More stories

  • in

    Analysis of long-term strategies of riparian countries in transboundary river basins

    Assume n countries ((nge 2)) are located in a transboundary river basin and they are the players of an evolutionary game in which the countries’ strategies concerning water sharing in the basin evolve over time. Each country can choose between a cooperative strategy or a non-cooperative strategy. The game’s interactions and players’ payoffs vary with the number n and the location of the countries within the river basin, specifically, in relation to whether they are upstream-located or downstream-located countries within the river basin. The probability of country i choosing a cooperative strategy is herein denoted by ({x}_{1}^{(i)}), (i=1, 2, dots , n), and there are ({2}^{n}) payoff sets for all the combinations of the countries’ strategies. This paper assesses the interactions between three countries sharing a transboundary river basin.Problem descriptionLet 1, 2, and 3 denote three countries sharing a transboundary river basin. Country 1 is upstream and countries 2 and 3 are located downstream. Country 1 can use maximum amount of the water of the river and choose not to share it with the downstream countries. This strategy, however, may trigger conflict with the two other countries of political, social, economic, security, and environmental natures. Instead, Country 1 can release excess water to be shared by Countries 2 and 3. Countries 2 and 3 are inclined to cooperate with Country 1 unless other benefits emerge by being non-cooperative with Country 1.There are two types of benefits and one type of cost in the payoff matrix of the assumed problem that are economic in nature. The first is a water benefit earned by a country from receiving the water from the transboundary river. The set of benefits related to water use includes economic benefits earned from agricultural, urban, and industrial development benefits. It should be noted that the water benefit for Country 1 means the economic benefit of consuming more water than its water right from the river. So, water benefits of Country 2 and 3 are the economic benefit of consuming excess water of upstream which is released by Country 1.The second is a potential benefit earned from the cooperative strategy of a country. Cooperation benefits stem from sustainability conditions like social interests, environmental benefits and political conjunctures such as international alliances and harmony from amicable interactions with neighboring countries. The parameters F and E (water benefit and potential benefit, respectively) encompass a number of benefit parameters; nevertheless, parameters were simplified to two benefit parameters to simplify the complexity of the water-sharing problem. Costs forced on other countries from non-cooperation by a country involves commercial, security, political, diplomatic, military, and environmental costs. Figure 1 displays the locations of three countries and their shifting interactions in a transboundary river basin.Figure 1Schematic of the transboundary river and riparian countries with their shifting interactions.Full size imageBasic assumptionsThe evolutionary game model of interactions between riparian countries in the transboundary river basin rests on the following assumptions:
    Assumption 1

    There are three countries (i.e., players) in the game of transboundary water sharing, each seeking to maximize its payoff from the game.

    Assumption 2

    Country 1 has two possible strategies. One is for Country 1 to release a specified amount of water to the downstream countries (this would be Country 1’s cooperative strategy). The cooperative strategy by Country 1 would produce benefits F2 and F3 to Countries 2 and 3, respectively. By being cooperative Country 1 would attain a benefit E1 called the potential benefit from cooperative responses from the downstream countries. The other strategy is for Country 1 to deny water to the downstream countries (this would be Country 1’s non-cooperative strategy), in which case Country 1 would earn the water benefit F1 from using water that would otherwise be released, but would forego the potential benefit E1. Moreover, by pursuing a non-cooperative strategy Country 1 would inflict a cost C1m to the downstream countries.

    Assumption 3

    There are two possible strategies for Country 2. One is for Country 2 to accept the behavior of Country 1 (this would be Country 2’s cooperative strategy), which would cause earning a potential benefit E2 to Country 2. Recall that if Country 2 acquiesces to Country 1’s cooperative behavior it would receive a benefit F2. Or, Country 2 may disagree with Country 1 (this would be Country 2’s non-cooperative strategy), in which case, Country 2 would lose benefit E2, and it would inflict a cost C2m to the other countries.

    Assumption 4

    Similar to Country 2, Country 3 has two possible strategies. One is for Country 3 to agree Country 1’s behavior (this would be Country 3’s cooperative strategy) attaining a potential benefit E3. Recall that if Country 3 agrees with Country 1’s cooperative behavior it would gain a benefit F3. Another strategy for Country 3 is to oppose Country 1 (this would be Country 3’s non-cooperative strategy) missing the benefit E3 and forcing a cost C3m to the other countries.
    Table 1 defines the benefits and costs that enter in the transboundary water-sharing game described in this work. The payoff to country (i=mathrm{1,2},3) depends on its own strategy and on the strategies of the other countries, and each country may choose to be cooperative or non-cooperative. The strategies of country (i) are denoted by 1 (cooperation) and 2 (non-cooperation). The probabilities of country (i)’s strategies are denoted by ({x}_{1}^{(i)}) and by ({x}_{2}^{(i)}), in which the former represents cooperation and the latter represents non-cooperation. Clearly, ({x}_{1}^{(i)})+ ({x}_{2}^{(i)}) = 1. The payoff to country (i=1, 2, 3) when the strategies of Countries 1, 2, 3 are (j, k,l), respectively, where (j, k,l) may take the value 1 (cooperation) or 2 (non-cooperation) is denoted by ({U}_{jkl}^{left(iright)}). Thus, for instance, the payoff to country (i=2) is represented by ({U}_{212}^{(2)}) when Countries 1 and 3 are non-cooperative and Country 2’s strategy is cooperative. Evidently, there are 23 payoffs to each country given there are three countries involved and each can be cooperative or non-cooperative. Table 2 shows the symbols for the payoffs that accrue to each country under the probable strategies.Table 1 Benefits and costs.Full size tableTable 2 Payoff matrix under cooperation or non-cooperation.Full size tableFormulation of the transboundary water-sharing strategies as an evolutionary gameThe expected payoff to country (i) is expressed by the following equation:$${U}^{(i)}=sumlimits_{j = 1}^2 {sumlimits_{k = 1}^2 {sumlimits_{l = 1}^2} } {x}_{j}^{(1)}{x}_{k}^{(2)}{x}_{l}^{(3)} {U}_{jkl}^{(i)} quad i=1, 2, 3$$
    (1)
    The following describe the expected payoffs of Country 1 when it acts cooperatively (({U}_{1}^{(1)})) or non-cooperatively (({U}_{2}^{(1)})):$${U}_{1}^{(1)}={x}_{1}^{(2)}{x}_{1}^{(3)}{U}_{111}^{left(1right)}+{x}_{1}^{(2)}{x}_{2}^{(3)}{U}_{112}^{left(1right)}+{x}_{2}^{(2)}{x}_{1}^{(3)}{U}_{121}^{(1)}+{x}_{2}^{(2)}{x}_{2}^{(3)}{U}_{122}^{(1)}$$
    (2)
    $${U}_{2}^{(1)}={x}_{1}^{(2)}{x}_{1}^{(3)}{U}_{211}^{left(1right)}+{x}_{1}^{(2)}{x}_{2}^{(3)}{U}_{212}^{left(1right)}+{x}_{2}^{(2)}{x}_{1}^{(3)}{U}_{221}^{left(1right)}+{x}_{2}^{(2)}{x}_{2}^{(3)}{U}_{222}^{left(1right)}$$
    (3)
    Therefore, the expected payoff of Country 1 is ({U}^{(1)}) which is equal to:$${U}^{(1)}={x}_{1}^{(1)}{U}_{1}^{(1)}+{x}_{2}^{(1)}{U}_{2}^{(1)}= sumlimits_{j = 1}^2 {sumlimits_{k = 1}^2 {sumlimits_{l = 1}^2 } }{x}_{j}^{(1)}{x}_{k}^{(2)}{x}_{l}^{(3)} {U}_{jkl}^{(1)}$$
    (4)
    The expected payoffs of Countries 2 and 3 can be similarly obtained as done for Country 1. The cooperative and non-cooperative expected payoffs of all countries can be expressed in terms of the payoffs listed in Table 1. The results are found in Appendix A.Replication dynamics equationsThe replication dynamics equations describe the time change of the probabilities of a player’s strategies. The replication dynamics equation of Countries (i) is denoted by ({G}^{(i)}left({x}_{1}^{(i)}right)) which is as follow22:$${G}^{(i)}left({x}_{1}^{(i)}right)=frac{d{x}_{1}^{(i)}}{dt}={x}_{1}^{(i)}left({U}_{1}^{(i)}-{U}^{(i)}right)$$
    (5)
    The replication dynamics equations of Countries 1, 2 and 3 are presented in Appendix B according to the benefits and costs showed in Table 1.Stability analysis of a country’s strategiesUnder the assumption of bounded rationality each country does not know which strategies may lead to the optimal solution in the game. Therefore, the countries’ strategies change over time until a stable (i.e., time-independent) solution named evolutionary stable strategy (ESS) is attained. The evolutionary stable theorem for replication dynamics equation states that a stable probability of cooperation ({x}_{1}^{(i)}) for country (i) occurs if the following conditions hold25: (1) ({G}^{(i)}left({x}_{1}^{(i)}right)=0), and (2) (d{G}^{(i)}left({x}_{1}^{(i)}right)/d{x}_{1}^{(i)} More

  • in

    Extending the natural adaptive capacity of coral holobionts

    1.Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).Article 

    Google Scholar 
    2.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    3.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    4.Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network, 2008).5.Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).Article 

    Google Scholar 
    6.Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999). This paper projects loss and degradation of coral reefs on a global scale before it became common knowledge.
    Google Scholar 
    7.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 

    Google Scholar 
    8.Porter, J. W. & Meier, O. W. Quantification of loss and change in Floridian reef coral populations. Am. Zool. 32, 625–640 (1992).Article 

    Google Scholar 
    9.Ruzicka, R. R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).Article 

    Google Scholar 
    10.Somerfield, P. J. et al. Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 27, 951–965 (2008).Article 

    Google Scholar 
    11.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).Article 

    Google Scholar 
    12.Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Global Change Biol. https://doi.org/10.1111/gcb.14871 (2019).Article 

    Google Scholar 
    13.Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).Article 

    Google Scholar 
    14.Lesser, M. P. in Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 405–419 (Springer, 2011).15.Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021). This paper demonstrates that algal symbionts cease photosynthate transfer to coral hosts under heat stress long before visual signs of bleaching (symbiont loss) become evident.Article 

    Google Scholar 
    16.Allen, M. R. et al. in Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 41–91 (IPCC, 2018).17.Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).Article 

    Google Scholar 
    18.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).Article 

    Google Scholar 
    19.Durack, P.J., Wijffels, S.E. & Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455-458 (2012).Article 

    Google Scholar 
    20.Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).Article 

    Google Scholar 
    21.Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial Epidemiology of the Stony-Coral-Tissue-Loss Disease in Florida. Front. Mar. Sci. 7, 163 (2020).Article 

    Google Scholar 
    22.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).Article 

    Google Scholar 
    23.Nyström, M., Folke, C. & Moberg, F. Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol. Evol. 15, 413–417 (2000).Article 

    Google Scholar 
    24.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2012).Article 

    Google Scholar 
    25.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sust. 7, 82–93 (2014).Article 

    Google Scholar 
    26.Thurber, R. L. V. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).Article 

    Google Scholar 
    27.Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).Article 

    Google Scholar 
    28.Climate change widespread, rapid, and intensifying. IPCC (9 August 2021); https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr.29.Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).Article 

    Google Scholar 
    30.Kleypas, J. et al. Designing a blueprint for coral reef survival. Biol. Conserv. 257, 109107 (2021).Article 

    Google Scholar 
    31.Gattuso, J.-P. et al. Ocean solutions to address climate change and Its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).Article 

