More stories

  • in

    Microbial storage and its implications for soil ecology

    1.Pond C. Storage. In: Townsend C, Calow P, editors. Physiological ecology. Oxford: Blackwell Scientific; 1981. p. 190–219.2.Chapin FS, Schulze E, Mooney HA. The ecology and economics of storage in plants. Annu Rev Ecol Syst. 1990;21:423–47.Article 

    Google Scholar 
    3.Moradali MF, Rehm BHA. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020;18:195–210.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Varpe Ø. Life history adaptations to seasonality. Integr Comp Biol. 2017;57:943–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Paul EA. Soil microbiology, ecology and biochemistry. 4th ed. Waltham, MA: Academic Press; 2015.6.Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Commun. 2018;9:1–9.Article 
    CAS 

    Google Scholar 
    7.Rothermich MM, Guerrero R, Lenz RW, Goodwin S. Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol. 2000;66:13.Article 

    Google Scholar 
    8.Borzi A. Le comunicazioni intracellulari delle Nostochinee. Malpighia. 1887;1:28–74.
    Google Scholar 
    9.Sherman LA, Meunier P, Colón-López MS. Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res. 1998;58:25–42.CAS 
    Article 

    Google Scholar 
    10.Stuart RK, Mayali X, Boaro AA, Zemla A, Everroad RC, Nilson D, et al. Light regimes shape utilization of extracellular organic C and N in a cyanobacterial biofilm. mBio. 2016;7:e00650–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Allen MM. Cyanobacterial cell inclusions. Annu Rev Microbiol. 1984;38:1–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: a multifunctional metabolite in cyanobacteria and algae. Front Plant Sci. 2020;11:938.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Martin P, Lauro FM, Sarkar A, Goodkin N, Prakash S, Vinayachandran PN. Particulate polyphosphate and alkaline phosphatase activity across a latitudinal transect in the tropical Indian Ocean: polyphosphate in the tropical Indian Ocean. Limnol Oceanogr. 2018;63:1395–406.CAS 
    Article 

    Google Scholar 
    14.Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Godwin CM, Cotner JB. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. ISME J. 2015;9:2324–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Oehmen A, Lemos P, Carvalho G, Yuan Z, Keller J, Blackall L, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007;41:2271–300.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Dorofeev AG, Nikolaev YuA, Mardanov AV, Pimenov NV. Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl Biochem Microbiol. 2020;56:1–14.CAS 
    Article 

    Google Scholar 
    18.Carrondo MA. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J. 2003;22:1959–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Canessa P, Larrondo LF. Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol. 2013;97:939–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161–203.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Docampo R, Moreno SNJ. Acidocalcisomes. Cell Calcium. 2011;50:113–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, et al. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem. 2019;294:17626–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelova O, et al. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci USA. 2020;117:32722–30.24.Turner BL. Inositol phosphates in soil: Amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ, editors. Inositol phosphates: linking agriculture and the environment. 2007. Wallingford: CABI; 2007. p. 186–206.25.Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Otero A, Vincenzini M. Nostoc (Cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol. 2004;40:74–81.CAS 
    Article 

    Google Scholar 
    27.Wang J, Yu H-Q. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol. 2007;75:871–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Brangarí AC, Fernàndez-Garcia D, Sanchez-Vila X, Manzoni S. Ecological and soil hydraulic implications of microbial responses to stress—a modeling analysis. Adv Water Resour. 2018;116:178–94.Article 

    Google Scholar 
    29.Pal S, Manna A, Paul AK. Production of poly(β-hydroxybutyric acid) and exopolysaccharide by Azotobacter beijerinckii WDN-01. World J Microbiol Biotechnol. 1999;15:11–6.Article 

    Google Scholar 
    30.Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol Biochem. 2015;83:184–99.CAS 
    Article 

    Google Scholar 
    31.Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol. 2017;101:2203–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Wang JG, Bakken LR. Screening of soil bacteria for poly-β-hydroxybutyric acid production and its role in the survival of starvation. Micro Ecol. 1998;35:94–101.CAS 
    Article 

    Google Scholar 
    33.Hanzlíková A, Jandera A, Kunc F. Poly-3-hydroxybutyrate production and changes of bacterial community in the soil. Folia Microbiologica. 1985;30:58–64.Article 

    Google Scholar 
    34.Iwahara S, Miki S. Production of α-α-trehalose by a bacterium isolated from soil. Agric Biol Chem. 1988;52:867–8.CAS 

    Google Scholar 
    35.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.López MF, Männer P, Willmann A, Hampp R, Nehls U. Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. N Phytol. 2007;174:389–98.Article 
    CAS 

    Google Scholar 
    37.Bünemann EK, Smernik RJ, Doolette AL, Marschner P, Stonor R, Wakelin SA, et al. Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biol Biochem. 2008;40:1908–15.Article 
    CAS 

    Google Scholar 
    38.Genet P, Prevost A, Pargney JC. Seasonal variations of symbiotic ultrastructure and relationships of two natural ectomycorrhizae of beech (Fagus sylvatica/Lactarius blennius var. viridis and Fagus sylvatica/Lactarius subdulcis). Trees. 2000;14:465–74.Article 

    Google Scholar 
    39.Frey B, Brunner I, Walther P, Scheidegger C, Zierold K. Element localization in ultrathin cryosections of high-pressure frozen ectomycorrhizal spruce roots. Plant Cell Environ. 1997;20:929–37.CAS 
    Article 

    Google Scholar 
    40.Hanzlíkova A, Jandera A, Kunc F. Formation of poly-3-hydroxybutyrate by a soil microbial community during batch and heterocontinuous cultivation. Folia Microbiol. 1984;29:233–41.Article 

    Google Scholar 
    41.Mason-Jones K, Banfield CC, Dippold MA. Compound‐specific 13C stable isotope probing confirms synthesis of polyhydroxybutyrate by soil bacteria. Rapid Commun Mass Spectrom. 2019;33:795–802.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem. 2002;34:1299–307.CAS 
    Article 

    Google Scholar 
    43.White PM, Potter TL, Strickland TC. Pressurized liquid extraction of soil microbial phospholipid and neutral lipid fatty acids. J Agric Food Chem. 2009;57:7171–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: Global soil microbial biomass C, N and P. Glob Ecol Biogeogr. 2013;22:737–49.Article 

    Google Scholar 
    45.Bååth E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Micro Ecol. 2003;45:373–83.Article 
    CAS 

    Google Scholar 
    46.Soliman AH, Radwan SS. Degradation of sterols, triacylglycerol, and phospholipids by soil microorganisms. Zbl Bakt II Abt. 1981;136:420–6.CAS 

    Google Scholar 
    47.Diakhaté S, Gueye M, Chevallier T, Diallo NH, Assigbetse K, Abadie J, et al. Soil microbial functional capacity and diversity in a millet-shrub intercropping system of semi-arid Senegal. J Arid Environ. 2016;129:71–9.Article 

    Google Scholar 
    48.Bölscher T, Wadsö L, Börjesson G, Herrmann AM. Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biol Fertil Soils. 2016;52:547–59.Article 
    CAS 

    Google Scholar 
    49.Mason-Jones K, Schmücker N, Kuzyakov Y. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol Biochem. 2018;124:38–46.CAS 
    Article 

    Google Scholar 
    50.Muhammadi S, Afzal M, Hameed S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev. 2015;8:56–77.Article 
    CAS 

    Google Scholar 
    51.Jose NA, Lau R, Swenson TL, Klitgord N, Garcia-Pichel F, Bowen BP, et al. Flux balance modeling to predict bacterial survival during pulsed-activity events. Biogeosciences. 2018;15:2219–29.CAS 
    Article 

    Google Scholar 
    52.Medeiros PM, Fernandes MF, Dick RP, Simoneit BRT. Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere. 2006;65:832–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, Baldrian P. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 2017;5:1–12.Article 

    Google Scholar 
    54.Ratcliff WC, Denison RF. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr Biol. 2010;20:1740–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Choi J, Kim S-H. A genome tree of life for the fungi kingdom. Proc Natl Acad Sci USA. 2017;114:9391–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Jun S-R, Sims GE, Wu GA, Kim S-H. Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proc Natl Acad Sci USA. 2010;107:133–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Elbahloul Y, Krehenbrink M, Reichelt R, Steinbuchel A. Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl Environ Microbiol. 2005;71:858–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980;143:1384–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Hall KD, Guo J. Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology. 2017;152:1718–27.e3.PubMed 
    Article 

    Google Scholar 
    61.Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine? Tree Physiol. 2012;32:764–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Varpe Ø, Ejsmond MJ. Trade-offs between storage and survival affect diapause timing in capital breeders. Evol Ecol. 2018;32:623–41.Article 

    Google Scholar 
    63.Heilmeier H, Freund M, Steinlein T, Schulze E-D, Monson RK. The influence of nitrogen availability on carbon and nitrogen storage in the biennial Cirsium vulgare (Savi) Ten. I. Storage capacity in relation to resource acquisition, allocation and recycling. Plant Cell Environ. 1994;17:1125–31.CAS 
    Article 

