More stories

  • in

    The Māori meeting house that’s also a research lab

    WHERE I WORK
    04 October 2021

    The Māori meeting house that’s also a research lab

    Ocean Mercier researches how Indigenous knowledge and Western science can help resolve environmental issues.

    James Mitchell Crow

    0

    James Mitchell Crow

    James Mitchell Crow is a freelance writer in Melbourne, Australia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Ocean Mercier is an associate professor at the Victoria University of Wellington, Aotearoa, New Zealand.Credit: Chevron Hassett for Nature

    The wharenui behind me in the photograph is in the heart of Victoria University of Wellington, where I lead the school of Māori studies. The detailed carvings, paintings and weavings are a library of traditional knowledge and understanding. The tongues poking from the carved faces on the meeting house might look fierce, but the Māori primarily had an oral culture, and the tongue symbolizes knowledge. The bigger the tongue, the more history, narrative and knowledge there is.I am Māori, and descend from the Ngāti Porou tribe. I research the nexus of Māori knowledge and Western science, and how we can draw the best from both knowledge systems to resolve environmental issues.In 2016, the town of Havelock North suffered a disease outbreak caused by livestock faeces seeping into groundwater. We aim to prevent a recurrence through a better understanding of groundwater and springs. Before the affected area began to be drained for agriculture in the 1870s, it was swampland, and Māori people travelled on the waterways. We might find written reports on spring flow going back 70 years, but Māori knowledge can go back nearly 1,000 years. We are looking at ways to access the knowledge captured in carvings and oral histories — mainly by talking to people who could point out features such as where they swam as a child or gathered eels or cress — to tell us where water once flowed.Another project looks at marine heatwaves, including changes in ocean currents due to climate change. Māori ancestors journeyed across these seas. There is knowledge of ocean currents there, if we can unlock it.In the geometric panels in the photograph, the white triangular ‘teeth’ symbolize strength though unity. I think of Māori knowledge as helping to constrain the scientific data so that they can make better predictions. We want to get to a place where the wider research community realizes that we can’t solve these climate problems with one knowledge system alone.

    Nature 598, 228 (2021)
    doi: https://doi.org/10.1038/d41586-021-02697-y

    Related Articles

    Tapping local knowledge to save a Papua New Guinea forest

    To look after these birds is to ‘fall in love’ with them

    Should we steer clear of the winner-takes-all approach?

    Subjects

    Careers

    Ecology

    Lab life

    Latest on:

    Careers

    Academia’s ableist culture laid bare
    Career Feature 04 OCT 21

    How local communities helped polar scientists during the pandemic
    Career Q&A 01 OCT 21

    Starting up in science: an agonizing search for cash confronts two labs
    News Feature 29 SEP 21

    Ecology

    Illegal mining in the Amazon hits record high amid Indigenous protests
    News 30 SEP 21

    Why stem cells might save the northern white rhino
    Outlook 29 SEP 21

    Fine-root traits in the global spectrum of plant form and function
    Article 29 SEP 21

    Lab life

    Academia’s ableist culture laid bare
    Career Feature 04 OCT 21

    Starting up in science: an agonizing search for cash confronts two labs
    News Feature 29 SEP 21

    Starting up in science: two labs face the pandemic and another shock
    News Feature 29 SEP 21

    Jobs

    Postdoc fellow

    Johns Hopkins University School of Medicine (JHUSOM), JHU
    Baltimore, United States

    Entrepreneurial-minded chemist (m/f/d) wanted for tech transfer project!

    Karlsruhe Institute of Technology (KIT)
    Karlsruhe, Germany

    Leaders Promoting Top World-Class Research in Materials Science

    National Institute for Materials Science (NIMS)
    Tsukuba, Japan

    Tenure Track Position for a Scientist or Working Group Leader on “Soil Erosion & Landscape Functioning” (m/f/d)

    Leibniz Centre for Agricultural Landscape Research (ZALF)
    Müncheberg, Germany More

  • in

    Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China

    1.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 162–1627. https://doi.org/10.1126/science.1097396 (2004).CAS 
    Article 

    Google Scholar 
    2.Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676. https://doi.org/10.1038/nature12670 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C–N–P imbalance in grasslands. Sci. Rep. 6, 19601–19609. https://doi.org/10.1038/srep19601 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Cleveland, C. C. & Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfifield ratio” for the microbial biomass?. Biogeochemistry 85, 235–252. https://doi.org/10.2307/20456544 (2007).Article 

    Google Scholar 
    5.Wang, X. G. et al. Changes in soil C:N: P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087–114094. https://doi.org/10.1016/j.geoderma.2019.114087 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Zhao, Z., Zhao, Z., Fu, B., Wang, J. G. & Tang, W. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area. J. Soils Sediments 21, 1–9. https://doi.org/10.1007/s11368-020-02809-7 (2021).CAS 
    Article 

    Google Scholar 
    7.Wang, Z. C., Liu, S. S., Huang, C., Liu, Y. Y. & Bu, Z. J. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. CATENA 152, 1–8. https://doi.org/10.1016/j.catena.2016.12.022 (2017).CAS 
    Article 

    Google Scholar 
    8.Saha, D., Kukal, S. S. & Bawa, S. S. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks Hills of Lower Himalayas. Land Degrad. Dev. 25, 407–416. https://doi.org/10.1002/ldr.2151 (2014).Article 

    Google Scholar 
    9.Tan, W. F. et al. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. CATENA 121, 22–30. https://doi.org/10.1016/j.catena.2014.04.014 (2014).CAS 
    Article 

    Google Scholar 
    10.Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67. https://doi.org/10.1890/100001 (2011).Article 

    Google Scholar 
    11.Oost, K. V. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629. https://doi.org/10.1126/science.1145724 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. CATENA 153, 89–99. https://doi.org/10.1016/j.catena.2017.02.003 (2017).CAS 
    Article 

    Google Scholar 
    13.Kong, A. Y., Six, J., Bryant, D. C., Denison, R. F. & Van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078–1085. https://doi.org/10.2136/sssaj2004.0215 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67. https://doi.org/10.1016/j.geoderma.2013.04.005 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Zhang, K., Su, Y. Z. & Yang, R. Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China. J. Soils Sediments 19, 49–57. https://doi.org/10.1007/s11368-018-2007-2 (2019).CAS 
    Article 

    Google Scholar 
    16.Jobbagy, E. E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436. https://doi.org/10.2307/2641104 (2000).Article 

    Google Scholar 
    17.Fu, X.L., Shao, M.G., Wei, X.R., Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155, 31–35. https://doi.org/10.1016/j.geoderma.2009.11.020 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F. & Eisenhauer, N. Land-Use type effects on soil organic carbon and microbial properties in a semiarid region of Northeast Brazil. Land Degrad. Dev. 27, 171–178. https://doi.org/10.1002/ldr.2282 (2016).Article 

    Google Scholar 
    19.Li, Y. Y., Shao, M. A., Zheng, J. Y. & Zhang, X. C. Spatial–temporal changes of soil organic carbon during vegetation recovery at Ziwuling, China. Pedosphere 15, 601–610. https://doi.org/10.1002/jpln.200521793 (2005).CAS 
    Article 

    Google Scholar 
    20.Wang, T., Kang, F. F., Cheng, X. Q., Han, H. R. & Ji, W. J. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 163, 176–184. https://doi.org/10.1016/j.still.2016.05.015 (2016).Article 

    Google Scholar 
    21.An, S., Mentler, A., Mayer, H. & Blum, W. E. H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. CATENA 81, 226–233. https://doi.org/10.1016/j.catena.2010.04.002 (2010).CAS 
    Article 

    Google Scholar 
    22.Shedayi, A. A., Xu, M., Naseer, I. & Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 5, 320. https://doi.org/10.1186/s40064-016-1935-9 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Chen, F. S., Zeng, D. H. & He, X. Y. Small-scale spatial variability of soil nutrients and vegetation properties in semi-arid Northern China. Pedosphere 16, 778–787. https://doi.org/10.1016/S1002-0160(06)60114-8 (2006).Article 

    Google Scholar 
    24.Xu, Q. F. & Xu, J. M. Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere 13, 271–278. https://doi.org/10.1002/jpln.200390066 (2003).Article 

    Google Scholar 
    25.Ge, N. N. et al. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. CATENA 172, 148–157. https://doi.org/10.1016/j.catena.2018.08.021 (2019).CAS 
    Article 

    Google Scholar 
    26.Fu, B. J., Chen, L. D. & Ma, K. M. The relationship between land use and soil conditions in the hilly area of Loess Plateau in Northern Shanxi. CATENA 39, 69–78. https://doi.org/10.1016/S0341-8162(99)00084-3 (2000).Article 

    Google Scholar 
    27.Xie, X. L., Sun, B., Zhou, H. Z. & Li, Z. P. Soil carbon stocks and their influencing factors under native vegetation in China. Acta Pedol. Sin. 41, 687–699 (2004).
    Google Scholar 
    28.Njeru, C. M. et al. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Reg. 10, 29–38. https://doi.org/10.1016/j.geodrs.2017.04.002 (2017).Article 

    Google Scholar 
    29.Yu, D. S. et al. Regional patterns of soil organic carbon stocks in China. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).CAS 
    Article 

    Google Scholar 
    30.Albrecht, A. & Kandji, S. T. Carbon sequestration in tropical agroforestry systems: A review. Agric. Ecosyst. Environ. 99, 15–27. https://doi.org/10.1016/S0167-8809(03)00138-5 (2003).CAS 
    Article 

    Google Scholar 
    31.Takimoto, A., Nair, P. K. R. & Nair, V. D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 125, 159–166. https://doi.org/10.1016/j.agee.2007.12.010 (2008).CAS 
    Article 

    Google Scholar 
    32.Omonode, R. A. & Vyn, T. Vertical distribution ofsoil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agric. Ecosyst. Environ. 117, 159–170. https://doi.org/10.1016/j.agee.2006.03.031 (2006).CAS 
    Article 

    Google Scholar 
    33.Tian, H. Q., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:C:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).CAS 
    Article 