    Google Scholar 
    32.Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge (International Coral Reef Society and Future Earth Coasts, 2021) https://doi.org/10.53642/NRKY9386.33.Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).Article 

    Google Scholar 
    34.Zoccola, D. et al. The World Coral Conservatory (WCC): a Noah’s ark for corals to support survival of reef ecosystems. PLoS Biol. 18, e3000823 (2020).Article 

    Google Scholar 
    35.Kleinhaus, K. et al. Science, diplomacy, and the Red Sea’s unique coral reef: it’s time for action. Front. Mar. Sci. 7, 90 (2020).Article 

    Google Scholar 
    36.van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).Article 

    Google Scholar 
    37.Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).Article 

    Google Scholar 
    38.Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).Article 

    Google Scholar 
    39.Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 7, 201 (2019).Article 

    Google Scholar 
    40.Boström-Einarsson, L. et al. Coral restoration — a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).Article 

    Google Scholar 
    41.Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020). This paper highlights the potential of mobile acute heat stress assays to resolve fine-scale differences in coral thermotolerance, suitable for large-scale identification of resilient genotypes/reefs for conservation and restoration approaches.Article 

    Google Scholar 
    42.Parkinson, J. E. et al. Molecular tools for coral reef restoration: beyond biomarker discovery. Conserv. Lett. 13, e12687 (2020).Article 

    Google Scholar 
    43.Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. https://doi.org/10.1111/mec.16064 (2021).Article 

    Google Scholar 
    44.Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).Article 

    Google Scholar 
    45.Sweet, M. & Brown, B. in Oceanography and Marine Biology — An Annual Review (eds Hughes R.N. et al.) 271–314 (CRC, 2016).46.Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020). This paper proposes microbiome flexibility as a mechanism to aid adaptation to environmental change and posits that capacity for dynamic restructuring of the microbiome is host specific.Article 

    Google Scholar 
    47.Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).Article 

    Google Scholar 
    48.Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. 7, 627–636 (2017).Article 

    Google Scholar 
    49.Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017). This paper provides the first putative link between bacterial community composition and coral heat tolerance.Article 

    Google Scholar 
    50.Morgans, C. A., Hung, J. Y., Bourne, D. G. & Quigley, K. M. Symbiodiniaceae probiotics for use in bleaching recovery. Restor. Ecol. 28, 282–288 (2020).Article 

    Google Scholar 
    51.Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Chang. 10, 254–259 (2020).Article 

    Google Scholar 
    52.Craggs, J. et al. Inducing broadcast coral spawning ex situ: closed system mesocosm design and husbandry protocol. Ecol. Evol. 7, 11066–11078 (2017).Article 

    Google Scholar 
    53.Camp, E. F., Schoepf, V. & Suggett, D. J. How can “super corals” facilitate global coral reef survival under rapid environmental and climatic change? Glob. Chang. Biol. 24, 2755–2757 (2018).Article 

    Google Scholar 
    54.Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021). This paper reviews coral probiotics and critical assessment of applicability.Article 

    Google Scholar 
    55.Doering, T. et al. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).Article 

    Google Scholar 
    56.Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7 (2021).57.Devlin-Durante, M. K., Miller, M. W., Caribbean Acropora Research Group, Precht, W. F. & Baums, I. B. How old are you? Genet age estimates in a clonal animal. Mol. Ecol. 25, 5628–5646 (2016).Article 

    Google Scholar 
    58.Irwin, A. et al. Age and intraspecific diversity of resilient Acropora communities in Belize. Coral Reefs 36, 1111–1120 (2017).Article 

    Google Scholar 
    59.Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014). This paper demonstrates that acclimation and adaptation contribute to coral thermal tolerance and climate resistance at about equal contribution.Article 

    Google Scholar 
    60.Barott, K. L. et al. Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc. Natl Acad. Sci. USA 118, e2025435118 (2021).Article 

    Google Scholar 
    61.Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef-building corals. Mol. Ecol. 28, 3371–3382 (2019).Article 

    Google Scholar 
    62.Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).Article 

    Google Scholar 
    63.Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).Article 

    Google Scholar 
    64.Savary, R. et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc. Natl Acad. Sci. USA 118, e2023298118 (2021).Article 

    Google Scholar 
    65.Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, eaar8028 (2018).Article 

    Google Scholar 
    66.Durante, M. K., Baums, I. B., Williams, D. E., Vohsen, S. & Kemp, D. W. What drives phenotypic divergence among coral clonemates of Acropora palmata? Mol. Ecol. 28, 3208–3224 (2019).Article 

    Google Scholar 
    67.Rodríguez-Casariego, J. A. et al. Genome-Wide DNA Methylation Analysis Reveals a Conserved Epigenetic Response to Seasonal Environmental Variation in the Staghorn Coral Acropora cervicornis. Front. Mar. Sci. 7, 822 https://doi.org/10.3389/fmars.2020.560424 (2020).68.Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).Article 

    Google Scholar 
    69.Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).Article 

    Google Scholar 
    70.Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).Article 

    Google Scholar 
    71.Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286 (2016).Article 

    Google Scholar 
    72.Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).Article 

    Google Scholar 
    73.Prada, C. et al. Empty niches after extinctions increase population sizes of modern corals. Curr. Biol. 26, 3190–3194 (2016).Article 

    Google Scholar 
    74.Robitzch, V., Banguera-Hinestroza, E., Sawall, Y., Al-Sofyani, A. and Voolstra, C.R., 2015. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Front. Mar. Sci. 2, 5 (2015).Article 

    Google Scholar 
    75.Van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 3, 405–423 (2011).Article 

    Google Scholar 
    76.Vasquez Kuntz, K. L. et al. Juvenile corals inherit mutations acquired during the parent’s lifespan. Preprint at bioRxiv https://doi.org/10.1101/2020.10.19.345538 (2020).Article 

    Google Scholar 
    77.Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, e1007220 (2018).Article 

    Google Scholar 
    78.Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).Article 

    Google Scholar 
    79.Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).Article 

    Google Scholar 
    80.Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).Article 

    Google Scholar 
    81.Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).Article 

    Google Scholar 
    82.Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).Article 

    Google Scholar 
    83.Morgan, K. M., Perry, C. T., Smithers, S. G., Johnson, J. A. & Daniell, J. J. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Sci. Rep. 6, 29616 (2016).Article 

    Google Scholar 
    84.Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).Article 

    Google Scholar 
    85.Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ‘memory’ in a reef coral? Mar. Biol. 162, 479–483 (2015).Article 

    Google Scholar 
    86.Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. USA 115, 13342–13346 (2018).Article 

    Google Scholar 
    87.Humanes, A. et al. An experimental framework for selectively breeding corals for assisted evolution. Front. Mar. Sci. 8, 626 (2021).Article 

    Google Scholar 
    88.Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015). This paper demonstrates applicability of assisted evolution via selective breeding.Article 

    Google Scholar 
    89.van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 23, 3437–3448 (2017).Article 

    Google Scholar 
    90.Fukami, H. et al. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427, 832–835 (2004).Article 

    Google Scholar 
    91.Voolstra, C. R. et al. Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front. Mar. Sci. 8, 1029 (2021).Article 

    Google Scholar 
    92.Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).Article 

    Google Scholar 
    93.Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).Article 

    Google Scholar 
    94.Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235–5240 (2018).Article 

    Google Scholar 
    95.Cleves, P. A. et al. Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. Proc. Natl Acad. Sci. USA 117, 28899–28905 (2020).Article 

    Google Scholar 
    96.Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching. Science 369, eaba4674 (2020).Article 

    Google Scholar 
    97.Yetsko, K. et al. Genetic differences in thermal tolerance among colonies of threatened coral Acropora cervicornis: potential for adaptation to increasing temperature. Mar. Ecol. Prog. Ser. 646, 45–68 (2020).Article 

    Google Scholar 
    98.Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).Article 

    Google Scholar 
    99.D’Angelo, C. et al. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. ISME J. 9, 2551–2560 (2015).Article 

    Google Scholar 
    100.Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).Article 

    Google Scholar 
    101.Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. Genome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 29, 2176–2188 (2020).Article 

    Google Scholar 
    102.Craggs, J., Guest, J., Bulling, M. & Sweet, M. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Sci. Rep. 9, 12984 (2019).Article 

    Google Scholar 
    103.Quigley, K. M. et al. Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild. Front. Mar. Sci. 8, 161 (2021).Article 

    Google Scholar 
    104.LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018). This paper provides a revised coral symbiont taxonomy and shows that Symbiodiniaceae diversification coincides with the radiation of reef-building corals.Article 

    Google Scholar 
    105.Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25, 75–87 (1990).
    Google Scholar 
    106.Trench, R. K. Microalgal–invertebrate symbiosis, a review. Endocytobiosis Cell Res. 9, 135–175 (1993).
    Google Scholar 
    107.Pogoreutz, C. et al. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 91–118 (CRC, 2020). https://doi.org/10.1201/9780429277375-7.108.Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).Article 

    Google Scholar 
    109.Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633.e3 (2018).Article 

    Google Scholar 
    110.Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).Article 

    Google Scholar 
    111.González-Pech, R. A., Bhattacharya, D., Ragan, M. A. & Chan, C. X. Genome evolution of coral reef symbionts as intracellular residents. Trends Ecol. Evol. 34, 799–806 (2019).Article 

    Google Scholar 
    112.Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 39, 583–601 (2020).Article 

    Google Scholar 
    113.Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).Article 

    Google Scholar 
    114.Turnham, K. E., Wham, D. C., Sampayo, E. & LaJeunesse, T. C. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. ISME J. https://doi.org/10.1038/s41396-021-01007-8 (2021).Article 

    Google Scholar 
    115.Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).Article 

    Google Scholar 
    116.LaJeunesse, T. C., Smith, R. T., Finney, J. & Oxenford, H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc. R. Soc. B Biol. Sci. 276, 4139–4148 (2009).Article 

    Google Scholar 
    117.Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J. Appl. Phycol. 29, 1893–1905 (2017).Article 

    Google Scholar 
    118.Quigley, K. M., Baker, A. C., Coffroth, M. A., Willis, B. L. & van Oppen, M. J. H. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 111–151 (Springer International, 2018).119.Ziegler, M., Arif, C. & Voolstra, C. R. in Coral Reefs of the Red Sea (eds Voolstra, C. R. & Berumen, M. L.) 69–89 (Springer International, 2019).120.Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evol. 32, 735–745 (2017).Article 

    Google Scholar 
    121.Hume, B. C. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl Acad. Sci. USA 113, 4416–4421 (2016).Article 

    Google Scholar 
    122.Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3, e1602047 (2017).Article 

    Google Scholar 
    123.Baumgarten, S. et al. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics 14, 704 (2013).Article 

    Google Scholar 
    124.Klein, S. G. et al. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob. Chang. Biol. 23, 3690–3703 (2017).Article 

    Google Scholar 
    125.Liew, Y. J., Li, Y., Baumgarten, S., Voolstra, C. R. & Aranda, M. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet. 13, e1006619 (2017).Article 

    Google Scholar 
    126.Warner, M. E. & Suggett, D. J. in The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters (eds Goffredo, S. & Dubinsky, Z.) 489–509 (Springer International, 2016).127.Levin, R. A. et al. Sex, scavengers, and chaperones: transcriptome secrets of divergent symbiodinium thermal tolerances. Mol. Biol. Evol. 33, 3032 (2016).Article 

    Google Scholar 
    128.Nand, A. et al. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 53, 618–629 (2021).Article 

    Google Scholar 
    129.Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).Article 

    Google Scholar 
    130.Thornhill, D. J., Howells, E. J., Wham, D. C., Steury, T. D. & Santos, S. R. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol. Ecol. 26, 2640–2659 (2017).Article 

