doi.org/10.1007/978-3-319-25220-9_958.Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there?. J. Mammal. 99, 1–14 (2018).Article 

    Google Scholar 
    59.Frick, W. F., Kingston, T. & Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. https://doi.org/10.1111/nyas.14045 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Fenton, M. B. A technique for monitoring bat activity with results obtained from different environments in southern Ontario. Can. J. Zool. 48, 847–851 (1970).Article 

    Google Scholar 
    61.Švec, J. G. & Granqvist, S. Tutorial and guidelines on measurement of sound pressure level in voice and speech. J. Speech Lang. Hear. Res. 61, 441–461 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Boersma, P. & Weenink, D. Praat: doing phonetics by computer. (2019).63.Sueur, J., Aubin, T. & Simonis, C. Seewave, a free and modular tool for sound analysis and synthesis. Bioacoustics-the Int. J. Anim. Sound Its Rec. 18, 213–226 (2008).
    Google Scholar 
    64.Harrell, F. E. Hmisc: Harrell Miscellaneous. (2014).65.Met Office. MIDAS: UK Hourly Weather Observation Data. NCAS Br. Atmos. Data Cent. (2019).66.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2019).67.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    68.Swift, S. M. Activity patterns of Pipistrelle bats (Pipistrellus pipistrellus) in north-east Scotland. J. Zool. 190, 285–295 (2009).Article 

    Google Scholar 
    69.Petrželková, K. J., Downs, N. C., Zukal, J. & Racey, P. A. A comparison between emergence and return activity in pipistrelle bats Pipistrellus pipistrellus and P. pygmaeus. Acta Chiropterol. 8, 381–390 (2006).Article 

    Google Scholar 
    70.Ciechanowski, M., Zając, T., Biłas, A. & Dunajski, R. Spatiotemporal variation in activity of bat species differing in hunting tactics: Effects of weather, moonlight, food abundance, and structural clutter. Can. J. Zool. 85, 1249–1263 (2007).Article 

    Google Scholar 
    71.Bejder, L., Samuels, A., Whitehead, H., Finn, H. & Allen, S. Impact assessment research: Use and misuse of habituation, sensitisation and tolerance in describing wildlife responses to anthropogenic stimuli. Mar. Ecol. Prog. Ser. 395, 177–185 (2009).ADS 
    Article 

    Google Scholar 
    72.Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 
    Article 

    Google Scholar 
    73.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 1–32 (2018).
    Google Scholar 
    74.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    75.Barton, K. MuMIn: Multi-Model Inference (R Package v3). (2017).76.Pasch, B., Bolker, B. M. & Phelps, S. M. Interspecific dominance via vocal interactions mediates altitudinal zonation in neotropical singing mice. Am. Nat. 182, 2 (2013).Article 

    Google Scholar 
    77.Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious mixed models. (2015).78.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models. (2020).79.Lüdecke, D. sjPlot: Data visualization for statistics in social science. (2020). More

  • in

    Implications for conservation and game management of the roadkill levels of the endemic Iberian hare (Lepus granatensis)

    1.Carvalho, F. & Mira, A. Comparing annual vertebrate road kill over two time periods, 9 years apart: A case study in Mediterranean farmland. Eur. J. Wildl. Res. 57, 157–174 (2011).Article 

    Google Scholar 
    2.Freitas, S. R. et al. How landscape features influence roadkill of three species of mammals in the Brazilian savanna?. Oecol. Aust. 18, 35–45 (2015).Article 

    Google Scholar 
    3.Forman, R. T. & Deblinger, R. D. The ecological road-effect zone of a Massachusetts (USA) suburban highway. Conserv. Biol. 14, 36–46 (2000).Article 

    Google Scholar 
    4.Coffin, A. W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406 (2007).Article 

    Google Scholar 
    5.Goosem, M. Fragmentation impacts caused by roads through rainforests. Curr. Sci. 93, 1587–1595 (2007).
    Google Scholar 
    6.Van der Ree, R., Smith, D. J. & Grilo, C. Handbook of Road Ecology (Wiley, 2015).
    Google Scholar 
    7.Grilo, C., Reto, D., Filipe, J., Ascencão, F. & Revilla, E. Understanding the mechanism behind road effects: Linking occurrence with road mortality in owls. Anim. Conserv. 17, 555–564 (2014).Article 

    Google Scholar 
    8.Roedenbeck, I. A. & Voser, P. Effects of roads on spatial distribution, abundance and mortality of brown hare (Lepus europaeus) in Switzerland. Eur. J. Wildl. Res. 54, 425–437 (2008).Article 

    Google Scholar 
    9.Putman, R. J. Deer and road traffic accidents: Options for management. J. Environ. Manag. 51, 43–57 (1997).Article 

    Google Scholar 
    10.Madsen, A. B., Strandgaard, H. & Prang, A. Factors causing traffic killings of roe deer Capreolus capreolus in Denmark. Wildl. Biol. 8, 55–61 (2002).Article 

    Google Scholar 
    11.Ng, J. W., Nielsen, C., Cassady, St. & Clair, C. Landscape and traffic factors influencing deer–vehicle collisions in an urban environment. Human-Wildl. Conflic. 2, 34–47 (2008).
    Google Scholar 
    12.Philcox, C. K., Grogan, A. L. & Macdonald, D. W. Patterns of otter Lutra lutra road mortality in Britain. J. App. Ecol. 36, 748–762 (1999).Article 

    Google Scholar 
    13.Clevenger, A. P., Chruszcz, B. & Gunson, K. E. Spatial patterns and factors influencing small vertebrate fauna roadkill aggregations. Biol. Conserv. 109, 15–26 (2003).Article 

    Google Scholar 
    14.Ascensão, F., Clevenger, A. P., Grilo, C., Filipe, J. & Santos-Reis, M. Highway verges as habitat providers for small mammals in agrosilvopastoral environments. Biodiv. Conserv. 21, 3681–3697 (2012).Article 

    Google Scholar 
    15.Serronha, A., Mateus, A. R. A., Eaton, F., Santos-Reis, M. & Grilo, C. Towards effective culvert design: Monitoring seasonal use and behaviour by Meditteranean mesocarnivores. Environ. Monit. Assess 185, 6235–6246 (2013).PubMed 
    Article 

    Google Scholar 
    16.Heigl, F. et al. Comparing roadkill datasets from hunters and citizen scientists in a landscape context. Remote Sens. 8, 832 (2016).ADS 
    Article 

    Google Scholar 
    17.Seiler, A., Helldin, J. O. & Seiler, C. Road mortality in Swedish mammals: Results of drivers’ questionnaire. Wildl. Biol. 10, 225–233 (2004).Article 

    Google Scholar 
    18.Caro, T. M., Shargel, J. A. & Stoner, C. J. Frequency of medium-sized mammal road kills in an agricultural landscape in California. Am. Midl. Nat. 144, 362–369 (2000).Article 

    Google Scholar 
    19.Fudge, D., Freedman, B., Crowell, M., Nette, T. & Power, V. Roadkill of mammals in Nova Scotia. Can. Field Nat. 121, 265–273 (2007).Article 