    Google Scholar 
    34.Walker, T. W. & Adams, A. F. R. Studies on soil organic matter. I. Soil Sci. 85, 307–318 (1958).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Gao, J. L. et al. Ecological soil C, N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China. Acta Ecol. Sin. https://doi.org/10.5846/stxb201804030756 (2019).Article 

    Google Scholar 
    36.Deng, J. et al. Nitrogen and phosphorus resorption in relation to nutrition limitation along the chronosequence of black locust (Robinia pseudoacacia L.) plantation. Forests 10, 261–275. https://doi.org/10.3390/f10030261 (2019).Article 

    Google Scholar 
    37.Yu, Z. P. et al. Temporal changes in soil C–N–P stoichiometry over the past 60 years across subtropical China. Global Change Biol. 24, 1308–1320 (2018).ADS 
    Article 

    Google Scholar 
    38.Mandal, A., Patra, A. K., Singh, D., Swarup, A. & Ebhin Masto, R. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 98, 3585–3592. https://doi.org/10.1016/j.biortech.2006.11.027 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Jiang, Y., Zhao, T., Yan, H., Huang, Y. M. & An, S. S. Effect of different land uses on soil microbial biomass carbon, nitrogen and phosphorus in three vegetation zones on loess hilly area. Bull. Soil Water Conserv. 33, 62–68 (2013) (in Chinese).CAS 

    Google Scholar 
    40.Devi, N. B. & Yadava, P. S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Appl. Soil Ecol. 31, 220–227. https://doi.org/10.1016/j.apsoil.2005.05.005 (2006).Article 

    Google Scholar 
    41.Dong, W., Hu, C., Chen, S. & Zhang, Y. Tillage and residue s management effects on soil carbon and CO, emission in a wheat-corn double-cropping system. Nutr. Cycl. Agroecosyst. 83, 27–37. https://doi.org/10.1007/s10705-008-9195-x (2009).CAS 
    Article 

    Google Scholar 
    42.Li, Y., Chang, S. X., Tian, L., Tian, L. & Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 121, 50–58. https://doi.org/10.1016/j.soilbio.2018.02.024 (2018).CAS 
    Article 

    Google Scholar 
    43.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340. https://doi.org/10.1038/ngeo846 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Anderson, T. H. & Domsch, K. H. Soil microbial biomass: The eco-physiological approach. Soil Biol. Biochem. 42, 2039–2043. https://doi.org/10.1016/j.soilbio.2010.06.026 (2010).CAS 
    Article 

    Google Scholar 
    45.Shaw, K. Determination of organic carbon in soil and plant material. Soil Sci. 10, 316–326 (1959).CAS 
    Article 

    Google Scholar 
    46.Puget, P. & Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res 80, 201–213. https://doi.org/10.1016/j.still.2004.03.018 (2005).Article 

    Google Scholar 
    47.Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169. https://doi.org/10.1016/0038-0717(90)90046-3 (1990).CAS 
    Article 

    Google Scholar  More

  • in

    Prediction of habitat suitability for Patrinia sibirica Juss. in the Southern Urals

    1.Addison, P. F. et al. Practical solutions for making models indispensable in conservation decision-making. Divers. Distrib. 19, 490–502 (2013).Article 

    Google Scholar 
    2.Bosso, L. et al. Nature protection areas of Europe are insufficient to preserve the threatened beetle Rosalia alpina (Coleoptera: Cerambycidae): Evidence from species distribution models and conservation gap analysis. Ecol. Entomol. 43, 192–203 (2018).Article 

    Google Scholar 
    3.Lentini, P. et al. Using fossil records to inform reintroduction of the kakapo as a refugee species. Biol. Cons. 217, 157–165 (2018).Article 

    Google Scholar 
    4.Krasheninnikov, I. M. Analysis of the Southern Urals relict flora in connection with the Pleistocene vegetation history and paleogeography. Sovetskaya Bot. 4, 16–45 (1937) (in Russian).
    Google Scholar 
    5.Gorchakovsky, P. L. & Shurova, E.A. Rare and Endangered Plants of Urals and Cis-Urals 208–209 (Nauka, 1982) (in Russian).6.Gorchakovsky, P.L. The Plant World of the Ural High Mountains 283–285 (Nauka, 1975) (in Russian).7.Red Book of the Chelyabinsk Oblast: Animals, Plants, Fungi. 391 (ed A. V. Lagunov) (2017) (in Russian).8.Red Book of the Republic of Bashkortostan. Plants and Fungi 227 (ed B. M. Mirkin) (MediaPrint, 2011) (in Russian).9.Damschen, E. I. et al. Endemic plant communities on special soils: Early victims or hardy survivors of climate change?. J. Ecol. 100, 1122–1130 (2012).Article 

    Google Scholar 
    10.Spasojevic, M. J., Damschen, E. I. & Harrison, S. Patterns of seed dispersal syndromes on serpentine soils, examining the roles of habitat patchiness, soil infertility and correlated functional traits. Plant Ecol. Divers. 7, 401–410 (2014).Article 

    Google Scholar 
    11.Abdullina, L. A. Introduction of some rare medicinal plants in the Ufa Botanical Garden. In: Biodiversity of the Ural’s flora and adjacent territories: Proceedings of the All-Russian Conference with international participation. 319–320 (Goshchitskiy, 2012) (in Russian).12.Rossington, N., Yost, J. & Ritter, M. Water availability influences species distributions on serpentine soils. Madroño 65, 68–79 (2018).Article 

    Google Scholar 
    13.Byrne, M. et al. Persistence and stochasticity are key determinants of genetic diversity in plants associated with banded iron formation inselbergs. Biol. Rev. 94, 753–772 (2018).Article 

    Google Scholar 
    14.Corlett, R. T. & Tomlinson, K. W. Climate change and edaphic specialists: Irresistible force meets immovable object?. Trends Ecol. Evol. 35, 367–376 (2020).Article 

    Google Scholar 
    15.Khotinskii, N. A., Nemkova, V. K. & Surova, T. G. Main stages of Ural vegetation and climate development in Holocene. Archaeol. Issues Urals 16, 145–153 (1982) (in Russian).
    Google Scholar 
    16.Shiyatov, S. G. Experience in using old photographs for studying changes in forest vegetation at its upper limit. Floristic and Geobotanical Studies in the Urals 76–109 (1983) (in Russian).17.Moiseev, P. A., Shiyatov, S. G. & Grigor’yev, A. A. Climatogenic Dynamics of Woody Vegetation at the Upper Limit of Its Distribution on the Bolshoy Taganay Ridge over the Past Century 113–119 (ed V.A. Mukhin) (UrO RAS, 2016) (in Russian).18.Grigor’ev, A. A. et al. The advance of woody and shrub vegetation to the mountains and changes in the composition of tundra communities (Poperechnaya mountain, the Zigalga mountain range in the Southern Urals). J. Sib. Federal Univ. Biol. 11, 218–236 (2018) (in Russian).Article 

    Google Scholar 
    19.Brecka, A. F., Shahi, C. & Chen, H. Y. Climate change impacts on boreal forest timber supply. For. Policy Econ. 92, 11–21 (2018).Article 

    Google Scholar 
    20.Petchey, O. L. et al. The ecological forecast horizon, and examples of its uses and determinants. Ecol. Lett. 18, 597–611 (2015).Article 

    Google Scholar 
    21.Jarnevich, C. S. et al. Caveats for correlative species distribution modeling. Ecol. Inform. 29, 6–15 (2015).Article 

    Google Scholar 
    22.Global Biodiversity Information Facility (GBIF). Occurrence Download https://doi.org/10.15468/dl.fswlyt (2019).23.Knyazev, M. S. Rock flora of river valleys in the Urals. Botanicheskii Zhurnal 103, 695–726 (2018) (in Russian).
    Google Scholar 
    24.Karimova, O. A., Mustafina, A. N. & Golovanov, Y. Age structure of coenopopulations of Patrinia sibirica (Valerianaceae) in South Ural. Plant Resour. 52, 49–65 (2016) (in Russian).
    Google Scholar 
    25.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evol. 33, 790–802 (2018).Article 

    Google Scholar 
    26.Bamford, A. J. et al. Trade-offs between specificity and regional generality in habitat association models: A case study of two species of African vulture. J. Appl. Ecol. 46, 852–860 (2009).Article 

    Google Scholar 
    27.Telyatnikov, M. Y. Syntaxonomy of dryas tundra and kobresia cryophytic meadows of the East Sayan. Plant World Asian Russia 1, 48–63 (2014) (in Russian).
    Google Scholar 
    28.Zibzeyev, E. G. & Nedovesova, T. A. Syntaxa of Dryas tundra of West Sayan mountains. Turczaninowia 17, 38–59 (2014) (in Russian).Article 

    Google Scholar 
    29.Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. Bioclim: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20, 1–9 (2014).Article 

    Google Scholar 
    30.Karger, D. N., Conrad, O. & Böhner, J. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article 

    Google Scholar 
    31.McSweeney, C. F. et al. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 44, 3237–3260 (2015).Article 

    Google Scholar 
    32.Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).ADS 
    Article 

    Google Scholar 
    33.Hof, A. R. & Allen, A. M. An uncertain future for the endemic Galliformes of the Caucasus. Sci. Total Environ. 651, 725–735 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Gent, P. R. et al. The community climate system model version 4. J. Clim. 24, 4973–4991 (2011).ADS 
    Article 

    Google Scholar 
    35.Volodin, E. M., Dianskii, N. A. & Gusev, A. V. Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys. 46(4), 414–431. https://doi.org/10.1134/S000143381004002X (2010).Article 

    Google Scholar 
    36. Bentsen M. et al. The Norwegian Earth System Model NorESM1-M – Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev. 6(3), 687–720. https://doi.org/10.5194/gmd-6-687-2013 (2013).ADS 
    Article 

    Google Scholar 
    37.Watanabe S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model. Dev. Discuss. 4(4), 845–872. https://doi.org/10.5194/gmd-4-845-2011 (2011).ADS 
    Article 

    Google Scholar 
    38.Danielson, J. J., Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010). Garretson: U.S. Geological Survey 26 (2011).39.Poggio, L. et al. SoilGrids 2.0: Producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).Article 

    Google Scholar 
    40.Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/ (2020).41.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    42.Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    43.Di Pasquale, G. et al. Coastal pine-oak glacial refugia in the Mediterranean basin: A biogeographic approach based on charcoal analysis and spatial modelling. Forests 11, 673 (2020).Article 

    Google Scholar 
    44.Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    45.Ahmed, N. et al. Species Distribution Modelling performance and its implication for Sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin, Ethiopia. Ecol. Process. 10, 1–16 (2021).Article 

    Google Scholar  More

  • in

    Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge.