    Google Scholar 
    131.LaJeunesse, T. C. et al. Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 37, 785–800 (2010).Article 

    Google Scholar 
    132.Parkinson, J. E. et al. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol. Evol. 8, 665–680 (2016).Article 

    Google Scholar 
    133.Baker, A. C. Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689 (2003).Article 

    Google Scholar 
    134.Boulotte, N. M. et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 10, 2693–2701 (2016).Article 

    Google Scholar 
    135.Ziegler, M., Eguíluz, V. M., Duarte, C. M. & Voolstra, C. R. Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME J. 12, 161–172 (2018).Article 

    Google Scholar 
    136.Mies, M., Sumida, P. Y. G., Rädecker, N. & Voolstra, C. R. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front. Ecol. Evol. 5, 56 https://www.frontiersin.org/article/10.3389/fevo.2017.00056 (2017).137.Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).Article 

    Google Scholar 
    138.Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals. Sci. Rep. 7, 8219 (2017).Article 

    Google Scholar 
    139.National Academies of Sciences, Engineering, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019). This book reviews restoration interventions, detailing latest emerging technologies and approaches.140.Quigley, K. M., Randall, C. J., van Oppen, M. J. H. & Bay, L. K. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 9, bio047316 (2020).Article 

    Google Scholar 
    141.McIlroy, S. E. et al. The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. J. Phycol. 52, 1114–1124 (2016).Article 

    Google Scholar 
    142.Thornhill, D. J., Daniel, M. W., LaJeunesse, T. C., Schmidt, G. W. & Fitt, W. K. Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J. Exp. Mar. Bio. Ecol. 338, 50–56 (2006).Article 

    Google Scholar 
    143.Coffroth, M. A., Lewis, C. F., Santos, S. R. & Weaver, J. L. Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr. Biol. 16, R985–R987 (2006).Article 

    Google Scholar 
    144.Fujise, L. et al. Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef. Mol. Ecol. 30, 343–360 (2021).Article 

    Google Scholar 
    145.Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. 8, 1220 (2017).Article 

    Google Scholar 
    146.Chen, J. E., Barbrook, A. C., Cui, G., Howe, C. J. & Aranda, M. The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods. PLoS ONE 14, e0211936 (2019).Article 

    Google Scholar 
    147.Sheykhali, S. et al. Robustness to extinction and plasticity derived from mutualistic bipartite ecological networks. Sci. Rep. 10, 9783 (2020).Article 

    Google Scholar 
    148.Quigley, K. M., Bay, L. K. & Willis, B. L. Leveraging new knowledge of Symbiodinium community regulation in corals for conservation and reef restoration. Mar. Ecol. Prog. Ser. 600, 245–253 (2018).Article 

    Google Scholar 
    149.LaJeunesse, T. C. et al. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc. R. Soc. B: Biol. Sci. 277, 2925–2934 (2010).Article 

    Google Scholar 
    150.Poland, D. M. & Coffroth, M. A. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36, 119–129 (2017).Article 

    Google Scholar 
    151.Sampayo, E. M. et al. Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci. Rep. 6, 36271 (2016).Article 

    Google Scholar 
    152.Abrego, D., van Oppen, M. J. H. & Willis, B. L. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol. Ecol. 18, 3532–3543 (2009).Article 

    Google Scholar 
    153.Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R. & LaJeunesse, T. C. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl Acad. Sci. USA 112, 7513–7518 (2015).Article 

    Google Scholar 
    154.Qin, Z. et al. Diversity of Symbiodiniaceae in 15 coral species from the Southern South China Sea: potential relationship with coral thermal adaptability. Front. Microbiol. 10, 2343 (2019).Article 

    Google Scholar 
    155.Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 6097 (2020).Article 

    Google Scholar 
    156.Lim, E.-P. et al. Continuation of tropical Pacific Ocean temperature trend may weaken extreme El Niño and its linkage to the Southern Annular Mode. Sci. Rep. 9, 17044 (2019).Article 

    Google Scholar 
    157.Pollock, F. J. et al. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ 5, e3732 (2017).Article 

    Google Scholar 
    158.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).Article 

    Google Scholar 
    159.Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).Article 

    Google Scholar 
    160.Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).Article 

    Google Scholar 
    161.Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).Article 

    Google Scholar 
    162.Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).Article 

    Google Scholar 
    163.Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511 (2015).Article 

    Google Scholar 
    164.Sweet, M. J., Brown, B. E., Dunne, R. P., Singleton, I. & Bulling, M. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36, 815–828 (2017).Article 

    Google Scholar 
    165.Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).Article 

    Google Scholar 
    166.Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).Article 

    Google Scholar 
    167.Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252 (2018).Article 

    Google Scholar 
    168.Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 11, 186–200 (2017).Article 

    Google Scholar 
    169.Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus. Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).Article 

    Google Scholar 
    170.Nissimov, J., Rosenberg, E. & Munn, C. B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol. Lett. 292, 210–215 (2009).Article 

    Google Scholar 
    171.Sharp, K. H., Sneed, J. M., Ritchie, K. B., Mcdaniel, L. & Paul, V. J. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine roseobacter strain. Biol. Bull. 228, 98–107 (2015).Article 

    Google Scholar 
    172.Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).Article 

    Google Scholar 
    173.Sunagawa, S. et al. Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 3, 512–521 (2009).Article 

    Google Scholar 
    174.Ushijima, B., Smith, A., Aeby, G. S. & Callahan, S. M. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS ONE 7, e46717 (2012).Article 

    Google Scholar 
    175.Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).Article 

    Google Scholar 
    176.Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10, 2280–2292 (2016).Article 

    Google Scholar 
    177.Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).Article 

    Google Scholar 
    178.Mueller, E. A., Wisnoski, N. I., Peralta, A. L. & Lennon, J. T. Microbial rescue effects: how microbiomes can save hosts from extinction. Funct. Ecol. 34, 2055–2064 (2020).Article 

    Google Scholar 
    179.Leite, D. C. A. et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front. Microbiol. 9, 833 (2018).Article 

    Google Scholar 
    180.Fragoso Ados Santos, H. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).Article 

    Google Scholar 
    181.Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).Article 

    Google Scholar 
    182.Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).Article 

    Google Scholar 
    183.Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).Article 

    Google Scholar 
    184.Assis, J. M. et al. Delivering Beneficial Microorganisms for Corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).Article 

    Google Scholar 
    185.Damjanovic, K., Blackall, L. L., Webster, N. S. & van Oppen, M. J. H. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb. Biotechnol. 10, 1236–1243 (2017).Article 

    Google Scholar 
    186.van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).Article 

    Google Scholar 
    187.Sweet, M. et al. Insights into the cultured bacterial fraction of corals. mSystems 6, e0124920 (2021).Article 

    Google Scholar 
    188.Brussaard, C. P. D., Baudoux, A.-C. & Rodríguez-Valera, F. in The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential (eds Stal, L. J. & Cretoiu, M. S.) 155–183 (Springer International, 2016).189.Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).Article 

    Google Scholar 
    190.Messyasz, A. et al. Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.555474 (2020).Article 

    Google Scholar 
    191.Thurber, R. L. V. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).Article 

    Google Scholar 
    192.Sweet, M. & Bythell, J. The role of viruses in coral health and disease. J. Invertebr. Pathol. 147, 136–144 (2017).Article 

    Google Scholar 
    193.Thurber, R. V., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017). This paper reviews the role of viruses in coral holobiont biology.Article 

    Google Scholar 
    194.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).Article 

    Google Scholar 
    195.Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424–425 (2008).Article 

    Google Scholar 
    196.Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).Article 

    Google Scholar 
    197.Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2, 16010 (2016).Article 

    Google Scholar 
    198.Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).Article 

    Google Scholar 
    199.Cárdenas, A. et al. Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Front. Microbiol. 11, 572534 (2020).Article 

    Google Scholar 
    200.Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).Article 

    Google Scholar 
    201.Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & van Oppen, M. J. H. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).Article 

    Google Scholar 
    202.Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).Article 

    Google Scholar 
    203.Soffer, N., Brandt, M. E., Correa, A. M. S., Smith, T. B. & Thurber, R. V. Potential role of viruses in white plague coral disease. ISME J. 8, 271–283 (2014).Article 

    Google Scholar 
    204.Weynberg, K. D. et al. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36, 773–784 (2017).Article 

    Google Scholar 
    205.Brüwer, J. D., Agrawal, S., Liew, Y. J., Aranda, M. & Voolstra, C. R. Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol. 17, 174 (2017).Article 

    Google Scholar 
    206.Jacquemot, L. et al. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen. Front. Microbiol. 9, 2501 (2018).Article 

    Google Scholar 
    207.Efrony, R., Loya, Y., Bacharach, E. & Rosenberg, E. Phage therapy of coral disease. Coral Reefs 26, 7–13 (2007).Article 

    Google Scholar 
    208.Cohen, Y., Joseph Pollock, F., Rosenberg, E. & Bourne, D. G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2, 64–74 (2013).Article 

    Google Scholar 
    209.Efrony, R., Atad, I. & Rosenberg, E. Phage therapy of coral white plague disease: properties of phage BA3. Curr. Microbiol. 58, 139–145 (2009).Article 

    Google Scholar 
    210.Atad, I., Zvuloni, A., Loya, Y. & Rosenberg, E. Phage therapy of the white plague-like disease of Favia favus in the Red Sea. Coral Reefs 31, 665–670 (2012).Article 

    Google Scholar 
    211.Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).Article 

    Google Scholar 
    212.Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).Article 

    Google Scholar 
    213.Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. & Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Bio. Ecol. 346, 36–44 (2007).Article 

    Google Scholar 
    214.Roder, C., Arif, C., Daniels, C., Weil, E. & Voolstra, C. R. Bacterial profiling of white plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol. Ecol. 23, 965–974 (2014).Article 

    Google Scholar 
    215.Soffer, N., Zaneveld, J. & Vega Thurber, R. Phage–bacteria network analysis and its implication for the understanding of coral disease. Environ. Microbiol. 17, 1203–1218 (2015).Article 

    Google Scholar 
    216.Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).Article 

    Google Scholar 
    217.Cárdenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 12, 59–76 (2018).Article 

    Google Scholar 
    218.Anthony, K. et al. New interventions are needed to save coral reefs. Nat. Ecol. Evol. 1, 1420–1422 (2017).Article 

    Google Scholar 
    219.Allard, S. M. et al. Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems https://doi.org/10.1128/mSystems.00658-20 (2020).Article 

    Google Scholar 
    220.Zickfeld, K. et al. Long-term climate change commitment and reversibility: An EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).Article 

    Google Scholar 
    221.Humanes, A. et al. A framework for selectively breeding corals for assisted evolution. Preprint at bioRxiv https://doi.org/10.1101/2021.02.23.432469 (2021).Article 

    Google Scholar 
    222.National Academies of Sciences, Engineering, and Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019).223.Page, C. A., Muller, E. M. & Vaughan, D. E. Microfragmenting for the successful restoration of slow growing massive corals. Ecol. Eng. 123, 86–94 (2018).Article 

    Google Scholar 
    224.Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).Article 

    Google Scholar 
    225.Suggett, D. J., Edmondson, J., Howlett, L. & Camp, E. F. Coralclip®: a low-cost solution for rapid and targeted out-planting of coral at scale. Restor. Ecol. 28, 289–296 (2020).Article 

    Google Scholar 
    226.Woesik, R. et al. Differential survival of nursery-reared Acropora cervicornis outplants along the Florida reef tract. Restor. Ecol. 29, e13302 (2021).Article 

    Google Scholar 
    227.Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).Article 

