Multidimensional natal isotopic niches reflect migratory patterns in birds
1.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article
Google Scholar
2.Chase, J. M. & Leibold, M. A. Ecological Niches. Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).Book
Google Scholar
3.Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. 106, 19659–19665 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Heldbjerg, H. & Fox, T. Long-term population declines in Danish trans-Saharan migrant birds. Bird Study 55, 267–279 (2008).Article
Google Scholar
5.Evans, K. L., Newton, J., Mallord, J. W. & Markman, S. Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation. PLoS ONE 7, e34542 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
6.Vickery, J. A. et al. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).Article
Google Scholar
7.Heiss, M. The importance of Besh Barmag bottleneck (Azerbaijan) for Eurasian migrant birds. Acta Ornithol. 48, 151–164 (2013).Article
Google Scholar
8.Buechley, E. R. et al. Identifying critical migratory bottlenecks and high-use areas for an endangered migratory soaring bird across three continents. J. Avian Biol. 49, e01629 (2018).Article
Google Scholar
9.Cardenas-Ortiz, L., Bayly, N. J., Kardynal, K. J. & Hobson, K. A. Defining catchment origins of a geographical bottleneck: Implications of population mixing and phenological overlap for the conservation of Neotropical migratory birds. The Condor 122, 004 (2020).Article
Google Scholar
10.Yohannes, E., Hobson, K. A. & Pearson, D. J. Feather stable-isotope profiles reveal stopover habitat selection and site fidelity in nine migratory species moving through sub-Saharan Africa: Feather stable-isotope profiles reveal stopover habitat selection. J. Avian Biol. 38, 347–355 (2007).
Google Scholar
11.Hobson, K. A. & Koehler, G. On the use of stable oxygen isotope (δ18O) measurements for tracking avian movements in North America. Ecol. Evol. 5, 799–806 (2015).PubMed
PubMed Central
Article
Google Scholar
12.Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis: Stable isotopes as measures of niche width. J. Anim. Ecol. 73, 1007–1012 (2004).Article
Google Scholar
13.Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article
Google Scholar
14.Hobson, K. Isotopic ornithology: A perspective. J. Ornithol. https://doi.org/10.1007/s10336-011-0653-x (2011).Article
Google Scholar
15.Hoenighaus, D. J., Winemiller, K. O. & Agostinho, A. A. Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10, 1019–1033 (2007).Article
Google Scholar
16.Hette-Tronquart, N. Isotopic niche is not equal to trophic niche. Ecol. Lett. 22, 1987–1989 (2019).PubMed
Article
Google Scholar
17.Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology: Avian stable isotope analysis. Ibis 150, 447–461 (2008).Article
Google Scholar
18.Bowen, G. J. Isoscapes: Spatial pattern in isotopic biogeochemistry. Annu. Rev. Earth Planet. Sci. 38, 161–187 (2010).ADS
CAS
Article
Google Scholar
19.Hobson, K. A., Bowen, G. J., Wassenaar, L. I., Ferrand, Y. & Lormee, H. Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds. Oecologia 141, 477–488 (2004).ADS
PubMed
Article
Google Scholar
20.Magozzi, S., Vander Zanden, H. B., Wunder, M. B. & Bowen, G. J. Mechanistic model predicts tissue-environment relationships and trophic shifts in animal hydrogen and oxygen isotope ratios. Oecologia 191, 777–789 (2019).ADS
PubMed
Article
Google Scholar
21.Vander Zanden, H. B., Soto, D. X., Bowen, G. J. & Hobson, K. A. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2016 (2016).Article
Google Scholar
22.Pekarsky, S. et al. Enriching the isotopic toolbox for migratory connectivity analysis: A new approach for migratory species breeding in remote or unexplored areas. Divers. Distrib. 21, 416–427 (2015).Article
Google Scholar
23.Shipley, O. N. & Matich, P. Studying animal niches using bulk stable isotope ratios: An updated synthesis. Oecologia 193, 27–51 (2020).ADS
PubMed
Article
Google Scholar
24.Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia 120, 314–326 (1999).ADS
PubMed
Article
Google Scholar
25.Hobson, K. A. & Wassenaar, L. I. Tracking Animal Migration with Stable Isotopes (Academic Press, 2018).
