More stories

  • in

    Interactions between microbial diversity and substrate chemistry determine the fate of carbon in soil

    Soil and litter samplingMineral soil (0–15 cm) was collected at the Elizabeth Woods site, a 120-year-old deciduous forest in West Virginia, US (39° 32′ 50.6″ N, − 80° 00′ 00.4″ W). Soils were collected from four 20 × 20 m plots dominated by either AM-associated trees (i.e. Liriodendron tulipifera and Acer saccharum), or ECM-associated trees (i.e. Quercus rubra, Quercus velutina and Carya ovata). These sites have been characterized previously as Culleoka-Westmoreland silt loam soils at the AM sites and Dormont and Guernsey silt loams at the ECM sites40. Soils were also characterized by C:N ratios 11.7 and 14.1 for the AM and ECM soils respectively, with a pH of 6.8 for both soils. Soils with the same mycorrhizal status were pooled and homogenized, air-dried at room temperature for ~ 24 h and sieved through 2.0 mm mesh before the initiation of the experiment. Uniformly 13C labeled litter ( > 97 atom % 13C) from Quercus robur (i.e., ECM substrate) and Liriodendron tulipifera (i.e. AM substrate) leaves (Isolife BV, Wageningen, NL) were incubated in soil mesocosms in a factorial design with five replicates for each treatment combination (2 soil types × 2 substrate types), along with five replicate controls (no 13C substrate addition) for each soil type. The 13C enriched substrates were dried and ground to a powder and added in a suspension of 0.5 ml sterile water to 20 g of soil at a concentration of 400 ug 13C g−1 soil. The control soils received 0.5 ml sterile water additions. These incubations were well mixed and kept at 60% water-holding capacity for the 21-day period at room-temperature18. Chemical characteristics of soils and plant substrates are provided in Table S1.DNA processing and qSIPFor quantitative stable isotope probing, DNA was extracted, quantified, ultracentrifuged, fractionated and sequenced as described in18,26. DNA was extracted using a MoBio PowerSoil HTP Kit following the manufacturer’s instructions. For stable isotope probing, 5 ug of DNA was loaded into a 5-ml ultracentrifuge tube with ~ 3.5 ml of a saturated cesium chloride (CsCl) solution and ~ 900 ml gradient buffer (200 mM Tris, 200 mM KCl, 2 mM EDTA). DNA was separated via ultracentrifugation at 127,000g for 72 h using a TLN-100 rotor in an Optima Max bench top ultracentrifuge (Beckman Coulter, Fullerton, CA, USA). Tubes were fractionated into ~ 25 fractions of 150 µl each, and the density of each fraction was measured with a Raichart AR200 digital refractometer. DNA was purified using an isopropanol precipitation method. The 16S rRNA gene was subsequently quantified and sequenced in samples containing DNA, within the density range 1.660–1.735 gml−1 (~ 10 fractions per sample). To quantify the 16S rRNA gene, quantitative PCR was performed in triplicate using a QuantStudio 5 applied biosystems (Thermo Fisher Scientific) and primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACVSGGGTATCTAAT-3′)41. The PCR program used was as follows: 95 °C for 2 min followed by 45 cycles of 95 °C for 30 s, 64.5 °C for 30 s and 72 °C for 1 min. Libraries were sequenced on an Illumina MiSeq instrument (Illumina, Inc., San Diego, CA, USA) using a 300-cycle v2 reagent kit. Fungal 18S rRNA gene copies in each fraction were also quantified using primers 1380F (5′-CCCTGCCHTTTGTACACAC-3′) and 1510R (5′-CCTTCYGCAGGTTCACCTAC-3′). The PCR program used was as follows: 98 °C for 3 min followed by 40 cycles of 98 °C for 45 s, 60 °C for 45 s and 72 °C for 30 s. DNA fractions were amplified for fungal ITS rRNA genes using primers ITS4F (5′-AGCCTCCGCTTATTGATATGCTTAART-3′) and 5.8SF (5′-AACTTTYRRCAAYGGATCWCT-3′)42 and 300-bp paired-end read chemistry on an IlluminaMiSeq (Illumina, Inc., San Diego, CA, USA). The PCR program used was as follows: 95 °C for 6 min followed by 35 cycles of 95 °C for 15 s, 55 °C for 30 s, and 72 °C for 1 min. DNA fractions were then sequenced using a 500 cycle v2 reagent kit.Files came pre-split and joined multiple paired ends that we combined to pick operational taxonomic units (OTU). Open reference OTUs were picked at 97% identity using SILVA 128 release database for Bacteria and RDP database for Fungi. Taxa were analyzed at the ‘OTU’ level from the QIIME L7 table. Calculation of 13C excess atom fraction (EAF) was performed for each taxon as described previously18,19. Briefly, using the CsCl density gradient data, a weighted average density (WAD) was computed for each taxon’s DNA extracted from control soils that did not receive an isotopically enriched substrate. This natural abundance WAD was then compared to the taxon’s WAD following incubation with the 13C enriched material. The change in WAD can be used to quantify the amount of isotope incorporated into the DNA17,18. Preliminary data analysis revealed an effect of ultracentrifuge tube on estimation of phylotype weighted average density, probably a consequence of slight differences in CsCl density gradients between tubes. This technical error was corrected as previously described18,19. In addition to the samples subjected to qSIP analysis we also extracted and analyzed fungal and bacterial OTU’s from control soils where the DNA was extracted prior to incubation.FTICR-MS and lipidomic analysesSoil from substrate-incubated and controls mesocosms were processed and analyzed with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), using a 12 T Bruker SolariX FTICR mass spectrometer at the Environmental Molecular Sciences Laboratory in Richland, WA, as described in Fudyma et al.43. Briefly, 100 mg of dried soil or litter substrate was extracted using an adjusted Folch extraction44. Extraction was performed on each sample by sequentially adding 2 ml MeOH, followed by a 5 s vortex; 4 ml CHCl3, followed by a 5 s vortex; sonication at 25 °C for 1 h (CPX3800 Ultrasonic Bath, Fisherbrand); addition of 1.25 ml of H2O, followed by a slight mix to achieve bi‐layer separation; and incubated at 4 °C overnight. The top, aqueous layer (metabolite—polar) was pipetted off into 1 ml glass vials and stored at − 80 °C until FTICR‐MS. The bottom, chloroform layer was dried down and stored in 50:50 methanol:chloroform until lipidomics analysis.A standard Bruker electrospray ionization (ESI) source was used to generate negatively charged molecular ions in the metabolite fraction. Samples were then introduced directly to the ESI source. The instrument settings were optimized by tuning on a Suwannee River fulvic acid (SRFA) standard, purchased from International Humic Substances Society (IHCC). Blanks (HPLC grade methanol) were analyzed at the beginning and end of the day to monitor potential carry over from one sample to another. The instrument was flushed between samples using a mixture of water and methanol. One hundred and forty‐four individual scans were averaged for each sample and internally calibrated using an organic matter homologous series separated by 14 Da (CH2 groups). The mass measurement accuracy was less than 1 ppm for singly charged ions across a broad m/z range (m/z 300– 800). Data analysis software (Bruker Daltonik version 4.2) was used to convert raw spectra to a list of m/z values, applying the FTMS peak picker module with a signal-to noise ratio (S/N) threshold set to 7 and absolute intensity threshold set to the default value of 100. Chemical formulae were then assigned using in-house software following the compound identification algorithm that was described in Tolić et al.45. Peaks below 200 and above 800 were dropped to select only for calibrated and assigned peaks. Chemical formulae were assigned based on the following criteria: S/N  > 7 and mass measurement error  800 were not detected in our samples. The m/z values represent the molecular mass (in Dalton) of the detected ions since all detected ions were singly charged ions. While our results do not represent a quantitative characterization of OM, the values presented are relative differences and should be representative of the samples. Finally, we would like to acknowledge that we were not able to see any clear evidence of 13C label in our FTICR-MS analysis of the soil samples. The lack of 13C label in our FTICR-MS analysis of the soil samples even though they received labeled substrate could be either due to the fact that most of the labeled substrates produced by microbial activities were of low molecular weight, which cannot be detected by FTICR-MS and/or the leftover labeled substrate was of low abundance compared to the organic compounds previously present in the soil matrix. As such, we used the FTCIR-MS data to identify shifts in the overall composition of the chemical compounds in each soil.Lipids in the chloroform fraction were analyzed by LC‐MS/MS in both positive and negative ESI modes using a linear trap quadropole (LTQ) Orbitrap Velos mass spectrometer (Thermo Fisher Scientific), as described in detail previously46. Lipid species were identified using the LIQUID tool46 followed by manual data inspection. Confidently identified lipid species were quantified using MZmine47 and the peak intensities were normalized by linear regression and central tendency (i.e., identifying a central or typical value for a probability distribution) using InfernoRDN.Statistical analysisAll data analyses were performed using R 3.2.048. To examine the effects of soil type, substrate type and their interaction in the bacterial, fungal and chemical composition of DOM and the lipid pool; Bray–Curtis distance matrices were compared with permutational multivariate analysis of variance (PerMANOVA) and visualized with Principle Coordinate Analysis (PCoA) using vegan package49. PerMANOVA analysis were run on the relative abundance and on the 13C EAF of individual microbial taxa, separately for both bacterial and fungal communities.The analyses for FTICR-MS were performed separately for control and incubated soils using all assigned molecular formulae remaining after quality filtering31. In all cases, we applied a Z-score standardization before calculating Bray–Curtis distance matrices49. We analyzed the results from FTICR-MS as resulting from the decomposition of the added substrates for two reasons. First, this is a fully factorial design where individual soil samples were split to either receive AM poplar or ECM oak litter substrate. Thus, each soil sample starts with the same characteristics and the changes at the end of the incubation period should reflect the processing of litter. Second, we excluded molecular formulae present in the litters and thus, the differences we report in each soil type are derived from this processing (or the lack of it).We calculated aggregated indices that characterize both the composition and the physicochemical properties of the microbial (both bacteria and fungi) and the SOM and lipid pool34,36. For bacterial and fungal communities, we quantified Shannon–Weaver diversity index for each sample H′ = (-{sum }_{i=1}^{S} pi ln(pi)) (where pi is the proportion of species I) using the relative abundance of individual microbial taxa50. To find the percent of substrate assimilation by individual taxa, we calculated the proportion of C assimilated by each group as previously described18,51 as a percent. For SOM and lipid molecular formulae, we separately calculated weighted means of formula-based characteristics (i.e. m/z, Aromaticity Index—AI; H/C, O/C, and Nominal Oxidation State of Carbon-NOSC) as the sum of the product of the single-formula information (i.e. m/zi, AIi, H/Ci and NOSCi) and the relative intensity (Ii) divided by the sum of all intensities (e.g., m/z sample1 = ({sum }_{i=1}^{S})(m/zi ·Ii)/Σ(Ii)). With these metrics we obtained sample-level information related to the molecular size (i.e. m/z), the molecular bioavailability (i.e. higher H/C ratio), the molecular reactiveness (i.e. lower AI) and the energetic rewards from molecular oxidative degradation (i.e. higher NOSC) of the SOM, which allows to infer the potential of decomposition products to form stable SOM12,31,35. Detailed information of the calculated indices can be found in the literature31,35,36.We further tested the effects of soil type, substrate type and their interaction on each index using the “lm” function from the “stats” package. In these analyses, P values were approximated by an F test using Type II ANOVA tests with Kenward-Roger Degrees of Freedom52. When interactions between soil and substrate type were found at P  More

