More stories

  • in

    Varying impact of neonicotinoid insecticide and acute bee paralysis virus across castes and colonies of black garden ants, Lasius niger (Hymenoptera: Formicidae)

    1.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253. https://doi.org/10.1038/387253a0 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Hill, D. S. The Economic Importance of Insects (Springer, 2012). https://doi.org/10.1007/978-94-011-5348-5.Book 

    Google Scholar 
    6.Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).Article 

    Google Scholar 
    7.Neumann, P. et al. Ecosystem services, agriculture and neonicotinoids. EASAC Policy Rep. 26, 1–53 (2015).CAS 

    Google Scholar 
    8.Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    9.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).Article 
    PubMed 

    Google Scholar 
    12.Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Chagnon, M. et al. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 22, 119–134. https://doi.org/10.1007/s11356-014-3277-x (2015).CAS 
    Article 

    Google Scholar 
    14.Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102. https://doi.org/10.1007/s11356-014-3471-x (2015).CAS 
    Article 

    Google Scholar 
    15.Stanley, J. & Preetha, G. Pesticide Toxicity to Non-target Organisms (Springer, 2016). https://doi.org/10.1007/978-94-017-7752-0.Book 

    Google Scholar 
    16.Wood, T. J. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x (2017).CAS 
    Article 

    Google Scholar 
    17.Humann-Guilleminot, S. et al. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J. Appl. Ecol. 56, 1502–1514. https://doi.org/10.1111/1365-2664.13392 (2019).CAS 
    Article 

    Google Scholar 
    18.Goulson, D. Review: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).Article 

    Google Scholar 
    19.Hilton, M. J., Jarvis, T. D. & Ricketts, D. C. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).CAS 
    Article 

    Google Scholar 
    21.Li, Y. et al. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere 207, 708–714. https://doi.org/10.1016/j.chemosphere.2018.05.139 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V. L. & Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69. https://doi.org/10.1016/S0048-3575(03)00065-8 (2003).CAS 
    Article 

    Google Scholar 
    23.Straub, L. et al. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. B 283, 20160506. https://doi.org/10.1098/rspb.2016.0506 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Blacquiere, T., Smagghe, G., Van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0890-7 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25Straub, L., Strobl, V. & Neumann, P. The need for an evolutionary approach to ecotoxicology. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1194-6 (2020).Article 
    PubMed 

    Google Scholar 
    26.Wilson, E. O. The Insect Societies (Harvard University Press, 1971).
    Google Scholar 
    27.Schläppi, D., Kettler, N., Straub, L., Glauser, G. & Neumann, P. Long-term effects of neonicotinoid insecticides on ants. Commun. Biol. 3, 335. https://doi.org/10.1038/s42003-020-1066-2 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Schläppi, D., Stroeymeyt, N. & Neumann, P. Unintentional effects of neonicotinoids on ants (Hymenoptera: Formicidae). Myrmecological News, in press.29Straub, L., Williams, G. R., Pettis, J., Fries, I. & Neumann, P. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12, 109–112. https://doi.org/10.1016/j.cois.2015.10.010 (2015).Article 

    Google Scholar 
    30.Cremer, S. Social immunity in insects. Curr. Biol. 29, R458–R463. https://doi.org/10.1016/j.cub.2019.03.035 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Straub, L. et al. From antagonism to synergism: extreme differences in stressor interactions in one species. Sci. Rep. 10, 1–8. https://doi.org/10.1038/s41598-020-61371-x (2020).CAS 
    Article 

    Google Scholar 
    32.Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686. https://doi.org/10.1126/science.aat1598 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990). https://doi.org/10.1046/j.1420-9101.1992.5010169.x.Book 

    Google Scholar 
    34.Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).
    Google Scholar 
    35.Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958. https://doi.org/10.1038/40130 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    36Bird, G., Wilson, A. E., Williams, G. R. & Hardy, N. B. Parasites and pesticides act antagonistically on honey bee health. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13811 (2020).Article 

    Google Scholar 
    37.Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Ranjeva, S. et al. Age-specific differences in the dynamics of protective immunity to influenza. Nat. Commun. 10, 1–11. https://doi.org/10.1038/s41467-019-09652-6 (2019).CAS 
    Article 

    Google Scholar 
    39.Dahlgren, L., Johnson, R. M., Siegfried, B. D. & Ellis, M. D. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J. Econ. Entomol. 105, 1895–1902. https://doi.org/10.1603/EC12175 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    40O’Neal, T. S., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).Article 
    PubMed 

    Google Scholar 
    41.Feldhaar, H. & Otti, O. Pollutants and their interaction with diseases of social hymenoptera. Insects 11, 153. https://doi.org/10.3390/insects11030153 (2020).Article 
    PubMed Central 

    Google Scholar 
    42.Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. & Paxton, R. J. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983. https://doi.org/10.1111/1462-2920.12426 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides?—a brief review. Environ. Int. 89, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Annoscia, D. et al. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7. https://doi.org/10.1038/s41467-020-19715-8 (2020).CAS 
    Article 

    Google Scholar 
    45.Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. 110, 18466–18471. https://doi.org/10.1073/pnas.1314923110 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Coulon, M. et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE 14, e0220703. https://doi.org/10.1371/journal.pone.0220703 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Brandt, A. et al. Immunosuppression in honeybee queens by the neonicotinoids thiacloprid and clothianidin. Sci. Rep. 7, 4673. https://doi.org/10.1038/s41598-017-04734-1 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Beaurepaire, A. et al. Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects 11, 239. https://doi.org/10.3390/insects11040239 (2020).Article 
    PubMed Central 

    Google Scholar 
    49.Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597. https://doi.org/10.1126/science.aac9976 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Neumann, P., Yañez, O., Fries, I. & De Miranda, J. R. Varroa invasion and virus adaptation. Trends Parasitol. 28, 353–354. https://doi.org/10.1016/j.pt.2012.06.004 (2012).Article 
    PubMed 

    Google Scholar 
    52.Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244. https://doi.org/10.1016/j.tree.2005.02.009 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624. https://doi.org/10.1111/1365-2656.12345 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Tehel, A., Brown, M. J. & Paxton, R. J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19, 16–22. https://doi.org/10.1016/j.coviro.2016.06.006 (2016).Article 
    PubMed 

    Google Scholar 
    56Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Ann. Rev. Virol. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).Article 

    Google Scholar 
    57.Schläppi, D., Lattrell, P., Yañez, O., Chejanovsky, N. & Neumann, P. Foodborne transmission of deformed wing virus to ants (Myrmica rubra). Insects 10, 394. https://doi.org/10.3390/insects10110394 (2019).Article 
    PubMed Central 

    Google Scholar 
    58.Schläppi, D., Chejanovsky, N., Yañez, O. & Neumann, P. Foodborne Transmission and clinical symptoms of honey bee viruses in ants Lasius spp. Viruses 12, 321. https://doi.org/10.3390/v12030321 (2020).Article 
    PubMed Central 

    Google Scholar 
    59.Seifert, B. Die Ameisen Mittel- und Nordeuropas (Lutra Verlags und Vertriebsgesellschaft, 2007).
    Google Scholar 
    60.Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci. Rep. 10, 2923. https://doi.org/10.1038/s41598-020-59712-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Kutter, H. & Stumper R. Hermann Appel, ein leidgeadelter Entomologe (1892–1966). in Proceedings of the VI Congress of the International Union for the Study of Social Insects (eds Ernst, E., Frauchiger, L., Hauschteck-Jungen, E., Jungen, H., Leuthold, R., Maurizio, A., Ruppli, E. & Tschumi, P.), 275–279 (Organizing Committee of the VI Congress IUSSI, Bern, 1969).62.Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908. https://doi.org/10.1021/jf101303g (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Limay-Rios, V. et al. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. Environ. Toxicol. Chem. 35, 303–310. https://doi.org/10.1002/etc.3257 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Schaafsma, A., Limay-Rios, V., Xue, Y., Smith, J. & Baute, T. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem. 35, 295–302. https://doi.org/10.1002/etc.3231 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.De Miranda, J. R., Cordoni, G. & Budge, G. The acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. J. Invertebr. Pathol. 103, 30–47. https://doi.org/10.1016/j.jip.2009.06.014 (2010).CAS 
    Article 

    Google Scholar 
    66Decourtye, A. & Devillers, J. Ecotoxicity of neonicotinoid insecticides to bees. In Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) 85–95 (Springer, 2010).Chapter 

    Google Scholar 
    67.Diez, L., Lejeune, P. & Detrain, C. Keep the nest clean: survival advantages of corpse removal in ants. Biol. Let. 10, 20140306. https://doi.org/10.1098/rsbl.2014.0306 (2014).Article 

    Google Scholar 
    68.Wang, L., Zeng, L. & Chen, J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci. Rep. 5, 17938. https://doi.org/10.1038/srep17938 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Moya-Laraño, J., Macías-Ordóñez, R., Blanckenhorn, W. U. & Fernández-Montraveta, C. Analysing body condition: mass, volume or density?. J. Anim. Ecol. 77, 1099–1108. https://doi.org/10.1111/j.1365-2656.2008.01433.x (2008).Article 
    PubMed 

