A high diversity of mechanisms endows ALS-inhibiting herbicide resistance in the invasive common ragweed (Ambrosia artemisiifolia L.)
1.Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article
Google Scholar
2.R4P Network. Trends and challenges in pesticide resistance detection. Trends Plant Sci. 21, 834–853 (2016).3.Heap, I. M. The international herbicide-resistant weed database. http://www.weedscience.org/Home.aspx (2021).4.Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).PubMed
Article
CAS
Google Scholar
5.Gaines, T. A. et al. Mechanisms of evolved herbicide resistance. J. Biol. Chem. 295, 10307–10330 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Murphy, B. P. & Tranel, P. J. Target-site mutations conferring herbicide resistance. Plants 8, 382 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
7.Beckie, H. J. & Tardif, F. J. Herbicide cross resistance in weeds. Crop Prot. 35, 15–28 (2012).CAS
Article
Google Scholar
8.Han, H. et al. Cytochrome P450 CYP81A10v7 in Lolium rigidum confers metabolic resistance to herbicides across at least five modes of action. Plant J. 105, 79–92 (2021).CAS
PubMed
Article
Google Scholar
9.Kreiner, J. M. et al. Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus. Proc. Natl. Acad. Sci. 116, 21076–21084 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
10.Milani, A. et al. Population structure and evolution of resistance to acetolactate synthase (ALS)-inhibitors in Amaranthus tuberculatus in Italy. Pest Manag. Sci. 77, 2971–2980 (2021).CAS
PubMed
PubMed Central
Article
Google Scholar
11.Clements, D. R. et al. Adaptability of plants invading North American cropland. Agric. Ecosyst. Environ. 104, 379–398 (2004).Article
Google Scholar
12.Essl, F. et al. Biological flora of the British Isles: Ambrosia artemisiifolia. J. Ecol. 103, 1069–1098 (2015).Article
Google Scholar
13.Cowbrough, M. J., Brown, R. B. & Tardif, F. J. Impact of common ragweed (Ambrosia artemisiifolia) aggregation on economic thresholds in soybean. Weed Sci. 51, 947–954 (2003).CAS
Article
Google Scholar
14.Swinton, S. M., Buhler, D. D., Forcella, F., Gunsolus, J. L. & King, R. P. Estimation of crop yield loss due to interference by multiple weed species. Weed Sci. 42, 103–109 (1994).Article
Google Scholar
15.Bassett, I. J. & Crompton, C. W. The biology of Canadian weeds: Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55, 463–476 (1975).16.Chauvel, B., Dessaint, F., Cardinal-Legrand, C. & Bretagnolle, F. The historical spread of Ambrosia artemisiifolia L. France from herbarium records. J. Biogeogr. 33, 665–673 (2006).Article
Google Scholar
17.Sala, C. A., Bulos, M., Altieri, E. & Ramos, M. L. Genetics and breeding of herbicide tolerance in sunflower. Helia 35, 57–69 (2012).Article
Google Scholar
18.Yu, Q. & Powles, S. B. Resistance to AHAS inhibitor herbicides: Current understanding. Pest Manag. Sci. 70, 1340–1350 (2014).CAS
PubMed
Article
Google Scholar
19.Tranel, P. J., Wright, T. R. & Heap, I. M. ALS mutations from resistant weeds. http://www.weedscience.com (2021).20.Patzoldt, W. L., Tranel, P. J., Alexander, A. L. & Schmitzer, P. R. A common ragweed population resistant to cloransulam-methyl. Weed Sci. 49, 485–490 (2001).CAS
Article
Google Scholar
21.Rousonelos, S. L., Lee, R. M., Moreira, M. S., VanGessel, M. J. & Tranel, P. J. Characterization of a common ragweed (Ambrosia artemisiifolia) population resistant to ALS- and PPO-inhibiting herbicides. Weed Sci. 60, 335–344 (2012).CAS
Article
Google Scholar
22.Zheng, D., Patzoldt, W. L. & Tranel, P. J. Association of the W574L ALS substitution with resistance to cloransulam and imazamox in common ragweed (Ambrosia artemisiifolia). Weed Sci. 53, 424–430 (2005).CAS