  • in

    Effects of ownership patterns on cross-boundary wildfires

    1.Stanfield, B. J., Bliss, J. C. & Spies, T. A. Land ownership and landscape structure: A spatial analysis of sixty-six Oregon (USA) Coast Range watersheds. Landsc. Ecol. 17, 685–697 (2002).Article 

    Google Scholar 
    2.Spies, T. et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol Soc 22, 25. https://doi.org/10.5751/ES-08841-220125 (2017).Article 

    Google Scholar 
    3.Zald, H. & Dunn, C. J. Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape. Ecol. Appl. 28, 1068–1080 (2018).Article 

    Google Scholar 
    4.Ager, A. A. et al. Network analysis of wildfire transmission and implications for risk governance. PLoS ONE 12, e0172867. https://doi.org/10.1371/journal.pone.0172867 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Abatzoglou, J. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. 113, 11770–11775 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Sheehan, T., Let, D. B. & Ferschweiler, K. Projected major fire and vegetation changes in the Pacific Northwest of the conterminous United States under selected CMIP5 climate futures. Ecol. Model. 317, 16–29 (2015).Article 

    Google Scholar 
    7.Spies, T. A. et al. Examining fire-prone forest landscapes as coupled human and natural systems. Ecol. Soc. 19, 9. https://doi.org/10.5751/ES-06584-190309 (2014).Article 

    Google Scholar 
    8.Watkins, T. H. Untrammeled by man: The making of the Wilderness Act of 1964. Audubon 91, 74–90 (1989).
    Google Scholar 
    9.Huffman, D. W., Roccaforte, J. P., Springer, J. D. & Crouse, J. E. Restoration applications of resource objective wildfires in western US forests: A status of knowledge review. Fire Ecol. 16, 18. https://doi.org/10.1186/s42408-020-00077-x (2020).Article 

    Google Scholar 
    10.Charnley, S., Spies, T. A., Barros, A. M. G., White, E. M. & Olsen, K. A. Diversity in forest management to reduce wildfire losses: Implications for resilience. Ecol. Soc. 22, 1. https://doi.org/10.5751/ES-08753-220122 (2017).Article 

    Google Scholar 
    11.Lake, F. K. & Long, J. W. Fire and tribal cultural resources. Report No. PSW-GTR-274, (USDA USFS Pacific Southwest Research Station, Albany, CA, 2014).12.Binkley, C. S., Aronow, M. E., Washburn, C. L. & New, D. Global perspectives on intensively managed plantations: Implications for the Pacific Northwest. J. For. 103, 61–64 (2005).
    Google Scholar 
    13.Palaiologou, P. et al. Fine-scale assessment of cross-boundary wildfire events in the western United States. Nat. Hazards Earth Syst. Sci. 19, 1755–1777. https://doi.org/10.5194/nhess-19-1755-2019 (2019).ADS 
    Article 