    Bioactive composition analysisThe main bioactive components in the three products are listed in Table 1. The main chemical constitutes of DL and LT were quite similar; although significant differences were noted in indicators such as protein (DL  > LT, difference = 8.22, P  DL, difference = 1.79, P  LT, difference = 4.07, P  0.05) of the samples. Among the bioactive constitutes, only POL contents in LT and DL were significantly lower (P  DR (1.90%). Compared with DL and LT, the DR exhibited significantly higher POL, increased by 50.21% (P  More

  • in

    Exceptional fossil assemblages confirm the existence of complex Early Triassic ecosystems during the early Spathian

    1.Raup, D. M. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206, 217–218 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl. Acad. Sci. U. S. A. 113, E6325–E6334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Sepkoski, J. J. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981).Article 

    Google Scholar 
    4.Tozer, E. T. Marine Triassic faunas of North America: Their significance for assessing plate and terrane movements. Geol. Rundschau 71, 1077–1104 (1982).ADS 
    Article 

    Google Scholar 
    5.Hallam, A. Major bio-events in the Triassic and Jurassic. In Global Events and Event Stratigraphy in the Phanerozoic (ed. Walliser O.H.) 265–283 (Springer, 1996).6.Brayard, A. et al. Good genes and good luck: Ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Stanley, S. M. Evidence from ammonoids and conodonts for multiple Early Triassic mass extinctions. Proc. Natl. Acad. Sci. U. S. A. 106, 15264–15267 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat. Geosci. 5, 375–383 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Friesenbichler, E., Hautmann, M., Nützel, A., Urlichs, M. & Bucher, H. Palaeoecology of Late Ladinian (Middle Triassic) benthic faunas from the Schlern/Sciliar and Seiser Alm/Alpe di Siusi area (South Tyrol, Italy). Pal. Z. 93, 1–29 (2019).
    Google Scholar 
    10.Zhao, X. et al. Recovery of lacustrine ecosystems after the end-Permian mass extinction. Geology 48, 609–613 (2020).ADS 
    Article 

    Google Scholar 
    11.Friesenbichler, E., Hautmann, M. & Bucher, H. The main stage of recovery after the end-Permian mass extinction: Taxonomic rediversification and ecologic reorganization of marine level-bottom communities during the Middle Triassic. PeerJ 9, e11654 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Twitchett, R. J. Incompleteness of the Permian-Triassic fossil record: A consequence of productivity decline?. Geol. J. 36, 341–353 (2001).Article 

    Google Scholar 
    13.Foster, W. J. & Twitchett, R. J. Functional diversity of marine ecosystems after the Late Permian mass extinction event. Nat. Geosci. 7, 233–238 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Hu, S. et al. The Luoping biota: exceptional preservation, and new evidence on the Triassic recovery from end-Permian mass extinction. Proc. R. Soc. London B 278, 2274–2282 (2011).
    Google Scholar 
    15.Brayard, A. et al. Unexpected Early Triassic marine ecosystem and the rise of the modern evolutionary fauna. Sci. Adv. 3, e1602159 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Widmann, P. et al. Dynamics of the largest carbon isotope excursion during the Early Triassic biotic recovery. Front. Earth Sci. 8, 196 (2020).ADS 
    Article 

    Google Scholar 
    17.Brayard, A. et al. The Early Triassic ammonoid recovery: Paleoclimatic significance of diversity gradients. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 374–395 (2006).Article 

    Google Scholar 
    18.Jattiot, R. et al. Palaeobiogeographical distribution of Smithian (Early Triassic) ammonoid faunas within the western USA basin and its controlling parameters. Palaeontology 61, 881–904 (2018).Article 

    Google Scholar 
    19.Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117 (2007).Article 

    Google Scholar 
    20.Zhang, L. et al. The Smithian/Spathian boundary (late Early Triassic): A review of ammonoid, conodont, and carbon-isotopic criteria. Earth Sci. Rev. 195, 7–36 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Goudemand, N. et al. Dynamic interplay between climate and marine biodiversity upheavals during the Early Triassic Smithian -Spathian biotic crisis. Earth Sci. Rev. 195, 169–178 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Kashiyama, Y. & Oji, T. Low-diversity shallow marine benthic fauna from the Smithian of northeast Japan: Paleoecologic and paleobiogeographic implications. Pal. Res. 8, 199–218 (2004).Article 

    Google Scholar 
    23.Hautmann, M. et al. An unusually diverse mollusc fauna from the earliest Triassic of South China and its implications for benthic recovery after the end-Permian biotic crisis. Geobios 44, 71–85 (2011).Article 

    Google Scholar 
    24.Hofmann, R. et al. Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology 57, 547–589 (2014).Article 

    Google Scholar 
    25.Foster, W. J. et al. Early Triassic benthic invertebrates from the Great Bank of Guizhou, South China: Systematic palaeontology and palaeobiology. Pap. Pal. 5, 613–656 (2019).Article 

    Google Scholar 
    26.Hautmann, M. et al. Competition in slow motion: The unusual case of benthic marine communities in the wake of the end-Permian mass extinction. Palaeontology 58, 871–901 (2015).Article 

    Google Scholar 
    27.Schaeffer, B., Mangus, M. & Laudon, L. R. An Early Triassic fish assemblage from British Columbia. Bull. AMNH. 156, article 5. (1976).28.Tintori, A., Hitij, T., Jiang, D., Lombardo, C. & Sun, Z. Triassic actinopterygian fishes: the recovery after the end-Permian crisis. Integr. Zool. 9, 394–411 (2014).PubMed 
    Article 

    Google Scholar 
    29.Neuman, A. G. Fishes from the Lower Triassic portion of the Sulphur Mountain Formation in Alberta, Canada: Geological context and taxonomic composition. Can. J. Earth Sci. 52, 557–568 (2015).ADS 
    Article 

    Google Scholar 
    30.Romano, C. et al. Permian-Triassic Osteichthyes (bony fishes): Diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Qiu, X. et al. The Early Triassic Jurong fish fauna, South China: Age, anatomy, taphonomy, and global correlation. Glob. Planet. Change 180, 33–50 (2019).ADS 
    Article 

    Google Scholar 
    32.Li, Q. & Liu, J. An Early Triassic sauropterygian and associated fauna from South China provide insights into Triassic ecosystem health. Commun. Biol. 3, 63 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Sci. Adv. 4, eaat5091 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Muscente, A. D. et al. Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res. 48, 164–188 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Lucas, S. G., Krainer, K. & Milner, A. R. C. The type section and age of the Timpoweap Member and stratigraphic nomenclature of the Triassic Moenkopi Group in Southwestern Utah. New Mexico Mus. Nat. Hist. Sci. Bull. 40, 109–117 (2007).
    Google Scholar 
    36.Caravaca, G. et al. Controlling factors for differential subsidence in the Sonoma Foreland Basin (Early Triassic, western USA). Geol. Mag. 155, 1305–1329 (2018).ADS 
    Article 

    Google Scholar 
    37.Brayard, A., Jenks, J. F., Bylund, K. G. & the Paris Biota team. Ammonoids and nautiloids from the earliest Spathian Paris Biota and other early Spathian localities in southeastern Idaho, USA. Geobios 54, 13–36 (2019).Article 

    Google Scholar 
    38.Lucas, S. G. & Orchard, M. J. Triassic lithostratigraphiy and biostratigraphy North of Currie, Elko County, Nevada. New Mexico Mus. Nat. Hist. Sci. Bull. 40, 119–126 (2007).
    Google Scholar 
    39.Guex, J. et al. Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mémoires de Géologie (Lausanne) 49, (2010).40.Doguzhaeva, L. et al. An Early Triassic gladius associated with soft tissue remains from Idaho, USA: A squid-like coleoid cephalopod at the onset of Mesozoic Era. Acta Pal. Pol. 63, 341–355 (2018).
    Google Scholar 
    41.Laville, T., Smith, C. P. A., Forel, M.-B., Brayard, A. & Charbonnier, S. Review of Early Triassic Thylacocephala. Riv. Italiana Pal. Sed. 127, 73–101 (2021).
    Google Scholar 
    42.Charbonnier, S., Brayard, A. & the Paris Biota team. New thylacocephalans from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 37–43 (2019).Article 

    Google Scholar 
    43.Roopnarine, P. Graphs, networks, extinction and paleocommunity food webs. Nat. Prec. https://doi.org/10.1038/npre.2010.4433.1 (2010).Article 

    Google Scholar 
    44.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    45.Shi, G. R. & Zwan, L.-P. A mixed mid-Permian marine fauna from the Yanji area, northeastern China: A paleobiogeographical reinterpretation. Isl. Arc. 5, 386–395 (1996).Article 

    Google Scholar 
    46.Chen, Z.-Q., Tong, J., Liao, Z.-T. & Chen, J. Structural changes of marine communities over the Permian-Triassic transition: Ecologically assessing the end-Permian mass extinction and its aftermath. Glob. Planet. Change 73, 123–140 (2010).ADS 
    Article 

    Google Scholar 
    47.Massare, J. A. & Callaway, J. M. Cymbospondylus (Ichthyosauria: Shastasauridae) from the Lower Triassic Thaynes Formation of southeastern Idaho. J. Vertebr. Paleontol. 14, 139–141 (1994).Article 

    Google Scholar 
    48.Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early Triassic marine biotic recovery: The predators’ perspective. PLoS ONE 9, e88987 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Song, H. et al. Recovery tempo and pattern of marine ecosystems after the end-Permian mass extinction. Geology 39, 739–742 (2011).ADS 
    Article 