    Google Scholar 
    64.Pond CM. Ecology of storage. In: Levin SA, editor. Encyclopedia of biodiversity, 2nd ed. Amsterdam: Academic Press; 2013. p. 23–38.65.McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:1–18.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    66.Donald J, Pannabecker TL. Osmoregulation in desert-adapted mammals. In: Hyndman KA, Pannabecker TL, editors. Sodium and water homeostasis. New York: Springer New York; 2015. p. 191–211.67.Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol. 2016;225:48–56.PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell. 2015;163:340–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Jenni-Eiermann S, Jenni L. Fasting in birds: general patterns and the special case of endurance flight. In: McCue MD, editor. Comparative physiology of fasting, starvation, and food limitation. 2012. Berlin: Springer; 2012. p. 171–92.70.Fischer B, Dieckmann U, Taborsky B. When to store energy in a stochastic environment. Evolution. 2011;65:1221–32.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Bonnet X, Bradshaw D, Shine R. Capital versus income breeding: An ectothermic perspective. Oikos. 1998;83:333.Article 

    Google Scholar 
    72.de Mazancourt C, Schwartz MW. Starve a competitor: evolution of luxury consumption as a competitive strategy. Theor Ecol. 2012;13:37–49.Article 

    Google Scholar 
    73.Ejsmond MJ, Varpe Ø, Czarnoleski M, Kozłowski J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am Nat. 2015;186:E111–25.Article 

    Google Scholar 
    74.Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017;4:55.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    75.Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010;34:952–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Doi Y, Kawaguchi Y, Koyama N, Nakamura S, Hiramitsu M, Yoshida Y, et al. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol Lett. 1992;103:103–8.CAS 
    Article 

    Google Scholar 
    77.Alvarez AHM, Kalscheuer R, Steinbüchel A. Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Lipid. 1997;99:239–46.CAS 
    Article 

    Google Scholar 
    78.Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast. 1999;15:191–203.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Gebremariam SY, Beutel MW, Christian D, Hess TF. Research advances and challenges in the microbiology of enhanced biological phosphorus removal-A critical review. Water Environ Res. 2011;83:195–219.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86:807–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Matin A, Veldhuis C, Stegeman V, Veenhuis M. Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. J Gen Microbiol. 1979;112:349–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Chi Lam C, Schomburg D, et al. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach. Micro Cell Fact. 2012;11:34.CAS 
    Article 

    Google Scholar 
    83.Wilkinson JF, Munro ALS. The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium. In: Powell EO, Evans CGT, Strange RE, Tempest DW, editors. Microbial physiology and continuous culture, Proceedings of the Third International Symposium. Salisbury, United Kingdom: Her Majesty’s Stationery Office; 1967. p. 173–85.84.Alvarez HM, Mayer F, Fabritius D, Steinbüchel A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol. 1996;165:377–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr. 2010;55:2161–9.CAS 
    Article 

    Google Scholar 
    86.Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature. 2020;579:250–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Preiss J, Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol. 1994;47:299–329.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mackerras AH, de Chazal NM, Smith GD. Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol. 1990;136:2057–65.CAS 
    Article 

    Google Scholar 
    89.Parnas H, Cohen D. The optimal strategy for the metabolism of reserve materials in micro-organisms. J Theor Biol. 1976;56:19–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Dijkstra P, Salpas E, Fairbanks D, Miller EB, Hagerty SB, van Groenigen KJ, et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis. Soil Biol Biochem. 2015;89:35–43.CAS 
    Article 

    Google Scholar 
    91.Empadinhas N, da Costa MS. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol. 2008;11:151–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Albi T, Serrano A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol. 2016;32:27.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    93.Sekar K, Linker SM, Nguyen J, Grünhagen A, Stocker R, Sauer U. Bacterial glycogen provides short-term benefits in changing environments. Appl Environ Microbiol. 2020;86:e00049–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, et al. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol. 1999;181:396–400.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Jahid IK, Silva AJ, Benitez JA. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol. 2006;72:7043–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ramírez-Trujillo JA, Dunn MF, Suárez-Rodríguez R, Hernández-Lucas I. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-β-hydroxybutyrate during carbon starvation. Ann Microbiol. 2016;66:921–4.Article 
    CAS 

    Google Scholar 
    97.Vagabov VM, Trilisenko LV, Kulaev IS. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Biochemistry. 2000;65:6.
    Google Scholar 
    98.Schimz K-L, Irrgang K, Overhoff B. Glycogen, a cytoplasmic reserve polysaccharide of Cellulomonas sp. (DSM20108): Its identification, carbon source-dependent accumulation, and degradation during starvation. FEMS Microbiol Lett. 1985;30:165–9.CAS 
    Article 

    Google Scholar 
    99.Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, et al. Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007;189:918–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Busuioc M, Mackiewicz K, Buttaro BA, Piggot PJ. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J Bacteriol. 2009;191:7315–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Ruiz JA, Lopez NI, Fernandez RO, Mendez BS. Polyhydroxyalkanoate degradation Is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol. 2001;67:225–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol. 2016;26:2862–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Elbein AD. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13:17R–27R.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour Technol. 2021;326:124767.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles. 2009;13:59–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–94.Article 

    Google Scholar 
    107.Ho A, Kerckhof F-M, Luke C, Reim A, Krause S, Boon N, et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies: Functional traits of methane-oxidizing bacteria. Environ Microbiol Rep. 2013;5:335–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    108.Santillan E, Seshan H, Constancias F, Wuertz S. Trait‐based life‐history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ Microbiol. 2019;21:3751–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.Article 

    Google Scholar 
    110.Loreau M, de Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013;16:106–15.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry. 2016;127:173–88.CAS 
    Article 

    Google Scholar 
    112.Manzoni S, Porporato A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol Biochem. 2009;41:1355–79.CAS 
    Article 

    Google Scholar 
    113.Schultz P, Urban NR. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: a modeling study. Ecol Model. 2008;210:1–14.CAS 
    Article 

    Google Scholar 
    114.Torres-Dorante LO, Claassen N, Steingrobe B, Olfs H-W. Polyphosphate determination in calcium acetate-lactate (CAL) extracts by an indirect colorimetric method. J Plant Nutr Soil Sci. 2004;167:701–3.CAS 
    Article 

    Google Scholar 
    115.Micić V, Köster J, Kruge MA, Engelen B, Hofmann T. Bacterial wax esters in recent fluvial sediments. Org Geochem. 2015;89–90:44–55.Article 
    CAS 

    Google Scholar 
    116.Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 2014;5:1–10.Article 

    Google Scholar 
    117.Op De Beeck M, Troein C, Siregar S, Gentile L, Abbondanza G, Peterson C, et al. Regulation of fungal decomposition at single-cell level. ISME J. 2020;14:896–905.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol. 2019;25:3578–90.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Ducklow H, Steinberg D, Buesseler K. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–8.Article 

    Google Scholar 
    120.Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models: Soil microbes in Earth system models. Glob Biogeochem Cycles. 2015;29:1782–800.CAS 
    Article 

    Google Scholar 
    121.Schimel J, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem. 2003;35:549–63.CAS 
    Article 

    Google Scholar 
    122.Ni B-J, Fang F, Rittmann BE, Yu H-Q. Modeling microbial products in activated sludge under feast-famine conditions. Environ Sci Technol. 2009;43:2489–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    123.Godwin CM, Cotner JB. Stoichiometric flexibility in diverse aquatic heterotrophic bacteria is coupled to differences in cellular phosphorus quotas. Front Microbiol 2015;6:1–15.Article 

    Google Scholar 
    124.Camenzind T, Philipp Grenz K, Lehmann J, Rillig MC. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol Lett. 2021;24:208–18.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Fatichi S, Manzoni S, Or D, Paschalis A. A mechanistic model of microbially mediated soil biogeochemical processes: a reality check. Glob Biogeochem Cycles. 2019;33:620–48.CAS 
    Article 

    Google Scholar 
    126.Sistla SA, Rastetter EB, Schimel JP. Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe–plant–soil model. Ecol Monogr. 2014;84:151–70.Article 

    Google Scholar 
    127.Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I. Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol 2016;7:1–14.Article 

    Google Scholar 
    128.Lee ZM, Schmidt TM. Bacterial growth efficiency varies in soils under different land management practices. Soil Biol Biochem. 2014;69:282–90.CAS 
    Article 

    Google Scholar 
    129.Camenzind T, Lehmann A, Ahland J, Rumpel S, Rillig MC. Trait‐based approaches reveal fungal adaptations to nutrient‐limiting conditions. Environ Microbiol. 2020;22:3548–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    130.Manzoni S, Čapek P, Mooshammer M, Lindahl BD, Richter A, Šantrůčková H. Optimal metabolic regulation along resource stoichiometry gradients. Ecol Lett. 2017;20:1182–91.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    131.Tang J, Riley WJ. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat Clim Chang. 2015;5:5.CAS 
    Article 

    Google Scholar 
    132.Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc. 2021;16:634–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, et al. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol. 2009;75:2111–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun. 2021;12:2009.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12:1091–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Warren CR. Altitudinal transects reveal large differences in intact lipid composition among soils. Soil Res. 2021;59:644–59.CAS 
    Article 

    Google Scholar 
    137.Wilkinson J. The problem of energy-storage compounds in bacteria. Exp Cell Res. 1959;7:111–30.Article 