    Google Scholar 
    70Knapp, M., Knappová, J. & Miller, T. Measurement of body condition in a common carabid beetle, Poecilus cupreus: a comparison of fresh weight, dry weight, and fat content. J. Insect Sci. https://doi.org/10.1673/031.013.0601 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Retschnig, G. et al. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera). PLoS ONE 9, e85261. https://doi.org/10.1371/journal.pone.0085261 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Suchail, S., Guez, D. & Belzunces, L. P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. Int. J. 20, 2482–2486. https://doi.org/10.1002/etc.5620201113 (2001).CAS 
    Article 

    Google Scholar 
    73.Helms, K. R. & Vinson, S. B. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 37, 487–493. https://doi.org/10.1093/ee/37.2.487 (2008).Article 
    PubMed 

    Google Scholar 
    74.Dornhaus, A. & Franks, N. R. Colony size affects collective decision-making in the ant Temnothorax albipennis. Insectes Soc. 53, 420–427. https://doi.org/10.1007/s00040-006-0887-4 (2006).Article 

    Google Scholar 
    75.Ruel, C., Cerda, X. & Boulay, R. Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim. Behav. 84, 853–860. https://doi.org/10.1016/j.anbehav.2012.07.006 (2012).Article 

    Google Scholar 
    76.Sommer, K. & Hölldobler, B. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav. 50, 287–294. https://doi.org/10.1006/anbe.1995.0244 (1995).Article 

    Google Scholar 
    77Boomsma, J., Van der Lee, G. & Van der Have, T. On the production ecology of Lasius niger (Hymenoptera: Formicidae) in successive coastal dune valleys. J. Anim. Ecol. https://doi.org/10.2307/4017 (1982).Article 

    Google Scholar 
    78.Zioni, N., Soroker, V. & Chejanovsky, N. Replication of varroa destructor virus 1 (VDV-1) and a varroa destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology 417, 106–112. https://doi.org/10.1016/j.virol.2011.05.009 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    79.Wood, T. et al. Managed honey bees as a radar for wild bee decline?. Apidologie 51, 1100–1116. https://doi.org/10.1007/s13592-020-00788-9 (2020).Article 

    Google Scholar 
    80.Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945. https://doi.org/10.1126/science.aat4793 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    81.Folt, C., Chen, C., Moore, M. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877. https://doi.org/10.4319/lo.1999.44.3_part_2.0864 (1999).ADS 
    Article 

    Google Scholar 
    82.Gennings, C. et al. A unifying concept for assessing toxicological interactions: changes in slope. Toxicol. Sci. 88, 287–297. https://doi.org/10.1093/toxsci/kfi275 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Jonker, M. J., Svendsen, C., Bedaux, J. J., Bongers, M. & Kammenga, J. E. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ. Toxicol. Chem. Int. J. 24, 2701–2713. https://doi.org/10.1897/04-431R.1 (2005).CAS 
    Article 

    Google Scholar 
    84.Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inadequate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177. https://doi.org/10.3389/fenvs.2019.00177 (2019).Article 

    Google Scholar 
    85.Ortega-Calvo, J.-J. et al. From bioavailability science to regulation of organic chemicals. Environ. Sci. Technol. 49, 10255–10264. https://doi.org/10.1021/acs.est.5b02412 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    86.Dauber, J. & Wolters, V. Edge effects on ant community structure and species richness in an agricultural landscape. Biodivers. Conserv. 13, 901–915. https://doi.org/10.1023/B:BIOC.0000014460.65462.2b (2004).Article 

    Google Scholar 
    87.EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non‐target arthropods. EFSA Journal 13, 3996 (2015). https://doi.org/10.2903/j.efsa.2015.399688.EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA Journal 15, 4690. https://doi.org/10.2903/j.efsa.2017.4690 (2017).89.Organization for Economic Cooperation and Development (OECD). OECD Guidelines for the Testing of Chemicals, section 2—Effects on Biotic Systems. (OECD Publishing, 2019).90.Storck, V., Karpouzas, D. G. & Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 575, 1027–1033. https://doi.org/10.1016/j.scitotenv.2016.09.167 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    91.De Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56. https://doi.org/10.3896/IBRA.1.52.4.22 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Evans, J. D. et al. Standard methods for molecular research in Apis mellifera. J. Apic. Res. 52, 1–54. https://doi.org/10.3896/IBRA.1.52.4.11 (2013).CAS 
    Article 

    Google Scholar 
    93.Lowenthal, M. S., Quittman, E. & Phinney, K. W. Absolute quantification of RNA or DNA using acid hydrolysis and mass spectrometry. Anal. Chem. 91, 14569–14576. https://doi.org/10.1021/acs.analchem.9b03625 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Locke, B., Forsgren, E., Fries, I. & De Miranda, J. R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl. Environ. Microbiol. 78, 227–235. https://doi.org/10.1128/AEM.06094-11 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.R Development Core Team. R: A language and environment for statistical computing. R Version 3.6.3. R Foundation for Statistical Computing (Vienna, 2020). http://cran.r-project.org.96.Therneau, T. A Package for Survival Analysis in S. version 2.38 (2015). http://cran.rproject.org/package=survival97.Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models Vol. 5 (McGraw-Hill Irwin, 2005).
    Google Scholar 
    98.Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. in Proceedings of the SIGCHI conference on human factors in computing systems (eds. Tan, D., Fitzpatrick, G., Gutwin, C., Begole, B. & Kellogg, W. A.), 143–146, doi:https://doi.org/10.1145/1978942.1978963 (Association for Computing Machinery, New York, United States, 2011)99.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar  More

  • in

    Bacterial structure and dynamics in mango (Mangifera indica) orchards after long term organic and conventional treatments under subtropical ecosystem