Google Scholar
26.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 16 (2002).
Google Scholar
27.Abrantes, K. G., Barnett, A. & Bouillon, S. Stable isotope-based community metrics as a tool to identify patterns in food web structure in east African estuaries. Funct. Ecol. 28, 270–282 (2014).Article
Google Scholar
28.Wang, J., Chapman, D., Xu, J., Wang, Y. & Gu, B. Isotope niche dimension and trophic overlap between bigheaded carps and native filter-feeding fish in the lower Missouri River, USA. PLoS ONE 13, e0197584 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
29.Steenweg, R. J. et al. Stable isotopes can be used to infer the overwintering locations of prebreeding marine birds in the Canadian Arctic. Ecol. Evol. 7, 8742–8752 (2017).PubMed
PubMed Central
Article
Google Scholar
30.Rader, J. A. et al. Isotopic niches support the resource breadth hypothesis. J. Anim. Ecol. 86, 405–413 (2017).PubMed
Article
Google Scholar
31.Ma, C., Shen, Y., Bearup, D., Fagan, W. F. & Liao, J. Spatial variation in branch size promotes metapopulation persistence in dendritic river networks. Freshw. Biol. 65, 426–434 (2020).Article
Google Scholar
32.Langin, K. M. et al. Hydrogen isotopic variation in migratory bird tissues of known origin: Implications for geographic assignment. Oecologia 152, 449–457 (2007).ADS
PubMed
Article
Google Scholar
33.Levey, D. J. & Stiles, F. G. Evolutionary precursors of long-distance migration: Resource availability and movement patterns in neotropical landbirds. Am. Nat. 140, 447–476 (1992).Article
Google Scholar
34.Cresswell, W. Migratory connectivity of Palaearctic-African migratory birds and their responses to environmental change: The serial residency hypothesis. Ibis 156, 493–510 (2014).Article
Google Scholar
35.Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413 (2016).Article
Google Scholar
36.Laube, I., Graham, C. H. & Böhning-Gaese, K. Niche availability in space and time: Migration in Sylvia warblers. J. Biogeogr. 42, 1896–1906 (2015).Article
Google Scholar
37.Ponti, R., Arcones, A., Ferrer, X. & Vieites, D. R. Seasonal climatic niches diverge in migratory birds. Ibis 162, 318–330 (2020).Article
Google Scholar
38.Dunn, E., Hobson, K., Wassenaar, L., Hussell, D. & Allen, M. Identification of summer origins of songbirds migrating through southern Canada in Autumn. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-00048-010204 (2006).Article
Google Scholar
39.Briedis, M. et al. Breeding latitude leads to different temporal but not spatial organization of the annual cycle in a long-distance migrant. J. Avian Biol. 47, 743–748 (2016).Article
Google Scholar
40.Briedis, M. et al. Broad-scale patterns of the Afro-Palaearctic landbird migration. Glob. Ecol. Biogeogr. 29, 722–735 (2020).Article
Google Scholar
41.Cortesi, N., Gonzalez-Hidalgo, J. C., Brunetti, M. & Martin-Vide, J. Daily precipitation concentration across Europe 1971–2010. Nat. Hazards Earth Syst. Sci. 12, 2799–2810 (2012).ADS
Article
Google Scholar
42.Salewski, V., Bairlein, F. & Leisler, B. Niche partitioning of two Palearctic passerine migrants with Afrotropical residents in their West African winter quarters. Behav. Ecol. 14, 493–502 (2003).Article
Google Scholar
43.Jones, P., Salewski, V., Vickery, J. & Mapaure, I. Habitat use and densities of co-existing migrant Willow Warblers Phylloscopus trochilus and resident eremomelas Eremomela spp. in Zimbabwe. Bird Study 57, 44–55 (2010).Article
Google Scholar
44.Brändle, M., Prinzing, A., Pfeifer, R. & Brandl, R. Dietary niche breadth for Central European birds: Correlations with species-specific traits. Evol. Ecol. Res. 4(5), 643–657 (2002).