    Google Scholar 
    228.Ladd, M. C., Shantz, A. A., Bartels, E. & Burkepile, D. E. Thermal stress reveals a genotype-specific tradeoff between growth and tissue loss in restored Acropora cervicornis. Mar. Ecol. Prog. Ser. 572, 129–139 (2017).Article 

    Google Scholar 
    229.Goergen, E. A. & Gilliam, D. S. Outplanting technique, host genotype, and site affect the initial success of outplanted Acropora cervicornis. PeerJ 6, e4433 (2018).Article 

    Google Scholar 
    230.Chamberland, V. F. et al. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci. Rep. 7, 18076 (2017).Article 

    Google Scholar 
    231.Craggs, J., Guest, J., Davis, M. & Sweet, M. Completing the life cycle of a broadcast spawning coral in a closed mesocosm. Invertebr. Reprod. Dev. 64, 244–247 (2020).Article 

    Google Scholar 
    232.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355 (2017).Article 

    Google Scholar 
    233.Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. The active spread of adaptive variation for reef resilience. Ecol. Evol. 9, 11122–11135 (2019).Article 

    Google Scholar 
    234.Sangsawang, L. et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R. Soc. Open Sci. 4, 171201 (2017).Article 

    Google Scholar 
    235.Pernice, M. et al. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).Article 

    Google Scholar 
    236.Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).Article 

    Google Scholar 
    237.Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).Article 

    Google Scholar 
    238.Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Chang. Biol. 24, e474–e484 (2018).Article 

    Google Scholar 
    239.Camp, E. F. et al. Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs 39, 701–716 (2020).Article 

    Google Scholar 
    240.Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).Article 

    Google Scholar 
    241.Putnam, H. M., Barott, K. L., Ainsworth, T. D. & Gates, R. D. The vulnerability and resilience of reef-building corals. Curr. Biol. 27, R528–R540 (2017).Article 

    Google Scholar 
    242.Hagedorn, M. & Spindler, R. The reality, use and potential for cryopreservation of coral reefs. Adv. Exp. Med. Biol. 753, 317–329 (2014).Article 

    Google Scholar 
    243.Hagedorn, M. et al. Successful demonstration of assisted gene flow in the threatened coral Acropora palmata across genetically-isolated caribbean populations using cryopreserved sperm. Cold Spring Harb. Lab. https://doi.org/10.1101/492447 (2018).Article 

    Google Scholar 
    244.Hagedorn, M., Spindler, R. & Daly, J. Cryopreservation as a tool for reef restoration: 2019. Adv. Exp. Med. Biol. 1200, 489–505 (2019).Article 

    Google Scholar 
    245.Daly, J. et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rep. 8, 15714 (2018).Article 

    Google Scholar 
    246.Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Chang. Biol. 23, 4675–4688 (2017).Article 

    Google Scholar 
    247.Quigley, K. M., Alvarez Roa, C., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 9, e959 (2020).Article 

    Google Scholar 
    248.Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases? Trends Ecol. Evol. 24, 378–385 (2009).Article 

    Google Scholar  More

  • in

    Hysteresis of heavy metals uptake induced in Taraxacum officinale by thiuram

    1.Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 4, 177–187 (2013).
    Google Scholar 
    2.Jamshidi-Kia, F., Lorigooini, Z. & Amini-Khoei, H. Medicinal plants: Past history and future perspective. J. Herbmed. Pharmacol. 7(1), 1–7 (2018).Article 

    Google Scholar 
    3.Yuan, H., Ma, Q., Ye, L. & Piao, G. The traditional medicine and modern medicine from natural products. Molecules 21, 559–577 (2016).Article 
    CAS 

    Google Scholar 
    4.Ali, H., Khan, E. & Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 1–14 (2019).5.Jedrejek, D. et al. Comparative phytochemical, cytotoxicity, antioxidant and haemostatic studies of Taraxacum officinale root preparations. Food Chem. Toxicol. 126, 233–247 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.British Hebal Medicine Association, Available from: http://www.bhma.info.7.Kabata-Pendias, A. & Pendias, H. Trace Elements in Soils and Plants 3rd edn. (CRC Press, 2001).
    Google Scholar 
    8.Petrova, S., Yurukova, L. & Velcheva, I. Taraxacum officinale as a biomonitor of metals and toxic elements (Plovdiv, Bulgaria). Bul. J. Agric. Sci. 19, 241–247 (2013).
    Google Scholar 
    9.Kano, N. et al. Study on the behavior and removal of cadmium and zinc using Taraxacum officinale and gazania under the application of biodegradable chelating agents. Appl. Sci. 11, 1557–1574 (2021).CAS 
    Article 

    Google Scholar 
    10.Hammammi, H. et al. Weeds ability to phytoremediate cadmium-contaminated soil. Intern. J. Phyt. 18(1), 48–53 (2016).Article 
    CAS 

    Google Scholar 
    11.Spychalski, G. Determinations of growing herbs in Polish agriculture. Herba polonica 59(4), 6–18 (2013).Article 

    Google Scholar 
    12.Różański, L. Vademecum of pesticides 97/98. Agra-Enviro Lab. (1998).13.Rajeswara, R. B. R. et al. Cultivation Technology for Economically Important Medicinal Plants in Advances in Medicinal Plants, ed. Reddy K.J, Bahadur B., Bhadraiah B., Rao M. L. N., Universities Press (2015).14.Agro-techniques of selected medicinal plants, National Medicinal Plants Board, India, (2008).15.Almeida, F., Rodrigues, M. L. & Coelho, C. The still underestimated problem of fungal diseases worldwide. Front. Microbiol. 10, 1–5 (2019).Article 

    Google Scholar 
    16.Bruni, R., Bellardi, M. G. & Parrella, G. Change in chemical composition of sweet basil (Ocimum basilicum L.) essential oil caused by alfalfa mosaic virus. J. Phytopat. 164, 202–206 (2016).CAS 
    Article 

    Google Scholar 
    17.Damalas, C. A. & Koutroubas, S. D. Farmers’ exposure to pesticides: Toxicity types and ways of prevention. Toxics 4, 1–10 (2016).PubMed Central 
    Article 

    Google Scholar 
    18.Lazo, C. R., Miller, G. W. Thiram, Encyclopedia of Toxicology (Third Edition), Wexler P, US National Library of Medicine, MD, USA, pp. 558–559 (Bethesda 2014).19.Dias, M. C. Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. J. Botany 2012, 1–4 (2012).Article 
    CAS 

    Google Scholar 
    20.Gupta, B., Rani, M. & Kumar, R. Degradation of thiram in water, soil and plants: A study by high-performance liquid chromatography. Biomed. Chromat. 26, 69–75 (2012).Article 
    CAS 

    Google Scholar 
    21.Sá da Silva, V. A. et al. Electrochemical evaluation of pollutants in the environment: Interaction between the metal Ions Zn(II) and Cu(II) with the fungicide thiram in billings dam. Electroanalysis 32, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    22.Filipe, O. M. S., Costa, C. A. E., Vidal, M. M. & Santos, E. B. H. Influence of soil copper content on the kinetics of thiram adsorption and on thiram leachability from soils. Chemosphere 90, 432–440 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Adamczyk-Szabela, D., Romanowska-Duda, Z., Lisowska, K. & Wolf, W. M. Heavy metal uptake by Herbs. V. metal accumulation and physiological effects induced by thiuram in Ocimum basilicum L. Water Air Soil Pollut. 228, 334 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Oliva, J. et al. Disappearance of six pesticides in fresh and processed zucchini, bioavailability and health risk assessment. Food Chem. 229, 172–177 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Associated effects of cadmium and copper alter the heavy metals uptake by Melissa Offcinalis. Molecules 24, 2458 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    26.Adamczyk-Szabela, D., Lisowska, K., Romanowska-Duda, Z. & Wolf, W. M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Sci. Rep. 10, 1675–1686 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.PN-ISO 10390:1997. Agricultural Chemical Analysis of the Soil. Determination of pH. 1997. Available from accessed 20 April 2019; http://sklep.pkn.pl/pn-iso-10390-1997p.html.28.ASTM D2974-00, 2000. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. Method D 2974–00; American Society for Testing and Materials: West Conshohocken, PA, USA.29.Schumacher, B. A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments (United States Environmental Protection Agency Environmental Sciences Division National Exposure Research Laboratory, 2002).
    Google Scholar 
    30.PN-R-04024:1997 Chemical and agricultural analysis of soil – Determination of available phosphorus, potassium, magnesium and manganese in organic soils, accessed 25 April 2017; http://sklep.pkn.pl/pn-r-04024–1997p.html.31.Sherif, A. M., Elhussein, A. A. & Osman, A. G. Biodegradation of fungicide thiram (TMTD) in soil under laboratory conditions. Am. J. Biotech. Mol. Sci. 1(2), 57–68 (2011).Article 

    Google Scholar 
    32.Adamczyk-Szabela, D., Markiewicz, J. & Wolf, W. M. Heavy metal uptake by herbs. IV. Influence of soil pH on the content of heavy metals in Valeriana offcinalis L. Water Air Soil Pollut. 226, 106–114 (2015).33.Dybczyński, R. et al. Preparation and preliminary certification of two new Polish CRMs for inorganic trace analysis. J. Radioanal. Nuc. Chem. 259, 409–413 (2004).Article 

    Google Scholar 
    34.Piotrowski, K., Romanowska-Duda, Z. B. & Grzesik, M. How Biojodis and cyanobacteria alleviate the negative influence of predicted environmental constraints on growth and physiological activity of corn plants. Pol. J. Environ. Stud. 25, 741–751 (2016).CAS 
    Article 

    Google Scholar 
    35.Kalaji, M. H. et al. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 122, 121–127 (2016).Article 
    CAS 

    Google Scholar 
    36.Mantzos, N. et al. QuEChERS and solid phase extraction methods for the determination of energy crop pesticides in soil, plant and runoff water matrices. Int. J. Eviron. Anal. Chem. 93(15), 1566–1584 (2013).CAS 
    Article 

    Google Scholar 
    37.Goodson, D. Z. Mathematical Methods for Physical and Analytical Chemistry (Wiley, 2011).MATH 
    Book 

    Google Scholar 
    38.Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model Anal. 2, 21–33 (2011).
    Google Scholar 
    39.Bordens, K. S. & Abbott, B. B. Research Design and Methods: A Process Approach 8th edn, 432–450 (McGraw-Hill, 2011).
    Google Scholar 
    40.Galal, T. M. & Shehata, H. S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Ind. 48, 244–251 (2015).CAS 
    Article 

    Google Scholar 
    41.Liu, K. et al. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxi. Environ. Saf. 113, 207–213 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Shi, G. R. & Cai, Q. S. Photosynthetic and anatomic responses of peanut leaves to zinc stress. Biolog. Plantarum 53(2), 391–394 (2009).CAS 
    Article 

    Google Scholar 
    43.Testiati, E. et al. Trace metal and metalloid contamination levels in soils and two native plant species of a former industrial site: Evaluation of the phytostabilization potential. J. Hazard Mat. 248–249, 131–141 (2013).Article 
    CAS 

    Google Scholar 
    44.Xiao, R. et al. Fractionation, transfer and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronsequence of reclamation in estuary of China. Sci. Total Environ. 517, 66–75 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Wang, S., Zhao, Y., Guo, J. & Zhou, L. Effects of Cd, Cu and Zn on Ricinus communis L. Growth in single element or co-contaminated soils: Pot experiments. Ecolog. Eng. 90, 347–351 (2016).Article 