    Google Scholar 
    20.Lee, G., Tak, J. H. & Pak, S. I. Spatial and temporal patterns on wildlife roadkills on highway in Korea. J. Vet. Clin. 31, 282–287 (2014).Article 

    Google Scholar 
    21.Palacios, F. On the taxonomic status of the genus Lepus in Spain. Acta Zool. Fenn. 174, 27–30 (1983).
    Google Scholar 
    22.Tapia, L., Domínguez, J. & Rodríguez, J. Modelling habitat use by Iberian hare Lepus granatensis and European wild rabbit Oryctolagus cuniculus in a mountainous area in northwestern Spain. Acta Theriol. 55, 73–79 (2010).Article 

    Google Scholar 
    23.Farfán, M. A., Duarte, J., Vargas, J. M. & Fa, J. E. Effects of human induced land-use changes on the distribution of the Iberian hare. J. Zool. 286, 258–265 (2012).Article 

    Google Scholar 
    24.Alzaga, V. et al. Conocimientos científicos importantes para la conservación y gestión de las tres especies de liebre de la península Ibérica: deficiencias y retos para el futuro. Ecosistemas 22, 13–19 (2013).Article 

    Google Scholar 
    25.Alves, P. C., Gonçalves, H., Santos, M. & Rocha, A. Reproductive biology of the Iberian hare, Lepus granatensis, Portugal. Mamm. Biol. 67, 358–371 (2002).Article 

    Google Scholar 
    26.Farfán, M. A., Vargas, J. M., Real, R., Palomo, L. J. & Duarte, J. Population parameters and reproductive biology of the Iberian hare Lepus granatensis in southern Iberia. Acta Theriol. 49, 319–335 (2004).Article 

    Google Scholar 
    27.Fernández, A., Soriguer, R., Castién, E. & Carro, F. Reproductive parameters of the Iberian hare Lepus granatensis at the edge of its range. Wildl. Biol. 14, 434–443 (2008).Article 

    Google Scholar 
    28.Carro, F., Beltrán, J. F., Márquez, F. J., Pérez, J. M. & Soriguer, R. C. Supervivencia de la liebre ibérica en el parque nacional de Doñana durante una época de inundaciones. Galemys 14, 31–38 (2002).
    Google Scholar 
    29.Sánchez-García, C. et al. Survival, home range patterns, probable causes of mortality, and den-site selection of the Iberian hare (Lepus, Leporidae, mammalia) on arable farmland in north-west Spain. Italian J. Zool. 79, 590–597 (2012).Article 

    Google Scholar 
    30.Ministerio de Agricultura, Pesca y Alimentación. Encuesta sobre superficies y Rendimientos (ESYRCE) de cultivos. Resultados nacionales y autonómicos (Gobierno de España, 2019).
    Google Scholar 
    31.Farfán, M. A. Evaluación de la gestión de la caza en Andalucía. Un ensayo de comarcalización cinegética (PhD thesis, Universidad de Málaga, 2010).32.Junta de Andalucía. Informe de Medio Ambiente en Andalucía 2018 (Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible, 2018).
    Google Scholar 
    33.Péron, G. Compensation and additivity of anthropogenic mortality: Life-history effects and review of methods. J. Anim. Ecol. 82, 408–417 (2012).PubMed 
    Article 

    Google Scholar 
    34.Junta de Andalucía. Plan de aforos de la red principal de carreteras de Andalucía 2005. Mapa de Tráfico. Provincia de Málaga (Consejería de Obras Públicas y Transporte-Dirección General de Carreteras, 2005).
    Google Scholar 
    35.Capel-Molina, J. J. Los climas de España (Oikos-Tau Barcelona, 1981).
    Google Scholar 
    36.Nieto, J. M., Pérez, A. & Cabezudo, B. Biogeografía y series de vegetación de la provincia de Málaga (España). Acta Bot. Malac. 16, 417–436 (1991).Article 

    Google Scholar 
    37.García, A. & Cano, E. Malas hierbas del olivar giennense (Diputación Provincial de Jaén, 1995).
    Google Scholar 
    38.Purroy, F. J. Liebre ibérica. Lepus granatensis. in Enciclopedia Virtual de los Vertebrados Españoles. http://www.vertebradosibericos.org/ (Museo Nacional de Ciencias Naturales, 2017). Accessed on August 23, 2021.
    39.Duarte, J. & Vargas, J. M. Situation actuelle de la Perdrix rouge (Alectoris rufa) et du Lièvre ibérique (Lepus granatensis) dans les olivaires du sud de l`Espagne et perspectives de gestion de ce type d´habitat. Bull. Off. Nat. Chase 236, 14–23 (1998).
    Google Scholar 
    40.Muñoz-Cobo, J. & Moreno Montesino, J. Estudio cualitativo y cuantitativo de las especies de importancia cinegética en cuatro tipos de olivares de Jaén. Bol. sanid. veg. Plagas 30, 133–150 (2004).
    Google Scholar 
    41.Junta de Andalucía. Plan de aforos de la red principal de carreteras de Andalucía 2017. Mapa de Tráfico. Provincia de Málaga (Consejería de Obras Públicas y Transporte-Dirección General de Carreteras, 2017).
    Google Scholar 
    42.Deljouei, A. et al. The impact of road disturbance on vegetation and soil properties in a beech stand, Hyrcanian forest. Eur. J. For. Res. 137, 759–770 (2018).Article 

    Google Scholar 
    43.Seiler, A. Effects of infrastructure on nature. In COST 341—Habitat Fragmentation Due to Transportation Infrastructure (ed. Office for Official Publications of the European Communities) (Office for Official Publications of the European Communities, 2003).
    Google Scholar 
    44.Forman, R. T. T. Estimate of the area affected ecologically by road system in the United States. Conserv. Biol. 14, 31–35 (2000).Article 

    Google Scholar 
    45.Eigenbrod, F., Hecnar, S. J. & Fahrig, L. Quantifying the road-effect zone: The threshold effects of a motorway on anuran populations in Ontario, Canada. Ecol. Soc. 14, 24 (2009).Article 

    Google Scholar 
    46.Shanley, C. S. & Sanjay, P. Evaluating the road-effect zone on wildlife distribution in a rural landscape. Ecosphere 2, 1–16 (2011).Article 

    Google Scholar 
    47.Farfán, M. A., Vargas, J. M., Guerrero, J. C., Barbosa, A. M. & Real, R. Distribution modeling of wild rabbit hunting yields in its original area (S Iberian Peninsula). Ital. J. Zool. 75, 161–172 (2008).Article 

    Google Scholar 
    48.Delibes-Mateos, M., Farfán, M. A., Olivero, J., Márquez, A. L. & Vargas, J. M. Long-term changes in game species over a long period of transformation in the Iberian Mediterranean landscapes. Environ. Manage. 43, 1256–1268 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    49.Delibes-Mateos, M., Farfán, M. A., Olivero, J. & Vargas, J. M. Impact of land-uses changes on red-legged partridge conservation in the Iberian Peninsula. Environ. Conserv. 39, 337–346 (2012).Article 