    Google Scholar 
    138.Nickels JS, King JD, White DC. Poly-β-hydroxybutyrate accumulation as a measure of unbalanced growth of the estuarine detrital microbiota. Appl Environ Microbiol. 1979;37:459–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma. 2012;249:541–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    140.Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie. 2016;120:28–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    141.Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    142.Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, et al. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol. 2020;104:4795–810.CAS 
    PubMed 
    Article 

    Google Scholar 
    143.Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    144.Wang L, Wang M, Wise MJ, Liu Q, Yang T, Zhu Z, et al. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J Microbiol Biotechnol. 2020;36:14.PubMed 
    Article 

    Google Scholar 
    145.Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation: Trehalose metabolism in bacteria. Micro Biotechnol. 2013;6:493–502.Article 
    CAS 

    Google Scholar 
    146.Kalscheuer R. Genetics of wax ester and triacylglycerol biosynthesis in bacteria. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 527–35.147.Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem. 2009;78:605–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    148.Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet. 2021;67:331–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    149.Füser G, Steinbüchel A. Analysis of genome sequences for genes of cyanophycin metabolism: Identifying putative cyanophycin metabolizing prokaryotes. Macromol Biosci. 2007;7:278–96.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    150.Watzer B, Forchhammer K. Cyanophycin: a nitrogen-rich reserve polymer. In: Tiwari A, editor. Cyanobacteria. London: InTech; 2018. More

  • in

    Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions

    1.Leach JE, Tringe SG. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A Rev Biol Fertil Soils. 2015;51:403–21.CAS 
    Article 

    Google Scholar 
    3.Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;871:1473–89.Article 

    Google Scholar 
    4.Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Leach JE, Triplett LR, Argueso CT, Trivedi P. Communication in the phytobiome. Cell. 2017;169:587–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. PTRBAE. 2020;375:20190250.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. Glycan utilization and cross-feeding activities by Bifidobacteria. Trends Microbiol. 2018;26:339–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol. 2020;28:732–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. The classification and evolution of bacterial cross-feeding. Front Ecol Evol. 2019;7:153.Article 

    Google Scholar 
    12.Santoyo G, del Orozco-Mosqueda MC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol. 2012;22:855–72.Article 

    Google Scholar 
    13.Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in agrobiology: plant growth responses. Springer: Berlin; 2011. 41–76.14.Xiong W, Guo S, Jousset A, Zhao Q, Wu H, Li R, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem. 2017;114:238–47.CAS 
    Article 

    Google Scholar 
    15.Qin Y, Shang Q, Zhang Y, Li P, Chai Y. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front Microbiol. 2017;8:2620.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res. 2019;19:29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, et al. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils. 2011;47:495–506.CAS 
    Article 

    Google Scholar 
    18.Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol. 2013;79:808–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, et al. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol plant. 2016;158:34–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Blake C, Nordgaard Christensen M, Kovács ÁT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact. 2020;34:15–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Pollut Res. 2018;25:29910–20.CAS 
    Article 

    Google Scholar 
    22.Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cel Rep. 2019;29:1192–202.CAS 
    Article 

    Google Scholar 
    23.Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.CAS 
    Article 

    Google Scholar 
    24.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Zhou C, Shi L, Ye B, Feng H, Zhang J, Zhang R, et al. pheS *, an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biotechnol. 2017;101:217–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lambertsen L, Sternberg C, Molin S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol. 2004;6:726–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018;46:7542–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, et al. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol. 2020;38:272–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8:1–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    38.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ C(T) method. Methods. 2001;25:402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Ling N, Raza W, Ma J, Huang Q, Shen Q. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol. 2011;47:374–9.CAS 
    Article 

    Google Scholar 
    41.Gordillo F, Chávez FP, Jerez CA. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol. 2007;60:322–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–.e5.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008;163:173–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Lynne AM, Haarmann D, Louden BC. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12:51–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Ansari FA, Ahmad I. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. 2019;9:1–12.
    Google Scholar 
    47.Santhanam R, Menezes RC, Grabe V, Li D, Baldwin IT, Groten K. A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease. Mol Ecol. 2019;28:1154–69.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–E5120.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ren D, Madsen JS, Sørensen SJ, Burmølle M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 2015;9:81–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, et al. Biofilm formation as a response to ecological competition. PLoS Biol. 2015;13:1–23.
    Google Scholar 
    52.Gallegos-Monterrosa R, Mhatre E, Kovács ÁT. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology. 2016;162:1922–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Shao J, Xu Z, Zhang N, Shen Q, Zhang R. Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils. 2015;51:321–30.CAS 
    Article 

    Google Scholar 
    54.Stopnisek N, Shade A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 2021;15:2708–22.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res. 2014;9:1265–77.
    Google Scholar 
    56.Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, et al. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil. 2010;328:483–93.CAS 
    Article 

    Google Scholar 
    57.Gómez Expósito R, Postma J, Raaijmakers JM, de Bruijn I. Diversity and activity of Lysobacter species from disease suppressive soils. Front Microbiol. 2015;6:1243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Peterson SB, Dunn AK, Klimowicz AK, Handelsman J. Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl Environ Microbiol. 2006;72:5421–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 2020;8:137.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Kumar A, Singh J. Biofilms forming microbes: diversity and potential application in plant-microbe interaction and plant growth. Springer: Cham; 2020. 173−97.62.Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, et al. Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol. 2017;121:102–17.Article 

    Google Scholar 
    63.Madsen JS, Røder HL, Russel J, Sørensen H, Burmølle M, Sørensen SJ. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environ Microbiol. 2016;18:2565–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8:894–907.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yannarell SM, Grandchamp GM, Chen SY, Daniels KE, Shank EA. A dual-species biofilm with emergent mechanical and protective properties. J Bacteriol. 2019;201:e00670–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biol. 2020;30:1–11.Article 
    CAS 

    Google Scholar 
    68.Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation, and competition in biofilms. Nat Rev Microbiol. 2016;14:589–600.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Estrela S, Sanchez-Gorostiaga A, Vila JCC, Sanchez A. Nutrient dominance governs the assembly of microbial communities in mixed nutrient environments. eLife. 2021;10:e65948.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun. 2019;10:1919.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Yan Q, Lopes LD, Shaffer BT, Kidarsa TA, Vining O, Philmus B, et al. Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the GacS-GacA regulatory system in Pseudomonas protegens. mBio. 2018;9:e01845–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mee MT, Collins JJ, Church GM, Wang HH. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA. 2014;111:E2149–E2156.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Evans R, Beckerman AP, Wright RCT, McQueen-Mason S, Bruce NC, Brockhurst MA. Eco-evolutionary dynamics set the tempo and trajectory of metabolic evolution in multispecies communities. Curr Biol. 2020;30:1–5.Article 
    CAS 

    Google Scholar 
    77.Gamez RM, Ramirez S, Montes M, Cardinale M. Complementary dynamics of banana root colonization by the plant growth-promoting rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas palleroniana Ps006 at spatial and temporal scales. Micro Ecol. 2020;80:656–68.CAS 
    Article 

    Google Scholar 
    78.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant Microbe interact. 2018;31:995–1005.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Xu Z, Xie J, Zhang H, Wang D, Shen Q, Zhang R. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ. Phytopathology. 2019;109:36–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    To methanotrophy and beyond! New insight into functional and ecological roles for copper chelators

    1.Kang CS, Liang X, Dershwitz P, Gu W, Schepers A, Flatley A, et al. Evidence for methanobactin “theft” and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. ISME J. 2021;https://doi.org/10.1038/s41396-021-01062-1.2.Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol Lett. 2020;367:fnaa045.CAS 
    Article 

    Google Scholar 
    3.Kim HJ, Graham DW, DiSpiito AA, Alterman MA, Galeva N, Larive CK, et al. Methanobactin: a copper-acquisition compound from methane-oxidizing bacteria. Science. 2004;305:1612–5.CAS 
    Article 

    Google Scholar 
    4.Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA, Semrau JD, et al. Methylmercury uptake and degradation by methanotrophs. Sci Adv. 2017;3:e1700041.Article 

    Google Scholar 
    5.Ve T, Mathisen K, Helland R, Karlsen OA, Fjellbirkeland A, Røhr ÅK, et al. The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper. PLoS ONE. 2012;7:e43146.CAS 
    Article 

    Google Scholar 
    6.DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev. 2016;80:387–409.CAS 
    Article 

    Google Scholar 
    7.Kenney GE, Rosenzweig AC. Genome mining for methanobactins. BMC Biol. 2013;11:17.CAS 
    Article 

    Google Scholar 
    8.Yu Z, Zheng Y, Huang J, Chistoserdova L. Systems biology meets enzymology: recent insights into communal metabolism of methane and the role of lanthanides. Curr Issues Mol Biol. 2019;33:183–96.Article 

    Google Scholar 
    9.Gwak J-H, Jung M-Y, Hong HY, Kim J-G, Quan Z-X, Reinfelder JR, et al. Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME J. 2020;14:335–46.CAS 
    Article 

    Google Scholar 
    10.Chang J, Kim DD, Semrau JD, Lee J, Heo H, Gu W, et al. Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Appl Environ Microbiol. 2020;87:e02301–20.
    Google Scholar  More