    Google Scholar 
    46.IUSS Working Group WRB World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. (FAO)47.Regulation of the Minister of Environment 01.08.2016. Journal of Laws of Poland, Item 139548.Antsotegi-Uskola, M., Markina-Iñarrairaegui, A. & Ugalde, U. New insights into copper homeostasis in filamentous fungi. Int. Microbiol. 23, 65–73 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Kabata-Pendias, A. & Pendias, H. Biogeochemistry of Trace Elements (PWN, 1999).
    Google Scholar 
    50.Emamverdian, A., Ding, Y., Mokhberdoran, F. & Xie, Y. Heavy metal stress and some mechanisms of plant defense response. The Sci. World J. 1–18 (2015).51.Maznah, Z., Halimah, M. & Ismaill, B. S. Evaluation of the persistence and leaching behaviour of thiram fungicide in soil, water and oil palm leaves. Bull. Environ. Contam. Toxicol. 100, 677–682 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Thomas, K. The environmental fate and behaviour of antifouling paint booster biocides: A review. Biofouling 17, 73–86 (2001).CAS 
    Article 

    Google Scholar 
    53.EPA. United States Environmental Protection Agency (EPA, 2004).
    Google Scholar 
    54.Gomes de Melo, B. A., Motta, F. L. & Santana, M. H. A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Eng. C. 62, 967–974 (2016).Article 
    CAS 

    Google Scholar 
    55.Gupta, B., Rani, M., Kumar, R. & Dureja, P. Identification of degradation products of thiram in water, soil and plants using LC-MS technique. J. Environ. Sci. Health, Part B 47, 823–831 (2012).CAS 
    Article 

    Google Scholar 
    56.Adamczyk, D. The effect of thiuram on the uptake of lead and copper by Melissa officinalis. Environ. Eng. Sci. 23, 610–614 (2006).CAS 
    Article 

    Google Scholar 
    57.Adamczyk, D. & Jankiewicz, B. The effect of thiuram on the uptake of copper, zinc and manganese by Valeriana officinalis L. Pol. J. Environ. Stud. 17(5), 823–826 (2008).CAS 

    Google Scholar 
    58.Singh, N., Gupta, V. K., Kumar, A. & Sharma, B. Synergistic effects of heavy metals and pesticides in living systems. Front. Chem. 5(70), 1–9 (2017).
    Google Scholar 
    59.Skiba, E., Adamczyk-Szabela, D. & Wolf, W. M. Metal-based nanoparticles’ interactions with plants. In Plant Responses to Nanomaterials Recent Interventions, and Physiological and Biochemical Responses (eds Singh, V. P. et al.) 145–169 (Springer, 2021).Chapter 

    Google Scholar 
    60.Glebov, E. M., Grivin, V. P., Plyusnin, V. F. & Udaltsov, A. V. Manganese(II) complexes with diethylamine in aqueous solutions. J. Struct. Chem. 47, 476–483 (2006).CAS 
    Article 

    Google Scholar 
    61.Liaoa, Y., Zhanga, S. & Dryfe, R. Electroless copper plating using dimethylamine borane as reductant. Particuology 10, 487–491 (2012).Article 
    CAS 

    Google Scholar 
    62.Alejandro, S., Höller, S., Meier, B. & Peiter, E. Manganese in plants: From acquisition to subcellular allocation. Front. Plant Sci. 26, 1–23 (2020).
    Google Scholar 
    63.Yruela, I. Transition metals in plant photosynthesis. Metallomics 5, 1090–1109 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Yüzbaşıoğlu, E. & Dalyan, E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol. Biochem. 135, 322–330 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Beauchamp, R. O. et al. A critical review of the literature on carbon disulfide toxicity. CRC Crit. Rev. Toxicol. 11, 169–278 (1983).CAS 
    Article 

    Google Scholar 
    66.Norton, R., Mikkelsen, R. & Jensen, T. Sulfur for plant nutrition. Better Crops 97, 10–12 (2013).
    Google Scholar 
    67.Abdallah, M. et al. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 61, 2635–2646 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Positive effects of COVID-19 lockdown on river water quality: evidence from River Damodar, India

    Study areaThe important river Damodar (563 km) originates from Khamarpat hill under Palamau district of Jharkhand state (India). It flows toward east direction and ultimately it joins with river Bhagirathi-Hooghly in West Bengal. Upper and middle parts of the river basin have rich diversity of minerals and standard quality coal reserve of Gondwana formations. Abundant supply of fresh river water with high mineral and energy resources attracts many large, medium and small-scale industries since historical time. River Damodar is the principal supplier of water resource to drinking, industrial and domestic purpose in its catchment area. Therefore, such favourable environment attracts huge population along with industrial integration in this area. The present study area is bounded by 23° 28′ 28.7″ N to 23° 40′ 52.5″ N and 86° 49′ 26.8″ E to 87° 18′ 42.4″ E and 65.37 km river stretch has been selected for the study. In this section high, agglomeration of industries and allied human works intensively developed along the riverside. Many iron and steel plants, thermal power plant, sponge iron factory, chemical industries, coal mining fields and urban centres have been developed through the evolution of time. As a result, huge untreated waste (solid/ liquid), hot water, coal dust and urban effluents are being regularly discharged to the riverbed through various connecting channels which are locally called nallas (Fig. 1)10,11.Figure 1source QGIS 3.16 software (https://qgis.org/en/site/forusers/download.html).Location map of the study stretch of a tropical river Damodar (India). The diagram is prepared by openFull size imageSample collection and data analysisWater samples were collected from eleven discharged points of industrial effluents on main riverbed. First, samples were taken on December 2019 (pre-lockdown/ normal period), again second, samples were collected in June, 2020 (during lockdown) to assess the changes on river water quality due to temporarily closing of industries. Third, samples were obtained in November, 2020 (after unlock phase) to get clear idea about effects of industries on the river water quality. Samples were obtained from 0.5 m below the surface water level within 5 m influencing radius zone. Pre cleaned polyethylene bottles (500 ml) were used for the collection of five subsamples from each sampling site and mixed up to get a bulk contain (1 l). All samples were carried properly for further analysis in laboratory. Sample containers were labelled as S1, S2, S3… to S11 for properly identification (Fig. 1). Total 20 parameters were analysed from each sample of each period. Important parameters such as pH, electrical conductivity (EC), total dissolved solids (TDS), turbidity, magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulphate (SO42–), nitrates (NO3−), Biological Oxygen Demand (BOD), Dissolved Oxygen (DO), zinc (Zn2+), cadmium (Cd2+), lead (Pb2+), nickel (Ni2+), chromium (Cr), iron (Fe2+), chlorophyll a (Chla), total phosphorus (TP), and Secchi disk depth (Sd) have been considered. Consequently, pH and EC were measured at the sampling sites using Thermo probe, Hanna HI9811-5 potable meters respectively. DO was determined through Winkler’s method at the sampling spot immediately28. EC denoted by microsiemens per centimetre. TDS was determined following the procedure given by Hem (1991). Turbidity was denoted by Nephelometric Turbidity Unit (NTU’s). All cation, anions, BOD and DO were expressed in mg/l while all heavy metals, TP and Chla denoted as microgram/l. All other physico-chemical parameters and heavy metals were analysed by standard procedure which was prescribed by American Public Health Association (APHA)29. Chla and total phosphorus were estimated following APHA29 standard procedures. Secchi disk (Sd) with 8 in. diameter and attached cord in disk centre was used for depth measurement and expressed in meters at the maximum limit of depth where disk was seen from the above into the water.Modified water quality index (MWQI)MWQI of the 33-sample water was conducted for 11 sample sites by important water quality parameters namely pH, TDS, EC, turbidity, Mg2+, Ca2+, Cl-, SO42–, NO3–, BOD and DO. We considered 11 variables per sample in the index. The calculation of MWQI was conducted following the method of Vasistha and Ganguly30.At first, pre defined weightage was assigned for each selected parameter. The weightage of each parameter was obtained from previous literatures. After that, relative weight of each parameter was derived by the formula.$$ RW = AW/sumlimits_{i = 1}^{n} {AW} $$
    (1)
    where RW is relative weight of each parameter, AW is assigned weight obtained from past literature (AW of pH = 1, TDS = 1.79, EC = 1.78, turbidity = 1.09, Ca2+  = 0.8, Mg2+  = 0.72, Cl– = 1.28, SO42– = 1.60, NO3– = 2.32, BOD = 1.72, DO = 2.85) and n is total number of parameters considered for analysis.Second, quality assessment (Qi) of each parameter was obtained following the formula.$$ Q_{i} = (C_{i} times S_{i} ) times 100 $$
    (2)
    where Ci is concentration of particular parameter in sample water, Si is standard permissible limit of each parameter as suggested by BIS31 and WHO31 (Table 1).Table 1 Descriptive statistics of twenty variables of physio chemical, heavy metals and biological parameters in three period.Full size tableQi for pH and DO was obtained through some modification of Eq. (1.2) because optimum concentration of these two parameters are little different from others. The optimum value of pH and DO is considered as 7.0 and 14.6 mg/l (100% saturation at 23 °C), respectively32. Thus, Qi for these two parameters were performed using the formula.$$ Q_{i} = (frac{{C_{i} – V_{i} }}{{S_{i} – V_{i} }}) times 100 $$
    (3)
    where Vi denotes optimum values of pH and DO.Third, in this step sub index (SIi) was calculated for each considered parameter by multiplication of relative weight (RW) with quality assessment (Qi) value of each parameter using formula below.$$ SI_{i} = RW times Q_{i} $$
    (4)
    At last, MWQI was obtained for each sample site by summation of SIi of each parameter as below:$$ MWQI = sumlimits_{i = 1}^{n} {SI_{i} } $$
    (5)
    Water quality (based on MWQI values) has been categorised into 5 classes such as excellent (≤ 50), good (50–100), poor (100–200), very poor (200–300) and unfit for drinking (≥ 300) as suggested by BIS31 (IS:10500).Heavy metal index (HMI)Analysis of heavy metal index was done using 6 parameters as Cd2+, Zn2+, Cr, Pb2+, Ni2+, and Fe2+. Calculation was conducted through this formula33.$$ Wi = K/Si $$
    (6)
    where Wi suggests weightage of ith parameter, K means constant value (1), Si means standard value of ith parameter as per BIS31, and WHO32. In the next step, sub index calculation (Qi) was done through this formula.$$ Qi = sumlimits_{i = 1}^{n} {frac{Mi}{{Si}}} times 100 $$
    (7)
    where Mi is the value of heavy metal concentration in sample water, Si is maximum limit of permissible of ith parameter in µg/l according to BIS31 and WHO32 (Table 1). At last, HPI was calculated using this formula which is given below.$$ HPI = frac{{sumlimits_{i = 1}^{n} {WiQi} }}{{sumlimits_{i = 1}^{n} {Wi} }} $$
    (8)
    where n indicates total number of parameters used for calculation of HPI. HPI can be classified into five categories such as excellent (0–25), good (26–50), poor (51–75), very poor (75–100) and unfit for drinking ( > 100).Potential ecological risk (RI)To assess the environmental response of heavy metal contamination, a new index was applied from sedimentological perspective and it was proposed by Hakanson33. In this method, effects of heavy metals on environment and possibilities to ecological risk can be determined by a single contamination coefficient, toxic response coefficient of heavy metals and comprehensive contamination of metals for any aquatic or soil environment using this formula34.$$ C_{f}^{i} = C_{s}^{i} /C_{n}^{i} ,;c = sumlimits_{i = 1}^{n} {C_{f}^{i} } $$
    (9)
    $$ E_{r}^{i} = T_{r}^{i} times C_{f}^{i} ,;RI = sumlimits_{i = 1}^{m} {E_{r}^{i} } $$
    (10)
    where Csi specifies heavy metal contamination value, Cni indicates reference value of heavy metals, C stands for degree of contamination by toxic heavy metals, Eri represents ecological risk factor of any single substance, Tri indicates ‘Toxic- response’ of any particular metal and RI denotes potential ecological risk index of all measured toxic metals. In this study, reference value of heavy metals was taken from standard preindustrial values of heavy metals as Cd = 1.0, Pb = 70, Cr = 90 and Zn = 175. Toxic response of heavy metals was used as follows: Cd = 30, Pb = 5, Cr = 2 and Zn = 1 (Hakanson33). Values of RI can be classified into four categories such as Practically uncontaminated ( 600).Trophic State Index (TSI)Trophic status of river was identified by Trophic State Index (TSI) considering three parameters such as Secchi disk depth (Sd), Chlorophyll-a (Chla), Total phosphorus (TP). Trophic State Index (TSI) was calculated by Carlson method35.$$ TS(Sd) = 60.0 – 14.41 times Ln(Sd) $$
    (11)
    $$ TS(TP) = 14.42 times Ln(TP) + 4.15 $$
    (12)
    $$ TS(Chla) = 30.6 + 9.81 times Ln(Chla) $$
    (13)
    $$ {text{TSI }}left( {text{Trophic State Index}} right) = left[ {TS(Sd) + TS(TP) + TS(Chla)} right]/3 $$
    (14)
    Values of TSI were classified into seven categories such as low oligotrophic ( 80).Statistical and spatial analysisA meta analysis such as descriptive statistics, Pearson correlation coefficient, analysis of variance (ANOVA test), principal component analysis (PCA) of all physico-chemical parameters, biological and heavy metals were applied to quantify the significant changes in three phases using least significant difference (LSD) at 0.05 level. All statistical analysis has been performed using SPSS 20 and MS-excel software while R programming language v. R 4.1.1 is used only for diagrammatic presentation. Inverse Distance Weightage (IDW) technique was performed on QGIS v.3.16 software for revealing spatial variation of water quality in three periods on the basis of different indexing method. More