    Google Scholar 
    50.D’Amico, M., Périquet, S., Román, J. & Revilla, E. Road avoidance responses determine the impact of heterogeneous road networks at a regional scale. J. Appl. Ecol. 53, 181–190 (2016).Article 

    Google Scholar 
    51.Cserkesz, T., Ottleez, B., Cserkesz, A. & Farkas, J. Interchange as the main factor determining wildlife-vehicle collision hotspots on the fenced highways: Spatial analysis and applications. Eur. J. Wildl. Res. 59, 587–597 (2013).Article 

    Google Scholar 
    52.Ascensão, F. et al. Inter-individual variability of Stone Marten behavioral responses to a highway. PLoS ONE 9, e103544 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.D’Amico, M., Román, J., de los Reyes, L. & Revilla, E. Vertebrate roadkill patterns in Mediterraean habitats: Who, when and where. Biol. Conserv. 191, 234–242 (2015).Article 

    Google Scholar 
    54.Santos, S. M., Lourenço, R., Mira, A. & Beja, P. Relative effects of road risk, habitat suitability, and connectivity on wildlife roadkills: The case of the Tawny Owls (Strix aluco). PLoS ONE 8, e79967 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Junta de Andalucía. Ortofotografía digital en color de Andalucía (Instituto de cartografía de Andalucía-Consejería de vivienda y ordenación del territorio, 2007).
    Google Scholar 
    56.Malo, J. E., Suárez, F. & Díez, A. Can we mitigate animal–vehicle accidents using predictive models?. J. App. Ecol. 41, 701–710 (2004).Article 

    Google Scholar 
    57.Villalba, P., Reto, D., Santos-Reis, M., Revilla, E. & Grilo, C. Do dry ledges reduce the barrier effect of roads?. Ecol. Eng. 57, 143–148 (2013).Article 

    Google Scholar 
    58.Duarte, J., Farfán, M. A., Fa, J. E. & Vargas, J. M. Soil conservation techniques in vineyards increase passerine diversity and crops use by insectivorous birds. Bird Study 61, 193–203 (2014).Article 

    Google Scholar 
    59.Magurran, A. E. Measuring Biological Diversity (Blackwell, 2004).
    Google Scholar 
    60.Baxter, W. L. & Wolfe, C. W. The interspersion index as a technique for evaluation a bobwhite quail habitat. in National Quail Symposium Proceedings. 158−165 (1972).61.Litvaitis, J. A., Titus, K. & Anderson, E. M. Measuring vertebrate use of terrestrial habitats and food. In Research and Management Techniques for Wildlife and Habitats (ed. Bookhoud, T. A.) 254–274 (The Wildlife Society, 1996).
    Google Scholar 
    62.Zar, J. H. Biostatistical Analysis 4th edn. (Prentice Hall, 1999).
    Google Scholar 
    63.Fowler, J. & Cohen, L. Practical Statistics for Field Biology (Wiley, 1992).
    Google Scholar 
    64.O’Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).Article 

    Google Scholar 
    65.Crawley, M. J. GLIM for Ecologists (Blackwell, 1993).
    Google Scholar 
    66.Akaike, H. Information theory and an extension of the maximum likelihood principle. in Proceedings of the Second International Symposium on Information Theory (Akade-Miai Kiado, 1973).67.Caletrio, J., Fernández, J. M., López, J. & Roviralta, F. Spanish national inventory on road mortality of vertebrates. Glob. Biodiv. 5, 15–18 (1996).
    Google Scholar 
    68.Pfeifer-Coelho, I., Coelho, A. V. P. & Kindel, A. Roadkill of vertebrate species in two highways through the Atlantic forest biosphere reserve, southern Brazil. Eur. J. Wildl. Res. 54, 689–699 (2008).Article 

    Google Scholar 
    69.Ruiz-Capillas, P., Mata, C. & Malo, J. How many rodents die on the road? Biological and methodological implications from a small mammals’ roadkill assessment on a Spanish motorway. Ecol. Res. 30, 417–427 (2015).Article 

    Google Scholar 
    70.Polak, T., Rhodes, J. R., Jones, D. & Possingham, H. P. Optimal planning for mitigating impacts of roads on wildlife. J. Appl. Ecol. 51, 726–734 (2014).Article 

    Google Scholar 
    71.Canal, D., Camacho, C., Martín, B., de Lucas, M. & Ferrer, M. Magnitude, composition and spatiotemporal patterns of vertebrate roadkill at regional scales: A study in southern Spain. Anim. Biodivers. Conserv. 41, 281–300 (2018).Article 

    Google Scholar 
    72.Moreira, J. M. et al. Atlas de Andalucía. Tomo II (Consejerías de Medio Ambiente y Obras Públicas y Transportes de la Junta de Andalucía, 2005).
    Google Scholar 
    73.Junta de Andalucía. Informe de Medio Ambiente en Andalucía (2003–2019). Portal Ambiental de Andalucía. https://www.juntadeandalucia.es/medioambiente/portal/informe-de-medio-ambiente-en-andalucia-2019/ (2019). Accessed on August 23, 2021.74.Santos, S. M., Carvalho, F. & Mira, A. How long do the dead survive on the roads? Carcass persistence probability and implications for roadkill monitoring surveys. PLoS ONE 6, e:25383 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    75.Santos, S. M. et al. Sampling effects on the identification of roadkill hotspots: Implications for survey design. J. Environ. Manag. 162, 87–95 (2015).Article 

    Google Scholar 
    76.Driessen, M. M., Mallick, S. A. & Hocking, G. J. Habitat of the eastern barred bandicoot, Perameles gunnii, in Tasmania: An analysis of roadkills. Wildl. Res. 23, 721–727 (1996).Article 

    Google Scholar 
    77.Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D. & Wegner, J. F. Effect of road traffic on amphibian density. Biol. Conserv. 73, 177–182 (1995).Article 

    Google Scholar 
    78.Bright, P. W., Balmforth, Z. & MacPherson, J. L. The effect of changes in traffic flow on mammal road kill counts. App. Ecol. Environ. Res. 1381, 171–179 (2015).
    Google Scholar 
    79.George, L. J., MacPherson, J. L., Balmforth, Z. & Bright, P. W. Using the dead to monitor the living: Can road kill counts detect trends in animal abundance?. App. Ecol. Environ. Res. 9, 27–41 (2011).Article 

    Google Scholar 
    80.Farfán, M. A., Guerrero, J. C., Real, R., Barbosa, M. A. & Vargas, J. M. Caracterización del aprovechamiento cinegético de los mamíferos en Andalucía. Galemys 16, 41–59 (2004).
    Google Scholar 
    81.González-Gallina, A., Benítez-Badillo, G., Hidalgo-Mihart, M. G., Equihua, M. & Rojas-Soto, O. R. Roadkill as a complementary information source for biological surveys using rodents as a model. J. Mamm. 97, 145–154 (2016).Article 

    Google Scholar 
    82.Hobday, A. J. & Minstrell, M. L. Distribution and abundance of roadkill on Tasmanian highways: Human management options. Wildl. Res. 35, 712–726 (2008).Article 