  • in

    Illegal mining in the Amazon hits record high amid Indigenous protests

    Indigenous territories, long a bulwark against deforestation in the Amazon, are under increasing threat in Brazil, according to an analysis of 36 years’ worth of satellite imagery. The data show that illicit mining operations on Indigenous lands and in other areas formally protected by law have hit a record high in the past few years, under the administration of President Jair Bolsonaro, underscoring fears that his policies and rhetoric are undermining both human rights and environmental protection across the world’s largest rainforest. These operations strip the land of vegetation and pollute waterways with mercury.
    When will the Amazon hit a tipping point?
    The analysis, released in late August, comes as scientists and environmentalists warn of a deteriorating situation in Brazil; Indigenous groups have frequently found themselves in violent clashes with miners since Bolsonaro took office in 2019 — and they are demanding more protection for their land. Although Indigenous territories are legally protected, Bolsonaro has openly called for mining and other development in them.“This is definitely the worst it’s been for Indigenous peoples since the constitution was signed in 1988,” says Glenn Shepard, an anthropologist with the Emílio Goeldi Museum in Belém. Before this, Brazil was ruled by a military dictatorship.Researchers at MapBiomas, a consortium of academic, business and non-governmental organizations that has been conducting geospatial studies across Brazil, developed algorithms that they used in conjunction with Google Earth Engine to conduct the analysis. After training the algorithms on images of mining operations — desolate landscapes where forests have been converted into a collection of sand dunes pockmarked by mining ponds — the team ran its analysis on a freely available archive of imagery captured by the US Landsat programme, and then analysed trends on Indigenous lands and other formally protected areas where mining is not allowed.Over the past decade, illegal mining incursions — mostly small-scale gold extraction operations — have increased fivefold on Indigenous lands and threefold in other protected areas of Brazil such as parks, the data show (see ‘Mining incursions’). The findings agree broadly with reports from Brazil’s National Institute for Space Research (INPE) in São José dos Campos, which monitors the country’s forests and has been issuing alerts about mining incursions for several years. “We kind of knew that this was happening, but to see numbers like this is scary even for us,” says Cesar Diniz, a geologist with the geospatial-analysis company Solved in Belém, Brazil, who led the analysis for MapBiomas.Clashes on multiple frontsAside from being home to their people, Indigenous territories play a part in protecting the Amazon’s biodiversity and the enormous pool of carbon that is locked away in its trees and soils. Numerous studies have found that Indigenous lands, as well as other conservation areas, are effective buffers against tropical deforestation in the Amazon1,2, which is responsible for around 8% of global carbon emissions.Earlier this month, the International Union for Conservation of Nature (IUCN) approved a motion, put forward by Indigenous groups, calling on governments to protect 80% of the Amazon basin by 2025. Indigenous representatives say they plan to fight for implementation across the Amazon, but the proposal faces a particularly tough sell in Brazil under Bolsonaro, whose pro-business conservative government has scaled back enforcement of existing environmental laws and halted efforts to demarcate new Indigenous territories.

    Sources: MapBiomas/Amazon Geo-Referenced Socio-Environmental Information Network/Terrabrasilis

    Indigenous groups have also taken their case to the International Criminal Court in The Hague, the Netherlands. On 9 August, the Articulation of Indigenous Peoples of Brazil (APIB), which represents Indigenous groups across the country, filed a complaint with the court accusing the Bolsonaro administration of violating human rights and, they claim, paving a path for genocide by undermining Indigenous rights, reducing environmental protections and inciting incursions and violence through calls for mining and land development. APIB also made it clear that it’s not just Indigenous rights at stake, drawing a direct link between the protection of their territories and of the globe.

    Members of the Munduruku people sit in front of equipment from an illegal mining operation on their land.Credit: Meridith Kohut/The New York Times/eyevine

    “Defending the traditional territories of Amazonian communities is the best way to save the forest,” says Luiz Eloy Terena, an anthropologist and lawyer from the village of Ipegue who coordinates legal affairs for APIB. “What is needed is a state commitment on the demarcation and protection of Indigenous lands, which are the last barrier against deforestation and forest degradation.”During an address to the United Nations General Assembly on 21 September, Bolsonaro said he was committed to protecting the Amazon and emphasized that 600,000 Indigenous people live “in freedom” on reserves totalling 1.1 million square kilometres of land, equivalent to 14% of Brazil’s territory. In the past, Bolsonaro has publicly said that Indigenous peoples have too much land given their sparse population, and at times called for their “integration”. The Bolsonaro administration did not respond to Nature’s requests for comment regarding illegal mining in the Amazon, its Indigenous and environmental policies or the accusations filed with the International Criminal Court.Existential threatBrazil earned recognition as a leader in sustainable development during the 2000s. Former president Luiz Inácio ‘Lula’ da Silva and his Workers’ Party put in place policies that helped to curb deforestation in the Amazon by more than 80% between 2004 and 2012.

    Source: Brazilian National Institute for Space Research

    But the party was dogged by corruption charges that would later land Lula in jail, and its environmental agenda ultimately faltered. In 2012, the increasingly conservative Brazilian Congress weakened a once-vaunted forest-protection law. With each successive government, funding for the country’s main environmental enforcement agency, the Institute of Environment and Renewable Natural Resources (IBAMA), has decreased: IBAMA had 1,500 enforcement agents in 2012, compared with just 600 today, says Suely Araújo, a political scientist in Brasília who spent nearly three decades working in the Brazilian Congress and led IBAMA from 2016 to 2018.The rate of deforestation in the Amazon, which includes land converted for mining, agriculture and other development, began rising anew after 2012 and shot up by 44% during Bolsonaro’s first two years in office, according to INPE (see ‘Razing the rainforest’). Many expect yet another increase when the numbers for 2021 are released later this year.But the biggest threats are yet to come, says Araújo. The current government is now pushing legislation in Congress — as well as arguments in a case that is pending before Brazil’s Supreme Court — that would make it harder to establish new Indigenous lands and could even allow the government to repossess existing lands. Other legislation that has been advanced by Bolsonaro’s supporters in Congress would open up Indigenous lands to industrial development, grant amnesty to people who have illegally invaded public lands and gut regulations governing major infrastructure projects such as mines, roads and dams.
    The scientists restoring a gold-mining disaster zone in the Peruvian Amazon
    “It’s painful,” says Araújo, who decided to forgo retirement and join Brazil’s Climate Observatory, a coalition of activist and academic groups fighting to preserve the country’s social and environmental protections. “This has become my mission.”For Indigenous tribes, the growing damage to their lands and the rainforest pose an existential threat. More than 6,000 Indigenous people descended on Brasília, the country’s capital, in August and September in protest against Bolsonaro’s policies on land demarcation and the environment. They also travelled to Marseille, France, for the IUCN’s World Conservation Congress earlier this month to promote their motion to protect the Amazon basin.“We will not give up,” says José Gregorio Diaz Mirabal, a member of the Wakueni Kurripaco people of Venezuela and the elected leader of the Congress of Indigenous Organizations of the Amazon Basin. “Science supports us, and the world is waking up.”

    doi: https://doi.org/10.1038/d41586-021-02644-x

    References1.Blackman, A., Corral, L., Lima, E. S. & Asner, G. P. Proc. Natl Acad. Sci. USA 114, 4123–4128 (2017).PubMed 
    Article 

    Google Scholar 
    2.Walker, W. S. et al. Proc. Natl Acad. Sci. USA 117, 3015–3025 (2020).PubMed 
    Article 

    Google Scholar 
    Download references

    Related Articles

    The scientists restoring a gold-mining disaster zone in the Peruvian Amazon

    When will the Amazon hit a tipping point?

    To save Brazil’s rainforest, boost its science

    Subjects

    Anthropology

    Politics

    Government

    Climate change

    Biodiversity

    Latest on:

    Anthropology

    Ancient Maya capital housed a copy of a rival city’s pyramid
    Research Highlight 30 SEP 21

    Ancient footprints could be oldest traces of humans in the Americas
    News 23 SEP 21

    Modern Polynesian genomes offer clues to early eastward migrations
    News & Views 22 SEP 21

    Politics

    Climate change to loom large in talks to form new German government
    News 27 SEP 21

    Indonesia’s science super-agency must earn researchers’ trust
    Editorial 08 SEP 21

    The global research community must not abandon Afghanistan
    Editorial 01 SEP 21

    Government

    Climate change to loom large in talks to form new German government
    News 27 SEP 21

    Sustainable Development Goals research speaks to city strengths and priorities
    Nature Index 24 SEP 21

    University under pressure to rehire scientist acquitted of hiding China links
    News 24 SEP 21

    Jobs

    Project manager target identification and validation for Alzheimer’s disease

    Flanders Institute for Biotechnology (VIB)
    Leuven, Belgium

    PhD Positions in the Wisnovsky Lab, UBC Pharmaceutical Sciences

    The University of British Columbia (UBC)
    Vancouver, Canada

    Post-doctoral Fellow – NAD Metabolism in Heart Disease

    Oklahoma Medical Research Foundation (OMRF)
    Oklahoma City, United States

    Research Scientist – High Performance Computing (HPC) / Machine Learning (ML)

    Jülich Research Centre (FZJ)
    Jülich, Germany More

  • in

    Effects of ownership patterns on cross-boundary wildfires

    1.Stanfield, B. J., Bliss, J. C. & Spies, T. A. Land ownership and landscape structure: A spatial analysis of sixty-six Oregon (USA) Coast Range watersheds. Landsc. Ecol. 17, 685–697 (2002).Article 