    Google Scholar 
    50.Brayard, A., Gueriau, P., Thoury, M., Escarguel, G. & the Paris Biota team. Glow in the dark: Use of synchrotron μXRF trace elemental mapping and multispectral macro-imaging on fossils from the Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 71–79 (2019).Article 

    Google Scholar 
    51.Iniesto, M., Thomazo, C. & Fara, E. Deciphering the exceptional preservation of the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios 54, 81–93 (2019).Article 

    Google Scholar 
    52.Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skrif. 5, 3–34 (1948).
    Google Scholar 
    53.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. An. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    54.Romano, C., Kogan, I., Jenks, J., Jerjen, I. & Brinkmann, W. Saurichthys and other fossil fishes from the late Smithian (Early Triassic) of Bear Lake County (Idaho, USA), with a discussion of saurichthyid palaeogeography and evolution. Bull. Geosci. 3, 543–570. https://doi.org/10.3140/bull.geosci.1337 (2012).Article 

    Google Scholar 
    55.Horton, J. D. The State Geologic Map Compilation (SGMC) Geodatabase of the conterminous United States: US Geological Survey data release. US Geol. Surv. https://doi.org/10.5066/F7WH2N65 (2017).Article 

    Google Scholar 
    56.Kummel, B. The Thaynes Formation, Bear Lake Valley, Idaho. Am. J. Sci. 241, 316–332 (1943).ADS 
    Article 

    Google Scholar 
    57.Kummel, B. Triassic stratigraphy of Southeastern Idaho and adjacent areas. U. S. Geol. Surv. Prof. Pap. 254H, 165–194 (1954).
    Google Scholar 
    58.Brayard, A., Brühwiler, T., Bucher, H. & Jenks, J. Guodunites, a low-palaeolatitude and trans-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology 52, 471–481 (2009).Article 

    Google Scholar 
    59.Brayard, A. et al. Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J. Palaeontol. 132, 141–219 (2013).Article 

    Google Scholar 
    60.Jenks, J. et al. Ammonoid biostratigraphy of the Early Spathian Columbites parisianus zone (Early Triassic) at Bear Lake Hot Springs Idaho. New Mexico Mus. Natl. Hist. Sci. Bull. 61, 268–283 (2013).
    Google Scholar  More

  • in

    Specialization of a mobile, apex predator affects trophic coupling among adjacent habitats

    1.Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Rosenblatt, A. E. & Heithaus, M. R. Does variation in movement tactics and trophic interactions among American alligators create habitat linkages?. J. Anim. Ecol. 80, 786–798 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Pringle, R. M. & Fox-Dobbs, K. Coupling of canopy and understory food webs by ground-dwelling predators. Ecol. Lett. 11, 1328–1337 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Pimm, S. L. & Lawton, J. H. Are food webs divided into compartments? J. Anim. Ecol. 49, 879–898 (1980).Article 

    Google Scholar 
    5.Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. 108, 3648–3652 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269. https://doi.org/10.1038/nature04887 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Schindler, D. E. & Scheuerell, M. D. Habitat coupling in lake ecosystems. Oikos 98, 177–189 (2002).Article 

    Google Scholar 
    9.Matich, P., Heithaus, M. R. & Layman, C. A. Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J. Anim. Ecol. 80, 294–305 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Conway-Cranos, L. et al. Stable isotopes and oceanographic modeling reveal spatial and trophic connectivity among terrestrial, estuarine, and marine environments. Mar. Ecol. Prog. Ser. 533, 15–28 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Dias, E., Morais, P., Cotter, A. M., Antunes, C. & Hoffman, J. C. Estuarine consumers utilize marine, estuarine and terrestrial organic matter and provide connectivity among these food webs. Mar. Ecol. Prog. Ser. 554, 21–34 (2016).ADS 
    Article 

    Google Scholar 
    12.Hobson, K. A., Ambrose, W. G. Jr. & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: Insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).ADS 
    Article 

    Google Scholar 
    13.Quevedo, M., Svanbäck, R. & Eklöv, P. Intrapopulation niche partitioning in a generalist predator limits food web connectivity. Ecology 90, 2263–2274 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.McPeek, M. A. Trade-offs, food web structure, and the coexistence of habitat specialists and generalists. Am. Nat. 148, S124–S138 (1996).Article 

    Google Scholar 
    16.Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Rossman, S. et al. Individual specialization in the foraging habits of female bottlenose dolphins living in a trophically diverse and habitat rich estuary. Oecologia 178, 415–425 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Rossman, S. et al. Foraging habits in a generalist predator: Sex and age influence habitat selection and resource use among bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 31, 155–168 (2015).CAS 
    Article 

    Google Scholar 
    21.Sargeant, B. L. & Mann, J. Developmental evidence for foraging traditions in wild bottlenose dolphins. Anim. Behav. 78, 715–721 (2009).Article 

    Google Scholar 
    22.Araújo, M. S. & Gonzaga, M. O. Individual specialization in the hunting wasp Trypoxylon (Trypargilum) albonigrum (Hymenoptera, Crabronidae). Behav. Ecol. Sociobiol. 61, 1855–1863 (2007).Article 

    Google Scholar 
    23.Silva, M. A. et al. Ranging patterns of bottlenose dolphins living in oceanic waters: Implications for population structure. Mar. Biol. 156, 179–192 (2008).Article 

    Google Scholar 
    24.Tobeña, M. et al. Inter-island movements of common bottlenose dolphins Tursiops truncatus among the Canary Islands: Online catalogues and implications for conservation and management. Afr. J. Mar. Sci. 36, 137–141 (2014).Article 

    Google Scholar 
    25.Wells, R. S. & Scott, M. D. Encyclopedia of Marine Mammals 249–255 (Elsevier, 2009).Book 

    Google Scholar 
    26.Wells, R. S. et al. Ranging patterns of common bottlenose dolphins Tursiops truncatus in Barataria Bay, Louisiana, following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 159–180 (2017).Article 

    Google Scholar 
    27.Zolman, E. S. Residence patterns of bottlenose dolphins (Tursiops truncatus) in the Stono River estuary, Charleston County, South Carolina, USA. Mar. Mamm. Sci. 18, 879–892 (2002).Article 

    Google Scholar 
    28.Wilson, R. M. et al. Niche differentiation and prey selectivity among common bottlenose dolphins (Tursiops truncatus) sighted in St. George Sound, Gulf of Mexico. Front. Mar. Sci. 4, 235 (2017).Article 

    Google Scholar 
    29.Wells, R. S. Primates and Cetaceans 149–172 (Springer, 2014).Book 

    Google Scholar 
    30.Urian, K. W., Hofmann, S., Wells, R. S. & Read, A. J. Fine-scale population structure of bottlenose dolphins (Tursiops truncatus) in Tampa Bay, Florida. Mar. Mamm. Sci. 25, 619–638 (2009).Article 

    Google Scholar 
    31.Wilson, R., Nelson, J., Balmer, B., Nowacek, D. & Chanton, J. Stable isotope variation in the northern Gulf of Mexico constrains bottlenose dolphin (Tursiops truncatus) foraging ranges. Mar. Biol. 160, 2967–2980 (2013).Article 

    Google Scholar 
    32.Mullin, K. D. et al. Density, abundance, survival, and ranging patterns of common bottlenose dolphins (Tursiops truncatus) in Mississippi Sound following the Deepwater Horizon oil spill. PLoS ONE 12, e0186265 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Di Giacomo, A. B. & Ott, P. H. Long-term site fidelity and residency patterns of bottlenose dolphins (Tursiops truncatus) in the Tramandaí Estuary, southern Brazil. Latin Am. J. Aquat. Mamm. 11, 155–161 (2017).Article 

    Google Scholar 
    34.Bailey, H. & Thompson, P. Quantitative analysis of bottlenose dolphin movement patterns and their relationship with foraging. J. Anim. Ecol. 75, 456–465 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Torres, L. G. & Read, A. J. Where to catch a fish? The influence of foraging tactics on the ecology of bottlenose dolphins (Tursiops truncatus) in Florida Bay, Florida. Mar. Mamm. Sci. 25, 797–815 (2009).Article 

    Google Scholar 
    36.Berens McCabe, E. J., Gannon, D. P., Barros, N. B. & Wells, R. S. Prey selection by resident common bottlenose dolphins (Tursiops truncatus) in Sarasota Bay, Florida. Mar. Biol. 157, 931–942 (2010).Article 

    Google Scholar 
    37.Jaureguizar, A. J., Ruarte, C. & Guerrero, R. A. Distribution of age-classes of striped weakfish (Cynoscion guatucupa) along an estuarine–marine gradient: Correlations with the environmental parameters. Estuar. Coast. Shelf Sci. 67, 82–92 (2006).ADS 
    Article 

    Google Scholar 
    38.Antonio, E. S. et al. Spatial-temporal feeding dynamics of benthic communities in an estuary-marine gradient. Estuar. Coast. Shelf Sci. 112, 86–97 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Cloyed, C. S. & Eason, P. K. Different ecological conditions support individual specialization in closely related, ecologically similar species. Evol. Ecol. 30, 379–400 (2016).Article 

    Google Scholar 
    40.Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & Dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Wissel, B., Gaçe, A. & Fry, B. Tracing river influences on phytoplankton dynamics in two Louisiana estuaries. Ecology 86, 2751–2762 (2005).Article 

    Google Scholar 
    42.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    43.Fry, B. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries 25, 264–271 (2002).Article 

    Google Scholar 
    44.Barratclough, A. et al. Health assessments of common bottlenose dolphins (Tursiops truncatus): Past, present, and potential conservation applications. Front. Vet. Sci. 6, 444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Wells, R. S. et al. Bottlenose dolphins as marine ecosystem sentinels: Developing a health monitoring system. EcoHealth 1, 246–254 (2004).Article 

    Google Scholar 
    46.Hohn, A. et al. Assigning stranded bottlenose dolphins to source stocks using stable isotope ratios following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 235–252 (2017).Article 