    Google Scholar 
    83.Bencin, H. L., Prange, S., Rose, C. & Popscu, V. D. Roadkill and space use data predict vehicle-strike hotspots and mortality rates in a recovering bobcat (Lynx rufus) population. Sci. Rep. 9, 15391 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Romin, L. A. & Bissonette, J. A. Deer-vehicle collisions: Status of state monitoring activities and mitigation efforts. Wildl. Soc. Bull. 24, 276–283 (1996).
    Google Scholar 
    85.Colino-Rabal, V. J., Bosch, J., Muñoz, M. J. & Peris, S. J. Influence of new irrigated croplands on wild boar (Sus scrofa) road kills in NW Spain. Anim. Biodivers. Conserv. 35, 247–252 (2012).Article 

    Google Scholar 
    86.Keuling, O. et al. Mortality rates of wild boar Sus scrofa L. in central Europe. Eur. J. Wildl. Res. 59, 805–814 (2013).Article 

    Google Scholar 
    87.Schwartz, A. L. W., Shilling, F. M. & Perkins, S. E. The value of monitoring wildlife roadkill. Eur. J. Wildl. Res. 66, 18 (2020).Article 

    Google Scholar 
    88.Schaub, M. & Lebreton, J. D. Testing the additive versus the compensatory hypothesis of mortality from ring recovery data using a random effects model. Anim. Biodivers. Conserv. 27, 73–85 (2004).
    Google Scholar 
    89.Nichols, J. D., Lancia, R. A. & Lebreton, J. D. Hunting statistics: What data for what use?. Game Wildl. Sci. 18, 185–205 (2001).
    Google Scholar 
    90.Bujoczek, M., Ciach, M. & Yosef, R. Roadkills affect avian population quality. Biodivers. Conserv. 144, 1036–1039 (2011).
    Google Scholar 
    91.Loss, S. R., Will, T. & Marra, P. P. Estimation of bird–vehicle collision mortality on US roads. J. Wildl. Manag. 78, 763–771 (2014).Article 

    Google Scholar 
    92.Grilo, C. et al. Individual spatial responses towards roads: implications for mortality risk. PLoS ONE 7, e43811 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Sandercock, B. K., Nilsen, E. B., Broseth, H. & Pedersen, H. C. Is hunting mortality additive or compensatory to natural mortality? Effects of experimental harvest on the survival and cause-specific mortality of willow ptarmigan. J. Anim. Ecol. 80, 244–258 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Garrido, J. L., Gortázar, C. & Ferreres, J. Las especies cinegéticas españolas en el siglo XXI (Independently Published, 2019).
    Google Scholar 
    95.Lopes, A. M. et al. Detection of RHDV strains in the Iberian hare (Lepus granatensis): Earliest evidence of rabbit lagovirus cross-species infection. Vet. Res. 45, 94 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    96.Águeda-Pinto, A. et al. Genetic characterization of a recombinant myxoma virus in the Iberian hare (Lepus granatensis). Virus 11, 530 (2019).Article 
    CAS 

    Google Scholar 
    97.Nielsen, C. K., Anderson, R. G. & Grund, M. D. Landscape influences on deer–vehicle accident areas in an urban environment. J. Wildl. Manag. 67, 46–51 (2003).Article 

    Google Scholar 
    98.Finder, R. A., Roseberry, J. L. & Woolf, A. Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landsc. Urban Plan. 44, 77–85 (1999).Article 

    Google Scholar 
    99.Pauperio, J. & Celio, P. Diet of the Iberian hare (Lepus granatensis) in a mountain ecosystem. Eur. J. Wildl. Res. 54, 571–579 (2008).Article 

    Google Scholar 
    100.Garriga, N., Franch, M., Santos, X., Montori, A. & Llorente, G. A. Seasonal variation in vertebrate traffic casualties and its implications for mitigation measures. Landsc. Urban Plan. 157, 36–44 (2017).Article 

    Google Scholar 
    101.Marboutin, E. & Aebischer, N. J. Does harvesting arable crops influence the behaviour of the European hare (Lepus europaeus)?. Wildl. Biol. 2, 83–91 (1996).Article 

    Google Scholar 
    102.Duarte, J., Farfán, M. A., Fa, J. E. & Vargas, J. M. Habitat-related effects on temporal variations in red-legged partridge Alectoris rufa abundance estimations in olive groves. Ardeola 61, 31–43 (2014).Article 

    Google Scholar 
    103.Hubbard, M. W., Danielson, B. J. & Schmitz, R. A. Factors influencing the location of deer–vehicle accidents in Iowa. J. Wildl. Manag. 64, 707–713 (2000).Article 

    Google Scholar 
    104.Clevenger, A. P. & Waltho, N. Factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56 (2000).Article 

    Google Scholar 
    105.Rico-Guzmán, E., Cantó, J. L., Terrones, B. & Bonet, A. Impacto del tráfico rodado en el PN del Carrascal de la Font Roja ¿Cómo influyen las características de la carretera en los atropellos de vertebrados?. Galemys 23, 113–123 (2011).
    Google Scholar 
    106.Sadleir, R. M. F. S. & Linklater, W. L. Annual and seasonal patterns in wildlife roadkill and their relationships with traffic density. N. Zeal. J. Zool. 43, 275–291 (2016).Article 

    Google Scholar 
    107.Yanes, M., Velasco, J. M. & Suárez, F. Permeability of roads and railways to vertebrates: The importance of culverts. Biol. Conserv. 71, 217–222 (1995).Article 

    Google Scholar 
    108.Mata, C., Hervás, I., Herranz, J., Suárez, F. & Malo, J. E. Complementary use by vertebrates of crossing structures along fenced Spanish motorways. Biol. Conserv. 124, 397–405 (2005).Article 

    Google Scholar 
    109.Rivera, D. Dejan de registrarse atropellos de fauna tras varias medidas en una carretera extremeña. Quercus 407, 38–39 (2020).
    Google Scholar 
    110.Bissonette, J. A. & Kassar, C. A. Locations of deer–vehicle collisions are unrelated to traffic volume or posted speed limit. Human Wildl. Conflict 2, 122–130 (2008).
    Google Scholar 
    111.Jancke, S. & Giere, P. Pattern of otter Lutra lutra road mortality in a landscape abundant in lakes. Eur. J. Wildl. Res. 57, 373–381 (2011).Article 

    Google Scholar 
    112.Farfán, M. A., Fa, J. E., Martín-Taboada, A., García-Carrasco, J. M. & Duarte, J. Lack of maintenance of motorway fences works against their intended purpose with potential negative impacts on protected species. Sci. Rep. 10, 791 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    113.Olsson, M. P. O. & Widen, P. Effects of highway fencing and wildlife crossing on moose Alces alces movements and space use in southwestern Sweden. Wildl. Biol. 14, 111–117 (2008).Article 

    Google Scholar 
    114.Zimmermann, F., Kindel, A., Hartz, S. M., Michell, S. & Fahrig, L. When roadkill hotspots do not indicate the best sites for roadkill mitigation. J. App. Ecol. 54, 1544–1551 (2017).Article 

    Google Scholar  More

  • in

    Rhinoceros genomes uncover family secrets

    NEWS AND VIEWS
    19 October 2021

    Rhinoceros genomes uncover family secrets

    Genomes from living and extinct rhinos reveal that different species evolved as a result of geographic isolation. A comparison of DNA from different species also shows that rhinos have long displayed low genetic variability.