    Google Scholar 
    14.Ager, A. A., Palaiologou, P., Evers, C., Day, M. A. & Barros, A. M. Assessment of wildfire transmission from national forests to communities in the Western United States. 52 (USDA Forest Service, 2017).15.Steelman, T. U. S. wildfire governance as a social-ecological problem. Ecol. Soc. 21, 3. https://doi.org/10.5751/ES-08681-210403 (2016).Article 

    Google Scholar 
    16.Charnley, S., Kelly, E. C. & Fischer, A. P. Fostering collective action to reduce wildfire risk across property boundaries in the American West. Environ. Res. Lett. 15, 025007 (2020).ADS 
    Article 

    Google Scholar 
    17.USDA Forest Service. Towards shared stewardship across landscapes: An outcome-based investment strategy. Report No. FS-118, (USDA Forest Service, Washington, DC, 2018).18.USDA Forest Service. National Cohesive Wildland Fire Management Strategy. http://www.forestsandrangelands.gov/strategy/index.shtml (2015).19.Marsik, M. et al. Regional-scale management maps for forested areas of the Southeastern United States and the US Pacific Northwest. Sci. Data 5, 1–13 (2018).Article 

    Google Scholar 
    20.Franklin, J. F. & Dyrness, C. T. in General Technical Report PNW-GTR-008 427 (U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR, 1973).21.Simpson, M. Central Oregon Area Ecology and Forest Health Program (ed Pacific Northwest Region USDA Forest Service) (Bend, OR, 2013).22.MTBS. MTBS Data Access: Burned areas boundaries. https://www.mtbs.gov/index.php/direct-download. (2020).23.Picotte, J. J. et al. Changes to the monitoring trends in burn severity program mapping production procedures and data products. Fire Ecol. 16, 1–13 (2020).Article 

    Google Scholar 
    24.Meddens, A. J. H., Kolden, C. A., Lutz, J. A., Abatzoglou, J. & Hudak, A. T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 9, e02029 (2018).Article 

    Google Scholar 
    25.USGS. (USGS Gap Analysis Program (GAP), 2016).26.Gaines, L., Hemstrom, M., Kagan, J. & Salwasser, J. Integrated landscape assessment project final report. 62 (The Institute for Natural Resources, Oregon State University, Corvallis, Or, 2013).27.Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 

    Google Scholar 
    28.Manly, B., McDonald, L. & Thomas, D. Resource Selection by Animals (Chapman & Hall, 1993).Book 

    Google Scholar 
    29.Bajocco, S., Pezzatti, G. B., Mazzoleni, S. & Ricotta, C. Wildfire seasonality and land use: When do wildfires prefer to burn?. Envrion. Monit. Assess. 164, 445–452 (2010).CAS 
    Article 

    Google Scholar 
    30.Bajocco, S. & Ricotta, C. Evidence of selective burning in Sardinia (Italy): Which land cover classes do wildfires prefer?. Landsc. Ecol. 23, 241–248 (2008).Article 

    Google Scholar 
    31.Barros, A. M. G. & Pereira, J. M. C. Wildfire selectivity for land cover type: Does size matter?. PLoS ONE 9, e84760 (2014).ADS 
    Article 

    Google Scholar 
    32.R Package ‘phuassess’ (2016).33.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. The R package “phuassess” for assessing habitat selection using permutation-based combination of sign tests. Mamm. Biol. 83, 64–70 (2017).Article 

    Google Scholar 
    34.Fattorini, L., Pisani, C., Riga, F. & Zaccaroni, M. A permutation-based combination of sign tests for assessing habitat selection. Environ. Ecol. Stat. 21, 161–187 (2013).MathSciNet 
    Article 

    Google Scholar 
    35.R: A Language and Environment for Statistical Computing v.3.5.3 (R Foundation for Statistical Computing, Vienna, Austria, 2019).36.ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).37.MATLAB Release 2019a v. 2019a (The Mathworks, Inc., 2019).38.Collins, B. & Stephens, S. Fire scarring patterns in Sierra Nevada wilderness areas burned by multiple wildland fire use fires. Fire Ecol. 3, 53–67 (2007).Article 

    Google Scholar 
    39.Reilly, M. J. et al. Cumulative effects of wildfires on forest dynamics in the eastern Cascade Mountains USA. Ecol. Appl. 28, 291–308 (2018).Article 

    Google Scholar 
    40.Johnston, J. D., Kilbride, J. B., Meigs, G. W., Dunn, C. J. & Kennedy, R. E. Does conserving roadless wildland increase wildfire activity in western US national forests?. Environ. Res. Lett. 16, 084040 (2021).ADS 
    Article 

    Google Scholar 
    41.Schultz, C. A., Thompson, M. P. & McCaffrey, S. M. Forest service fire management and the elusiveness of change. Fire Ecol. 15, 1–15 (2019).Article 

    Google Scholar 
    42.Ager, A. A., Houtman, R., Day, M. A., Ringo, C. & Palaiologou, P. Tradeoffs between US national forest harvest targets and fuel management to reduce wildfire transmission to the wildland urban interface. For. Ecol. Manag. 434, 99–109 (2019).Article 

    Google Scholar 
    43.NWCG. Guidance for Implementation of Federal Wildland Fire Management Policy (2009).44.Franklin, J. F. et al. Extent and Distribution of Old Forest Conditions on Washington Department of Natural Resources-Managed Forest Lands in Eastern Washington (Washington Department of Natural Resources, 2007).45.Stephens, S. L. et al. Fire and climate change: Conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    46.Long, J., Lake, F. K., Lynn, K. & Viles, C. Tribal ecocultural resources and engagement. Report No. General Technical Report PNW-GTR-966, 851-917 (USDA – USFS, 2018).47.Scott, J. H. & Burgan, R. E. Standard fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model. Report No. RMRS-GTR-153, 72 (USDA Forest Service, Rocky Mountain Research Station, 2005).48.Fernandes, P. M., Pacheco, A. P., Almeida, R. & Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 135, 253–262 (2016).Article 

    Google Scholar 
    49.WADNR, W. D. o. N. R. Forest Health Assessment and Treatment Framework (RCW 76.06.200) (Washington State Department of Natural Resources, 2020).50.Collins, B. M. & Stephens, S. L. Managing natural wildfires in Sierra Nevada wilderness areas. Front. Ecol. Environ. 5, 523–527 (2007).Article 

    Google Scholar 
    51.Holden, Z. A., Morgan, P., Rollins, M. G. & Kavanagh, K. Effects of multiple wildland fires on ponderosa pine stand structure in two southwestern wilderness areas, USA. Fire Ecol. 3, 18–33 (2007).Article 

    Google Scholar 
    52.Hunter, M. E., Iniguez, J. M. & Farris, C. A. (U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2014). More