    Bacterial strains isolation and identificationFifty six bacterial cultures were isolated from both management systems (G1 and G2) of mango orchards (rhizosphere) at CISH, Lucknow, India. Isolation of microorganisms using spread plate methods revealed that the Nutrient agar medium had the highest number of colony appearances compared to the Rose Bengal Agar medium. Microbial enumeration showed organic system enriched with higher bacterial and fungal population than conventional system (Fig. 1). From organic system, thirty seven bacteria were isolated out of which, twenty-three isolates were (G+), and fourteen were (G−). While, in the conventional system, nineteen bacteria were isolated, out of which fifteen were (G+) and four were (G−) isolates.Figure 1Comparative microbial enumeration of organic and conventional treated mango rhizosphere soil the CFU mL−1 of selected samples showing growth of fungus and bacterial populations under two different treatments i.e. organic and conventional. The results are the average of five replicates (n = 5), with bars representing standard error. Significant differences based on the analysis variance (ANOVA) are shown by different letters above the error bars, followed by the post hoc DMRT test (p ≤ 0.05) using the software SPSS.Full size imagePlant growth promotion propertiesFor plant growth promotory properties out of fifty-six bacterial isolates total, ten bacterial cultures (2, 3, 4, 8, 15, 23 and 31) from the organic system showed positive results for phosphate solubilization. In contrast, three bacterial cultures (I1, I8 and I9) from the inorganic system (conventional system) showed positive phosphate solubilization in Pikovaskya’s agar medium. For siderophore production, bacterial cultures (2, 3, 4, 8, 12 and 26) from the organic system showed positive results, while four bacterial cultures (I1, I6, I8 and I9) inorganic system showed positive results. Bacterial cultures (2, 3, 4 and 8) from the organic system showed positive results for K-solubilization, while five bacterial cultures (I1, I2, I7, I8 and I9) from the inorganic system showed positive K-solubilization. A total of ten isolates (7 from organic and 3 from the inorganic system) possessed Zn-solubilizing activity. The test isolated from the organic system showed better Zn (ZnO), Zn3 (PO4)2, and (ZnCO3) solubilization as compared to test culture isolated from the inorganic system (Supplementary S1.8).Acetylene reduction assay (ARA)Results from acetylene reduction assay showed in aerophilic condition, bacterial isolates 1, 3, 4 (from organic treated soil) and I1, I8 and I9 (conventional system) showed 134.8, 37.70, 36.73, 13.15, 16.70 and 12.87 ppm of ethylene tube−1 h−1, respectively. In case of microaerophilic condition, bacterial isolates 4, 9, I9 showed 24.17, 19.14, and 12.71 ppm ethylene, respectively. Results indicate possible use of these bacterial isolates as a bioinoculant agent for horticultural crops, especially mango and other subtropical climate fruit crops.Soil enzymatic studyThe soil enzymatic activity in the organic system (G1) showed better dehydrogenase activity than the conventional system (G2). For both methods, alkaline phosphatase almost showed similar activity (at pH 11), while in the case of acid phosphatase showed better activity in the inorganic system (G2) as compared to the organic system (G1) at pH level 6.5 (Fig. 2). The dehydrogenase enzyme oxidizes the organic matter, and it belongs to the oxidoreductase type of enzyme. In the process of respiration of soil microorganisms, the dehydrogenase enzyme facilitates the transfer of protons and electrons from the substrate to the acceptor. It was significant to observe that the dehydrogenase activity was higher in organic treated soils (0.784 µg TPF g−1 h−1) than in conventional system (0.053 µg TPF g−1 h−1).Figure 2Comparative soil enzymes activities of conventional and organic treated mango rhizosphere soil the dehydrogenase, acid phosphatase and alkaline phosphatase activities were showing in µg TPF formed g−1 of soil h−1 and µg PNP g−1 soil h−1 respectively. The results are the average of five replicates (n = 5), with bars representing standard error. Significant differences based on the analysis variance (ANOVA) are shown by different letters above the error bars, followed by the post hoc DMRT test (p ≤ 0.05) using the software SPSS.Full size imageAlpha biodiversity with samples and rarefaction curvesIn this segment, by measuring Shannon, Chao1, and observed species metrics, we analyze the microbial diversity within the samples. The chao1 metric measures the richness of the ecosystem, while the Shannon metric is the formula for calculating reported OTU abundances and accounts for both prosperity and equality. The rarefaction curve is provided in Fig. 3 for each metric. Using QIIME software, the metric measurement was done. The impact of both treatments on the microbial complexity and abundance in the sample was also revealed using the Shannon diversity Index (depicting richness and evenness) and Chao 1 representing only richness. Shannon’s diversity index of the bacterial community in the treatment (G1 and G2) was 8.06 and 8.12. The Simpson index in ecology is used to quantify biological diversity in a region, which was also nearly similar in both the treatments. Chao 1 richness estimator showed an increase in species richness. Rarefaction analysis conducted to confirm species richness revealed a difference in the number of reads and OTUs between the samples. The Rare fraction curve had a similar pattern for both samples and showed an impact on the bacterial population in the experiment (Fig. 3a–c).Figure 3Shanon (a), Chao1 (b) curves and observed species (c) obtained for the samples (G1 and G2).Full size imageBacterial diversity analysis at phyla levelTaxonomic study of the 16S rRNA gene amplicon reads yielded seven classifiable bacterial phyla. Six phyla, namely Acidobacteria, Actinobacteria, Bacteroides, Proteobacteria, Firmicutes, and Chloroflexi were dominant in both the systems. The Organically treated soil (G1) sample harbored a higher percentage of Bacteroidetes (14.55%), Actinobacteria (7.45%), and Proteobacteria (10.82%) as compared to conventional treatment (G2) 8.98%, 5.71%, and 6.64%, respectively. However, phylum Acidobacteria(13.6%), Firmicutes(4.84%), and Chloroflexi (2.56) were higher abundance in conventional treatment as compared to the organic treatment, which showed the same phyla with lesser quantity, i.e., 5.63%, 0.91%, and 0.79% respectively (Fig. 4a).Figure 4Comparative microbiome (a-phylum and b-order) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 region) approach.Full size imageDistribution of bacterial community at order levelThe bacterial orders in both systems were diversified. The most abundant orders in organic and conventional systems were Chitinophagales (Organic-11.32%, Conventional-43%), Elev-16S-573 (Organic-3.09%, Conventional-8.69%), Pedosphaerales (Organic-1.56%, Conventional-3.55%), Opitutales (Organic-2.46%, Conventional-0.27%), Chthoniobacterales (Organic-1.35%, Conventional-2.84%), Bacillales (Organic-0.91%, Conventional-4.84%) and Solibacterales (Organic-1.39%, Conventional-2.26%) (Fig. 4b).Bacterial community distribution at family levelBacterial family members were identified and enriched including Pedosphaeraceae (O-1.56%, C-3.55%), Opitutaceae (O-2.46%, C-0.27%), Chthoniobacteraceae (O-1.03%, C-2.68%), Steroidobacteraceae (O-2.05%, C-0.73%), Bacillaceae (O-0.77%, C-4.55%), Chitinophagaceae (O-10.99%, C-5.06%), and Xanthomonadaceae (O-1.39%, C-0.06%) and other families (Fig. 5a).Figure 5Comparative microbiome (a-family and b-genus) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 region) approach.Full size imageBacterial community distribution at the genus levelComparative abundance of unidentified genus in organic system were uncultured soil bacterium, Glycomyces, Chitinophaga, Lysobacter, Udaeobacter, Bacillus (not detected, 1.85%, 4.77%, 1.19%,1.03% and 0.75% respectively) whereas same genus-group were observed in conventional system with different percentage i.e., 0.11%, not detected, 0.56%, 0.04%, 2.67%, 4.54% respectively (Fig. 5b).Bacterial communities at species levelBecause most of the species were unidentified and uncultured bacterium based on relative abundance, they could not be assigned a species name in either sample. Few species are identified in both systems, like Sphingomonas sp. (O-1.57%, C-1.05%), Bacillus drentensis (O-0.25%, C-2.65%), and Chitinophaga sp. (O-4.64%, C-0.11%) (Fig. 6).Figure 6Comparative microbiome (Species) analysis of organic (G1) and conventional (G2) treated mango orchards soil by using metagenomic (V3 and V4 regions) approach.Full size imageHeat map and PCA analysisUnder long-term exposure of organic and conventional treatments, a microbial shift was observed in the rhizosphere microbiome of mango orchards. Based on percent abundance, nine different microbial genera Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria formed Cluster I. While, Firmicutes, Chloroflexi and Opitutales were abundances in cluster II. Cluster III includes Chitinobacterales, Bacillales, Chitinophagarales and Otherales genera. Whereas cluster IV (Elev7-16S-573, Otherales, Solibacterales and Pedobacteriaceae), cluster V (Opitutaceae, Chitnobacteraceae, Bacillaceae, Chitinophagaceae and Otherales), cluster VI (Xanthomonadaceae, Uncultured soil bacterium, Candidatus-Udaeobacter, Lysobacter and Bacillus), cluster VII (Chitinophaga, Glycomyces and Other), cluster VIII (Uncultured bacterium and Others) and cluster IX (Bacillus drentensis and Others) (Fig. 7). The cluster I observed with the highest abundance was closely related to clusters II and III. Cluster IV to IX created large groups and is distantly related to cluster I to III of the microbial groups in organic and conventional systems (Fig. 7). In the organic system (G1), microbial groups like Proteobacteria, Actinobacteria, Bacteroidetes, and Opitutaceae were largely dominated and provided benefits to the mango rhizosphere in terms of nutrient availability, plant growth promotion, and protection against biotic and abiotic stress. Phylum Proteobacteria and Actinobacteria are closely linked with the rhizosphere and identified as potential PGPR. Acidobacteria and firmicutes, on the other hand, were dominated primarily by conventional systems and serve as a bio-indicator of anthropogenic stress caused by excessive chemical fertilizer application. Undefined Acidobacteria is oligotrophic in nature and considered as an indicator of low organic carbon and acidic environment. To desire higher productivity, the indiscriminate use of chemical fertilizers or pesticides in conventional systems leads to low nutrient availability, microbial shift, less PGPR, and developing the environment for Acidobacteria, Firmicutes and Chloroflexia group of microorganisms. Principal component analysis (PCA) was performed for both systems (organic-component 1; conventional-component 2). The total variables of principal component analysis were the percentage of different parameters such as alkaline phosphatase, acid phosphatase, DHA, Acetylene reduction assay (ARA1, ARA2, ARA3), and CFU mL−1 (bacteria and fungi). The results of PCA yielded two components that explained 100% of the total variance in the data and had an Eigen value of 6.1 for component 1. In contrast, 1.8 for component 2 and together they described 100% of the total variance in the data (Fig. 8). In the organic system, the loading factor with score plot indicates that component-1 is positively associated with DHA, ARA1, ARA2, alkaline phosphatase, acid phosphatase while negatively correlated with CFU ARA3 activity. Component-1 explains the 76.42% variance of the experimental data, while component-2 explains 23.58%. The second component (PC2) represents the positive association with DHA, ARA1, ARA2, ARA3 activity, and CFU while negatively correlated with alkaline phosphatase and acid phosphatase. In the conventional system, the loading factor with score plot indicates that component-1 is positively associated with single variable acid phosphatise while negatively correlated with DHA, ARA1, ARA2, ARA3, CFU, and alkaline phosphatase activity. The second component (PC2) of the conventional system showed positive association with DHA, ARA1, ARA2, ARA3 activity, and CFU, while the negative association with alkaline phosphatase and acid phosphatase.Figure 7Comparative (G1 organic and G2 conventional) heat map of dominant microbial diversity and their clusters in terms of T1 (phylum), T2 (order), T3 (family), T4 (Genus) and T5 (Species).Full size imageFigure 8PCA analysis of different parameters for organic and conventional systems.Full size image More

  • in

    The changing face of floodplains in the Mississippi River Basin detected by a 60-year land use change dataset

    1.Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. In D. P. Dodge [ed.] Proceedings of the International Large River Symposium, Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110-127 https://www.waterboards.ca.gov/waterrights//water_issues/programs/bay_delta/docs/cmnt081712/sldmwa/junketal1989.pdf (1989).2.Karpack, M. N., Morrison, R. R. & McManamay, R. A. Quantitative assessment of floodplain functionality using an index of integrity. Ecological Indicators 111, 106051, https://doi.org/10.1016/j.ecolind.2019.106051 (2020).Article 

    Google Scholar 
    3.Costanza, R. et al. Changes in the global value of ecosystem services. Global Environmental Change 26, 152–158, https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    4.Wohl, E., Lane, S. N. & Wilcox, A. C. The science and practice of river restoration. Water Resources Research 51, 5974–5997, https://doi.org/10.1002/2014WR016874 (2015).ADS 
    Article 

    Google Scholar 
    5.Hamilton, S. K. Wetlands of Large Rivers: Flood plains. Encyclopedia of Inland Waters 607-610 https://doi.org/10.1016/B978-012370626-3.00065-X (2009).6.Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically functional floodplains: connectivity, flow regime, and scale. Journal of the American Water Resources Association 46, 211–226, https://doi.org/10.1111/j.1752-1688.2010.00426.x (2010).ADS 
    Article 