    Desire Lee Dalton

    0
    &

    Stefan Prost

    1

    Desire Lee Dalton

    Desire Lee Dalton is at the South African National Biodiversity Institute, Pretoria 0001, South Africa.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Stefan Prost

    Stefan Prost is at the South African National Biodiversity Institute, Pretoria 0001, South Africa, and in the Department of Behavioural and Cognitive Biology, University of Vienna, the Konrad Lorenz Institute of Ethology at the Vetmeduni Vienna, and the Natural History Museum, Vienna, Austria.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Historically, rhinos were once abundant throughout Europe, Asia and Africa1. Today, five species of rhinoceros survive as small populations in Asia and Africa, and are all threatened with extinction2. Although well studied, there is debate in the literature about evolutionary relationships between modern and extinct rhinos, with three hypotheses being proposed (Fig. 1a–c). Writing in Cell, Liu et al.3 analyse contemporary and ancient rhinoceros DNA to piece together the puzzle of the rhino’s evolutionary history.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Rent or Buy articleGet time limited or full article access on ReadCube.from$8.99Rent or BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-02777-z

    References1.Tissier, J. et al. PLoS One 13, e0193774 (2018).PubMed 
    Article 

    Google Scholar 
    2.Ashley, M. V., Melnick, D. J. & Western, D. Conserv. Biol. 4, 71–77 (1990).Article 

    Google Scholar 
    3.Liu, S. et al. Cell 184, 4874–4885.e16 (2021).PubMed 
    Article 

    Google Scholar 
    4.Van Couvering, J. A. & Delson, E. J. Vert. Paleontol. 40, e1803340 (2020).Article 

    Google Scholar 
    5.Tougard, C., Delefosse, T., Hänni, C. & Montgelard, C. Mol. Phylogenet. Evol. 19, 34–44 (2001).PubMed 
    Article 

    Google Scholar 
    6.Von Seth, J. et al. Nature Commun. 12, 2393 (2021).PubMed 
    Article 

    Google Scholar 
    7.van der Valk, T., Díez-Del-Molino, D., Marques-Bonet, T., Guschanski, K. & Dalén, L. Curr. Biol. 29, 165–170.e6 (2019).PubMed 
    Article 

    Google Scholar 
    8.Antoine, P.-O. et al. Zool. J. Linn. Soc. 160, 139–194 (2010).Article 

    Google Scholar 
    9.Cappellini, E. et al. Nature 574, 103–107 (2019).PubMed 
    Article 

    Google Scholar 
    10.Steiner, C. C. & Ryder, O. A. Zool. J. Linn. Soc. 163, 1289–1303 (2011).Article 

    Google Scholar 
    11.Antoine, P.-O. et al. Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlab009 (2021).Article 

    Google Scholar 
    12.Welker, F. et al. PeerJ 5, e3033 (2017).PubMed 
    Article 

    Google Scholar 
    13.Margaryan, A. et al. Zool. J. Linn. Soc. 190, 372–383 (2020).Article 

    Google Scholar 
    Download references

    Related Articles

    Read the paper: Ancient and modern genomes unravel the evolutionary history of the rhinoceros family

    Million-year-old DNA provides a glimpse of mammoth evolution

    The changing face of birds from the age of the dinosaurs

    See all News & Views

    Subjects

    Genomics

    Conservation biology

    Evolution

    Palaeontology

    Latest on:

    Genomics

    Convergent somatic mutations in metabolism genes in chronic liver disease
    Article 13 OCT 21

    A census of cell types in the brain’s motor cortex
    News & Views Forum 06 OCT 21

    Francis Collins to step down at NIH: scientists assess his legacy
    News 06 OCT 21

    Evolution

    How ancient reptiles were streamlined for flight
    Research Highlight 18 OCT 21

    Finicky no more: ancient snakes ate their way to success
    Research Highlight 14 OCT 21

    Genomic reconstruction of the SARS-CoV-2 epidemic in England
    Article 14 OCT 21

    Jobs

    Open Rank, Tenure-Track or Tenured Faculty Position in Bioinformatics

    Indiana University – Purdue University Indianapolis (IUPUI)
    Indianapolis, IN, United States

    Senior Bioinformatician Research Scientist

    Brigham and Women’s Hospital (BWH)
    Boston, MA, United States

    Director of the Pediatric Genomics Program, University of Chicago

    The University of Chicago (UChicago)
    Chicago, IL, United States

    Director of Center for Food Animal HealthDepartment:FAES | Animal Sciences

    The Ohio State University (OSU)
    Wooster, OH, United States More

  • in

    Proposal for an initial screening method for identifying microplastics in marine sediments

    1.Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025,22001295 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Cauwenberghe, V. L., Vanreusel, A., Mees, J. & Janssen, C. R. Microplastic pollution in deep-sea sediments. Environ. Pollut. 182, 495–499. https://doi.org/10.1016/j.envpol.2013.08.013,24035457 (2013).Article 
    PubMed 

    Google Scholar 
    3.Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47, 6646–6655. https://doi.org/10.1021/es400663f,23692270 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Rodrigues, J. P., Duarte, A. C., Santos-Echeandía, J. & Rocha-Santos, T. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. TrAC Trends Anal. Chem. 111, 252–260. https://doi.org/10.1016/j.trac.2018.11.038 (2019).CAS 
    Article 

    Google Scholar 
    5.Brennecke, D., Duarte, B., Paiva, F., Caçador, I. & Canning-Clode, J. Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci. 178, 189–195. https://doi.org/10.1016/j.ecss.2015.12.003 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Martins, I., Rodríguez, Y. & Pham, C. K. Trace elements in microplastics stranded on beaches of remote islands in the NE Atlantic. Mar. Pollut. Bull. 156, 111270. https://doi.org/10.1016/j.marpolbul.2020.111270 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317. https://doi.org/10.1098/rsos.140317 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Alomar, C., Estarellas, F. & Deudero, S. Microplastics in the Mediterranean Sea: Deposition in coastal shallow sediments, spatial variation and preferential grain size. Mar. Environ. Res. 115, 1–10. https://doi.org/10.1016/j.marenvres.2016.01.005,26803229 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031,23545014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228. https://doi.org/10.1016/j.marpolbul.2009.04.025,19481226 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030 (2011). CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Pakula, C. & Stamminger, R. Electricity and water consumption for laundry washing by washing machine worldwide. Energy Effic. 3, 365–382. https://doi.org/10.1007/s12053-009-9072-8 (2010).Article 