    Google Scholar 
    47.Sinclair, C. et al. Remote biopsy field sampling procedures for cetaceans used during the Natural Resource Damage Assessment of the MSC252 Deepwater Horizon Oil Spill. (2015).48.Hansen, L. J. et al. Geographic variation in polychorinated biphenyl and organochlorine pesticide concentrations in the blubber of bottlenose dolphins from the US Atlantic coast. Sci. Total Environ. 319, 147–172 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Giménez, J., Ramírez, F., Almunia, J., Forero, M. G. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Biol. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    50.Thomas, S. M. & Crowther, T. W. Predicting rates of isotopic turnover across the animal kingdom: A synthesis of existing data. J. Anim. Ecol. 84, 861–870 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Cloyed, C. et al. Interaction of dietary and habitat niche breadth influences cetacean vulnerability to environmental disturbance. Ecosphere 12, e03759 (2021).Article 

    Google Scholar 
    53.Sweeting, C., Polunin, N. & Jennings, S. Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun. Mass Spectrom. 20, 595–601 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Cloyed, C. S., DaCosta, K. P., Hodanbosi, M. R. & Carmichael, R. H. The effects of lipid extraction on δ13C and δ15N values and use of lipid-correction models across tissues, taxa and trophic groups. Methods Ecol. Evol. 11, 751–762 (2020).Article 

    Google Scholar 
    55.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Roughgarden, J. Evolution of niche width. Am. Nat. 106, 683–718 (1972).Article 

    Google Scholar 
    57.Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).Article 

    Google Scholar 
    58.Team, R. C. R: A language and environment for statistical computing. (2013).59.Lusseau, D. et al. Quantifying the influence of sociality on population structure in bottlenose dolphins. J. Anim. Ecol. 75, 14–24 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Ingram, S. N. & Rogan, E. Identifying critical areas and habitat preferences of bottlenose dolphins Tursiops truncatus. Mar. Ecol. Prog. Ser. 244, 247–255 (2002).ADS 
    Article 

    Google Scholar 
    61.Balmer, B. et al. Extended movements of common bottlenose dolphins (Tursiops truncatus) along the northern Gulf of Mexico’s central coast. Gulf Mexico Sci. 33, 8 (2016).Article 

    Google Scholar 
    62.Bearzi, G., Bonizzoni, S. & Gonzalvo, J. Mid-distance movements of common bottlenose dolphins in the coastal waters of Greece. J. Ethol. 29, 369–374 (2011).Article 

    Google Scholar 
    63.Balmer, B. et al. Ranging patterns, spatial overlap, and association with dolphin morbillivirus exposure in common bottlenose dolphins (Tursiops truncatus) along the Georgia, USA coast. Ecol. Evol. 8, 12890–12904. https://doi.org/10.1002/ece3.4727 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Rossi-Santos, M. R., Wedekin, L. L. & Monteiro-Filho, E. L. Residence and site fidelity of Sotalia guianensis in the Caravelas River Estuary, eastern Brazil. J. Mar. Biol. Assoc. UK 87, 207 (2007).Article 

    Google Scholar 
    65.Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: Important metrics for management. Oryx 48, 370–377 (2014).Article 

    Google Scholar 
    66.Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J. & Sims, D. W. Foraging success of biological Lévy flights recorded in situ. Proc. Natl. Acad. Sci. USA. 109, 7169–7174 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article 

    Google Scholar 
    69.Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & MaCleod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 73, 1007–1012 (2004).Article 

    Google Scholar 
    70.de la Morinière, E. C. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: Stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).ADS 
    Article 

    Google Scholar 
    71.Ward-Paige, C. A., Britten, G. L., Bethea, D. M. & Carlson, J. K. Characterizing and predicting essential habitat features for juvenile coastal sharks. Mar. Ecol. 36, 419–431 (2015).ADS 
    Article 

    Google Scholar 
    72.Rogers, K. M. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar. Pollut. Bull. 46, 821–827 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lee, S. Carbon dynamics of Deep Bay, eastern Pearl River estuary, China. II: Trophic relationship based on carbon-and nitrogen-stable isotopes. Mar. Ecol. Progress Ser. 205, 1–10 (2000).ADS 
    Article 

    Google Scholar 
    74.Grady, J. R. Properties of sea grass and sand flat sediments from the intertidal zone of St. Andrew Bay, Florida. Estuaries 4, 335 (1981).Article 

    Google Scholar 
    75.Poulakis, G. R., Blewett, D. A. & Mitchell, M. E. The effects of season and proximity to fringing mangroves on seagrass-associated fish communities in Charlotte Harbor, Florida. Gulf Mexico Sci. 21, 3 (2003).Article 

    Google Scholar 
    76.Borrell, A., Vighi, M., Genov, T., Giovos, I. & Gonzalvo, J. Feeding ecology of the highly threatened common bottlenose dolphin of the Gulf of Ambracia, Greece, through stable isotope analysis. Mar. Mamm. Sci. 37, 98–110 (2021).Article 

    Google Scholar 
    77.Gibbs, S. E., Harcourt, R. G. & Kemper, C. M. Niche differentiation of bottlenose dolphin species in South Australia revealed by stable isotopes and stomach contents. Wildl. Res. 38, 261–270 (2011).CAS 
    Article 

    Google Scholar 
    78.Lenes, J. M. & Heil, C. A. A historical analysis of the potential nutrient supply from the N2 fixing marine cyanobacterium Trichodesmium spp. to Karenia brevis blooms in the eastern Gulf of Mexico. J. Plankton Res. 32, 1421–1431 (2010).CAS 
    Article 

    Google Scholar 
    79.Bergman, B., Sandh, G., Lin, S., Larsson, J. & Carpenter, E. J. Trichodesmium–a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 37, 286–302 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Barros, N. B. & Odell, D. K. In The Bottlenose Dolphin (eds Leatherwood, S. & Reeves, R. R.) Ch. 16, 309–328 (Academic Press, 1990).81.Lane, S. M. et al. Reproductive outcome and survival of common bottlenose dolphins sampled in Barataria Bay, Louisiana, USA, following the Deepwater Horizon oil spill. Proc. R. Soc. B Biol. Sci. 282, 20151944 (2015).Article 
    CAS 

    Google Scholar 
    82.Smith, C. R. et al. Slow recovery of Barataria Bay dolphin health following the Deepwater Horizon oil spill (2013–2014), with evidence of persistent lung disease and impaired stress response. Endanger. Species Res. 33, 127–142 (2017).Article 

    Google Scholar 
    83.McDonald, T. L. et al. Survival, density, and abundance of common bottlenose dolphins in Barataria Bay (USA) following the Deepwater Horizon oil spill. Endanger. Species Res. 33, 193–209 (2017).ADS 
    Article 

    Google Scholar 
    84.Trustees, D. N. Deepwater Horizon oil spill: final programmatic damage assessment and restoration plant (PDARP) and final programmatic environmental impact statement (PEIS). (2016).85.Carmichael, R. H., Graham, W. M., Aven, A., Worthy, G. & Howden, S. Were multiple stressors a ‘perfect storm’ for northern Gulf of Mexico bottlenose dolphins (Tursiops truncatus) in 2011?. PLoS ONE 7, e41155 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Booth, C. & Thomas, L. In Oceans. 179–192 (Multidisciplinary Digital Publishing Institute).87.Gannon, D. P. et al. Effects of Karenia brevis harmful algal blooms on nearshore fish communities in southwest Florida. Mar. Ecol. Prog. Ser. 378, 171–186 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Rossman, S. et al. Retrospective analysis of bottlenose dolphin foraging: A legacy of anthropogenic ecosystem disturbance. Mar. Mamm. Sci. 29, 705–718 (2013).CAS 

    Google Scholar 
    89.Schwacke, L. H. et al. Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex-and class-structured population model. Endanger. Species Res. 33, 265–279 (2017).Article 

    Google Scholar 
    90.McCann, K. S., Rasmussen, J. & Umbanhowar, J. The dynamics of spatially coupled food webs. Ecol. Lett. 8, 513–523 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Schwacke, L. H. et al. Health of common bottlenose dolphins (Tursiops truncatus) in Barataria Bay, Louisiana, following the deepwater horizon oil spill. Environ. Sci. Technol. 48, 93–103 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuar. Coasts 38, 401–414 (2015).Article 

    Google Scholar 
    93.Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    94.Kenworthy, M. D. et al. Movement ecology of a mobile predatory fish reveals limited habitat linkages within a temperate estuarine seascape. Can. J. Fish. Aquat. Sci. 75, 1990–1998 (2018).CAS 
    Article 

    Google Scholar 
    95.Fitzgerald, D. M., Kulp, M., Penland, S., Flocks, J. & Kindinger, J. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River Delta. Sedimentology 51, 1157–1178 (2004).ADS 
    Article 

    Google Scholar 
    96.Habib, E. et al. Assessing effects of data limitations on salinity forecasting in Barataria basin, Louisiana, with a Bayesian analysis. J. Coast. Res. 2007, 749–763 (2007).Article 

    Google Scholar 
    97.Eleuterius, C. K. Geographical definition of Mississippi Sound. Gulf Caribb. Res. 6, 179–181 (1978).
    Google Scholar 
    98.Lucas, K. L. & Carter, G. A. Decadal changes in habitat-type coverage on Horn Island, Mississippi, USA. J. Coast. Res. 26, 1142–1148 (2010).Article 

    Google Scholar 
    99.Ichiye, T. & Jones, M. L. On the hydrography of the St. Andrew Bay system, Florida 1. Limnol. Oceanogr. 6, 302–311 (1961).ADS 
    Article 

    Google Scholar 
    100.Morgan, S. G. Plasticity in reproductive timing by crabs in adjacent tidal regimes. Mar. Ecol. Prog. Ser. 139, 105–118 (1996).ADS 
    Article 

    Google Scholar 
    101.Livingston, R. et al. Modelling oyster population response to variation in freshwater input. Estuar. Coast. Shelf Sci. 50, 655–672 (2000).ADS 
    Article 

    Google Scholar 
    102.Twichell, D. et al. Geologic controls on the recent evolution of oyster reefs in Apalachicola Bay and St. George Sound, Florida. Estuar. Coast. Shelf Sci. 88, 385–394 (2010).ADS 
    Article 

    Google Scholar 
    103.Chen, Z., Hu, C., Conmy, R. N., Muller-Karger, F. & Swarzenski, P. Colored dissolved organic matter in Tampa Bay, Florida. Mar. Chem. 104, 98–109 (2007).CAS 
    Article 