  • in

    Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies

    1.Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: meta‐analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 27, 125–141 (2018).Article 

    Google Scholar 
    4.Wiens, J. J., Graham, C. H., Moen, D. S., Smith, S. A. & Reeder, T. W. Evolutionary and ecological causes of the latitudinal diversity gradient in hylid frogs: treefrog trees unearth the roots of high tropical diversity. Am. Nat. 168, 579–596 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Wiens, J. J., Sukumaran, J., Pyron, R. A. & Brown, R. M. Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63, 1217–1231 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Jansson, R., Rodríguez-Castañeda, G. & Harding, L. E. What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses: phylogenies and the latitudinal diversity gradient. Evolution 67, 1741–1755 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Economo, E. P., Narula, N., Friedman, N. R., Weiser, M. D. & Guénard, B. Macroecology and macroevolution of the latitudinal diversity gradient in ants. Nat. Commun. 9, 1778 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Stephens, P. R. & Wiens, J. J. Explaining species richness from continents to communities: the time‐for‐speciation effect in Emydid turtles. Am. Nat. 161, 112–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19, 639–644 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Morley, R. J. Cretaceous and Tertiary climate change and the past distribution of megathermal rainforests. In Tropical Rainforest Responses to Climatic Change 1–31 (Springer Berlin Heidelberg, 2007). https://doi.org/10.1007/978-3-540-48842-2_1.11.Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Condamine, F. L., Sperling, F. A. H., Wahlberg, N., Rasplus, J.-Y. & Kergoat, G. J. What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity: phylogeny and latitudinal diversity gradient. Ecol. Lett. 15, 267–277 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F. & Morlon, H. Dispersal is a major driver of the latitudinal diversity gradient of Carnivora: dispersal and the latitudinal gradient of Carnivora. Glob. Ecol. Biogeogr. 24, 1059–1071 (2015).Article 

    Google Scholar 
    14.Fischer, A. G. Latitudinal variations in organic diversity. Evolution 14, 64 (1960).Article 

    Google Scholar 
    15.Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Rosenzweig, M. L. Species diversity in space and time. (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511623387.17.Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. 103, 9130–9135 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Schemske, D. W. Ecological and evolutionary perspectives on the origins of tropical diversity. In Foundations of tropical forest biology (eds Chazdon, R. & Whitmore, T.) 163–173 (University of Chicago Press, Chicago, IL, 2002).19.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    20.Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. B. 276, 4295–4302 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aduse-Poku, K. et al. Systematics and historical biogeography of the old world butterfly subtribe Mycalesina (Lepidoptera: Nymphalidae: Satyrinae). BMC Evol. Biol. 15, 167 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Kozak, K. M. et al. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64, 505–524 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Chazot, N. et al. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Glob. Ecol. Biogeogr. 28, 1118–1132 (2019).Article 

    Google Scholar 
    24.Chazot, N. et al. Priors and posteriors in Bayesian timing of divergence analyses: the age of butterflies revisited. Syst. Biol. 68, 797–813 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Wahlberg, N., Wheat, C. W. & Peña, C. Timing and patterns in the taxonomic diversification of Lepidoptera (Butterflies and Moths). PLoS ONE 8, e80875 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Heikkilä, M., Kaila, L., Mutanen, M., Peña, C. & Wahlberg, N. Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proc. R. Soc. B. 279, 1093–1099 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Condamine, F. L., Nabholz, B., Clamens, A.-L., Dupuis, J. R. & Sperling, F. A. H. Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in Bayesian molecular dating: mito-phylogenomics of swallowtail butterflies. Syst. Entomol. 43, 460–480 (2018).Article 

    Google Scholar 
    28.Espeland, M. et al. A comprehensive and dated phylogenomic analysis of butterflies. Curr. Biol. 28, 770–778 (2018). e5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ree, R. H. & Smith, S. A. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4–14 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Crisp, M. & Cook, L. Do early branching lineages signify ancestral traits? Trends Ecol. Evol. 20, 122–128 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Meseguer, A. S. & Condamine, F. L. Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient*. Evolution 74, 1966–1987 (2020).Article 

    Google Scholar 
    32.Ziegler, A. et al. Tracing the tropics across land and sea: Permian to present. Lethaia 36, 227–254 (2003).Article 

    Google Scholar 
    33.Meng, J. & McKenna, M. C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature 394, 364–367 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Archibald, S. B., Bossert, W. H., Greenwood, D. R. & Farrell, B. D. Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology 36, 374–398 (2010).Article 

    Google Scholar 
    35.Baker, W. J. & Couvreur, T. L. P. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J. Biogeogr. 40, 274–285 (2013).Article 

    Google Scholar 
    36.Liu, Z. et al. Global cooling during the Eocene-Oligocene climate transition. Science 323, 1187–1190 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Eldrett, J. S., Greenwood, D. R., Harding, I. C. & Huber, M. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459, 969–973 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Saupe, E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. USA 116, 12895–12900 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Hawkins, B. A. & DeVries, P. J. Tropical niche conservatism and the species richness gradient of North American butterflies. J. Biogeogr. 36, 1698–1711 (2009).Article 

    Google Scholar 
    40.Mayr, G. Two-phase extinction of “Southern Hemispheric” birds in the Cenozoic of Europe and the origin of the Neotropic avifauna. Palaeobio. Palaeoenv. 91, 325–333 (2011).Article 

    Google Scholar 
    41.Veizer, J. & Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 146, 92–104 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Feakins, S. J. et al. Northeast African vegetation change over 12 m.y. Geology 41, 295–298 (2013).ADS 
    Article 

    Google Scholar 
    44.Jacobs, B. F. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B 359, 1573–1583 (2004).Article 

    Google Scholar 
    45.Jaramillo, C. Cenozoic plant diversity in the Neotropics. Science 311, 1893–1896 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Stebbins, G. L. Flowering plants: evolution above the species level. (Harvard University Press, 1974). https://doi.org/10.4159/harvard.9780674864856.47.Wahlberg, N. & Wheat, C. W. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst. Biol. 57, 231–242 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Philippe, H. et al. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biol. 9, e1000602 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Nee, S. Birth-Death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).Article 

    Google Scholar 
    50.Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Lambert, A. & Stadler, T. Birth–death models and coalescent point processes: the shape and probability of reconstructed phylogenies. Theor. Popul. Biol. 90, 113–128 (2013).PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    53.Rabosky, D. L. Extinction rates should not be estimated from molecular phylogenies: estimating extinction from molecular phylogenies. Evolution 64, 1816–1824 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Burin, G., Alencar, L. R. V., Chang, J., Alfaro, M. E. & Quental, T. B. How well can we estimate diversity dynamics for clades in diversity decline? Syst. Biol. 68, 47–62 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sohn, J.-C., Labandeira, C. C. & Davis, D. R. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates. BMC Evol. Biol. 15, 12 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.de Jong, R. Fossil butterflies, calibration points and the molecular clock (Lepidoptera: Papilionoidea). Zootaxa 4270, 1 (2017).Article 