Article
Google Scholar
23.Van Wely, A. C. et al. Glyphosate and acetolactate synthase inhibitor resistant common ragweed (Ambrosia artemisiifolia L.) in southwestern Ontario. Can. J. Plant Sci. 95, 335–338 (2015)24.Marsan-Pelletier, F., Vanasse, A., Simard, M.-J. & Cuerrier, M.-E. Survey of imazethapyr-resistant common ragweed (Ambrosia artemisiifolia L.) in Quebec. Phytoprotection 99, 36–44 (2019).25.Owen, M. D. & Zelaya, I. A. Herbicide-resistant crops and weed resistance to herbicides. Pest Manag. Sci. 61, 301–311 (2005).CAS
PubMed
Article
Google Scholar
26.Duke, S. O. & Powles, S. B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 64, 319–325 (2008).CAS
PubMed
Article
Google Scholar
27.Barnes, E. R., Knezevic, S. Z., Sikkema, P. H., Lindquist, J. L. & Jhala, A. J. Control of glyphosate-resistant common ragweed (Ambrosia artemisiifolia L.) in glufosinate-resistant soybean [Glycine max (L.) Merr]. Front. Plant Sci. 8, 1455 (2017).28.Tranel, P. J. & Wright, T. R. Resistance of weeds to ALS-inhibiting herbicides: What have we learned?. Weed Sci. 50, 700–712 (2002).CAS
Article
Google Scholar
29.Li, J., Li, M., Gao, X. & Fang, F. A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag. Sci. 73, 2538–2543 (2017).CAS
PubMed
Article
Google Scholar
30.Duggleby, R. G., Pang, S. S., Yu, H. & Guddat, L. W. Systematic characterization of mutations in yeast acetohydroxyacid synthase. Interpretation of herbicide-resistance data. Eur. J. Biochem. 270, 2895–2904 (2003).31.Jung, S.-M. et al. Amino acid residues conferring herbicide resistance in tobacco acetohydroxyacid synthase. Biochem. J. 383, 53–61 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Owen, M. J., Walsh, M. J., Llewellyn, R. S. & Powles, S. B. Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust. J. Agric. Res. 58, 711–718 (2007).CAS
Article
Google Scholar
33.Owen, M. J., Martinez, N. J. & Powles, S. B. Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res. 54, 314–324 (2014).CAS
Article
Google Scholar
34.Délye, C. Nucleotide variability at the acetyl coenzyme A carboxylase gene and the signature of herbicide selection in the grass weed Alopecurus myosuroides (Huds.). Mol. Biol. Evol. 21, 884–892 (2004).35.Délye, C., Clément, J. A. J., Pernin, F., Chauvel, B. & Le Corre, V. High gene flow promotes the genetic homogeneity of arable weed populations at the landscape level. Basic Appl. Ecol. 11, 504–512 (2010).Article
Google Scholar
36.Délye, C., Pernin, F. & Scarabel, L. Evolution and diversity of the mechanisms endowing resistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaver rhoeas L.). Plant Sci. 180, 333–342 (2011).37.Sudheesh, M. An analysis of polygenic herbicide resistance evolution and its management based on a population genetics approach. Basic Appl. Ecol. 16, 104–111 (2015).Article
Google Scholar
38.Bullock, J. M. Assessing and controlling the spread and the effects of common ragweed in Europe. Report, Contractor: Natural environment research Council UK (2012).39.Yu, Q., Nelson, J. K., Zheng, M. Q., Jackson, J. & Powles, S. B. Molecular characterisation of resistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes. Pest Manag. Sci. 63, 918–927 (2007).CAS
PubMed
Article
Google Scholar
40.Simard, M.-J., Laforest, M., Soufiane, B., Benoit, D. L. & Tardif, F. Linuron resistant common ragweed (Ambrosia artemisiifolia) populations in Quebec carrot fields: presence and distribution of target-site and non-target site resistant biotypes. Can. J. Plant Sci. 98, 345–352 (2017).