    Google Scholar 
    7.Waltham, N. J. et al. Lost floodplain wetland environments and efforts to restore connectivity, habitat, and water quality settings on the great barrier reef. Front. Mar. Sci. 6, 71, https://doi.org/10.3389/fmars.2019.00071 (2019).Article 

    Google Scholar 
    8.Tockner, K. & Stanford, J. A. Review of: riverine flood plains: present state and future trends. Biological Sciences Faculty Publications 29, 166 https://scholarworks.umt.edu/biosci_pubs/166 (2002).9.Erwin, K. L. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17, 71, https://doi.org/10.1007/s11273-008-9119-1 (2009).Article 

    Google Scholar 
    10.Johnson, K. A. et al. A benefit-cost analysis of floodplain land acquisition for US flood damage reduction. Nat Sustain 3, 56–62, https://doi.org/10.1038/s41893-019-0437-5 (2019).Article 

    Google Scholar 
    11.Quinn, N. et al. The spatial dependence of flood hazard and risk in the United States. Water Resources Research 55, 1890–1911, https://doi.org/10.1029/2018WR024205 (2019).ADS 
    Article 

    Google Scholar 
    12.Pinter, N. One step forward, two steps back on U.S. floodplains. Science 308(5719), 207–208 https://science.sciencemag.org/content/308/5719/207 (2005).13.Kousky, C. & Walls, M. Floodplain conservation as a flood mitigation strategy: examining costs and benefits. Ecological Economics 104, 119–128, https://doi.org/10.1016/j.ecolecon.2014.05.001 (2014).Article 

    Google Scholar 
    14.Tullos, D. Opinion: how to achieve better flood-risk governance in the United States. Proceedings of the National Academy of Sciences of the United States of America 115(15), 3731–3734, https://doi.org/10.1073/pnas.1722412115 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Kundzewicz, Z. W., Hegger, D. L. T., Matczak, P. & Driessen, P. P. J. Opinion: flood-risk reduction: structural measures and diverse strategies. Proceedings of the National Academy of Sciences of the United States of America 115(49), 12321–12325, https://doi.org/10.1073/pnas.1818227115 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Lambin, E. F., Geist, H. J. & Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28, 205–241, https://doi.org/10.1146/annurev.energy.28.050302.105459 (2003).Article 

    Google Scholar 
    17.Entwistle, N. S., Heritage, G. L., Schofield, L. A. & Williamson, R. J. Recent changes to floodplain character and functionality in England. Catena 174, 490–498, https://doi.org/10.1016/j.catena.2018.11.018 (2019).Article 

    Google Scholar 
    18.Dewan, A. M. & Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied Geography 29, 390–401, https://doi.org/10.1016/j.apgeog.2008.12.005 (2009).Article 

    Google Scholar 
    19.Amoateng, P., Finlayson, C. M., Howard, J. & Wilson, B. Dwindling rivers and floodplains in Kumasi, Ghana: a socio-spatial analysis of the extent and trend. Applied Geography 90, 82–95, https://doi.org/10.1016/j.apgeog.2017.11.007 (2018).Article 

    Google Scholar 
    20.Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Jr. Gulf of Mexico hypoxia, a.k.a. “the dead zone. Annual Review of Ecology and Systematics 33, 235–263, https://doi.org/10.1146/annurev.ecolsys.33.010802.150513 (2002).Article 

    Google Scholar 
    21.Wohl, E. An integrative conceptualization of floodplain storage. Reviews of Geophysics 59, e2020RG000724, https://doi.org/10.1029/2020RG000724 (2021).ADS 
    Article 

    Google Scholar 
    22.Scott, D. T., Gomez-Velez, J. D., Jones, C. N. & Harvey, J. W. Floodplain inundation spectrum across the United States. Nat. Commun. 10, 5194, https://doi.org/10.1038/s41467-019-13184-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Hattermann, F. F. et al. Climatological drivers of changes in flood hazard in Germany. Acta Geophysica 61, 463–477, https://doi.org/10.2478/s11600-012-0070-4 (2013).ADS 
    Article 

    Google Scholar 
    24.Mallakpour, I. & Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change 5, 250–254, https://doi.org/10.1038/nclimate2516 (2015).ADS 
    Article 

    Google Scholar 
    25.Corvalán, C., Hales, S., McMichael, A. J., Millennium Ecosystem Assessment (Program), & World Health Organization (Eds.). Ecosystems and human well-being: Health synthesis (World Health Organization, 2005).26.Enhancing Restoration and advancing knowledge of the upper Mississippi river: a strategic plan for the upper Mississippi river restoration program 2015-2025. https://www.umesc.usgs.gov/ltrmp/documents/umrr_strategic_plan_jan2015.pdf (USGS, 2015).27.Nardi, F., Annis, A., Di Baldassarre, G., Vivoni, E. R. & Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Scientific Data 6, 180309, https://doi.org/10.1038/sdata.2018.309 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Sohl, T. L. et al. Modeled historical land use and land cover for the conterminous United States: 1938-1992. U.S. Geological Survey data release https://doi.org/10.5066/F7KK99RR (2018).29.Sohl, T.L. et al. Conterminous United States land cover projections – 1992 to 2100. U.S. Geological Survey data release https://doi.org/10.5066/P95AK9HP (2018).30.Leopold, L. B., & Maddock, T. The hydraulic geometry of stream channels and some physiographic implications. (U.S. Geological Survey, 1953)31.Nardi, F., Vivoni, E. R. & Grimaldi, S. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research 42(9), https://doi.org/10.1029/2005WR004155 (2006).32.Di Baldassarre, G. et al. Brief communication: comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping. Nat. Hazards Earth Syst. Sci. 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020 (2020).ADS 
    Article 

    Google Scholar 
    33.Homer, C. et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019 (2020).ADS 
    Article 

    Google Scholar 
    34.Yang, L. et al. A new generation of the United States national land cover database: requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing 146, 108–123, https://doi.org/10.1016/j.isprsjprs.2018.09.006 (2018).ADS 
    Article 

    Google Scholar 
    35.Jin, S. et al. Overall methodology design for the United States National Land Cover Database 2016 products. Remote Sensing 11, 2971, https://doi.org/10.3390/rs11242971 (2019).ADS 
    Article 

    Google Scholar 
    36. USDA Census of Agriculture Historical Archive http://agcensus.mannlib.cornell.edu/AgCensus/homepage.do;jsessionid=17C0132051BEB31DF79D01B0D07300F2 (US Department of Agriculture, 2007).37.Sleeter, B. M. et al. Land-cover change in the conterminous United States from 1973 to 2000. Global Environmental Change 23(4), 733–748, https://doi.org/10.1016/j.gloenvcha.2013.03.006 (2013).Article 

    Google Scholar 
    38.Cao, Y. et al. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling. Geosci. Model Dev. 10(9), 3425–3440, https://doi.org/10.5194/gmd-10-3425-2017 (2017).ADS 
    Article 

    Google Scholar 
    39.Piwowar, J. M., Ledrew, E. F. & Dudycha, D. J. Integration of spatial data in vector and raster formats in a geographic information system environment. International Journal of Geographical Information Systems 4, 429–444, https://doi.org/10.1080/02693799008941557 (2007).Article 

    Google Scholar 
    40.Croissant, C. Landscape patterns and parcel boundaries: an analysis of composition and configuration of land use and land cover in south-central Indiana. Agriculture Ecosystems and Environment 101, 219–232, https://doi.org/10.1016/j.agee.2003.09.006 (2004).Article 

    Google Scholar 
    41.LaGro Jr., J. A. Land-use Classification (Elsevier Press, 2005).42.Kutcher T. E. et al. Habitat and Land Cover Classification Scheme for the National Estuarine Research Reserve System. (National Estuarine Research Reserve System, 2008).43.Buskey, E. J. et al. in System-wide monitoring program of the national estuarine research reserve System: research and monitoring to address coastal management issues Chapter 21 (Academic Press, 2015).44.Feng, C.-C. & Flewelling, D. M. Assessment of semantic similarity between land use/land cover classification systems. Computers, Environment and Urban Systems 28(3), 229–246, https://doi.org/10.1016/S0198-9715(03)00020-6 (2004).Article 

    Google Scholar 
    45.Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A. & Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resources Research 51, 6649–6671, https://doi.org/10.1002/2015WR017637 (2015).ADS 
    Article 

    Google Scholar 
    46.Biondini, M. & Kandus, P. Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands 26, 981–991, https://link.springer.com/article/10.1672/0277-5212(2006)26[981:TMAOLC]2.0.CO;2#citeas (2006).47.Hu, Y., Batunacun, Zhen, L. & Zhuang, D. Assessment of land-use and land-cover change in Guangxi, China. Sci Rep. 9, 2189, https://doi.org/10.1038/s41598-019-38487-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability 3, 564–570, https://doi.org/10.1038/s41893-020-0521-x (2020).Article 

    Google Scholar 
    49.Teferi, E., Bewket, W., Uhlenbrook, S. & Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: spatially explicit statistical modeling of systematic transitions. Agriculture, ecosystems & environment 165(15), 98–117, https://doi.org/10.1016/j.agee.2012.11.007 (2013).Article 

    Google Scholar 
    50.Yu, Z., Guo, X., Zeng, Y., Koga, M. & Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: the case of Fuzhou city, China. Urban forestry & urban greening 29, 113–121, https://doi.org/10.1016/j.ufug.2017.11.008 (2018).Article 