    Google Scholar 
    59.Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Allio, R. et al. Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nat. Commun. 12, 354 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773. https://doi.org/10.1093/molbev/msw260 (2016).64.Smith, S. A. Taking into account phylogenetic and divergence-time uncertainty in a parametric biogeographical analysis of the Northern Hemisphere plant clade Caprifolieae. J. Biogeogr. 36, 2324–2337 (2009).Article 

    Google Scholar 
    65.Beeravolu Reddy, C. & Condamine, F. An extended maximum likelihood inference of geographic range evolution by dispersal, local extinction and cladogenesis. bioRxiv. https://doi.org/10.1101/038695 (2016).66.Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rabosky, D. L. et al. BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).Article 

    Google Scholar 
    68.Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477–498 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Dudas, G. et al. Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature 544, 309–315 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. 108, 16327–16332 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Morlon, H. et al. RPANDA: an R package for macroevolutionary analyses on phylogenetic trees. Methods Ecol. Evol. 7, 589–597 (2016).Article 

    Google Scholar  More

  • in

    Living in mixed species groups promotes predator learning in degraded habitats

    1.Turner, W. R. et al. Global conservation of biodiversity and ecosystem services. Bioscience 57, 868–873. https://doi.org/10.1641/B571009 (2007).Article 

    Google Scholar 
    2.O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. https://doi.org/10.1016/j.ecoinf.2019.101033 (2020).Article 

    Google Scholar 
    3.Driscoll, D. A. et al. A biodiversity-crisis hierarchy to evaluate and refine conservation indicators. Nat. Ecol. Evolut. 2, 775–781. https://doi.org/10.1038/s41559-018-0504-8 (2018).Article 

    Google Scholar 
    4.Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS. Biol. 11, 11. https://doi.org/10.1371/journal.pbio.1001569 (2013).CAS 
    Article 

    Google Scholar 
    5.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642. https://doi.org/10.1016/j.tree.2010.07.011 (2010).Article 
    PubMed 

    Google Scholar 
    6.Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Säterberg, T., Sellman, S. & Ebenman, B. High frequency of functional extinctions in ecological networks. Nature 499, 468–470 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    8.Valiente-Banuet, A. et al. Beyond species loss: The extinction of ecological interactions in a changing world. Funct. Ecol. 29, 299–307 (2015).Article 

    Google Scholar 
    9.Fontoura, L. et al. Climate-driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567. https://doi.org/10.1111/gcb.14911 (2020).ADS 
    Article 

    Google Scholar 
    10.Chivers, D. P., McCormick, M. I., Allan, B. J. & Ferrari, M. C. O. Risk assessment and predator learning in a changing world: Understanding the impacts of coral reef degradation. Sci. Rep. 6, 32542 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Downie, A. T. et al. Exposure to degraded coral habitat depresses oxygen uptake rate during exercise of a juvenile reef fish. Coral Reefs https://doi.org/10.1007/s00338-021-02113-x (2021).Article 

    Google Scholar 
    12.Ferrari, M. C. O., McCormick, M. I., Allan, B. J. & Chivers, D. P. Not equal in the face of habitat change: Closely related fishes differ in their ability to use predation-related information in degraded coral. Proc. R. Soc. B 284, 20162758 (2017).Article 
    PubMed 

    Google Scholar 
    13.McCormick, M. I., Barry, R. P. & Allan, B. J. M. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 12. https://doi.org/10.1038/s41598-017-17197-1 (2017).CAS 
    Article 

    Google Scholar 
    14.Brown, G. E. & Chivers, D. P. in Fish cognition and behaviour (eds C. Brown, K. Laland, & J. Krause) 49–69 (Blackwell Scientific Publisher, 2006).15.Meuthen, D., Baldauf, S. A., Bakker, T. C. M. & Thunken, T. Neglected patterns of variation in phenotypic plasticity: Age- and sex-specific antipredator plasticity in a cichlid fish. Am. Nat. 191, 475–490. https://doi.org/10.1086/696264 (2018).Article 

    Google Scholar 
    16.Lonnstedt, O. M., McCormick, M. I., Meekan, M. G., Ferrari, M. C. O. & Chivers, D. P. Learn and live: Predator experience and feeding history determines prey behaviour and survival. Proc. R. Soc. B-Biol. Sci. 279, 2091–2098. https://doi.org/10.1098/rspb.2011.2516 (2012).Article 

    Google Scholar 
    17.Ferrari, M. C. O. et al. School is out on noisy reefs: The effect of boat noise on predator learning and survival of juvenile coral reef fishes. Proc. R. Soc. B-Biol. Sci. 285, 8. https://doi.org/10.1098/rspb.2018.0033 (2018).Article 

    Google Scholar 
    18.Chivers, D. P., McCormick, M. I., Mitchell, M. D., Ramasamy, R. A. & Ferrari, M. C. O. Background level of risk determines how prey categorize predators and non-predators. Proc. R. Soc. B 281, 20140355 (2014).Article 
    PubMed 

    Google Scholar 
    19.Crane, A. L. & Ferrari, M. C. O. in Social learning theory: Phylogenetic considerations across animal, plant, and microbial taxa (ed K. B. Clark) 53–82 (Nova Science Publishers, 2013).20.Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus. Can. J. Zool. 88, 698–724 (2010).Article 

    Google Scholar 
    21.Mirza, R. S. & Chivers, D. P. Are chemical alarm cues conserved within salmonid fishes?. J. Chem. Ecol. 27, 1641–1655 (2001).CAS 
    Article 

    Google Scholar 
    22.Brown, G. E., Adrian, J. C., Naderi, N. T., Harvey, M. C. & Kelly, J. M. Nitrogen oxides elicit antipredator responses in juvenile channel catfish, but not in convict cichlids or rainbow trout: Conservation of the ostariophysan alarm pheromone. J. Chem. Ecol. 29, 1781–1796 (2003).CAS 
    Article 

    Google Scholar 
    23.Pollock, M. S., Chivers, D. P., Mirza, R. S. & Wisenden, B. D. Fathead minnows, Pimephales promelas, learn to recognize chemical alarm cues of introduced brook stickleback, Culaea inconstans. Environ. Biol. Fishes 66, 313–319 (2003).Article 

    Google Scholar 
    24.Chivers, D. P., Brown, G. E. & Smith, R. J. F. Acquired recognition of chemical stimuli from pike, Esox lucius, by brook sticklebacks, Culaea inconstans (Osteichthyes, Gasterosteidae). Ethology 99, 234–242 (1995).Article 

    Google Scholar 
    25.Mitchell, M. D., Cowman, P. F. & McCormick, M. I. Chemical alarm cues are conserved within the coral reef fish family Pomacentridae. Plos One 7, e47428 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).ADS 
    Article 

    Google Scholar 
    27.Chivers, D. et al. Coral degradation alters predator odour signatures and influences prey learning and survival. Proc. R. Soc. B 286, 20190562 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Ferrari, M. C. O., McCormick, M. I., Meekan, M. G. & Chivers, D. P. Background level of risk and the survival of predator-naive prey: Can neophobia compensate for predator naivety in juvenile coral reef fishes?. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142197 (2015).
    Google Scholar 
    29.Stewart, B. D. & Beukers, J. S. Baited technique improves censuses of cryptic fish in complex habitats. Mar. Ecol. Prog. Ser. 197, 259–272 (2000).ADS 
    Article 

