Changes in “natural antibiotic” metabolite composition during tetraploid wheat domestication
1.Zhang, X. et al. Plant defense resistance in natural enemies of a specialist insect herbivore. Proc. Natl. Acad. Sci. U. S. A. 116, 23174–23181. https://doi.org/10.1073/pnas.1912599116 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
2.Wittstock, J. & Gershenzon, U. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5, 300–307. https://doi.org/10.1016/s1369-5266(02)00264-9 (2002).CAS
Article
PubMed
Google Scholar
3.Stahl, E., Hilfiker, O. & Reymond, P. Plant-arthropod interactions: Who is the winner?. Plant J. 93, 703–728. https://doi.org/10.1111/tpj.13773 (2018).CAS
Article
PubMed
Google Scholar
4.de Bruijn, W. J. C., Gruppen, H. & Vincken, J. P. Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry 155, 233–243. https://doi.org/10.1016/j.phytochem.2018.07.005 (2018).CAS
Article
PubMed
Google Scholar
5.Arbona, V. & Gomez-Cadenas, A. Metabolomics of disease resistance in crops. Curr. Issues Mol. Biol. 19, 13–30 (2016).PubMed
Google Scholar
6.Ben-Abu, Y., Beiles, A., Flom, D. & Nevo, E. Adaptive evolution of benzoxazinoids in wild emmer wheat, Triticum dicoccoides, at “Evolution Canyon”, Mount Carmel, Israel. PLoS ONE 13(2), e0190424. https://doi.org/10.1371/journal.pone.0190424 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
7.Frey, M., Schullehner, K., Dick, R., Fiesselmann, A. & Gierl, A. Benzoxazinoid biosynthesis, a model for evolution of secondary metabolic pathways in plants. Phytochemistry 70(15–16), 1645–1651. https://doi.org/10.1016/j.phytochem.2009.05.012 (2009).CAS
Article
PubMed
Google Scholar
8.Zdero, C., Bohlmann, F. & Niemeyer, H. M. Isocedrene and guaiane derivatives from Pleocarphus revolutus. J. Nat. Prod. 51, 509–512. https://doi.org/10.1021/np50057a009 (1988).CAS
Article
PubMed
Google Scholar
9.Carlsen, S. C. et al. Allelochemicals in rye (Secale cereale L.): Cultivar and tissue differences in the production of benzoxazinoids and phenolic acids. Nat. Prod. Commun. 4, 199–208 (2009).CAS
PubMed
Google Scholar
10.Martos, A., Givovich, A. & Niemeyer, H. M. Effect of DIMBOA, an aphid resistance factor in wheat, on the aphid predator Eriopis connexa Germar (Coleoptera: Coccinellidae). J. Chem. Ecol. 18, 469–479. https://doi.org/10.1007/BF00994245 (1992).CAS
Article
PubMed
Google Scholar
11.Perez, F. J. Allelopathic effect of hydroxamic acids from cereals on Avena sativa and A. fatua Francisco. Phytochemistry 29, 773–776. https://doi.org/10.1016/0031-9422(90)80016-A (1990).CAS
Article
Google Scholar
12.Dutartre, L., Hilliou, F. & Feyereisen, R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: Gene duplications and origin of the Bx cluste. BMC Evol. Biol. 12, 64. https://doi.org/10.1186/1471-2148-12-64 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
13.Meredith, A., Wilkes, D. R. M. & Copeland, L. Hydroxamic acids in cereal roots inhibit the growth of take-all. Soil Biol. Biochem. 31, 1831–1836. https://doi.org/10.1016/S0038-0717(99)00104-2 (1999).Article
Google Scholar
14.Macias, F. A., Valerin, M. D., Oliveros-Bastidas, A., Castellano, D. & Simonet, A. M. Structure-activity relationships (SAR) studies of benzoxazinones, their degradation products and analogues. phytotoxicity on standard target species (STS). J. Agric. Food Chem. 53, 538–548. https://doi.org/10.1021/jf0484071 (2005).CAS
Article
PubMed
Google Scholar
15.Nakagawa, E., Amano, T., Hirai, N. & Iwamura, H. Partial purification and characterisation of a 2,4,5-trichlorophenol detoxifying O-glucosyltransferase from wheat. Phytochemistry 38, 1349–1354. https://doi.org/10.1016/s0031-9422(03)00191-2 (2003).Article
Google Scholar
