Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe
1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484–1241484 (2014).PubMed
Article
CAS
PubMed Central
Google Scholar
2.Treves, A. & Karanth, K. U. Human–carnivore conflict and perspectives on carnivore management worldwide. Conserv. Biol. 17, 1491–1499 (2003).Article
Google Scholar
3.Linnell, J. D. C. & Boitani, L. Building biological realism into wolf management policy: The development of the population approach in Europe. Hystrix Ital. J. Mammal. 23, 80–91 (2011).
Google Scholar
4.Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).Article
Google Scholar
5.Breitenmoser-Würsten, C., Vandel, J.-M., Zimmermann, F. & Breitenmoser, U. Demography of lynx Lynx lynx in the Jura Mountains. Wildl. Biol. 13, 381–392 (2007).Article
Google Scholar
6.Clutton-Brock, T. & Sheldon, B. C. Individuals and populations: The role of long-term, individual-based studies of animals in ecology and evolutionary biology. Trends Ecol. Evol. 25, 562–573 (2010).PubMed
Article
PubMed Central
Google Scholar
7.O’Connell, A., Nichols, J. D. & Karanth, K. U. Camera Traps in Animal Ecology: Methods and Analyses. (Springer Tokyo, 2011).8.Noss, A. J. et al. A Camera trapping and radio telemetry study of lowland tapir (Tapirus terrestris) in Bolivian Dry Forests. Tapir Cons. 12, 9 (2003).
Google Scholar
9.Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 11 (1998).Article
Google Scholar
10.Satter, C. B., Augustine, B. C., Harmsen, B. J., Foster, R. J. & Kelly, M. J. Sex‐specific population dynamics of ocelots in Belize using open population spatial capture–recapture. Ecosphere 10, e02792 (2019).Article
Google Scholar
11.Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38, 148–154 (2004).Article
Google Scholar
12.Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture–recapture. Integr. Zool. 8, 232–243 (2013).PubMed
Article
PubMed Central
Google Scholar
13.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture. (Elsevier, 2014).
Google Scholar
14.Chandler, R. B. & Clark, J. D. Spatially explicit integrated population models. Methods Ecol. Evol. 5, 1351–1360 (2014).Article
Google Scholar
15.Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe (EuropeanCommission, 2013).16.Magg, N. et al. Habitat availability is not limiting the distribution of the Bohemian–Bavarian lynx Lynx lynx population. Oryx 50, 742–752 (2016).Article
Google Scholar
17.Müller, J. et al. Protected areas shape the spatial distribution of a European lynx population more than 20 years after reintroduction. Biol. Conserv. 177, 210–217 (2014).Article
Google Scholar
18.Bull, J. K. et al. The effect of reintroductions on the genetic variability in Eurasian lynx populations: The cases of Bohemian–Bavarian and Vosges–Palatinian populations. Conserv. Genet. 17, 1229–1234 (2016).Article
Google Scholar
19.Walston, J. et al. Bringing the tiger back from the brink—The six percent solution. PLoS Biol. 8, e1000485 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
20.Schmidt, K., Jędrzejewski, W. & Okarma, H. Spatial organization and social relations in the Eurasian lynx population in Bialowieza Primeval Forest, Poland. Acta Theriol. (Warsz.) 42, 289–312 (1997).Article
Google Scholar
21.Bunnefeld, N., Linnell, J. D. C., Odden, J., van Duijn, M. A. J. & Andersen, R. Risk taking by Eurasian lynx (Lynx lynx) in a human-dominated landscape: Effects of sex and reproductive status. J. Zool. 270, 31–39 (2006).
Google Scholar
22.Gaillard, J.-M., Nilsen, E. B., Odden, J., Andrén, H. & Linnell, J. D. C. One size fits all: Eurasian lynx females share a common optimal litter size. J. Anim. Ecol. 83, 107–115 (2014).PubMed
Article
Google Scholar
23.Nilsen, E. B., Linnell, J. D. C., Odden, J., Samelius, G. & Andrén, H. Patterns of variation in reproductive parameters in Eurasian lynx (Lynx lynx). Acta Theriol. (Warsz.) 57, 217–223 (2012).Article
Google Scholar
24.O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139 (2003).Article
Google Scholar
25.Cailleret, M., Heurich, M. & Bugmann, H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 328, 179–192 (2014).Article
Google Scholar
26.Heurich, M. et al. Country, cover or protection: What shapes the distribution of red deer and roe deer in the Bohemian Forest Ecosystem?. PLoS ONE 10, e0120960 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
27.van Beeck Calkoen, S. T. S. et al. The blame game: Using eDNA to identify species-specific tree browsing by red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in a temperate forest. For. Ecol. Manag. 451, 117483 (2019).Article
Google Scholar
28.Wölfl, M. et al. Distribution and status of lynx in the border region between Czech Republic, Germany and Austria. Acta Theriol. 46, 181–194 (2001).Article
Google Scholar
29.Mináriková, T. et al. Lynx monitoring report for Bohemian–Bavarian–Austrian lynx population for lynx year 2017 (INTERREG Central Europe, 2019).30.Weingarth, K. et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture–recapture techniques in a German national park. Anim. Biodivers. Conserv. 35, 197–207 (2012).Article
Google Scholar
31.Belotti, E. et al. Patterns of lynx predation at the interface between protected areas and multi-use landscapes in Central Europe. PLoS ONE 10, e0138139 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
32.Tobler, M. W. & Powell, G. V. N. Estimating jaguar densities with camera traps: Problems with current designs and recommendations for future studies. Biol. Conserv. 159, 109–118 (2013).Article
Google Scholar
33.Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Natal dispersal of Eurasian lynx ( Lynx lynx ) in Switzerland. J. Zool. 267, 381 (2005).Article
Google Scholar
34.Andrén, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).Article
Google Scholar
35.Gimenez, O. et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 9, 11707–11715 (2019).PubMed
PubMed Central
Article
Google Scholar
36.Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 94, 73–81 (2013).Article
Google Scholar
37.Weingarth, K. et al. Hide and seek: Extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24, 2935–2952 (2015).Article
Google Scholar
38.Pollock, K. H. A capture–recapture design robust to unequal probability of capture. J. Wildl. Manag. 46, 752 (1982).Article
Google Scholar
39.Augustine, B. benaug/OpenPopSCR. (2019). https://github.com/benaug/OpenPopSCR.40.Ergon, T. & Gardner, B. Separating mortality and emigration: Modelling space use, dispersal and survival with robust-design spatial capture–recapture data. Methods Ecol. Evol. 5, 1327–1336 (2014).Article
Google Scholar
41.Schaub, M. & Royle, J. A. Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models. Methods Ecol. Evol. 5, 1316–1326 (2014).Article
Google Scholar
42.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence diagnosis and output analysis for MCMC. R News 6, 7–11 (2005).