Google Scholar
41.Ganie, Z., Jugulam, M., Varanasi, V. & Jhala, A. J. Investigating mechanism of glyphosate resistance in a common ragweed (Ambrosia artemisiifolia L.) biotype from Nebraska. Can. J. Plant Sci. (2017). https://doi.org/10.1139/CJPS-2017-0036.42.Duhoux, A., Carrère, S., Duhoux, A. & Délye, C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. Plant Sci. 257, 22–36 (2017).43.Gardin, J. A. C., Gouzy, J., Carrère, S. & Délye, C. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass). BMC Genomics 16, 590 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
44.Torra, J. et al. Target-site and non-target-site resistance mechanisms confer multiple and cross- resistance to ALS and ACCase inhibiting herbicides in Lolium rigidum from Spain. Front. Plant Sci. 12, 625138 (2021).45.Manley, B. S., Hatzios, K. K. & Wilson, H. P. Absorption, translocation, and metabolism of chlorimuron and nicosulfuron in imidazolinone-resistant and susceptible smooth pigweed (Amaranthus hybridus). Weed Technol. 13, 759–764 (1999).CAS
Article
Google Scholar
46.Jeffers, G. M., O’Donovan, J. T. & Hall, L. M. Wild mustard (Brassica kaber) resistance to ethametsulfuron but not to other herbicides. Weed Technol. 10, 847–850 (1996).CAS
Article
Google Scholar
47.Veldhuis, L. J., Hall, L. M., O’Donovan, J. T., Dyer, W. & Hall, J. C. Metabolism-based resistance of a wild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. J. Agric. Food Chem. 48, 2986–2990 (2000).48.Scarabel, L., Pernin, F. & Délye, C. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci. 238, 158–169 (2015).CAS
PubMed
Article
Google Scholar
49.Nakka, S., Thompson, C. R., Peterson, D. E. & Jugulam, M. Target site-based and non-target site based resistance to ALS Inhibitors in Palmer Amaranth (Amaranthus palmeri). Weed Sci. 65, 681–689 (2017).Article
Google Scholar
50.Meyer, L. et al. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLOS ONE 12, e0176197 (2017).51.Van Boheemen, L. A. et al. Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol. Ecol. 26, 5421–5434 (2017).PubMed
Article
Google Scholar
52.Délye, C. et al. Harnessing the power of next-generation sequencing technologies to the purpose of high-throughput pesticide resistance diagnosis. Pest Manag. Sci. 76, 543–552 (2020).PubMed
Article
CAS
Google Scholar
53.Délye, C., Matéjicek, A. & Gasquez, J. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Manag. Sci. 58, 474–478 (2002).PubMed
Article
CAS
Google Scholar
54.Duggleby, R. G., McCourt, J. A. & Guddat, L. W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. Biochem. 46, 309–324 (2008).CAS
PubMed
Article
Google Scholar
55.Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article
Google Scholar
56.Neff, M. M., Neff, J. D., Chory, J. & Pepper, A. E. dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: Experimental applications in Arabidopsis thaliana genetics. Plant J. 14, 387–392 (1998).CAS
PubMed
Article
Google Scholar
57.Délye, C. & Boucansaud, K. A molecular assay for the proactive detection of target site-based resistance to herbicides inhibiting acetolactate synthase in Alopecurus myosuroides. Weed Res. 48, 97–101 (2008).Article
Google Scholar
58.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2ddCT method. Methods 25, 402–408 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Bustin, S. A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).CAS
PubMed
Article
Google Scholar More