    Google Scholar 
    30.Hoey, A. S. & McCormick, M. I. in Proceedings of the 10th international coral reef symposium Vol. 1. 420–424 (2006).31.McCormick, M. I., Chivers, D. P., Allan, B. J. & Ferrari, M. C. O. Habitat degradation disrupts neophobia in juvenile coral reef fish. Glob. Change Biol. 23, 719–727 (2017).ADS 
    Article 

    Google Scholar 
    32.McCormick, M. I., Moore, J. A. Y. & Munday, P. L. Influence of habitat degradation on fish replenishment. Coral Reefs 29, 537–546. https://doi.org/10.1007/s00338-010-0620-7 (2010).ADS 
    Article 

    Google Scholar 
    33.McCormick, M. I. Behaviourally mediated phenotypic selection in a disturbed coral reef environment. Plos One https://doi.org/10.1371/journal.pone.0007096 (2009).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    34.White, J. R., Meekan, M. G. & McCormick, M. I. Individual consistency in the behaviors of newly-settled reef fish. PeerJ 3, e961 (2015).Article 
    PubMed 

    Google Scholar 
    35.McCormick, M. I. & Weaver, C. J. It pays to be pushy: Intracohort interference competition between two reef fishes. Plos One 7, e42590 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Wolf, N. G. Odd fish abandon mixed-species groups when threatened. Behav. Ecol. Sociobiol. 17, 47–52 (1985).Article 

    Google Scholar 
    37.Usio, N., Konishi, M. & Nakano, S. Species displacement between an introduced and a ‘vulnerable’ crayfish: The role of aggressive interactions and shelter competition. Biol. Invasions 3, 179–185 (2001).Article 

    Google Scholar 
    38.Dargent, F., Torres-Dowdall, J., Scott, M. E., Ramnarine, I. & Fussmann, G. F. Can mixed-species groups reduce individual parasite load? A field test with two closely related poeciliid fishes (Poecilia reticulata and Poecilia picta). PloS One 8, e56789 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Uetz, G. W. & Hieber, C. S. Group size and predation risk in colonial web-building spiders: Analysis of attack abatement mechanisms. Behav. Ecol. 5, 326–333 (1994).Article 

    Google Scholar 
    40.McCormick, M. I., Barry, R. P. & Allan, B. J. Algae associated with coral degradation affects risk assessment in coral reef fishes. Sci. Rep. 7, 16937 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    41.Lecchini, D., Planes, S. & Galzin, R. Experimental assessment of sensory modalities of coral-reef fish larvae in the recognition of their settlement habitat. Behav. Ecol. Sociobiol. 58, 18–26. https://doi.org/10.1007/s00265-004-0905-3 (2005).Article 

    Google Scholar 
    42.Lecchini, D., Planes, S. & Galzin, R. The influence of habitat characteristics and conspecifics on attraction and survival of coral reef fish juveniles. J. Exp. Mar. Biol. Ecol. 341, 85–90. https://doi.org/10.1016/j.jembe.2006.10.006 (2007).Article 

    Google Scholar 
    43.Lecchini, D., Waqalevu, V. P., Parmentier, E., Radford, C. A. & Banaigs, B. Fish larvae prefer coral over algal water cues: Implications of coral reef degradation. Mar. Ecol. Prog. Ser. 475, 303–307. https://doi.org/10.3354/meps10094 (2013).ADS 
    Article 

    Google Scholar 
    44.O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).ADS 
    Article 

    Google Scholar 
    45.Chivers, D. P. & Smith, R. J. F. Chemical alarm signalling in aquatic predator–prey systems: A review and prospectus. Ecoscience 5, 338–352 (1998).Article 

    Google Scholar 
    46.Wisenden, B. D. Olfactory assessment of predation risk in the aquatic environment. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 1205–1208 (2000).CAS 
    Article 

    Google Scholar 
    47.Brown, G. E., Adrian, J. C., Smyth, E., Leet, H. & Brennan, S. Ostariophysan alarm pheromones: Laboratory and field tests of the functional significance of nitrogen oxides. J. Chem. Ecol. 26, 139–154 (2000).CAS 
    Article 

    Google Scholar 
    48.Bertucci, F. et al. Decreased retention of olfactory predator recognition in juvenile surgeon fish exposed to pesticide. Chemosphere 208, 469–475 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Mitchell, M. D., McCormick, M. I., Ferrari, M. C. O. & Chivers, D. P. Coral reef fishes rapidly learn to identify multiple unknown predators upon recruitment to the reefs. Plos One 6, e15764 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Palacios, M., Malerba, M. & McCormick, M. Multiple predator effects on juvenile prey survival. Oecologia 188, 417–427 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Auster, P. J., Cortés, J., Alvarado, J. J. & Beita-Jiménez, A. Coordinated hunting behaviors of mixed-species groups of piscivores and associated species at Isla del Coco National Park (Eastern Tropical Pacific). Neotrop. Ichthyol. 17, e180165 (2019).Article 

    Google Scholar 
    52.Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Cheng, L. et al. 2018 Continues record global ocean warming. Adv. Atmos. Sci. 36, 249–252. https://doi.org/10.1007/s00376-019-8276-x (2019).Article 

    Google Scholar 
    54.Lawton, J. H. & Brown, V. K. Redundancy in ecosystems Vol. 99 (Springer, 1993).
    Google Scholar  More

  • in

    Why stem cells might save the northern white rhino

    OUTLOOK
    29 September 2021

    Why stem cells might save the northern white rhino

    Biologist Jeanne Loring explains how her work could bring endangered animal species back from the brink.

    Julianna Photopoulos

    Julianna Photopoulos

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Stem-cell researcher Jeanne Loring in her laboratory at Scripps Research.Credit: Nelvin C. Cepeda/SDU-T/Zuma/eyevine