  • in

    Species richness and β-diversity patterns of macrolichens along elevation gradients across the Himalayan Arc

    1.Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    2.Bruun, H. H. et al. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17, 37–46 (2006).Article 

    Google Scholar 
    3.Rubio-Salcedo, M., Psomas, A., Prieto, M., Zimmermann, N. E. & Martínez, I. Case study of the implications of climate change for lichen diversity and distributions. Biodivers. Conserv. 26, 1121–1141 (2017).Article 

    Google Scholar 
    4.Zhou, Y. et al. The species richness pattern of vascular plants along a tropical elevational gradient and the test of elevational Rapoport’s rule depend on different life-forms and phytogeographic affinities. Ecol. Evol. 9, 4495–4503 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Ohdo, T. & Takahashi, K. Plant species richness and community assembly along gradients of elevation and soil nitrogen availability. AoB Plants 12, plaa014 (2020).6.Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8, 224–239 (2005).Article 

    Google Scholar 
    7.Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Vetaas, O. R. & Grytnes, J. A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Glob. Ecol. Biogeogr. 11, 291–301 (2002).Article 

    Google Scholar 
    9.Grytnes, J. A. Ecological interpretations of the mid-domain effect. Ecol. Lett. 6, 883–888 (2003).Article 

    Google Scholar 
    10.Colwell, R. K., Rahbek, C. & Gotelli, N. J. The mid-domain effect and species richness patterns: what have we learned so far?. Am. Nat. 163, E1–E23 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Sabatini, F. M., Jiménez-Alfaro, B., Burrascano, S., Lora, A. & Chytrý, M. Beta-diversity of central European forests decreases along an elevational gradient due to the variation in local community assembly processes. Ecography 41, 1038–1048 (2018).Article 

    Google Scholar 
    12.Qian, H., Ricklefs, R. E. & White, P. S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 8, 15–22 (2005).Article 

    Google Scholar 
    13.Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 23, 1324–1334 (2014).Article 

    Google Scholar 
    14.Ulrich, W., Almeida-Neto, M. & Gotelli, N. J. A consumer’s guide to nestedness analysis. Oikos 118, 3–17 (2009).Article 

    Google Scholar 
    15.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    16.Jacquemyn, H., Honnay, O. & Pailler, T. Range size variation, nestedness and species turnover of orchid species along an altitudinal gradient on Réunion Island: implications for conservation. Biol. Cons. 136, 388–397 (2007).Article 

    Google Scholar 
    17.Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42, 1776–1786 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19, 729–739 (2015).Article 

    Google Scholar 
    19.Nunes, C. A., Braga, R. F., Figueira, J. E. C., Neves, F. d. S. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11, e0157442 (2016).20.Zhou, G. et al. Effects of livestock grazing on grassland carbon storage and release override impacts associated with global climate change. Glob. Change Biol. 25, 1119–1132 (2019).ADS 
    Article 

    Google Scholar 
    21.Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).ADS 
    Article 

    Google Scholar 
    22.Chander, H. & Sapna, D. Sanjna. Species diversity of lichens in Balh Valley of Himachal Pradesh, North Western Himalaya. J. Biol. Chem. Chronicles 5, 32–40 (2019).23.Negi, H. R. On the patterns of abundance and diversity of macrolichens of Chopta-Tunganath in the Garhwal Himalaya. J. Biosci. 25, 367–378 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Pinokiyo, A., Singh, K. P. & Singh, J. S. Diversity and distribution of lichens in relation to altitude within a protected biodiversity hot spot, north-east India. Lichenologist 40, 47–62 (2008).Article 

    Google Scholar 
    25.Kumar, J. et al. Elevational controls of lichen communities in Zanskar valley, Ladakh, a Trans Himalayan cold desert. Trop. Plant Res. 1, 48–54 (2014).
    Google Scholar 
    26.Rashmi, S. & Rajkumar, H. Diversity of Lichens along Elevational Gradients in Forest Ranges of Chamarajanagar District, Karnataka State. Int. J. Sci. Res. Biol. Sci. 6, 1 (2019).27.Shukla, V., Upreti, D. K. & Bajpai, R. Lichens to Biomonitor the Environment. (Springer, 2014).28.Man-Rong, H. & Wei, G. Altitudinal gradients of lichen species richness in Tibet, China. PDR 34, 2–8 (2012).
    Google Scholar 
    29.Wolf, J. H. Diversity patterns and biomass of epiphytic bryophytes and lichens along an altitudinal gradient in the northern Andes. Ann. Missouri Bot. Gard. 928–960 (1993).30.Pirintsos, S., Diamantopoulos, J. & Stamou, G. Analysis of the distribution of epiphytic lichens within homogeneous Fagus sylvatica stands along an altitudinal gradient (Mount Olympos, Greece). Vegetatio 116, 33–40 (1995).
    Google Scholar 
    31.Grytnes, J. A., Heegaard, E. & Ihlen, P. G. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29, 241–246 (2006).ADS 
    Article 

    Google Scholar 
    32.Vittoz, P. et al. Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot. Helv. 120, 139–149 (2010).Article 

    Google Scholar 
    33.Bässler, C. et al. Contrasting patterns of lichen functional diversity and species richness across an elevation gradient. Ecography 39, 689–698 (2016).Article 

    Google Scholar 
    34.Rai, H., Khare, R., Upreti, D. K. & Nayaka, S. Terricolous Lichens in India 1–16 (Springer, 2014).35.Awasthi, D. D. Key to the Microlichens of India, Nepal and Sri Lanka. (J. Cramer, 1991).36.Sipman, H. J. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).
    Google Scholar 
    37.Awasthi, D. D. A Compendium of the Macrolichens from India, Nepal and Sri Lank. (Bishen Singh Mahendra Pal Sin, 2007).38.Singh, K. P. & Sinha, G. P. Indian Lichens: An Annotated Checklis. (Botanical Survey of Ind, 2010).39.Sinha, G., Nayaka, S. & Joseph, S. Additions to the checklist of Indian lichens after 2010. Cryptogam Biodivers. Assess. Spec. 197, 206 (2018).
    Google Scholar 
    40.Hsieh, T., Ma, K. & Chao, A. A Quick Introduction to iNEXT via Examples. http://chao.stat.nthu.edu.tw/wordpress (2016).41.Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R. & O’Hara, R.B. et al. Vegan: Community Ecology Package. R package version 2.5-7. http://CRAN.R-project.org/package=vegan (2015).42.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).Article 

    Google Scholar 
    43.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    44.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    45.Rathore, L., Attri, S. & Jaswal, A. State level climate change trends in India. India Meteorol. Dept. 25, 02 (2013).
    Google Scholar 
    46.Goni, R., Raina, A. K., Magotra, R. & Sharma, N. Lichen flora of Jammu and Kashmir State, India: An updated checklist. Trop. Plant Res. 2, 64–71 (2015).
    Google Scholar 
    47.Sinha, G. & Ram, T. Lichen diversity in Sikkim. In Biodiversity of Sikkim: Exploring and Conserving a Global Hotspot. 13–28. (Department of Information and Public Relations, Government of Sikkim, 2011).48.Mishra, G. K. & Upreti, D. K. Diversity and distribution of macro-lichen in Kumaun Himalaya, Uttarakhand. Int. J. Adv. Res. 4, 912–925 (2016).
    Google Scholar 
    49.Rai, H., Upreti, D. & Gupta, R. K. Diversity and distribution of terricolous lichens as indicator of habitat heterogeneity and grazing induced trampling in a temperate-alpine shrub and meadow. Biodivers. Conserv. 21, 97–113 (2012).Article 

    Google Scholar 
    50.Thell, A. et al. A review of the lichen family Parmeliaceae–history, phylogeny and current taxonomy. Nord. J. Bot. 30, 641–664 (2012).Article 

    Google Scholar 
    51.Cannon, P. F. & Kirk, P. M. Fungal Families of the World. (Cabi, 2007).52.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. The elevation gradient of lichen species richness in Nepal. Lichenologist 42, 83–96 (2010).53.Rai, H., Khare, R., Baniya, C. B., Upreti, D. K. & Gupta, R. K. Elevational gradients of terricolous lichen species richness in the Western Himalaya. Biodivers. Conserv. 24, 1155–1174 (2015).Article 

    Google Scholar 
    54.Grytnes, J. A. & Vetaas, O. R. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 159, 294–304 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kluge, J. et al. Elevational seed plants richness patterns in Bhutan, Eastern Himalaya. J. Biogeogr. 44, 1711–1722 (2017).Article 

    Google Scholar 
    56.Bhattarai, K. R., Vetaas, O. R. & Grytnes, J. A. Fern species richness along a central Himalayan elevational gradient, Nepal. J. Biogeogr. 31, 389–400 (2004).Article 

    Google Scholar 
    57.Grau, O., Grytnes, J. A. & Birks, H. A comparison of altitudinal species richness patterns of bryophytes with other plant groups in Nepal, Central Himalaya. J. Biogeogr. 34, 1907–1915 (2007).Article 

    Google Scholar 
    58.McCain, C. M. & Grytnes, J. A. Elevational gradients in species richness. eLS (2010).59.Gauslaa, Y. et al. Size-dependent growth of two old-growth associated macrolichen species. New Phytol. 181, 683–692 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Nautiyal, M., Nautiyal, B. & Prakash, V. Effect of grazing and climatic changes on alpine vegetation of Tungnath, Garhwal Himalaya, India. Environmentalist 24, 125–134 (2004).Article 

    Google Scholar 
    61.McCain, C. M. The mid-domain effect applied to elevational gradients: Species richness of small mammals in Costa Rica. J. Biogeogr. 31, 19–31 (2004).Article 