    Google Scholar 
    2.Spies, T. et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol Soc 22, 25. https://doi.org/10.5751/ES-08841-220125 (2017).Article 

    Google Scholar 
    3.Zald, H. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 28, 1068–1080 (2018).Article 

    Google Scholar 
    4.Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS ONE 12, e0172867. https://doi.org/10.1371/journal.pone.0172867 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Abatzoglou, J. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sheehan, T., Let, D. B. & Ferschweiler, K. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecol. Model. 317, 16–29 (2015).Article 

    Google Scholar 
    7.Spies, T. A. et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 19, 9. https://doi.org/10.5751/ES-06584-190309 (2014).Article 

    Google Scholar 
    8.Watkins, T. H. Untrammeled by man: The making of the Wilderness Act of 1964. Audubon 91, 74–90 (1989).
    Google Scholar 
    9.Huffman, D. W., Roccaforte, J. P., Springer, J. D. & Crouse, J. E. Restoration applications of resource objective wildfires in western US forests: A status of knowledge review. Fire Ecol. 16, 18. https://doi.org/10.1186/s42408-020-00077-x (2020).Article 

    Google Scholar 
    10.Charnley, S., Spies, T. A., Barros, A. M. G., White, E. M. & Olsen, K. A. Diversity in forest management to reduce wildfire losses: Implications for resilience. Ecol. Soc. 22, 1. https://doi.org/10.5751/ES-08753-220122 (2017).Article 

    Google Scholar 
    11.Lake, F. K. & Long, J. W. Fire and tribal cultural resources. Report No. PSW-GTR-274, (USDA USFS Pacific Southwest Research Station, Albany, CA, 2014).12.Binkley, C. S., Aronow, M. E., Washburn, C. L. & New, D. Global perspectives on intensively managed plantations: Implications for the Pacific Northwest. J. For. 103, 61–64 (2005).
    Google Scholar 
    13.Palaiologou, P. et al. Fine-scale assessment of cross-boundary wildfire events in the western United States. Nat. Hazards Earth Syst. Sci. 19, 1755–1777. https://doi.org/10.5194/nhess-19-1755-2019 (2019).ADS 
    Article 

    Google Scholar 
    14.Ager, A. A., Palaiologou, P., Evers, C., Day, M. A. & Barros, A. M. Assessment of wildfire transmission from national forests to communities in the Western United States. 52 (USDA Forest Service, 2017).15.Steelman, T. U. S. wildfire governance as a social-ecological problem. Ecol. Soc. 21, 3. https://doi.org/10.5751/ES-08681-210403 (2016).Article 

    Google Scholar 
    16.Charnley, S., Kelly, E. C. & Fischer, A. P. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ. Res. Lett. 15, 025007 (2020).ADS 
    Article 

    Google Scholar 
    17.USDA Forest Service. Towards shared stewardship across landscapes: An outcome-based investment strategy. Report No. FS-118, (USDA Forest Service, Washington, DC, 2018).18.USDA Forest Service. National Cohesive Wildland Fire Management Strategy. http://www.forestsandrangelands.gov/strategy/index.shtml (2015).19.Marsik, M. et al. Regional-scale management maps for forested areas of the Southeastern United States and the US Pacific Northwest. Sci. Data 5, 1–13 (2018).Article 

    Google Scholar 
    20.Franklin, J. F. & Dyrness, C. T. in General Technical Report PNW-GTR-008 427 (U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, 1973).21.Simpson, M. Central Oregon Area Ecology and Forest Health Program (ed Pacific Northwest Region USDA Forest Service) (Bend, OR, 2013).22.MTBS. MTBS Data Access: Burned areas boundaries. https://www.mtbs.gov/index.php/direct-download. (2020).23.Picotte, J. J. et al. Changes to the monitoring trends in burn severity program mapping production procedures and data products. Fire Ecol. 16, 1–13 (2020).Article 

    Google Scholar 
    24.Meddens, A. J. H., Kolden, C. A., Lutz, J. A., Abatzoglou, J. & Hudak, A. T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 9, e02029 (2018).Article 

    Google Scholar 
    25.USGS. (USGS Gap Analysis Program (GAP), 2016).26.Gaines, L., Hemstrom, M., Kagan, J. & Salwasser, J. Integrated landscape assessment project final report. 62 (The Institute for Natural Resources, Oregon State University, Corvallis, Or, 2013).27.Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 

    Google Scholar 
    28.Manly, B., McDonald, L. & Thomas, D. Resource Selection by Animals (Chapman & Hall, 1993).Book 

    Google Scholar 
    29.Bajocco, S., Pezzatti, G. B., Mazzoleni, S. & Ricotta, C. Wildfire seasonality and land use: When do wildfires prefer to burn?. Envrion. Monit. Assess. 164, 445–452 (2010).CAS 
    Article 

    Google Scholar 
    30.Bajocco, S. & Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land cover classes do wildfires prefer?. Landsc. Ecol. 23, 241–248 (2008).Article 

    Google Scholar 
    31.Barros, A. M. G. & Pereira, J. M. C. Wildfire selectivity for land cover type: Does size matter?. PLoS ONE 9, e84760 (2014).ADS 
    Article 

    Google Scholar 
    32.R Package ‘phuassess’ (2016).33.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package “phuassess” for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).Article 

    Google Scholar 
    34.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. A permutation-based combination of sign tests for assessing habitat selection. Environ. Ecol. Stat. 21, 161–187 (2013).MathSciNet 
    Article 

    Google Scholar 
    35.R: A Language and Environment for Statistical Computing v.3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2019).36.ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).37.MATLAB Release 2019a v. 2019a (The Mathworks, Inc., 2019).38.Collins, B. & Stephens, S. Fire scarring patterns in Sierra Nevada wilderness areas burned by multiple wildland fire use fires. Fire Ecol. 3, 53–67 (2007).Article 

    Google Scholar 
    39.Reilly, M. J. et al. Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains USA. Ecol. Appl. 28, 291–308 (2018).Article 

    Google Scholar 
    40.Johnston, J. D., Kilbride, J. B., Meigs, G. W., Dunn, C. J. & Kennedy, R. E. Does conserving roadless wildland increase wildfire activity in western US national forests?. Environ. Res. Lett. 16, 084040 (2021).ADS 
    Article 

    Google Scholar 
    41.Schultz, C. A., Thompson, M. P. & McCaffrey, S. M. Forest service fire management and the elusiveness of change. Fire Ecol. 15, 1–15 (2019).Article 

    Google Scholar 
    42.Ager, A. A., Houtman, R., Day, M. A., Ringo, C. & Palaiologou, P. Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the wildland urban interface. For. Ecol. Manag. 434, 99–109 (2019).Article 

    Google Scholar 
    43.NWCG. Guidance for Implementation of Federal Wildland Fire Management Policy (2009).44.Franklin, J. F. et al. Extent and Distribution of Old Forest Conditions on Washington Department of Natural Resources-Managed Forest Lands in Eastern Washington (Washington Department of Natural Resources, 2007).45.Stephens, S. L. et al. Fire and climate change: Conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    46.Long, J., Lake, F. K., Lynn, K. & Viles, C. Tribal ecocultural resources and engagement. Report No. General Technical Report PNW-GTR-966, 851-917 (USDA – USFS, 2018).47.Scott, J. H. & Burgan, R. E. Standard fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. Report No. RMRS-GTR-153, 72 (USDA Forest Service, Rocky Mountain Research Station, 2005).48.Fernandes, P. M., Pacheco, A. P., Almeida, R. & Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 135, 253–262 (2016).Article 

    Google Scholar 
    49.WADNR, W. D. o. N. R. Forest Health Assessment and Treatment Framework (RCW 76.06.200) (Washington State Department of Natural Resources, 2020).50.Collins, B. M. & Stephens, S. L. Managing natural wildfires in Sierra Nevada wilderness areas. Front. Ecol. Environ. 5, 523–527 (2007).Article 

    Google Scholar 
    51.Holden, Z. A., Morgan, P., Rollins, M. G. & Kavanagh, K. Effects of multiple wildland fires on ponderosa pine stand structure in two southwestern wilderness areas, USA. Fire Ecol. 3, 18–33 (2007).Article 

    Google Scholar 
    52.Hunter, M. E., Iniguez, J. M. & Farris, C. A. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2014). More

  • in

    Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies

    1.Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 27, 125–141 (2018).Article 

    Google Scholar 
    4.Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A. & Reeder, T. W. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am. Nat. 168, 579–596 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Wiens, J. J., Sukumaran, J., Pyron, R. A. & Brown, R. M. Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63, 1217–1231 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Jansson, R., Rodríguez-Castañeda, G. & Harding, L. E. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses: phylogenies and the latitudinal diversity gradient. Evolution 67, 1741–1755 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Stephens, P. R. & Wiens, J. J. Explaining species richness from continents to communities: the time‐for‐speciation effect in Emydid turtles. Am. Nat. 161, 112–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climatic Change 1–31 (Springer Berlin Heidelberg, 2007). https://doi.org/10.1007/978-3-540-48842-2_1.11.Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity: phylogeny and latitudinal diversity gradient. Ecol. Lett. 15, 267–277 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F. & Morlon, H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora: dispersal and the latitudinal gradient of Carnivora. Glob. Ecol. Biogeogr. 24, 1059–1071 (2015).Article 