    Up to one million plant and animal species face extinction, many within decades, because of human activities. One of these is the northern white rhinoceros (Ceratotherium simum cottoni). Only two individuals remain, both of them female, making the subspecies functionally extinct. Jeanne Loring, a stem-cell biologist and founding director of the Center for Regenerative Medicine at Scripps Research in La Jolla, California, spoke to Nature about how collecting and reprogramming stem cells could save this species and others from extinction.What does stem-cell research have to do with saving endangered animals?Induced pluripotent stem (iPS) cells, which closely resemble embryonic stem cells, can develop into any tissue in the body, including sperm and eggs. The hope is to generate these reproductive cells from the reprogrammed stem cells of endangered animals, and use them in assisted captive-breeding programmes to rescue the species.How did you get involved in this work?My laboratory set out to make iPS cells from endangered animals in 2008, after we visited the San Diego Zoo Safari Park in California. The previous year, a team led by Shinya Yamanaka, who won a Nobel prize for the work, had become the first to make human iPS cells from skin cells called fibroblasts1, and we had immediately started making them too, to treat neurological diseases. The San Diego Zoo’s Institute for Conservation Research had been collecting and freezing fibroblasts from animals since the 1970s. The institute’s director of conservation genetics, Oliver Ryder, was thinking of using stem cells to try to treat musculoskeletal disorders, but nobody had created iPS cells from endangered species before.
    Part of Nature Outlook: Stem cells
    In 2011, my postdoctoral fellow Inbar Friedrich Ben-Nun was the first to reprogramme stem cells in two animals from endangered species: the northern white rhino and the drill monkey (Mandrillus leucophaeus)2. We’re now focused on saving the northern white rhino — Ryder’s favourite animal — but the techniques we are working on are going to become a standard way of rescuing species from extinction.When did this become a serious venture?Our endangered-species project mostly remained a hobby until 2015, when scientists and conservationists from around the world met in Vienna to explore how cell technologies might aid conservation. We seriously discussed the idea of using stem cells to rescue endangered species, and later published a rescue plan for the northern white rhino3. To begin with, embryos will be created from sperm and egg cells that were collected and stored. They’ll then be implanted into a surrogate mother, a southern white rhino (Ceratotherium simum simum). But we want to be able to create more sperm and eggs from iPS cells and implant them, too — and that’s where our team comes in.After the Vienna meeting, the San Diego Zoo invested in this idea. Staff there built a stem-cell lab and the Rhino Rescue Center, where they brought in six southern white rhinos from Africa, specifically to serve as surrogate mothers for embryos made from northern white rhinos’ cells. The animals should be compatible because southern white and northern white rhinos are closely related, and so have similar reproductive physiologies. A team of reproductive biologists led by Barbara Durrant is now working to perfect the techniques to fertilize eggs in vitro and transfer viable embryos into the southern white rhinos.What progress have you made in creating northern white rhinoceros iPS cells?When we first set out to make the cells from endangered animals, we assumed that human versions of the reprogramming genes would not work in a rhino. So we tried reprogramming the rhino’s fibroblasts with horse genes — the horse is one of the closest relatives of the rhino — but this failed. Surprisingly, the corresponding human genes did work, and we were able to generate pluripotent cells. However, we had used viral vectors to reprogramme the cells, and this has been shown to lead to tumours in mice, so it could not be used for reproduction purposes.After three years of tweaking the technique, we were able to perform the reprogramming without any genetic modification. It’s all trial and error — you just have to keep testing different combinations of variables. Earlier this year, we celebrated a milestone in our efforts to rescue the rhino: Marisa Korody’s lab at the San Diego Zoo was able to reprogramme frozen cells from nine northern white rhinos and two southern white females to become iPS cells4.

    Najin (right) and her daughter Fatu are the world’s only remaining northern white rhinos.Credit: Tony Karumba/AFP via Getty

    How do you hope to create gametes from iPS cells?The major effort now is to make eggs that can be fertilized with sperm collected from adult males. We’re following in the footsteps of other researchers who have had success, mainly with mice so far. For example, in 2016, Katsuhiko Hayashi and his team at Kyushu University in Fukuoka, Japan, artificially engineered egg cells from reprogrammed mouse skin cells, entirely in a dish, and these were used to birth pups that were healthy and fertile5.That technique required ovarian tissue to be co-cultured with the developing eggs to get them to mature, and it’s impossible to get that kind of tissue from rhinos without putting them at risk. But in July, the same team showed that it could make both egg cells and ovarian tissue from iPS cells, which was a huge improvement6.We are now trying to find an efficient way to make the precursors of gametes, known as primordial germ cells, from the iPS cells of northern white rhinos. We know it’s possible — we’ve seen it happen spontaneously in cultures of these iPS cells — but we need to learn how to generate more of them. And then we have to turn those germ cells into eggs and sperm — or at least, something like sperm. Typically, the process of in vitro fertilization (IVF) involves knocking the tail off a sperm cell and injecting the small head directly into the egg, so we might not need to make sperm with tails. The IVF process itself will need to be adapted, however, to the southern white rhino surrogates — we don’t know for sure that it will work as it does in humans, because it’s never been done before.What advantage is there to using stem-cell technology over other approaches, such as cloning?The San Diego Zoo has frozen fibroblasts from 12 northern white rhinos. We didn’t want to clone those animals, because we would still have only the same 12 individuals. But if we make gametes from them instead — sperm from males, eggs from females and, in theory, sperm from females — then we could make various combinations through IVF to get a new, genetically diverse pool of animals that will help the species to survive. We have found that there is sufficient diversity in combining that group of 12 to exceed the diversity of the current population of southern white rhinos.
    More from Nature Outlooks
    Another group, at the Leibniz Institute for Zoo and Wildlife Research in Berlin, is instead harvesting eggs from the two living animals in the hope that they can fertilize them and get new animals that way. I’m perfectly happy if that works, but the challenge is getting enough diversity in the population if you have eggs from only one or two animals.Have you encountered opposition to your iPS-cell-mediated approach?If I were doing this with humans there’d be a lot of debate, but with animals there is less. One criticism is that resources for conservation should be invested differently, for example in restoring natural habitats and educating people. One argument we hear is that there’s no purpose in rescuing a species that will be confined to zoos because of poaching. I don’t know how to stop people from hunting rhinos for their horns, but I will do what I can to try to save an animal that humans have forced into extinction.Are you confident that your work will help to save the northern white rhino?It saddens me that as we’ve made progress in the lab, these animals have been dying out. When we started this project there were 8 of them alive, and now there are only 2: Najin, aged 32, and her daughter Fatu, aged 21, who live in a protected park in Kenya. It’s possible that these last two survivors will be gone by the time we succeed. I hope that’s not the case, but we’re working with cells that have been harvested and frozen, so we can try to bring the species back to life if necessary.I can’t predict how long it will take to get there — things have happened much more slowly than I’d like. But I do hope that our efforts will pay off over the next 10 to 20 years. I want to see a new northern white rhino in my lifetime — before I become ‘extinct’!

    Nature 597, S18-S19 (2021)
    doi: https://doi.org/10.1038/d41586-021-02626-zThis interview has been edited for length and clarity.This article is part of Nature Outlook: Stem cells, an editorially independent supplement produced with the financial support of third parties. About this content.