    Google Scholar 
    104.Julian, P. & Estevez, E. D. In Proceedings of the Tampa Bay Area Scientific Information Symposium, BASIS 5: Using Our Knowledge to Shape Our Future. 27–33.105.Adams, A. J. & Blewett, D. A. Spatial patterns of estuarine habitat type use and temporal patterns in abundance of juvenile permit, Trachinotus falcatus, in Charlotte Harbor, Florida. Gulf Caribb. Res. 16, 129–139 (2004).Article 

    Google Scholar 
    106.Kahle, D., Wickham, H. & Kahle, M. D. Package ‘ggmap’. (2019). More

  • in

    Mongolian pine forest decline by the combinatory effect of European woodwasp and plant pathogenic fungi

    1.Yin, D. C., Deng, X., Ilan, C. & Song, R. Q. Physiological Responses of Pinus sylvestris var. mongolica seedlings to the interaction between Suillus luteus and Trichoderma virens. Curr. Microbiol. 69, 334–342 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Yin, D. C., Song, R. Q., Qi, J. Y. & Deng, X. Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition. J. For. Res. 29, 1775–1788 (2018).Article 

    Google Scholar 
    3.Saiyaremu, H., Xun, D., Song, X. S. & Song, R. Q. Effects of two Trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var. mongolica annual seedlings. Forests 10, 758–773 (2019).Article 

    Google Scholar 
    4.Ju, H. B. The Research of Micro-ecological Control Shoot Blight of Pinus sylvestris var. mongolica (Northeast Forestry University, 2005).
    Google Scholar 
    5.Tang, X. Screening of Antagonistic Bacteria against Sphaeropsis sapinea and Mechanism of Antagomism (Nanjing Forestry University, 2017).
    Google Scholar 
    6.Talbot, P. H. B. The Sirex-Amylostereum-Pinus association. Annu. Rev. Phytopathol. 15, 41–54 (1977).Article 

    Google Scholar 
    7.Wermelinger, B. & Thomsen, I. M. The woodwasp Sirex noctilio and its associated fungus Amylostereum areolatum in Europe. In The Sirex woodwasp and Its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest (eds Slippers, B. et al.) 65–80 (Springer-Verlag, 2012).Chapter 

    Google Scholar 
    8.Spradbery, J. P. & Kirk, A. A. Experimental studies on the responses of European siricid woodwasps to host trees. Ann. Appl. Biol. 98, 179–185 (1981).Article 

    Google Scholar 
    9.Hurley, B. P., Slippers, B. & Wingfield, M. J. A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere. Agric. For. Entomol. 9, 159–171 (2007).Article 

    Google Scholar 
    10.Villacide, J. M. & Corley, J. C. Ecology of the woodwasp sirex noctilio: Tackling the challenge of successful pest management. Int. J. Pest Manag. 58, 249–256 (2012).Article 

    Google Scholar 
    11.Batista, E. S. P., Redak, R. A., Busoli, A. C., Camargo, M. B. & Allison, J. D. Trapping for Sirex woodwasp in Brazilian pine plantations: Lure, trap type and height of deployment. J. Insect. Behav. 31, 210–221 (2018).Article 

    Google Scholar 
    12.Li, D. P. et al. Detection and identification of the invasive Sirex noctilio (Hymenoptera: Siricidae) fungal symbiont, Amylostereum areolatum (Russulales: Amylostereacea), in China and the stimulating effect of insect venom on laccase production by A. areolatum YQL03. J. Econ. Entomol. 108, 1136–1147 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Sun, X. T., Tao, J., Ren, L. L., Shi, J. & Luo, Y. Q. Identification of Sirex noctilio (Hymenoptera: Siricidae) using a species-specific cytochrome C. oxidase subunit I PCR assay. J. Econ. Entomol. 109, 1424–1430 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Thompson, B. M., Grebenok, R. J., Behmer, S. T. & Gruner, D. S. Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp Sirex noctilio. J. Chem. Ecol. 39, 129–139 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Thompson, B. M., Bodaer, J., Mcewen, C. & Gruner, D. S. Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann. Entomol. Soc. Am. 107, 453–460 (2014).Article 

    Google Scholar 
    16.Savluchinske Feio, S. et al. Antimicrobial activity of methyl cis -7-oxo deisopropyldehydroabietate on Botrytis cinerea and Lophodermium seditiosum: ultrastructural observations by transmission electron microscopy. J. Appl. Microbiol. 17, 765–771 (2002).Article 

    Google Scholar 
    17.Hiroyuki, S., Dai, H. & Yuichi, Y. Species composition and distribution of, Coleosporium, species on the needles of, Pinus densiflora, at a semi-natural vegetation succession site in central Japan. Mycoscience 59, 424–432 (2018).Article 

    Google Scholar 
    18.Li, P. F., Hui, E. X., Zhang, X. M. & Liu, Z. F. Pathogen of the Needle Blight of Pinus sylvestris var. mongolican. J. Northeast For. Univ. 25, 34–37 (1997).
    Google Scholar 
    19.Kaneko, S. S. Nuclear behavior during Basidiospore germination in Cronartium quercuum f. sp. fusiforme. Mycologia 88, 892–896 (1996).Article 

    Google Scholar 
    20.Juha, K., Ritva, H., Tuomas, K. & Jarkko, H. Five plant families support natural sporulation of Cronartium ribicola and C. flaccidum in Finland. Eur. J. Plant Pathol. 149, 367–383 (2017).Article 

    Google Scholar 
    21.Anees, M. et al. In situ impact of the antagonistic fungal strain, Trichoderma gamsii T30 on the plant pathogenic fungus, Rhizoctonia solani in soil. Pol. J. Microbiol. 21, 211–216 (2019).Article 

    Google Scholar 
    22.Tiziana, P. et al. Dispersal and propagule pressure of botryosphaeriaceae species in a declining oak stand is affected by insect vectors. Forests 8, 288–239 (2017).Article 

    Google Scholar 
    23.Manzanos, T., Aragones, A. & Iturritxa, E. Genotypic diversity and distribution of Sphaeropsis sapinea within Pinus radiata trees from northern Spain. For. Pathol. 49, 1709 (2019).
    Google Scholar 
    24.Bukamp, J., Langer, G. J. & Langer, E. J. Sphaeropsis sapinea and fungal endophyte diversity in twigs of Scots pine (Pinus sylvestris) in Germany. Mycol. Progr. 9, 2 (2020).
    Google Scholar 
    25.Halifu, S., Deng, X., Song, X. S. & Song, R. Q. Effects of two trichoderma strains on plant growth, rhizosphere soil nutrients, and fungal community of Pinus sylvestris var mongolica annual seedlings. Forests 10, 758 (2019).Article 

    Google Scholar 
    26.Adamson, K., Klavina, D., Drenkhan, R., Gaitnieks, T. & Hanso, M. Diplodia sapinea is colonizing the native scots pine (Pinus sylvestris) in the northern Baltics. Eur. J. Plant Pathol. 143, 343–350 (2015).Article 

    Google Scholar 
    27.Maresi, G., Luchi, N. & Pinzani, P. Detection of Diplodia pinea in asymptomatic pine shoots and its relation to the normalized insolation index. For. Pathol. 37, 272–280 (2007).Article 

    Google Scholar 
    28.Margarita, G.; Sianna, Hlebarska.; A review of Sphaeropsis sapinea occurrence on Pinus species in Bulgaria. 2016.29.Stanosz, G. R., Smith, D. R. & Guthmiller, M. A. Persistence of Sphaeropsis sapinea on or in asymptomatic shoots of red and Jack pines. Mycologia 89, 525–530 (1997).Article 

    Google Scholar 
    30.Song, X. D., Liu, G. R., Chen, J. Y., Xu, G. J. & Li, S. H. Studies the pathogenicity of Sphaeropsis sapinea. Sci. Silvae Sin. 38, 89–94 (2002).CAS 

    Google Scholar 
    31.Foelker, C. J., Parry, D. & Fierke, M. K. Biotic resistance and the spatiotemporal distribution of an invading woodwasp Sirex noctilio. Biol. Invas. https://doi.org/10.1007/s10530-018-1673-8 (2018).Article 

    Google Scholar 
    32.Yousuf, F. et al. Bark beetle (Ips grandicollis) disruption of woodwasp (Sirex noctilio) biocontrol: Direct and indirect mechanisms. For. Ecol. Manag. 323, 98–104 (2014).Article 

    Google Scholar 
    33.Vasiliauskas, R. & Stenlid, J. Vegetative compatibility groups of Amylostereum areolatum and A. chailletii from Sweden and Lithuania. Mycol. Res. 103, 824–829 (1999).Article 

    Google Scholar 
    34.Thomsen, M. & Koch, J. Somatic compatibility in Amylostereum areolatum and A. chailletii as aconsequence of symbiosis with Siricid woodwasps. Mycol. Res. 103, 817–823 (1999).Article 

    Google Scholar 
    35.Slippers, B., Wingfield, M. J., Coutinho, T. A. & Wingfield, B. D. Population structure and possible origin of Amylostereum areolatum in South Africa. Plant Pathol. 50, 206–210 (2001).Article 

    Google Scholar 
    36.Zylstra, K. E., Dodds, K. J., Francese, J. A. & Victor, M. Sirex noctilio in North America: The effect of stem-injection timing on the attractiveness and suitability of trap trees. Agric. For. Entomol. 12, 243–250 (2010).
    Google Scholar 
    37.Katarzyna, W., Piotr, R. & Turnau, K. The diversity of endophytic fungi in Verbascum lychnitis from industrial areas. Symbiosis 64(3), 139–147 (2014).Article 

    Google Scholar 
    38.Wang, Y. & Wu, X. Q. Characteristics differentiation of Sphaeropsis sapinea isolates. J. Nanjing Fore. Univ. 4, 6–10 (2005).
    Google Scholar 
    39.Lu, M., Wingfield, M. J., Gillette, N. E. & Sun, J. H. Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytol. 187, 859–866 (2010).PubMed 
    Article 