16.Levy, A. A. & Feldman, M. Intra-population and inter-population variations in grain protein percentage in wild tetraploid wheat, Triticum-turgidum var dicoccoides. Euphytica 42(3), 251–258. https://doi.org/10.1007/BF00034461 (1989).Article
Google Scholar
17.Święcicka, M. et al. Changes in benzoxazinoid contents and the expression of the associated genes in rye (Secale cereale L.) due to brown rust and the inoculation procedure. PLoS ONE https://doi.org/10.1371/journal.pone.0233807 (2020).Article
PubMed
PubMed Central
Google Scholar
18.Levy, A. A., Galili, G. & Feldman, M. Polymorphism and genetic-control of high molecular-weight glutenin subunits in wild tetraploid wheat Triticum-turgidum var dicoccoides. Heredity 61, 63–72. https://doi.org/10.1007/BF00034461 (1988).CAS
Article
Google Scholar
19.Abu-Zaitoun, S. et al. Unlocking the genetic diversity within a Middle-East panel of durum wheat landraces for adaptation to semi-arid climate. Agronomy 8, 233–245 (2018).Article
Google Scholar
20.Avivi, L. High grain protein content in wild wheat. Can J. Genet. Cytol. 19, 569–570. https://doi.org/10.1139/g77-062 (1977).Article
Google Scholar
21.Ozkan, H., Levy, A. A. & Feldman, M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 8, 1735–1747. https://doi.org/10.1105/tpc.010082 (2001).Article
Google Scholar
22.Yang, M. et al. Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. PLoS ONE https://doi.org/10.1371/journal.pone.0115052 (2014).Article
PubMed
PubMed Central
Google Scholar
23.Hanhineva, K. et al. Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry 69(13), 2463–2481. https://doi.org/10.1016/j.phytochem.2008.07.009 (2008).CAS
Article
PubMed
Google Scholar
24.Haas, M., Schreiber, M. & Mascher, M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 61(3), 204–225. https://doi.org/10.1111/jipb.12737 (2019).Article
PubMed
Google Scholar
25.Beleggia, R. et al. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 33(7), 1740–1753. https://doi.org/10.1093/molbev/msw050 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
26.Ugine, T. A., Krasnoff, S. B., Grebenok, R. J., Behmer, S. T. & Losey, E. Prey nutrient content creates omnivores out of predators. Ecol. Lett. 22, 275–283. https://doi.org/10.1111/ele.13186 (2019).Article
PubMed
Google Scholar
27.Coll, M. & Guershon, M. Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annu. Rev. Entomol. 47, 267–297. https://doi.org/10.1146/annurev.ento.47.091201.145209 (2002).CAS
Article
PubMed
Google Scholar
28.Calvert, W. H., Hedrick, L. E. & Brower, L. P. Mortality of the monarch butterfly (Danaus plexippus L.): Avian predation at five overwintering sites in Mexico. Science 204, 847–851. https://doi.org/10.1126/science.204.4395.847 (1979).ADS
CAS
Article
PubMed
Google Scholar
29.Skelhorn, J. & Rowe, C. Avian predators taste-reject aposematic prey on the basis of their chemical defence. Biol. Lett. 2, 348–350. https://doi.org/10.1098/rsbl.2006.0483 (2006).Article
PubMed
PubMed Central
Google Scholar
30.Kumar, P., Pandit, S. S., Steppuhn, A. & Baldwin, L. T. Natural history-driven, plant-mediated RNAi-based study reveals CYP6B46’s role in a nicotine-mediated antipredator herbivore defense. Proc. Natl. Acad. Sci. U.S.A. 111, 1245–1252. https://doi.org/10.1073/pnas.1314848111 (2014).ADS
CAS
Article
PubMed
Google Scholar
31.Matthews, S. B. et al. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE 7(8), e44179. https://doi.org/10.1371/journal.pone.0044179 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
32.Parween, T., Jan, S., Mahmooduzzafar, S., Fatma, T. & Siddiqui, Z. H. Selective effect of pesticides on plant. Crit. Rev. Food Sci. Nutr. 56(1), 160–179. https://doi.org/10.1080/10408398.2013.787969 (2016).CAS
Article
PubMed
Google Scholar
33.Masisi, K., Beta, T. & Moghadasian, M. H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 96, 90–97. https://doi.org/10.1016/j.foodchem.2015.09.021 (2016).CAS