    Google Scholar 
    14.Fischer, A. G. Latitudinal variations in organic diversity. Evolution 14, 64 (1960).Article 

    Google Scholar 
    15.Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Rosenzweig, M. L. Species diversity in space and time. (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511623387.17.Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. 103, 9130–9135 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Schemske, D. W. Ecological and evolutionary perspectives on the origins of tropical diversity. In Foundations of tropical forest biology (eds Chazdon, R. & Whitmore, T.) 163–173 (University of Chicago Press, Chicago, IL, 2002).19.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    20.Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B. 276, 4295–4302 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aduse-Poku, K. et al. Systematics and historical biogeography of the old world butterfly subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrinae). BMC Evol. Biol. 15, 167 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Kozak, K. M. et al. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64, 505–524 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Chazot, N. et al. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Glob. Ecol. Biogeogr. 28, 1118–1132 (2019).Article 

    Google Scholar 
    24.Chazot, N. et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst. Biol. 68, 797–813 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Wahlberg, N., Wheat, C. W. & Peña, C. Timing and patterns in the taxonomic diversification of Lepidoptera (Butterflies and Moths). PLoS ONE 8, e80875 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B. 279, 1093–1099 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Condamine, F. L., Nabholz, B., Clamens, A.-L., Dupuis, J. R. & Sperling, F. A. H. Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating: mito-phylogenomics of swallowtail butterflies. Syst. Entomol. 43, 460–480 (2018).Article 

    Google Scholar 
    28.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018). e5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Crisp, M. & Cook, L. Do early branching lineages signify ancestral traits? Trends Ecol. Evol. 20, 122–128 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Meseguer, A. S. & Condamine, F. L. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient*. Evolution 74, 1966–1987 (2020).Article 

    Google Scholar 
    32.Ziegler, A. et al. Tracing the tropics across land and sea: Permian to present. Lethaia 36, 227–254 (2003).Article 

    Google Scholar 
    33.Meng, J. & McKenna, M. C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394, 364–367 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Archibald, S. B., Bossert, W. H., Greenwood, D. R. & Farrell, B. D. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36, 374–398 (2010).Article 

    Google Scholar 
    35.Baker, W. J. & Couvreur, T. L. P. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J. Biogeogr. 40, 274–285 (2013).Article 

    Google Scholar 
    36.Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Eldrett, J. S., Greenwood, D. R., Harding, I. C. & Huber, M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969–973 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Saupe, E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. USA 116, 12895–12900 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Hawkins, B. A. & DeVries, P. J. Tropical niche conservatism and the species richness gradient of North American butterflies. J. Biogeogr. 36, 1698–1711 (2009).Article 

    Google Scholar 
    40.Mayr, G. Two-phase extinction of “Southern Hemispheric” birds in the Cenozoic of Europe and the origin of the Neotropic avifauna. Palaeobio. Palaeoenv. 91, 325–333 (2011).Article 

    Google Scholar 
    41.Veizer, J. & Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 146, 92–104 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).ADS 
    Article 

    Google Scholar 
    44.Jacobs, B. F. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B 359, 1573–1583 (2004).Article 

    Google Scholar 
    45.Jaramillo, C. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Stebbins, G. L. Flowering plants: evolution above the species level. (Harvard University Press, 1974). https://doi.org/10.4159/harvard.9780674864856.47.Wahlberg, N. & Wheat, C. W. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 57, 231–242 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Nee, S. Birth-Death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).Article 

    Google Scholar 
    50.Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Lambert, A. & Stadler, T. Birth–death models and coalescent point processes: the shape and probability of reconstructed phylogenies. Theor. Popul. Biol. 90, 113–128 (2013).PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    53.Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies: estimating extinction from molecular phylogenies. Evolution 64, 1816–1824 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Burin, G., Alencar, L. R. V., Chang, J., Alfaro, M. E. & Quental, T. B. How well can we estimate diversity dynamics for clades in diversity decline? Syst. Biol. 68, 47–62 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1 (2017).Article 

    Google Scholar 
    59.Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773. https://doi.org/10.1093/molbev/msw260 (2016).64.Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).Article 

    Google Scholar 
    65.Beeravolu Reddy, C. & Condamine, F. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv. https://doi.org/10.1101/038695 (2016).66.Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).Article 

    Google Scholar 
    68.Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. 108, 16327–16332 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).Article 

    Google Scholar  More

  • in

    Living in mixed species groups promotes predator learning in degraded habitats

    1.Turner, W. R. et al. Global conservation of biodiversity and ecosystem services. Bioscience 57, 868–873. https://doi.org/10.1641/B571009 (2007).Article 

    Google Scholar 
    2.O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. https://doi.org/10.1016/j.ecoinf.2019.101033 (2020).Article 

    Google Scholar 
    3.Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evolut. 2, 775–781. https://doi.org/10.1038/s41559-018-0504-8 (2018).Article 

    Google Scholar 
    4.Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS. Biol. 11, 11. https://doi.org/10.1371/journal.pbio.1001569 (2013).CAS 
    Article 

    Google Scholar 
    5.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642. https://doi.org/10.1016/j.tree.2010.07.011 (2010).Article 
    PubMed 

    Google Scholar 
    6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    8.Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).Article 

    Google Scholar 
    9.Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS 
    Article 

    Google Scholar 
    10.Chivers, D. P., McCormick, M. I., Allan, B. J. & Ferrari, M. C. O. Risk assessment and predator learning in a changing world: Understanding the impacts of coral reef degradation. Sci. Rep. 6, 32542 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Downie, A. T. et al. Exposure to degraded coral habitat depresses oxygen uptake rate during exercise of a juvenile reef fish. Coral Reefs https://doi.org/10.1007/s00338-021-02113-x (2021).Article 

    Google Scholar 
    12.Ferrari, M. C. O., McCormick, M. I., Allan, B. J. & Chivers, D. P. Not equal in the face of habitat change: Closely related fishes differ in their ability to use predation-related information in degraded coral. Proc. R. Soc. B 284, 20162758 (2017).Article 
    PubMed 

    Google Scholar 
    13.McCormick, M. I., Barry, R. P. & Allan, B. J. M. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 12. https://doi.org/10.1038/s41598-017-17197-1 (2017).CAS 
    Article 

    Google Scholar 
    14.Brown, G. E. & Chivers, D. P. in Fish cognition and behaviour (eds C. Brown, K. Laland, & J. Krause) 49–69 (Blackwell Scientific Publisher, 2006).15.Meuthen, D., Baldauf, S. A., Bakker, T. C. M. & Thunken, T. Neglected patterns of variation in phenotypic plasticity: Age- and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490. https://doi.org/10.1086/696264 (2018).Article 

    Google Scholar 
    16.Lonnstedt, O. M., McCormick, M. I., Meekan, M. G., Ferrari, M. C. O. & Chivers, D. P. Learn and live: Predator experience and feeding history determines prey behaviour and survival. Proc. R. Soc. B-Biol. Sci. 279, 2091–2098. https://doi.org/10.1098/rspb.2011.2516 (2012).Article 

    Google Scholar 
    17.Ferrari, M. C. O. et al. School is out on noisy reefs: The effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proc. R. Soc. B-Biol. Sci. 285, 8. https://doi.org/10.1098/rspb.2018.0033 (2018).Article 

    Google Scholar 
    18.Chivers, D. P., McCormick, M. I., Mitchell, M. D., Ramasamy, R. A. & Ferrari, M. C. O. Background level of risk determines how prey categorize predators and non-predators. Proc. R. Soc. B 281, 20140355 (2014).Article 
    PubMed 

    Google Scholar 
    19.Crane, A. L. & Ferrari, M. C. O. in Social learning theory: Phylogenetic considerations across animal, plant, and microbial taxa (ed K. B. Clark) 53–82 (Nova Science Publishers, 2013).20.Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).Article 

    Google Scholar 
    21.Mirza, R. S. & Chivers, D. P. Are chemical alarm cues conserved within salmonid fishes?. J. Chem. Ecol. 27, 1641–1655 (2001).CAS 
    Article 

    Google Scholar 
    22.Brown, G. E., Adrian, J. C., Naderi, N. T., Harvey, M. C. & Kelly, J. M. Nitrogen oxides elicit antipredator responses in juvenile channel catfish, but not in convict cichlids or rainbow trout: Conservation of the ostariophysan alarm pheromone. J. Chem. Ecol. 29, 1781–1796 (2003).CAS 
    Article 

    Google Scholar 
    23.Pollock, M. S., Chivers, D. P., Mirza, R. S. & Wisenden, B. D. Fathead minnows, Pimephales promelas, learn to recognize chemical alarm cues of introduced brook stickleback, Culaea inconstans. Environ. Biol. Fishes 66, 313–319 (2003).Article 

    Google Scholar 
    24.Chivers, D. P., Brown, G. E. & Smith, R. J. F. Acquired recognition of chemical stimuli from pike, Esox lucius, by brook sticklebacks, Culaea inconstans (Osteichthyes, Gasterosteidae). Ethology 99, 234–242 (1995).Article 

    Google Scholar 
    25.Mitchell, M. D., Cowman, P. F. & McCormick, M. I. Chemical alarm cues are conserved within the coral reef fish family Pomacentridae. Plos One 7, e47428 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).ADS 
    Article 