    Google Scholar 
    51.Yuan, F., Sawaya, K. E., Loeffelholz, B. C. & Bauer, M. E. Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment 98, 317–328, https://doi.org/10.1016/j.rse.2005.08.006 (2005).ADS 
    Article 

    Google Scholar 
    52.Yuh, Y. G. et al. Effects of land cover change on great apes distribution at the Lobéké National Park and its surrounding forest management units, south-east Cameroon. A 13 year time series analysis. Sci. Rep. 9, 1445, https://doi.org/10.1038/s41598-018-36225-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Zhao, J., Yang, Y., Zhao, Q. & Zhao, Z. Effects of ecological restoration projects on changes in land cover: a case study on the Loess Plateau in China. Sci. Rep. 7, 44496, https://doi.org/10.1038/srep44496 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Rajib, A. et al. Land Use Changes in The Mississippi River Basin Floodplains: 1941 to 2000 (version 1). HydroShare https://doi.org/10.4211/hs.41a3a9a9d8e54cc68f131b9a9c6c8c54 (2021).55.Annis, A., Nardi, F., Morrison, R. R. & Castelli, F. Investigating hydrogeomorphic floodplain mapping performance with varying DTM resolution and stream order. Hydrological Sciences Journal 64(5), 525–538, https://doi.org/10.1080/02626667.2019.1591623 (2019).Article 

    Google Scholar 
    56.Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources 94, 87–102, https://doi.org/10.1016/j.advwatres.2016.05.002 (2016).ADS 
    Article 

    Google Scholar 
    57.Scheel, K., Morrison, R. R., Annis, A. & Nardi, F. Understanding the large-scale influence of levees on floodplain connectivity using a hydrogeomorphic approach. Journal of the American Water Resources Association 55(2), 413–429, https://doi.org/10.1111/1752-1688.12717 (2019).ADS 
    Article 

    Google Scholar 
    58. Climate Change Initiative (CCI) Land Cover products http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2018).59. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).60.Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Soil organic matter and clay zeta potential influence aggregation of a clayey red soil (Ultisol) under long-term fertilization

    Influence of soil organic matter on zeta potentialIn this study, the zeta potential of a clayey red soil was compared among 4 types of long-term treatments including manure, NPK + straw, NPK and CK in a subtropical climate. Generally, the manure treatment which also had the greatest concentration of SOC resulted in the highest clay zeta potential (less intense charge imbalance), while NPK + straw did not result in the second highest zeta potential as expected compared to the NPK and CK treatments. Variation in clay zeta potential among types of fertilization might be related with their different SOM content, because SOM had an influence on the zeta potentials via affecting the negative charges of soils19. The zeta potential of manure and NPK + straw treatments having high SOC agreed with earlier studies in Marchuk et al.9 that decreases of SOC via NaOH treatments decreased the negative zeta potential value9, where Claremont soil originally having high SOC (2.2%) displayed a greater degree of decline in negative zeta potential (from − 29 to − 34.9 mV) than Urrbrae having lower SOC (1.4%) (− 66.3 to − 68 mV). However, zeta potential in water dispersible clay responded to SOC contrastly in the study of Melo et al.12 , where Londrina soil with high SOC (5–20 g kg−1) displayed lower negative zeta potential values in water dispersible clay than that in Rondon soil (SOC 5 to 12 g kg−1) in subtropical Brazil.Differences of SOC effect on zeta potential in our study and other studies were probably because ionic strength in bulk solution also affected the intensity of soil charge imbalance. Generally, in tropical and subtropical Ferralsols, high amounts of SOM that was released following the breakdown of macroaggregate provided an excess of negative charges and intensified the imbalance in charge, resulting in more negative in zeta potential of clay12. In contrast to Ferralsols in Brazil, red soil (highly-weathered) in our study showed higher negative zeta potential in manure soils with higher SOM. This was because high ionic strength in bulk solution might counterbalance the negative charges from SOM, and attenuated the imbalance in charges. Hence, manure treatment which provided greater EC and Ca2+, Mg2+ concentration and possibly higher ionic strength was reasonable to allow for more charge balance and greater negative zeta potential values than other treatment.In this study, NPK + straw treatment exhibited similar negative zeta potential values as that in NPK but slightly lower than manure, probably due to the effect of SOM functional group from straw and soil solution concentration. Straw can increase the humin content as reported in the study of Sheng et al.11, and then a decrease of negative zeta potential can be induced as addition of humic acid on a Luvisol20. But the negative humic effect from straw on zeta potential was probably stronger than the positive effect from the increased bulk soil solution concentration in NPK + straw relative to NPK in Fig. 3 where increase of bulk solution concentration was found to increase the negative charge numbers and the negative zeta potential in Ultisol and Oxisol15. Therefore, our hypothesis that organic treatments decreased negative zeta potential value of soil was not supported for manure treatment, but was for NPK + straw treatment.NPK + straw’s similar effect on negative zeta potential as NPK treatment was probably also related with their similar pH values. The effect of pH on the potential of clay surfaces can be related to the amount of variable charge on the external surface of the clay particles. Negative zeta potential decreased with rising pH of the solution due to deprotonation of the functional groups on the surface of the organic matter and Fe/Aloxides in NPK + straw treated soils. An increase of soil pH (from 3.5 to 7.5) influenced zeta potential through production of more negative net surface charges on soils in subtropical Australia21,22. Therefore, the pH in our study after KCl adjustment that showed a first increase and then decrease pattern with the increase of concentration, can help to explain the bell shape pattern of negative zeta potential (first decrease and then increase). However, in our study, the pH pattern with increment of KCl concentration was different from the results in study of Yu et al.8 where a continuous decline pattern in pH of two soils (Vertisol and Ultisol) was reported when the KCl concentration increased from 10–5 to 10–1 mol L−1. This is probably because the Ultisol possessed high amount of variable charges from Fe or Al oxides, which resulted in the diffusion layer attracted more positive charged cations (i.e. K+) from bulk solution to balance the increased negative charge on the surface of colloidal particles in order to maintain the electrical neutrality of the system15. This indicated that when KCl concentration was low, between 0 and 10–2 mol L−1, part of K+ was attracted to the diffuse double layer and the remaining K+ hydration allowed for raising in soil pH. When KCl concentration was beyond 10–2 mol L−1, many Al3+ions on soil exchange site were released into solution (0.03 to 0.12 mg L−1) through K+ exchange and probably dropped soil pH (data not shown).Studies also found that the effect of SOM on zeta potential of clay also varied for soils in different climate. Yu et al.8 compared rice straw incorporation effect on two soils (Ultisol and Vertisol) and found that similar SOC content resulted in contrasting effects on surface potential of two types of soils, where surface potential of Ultisol continuously increased while firstly increased and became stable for Vertisol with increase of treated solution concentration. Different SOM effect on soil potential properties of two soils were probably associated with presence of soil variable charges in Ultisol23. SOM and Fe/Al (hydro)oxides in Ultisol carried a larger number of variable surface charges, and resulted in a strong overlapping of oppositely charged electric double layers (EDLs) between SOM and Fe/Al (hydro)oxides at low concentration8. The overlapping of oppositely charged EDLs between SOM and Fe/Al probably yielded in an increase in negative surface charge for Ultisols compared to Vertisol.Effect of SOM and zeta potential on soil aggregationIncrement in content of SOM after additions of straw or other organic treatments can improve aggregate stability6,24,25. The hydrophobic organic compounds that coated around soil particle can act as nucleus of aggregate formation and reduce the destruction effect from water infiltration26,27. The hydrophobic-C/hydrophilic-C increased from 1.04 to 1.07, from 1.22 to 1.27 for chicken manure and maize residues treatments, respectively, when soil water conditions changed from water deficiency to natural rainfall treatment28. This indicated that a small change of hydrophobic-C/hydrophilic-C might result in substantial change in soil water, which was a critical factor of aggregate development28. Xue et al.24 also reported that a small difference of aromatic percentage between tillage + straw and no tillage + straw treatments resulted in significant differences for aggregate ( > 0.25 mm). Hence, small variation in soil hydrophobic-C groups can yield in soil aggregate variation. In our study, the manure treatment, which had higher SOM and hydrophobic-C (aromatic C) while lower hydrophilic-C than other treatments, was probably reasonable to yield in its higher stability than others. In these previous studies, the positive effect of SOM on soil aggregate development was attributed to the increment in van der Waals force between soil particles. However, different from our study, Melo et al.12 reported that Londrina soil with high SOC released greater water dispersible clay (60–80%) than that in Rondon with low SOC (50–70%) after mechanical breakdown of macroaggregate. This was probably due to the repulsive force prevailing attractive force between soil particles as affected by more negative zeta potential or surface potential8.Clay zeta potential influenced the powerful electrostatic fields, soil internal forces and aggregate stability9. Decrease in negative clay zeta potential mainly yielded an increase in the soil microaggregate portion ( More

  • in

    Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats

    Effects of storage and technical variationWe first validated our methods by assessing the effect of storage and technical variation on microbiome composition. To quantify the effect of the two storage methods on bacterial composition in fresh samples, we performed a separate pilot study with nine faecal samples sourced from nine captive meerkats at Zurich University. Samples were immediately frozen after collection, and then either freeze-dried or kept frozen at −80 °C for seven days. Microbiome composition clustered strongly by sample identity in their beta diversity (Supplementary Fig. 1b), and storage did not significantly affect composition (Weighted Unifrac: F = 0.7, p = 0.52; Unweighted Unifrac: F = 1.0, p = 0.37). Across samples analysed in this study, storage had significant yet small effects on estimated bacterial load, with frozen samples overall having slightly lower estimated abundance (t = 7.2, p  More