    Google Scholar 
    40.Yousuf, F. G., Gurr, M., Carnegie, A. J., Bedding, R. A. & Bashford, R. The bark beetle, Ips grandicollis disrupts biological control of the woodwasp, Sirex noctilio, via fungal symbiont interactions. Fems Microbiol. Ecol. 88, 38–47 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Bailey, B. A. et al. Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol. Control 46, 24–35 (2008).Article 

    Google Scholar 
    42.Wang, Y., Wu, X. M., Zhu, Y. P., Zhang, M. & Wang, S. L. Inhibition effects and mechanisms of the endophytic fungus Chaetomium globosum L18 from Curcuma wenyujin. Acta Ecol. Sin. 32, 2040–2046 (2012).Article 

    Google Scholar 
    43.Wang, L. X., Ren, L. L., Liu, X. B., Shi, J. & Luo, Y. Q. Effects of endophytic fungi in Mongolian pine on the selection behavior of woodwasp (Sirex noctilio) and the growth of its fungal symbiont. Pest Manag. Sci. 75, 492–505 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Zeng, F. Y. et al. Studies on the mycoflora of Pinus thunbergii infected by Bursaphelenchus xylophilus. J. For. Sci. Res. 19, 537–540 (2006).
    Google Scholar 
    45.Wang, L. X., Ren, L. L., Shi, J., Liu, X. B. & You, Q. L. Variety of endophytic fungi associated with conifers in mixed conifer forests invaded by Sirex noctilio. Sci. Silvae Sinicae. 53, 81–89 (2017).
    Google Scholar 
    46.Jam, A. S. & Fotouhifar, K. B. Diversity of endophytic fungi of common yew (Taxus baccatal) in Iran. Mycol. Prog. 16, 247–256 (2017).Article 

    Google Scholar 
    47.Jin, L. C. et al. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis. PLoS ONE 10, e0118204 (2015).Article 
    CAS 

    Google Scholar 
    48.Ryan, K., Moncalvo, J. M., Groot, P. D. & Smith, S. M. Interactions between the fungal symbiont of Sirex noctilio (Hymenoptera: Siricidae) and two bark beetle-vectored fungi. Can. Entomol. 143, 224–235 (2011).Article 

    Google Scholar 
    49.Palmer, M. A., Stewart, E. L. & Wingfield, M. J. Variation among isolates of Sphaeropsis sapinea in the north central United states. Phytophathology. 77, 944–948 (1987).Article 

    Google Scholar 
    50.Blodgett, J. T., Bonello, P. & Stanosz, G. R. An effective medium for isolating Sphaeropsis sapinea from asymptomatic pines. For. Pathol. 33, 395–404 (2003).Article 

    Google Scholar 
    51.Zhou, X. H. Study on groups of fungi on boles of Pinus sylvestris var. mongolica. J. Anhui Agric. Sci. 39, 2784–2785 (2011).
    Google Scholar 
    52.Maresi, G., Luchi, N. & Pinzani, P. Detection of Diplodia pinea in asymptomatic pine shoots and its relation to the normalized insolation index. For. Pathol 37, 272–280 (2007).Article 

    Google Scholar 
    53.Wang, L. X. et al. The mycobiota of Pinus sylvestris var. mongolica trunk invaded by Sirex noctilio. Mycosystema 36, 444–453 (2016).CAS 

    Google Scholar 
    54.Santamaría, J. & Bayman, P. Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microb. Ecol. 50, 1–8 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Claudia, P. et al. Plant pathogenic fungi associated with Coraebus florentinus (Coleoptera: Buprestidae) attacks in declining oak forests. Forests 10, 488 (2019).Article 

    Google Scholar 
    56.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).
    Google Scholar 
    57.Petrini, O., Stone, J. K. & Carroll, F. E. Endophytic fungi in evergreen shrubs in western Oregon: A preliminary study. Can. J. Bot. 60, 789–796 (1982).Article 

    Google Scholar 
    58.Wang, Y. & Guo, L. D. A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Can. J. Bot. 85, 911–917 (2007).Article 

    Google Scholar 
    59.Arita, H. T., Christen, A., Rodríguez, P. & Soberón, J. The presence–absence matrix reloaded: The use and interpretation of range-diversity plots. Glob. Ecol. Biogeogr. 21, 282–292 (2012).Article 

    Google Scholar 
    60.Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Jaccard, P. The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912).Article 

    Google Scholar 
    62.Alhanout, K., Brunel, J. M., Ranque, S. & Rolain, J. M. In vitro antifungal activity of aminosterols against moulds isolated from cystic fibrosis patients. J. Antimicrob. Chemother. 65, 1307–1309 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Chen, X. L., Li, J. F., Zhang, L. L., Zhang, J. F. & Wang, A. Biocontrol efficacy and phylogenetic tree analysis of a new Bionectria ochroleuca Strain. Biotechnol. Bull. 5, 184–189 (2014).
    Google Scholar 
    64.Samson, R. A., Houbraken, J. & Thrane, U. Food and Indoor Fungi (CBS-KNAW Fungal Biodiversity Centre, 2010).
    Google Scholar 
    65.Larena, I. et al. Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol. Control. 32, 305–310 (2005).Article 

    Google Scholar 
    66.Martinez, C. P., De Geus, M., Lauwereys, G. & Matthyssens, C. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature 356, 615–618 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Wahl, A. The effect of Sirex spp. woodwasps and their fungal associates on Alabama forest health: competitiveness of Amylostereum spp. fungi against Leptographium spp. fungi. Thesis. Auburn University, Auburn, AL. 2017.68.Li, D. & Zhou, D. Q. Preliminary analysis of ecological distribution of wood-rotting fungi in liming township of Lijiang Laojun mountain. J. Southwest For. Univ. 30, 47–50 (2010).
    Google Scholar 
    69.Heydeck, P. & Dahms, C. Trieberkrankungen an Waldbäumen im Brennpunkt der forstlichen Phytopathologie. Eberswalder Forstl Schriftenreihe. 49, 47–55 (2012).
    Google Scholar 
    70.Arzanlou, M., Narmani, A., Moshari, S., Khodaei, S. & Babai-Ahari, A. Truncatella angustata associated with grapevine trunk disease in northern Iran. Arch. Fr Pflanzenschutz. 46, 1168–1181 (2013).Article 

    Google Scholar 
    71.Foelker, C. J. Beneath the bark: Associations among Sirex noctilio development, bluestain fungi, and pine host species in North America. Ecol. Entomol. 41, 676–684 (2016).Article 

    Google Scholar  More

  • in

    Replicated, urban-driven exposure to metallic trace elements in two passerines

    1.Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, 8327 (2017).Article 
    CAS 

    Google Scholar 
    2.Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. U.S.A. 114, 8951–8956 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).Article 

    Google Scholar 
    4.Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18 (2009).Article 

    Google Scholar 
    5.Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).PubMed 
    Article 

    Google Scholar 
    6.Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).PubMed 
    Article 

    Google Scholar 
    7.McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    8.Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).PubMed 
    Article 

    Google Scholar 
    9.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    10.Salmón, P., Watson, H., Nord, A. & Isaksson, C. Effects of the urban environment on oxidative stress in early life: Insights from a cross-fostering experiment. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy099 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Chatelain, M., Drobniak, S. M. & Szulkin, M. The association between stressors and telomeres in non-human vertebrates: A meta-analysis. Ecol. Lett. 23, 381–398 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61, 373–408 (2015).Article 

    Google Scholar 
    13.Isaksson, C. Impact of urbanization on birds. In Bird Species (ed. Tietze, D. T.) 235–257 (Springer, 2018).Chapter 

    Google Scholar 
    14.Ouyang, J. Q. et al. A new framework for urban ecology: An integration of proximate and ultimate responses to anthropogenic change. Integr. Comp. Biol. https://doi.org/10.1093/icb/icy110 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Meillère, A. et al. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula). Sci. Total Environ. 566–567, 93–101 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    16.Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Santangelo, J. S. et al. Urban environments as a framework to study parallel evolution. In Urban Evolutionary Biology (eds Szulkin, M. et al.) 36–53 (Oxford University Press, 2020).Chapter 

    Google Scholar 
    18.Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).PubMed 
    Article 

    Google Scholar 
    19.Szulkin, M., Garroway, C. J., Corsini, M., Kotarba, A. Z. & Dominoni, D. How to quantify urbanisation when testing for urban evolution? In Urban Evolutionary Biology (eds Szulkin, M. et al.) (Oxford University Press, 2020).Chapter 

    Google Scholar 
    20.McDonnell, M. J. & Pickett, S. T. A. Ecosystem structure and function along urban-rural gradients: An unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).Article 

    Google Scholar 
    21.Bai, X. et al. Linking urbanization and the environment: Conceptual and empirical advances. Annu. Rev. Environ. Resour. 42, 215–240 (2017).Article 

    Google Scholar 
    22.Boyd, R. S. Heavy metal pollutants and chemical ecology: Exploring new frontiers. J. Chem. Ecol. 36, 46–58 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Dauwe, T., Janssens, E., Pinxten, R. & Eens, M. The reproductive success and quality of blue tits (Parus caeruleus) in a heavy metal pollution gradient. Environ. Pollut. 136, 243–251 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Eeva, T., Ahola, M. & Lehikoinen, E. Breeding performance of blue tits (Cyanistes caeruleus) and great tits (Parus major) in a heavy metal polluted area. Environ. Pollut. 157, 3126–3131 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Stauffer, J., Panda, B., Eeva, T., Rainio, M. & Ilmonen, P. Telomere damage and redox status alterations in free-living passerines exposed to metals. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2016.09.131 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Fritsch, C., Jankowiak, Ł & Wysocki, D. Exposure to Pb impairs breeding success and is associated with longer lifespan in urban European blackbirds. Sci. Rep. 9, 486 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Nriagu, J. O. Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279, 409–411 (1979).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Duan, J. & Tan, J. Atmospheric heavy metals and arsenic in China: Situation, sources and control policies. Atmos. Environ. 74, 93–101 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Celik, E., Durmus, A., Adizel, O. & Nergiz Uyar, H. A bibliometric analysis: What do we know about metals(loids) accumulation in wild birds? Environ. Sci. Pollut. Res. 28, 10302–10334 (2021).CAS 
    Article 