    Google Scholar 
    27.Chivers, D. et al. Coral degradation alters predator odour signatures and influences prey learning and survival. Proc. R. Soc. B 286, 20190562 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Ferrari, M. C. O., McCormick, M. I., Meekan, M. G. & Chivers, D. P. Background level of risk and the survival of predator-naive prey: Can neophobia compensate for predator naivety in juvenile coral reef fishes?. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142197 (2015).
    Google Scholar 
    29.Stewart, B. D. & Beukers, J. S. Baited technique improves censuses of cryptic fish in complex habitats. Mar. Ecol. Prog. Ser. 197, 259–272 (2000).ADS 
    Article 

    Google Scholar 
    30.Hoey, A. S. & McCormick, M. I. in Proceedings of the 10th international coral reef symposium Vol. 1. 420–424 (2006).31.McCormick, M. I., Chivers, D. P., Allan, B. J. & Ferrari, M. C. O. Habitat degradation disrupts neophobia in juvenile coral reef fish. Glob. Change Biol. 23, 719–727 (2017).ADS 
    Article 

    Google Scholar 
    32.McCormick, M. I., Moore, J. A. Y. & Munday, P. L. Influence of habitat degradation on fish replenishment. Coral Reefs 29, 537–546. https://doi.org/10.1007/s00338-010-0620-7 (2010).ADS 
    Article 

    Google Scholar 
    33.McCormick, M. I. Behaviourally mediated phenotypic selection in a disturbed coral reef environment. Plos One https://doi.org/10.1371/journal.pone.0007096 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    34.White, J. R., Meekan, M. G. & McCormick, M. I. Individual consistency in the behaviors of newly-settled reef fish. PeerJ 3, e961 (2015).Article 
    PubMed 

    Google Scholar 
    35.McCormick, M. I. & Weaver, C. J. It pays to be pushy: Intracohort interference competition between two reef fishes. Plos One 7, e42590 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Wolf, N. G. Odd fish abandon mixed-species groups when threatened. Behav. Ecol. Sociobiol. 17, 47–52 (1985).Article 

    Google Scholar 
    37.Usio, N., Konishi, M. & Nakano, S. Species displacement between an introduced and a ‘vulnerable’ crayfish: The role of aggressive interactions and shelter competition. Biol. Invasions 3, 179–185 (2001).Article 

    Google Scholar 
    38.Dargent, F., Torres-Dowdall, J., Scott, M. E., Ramnarine, I. & Fussmann, G. F. Can mixed-species groups reduce individual parasite load? A field test with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta). PloS One 8, e56789 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Uetz, G. W. & Hieber, C. S. Group size and predation risk in colonial web-building spiders: Analysis of attack abatement mechanisms. Behav. Ecol. 5, 326–333 (1994).Article 

    Google Scholar 
    40.McCormick, M. I., Barry, R. P. & Allan, B. J. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 16937 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    41.Lecchini, D., Planes, S. & Galzin, R. Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. Behav. Ecol. Sociobiol. 58, 18–26. https://doi.org/10.1007/s00265-004-0905-3 (2005).Article 

    Google Scholar 
    42.Lecchini, D., Planes, S. & Galzin, R. The influence of habitat characteristics and conspecifics on attraction and survival of coral reef fish juveniles. J. Exp. Mar. Biol. Ecol. 341, 85–90. https://doi.org/10.1016/j.jembe.2006.10.006 (2007).Article 

    Google Scholar 
    43.Lecchini, D., Waqalevu, V. P., Parmentier, E., Radford, C. A. & Banaigs, B. Fish larvae prefer coral over algal water cues: Implications of coral reef degradation. Mar. Ecol. Prog. Ser. 475, 303–307. https://doi.org/10.3354/meps10094 (2013).ADS 
    Article 

    Google Scholar 
    44.O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).ADS 
    Article 

    Google Scholar 
    45.Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator–prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).Article 

    Google Scholar 
    46.Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 1205–1208 (2000).CAS 
    Article 

    Google Scholar 
    47.Brown, G. E., Adrian, J. C., Smyth, E., Leet, H. & Brennan, S. Ostariophysan alarm pheromones: Laboratory and field tests of the functional significance of nitrogen oxides. J. Chem. Ecol. 26, 139–154 (2000).CAS 
    Article 

    Google Scholar 
    48.Bertucci, F. et al. Decreased retention of olfactory predator recognition in juvenile surgeon fish exposed to pesticide. Chemosphere 208, 469–475 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Mitchell, M. D., McCormick, M. I., Ferrari, M. C. O. & Chivers, D. P. Coral reef fishes rapidly learn to identify multiple unknown predators upon recruitment to the reefs. Plos One 6, e15764 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Palacios, M., Malerba, M. & McCormick, M. Multiple predator effects on juvenile prey survival. Oecologia 188, 417–427 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Auster, P. J., Cortés, J., Alvarado, J. J. & Beita-Jiménez, A. Coordinated hunting behaviors of mixed-species groups of piscivores and associated species at Isla del Coco National Park (Eastern Tropical Pacific). Neotrop. Ichthyol. 17, e180165 (2019).Article 

    Google Scholar 
    52.Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Cheng, L. et al. 2018 Continues record global ocean warming. Adv. Atmos. Sci. 36, 249–252. https://doi.org/10.1007/s00376-019-8276-x (2019).Article 

    Google Scholar 
    54.Lawton, J. H. & Brown, V. K. Redundancy in ecosystems Vol. 99 (Springer, 1993).
    Google Scholar  More

  • in

    The effect of estuarine system on the meiofauna and nematodes in the East Siberian Sea

    1.Stein, R. & Macdonald, R. W. Organic carbon budget: Arctic Ocean vs. global ocean. In The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & Macdonald, R. W.) (Springer, 2004).Chapter 

    Google Scholar 
    2.Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Oceanogr. Ser. 74, 1–54. https://doi.org/10.1016/S0422-9894(06)74001-6 (2007).Article 

    Google Scholar 
    3.Sheremetevskiy, A. M. Role of meiobenthos of the South Sakhalin shelf, Eastern Kamchatka, and Novosibirsk shallow water area. Issledovaniya Fauny Morei 35, 43 (1987).
    Google Scholar 
    4.Golikov, A. N. Ecosystems of the New Siberian shoals and fauna of the Laptev Sea and adjacent waters of the Arctic Ocean (in Russian). Explor. Fauna Seas 37, 4 (1990).
    Google Scholar 
    5.Golikov, A. N. Fauna of the East Siberian Sea. Part III. Explor. Fauna Seas 49, 57 (1994).
    Google Scholar 
    6.Sirenko, B. I. & Denisenko, S. G. Fauna of the East Siberian Sea, distribution patterns and structure of bottom communities. Explor. Fauna Seas 66, 74 (2010).
    Google Scholar 
    7.Sirenko, B. I. List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explor. Fauna Seas 51(59), 1–76 (2001).
    Google Scholar 
    8.Schmidt-Rhaesa, A. Handbook of Zoology: Gastrotricha, Cycloneuralia, Gnathifera Vol. 2, 608 (De Gruyter, 2020).
    Google Scholar 
    9.Udalov, A. et al. Integrity of benthic assemblages along the arctic estuarine-coastal system. Ecol. Indic. 121, 107115. https://doi.org/10.1016/j.ecolind.2020.107115 (2021).Article 

    Google Scholar 
    10.Portnova, D., Fedyaeva, M., Udalov, A. & Tchesunov, A. Community structure of nematodes in the Laptev Sea shelf with notes on the lives of ice nematodes. Reg. Stud. Mar. Sci. 31, 100757. https://doi.org/10.1016/j.rsma.2019.100757 (2019).Article 

    Google Scholar 
    11.Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar. Biodivers. 39(1), 9–25. https://doi.org/10.1007/s12526-009-0003-x (2009).Article 

    Google Scholar 
    12.Lei, Y., Stumm, K., Volkenborn, N., Wickham, S. A. & Berninger, U. G. Impact of Arenicola marina (Polychaeta) on the microbial assemblages and meiobenthos in a marine intertidal flat. Mar. Biol. 157(6), 1271–1282. https://doi.org/10.1007/s00227-010-1407-7 (2010).Article 

    Google Scholar 
    13.Flint, M. V., Poyarkov, S. G. & Rymsky-Korsakov, N. A. Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh). Oceanology 58(2), 315–318. https://doi.org/10.1134/S0001437018020042 (2018).ADS 
    Article 

    Google Scholar 
    14.Garlitska, L. A. & Azovsky, A. I. Benthic harpacticoid copepods of the Yenisei Gulf and the adjacent shallow waters of the Kara Sea. J. Nat. Hist. 50, 2941–2959. https://doi.org/10.1080/00222933.2016.1219410 (2016).Article 

    Google Scholar 
    15.Portnova, D., Garlitska, L., Udalov, A. & Kondar, D. Meiobenthos and nematode community in the Yenisei Bay and adjacent parts of the Kara Sea shelf. Oceanology 57(1), 1–15. https://doi.org/10.1134/S0001437017010155 (2017).Article 

    Google Scholar 
    16.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96(12), 2079–2105. https://doi.org/10.1175/BAMS-D-13-00177.1 (2005).ADS 
    Article 