    Google Scholar 
    62.Baniya, C. B. Species Richness Patterns in Space and Time in the Himalayan Area. https://hdl.handle.net/1956/3861 (2010).63.Baniya, C. B., Solhøy, T., Gauslaa, Y. & Palmer, M. W. Richness and composition of vascular plants and cryptogams along a high elevational gradient on Buddha Mountain, Central Tibet. Folia Geobot. 47, 135–151 (2012).Article 

    Google Scholar 
    64.da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24, 1277–1290 (2018).Article 

    Google Scholar 
    65.Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10, e0127692 (2015).66.Nanda, S. A., Reshi, Z. A., Ul-haq, M., Lone, A. & Mir, S. A. Taxonomic and functional plant diversity patterns along an elevational gradient through treeline ecotone in Kashmir. Trop. Ecol. 59, 211–224 (2018).
    Google Scholar 
    67.Boet, O., Arnan, X. & Retana, J. The role of environmental vs. biotic filtering in the structure of European ant communities: A matter of trait type and spatial scale. PLoS ONE 15, e0228625 (2020). More

  • in

    Kleptoplast distribution, photosynthetic efficiency and sequestration mechanisms in intertidal benthic foraminifera

    1.Schiebel R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob Biogeochem Cycl. 2002;16:1–21.Article 
    CAS 

    Google Scholar 
    2.Lampitt RS, Salter I, John D. Radiolaria: major exporters of organic carbon to the deep ocean. Glob Biogeochem Cycl. 2009;23:GB1010.Article 
    CAS 

    Google Scholar 
    3.Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MSM, Op den Camp HJM, et al. Evidence for complete denitrification in a benthic foraminifer. Nature. 2006;443:93–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Piña-Ochoa E, Hogslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, et al. Widespread occurrence of nitrate storage and denitrification among foraminifera and gromiida. Proc Natl Acad Sci USA. 2010;107:1148–53.PubMed 
    Article 

    Google Scholar 
    5.Jauffrais T, LeKieffre C, Schweizer M, Geslin E, Metzger E, Bernhard JM, et al. Kleptoplastidic benthic foraminifera from aphotic habitats: insights into assimilation of inorganic C, N and S studied with sub-cellular resolution. Environ Microbiol. 2019;21:125–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Delaca TE, Karl DM, Lipps JH. Direct use of dissolved organic-carbon by agglutinated benthic foraminifera. Nature. 1981;289:287–9.CAS 
    Article 

    Google Scholar 
    7.Moodley L, Boschker HTS, Middelburg JJ, Pel R, Herman PMJ, de Deckere E, et al. Ecological significance of benthic foraminifera: C-13 labelling experiments. Mar Ecol Prog Ser. 2000;202:289–95.Article 

    Google Scholar 
    8.LeKieffre C, Jauffrais T, Geslin E, Jesus B, Bernhard JM, Giovani ME, et al. Inorganic carbon and nitrogen assimilation in cellular compartments of a benthic kleptoplastic foraminifer. Sci Rep. 2018;8:1–12.CAS 
    Article 

    Google Scholar 
    9.Tsuchiya M, Chikaraishi Y, Nomaki H, Sasaki Y, Tame A, Uematsu K, et al. Compound-specific isotope analysis of benthic foraminifer amino acids suggests microhabitat variability in rocky-shore environments. Ecol Evol. 2018;8:8380–95.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Glock N, Roy AS, Romero D, Wein T, Weissenbach J, Revsbech NP, et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA. 2019;116:2860–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Woehle C, Roy AS, Glock N, Wein T, Weissenbach J, Rosenstiel P, et al. A novel eukaryotic denitrification pathway in foraminifera. Curr Biol. 2018;28:1–8.Article 
    CAS 

    Google Scholar 
    12.Gooday A. Meiofaunal foraminiferans from the bathyal porcupine seabight (northeast Atlantic): size structure, standing stock, taxonomic composition, species diversity and vertical distribution in the sediment. Deep-Sea Res Part A Oceanogr Res Pap. 1986;33:1345–73.Article 

    Google Scholar 
    13.Pascal P-Y, Dupuy C, Richard P, Mallet C, Telet EAC, Niquilb N. Seasonal variation in consumption of benthic bacteria by meio- and macrofauna in an intertidal mudflat. Limnol Oceanogr. 2009;54:1048–59.CAS 
    Article 

    Google Scholar 
    14.Jauffrais T, LeKieffre C, Schweizer M, Jesus B, Metzger E, Geslin E. Response of a kleptoplastidic foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. FEMS Microbiol Ecol. 2019;95:fiz046.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Grzymski J, Schofield OM, Falkowski PG, Bernhard JM. The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr. 2002;47:1569–80.CAS 
    Article 

    Google Scholar 
    16.Pillet L, de Vargas C, Pawlowski J. Molecular identification of sequestered diatom chloroplasts and kleptoplastidy in foraminifera. Protist. 2011;162:394–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Cesbron F, Geslin E, Le Kieffre C, Jauffrais T, Nardelli MP, Langlet D, et al. Sequestered chloroplasts in the benthic foraminifer Haynesina germanica: cellular organization, oxygen fluxes and potential ecological implications. J Foraminifer Res. 2017;47:268–78.Article 

    Google Scholar 
    18.Jauffrais T, Jesus B, Metzger E, Mouget JL, Jorissen F, Geslin E. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida). Biogeosciences. 2016;13:2715–26.Article 

    Google Scholar 
    19.Lopez E. Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar Biol. 1979;53:201–11.CAS 
    Article 

    Google Scholar 
    20.Clark KB, Jensen KR, Stirts HM. Survey for functional kleptoplasty among West Atlantic Ascoglossa (=Sacoglossa) (Mollusca: Opisthobranchia). Veliger. 1990;33:339–45.
    Google Scholar 
    21.Rumpho ME, Dastoor F, Manhart J, Lee J. The kleptoplast. In: Wise RR, Hoober JK, editors. The structure and function of plastids. 23. New York: Advances in Photosynthesis and Respiration; 2006. p. 451–73.Chapter 

    Google Scholar 
    22.Jesus B, Ventura P, Calado G. Behaviour and a functional xanthophyll cycle enhance photo-regulation mechanisms in the solar-powered sea slug Elysia timida (Risso, 1818). J Exp Mar Biol Ecol. 2010;395:98–105.CAS 
    Article 

    Google Scholar 
    23.Hansen PJ, Fenchel T. The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res. 2006;2:169–77.Article 

    Google Scholar 
    24.Hansen PJ, Ojamäe K, Berge T, Trampe EC, Nielsen LT, Lips I, et al. Photoregulation in a kleptochloroplastidic dinoflagellate Dinophysis acuta. Front Microbiol. 2016;7:1–11.
    Google Scholar 
    25.Decelle J, Colin S, Foster RA. Photosymbiosis in Marine Planktonic Protists. In: Ohtsuka S, Suzaki T, Horiguchi T, Suzuki N, Not F, editors. Marine Protists. Tokyo: Springer; 2015. p. 465–500.Chapter 

    Google Scholar 
    26.Stoecker DK, Johnson MD, deVargas C, Not F. Acquired phototrophy in aquatic protists. Aquat Micro Ecol. 2009;57:279–310.Article 

    Google Scholar 
    27.Rumpho ME, Summer EJ, Manhart JR. Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol. 2000;123:29–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Park MG, Park JS, Kim M, Yih W. Plastids dynamics during survival of Dinophysis caudate without its ciliate prey. J Phycol. 2008;44:1154–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Alexander SP, Banner FT. The functional relationship between skeleton and cytoplasm in Haynesina germanica (Ehrenberg). J Foraminifer Res. 1984;14:159–70.Article 

    Google Scholar 
    30.Bernhard JM, Alve E. Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammens fjord (Norway): Response to anoxia. Mar Micropaleontol. 1996;28:5–17.Article 

    Google Scholar 
    31.Bernhard JM, Bowser SS. Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci Rev. 1999;46:149–65.CAS 
    Article 

    Google Scholar 
    32.Bernhard JM, Buck KR, Farmer MA, Bowser SS. The Santa Barbara Basin is a symbiosis oasis. Nature. 2000;403:77–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Correia MJ, Lee JJ. Chloroplast retention by Elphidium excavatum (Terquem). Is it a selective process? Symbiosis. 2000;29:343–55.
    Google Scholar 
    34.Lee JJ, Lanners E, Ter Kuile B. The retention of chloroplasts by the foraminifera Elphidium crispum. Symbiosis. 1988;5:45–60.CAS 

    Google Scholar 
    35.Cedhagen T. Retention of chloroplasts and bathymetric distribution in the sublittoral foraminiferan Nonionellina labradorica. Ophelia. 1991;33:17–30.Article 

    Google Scholar 
    36.Correia MJ, Lee JJ. Fine structure of the plastids retained by the foraminifer Elphidium excavatum (Terquem). Symbiosis. 2002;32:15–26.
    Google Scholar 
    37.Correia MJ, Lee JJ. How long do the plastids retained by Elphidium excavatum (Terquem) last in their host? Symbiosis. 2002;32:27–37.
    Google Scholar 
    38.Goldstein ST, Bernhard JM, Richardson EA. Chloroplast sequestration in the foraminifer Haynesina germanica: application of high pressure freezing and freeze substitution. Microsc Microanal. 2004;10:1458–9.Article 

    Google Scholar 
    39.Jauffrais T, LeKieffre C, Koho KA, Tsuchiya M, Schweizer M, Bernhard JM, et al. Ultrastructure and distribution of kleptoplasts in benthic foraminifera from shallow-water (photic) habitats. Mar Micropaleontol. 2018;138:46–62.Article 

    Google Scholar 
    40.Tsuchiya M, Toyofuku T, Uematsu K, Brüchert V, Collen J, Yamamoto H, et al. Cytologic and genetic characteristics of endobiotic bacteria and kleptoplasts of Virgulinella fragilis (Foraminifera). J Euk Microbiol. 2015;62:454–69.PubMed 
    Article 

    Google Scholar 
    41.Tsuchiya M, Miyawaki S, Oguri K, Toyofuku T, Tame A, Uematsu K, et al. Acquisition, Maintenance, and Ecological Roles of Kleptoplasts in Planoglabratella opercularis (Foraminifera, Rhizaria). Front Mar Sci. 2020;7:585.Article 

    Google Scholar 
    42.Jauffrais T, Jesus B, Méléder V, Geslin E. Functional xanthophyll cycle and pigment content of a kleptoplastic benthic foraminifer: Haynesina germanica. PLOS ONE. 2017;12:e0172678.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Austin HA, Austin WE, Paterson DM. Extracellular cracking and content removal of the benthic diatom Pleurosigma angulatum (Quekett) by the benthic foraminifera Haynesina germanica (Ehrenberg). Mar Micropaleontol. 2005;57:68–73.Article 

    Google Scholar 
    44.Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ, Kennedy RA, et al. Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol. 2000;124:331–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nagai S, Nitshitani G, Tomaru Y, Sakiyama S, Kamiyama T. Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol. 2008;44:909–22.PubMed 
    Article 