    Google Scholar 
    30.Bichet, C. et al. Urbanization, trace metal pollution, and malaria prevalence in the house sparrow. PLoS ONE 8, e53866 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Gragnaniello, S. et al. Sparrows as possible heavy-metal biomonitors of polluted environments. Bull. Environ. Contam. Toxicol. 66, 719–726 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hofer, C., Gallagher, F. J. & Holzapfel, C. Metal accumulation and performance of nestlings of passerine bird species at an urban brownfield site. Environ. Pollut. 158, 1207–1213 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Nam, D.-H. & Lee, D.-P. Monitoring for Pb and Cd pollution using feral pigeons in rural, urban, and industrial environments of Korea. Sci. Total Environ. 357, 288–295 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Roux, K. E. & Marra, P. P. The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch. Environ. Contam. Toxicol. 53, 261–268 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Scheifler, R. et al. Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci. Total Environ. 371, 197–205 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Manjula, M., Mohanraj, R. & Devi, M. P. Biomonitoring of heavy metals in feathers of eleven common bird species in urban and rural environments of Tiruchirappalli, India. Environ. Monit. Assess. 187, 267 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Zarrintab, M. & Mirzaei, R. Tissue distribution and oral exposure risk assessment of heavy metals in an urban bird: Magpie from Central Iran. Environ. Sci. Pollut. Res. 25, 17118–17127 (2018).CAS 
    Article 

    Google Scholar 
    38.Binkowski, ŁJ. & Meissner, W. Levels of metals in blood samples from Mallards (Anas platyrhynchos) from urban areas in Poland. Environ. Pollut. 178, 336–342 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Orłowski, G. et al. Residues of chromium, nickel, cadmium and lead in rook Corvus frugilegus eggshells from urban and rural areas of Poland. Sci. Total Environ. 490, 1057–1064 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    40.Kekkonen, J., Hanski, I. K., Väisänen, R. A. & Brommer, J. E. Levels of heavy metals in house sparrows (Passer domesticus) from urban and rural habitats of southern Finland. Ornis Fennica 89, 91 (2012).
    Google Scholar 
    41.Jaspers, V. L. B., Covaci, A., Herzke, D., Eulaers, I. & Eens, M. Bird feathers as a biomonitor for environmental pollutants: Prospects and pitfalls. TrAC Trends Anal. Chem. https://doi.org/10.1016/j.trac.2019.05.019 (2019).Article 

    Google Scholar 
    42.Dijkstra, L. & Poelman, H. Cities in Europe: The new OECD-EC definition. Reg. Focus 16, 1–3 (2012).
    Google Scholar 
    43.Svensson, L. Identification Guide to European Passerines (British Trust for Ornithology, 1992).
    Google Scholar 
    44.Jenni, L. & Winkler, R. Moult and Ageing of European Passerines (Academic Press, 1994).
    Google Scholar 
    45.Greenwood, P. J., Harvey, P. H. & Perrins, C. M. The role of dispersal in the great tit (Parus major): The causes, consequences and heritability of natal dispersal. J. Anim. Ecol. 48, 123 (1979).Article 

    Google Scholar 
    46.Harvey, P. H., Greenwood, P. J. & Perrins, C. M. Breeding area fidelity of great tits (Parus major). J. Anim. Ecol. 48, 305 (1979).Article 

    Google Scholar 
    47.Ortego, J., García-Navas, V., Ferrer, E. S. & Sanz, J. J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit, Cyanistes caeruleus. Anim. Behav. 82, 131–137 (2011).Article 

    Google Scholar 
    48.Tufto, J., Ringsby, T., Dhondt, A. A., Adriaensen, F. & Matthysen, E. A parametric model for estimation of dispersal patterns applied to five passerine spatially structured populations. Am. Nat. 165, E13–E26 (2005).PubMed 
    Article 

    Google Scholar 
    49.Miles, L. S., Carlen, E. J., Winchell, K. M. & Johnson, M. T. J. Urban evolution comes into its own: Emerging themes and future directions of a burgeoning field. Evol. Appl. 14, 3–11 (2021).PubMed 
    Article 

    Google Scholar 
    50.Moll, R. J. et al. What does urbanization actually mean? A framework for urban metrics in wildlife research. J. Appl. Ecol. 56, 1289–1300 (2019).Article 

    Google Scholar 
    51.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).52.Lee, L. & Helsel, D. Statistical analysis of water-quality data containing multiple detection limits: S-language software for regression on order statistics. Comput. Geosci. 31, 1241–1248 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Salgado, C. M., Azevedo, C., Proença, H., Vieira, S. M. Noise versus outliers. In Secondary Analysis of Electronic Health Records, 163–183 (ed MIT Critical Data) (Springer, 2016).Chapter 

    Google Scholar 
    54.Betts, M. M. The food of titmice in Oak Woodland. J. Anim. Ecol. 24, 282 (1955).Article 

    Google Scholar 
    55.Newton, I. & Brockie, K. The Migration Ecology of Birds (Elsevier/Acad. Press, 2008).
    Google Scholar 
    56.Greenwood, P. J. & Harvey, P. H. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13, 1–21 (1982).Article 

    Google Scholar 
    57.Sakamoto, Y., Ishiguro, M. & Kitagawa, G. Akaike Information Criterion Statistics Vol. 81 (D. Reidel, 1986).MATH 

    Google Scholar 
    58.Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    59.Grömping, U. Relative importance for linear regression in R : The package relaimpo. J. Stat. Softw. https://doi.org/10.18637/jss.v017.i01 (2006).Article 

    Google Scholar 
    60.Pacyna, E. G. et al. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020. Sci. Total Environ. 370, 147–156 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Frantz, A. et al. Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ. Pollut. 168, 23–28 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Eens, M., Pinxten, R., Verheyen, R. F., Blust, R. & Bervoets, L. Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicol. Environ. Saf. 44, 81–85 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Dauwe, T. et al. Great and blue tit feathers as biomonitors for heavy metal pollution. Ecol. Indic. 1, 227–234 (2002).CAS 
    Article 

    Google Scholar 
    64.Janssens, E., Dauwe, T., Bervoets, L. & Eens, M. Heavy metals and selenium in feathers of great tits (Parus major) along a pollution gradient. Environ. Toxicol. Chem. 20, 2815–2820 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Burger, J. Metals in avian feathers: bioindicators of environmental pollution. Rev. Environ. Contam. Toxicol. 5, 203–311 (1993).
    Google Scholar 
    66.Chatelain, M., Gasparini, J., Jacquin, L. & Frantz, A. The adaptive function of melanin-based plumage coloration to trace metals. Biol. Lett. 10, 20140164–20140164 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bańbura, M. et al. Egg size variation in blue tits Cyanistes caeruleus and great tits Parus major in relation to habitat differences in snail abundance. Acta Ornithol. 45, 121–129 (2010).Article 

    Google Scholar 
    68.Scheuhammer, A. M. Influence of reduced dietary calcium on the accumulation and effects of lead, cadmium, and aluminum in birds. Environ. Pollut. 94, 337–343 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Dauwe, T., Snoeijs, T., Bervoets, L., Blust, R. & Eens, M. Calcium availability influences lead accumulation in a passerine bird. Anim. Biol. 56, 289–298 (2006).Article 

    Google Scholar 
    70.Snoeijs, T. et al. The combined effect of lead exposure and high or low dietary calcium on health and immunocompetence in the zebra finch. Environ. Pollut. 134, 123–132 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.McCabe, E. B. Age and sensitivity to lead toxicity: A review. Environ. Health Perspect. 29, 29–33 (1979).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Chatelain, M., Gasparini, J. & Frantz, A. Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob. Change Biol. 22, 2380 (2016).ADS 
    Article 

    Google Scholar 
    73.Chatelain, M., Gasparini, J. & Frantz, A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology. https://doi.org/10.1007/s10646-016-1610-5 (2016).Article 
    PubMed 

    Google Scholar 
    74.Chatelain, M., Frantz, A., Gasparini, J. & Leclaire, S. Experimental exposure to trace metals affects plumage bacterial community in the feral pigeon. J. Avian Biol. https://doi.org/10.1111/jav.00857 (2015).Article 

    Google Scholar 
    75.Chatelain, M., Pessato, A., Frantz, A., Gasparini, J. & Leclaire, S. Do trace metals influence visual signals? Effects of trace metals on iridescent and melanic feather colouration in the feral pigeon. Oikos. https://doi.org/10.1111/oik.04262 (2017).Article 

    Google Scholar 
    76.Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Harris, S. E. & Munshi-South, J. Signatures of positive selection and local adaptation to urbanization in white-footed mice (Peromyscus leucopus). Mol. Ecol. https://doi.org/10.1101/038141 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Koivula, M. J. & Eeva, T. Metal-related oxidative stress in birds. Environ. Pollut. 158, 2359–2370 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Korashy, H. M. et al. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 221, 64–74 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Ghalambor, C. K., McKAY, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    81.Garcia, C. M., Suárez-Rodríguez, M. & López-Rull, I. Becoming citizens: Avian adaptations to urban life. In Ecology and Conservation of Birds in Urban Environments (eds Murgui, E. & Hedblom, M.) 91–112 (Springer, 2017).Chapter 

    Google Scholar 
    82.Goiran, C., Bustamante, P. & Shine, R. Industrial Melanism in the Seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Obukhova, N. Polymorphism and phene geography of the blue rock pigeon in Europe. Russ. J. Genet. 43, 492–501 (2007).CAS 
    Article 

    Google Scholar 
    84.Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Gomes, W. R. et al. Polymorphisms of genes related to metabolism of lead (Pb) are associated with the metal body burden and with biomarkers of oxidative stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 836, 42–46 (2018).PubMed 
    Article 

    Google Scholar 
    86.Sekovanić, A., Jurasović, J. & Piasek, M. Metallothionein 2A gene polymorphisms in relation to diseases and trace element levels in humans. Arch. Ind. Hyg. Toxicol. 71, 27–47 (2020).
    Google Scholar  More