    Google Scholar 
    17.Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298(5601), 2171–2173. https://doi.org/10.1126/science.1077445 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Polukhin, A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. ERL 14(10), 105007. https://doi.org/10.1088/1748-9326/ab421e (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Lisitzin, A. P. Marginal filter of the oceans. Oceanology 34(5), 735–743 (1994).CAS 

    Google Scholar 
    20.Moens, T., Braeckman, U., Derycke, S., Fonseca, G., Gallucci, F., Gingold, R., Guilini, Katja, Ingles, J., Leduc, D., Vanaverbeke, J., Van Colen, C., Vanreusel, A, & Vincx, M. Ecology of free-living marine nematodes. In Volume 2 Nematoda, 109–152. De Gruyter (2013)21.Aller, J. Y. & Aller, R. C. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6(1–2), 291–310. https://doi.org/10.1016/0278-4343(86)90065-8 (1986).ADS 
    Article 

    Google Scholar 
    22.Soetaert, K., Vincx, M., Wittoeck, J. & Tulkens, M. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311(1), 185–206. https://doi.org/10.1007/BF00008580 (1995).Article 

    Google Scholar 
    23.Tank, S. E. et al. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coast 35, 401–415. https://doi.org/10.1007/s12237-011-9417-3 (2012).CAS 
    Article 

    Google Scholar 
    24.Galtsova, V. V., Lukina, T. G. & Vladimirov, M. V. Meiobenthos of Chaunskaya Bay, East Siberian Sea. Issledovaniya Fauny Morei 48(56), 67–97 (1994).
    Google Scholar 
    25.Coull, B. C. Role of meiofauna in estuarine soft‐bottom habitats. Austral Ecol. 24(4), 327–343 (1999).Article 

    Google Scholar 
    26.Vincx, M., Meire, P., & Heip, C. The distribution of nematodes communities in the Southern Bight of the North Sea. Cah Biol Mar. 31(1), 107–129 (1990).27.Vanaverbeke, J., Gheskiere, T., Steyaert, M., & Vincx, M. Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J. Sea Res. 48(3), 197–207. https://doi.org/10.1016/S1385-1101(02)00165-X (2002)ADS 
    Article 

    Google Scholar 
    28.Steyaert, M., et al. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuar Coast Shelf Sci. 58(2), 353–366 (2003).ADS 
    Article 

    Google Scholar 
    29.Alves, A. S., Adão, H., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U. K. 89(8), 1529–1540 (2009).CAS 
    Article 

    Google Scholar 
    30.Garlitska, L. A., Chertoprud, E. S., Portnova, D. A. & Azovsky, A. I. Benthic harpacticoida of the Kara Sea: Species composition and bathymetrically related distribution. Oceanology 59(4), 541–551. https://doi.org/10.1134/S0001437019040064 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Huang, D. et al. Preliminary study on community structures of meiofauna in the middle and eastern Chukchi Sea. Acta Oceanol. Sin. 40(6), 83–91. https://doi.org/10.1007/s13131-021-1777-3 (2021).ADS 
    Article 

    Google Scholar 
    32.Giere, O. Meiobenthology: The Microscopic Motile Fauna in Aquatic Sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    33.Semiletov, I. et al. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022490 (2005).Article 

    Google Scholar 
    34.Miroshnikov, A. Y. et al. Ecological state and mineral-geochemical characteristics of the bottom sediments of the East Siberian Sea. Oceanology 60(4), 595–610. https://doi.org/10.31857/S0030157420040152 (2020).Article 

    Google Scholar 
    35.Frontalini, F. et al. The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: Results from mesocosm experiments. Environ. Toxicol. Chem. 37(9), 2439–2447. https://doi.org/10.1002/etc.4207 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Fonseca, G. & Soltwedel, T. Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol. 30, 607–618. https://doi.org/10.1007/s00300-006-0220-8 (2007).Article 

    Google Scholar 
    37.Portnova, D. & Polukhin, A. Meiobenthos of the eastern shelf of the Kara Sea compared with the meiobenthos of other parts of the sea. Reg. Stud. Mar. Sci. 24, 370–378. https://doi.org/10.1016/j.rsma.2018.10.002 (2018).Article 

    Google Scholar 
    38.Alexeev, D. K., & Galtsova, V. V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Sci. 6(2), 183–195 (2012).ADS 
    Article 

    Google Scholar 
    39.Grzelak, K. & Sørensen, M. V. Diversity and community structure of kinorhynchs around Svalbard: First insights into spatial patterns and environmental drivers. Zool. Anz. 282, 31–43. https://doi.org/10.1016/j.jcz.2019.05.009 (2019).Article 

    Google Scholar 
    40.Landers, S. C. et al. Kinorhynch communities from Alabama coastal waters. Mar. Biol. Res. 16(6–7), 494–504. https://doi.org/10.1080/17451000.2020.1789660 (2020).Article 

    Google Scholar 
    41.Holovachov, O. New and known species of the genus Campylaimus Cobb, 1920 (Nematoda: Araeolaimida: Diplopeltidae) from North European marine habitats. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e46545 (2007).Article 

    Google Scholar 
    42.Sharma, J. & Bluhm, B. A. Diversity of larger free-living nematodes from macrobenthos ( > 250 μm) in the Arctic deep-sea Canada Basin. Mar. Biodivers. 41(3), 455–465. https://doi.org/10.1007/s12526-010-0060-1 (2010).Article 

    Google Scholar 
    43.Kotwicki, L., Grzelak, K. & Bełdowski, J. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep Sea Res. II 128, 123–130. https://doi.org/10.1016/j.dsr2.2015.12.012 (2016).CAS 
    Article 

    Google Scholar 
    44.Netto, S. A., Pagliosa, P. R., Colling, A., Fonseca, A. L. & Brauk, K. M. Benthic estuarine assemblages from the Southern Brazilian marine ecoregion. Braz. Estuaries. https://doi.org/10.1007/978-3-319-77779-5_6 (2018).Article 

    Google Scholar 
    45.Broman, E., et al. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun. Biol. 3(1), 1–12 (2020).46.Zeppilli, D., et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodiver. 48(1), 35–71 (2018).47.Pérez-García, J. A. et al. Nematode diversity of freshwater and anchialine caves of Western Cuba. PBSW 131(1), 144–155. https://doi.org/10.2988/17-00024 (2018).Article 

    Google Scholar 
    48.Bezzubova, E. M., Seliverstova, A. M., Zamyatin, I. A. & Romanova, N. D. Heterotrophic bacterioplankton of the Laptev and East Siberian Sea shelf affected by freshwater inflow areas. Oceanology 60, 62–73. https://doi.org/10.1134/S0001437020010026 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Vanreusel, A. et al. Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res. I 47, 1855–1879. https://doi.org/10.1016/S0967-063728002900007-8 (2000).Article 

    Google Scholar 
    50.Tahseen, Q. Nematodes in aquatic environments: Adaptations and survival strategies. Biodivers. J. 3(1), 13–40 (2012).
    Google Scholar 
    51.Williams, W. J. & Carmack, E. C. The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog. Ocean 139, 24–41. https://doi.org/10.1016/j.pocean.2015.07.008 (2015).Article 

    Google Scholar 
    52.Magritsky, D. V. et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforschung 87(2), 177–194. https://doi.org/10.2312/polarforschung.87.2.177 (2018).Article 

    Google Scholar 
    53.Anderson, L. G. et al. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 4, 6. https://doi.org/10.5194/bg-8-1745-2011 (2011).CAS 
    Article 

    Google Scholar 
    54.Dmitrienko, I. A. et al. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Oceans. https://doi.org/10.1029/2009JC006020 (2010).Article 

    Google Scholar 
    55.Stein, R. Arctic Ocean Sediments: Processes, PROXIES, and Paleoenvironment (Elsevier, 2008).
    Google Scholar 
    56.Petrova, V. I., Batova, G. I., Kursheva, A. V. & Litvinenko, I. V. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean. Russ. Geol. Geophys. 51(1), 88–97. https://doi.org/10.1016/j.rgg.2009.12.008 (2010).ADS 
    Article 

    Google Scholar 
    57.Millero, F. J. Thermodynamics of the carbon dioxide system in oceans. GCA 59(4), 661–677. https://doi.org/10.12691/wjce-3-6-1 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Pavlova, G. Y. et al. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 48, 438. https://doi.org/10.1134/S0001437008030168 (2008).ADS 
    Article 

    Google Scholar 
    59.Dickson, A. G. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. Version 2 (No. ORNL/CDIAC-74) (1994).60.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0 (2003).CAS 
    Article 

    Google Scholar 
    61.Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).Book 

    Google Scholar 
    62.Shiklomanov, A. I., Holmes, J. W., McClelland, S. E., Tank, R. & Spencer, G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20200801 (2020).63.Niemistö, L. A gravity corer for studies of soft sediments. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 238, 33–38 (1974).
    Google Scholar 
    64.Eleftheriou, A. Methods for the Study of Marine Benthos (Wiley, 2013).Book 

    Google Scholar 
    65.Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden, marinen Nematoden. Ark. Zool. 2, 439–484 (1953).
    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    67.Heip, C. & Herman, P. Indices of diversity and evenness. Oceanis 24(4), 61–88 (2001).
    Google Scholar  More