    Google Scholar 
    13.Belzagui, F., Crespi, M., Álvarez, A., Gutiérrez-Bouzán, C. & Vilaseca, M. Microplastics’ emissions: Microfibers’ detachment from textile garments. Environ. Pollut. 248, 1028–1035. https://doi.org/10.1016/j.envpol.2019.02.059,31091635 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Ziajahromi, S., Drapper, D., Hornbuckle, A., Rintoul, L. & Leusch, F. D. L. Microplastic pollution in a stormwater floating treatment wetland: Detection of tyre particles in sediment. Sci. Total Environ. 713, 136356. https://doi.org/10.1016/j.scitotenv.2019.136356 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Fadare, O. O. & Okoffo, E. D. Covid-19 face masks: A potential source of microplastic fibers in the environment. Sci. Total Environ. 737, 140279. https://doi.org/10.1016/j.scitotenv.2020.140279 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Klein, S., Worch, E. & Knepper, T. P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49, 6070–6076. https://doi.org/10.1021/acs.est.5b00492,25901760 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Technol. Lett. 4, 258–267. https://doi.org/10.1021/acs.estlett.7b00164 (2017).CAS 
    Article 

    Google Scholar 
    18.Claessens, M., Meester, S., Landuyt, V. L., Clerck, K. & Janssen, C. R. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62, 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030,21802098 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Song, Y. K. et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar. Pollut. Bull. 93, 202–209. https://doi.org/10.1016/j.marpolbul.2015.01.015,25682567 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Lenz, R., Enders, K., Stedmon, C. A., Mackenzie, D. M. A. & Nielsen, T. G. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar. Pollut. Bull. 100, 82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026,26455785 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Majewsky, M., Bitter, H., Eiche, E. & Horn, H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci. Total Environ. 568, 507–511. https://doi.org/10.1016/j.scitotenv.2016.06.017,27333470 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Shim, W. J., Song, Y. K., Hong, S. H. & Jang, M. Identification and quantification of microplastics using Nile red staining. Mar. Pollut. Bull. 113, 469–476. https://doi.org/10.1016/j.marpolbul.2016.10.049,28340965 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Lv, L. et al. A simple method for detecting and quantifying microplastics utilizing fluorescent dyes – safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property. Environ. Pollut. 255, 113283. https://doi.org/10.1016/j.envpol.2019.113283 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Cauwenberghe, V. L., Devriese, L., Galgani, F., Robbens, J. & Janssen, C. R. Microplastics in sediments: A review of techniques, occurrence and effects. Mar. Environ. Res. 111, 5–17. https://doi.org/10.1016/j.marenvres.2015.06.007 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Isobe, A. et al. An interlaboratory comparison exercise for the determination of microplastics in standard sample bottles. Mar. Pollut. Bull. 146, 831–837. https://doi.org/10.1016/j.marpolbul.2019.07.033,31426225 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Uddin, S., Fowler, S. W., Saeed, T., Naji, A. & Al-Jandal, N. Standardized protocols for microplastics determinations in environmental samples from the Gulf and marginal seas. Mar. Pollut. Bull. 158, 111374. https://doi.org/10.1016/j.marpolbul.2020.111374 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Vermeiren, P., Muñoz, C. & Ikejima, K. Microplastic identification and quantification from organic rich sediments: A validated laboratory protocol. Environ. Pollut. 262, 114298. https://doi.org/10.1016/j.envpol.2020.114298 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Coppock, R. L., Cole, M., Lindeque, P. K., Queirós, A. M. & Galloway, T. S. A small-scale, portable method for extracting microplastics from marine sediments. Environ. Pollut. 230, 829–837. https://doi.org/10.1016/j.envpol.2017.07.017 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Ankley, G. T., Di Toro, D. M., Hansen, D. J. & Berry, W. J. Technical basis and proposal for deriving sediment quality criteria for metals. Environ. Toxicol. Chem. 15, 2056–2066. https://doi.org/10.1002/etc.5620151202 (1996).CAS 
    Article 

    Google Scholar 
    30.Japanese Geotechnical Society (JGS) 0131 (JIS A1204). Test method for particle size distribution of soils (2009).31.Japanese Geotechnical Society JGS 0121(JIS A1203). Test method for water content of soils (2009).32.BS ISO 11277: Soil quality. Determination of particle size distribution in mineral soil material. Method by sieving and sedimentation (2009).33.BS ISO 1377:Part 2: Clause 3.2: Determination of the moisture content of soils (1990).34.BS EN 933-2: Tests for geometrical properties of aggregates. Determination of particle size distribution. Test sieves, nominal size of apertures (2020).35.ASTM D6913/D6913M – 17: Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis (2004).36.ASTM D2216 – 19: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass (2019).37.Maxwell, S. H., Melinda, K. F. & Matthew, G. Counterstaining to separate Nile red-stained microplastic particles from terrestrial invertebrate biomass. Environ. Sci. Technol. 54, 5580–5588. https://doi.org/10.1021/acs.est.0c00711 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Ehlers, S. M., Maxein, J. & Koop, J. H. E. Low-cost microplastic visualization in feeding experiments using an ultraviolet light-emitting flashlight. Ecol. Res. 35, 265–273. https://doi.org/10.1111/1440-1703.12080 (2020).Article 

    Google Scholar 
    39.Karakolis, E. G., Nguyen, B., You, J. B., Rochman, C. M. & Sinton, D. Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environ. Sci. Technol. Lett. 6, 334–340. https://doi.org/10.1021/acs.estlett.9b00241 (2019).CAS 
    Article 

    Google Scholar 
    40.Penthala, R. et al. Synthesis of azo and anthraquinone dyes and dyeing of nylon-6,6 in supercritical carbon dioxide. J. CO2 Util. 38, 49–58. https://doi.org/10.1016/j.jcou.2020.01.013 (2020).CAS 
    Article 

    Google Scholar 
    41.Prata, J. C., Costa, J. P., Duarte, A. C. & Rocha-Santos, T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC Trends Anal. Chem. 110, 150–159. https://doi.org/10.1016/j.trac.2018.10.029 (2019).CAS 
    Article 

    Google Scholar 
    42.Hengstmann, E. & Fischer, E. K. Nile red staining in microplastic analysis – proposal for a reliable and fast identification approach for large microplastics. Environ. Monit. Assess. 191, 612. https://doi.org/10.1007/s10661-019-7786-4,31489505 (2019).Article 
    PubMed 

    Google Scholar 
    43.Jung, M. R. et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 127, 704–716. https://doi.org/10.1016/j.marpolbul.2017.12.061 (2018).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Cryogenic land surface processes shape vegetation biomass patterns in northern European tundra