  • in

    Biological activity of chitosan inducing resistance efficiency of rice (Oryza sativa L.) after treatment with fungal based chitosan

    1.Chaney, R. L., Kim, W. I., Kunhikrishnan, A., Yang, J. E. & Ok, Y. S. Integrated management strategies for arsenic and cadmium in rice paddy environments. Geoderma 270, 1–116. https://doi.org/10.1016/j.geoderma.2016.03.001 (2016).ADS 
    Article 

    Google Scholar 
    2.Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170. https://doi.org/10.3389/fpls.2014.00170 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Senthil-Nathan, S. Physiological and biochemical effect of neem and other Meliaceae plants secondary metabolites against Lepidopteran insects. Front. Physiol. 4, 359. https://doi.org/10.3389/fphys.2013.00359 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Kalaivani, K., Maruthi-Kalaiselvi, M. & Senthil-Nathan, S. Seed treatment and foliar application of methyl salicylate (MeSA) as a defense mechanism in rice plants against the pathogenic bacterium, Xanthomonas oryzae pv. oryzae. Pest Biochem. Physiol. 171, 104718. https://doi.org/10.1016/j.pestbp.2020.104718 (2021).CAS 
    Article 

    Google Scholar 
    5.Das, G. & Rao, G. J. N. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front. Plant Sci. 6, 698. https://doi.org/10.3389/fpls.2015.00698 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Senthil-Nathan, S. A review of biopesticides and their mode of action against insect pests. Environ. Sustain. https://doi.org/10.1007/978-81-322-2056-5_3 (2015).Article 

    Google Scholar 
    7.Shi, W. et al. Grain yield and quality responses of tropical hybrid rice to high night-time temperature. Food Crop Res. 190, 18–25. https://doi.org/10.1016/j.fcr.2015.10.006 (2016).Article 

    Google Scholar 
    8.Farooq, M. et al. Rice direct seeding: Experiences, challenges and opportunities. Soil Till. Res. 111, 87–98. https://doi.org/10.1016/j.still.2010.10.008 (2011).Article 

    Google Scholar 
    9.Brown, J. K. M. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5, 339–344. https://doi.org/10.1016/S1369-5266(02)00270-4 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Liu, H. et al. Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnol. Lett. 34, 2291–2298. https://doi.org/10.1007/s10529-012-1035-z (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Orzali, L., Corsi, B., Forni, C. & Riccinoi, L. Chitosan in agriculture: A new challenge for managing plant disease, biological activities and application of marine polysaccharides. Biol. Act. Appl. Mar. Polysaccharides. 17–36. https://doi.org/10.5772/66840 (2017).
    12.Anosheh, H. P., Sadeghi, H. & Emam, Y. Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J. Crop Sci. Biotechnol. 14, 289–295. https://doi.org/10.1007/s12892-011-0039-x (2011).Article 

    Google Scholar 
    13.Hänsch, R. & Mendel, R. R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 12, 259–266. https://doi.org/10.1016/j.pbi.2009.05.006 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Savvides, A., Ali, S., Tester, M. & Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible?. Trends Plant Sci. 21, 329–340. https://doi.org/10.1016/j.tplants.2015.11.003 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Kurita, K. Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar. Biotechnol. 8, 203–226. https://doi.org/10.1007/s10126-005-0097-5 (2006).CAS 
    Article 

    Google Scholar 
    16.Hamed, I., Özogul, F. & Regenstein, J. M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 48, 40–50. https://doi.org/10.1016/j.tifs.2015.11.007 (2016).CAS 
    Article 

    Google Scholar 
    17.Badawy, M. E. I. & Rabea, E. I. A. Biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int. J. Carbohydr. Chem. https://doi.org/10.1155/2011/460381 (2011).Article 

    Google Scholar 
    18.Davydova, V. N. et al. Chitosan antiviral activity: Dependence on structure and depolymerization method. Appl. Biochem. Microbiol. 47, 103–108. https://doi.org/10.1134/S0003683811010042 (2011).CAS 
    Article 

    Google Scholar 
    19.Park, B. K. & Kim, M. M. Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 11, 5152–5164. https://doi.org/10.3390/ijms11125152 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Malerba, M. & Cerana, R. Chitosan effects on plant systems. Int. J. Mol. Sci. 17, 996. https://doi.org/10.3390/ijms17070996 (2016).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Liu, H. et al. Progress and constraints of dry direct-seeded rice in China. J. Food Agric. Environ. 2121, 465–472 (2014).
    Google Scholar 
    22.Li, B., Wang, X., Chen, R., Huangfu, W. & Xie, G. Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima. Carbohydr. Polym. 72, 287–292. https://doi.org/10.1016/j.carbpol.2007.08.012 (2008).CAS 
    Article 

    Google Scholar 
    23.Falcón-Rodríguez, A. B., Cabrera, J. C., Wégria, G., Onderwater, R. C. A., González, G., Nápoles, M. C., Costales, D., Rogers, H. J., Diosdado, E., González, S., Cabrera, G., González, L. & Wattiez, R. Practical use of oligosaccharins in agriculture. In Ist World Congress on the use of biostimulants in agriculture. Acta Hortic. 1009, 195–212 (2012).24.Yin, H. et al. Genome shuffling of Saccharomyces cerevisiae for enhanced glutathione yield and relative gene expression analysis using fluorescent quantitation reverse transcription polymerase chain reaction. J. Microbiol. Methods 127, 188–192. https://doi.org/10.1016/j.mimet.2016.06.012 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Borah, N. et al. Low energy rice stubble management through in situ decomposition. Procedia Environ. Sci. 35, 771–780. https://doi.org/10.1016/j.proenv.2016.07.092 (2016).CAS 
    Article 

    Google Scholar 
    26.Singh, R., Srivastava, M. & Shukla, A. Environmental sustainability of bioethanol production from rice straw in India: A review. Renew. Sustain. Energy Rev. 54, 202–216. https://doi.org/10.1016/j.rser.2015.10.005 (2016).CAS 
    Article 

    Google Scholar 
    27.Mrudula, S. & Murugammal, R. Production of cellulase by Aspergillus niger under submerged and solid state fermentation using coir waste as a substrate. Braz. J. Microbiol. 42, 1119–1127. https://doi.org/10.1590/S1517-83822011000300033 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.El-Sayed, S. M. & Mahdy, M. E. Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. Int. J. ChemTech Res. 7, 1985–1992 (2015).
    Google Scholar 
    29.Iriti, M. & Varoni, E. M. Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res. 22, 2935–2944. https://doi.org/10.1007/s11356-014-3571-7 (2015).CAS 
    Article 

    Google Scholar 
    30.Orzali, L. et al. Chitosan in agriculture: A new challenge for chitosan in agriculture: A new challenge for managing plant disease managing plant disease. InTech Open Publisher https://doi.org/10.5772/66840 (2017).ADS 
    Article 

    Google Scholar 
    31.Nanda, S., Mohammad, J., Reddy, S. N., Kozinski, J. A. & Dalai, A. K. Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefinery 4, 157–191. https://doi.org/10.1007/s13399-013-0097-z (2014).CAS 
    Article 

    Google Scholar 
    32.Aggarwal, N. K., Goyal, V., Saini, A., Yadav, A. & Gupta, R. Enzymatic saccharification of pretreated rice straw by cellulases from Aspergillus niger BK01. 3 Biotech 7, 158. https://doi.org/10.1007/s13205-017-0755-0 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Fatma, H., Abd-EI-Zaher & Fadel, M. Production of bioethanol via enzymatic saccharification of rice straw by cellulase produced by Trichoderma Reesei under solid state fermentation. N. Y. Sci. J., 72–78. http://www.sciencepub.net/newyork (2010).34.Chang, A. K. T., Frias, R. R., Alvarez, L. V., Bigol, U. G. & Guzman, J. P. M. D. Comparative antibacterial activity of commercial chitosan and chitosan extracted from Auricularia sp. Biocatal. Agric. Biotechnol. 17, 189–195. https://doi.org/10.1016/j.bcab.2018.11.016 (2019).Article 

    Google Scholar 
    35.Lizárraga-Paulín, E. G., Miranda-Castro, S. P., Moreno-Martínez, E., Lara-Sagahón, A. V. & Torres-Pacheco, I. Maize seed coatings and seedling sprayings with chitosan and hydrogen peroxide: Their influence on some phenological and biochemical behaviors. J. Zhejiang Univ. Sci. B. 14, 87–96. https://doi.org/10.1631/jzus.B1200270 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Hadwiger, L. A., Fristensky, B. & Riggleman, R. C. Chitosan, a natural regulator in plant-fungal pathogen interactions, increases crop yields. Chitin Chitosan Relat. Enzymes. https://doi.org/10.1016/b978-0-12-780950-2.50024-1 (1984).Article 

    Google Scholar 
    37.Mrda, J., Crnobarac, J., Dušanić, N., Jocić, S. & Miklič, V. Germination energy as a parameter of seed quality in different sunflower genotypes. Genetika 43, 427–436. https://doi.org/10.2298/GENSR1103427M (2011).Article 

    Google Scholar 
    38.Singh, H. et al. Seed priming techniques in field crops—A review. Agric. Rev. 36, 1–14. https://doi.org/10.18805/ag.v36i4.6662 (2015).Article 