Google Scholar
45.Hahn, S., Amrhein, V., Zehtindijev, P. & Liechti, F. Strong migratory connectivity and seasonally shifting isotopic niches in geographically separated populations of a long-distance migrating songbird. Oecologia 173, 1217–1225 (2013).ADS
PubMed
Article
Google Scholar
46.Finch, T., Butler, S. J., Franco, A. M. A. & Cresswell, W. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86, 662–673 (2017).PubMed
Article
Google Scholar
47.Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: Explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).Article
Google Scholar
48.Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).Article
Google Scholar
49.Rubenstein, D. R. Linking breeding and wintering ranges of a migratory songbird using stable isotopes. Science 295, 1062–1065 (2002).ADS
CAS
PubMed
Article
Google Scholar
50.Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article
Google Scholar
51.Ockendon, N., Hewson, C. M., Johnston, A. & Atkinson, P. W. Declines in British-breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59, 111–125 (2012).Article
Google Scholar
52.Keller, G. S. & Yahner, R. H. Declines of migratory songbirds: Evidence for Wintering-ground causes. Northeast. Nat. 13, 83–92 (2006).Article
Google Scholar
53.Morrison, C. A., Robinson, R. A., Clark, J. A., Risely, K. & Gill, J. A. Recent population declines in Afro-Palaearctic migratory birds: The influence of breeding and non-breeding seasons. Divers. Distrib. 19, 1051–1058 (2013).Article
Google Scholar
54.López-Calderón, C. et al. Environmental conditions during winter predict age- and sex-specific differences in reproductive success of a trans-Saharan migratory bird. Sci. Rep. 7, 18082 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
55.Møller, A. P. & Hobson, K. A. Heterogeneity in stable isotope profiles predicts coexistence of populations of barn swallows Hirundo rustica differing in morphology and reproductive performance. Proc. R. Soc. Lond. B Biol. Sci. 271, 1355–1362 (2004).Article
Google Scholar
56.Hobson, K., Møller, A. & Wilgenburg, S. L. V. A multi-isotope (δ13C, δ15N, δ2H) approach to connecting European breeding and African wintering populations of barn swallow (Hirundo rustica). Anim. Migr. https://doi.org/10.2478/ami-2012-0002 (2012).Article
Google Scholar
57.Newton, I. The Migration Ecology of Birds (Academic Press, 2007).
Google Scholar
58.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
59.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 2011).
Google Scholar
60.Pedrini, P., Rossi, F. & Rizzoli, F. Le Alpi italiane quale barriera ecologica nel corso della migrazione post-riproduttiva attraverso l’Europa. Risultati generali del della prima fase del Progetto Alpi (1997–2002). Biol. Conserv. Fauna 116, 1–336 (2008).
Google Scholar
61.Bontempo, L. et al. Comparison of methods for stable isotope ratio (δ13C, δ15N, δ2H, δ18O) measurements of feathers. Methods Ecol. Evol. 5, 363–371 (2014).Article
Google Scholar
62.Wassenaar, L. I. & Hobson, K. A. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes Environ. Health Stud. 39, 211–217 (2003).CAS
PubMed
Article
Google Scholar
63.Wassenaar, L. I. & Hobson, K. A. Stable-hydrogen isotope heterogeneity in keratinous materials: Mass spectrometry and migratory wildlife tissue subsampling strategies. Rapid Commun. Mass Spectrom. 20, 2505–2510 (2006).ADS
CAS
PubMed
Article
Google Scholar
64.Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. & Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC technical report). Pure Appl. Chem. 86, 425–467 (2014).CAS
Article
Google Scholar
65.Del Hoyo, J., Elliott, A., Sargatal, J. & Christie, D. Handbook of the Birds of the World (Lynx Edicions, 2013).
Google Scholar
66.Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl. Acad. Sci. 105, 16195–16200 (2008).ADS
PubMed
PubMed Central
Article
Google Scholar
67.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian ellipses in R: Bayesian isotopic niche metrics. J. Anim. Ecol. 80, 595–602 (2011).PubMed
Article
Google Scholar More