    Study areaThe study area (78 000 km2) is located between 68–71°N and 20–26°E, with strong climatic gradients, ranging from wet maritime to relatively dry continental, over tens of kilometers. The landscape of this climatically sensitive high-latitude region has been affected by multiple glaciations in the past. It includes the Scandes Mountains near the Arctic Ocean and low-relief areas to the south and east. The majority of the region (52%) is underlain by sporadic permafrost. Continuous and discontinuous permafrost are limited to the highest mountains of the study area (2% and 7%, respectively)17,26. This large proportion of sporadic, typically warm and shallow permafrost in the study area indicates that ground thermal response to climate warming can be rapid27. Our data do not cover low-relief plateaus of continuous permafrost (similar to northern Siberia and Alaska), where the generally high ice content of soil may lead to different and enhanced LSP responses under climate warming (e.g., ice wedge degradation and surface ponding) with altered AGB feedbacks43,44.LSP observationsThe data consist of 2917 study sites (each 25 m × 25 m) and includes previously combined observations (both in-situ [n = 581] and remote-sensing [n = 2336]) of the active surface features of three cryogenic LSP common in the area: cryoturbation, solifluction, and nivation. These LSP are mainly associated with seasonal freeze–thaw processes. Cryoturbation (i.e., frost churning) is a general term for soil movement caused by differential heave, and it creates typical surface features such as patterned ground, frost boils and hummocky terrain5. Solifluction is the slow mass wasting of surficial deposits through frost creep and permafrost flow, where gravitation causes frost-heaved soil to settle downwards during the summer thaw, creating features of lobes and terraces50. In addition, solifluction also includes gelifluction which is a mass wasting process caused by high porewater pressure in unconsolidated surface debris creating similar lobes and terraces5,50. We use the term nivation to collectively designate various weathering and fluvial processes which are intensified and depicted by the presence of snowbeds (which in general are melting in mid-July – late-August) and nivation hollows28,51. We expect the presence of such a snowbed to be an indication of active nivation processes, since in these environments the year-to-year spatial snow patters are fairly consistent31.The rationale behind LSP sampling is described in previous geomorphic studies which served as a basis for the used protocol52,53. Due to the large study domain, study objectives (focus on distribution of active surface features, not on activity itself) and modeling resolution (50 m × 50 m), we used a visual method to estimate the presence/absence of the mapped LSP. We used high-resolution aerial photography (spatial resolution of 0.25 m−2) and targeted field surveys (GPS accuracy ~5 m; Garmin eTrex personal navigator) to construct the LSP dataset. A binary variable (1 = presence, 0 = absence) was assigned to each LSP to indicate their evident activity (or absence). The activity/absence of the LSP was visually estimated based on the evidence in ground surface, indicated by e.g., frost-heaving, cracking, microtopography (e.g., erosional and depositional forms), soil displacement indicative to a process form (e.g., solifluction lobes, patterned ground), changes in vegetation cover and late-lying snow. Such indicators average the LSP activity over several years. Even small areas with slight indication of activity were considered active processes. However, such a protocol based on a visual assessment is susceptible for incorrect activity classification; solifluction may be active despite having a complete vegetation cover19 and the presence of late-lying snowbed, although being a good indication28, does not necessarily mean that active nivation processes are present.Remotely sensed vegetation indexFor obtaining remotely sensed vegetation index for the study area, we employed a maximum-value compositing approach. We downloaded all available clear sky (less than 80% land cloud cover) Landsat OLI 8 images overlapping the study area from June to September between 2013 and 2017 (total of 1086 scenes) from the United States Geological Survey (USGS) database (http:\earthexplorer.usgs.gov). Images were USGS surface reflectance products, which were preprocessed (georeferencing, projection, and atmospheric corrections) by USGS54. Landsat-8 satellite is the latest addition to the Landsat mission that has provided repeated land surface information globally since the 1970’s and is the most commonly used fine-scale satellite system for vegetation mapping. The native resolution of the Landsat OLI sensor is 30 m for the spectral bands used in the image processing steps of this study.Normalized difference vegetation index (NDVI), a widely used spectral index to estimate the amount of green vegetation, was calculated as55:$$({{{{{rm{rho }}}}}}{{{{{rm{NIR}}}}}}-{{{{{rm{rho }}}}}}{{{{{rm{red}}}}}})/({{{{{rm{rho }}}}}}{{{{{rm{NIR}}}}}}+{{{{{rm{rho }}}}}}{{{{{rm{red}}}}}})$$
    (1)
    where ρNIR and ρred are the surface reflectance for their respective Landsat bands, 0.851–0.879 (mu)m and 0.636–0.673 (mu)m.USGS provides pixel-based quality assessment bands for all surface reflectance products. These bands were used to mask clouds, snow, water, and other low-quality pixels from the individual NDVI scenes. Additionally, if the NDVI images still had unphysical values over 1 or under -1, these pixels and their surroundings of 100 m radius were excluded. We determined maximum values for each 30 m resolution pixel of the study area individually. After masking cloud, snow, and water from the scenes, obvious scattered erroneous NDVI values remained in some scenes. Therefore, we excluded the values outside the pixel-based 95% percentile prior to maximum composite.The CFmask cloud detection algorithm that is used to generate the quality assessment band has clear difficulties in distinguishing small snow patches from clouds. As such, a large portion of late-lying snow beds were repeatedly and incorrectly classified as clouds. Moreover, the CFmask algorithm creates buffers around the cloud pixels54, hence much information was lost around the snow patches that were incorrectly identified as clouds. After these processing steps, some pixels around the extreme late-lying snow beds had still too low number of NDVI records to provide reliable NDVI values for the maximum composite. To fill these small and scattered gaps in the initial maximum NDVI composite, we selected 74 mostly cloud-free scenes between August and September. For these 74 scenes, we manually digitized cloud masks to exclude cloud-contaminated pixels with high certainty. Moreover, every pixel must have passed the following quality checks to be included in the gap-filling composite: not classified as water in the USGS quality assessment band; normalized difference snow index (NDSI) value less than 0.4, and blue band reflectance less than 0.1 (to exclude snow); reflectance of red band between 0.03 and 0.4 (second check for water and snow, and deepest shadows); NDVI between 0 and 0.4 (lower threshold to exclude snow and water contamination; higher threshold to exclude erroneous values, as very late snowbed habitats always have very limited vegetation cover). Additionally, if the NDVI images had unphysical values over 1 or under -1, these pixels and their surroundings (200 m radius) were excluded. Pixels in the 74 selected images which passed these checks, were then used to create a secondary maximum NDVI composite that was used to fill the gaps in the initial maximum NDVI composite. The secondary composite comprised 0.4% of the pixels in the final composite. Among all 2917 LSP observation sites, 2.9% were located within the gaps in the initial maximum NDVI composite, and thus received their maximum NDVI values from the secondary NDVI composite.In the used Landsat data, the nivation sites were not covered by snow, but instead were associated with generally lower AGB values as nival processes affect the vegetation’s structure and composition (Supplementary Table 1).Above-ground biomass dataAbove-ground biomass (AGB) reference data were collected from two regions, with a total of 433 sites that represent an area of > 4000 km2 (Supplementary Fig. 9). The first dataset (hereafter BM region 1; centering to ca. 69°N, 21°E) was collected between 2008 and 2011, and the second dataset (BM region 2; centering to ca. 70°N, 26.2°E) between 2015 and 2017. Both study regions are representative of an arctic