    Google Scholar 
    39.Hameed, A., Sheikh, M. A., Farooq, T., Basra, S. M. A. & Jamil, A. Chitosan priming enhances the seed germination, antioxidants, hydrolytic enzymes, soluble proteins and sugars in wheat seeds. Agrochimica LVII, 31–46 (2013).
    Google Scholar 
    40.Zhou, Y. G. et al. Effects of chitosan on some physiological activity in germinating seed of peanut. J. Peanut Sci. 31, 22–25 (2002).
    Google Scholar 
    41.Samarah, N. H., Wang, H. & Welbaum, G. E. Pepper (Capsicum annuum) seed germination and vigour following nanochitin, chitosan or hydropriming treatments. Seed Sci. Technol. 44, 1–15. https://doi.org/10.15258/sst.2016.44.3.18 (2016).Article 

    Google Scholar 
    42.Chen, J. L. & Zhao, Y. Effect of molecular weight, acid, and plasticizer on the physicochemical and antibacterial properties of β-chitosan based films. J. Food Sci. 77, E127–E136. https://doi.org/10.1111/j.1750-3841.2012.02686.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Kulikov, S. N., Chirkov, S. N., Il’ina, A. V., Lopatin, S. A. & Varlamov, V. P. Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl. Biochem. Microbiol. 42, 200–203. https://doi.org/10.1134/S0003683806020165 (2006).CAS 
    Article 

    Google Scholar 
    44.El Hadrami, A., Adam, L. R., El Hadrami, I. & Daayf, F. Chitosan in plant protection. Mar. Drugs 8, 968–987. https://doi.org/10.3390/md8040968 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Orzali, L., Forni, C. & Riccioni, L. Effect of chitosan seed treatment as elicitor of resistance to Fusarium graminearum in wheat. Seed Sci. Technol. 42, 132–149. https://doi.org/10.15258/sst.2014.42.2.03 (2014).Article 

    Google Scholar 
    46.Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G. & Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromol 4, 1457–1465. https://doi.org/10.1021/bm034130m (2003).CAS 
    Article 

    Google Scholar 
    47.Wang, X., El Hadrami, A., Adam, L. R. & Daayf, F. Differential activation and suppression of potato defence responses by Phytophthora infestans isolates representing US-1 and US-8 genotypes. Plant Pathol. 57, 1026–1037. https://doi.org/10.1111/j.1365-3059.2008.01866.x (2008).CAS 
    Article 

    Google Scholar 
    48.Smits, J. P., Rinzema, A., Tramper, J., Schlösser, E. E. & Knol, W. Accurate determination of process variables in a solid-state fermentation system. Process Biochem. 31, 669–678. https://doi.org/10.1016/S0032-9592(96)00019-2 (1996).CAS 
    Article 

    Google Scholar 
    49.Kalaivani, K., Kalaiselvi, M. M. & Senthil-Nathan, S. Effect of methyl salicylate (MeSA), an elicitor on growth, physiology and pathology of resistant and susceptible rice varieties. Sci. Rep. 6, 1–11 (2016).Article 

    Google Scholar 
    50.Rane, K. D. & Hoover, D. G. An evaluation of alkali and acid treatments for chitosan extraction from fungi. Process Biochem. 28, 115–118 (1993).CAS 
    Article 

    Google Scholar 
    51.Crestini, C., Kovac, B. & Giovannozzi-Sermanni, G. Production of chitosan by fungi. 50, 207–210. https://doi.org/10.1002/bit.260500202 (1996).52.Khalaf, S. A. Production and characterization of fungal chitosan under solid-state fermentation conditions. Int. J. Agric. Biol. 6, 1033–1036 (2004).CAS 

    Google Scholar 
    53.Zhang, Z. T., Chen, D. H. & Chen, L. Preparation of two different serials of chitosan. J. Dong Hua Univ. Engl. Ed. 19, 36–39 (2002).
    Google Scholar 
    54.Chanthini, K. M. et al. Sustainable agronomic strategies for enhancing the yield and nutritional quality of wild tomato Solanum Lycopersicum (l) Var Cerasiforme Mill. Agronomy 9, 311 (2019).CAS 
    Article 

    Google Scholar 
    55.Ellis, R. H. & Roberts, E. H. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13–30. https://doi.org/10.1093/oxfordjournals.aob.a085797 (1980).Article 

    Google Scholar 
    56.Chanthini, K. M. et al. Biocatalysis and agricultural biotechnology Chaetomorpha antennina (Bory) Kützing derived seaweed liquid fertilizers as prospective bio-stimulant for Lycopersicon esculentum (Mill). Biocatal. Agric. Biotechnol. 20, 101190 (2019).Article 

    Google Scholar 
    57.Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C. & Yolke, R. H. Manual of clinical Microbiology 6th edn. (American Society of Microbiology Press, 1995).
    Google Scholar 
    58.French, E. R. Efficacy of five methods of inoculating potato plants with Pseudomonas solanacearum. Phytopathology 76, 1078 (1986).
    Google Scholar 
    59.Yasmin, S. et al. Biocontrol of Bacterial Leaf Blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 8, 1895. https://doi.org/10.3389/fmicb.2017.01895 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Hammerschmidt, R. & Kuć, J. Lignification as a mechanism for induced systemic resistance in cucumber. Physiol. Plant Pathol. 20, 61–71. https://doi.org/10.1016/0048-4059(82)90024-8 (1982).CAS 
    Article 

    Google Scholar 
    61.Worthington, C. C. Worthington Enzyme Manual: Enzymes and Related Biochemicals (Worthington Biochemical Corporation, 1988).
    Google Scholar  More

  • in

    Seasonal activity of Dermacentor reticulatus ticks in the era of progressive climate change in eastern Poland

    1.Rubel, F. et al. Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe. Ticks Tick Borne Dis. 7, 224–233 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors 6, 1–11 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, 3–14 (2004).Article 

    Google Scholar 
    4.Földvári, G., Široký, P., Szekeres, S., Majoros, G. & Sprong, H. Dermacentor reticulatus: a vector on the rise. Parasites Vectors 9, 1–29 (2016).Article 

    Google Scholar 
    5.Ličková, M. et al. Dermacentor reticulatus is a vector of tick-borne encephalitis virus. Ticks Tick Borne Dis. 11, 101414 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Pawełczyk, A. et al. Long-term study of Borrelia and Babesia prevalence and co-infection in Ixodes ricinus and Dermacentor recticulatus ticks removed from humans in Poland, 2016–2019. Parasites Vectors 14, 1–13 (2021).Article 
    CAS 

    Google Scholar 
    7.Karbowiak, G. et al. The competition between immatures of Ixodes ricinus and Dermacentor reticulatus (Ixodida: Ixodidae) ticks for rodent hosts. J. Med. Entomol. 56, 448–452 (2018).Article 

    Google Scholar 
    8.Karbowiak, G. The occurrence of the Dermacentor reticulatus tick-its expansion to new areas and possible causes. Ann. Parasitol. 60, 37–47 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    9.Drehmann, M. et al. The Spatial Distribution of Dermacentor Ticks (Ixodidae) in Germany: Evidence of a continuing spread of Dermacentor reticulatus. Front. Vet. Sci. 7, 578220 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Sands, B. O., Bryer, K. E. & Wall, R. Climate and the seasonal abundance of the tick Dermacentor reticulatus. Med. Vet. Entomol. https://doi.org/10.1111/mve.12518 (2021).Article 
    PubMed 

    Google Scholar 
    11.Hasle, G. et al. Transport of ticks by migratory passerine birds to Norway. J. Parasitol. 95, 1342–1351 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kjær, L. J. et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasites Vectors 12, 1–4 (2019).Article 

    Google Scholar 
    13.García-Sanmartín, J., Barandika, J. F., Juste, R. A., García-Pérez, A. L. & Hurtado, A. Distribution and molecular detection of Theileria and Babesia in questing ticks from northern Spain. Med. Vet. Entomol. 22, 318–325 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Olivieri, E. et al. The southernmost foci of Dermacentor reticulatus in Italy and associated Babesia canis infection in dogs. Parasites Vectors 9, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    15.Široký, P. et al. The distribution and spreading pattern of Dermacentor reticulatus over its threshold area in the Czech Republic: How much is range of this vector expanding?. Vet. Parasitol. 183, 130–135 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Hornok, S. & Farkas, R. Influence of biotope on the distribution and peak activity of questing ixodid ticks in Hungary. Med. Vet. Entomol. 23, 41–46 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Chitimia-Dobler, L. Spatial distribution of Dermacentor reticulatus in Romania. Vet. Parasitol. 214, 219–223 (2015).PubMed 
    Article 

    Google Scholar 
    18.Akimov, I. & Nebogatkin, I. Distribution of Ticks from of the Genus Dermacentor (Acari, Ixodidae) in Ukraine. Vestnik Zoologii 45, 6 (2011).
    Google Scholar 
    19.Kiewra, D., Szymanowski, M., Czułowska, A. & Kolanek, A. The local-scale expansion of Dermacentor reticulatus ticks in Lower Silesia, SW, Poland. Ticks Tick Borne Dis. 12, 101599 (2021).PubMed 
    Article 

    Google Scholar 
    20.Dwużnik-Szarek, D. et al. Monitoring the expansion of Dermacentor reticulatus and occurrence of canine babesiosis in Poland in 2016–2018. Parasites Vectors 14, 1–18 (2021).Article 