Google Scholar
43.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet
Google Scholar
44.Efford, M. secr 4.1—Spatially explicit capture–recapture in R. (2019). https://cran.microsoft.com/snapshot/2019-12-24/web/packages/secr/vignettes/secr-overview.pdf.45.Burnham, K. P. & Overton, W. S. Robust estimation of population size when capture probabilities vary among animals. Ecology 60, 927–936 (1979).Article
Google Scholar
46.Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model Selection and Multimodel Inference: A Practical Information–Theoretic Approach (Springer, 2002).MATH
Google Scholar
47.O’Brien, T. G. Abundance, density and relative abundance: A conceptual framework. In Camera Traps in Animal Ecology (eds O’Connell, A. F. et al.) 71–96 (Springer Japan, 2011). https://doi.org/10.1007/978-4-431-99495-4_6.Chapter
Google Scholar
48.Rovero, F. & Zimmermann, F. Camera Trapping for Wildlife Research (Pelagic Publishing Ltd, 2016).
Google Scholar
49.Augustine, B. C. et al. Sex-specific population dynamics and demography of capercaillie (Tetrao urogallus L.) in a patchy environment. Popul. Ecol. 62, 80–90 (2020).Article
Google Scholar
50.Duľa, M. et al. Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range. Sci. Rep. 11, 9236 (2021).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
51.Avgan, B., Zimmermann, F., Güntert, M., Arıkan, F. & Breitenmoser, U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildl. Biol. 20, 217–221 (2014).Article
Google Scholar
52.Mengüllüoğlu, D., Ambarlı, H., Berger, A. & Hofer, H. Foraging ecology of Eurasian lynx populations in southwest Asia: Conservation implications for a diet specialist. Ecol. Evol. 8, 9451–9463 (2018).PubMed
PubMed Central
Article
Google Scholar
53.Heurich, M. et al. Activity patterns of Eurasian lynx are modulated by light regime and individual traits over a wide latitudinal range. PLoS ONE 9, e114143 (2014).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
54.Jedrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography 19, 122–138 (1996).Article
Google Scholar
55.Gardner, B., Sollmann, R., Kumar, N. S., Jathanna, D. & Karanth, K. U. State space and movement specification in open population spatial capture–recapture models. Ecol. Evol. 8, 10336–10344 (2018).PubMed
PubMed Central
Article
Google Scholar
56.López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
57.Engleder, T. et al. First breeding record of a 1-year-old female Eurasian lynx. Eur. J. Wildl. Res. 65, 17 (2019).Article
Google Scholar
58.Heurich, M. et al. Selective predation of a stalking predator on ungulate prey. PLoS ONE 11, e0158449 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
59.Andrén, H. & Liberg, O. Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS ONE 10, e0120570 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
60.Elmhagen, B. & Rushton, S. P. Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?. Ecol. Lett. 10, 197–206 (2007).PubMed
Article
Google Scholar
61.Wikenros, C. et al. Fear or food—Abundance of red fox in relation to occurrence of lynx and wolf. Sci. Rep. 7, 9059 (2017).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
62.Helldin, J. O., Liberg, O. & Glöersen, G. Lynx (Lynx lynx) killing red foxes (Vulpes vulpes) in boreal Sweden? Frequency and population effects. J. Zool. 270, 657–663 (2006).Article
Google Scholar
63.Sollmann, R., Mohamed, A., Samejima, H. & Wilting, A. Risky business or simple solution—Relative abundance indices from camera-trapping. Biol. Conserv. 159, 405–412 (2013).Article
Google Scholar
64.Linnell, J. D. C., Kaczensky, P., Wotschikowsky, U., Lescureux, N. & Boitani, L. Framing the relationship between people and nature in the context of European conservation: Relationship between people and nature. Conserv. Biol. 29, 978–985 (2015).PubMed
Article
Google Scholar More