Article
Google Scholar
34.Hostetler, G. L., Ralston, R. A. & Schwartz, S. J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 8(3), 423–435. https://doi.org/10.3945/an.116.012948 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
35.Perez-Vizcaino, F. & Fraga, C. G. Research trends in flavonoids and health. Arch. Biochem. Biophys. 646, 107–112. https://doi.org/10.1016/j.abb.2018.03.022 (2018).CAS
Article
PubMed
Google Scholar
36.Nevo, E. “Evolution Canyon,” a potential microscale monitor of global warming across life. Proc. Natl. Acad. Sci. U. S. A. 109(8), 2960–2965. https://doi.org/10.1073/pnas.1120633109 (2012).ADS
Article
PubMed
PubMed Central
Google Scholar
37.Nevo, E. et al. Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. U. S. A. 109(9), 3412–3415. https://doi.org/10.1073/pnas.1121411109 (2012).ADS
Article
PubMed
PubMed Central
Google Scholar
38.Hebelstrup, K. H. Differences in nutritional quality between wild and domesticated forms of barley and emmer wheat. Plant Sci. 256, 1–4. https://doi.org/10.1016/j.plantsci.2016.12.006 (2017).CAS
Article
PubMed
Google Scholar
39.Avni, R. et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346), 93–97. https://doi.org/10.1126/science.aan0032 (2017).ADS
CAS
Article
PubMed
Google Scholar
40.Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3(6), 429–441. https://doi.org/10.1038/nrg817 (2002).CAS
Article
PubMed
Google Scholar
41.Zörb, C., Langenkämper, G., Betsche, T., Niehaus, K. & Barsch, A. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem. 54(21), 8301–8306. https://doi.org/10.1016/j.phytochem.2007.06.020 (2006).CAS
Article
PubMed
Google Scholar
42.Zörb, C., Niehaus, K., Barsch, A., Betsche, T. & Langenkämper, G. Levels of compounds and metabolites in wheat ears and grains in organic and conventional agriculture. J. Agric. Food Chem. 57(20), 9555–9562. https://doi.org/10.1021/jf9019739 (2009).CAS
Article
PubMed
Google Scholar
43.Zörb, C., Betsche, T. & Langenkämper, G. Search for diagnostic proteins to prove authenticity of organic wheat grains (Triticum aestivum L.). J. Agric. Food Chem. 57(7), 2932–2937. https://doi.org/10.1021/jf802923r (2009).CAS
Article
PubMed
Google Scholar
44.Hanhineva, K. et al. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. J. Agric. Food Chem. 59(3), 921–927. https://doi.org/10.1021/jf103612u (2011).CAS
Article
PubMed
Google Scholar
45.Brodsky, L., Moussaieff, A., Shahaf, N., Aharoni, A. & Rogachev, I. Evaluation of peak picking quality in LC–MS metabolomics data. Anal. Chem. 82(22), 9177–9187. https://doi.org/10.1021/ac101216e (2010).CAS
Article
PubMed
Google Scholar
46.Ben-Abu, Y. et al. Durum wheat evolution—A genomic analysis. Proc. Int. Symp. Genet. Breed. Durum Wheat 110, 29–44 (2014).
Google Scholar
47.Iannucci, A., Fragasso, M., Beleggia, R., Nigro, F. & Papa, R. Evolution of the crop rhizosphere: Impact of domestication on root exudates in tetraploid wheat (Triticum turgidum L.). Front. Plant Sci. 8, 2124. https://doi.org/10.3389/fpls.2017.02124 (2017).Article
PubMed
PubMed Central
Google Scholar
48.Okada, K., Abe, H. & Arimura, G. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. Plant Cell Physiol. 56(1), 16–27. https://doi.org/10.1093/pcp/pcu158 (2015).CAS
Article
PubMed
Google Scholar
49.Givovich, A., Morse, S., Cerda, H., Niemeyer, H. M. & Wratten, S. D. Hydroxamic acid glucosides in honeydew of aphids feeding on wheat. J. Chem. Ecol. 18, 841–846. https://doi.org/10.1007/BF00988324 (1992).CAS
Article
PubMed
Google Scholar
50.Shavit, R., Batyrshina, Z. S., Dotan, N. & Tzin, V. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS ONE https://doi.org/10.1371/journal.pone.0208103 (2018).Article
PubMed
PubMed Central
Google Scholar More