    Google Scholar 
    21.Zając, Z., Woźniak, A. & Kulisz, J. Density of Dermacentor reticulatus ticks in eastern Poland. Int. J. Environ. Res. Public Health 17, 2814 (2020).PubMed Central 
    Article 

    Google Scholar 
    22.Ogden, N. H., Ben Beard, C., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 58, 1536–1545 (2020).Article 

    Google Scholar 
    23.Zając, Z., Sędzikowska, A., Maślanko, W., Woźniak, A. & Kulisz, J. Occurrence and Abundance of Dermacentor reticulatus in the habitats of the ecological corridor of the Wieprz river, eastern Poland. Insects 12, 96 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Zając, Z., Bartosik, K. & Woźniak, A. Monitoring Dermacentor reticulatus host-seeking activity in natural conditions. Insects 11, 264 (2020).PubMed Central 
    Article 

    Google Scholar 
    25.Global and European temperature—European Environment Agency. https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature/global-and-european-temperature-assessment-1. Accessed 22 July 2021.26.Średnie i sumy miesięczne. Dane meteorologiczne https://meteomodel.pl/dane/srednie-miesieczne/?imgwid=351220495&par=sndp&max_empty=2. Accessed 22 July 2021.27.Vladimirov, L. N. et al. Quantifying the Northward Spread of Ticks (Ixodida) as climate warms in Northern Russia. Atmosphere 12, 233 (2021).ADS 
    Article 

    Google Scholar 
    28.Mierzejewska, E. J., Alsarraf, M., Behnke, J. M. & Bajer, A. The effect of changes in agricultural practices on the density of Dermacentor reticulatus ticks. Vet. Parasitol. 211, 259–265 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Zając, Z., Woźniak, A. & Kulisz, J. Infestation of dairy cows by ticks Dermacentor reticulatus (Fabricius, 1794) and Ixodes ricinus (Linnaeus, 1758) in eastern Poland. Ann. Parasitol. 66, 87–96 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    30.Estrada-Peña, A. Climate, niche, ticks, and models: What they are and how we should interpret them. Parasitol. Res. 103, 87–95 (2008).Article 

    Google Scholar 
    31.Süss, J., Klaus, C., Gerstengarbe, F. W. & Werner, P. C. What makes ticks tick? Climate change, ticks, and tick-borne diseases. J. Travel Med. 15, 39–45 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Paulauskas, A. et al. New localities of Dermacentor reticulatus ticks in the Baltic countries. Ticks Tick Borne Dis. 6, 630–635 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kubiak, K. et al. Dermacentor reticulatus ticks (Acari: Ixodidae) distribution in north-eastern Poland: An endemic area of tick-borne diseases. Exp. Appl. Acarol. 75, 289–298 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Silaghi, C., Weis, L. & Pfister, K. Dermacentor reticulatus and Babesia canis in Bavaria (Germany): A georeferenced field study with digital habitat characterization. Pathogens 9, 541 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    35.Kohn, M. et al. Dermacentor reticulatus in Berlin/Brandenburg (Germany): Activity patterns and associated pathogens. Ticks Tick Borne Dis. 10, 191–206 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kiewra, D., Czułowska, A., Dyczko, D., Zieliński, R. & Plewa-Tutaj, K. First record of Haemaphysalis concinna (Acari: Ixodidae) in Lower Silesia, SW, Poland. Exp. Appl. Acarol. 77, 449–454 (2019).PubMed 
    Article 

    Google Scholar 
    37.Zieba, P. et al. A new locality of the Haemaphysalis concinna tick (Koch, 1844) in Poland and its role as a potential vector of infectious diseases. Ann. Parasitol. 65, 281–286 (2019).PubMed 

    Google Scholar 
    38.Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Medlock, J. M. & Leach, S. A. Effect of climate change on vector-borne disease risk in the UK. Lancet Infect. Dis. 15, 721–730 (2015).PubMed 
    Article 

    Google Scholar 
    40.Pfäffle, M., Littwin, N. & Petney, T. Host preferences of immature Dermacentor reticulatus (Acari: Ixodidae) in a forest habitat in Germany. Ticks Tick Borne Dis. 6, 508–515 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zając, Z., Bartosik, K., Kulisz, J. & Woźniak, A. Ability of adult Dermacentor reticulatus ticks to overwinter in the temperate climate zone. Biology 9, 145 (2020).PubMed Central 
    Article 

    Google Scholar 
    42.Kiewra, D., Czułowska, A. & Lonc, E. Winter activity of Dermacentor reticulatus (Fabricius, 1794) in the newly emerging population of Lower Silesia, south-west Poland. Ticks Tick Borne Dis. 7, 1124–1127 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Buczek, A., Bartosik, K. & Zając, Z. Changes in the activity of adult stages of Dermacentor reticulatus (Ixodida: Amblyommidae) induced by weather factors in eastern Poland. Parasites Vectors 7, 245 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Hubálek, Z., Halouzka, J. & Juricova, Z. Host-seeking activity of ixodid ticks in relation to weather variables. J. Vector Ecol. 28, 159–165 (2003).PubMed 
    PubMed Central 

    Google Scholar 
    45.Bartosik, K., Wiśniowski, Ł & Buczek, A. Questing behavior of Dermacentor reticulatus adults (Acari: Amblyommidae) during diurnal activity periods in eastern Poland. J. Med. Entomol. 49, 859–864 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Buczek, A., Bartosik, K., Wisniowski, L. & Tomasiewicz, K. Changes in population abundance of adult Dermacentor reticulatus (Acari: Amblyommidae) in long-term investigations in eastern Poland. Ann. Agric. Environ. Med. 20, 269–272 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    47.Mierzejewska, E. J., Estrada-Peña, A., Alsarraf, M., Kowalec, M. & Bajer, A. Mapping of Dermacentor reticulatus expansion in Poland in 2012–2014. Ticks Tick Borne Dis. 7, 94–106 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Zając, Z. et al. Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalance of tick-borne diseases in eastern Poland. Sci. Rep. 11, 15472 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Kulisz, J., Bartosik, K., Zając, Z., Woźniak, A. & Kolasa, S. Quantitative parameters of the body composition influencing host seeking behavior of Ixodes ricinus adults. Pathogens 10, 706 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Alasmari, S. & Wall, R. Metabolic rate and resource depletion in the tick Ixodes ricinus in response to temperature. Exp. Appl. Acarol. 83, 81–93 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Zajac, Z., Bartosik, K. & Buczek, A. Factors influencing the distribution and activity of Dermacentor reticulatus (F.) ticks in an anthropopressure-unaffected area in central-eastern Poland. Ann. Agric. Environ Med. 23, 270–275 (2016).PubMed 
    Article 

    Google Scholar 
    52.Bogdaszewska, Z. Range and ecology of Dermacentor reticulatus (Fabricius, 1794) in Mazuria focus. II. Seasonal activity patterns of the adults. Wiad. Parazytol. 50, 731–738 (2004).PubMed 

    Google Scholar 
    53.Razumova, I. V. The activity of Dermacentor reticulatus Fabr. (Ixodidae) ticks in nature. Med. Parasitol. Parasites Dis. 4, 8–14 (1999).
    Google Scholar 
    54.Szymański, S. Seasonal activity of Dermacentor reticulatus (Fabricius, 1794) (Acarina, Ixodidae) in Poland I. Adults. Acta Parasitol. Pol. 31, 247–255 (1987).
    Google Scholar 
    55.Hornok, S. Allochronic seasonal peak activities of Dermacentor and Haemaphysalis spp. under continental climate in Hungary. Vet. Parasitol. 163, 366–369 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Randolph, S. E. & Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Entomol. 36, 741–748 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Nowak-Chmura, M. Ticks (Ixodida) of Central Europe (Pedagogical University of Cracow Press, 2013).
    Google Scholar  More

  • in

    Improving pesticide-use data for the EU

    Gene Expression and Therapy Group, King’s College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy’s Hospital, London, UKRobin Mesnage & Michael N. AntoniouCentre for Ecology, Evolution & Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, UKEdward A. Straw, Mark J. F. Brown & Ellouise LeadbeaterHeartland Health Research Alliance, Port Orchard, WA, USACharles BenbrookANSES, Sophia Antipolis Laboratory, Unit of Honey Bee Pathology, Sophia Antipolis, FranceMarie-Pierre ChauzatAgricultural Economics and Policy Group, ETH Zürich, Zürich, SwitzerlandRobert FingerSchool of Life Sciences, University of Sussex, Brighton, UKDave GoulsonBC3 — Basque Centre for Climate Change, Scientific Campus of the University of Basque Country, Leioa, SpainAna López-BallesterosCentre D’Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, FranceNiklas MöhringInstitute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, SwitzerlandPeter NeumannSchool of Agriculture and Food Science, University College Dublin, Dublin, IrelandEdward A. Straw, Dara Stanley & Linzi J. ThompsonDepartment of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, IrelandJane C. Stout & Elena ZiogaDepartment of Ecoscience, Aarhus University, Aarhus, DenmarkChristopher J. ToppingSchool of Chemical Sciences, Glasnevin Campus, Dublin City University, Dublin, IrelandBlánaid WhiteInstitute of Zoology, University of Natural Resources and Life Sciences, Vienna, Vienna, AustriaJohann G. ZallerCorrespondence to
    Robin Mesnage or Edward A. Straw. More