    Google Scholar 
    46.Shi LX, Theg SM. The chloroplast protein import system: From algae to trees. Biochim Biophys Acta. 2013;1833:314–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.de Vries J, Habicht J, Woehle C, Huang C, Christa G, Waegele H, et al. Is ftsH the key to plastid longevity in sacoglossan slugs? Genome Biol Evol. 2013;5:2540–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cruz S, Cartaxana P, Newcomer R, Dionísio G, Calado R, Serôdio J, et al. Photoprotection in sequestered plastids of sea slugs and respective algal sources. Sci Rep. 2015;5:1–8.
    Google Scholar 
    49.Cartaxana P, Morelli L, Jesus B, Calado G, Calado R, Cruz S. The photon menace: kleptoplast protection in the photosynthetic sea slug Elysia timida. J Exp Biol. 2019;222:jeb202580.PubMed 
    Article 

    Google Scholar 
    50.Petrou K, Ralph P, Nielsen D. A novel mechanism for host-mediated photoprotection in endosymbiotic foraminifera. ISME J. 2017;11:453–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Darling KF, Schweizer M, Knudsen KL, Evans KM, Bird C, Roberts A, et al. The genetic diversity, phylogeography and morphology of Elphidiidae (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2016;129:1–23.Article 

    Google Scholar 
    52.Kühl M, Polerecky L. Functional and structural imaging of aquatic phototrophic microbial communities and symbioses. Aquat Microb Ecol. 2008;53:99–118.53.Rouse JW, Haas RH, Schell JA, Deering DW. Monitoring vegetation systems in the great plains with ERTS. Proc Third ERTS Symp. 1973;1:309–17.
    Google Scholar 
    54.Barillé L, Mouget JL, Méléder V, Rosa P, Jesus B. Spectral response of benthic diatoms with different sediment backgrounds. Remote Sens Environ. 2011;115:1034–42.Article 

    Google Scholar 
    55.Kazemipour F, Launeau P, Méléder V. Microphytobenthos biomass mapping using the optical model of diatom biofilms: application to hyperspectral images of Bourgneuf Bay. Remote Sens Environ. 2012;127:1–13.Article 

    Google Scholar 
    56.Meleder V, Barille L, Launeau P, Carrere V, Rince Y. Spectrometric constraint in analysis of benthic diatom biomass using monospecific cultures. Remote Sens Environ. 2003;88:386–400.Article 

    Google Scholar 
    57.Serôdio J, Pereira S, Furtado J, Silva R, Coelho H, Calado R. In vivo quantification of kleptoplastic chlorophyll a content in the “solar-powered” sea slug Elysia viridis using optical methods: spectral reflectance analysis and PAM fluorometry. Photochem Photobiol Sci. 2010;9:68–77.PubMed 
    Article 

    Google Scholar 
    58.Jesus B, Mouget J-L, Perkins RG. Detection of diatom xanthophyll cycle using spectral reflectance. J Phycol. 2008;44:1349–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Jesus B, Rosa P, Mouget JL, Méléder V, Launeau P, Barillé L. Spectral-radiometric analysis of taxonomically mixed microphytobenthic biofilms. Remote Sens Environ. 2014;140:196–205.Article 

    Google Scholar 
    60.Louchard EM, Reid RP, Stephens CF, Davis CO, Leathers RA, Downes TV, et al. Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt Express. 2002;10:1573–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Perkins RG, Williamson CJ, Brodie J, Barillé L, Launeau P, Lavaud J, et al. Microspatial variability in community structure and photophysiology of calcified macroalgal microbiomes revealed by coupling of hyperspectral and high-resolution fluorescence imaging. Sci Rep. 2016;6:1–14.Article 
    CAS 

    Google Scholar 
    62.Trampe E, Kolbowski J, Schreiber U, Kühl M. Rapid assessment of different oxygenic phototrophs and single-cell photosynthesis with multicolour variable chlorophyll fluorescence imaging. Mar Biol. 2011;158:1667–75.CAS 
    Article 

    Google Scholar 
    63.Ralph PJ, Schreiber U, Gademann R, Kühl M, Larkum AWD. Coral photobiology studied with a new imaging pulse imaging pulse amplitude modulated fluorometer. J Phycol. 2005;41:335–42.Article 

    Google Scholar 
    64.Platt T, Gallegos CL, Harrison WG. Photoinhibition of photosynthesis in natural assemblages of marine phytoplancton. J Mar Res. 1980;38:687–701.
    Google Scholar 
    65.Kühl M, Glud RN, Borum J, Roberts R, Rysgaard S. Photosynthetic performance of surface associated algae below sea ice as measured with a pulse amplitude modulated (PAM) fluorometer and O2 microsensors. Mar Ecol Progr Ser S. 2001;223:1–14.Article 

    Google Scholar 
    66.Harrison WG, Platt T. Photosynthesis-irradiance relationships in polar and temperate phytoplankton populations. Polar Biol. 1986;5:153–64.Article 

    Google Scholar 
    67.Elzhov TV, Mullen KM, Spiess A-N, Bolker B minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. 2016 R package version 1.2-1. https://CRAN.R-project.org/package=minpack.lm.68.LeKieffre C, Spangenberg JE, Mabilleau G, Escrig S, Meibom A, Geslin E. Surviving anoxia in marine sediments: the metabolic response of ubiquitous benthic foraminifera (Ammonia tepida). PLOS ONE. 2017;12:e0177604.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Bernhard JM. Distinguishing live from dead foraminifera: Methods review and proper applications. Micropaleontol. 2000;46:38–46.
    Google Scholar 
    70.Nomaki H, Bernhard JM, Ishida A, Tsuchiya M, Uematsu K, Tame A, et al. Intracellular isotope localization in Ammonia sp. (Foraminifera) of oxygen-depleted environments: results of nitrate and sulfate labeling experiments. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    71.Eaton JW, Moss B. Estimation of numbers and pigment content in epipelic algal populations. Limnol Oceanogr. 1966;11:584–95.Article 

    Google Scholar 
    72.Schneider CA, Rasband WS, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Meth. 2012;9:671–5.CAS 
    Article 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing 2017, Vienna, Austria. URL https://www.R-project.org/.74.Schneider LK, Anestis K, Mansour J, Anschütz AA, Gypens N, Hansen PJ, et al. A dataset on trophic modes of aquatic protists. Biodivers Data J. 2020;8:e56648.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Banner FT, Culver SJ. Quaternary Haynesina n. gen. and paleogene Protelphidium Haynes; their morphology, affinities and distribution. J Foraminifer Res. 1978;8:177–207.Article 

    Google Scholar 
    76.Hansen HJ, Lykke-Andersen AL. Wall structure and classification of fossil and recent elphidiid and nonionid Foraminifera. Foss Strat. 1976;10:1–37.
    Google Scholar 
    77.Hottinger L, Reiss Z, Langer M. Spiral canals of some Elphidiidae. Micropaleontol. 2001;47:5–34.
    Google Scholar 
    78.Lee J. On a piece of chalk – Update. J Euk Microbiol. 1993;40:395–410.CAS 
    Article 

    Google Scholar 
    79.Passarelli C, Meziane T, Thiney N, Boeuf D, Jesus B, et al. Seasonal variations of the composition of microbial biofilms in sandy tidal flats: Focus of fatty acids, pigments and exopolymers. Estuar Coast Shelf Sci. 2015;153:29–37.CAS 
    Article 

    Google Scholar 
    80.Jauffrais T, Drouet S, Turpin V, Méléder V, Jesus B, Cognie B, et al. Growth and biochemical composition of a microphytobenthic diatom (Entomoneis paludosa) exposed to shorebird (Calidris alpina) droppings. J Exp Mar Biol Ecol. 2015;469:83–92.CAS 
    Article 

    Google Scholar 
    81.Jauffrais T, Jesus B, Méléder V, Turpin V, Russo ADAPG, Raimbault P, et al. Physiological and photophysiological responses of the benthic diatom Entomoneis paludosa (Bacillariophyceae) to dissolved inorganic and organic nitrogen in culture. Mar Biol. 2016;163:1–14.CAS 
    Article 

    Google Scholar 
    82.Meleder V, Laviale M, Jesus B, Mouget JL, Lavaud J, Kazemipour F, et al. In vivo estimation of pigment composition and optical absorption cross-section by spectroradiometry in four aquatic photosynthetic micro-organisms. J Photochem Photobio B-Biol. 2013;129:115–24.CAS 
    Article 

    Google Scholar 
    83.Knight R, Mantoura RFC. Chlorophyll and carotenoid pigments in foraminifera and their symbiotic algae: analysis by high performance liquid chromatography. Mar Ecol Prog Ser. 1985;23:241–9.CAS 
    Article 

    Google Scholar 
    84.Ralph PJ, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat Bot. 2005;82:222–37.CAS 
    Article 

    Google Scholar 
    85.Olaizola M, Yamamoto HY. Short term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros muelleri (Bacillariophyceae). J Phycol. 1994;30:606–12.CAS 
    Article 

    Google Scholar 
    86.Lavaud J, Rousseau B, Etienne A-L. General features of photoprotection by energy dissipation in planktonic diatoms (Bacillariophyceae). J Phycol. 2004;40:130–7.Article 

    Google Scholar 
    87.Ventura P, Calado G, Jesus B. Photosynthetic efficiency and kleptoplast pigment diversity in the sea slug Thuridilla hopei (Vérany, 1853). J Exp Mar Biol Ecol. 2013;441:105–9.CAS 
    Article 

    Google Scholar 
    88.Martin R, Walther P, Tomaschko KH. Variable retention of kleptoplast membranes in cells of sacoglossan sea slugs: plastids with extended, shortened and non-retained durations. Zoomorphology. 2015;134:523–9.Article 

    Google Scholar 
    89.Bird C, Schweizer M, Roberts A, Austin WEN, Knudsen KL, Evans KM, et al. The genetic diversity, morphology, biogeography, and taxonomic designations of Ammonia (Foraminifera) in the Northeast Atlantic. Mar Micropaleontol. 2020;155:101726.Article 

    Google Scholar  More

  • in

    Evaporation-induced hydrodynamics promote conjugation-mediated plasmid transfer in microbial populations

    Conjugative plasmids confer important traits to microbial communities, with both deleterious and beneficial effects on human health, the environment, and biotechnology [1,2,3]. The spread of virulence and resistance to antimicrobial agents [1, 2] and the facilitation of specific pollutant biotransformations exemplify the importance of conjugative plasmids [3, 4]. Understanding the mechanisms governing the transfer and spread of conjugative plasmids is therefore critically important. Although substantial research efforts have been made toward understanding the molecular mechanisms and biological determinants of plasmid conjugation [5], the underlying driving forces from physical and ecological aspects remain unclear.Many microbial communities exist in environments that are periodically or continuously exposed to unsaturated water conditions. For example, the communities residing in the vadose zone of soils are periodically exposed to saturated conditions after rainfall events and irrigation, and thereafter to unsaturated conditions upon soil draining. The microbial communities inhabiting the outer surfaces of various hosts such as skin, teeth, leaves, or roots also experience frequent hydration dynamics. The air-water interfaces of such soil particles or host surfaces are subject to water evaporation when the ambient relative humidity (RH) is More

  • in

    Effects of natural nest temperatures on sex reversal and sex ratios in an Australian alpine skink

    Climate dataThermal profiles showed considerable diel variation at each field location (Fig. 3). Soil temperatures on the ground surface fluctuated the most, reaching maximum temperature (Mt Ginini, 45.5 °C; Piccadilly Circus first season, 46.5 °C; Piccadilly Circus second season, 46.0 °C; Cooma, 42.1 °C; Dartmouth, 47.5 °C) during the day (1330–1730 h) and dropping to low level (Mt Ginini, 4.0 °C; Piccadilly Circus first season, 8.5 °C; Piccadilly Circus second season, 6.5 °C; Cooma, 7 °C; Dartmouth 12.5 °C) at night (2330–0400 h) (ANOVA, F4, 6521 = 279.4, P  More