and alpine treeline ecotone and include data from mountain birch forest to barren oroarctic tundra56,57.The BM region 1 dataset consists of 309 field sites (each 10 m × 10 m), which are located around eight different massifs covering a wide range of environmental conditions (Supplementary Figs. 9–10). Sampling was performed in transects to cover various aspects of the slope (i.e., topoclimatic conditions), starting from the foothill of the mountain, and ending at the summit. A plot was systematically established at every 20 m increase in elevation and recorded with a GPS device. Four clip-harvest biomass samples (20 cm × 20 cm) were taken 5 m from the plot center in every cardinal direction. Two samples were used in bare mountaintops (north, south). The clip-harvest samples were dried for 48 h at +65 °C, and dry weight was recorded. The sample biomass values were converted to g m-2 and the average sample value was calculated for each site (Supplementary Fig. 9). The original BM region 1 dataset contains forest and treeline plots, but these were excluded from the final analyses due to an incomparable tree sampling strategy with BM region 2, which could introduce uncertainty into biomass estimates.The BM region 2 data were collected from three different massifs having an elevation range from 120 m to 1064 m (Supplementary Fig. 9). The biomasses were sampled from 102 sites (each 24 m × 24 m in size) that were chosen using a stratified sampling to cover gradients of thermal radiation (potential incoming solar radiation), soil moisture (topographic wetness index, TWI) and vegetation zone (forest, treeline, and alpine zones). Radiation and TWI were calculated from a 10 m digital elevation model (DEM, provided by the National Land Surveys of Finland and Kartverket, the Norwegian mapping authority), and assigned to one of three classes based on observation percentiles (breaks at 20% and 80%) leading to total of 27 strata. Vegetation zones were digitized based on aerial imagery. After the first field survey, 22 sites were added to account for vegetation types that were not sufficiently represented by the GIS-based stratification. Thus, the total sample size of the BM region 2 dataset is 124 AGB sites.The same clip-harvest sample protocol was used as in BM region 1; additional samples were also taken from 12 m in every cardinal direction, thus each site had eight AGB samples (Supplementary Fig. 9). Trees with diameter at breast height (DBH) greater than 20 mm were measured from a 900 m2 circular plot, which corresponds to the size of the NDVI product resolution. Large stems (DBH  > 80 mm in the forest and 40 mm at the treeline) were measured from the whole plot, whereas smaller stems were measured from five subplots. Specifically, the center subplot was 100 m2, and the four subplots located at 8 m to every cardinal direction were each 12.5 m2. For the subplot observations, we used a plot expansion factor (900/150 = 6) to generalize the observations for the whole plot assuming a homogeneous forest structure i.e., each subplot stem represents six trees within the 900 m2 plot. A total of 98% of the measured stems were mountain birch (Betula pubescens ssp. czerepanovii), making it the most abundant species in the area. For predicting stem biomass, we used the average of three allometric equations58,59,60, in order to reduce the uncertainty related to the transferability of an individual allometric model. In addition, Populus tremula (1% of the observations) were found on low-altitude south-facing slopes, and Salix caprea (1%) in moist, nutrient-rich sites. Species-specific models61,62 were used to estimate their respective stem biomasses. Individual pines (Pinus sylvestris) were scattered in the area but were not present in any of the sampled plots.The plots of above-ground tree biomass were converted to g m−2 and added to the mean clip-harvest AGB to obtain the total vascular plant AGB for each site. The BM region 1 and BM region 2 datasets were combined, and the NDVI value was extracted from the site center coordinates.Spatial autocorrelation (SAC) is a common property of any spatial dataset and means that observations are related to one another by the geographical distance63. SAC in the model residuals violates the independence assumption commonly required by statistical models and can lead to inflated hypothesis testing and biased model estimates64. To investigate whether the plot-scale AGB data are spatially autocorrelated, we calculated semivariogram which describes the spatial dependency between the observations as a function of distance between the point pairs65. Semivariogram were calculated as:$${{{{{rm{gamma }}}}}}(h)=frac{1}{2N(h)}mathop{sum }limits_{i=1}^{{N}_{h}}{left(Zleft({s}_{i}right)-Zleft({s}_{i}+hright)right)}^{2}$$
    (2)
    where N(h) denotes the number of data pairs within distance h, and (Zleft({s}_{i}right)) is an observation (or model residual) in location i. For the calculation, we used R package gstat66 (version 2.0-0). A visual inspection of the semivariogram indicated spatial autocorrelation at short distances (“AGB” in Supplementary Fig. 11). Therefore, for the NDVI-AGB conversion, we used a generalized least squares modeling (GLS, as implemented in R package nlme67 [version 3.1-137]) that can explicitly account for SAC in the data. For the modeling, the AGB values were log(x+0.1) transformed. The GLS, where AGB was modeled as a function of NDVI, were fitted assuming an exponential spatial correlation structure:$$gamma left(hright)={c}_{0}+cleft(1-{e}^{-h/a}right)$$
    (3)
    where ({c}_{0}) is the difference between the intercept and origin (i.e., the “nugget” parameter in geostatistics), (c) is the amount of variance (i.e., the “sill”) and a represents the distance of spatial dependency (i.e., the “range”). The fitted GLS was as follows:$${{log }}left({AGB}right)=-1.038629+9.725572times {NDVI}$$
    (4)
    The estimated spatial correlation parameters were c0 = 0.516, c = 0.484 and a = 260.605, indicating that the distance of spatial autocorrelation extends to ca. 261 m. The semivariogram for the model residuals indicated a notable reduction in the amount of spatial autocorrelation compared to the AGB data (Supplementary Fig. 11). The fitted model explained 70.6% of the deviance in the data. When the predicted values were converted back to the response scale, the model explained 60.5% of the deviance. Therefore, for the subsequent analyses we use the above-ground biomass estimated by the model.Environmental predictorsIn addition to LSP, we used climate, topography, and soil predictors to model AGB. Gridded monthly average temperatures and precipitation data (1981–2010; spatial resolution 50 m × 50 m) based on a large collection ( > 950) of Fennoscandian meteorological stations were used in a spatial interpolation scheme17. Three climate predictors—growing degree days (GDD, °C, base temperature 5 °C), mean February air temperature (Tfeb, °C) and water balance (WAB, mm)—were calculated from the gridded climate data. WAB is the difference between total annual precipitation and potential evapotranspiration (PET), which was estimated from the monthly air temperature and precipitation data68:$${PET}=58.93times {T}_{{above}0^circ C}/12$$
    (5)
    These climatic predictors were selected to represent different aspects of climate that are critical for tundra vegetation: heat requirements, cold tolerance and moisture availability. In addition, two local scale topographic predictors were calculated from a DEM (spatial resolution of 50 m × 50 m, provided by the National Land Survey Institutes of Finland, Norway, and Sweden): topographic wetness index69 (TWI, a proxy for soil moisture) and potential annual direct solar radiation70 (MJ cm-2 a-1). Slope angle was initially considered as a potential predictor for AGB but was later omitted due to the strong correlation with TWI (-0.93, P ≤ 0.001). We also calculated peat cover (%) from a digital land cover classification71. Here, the native resolution of 100 m was resampled at 50 m to match the resolution of the climatic and topographic predictors, using nearest-neighbor interpolation. The binary peat cover variable was transformed to a continuous scale using a spatial mean filter of 3 × 3 pixels52. Finally, the topmost soil layer of a global gridded soil database72 was used to obtain pH data. Again, the original resolution of 250 m was also resampled to 50 m resolution using bilinear interpolation.Our fine-scale data revealed strong environmental gradients over the 78,000 km2 study area (Supplementary Table 1), most of which were only moderately inter-correlated (Spearman’s correlation coefficient  More