    References1.Takahashi, K. et al. Cell 131, 861–872 (2007).PubMed 
    Article 

    Google Scholar 
    2.Ben-Nun, I. F. et al. Nature Methods 8, 829–831 (2011).PubMed 
    Article 

    Google Scholar 
    3.Saragusty, J. et al. Zoo Biol. 35, 280–292 (2016).PubMed 
    Article 

    Google Scholar 
    4.Korody, M. L. et al. Stem Cells Dev. 30, 177–189 (2021).PubMed 
    Article 

    Google Scholar 
    5.Hikabe, O. et al. Nature 539, 299–303 (2016).PubMed 
    Article 

    Google Scholar 
    6.Yoshino, T. et al. Science 373, eabe0237 (2021).PubMed 
    Article 

    Google Scholar 
    Download references

    Related Articles

    Stem cells

    Stem cells: highlights from research

    The promise and potential of stem cells in Parkinson’s disease

    Stem cells and spinal-cord injuries: an intricate issue

    The chimaera challenge

    The next frontier for human embryo research

    Stem-cell start-ups seek to crack the mass-production problem

    The rise of the assembloid

    Reversing blindness with stem cells

    Subjects

    Conservation biology

    Stem cells

    Zoology

    Latest on:

    Stem cells

    Stem cells
    Outlook 29 SEP 21

    Stem cells and spinal-cord injuries: an intricate issue
    Outlook 29 SEP 21

    Stem cells: highlights from research
    Outlook 29 SEP 21

    Zoology

    Flies sense the world while sleeping
    News & Views 29 SEP 21

    Solar-powered slugs have a bright reproductive future
    Research Highlight 28 SEP 21

    Bright lights at night scramble the sweet song of crickets
    Research Highlight 21 SEP 21

    Jobs

    Associate Professor

    Northwestern University (NU)
    Chicago, IL, United States

    Post Doctoral Training Fellow – Functional Genomics team

    Institute of Cancer Research (ICR)
    London, United Kingdom

    Assistant/Associate Professor in Cancer Disparities

    The University of Texas at El Paso (UTEP)
    El Paso, TX, United States

    Director of the Institute at Brown for Environment and Society (IBES)

    Brown University
    Providence, RI, United States More

  • in

    Protected-area targets could be undermined by climate change-driven shifts in ecoregions and biomes

    1.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    CAS 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).Article 
    CAS 

    Google Scholar 
    3.IPCC. Intergovernmental Panel on Climate Change). 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group I to IPCC AR5. (Cambridge University Press, 2014).4.Bruner, A. G., Gullison, R. E., Rice, R. E. & da Fonseca, G. A. B. Effectiveness of parks in protecting tropical biodiversity. Science 291, 125 LP–125128 (2001).Article 

    Google Scholar 
    5.Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016).CAS 
    Article 

    Google Scholar 
    6.Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).7.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).8.Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645 LP–11611650 (2017).Article 
    CAS 

    Google Scholar 
    9.Keith, D. A. et al. The IUCN red list of ecosystems: motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article 

    Google Scholar 
    10.Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Conserv. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    11.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).Article 

    Google Scholar 
    12.Chauvenet, A. L. M. et al. To achieve big wins for terrestrial conservation, prioritize protection of ecoregions closest to meeting targets. One Earth 2, 479–486 (2020).Article 

    Google Scholar 
    13.Wilson, E. O. Half Earth: Our Planets Fight for Life (W.W. Norton and Company, 2016).14.Polak, T. et al. Efficient expansion of global protected areas requires simultaneous planning for species and ecosystems. R. Soc. Open Sci. 2, 150107 (2015).Article 

    Google Scholar 
    15.Visconti, B. P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).CAS 

    Google Scholar 
    16.Hoffmann, S., Irl, S. D. H. & Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 10, 4787 (2019).Article 
    CAS 

    Google Scholar 
    17.Finsinger, W., Giesecke, T., Brewer, S. & Leydet, M. Emergence patterns of novelty in European vegetation assemblages over the past 15 000 years. Ecol. Lett. 20, 336–346 (2017).Article 

    Google Scholar 
    18.Fordham, D. A. et al. Using paleo-archives to safeguard biodiversity under climate change. Science 369 (2020).19.Jackson, S. T. Vegetation, environment, and time: the origination and termination of ecosystems. J. Veg. Sci. 17, 549–557 (2006).Article 

    Google Scholar 
    20.Hoffmann, S. & Beierkuhnlein, C. Climate change exposure and vulnerability of the global protected area estate from an international perspective. Divers. Distrib. 26, 1496–1509 (2020).Article 

    Google Scholar 
    21.Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579–1247579 (2014).Article 
    CAS 

    Google Scholar 
    22.Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10 (2020).23.Heubes, J. et al. Modelling biome shifts and tree cover change for 2050 in West Africa: Biome shifts and tree cover change in West Africa. J. Biogeogr. 38, 2248–2258 (2011).Article 

    Google Scholar 
    24.Scholze, M., Knorr, W., Arnell, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. 103, 13116–13120 (2006).CAS 
    Article 

    Google Scholar 
    25.Salazar, L. F. & Nobre, C. A. Climate change and thresholds of biome shifts in Amazonia: CLIMATE CHANGE AND AMAZON BIOME SHIFTS. Geophys. Res. Lett. 37, n/a–n/a (2010).Article 

    Google Scholar 
    26.Yu, D., Liu, Y., Shi, P. & Wu, J. Projecting impacts of climate change on global terrestrial ecoregions. Ecol. Indic. 103, 114–123 (2019).Article 

    Google Scholar 
    27.Iwamura, T., Guisan, A., Wilson, K. A. & Possingham, H. P. How robust are global conservation priorities to climate change? Glob. Environ. Change 23, 1277–1284 (2013).Article 

    Google Scholar 
    28.Littlefield, C. E., Krosby, M., Michalak, J. L. & Lawler, J. J. Connectivity for species on the move: supporting climate-driven range shifts. Front. Ecol. Environ. 17, 270–278 (2019).Article 

    Google Scholar 
    29.McGuire, J. L., Lawler, J. J., McRae, B. H., Nuñez, T. A. & Theobald, D. M. Achieving climate connectivity in a fragmented landscape. Proc. Natl. Acad. Sci. 113, 7195 LP–7197200 (2016).Article 
    CAS 

    Google Scholar 
    30.CBD. Zero Draft of post-2020 biodiversity framework. Secr. Conv. Biol. Divers. 1–14 (2020).31.Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6 (2020).32.Batllori, E., Parisien, M. A., Parks, S. A., Moritz, M. A. & Miller, C. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Glob. Change Biol. 23, 3219–3230 (2017).Article 

    Google Scholar 
    33.Hole, D. G. et al. Projected impacts of climate change on a continent-wide protected area network. Ecol. Lett. 12, 420–431 (2009).Article 

    Google Scholar 
    34.Corlett, R. T. & Tomlinson, K. W. Climate change and edaphic specialists: irresistible force meets immovable object? Trends Ecol. Evol. 35, 367–376 (2020).Article 

    Google Scholar 
    35.Svenning, J. C. et al. The influence of interspecific interactions on species range expansion rates. Ecography 37, 1198–1209 (2014).Article 

    Google Scholar 
    36.Urban, M. C., Zarnetske, P. L. & Skelly, D. K. Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann. N. Y. Acad. Sci. 1297, 44–60 (2013).
    Google Scholar 
    37.Alagador, D., Cerdeira, J. O. & Araújo, M. B. Shifting protected areas: scheduling spatial priorities under climate change. J. Appl. Ecol. 51, 703–713 (2014).Article 

    Google Scholar 
    38.Araujo. Climate Change and Spatial Conservation Planning. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009).39.Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).40.Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).Article 

    Google Scholar 
    41.Burke, K. D. et al. Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190218 (2019).42.Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. 104, 5738 LP–5735742 (2007).Article 
    CAS 

    Google Scholar 
    43.OECD. The post-2020 biodiversity framework: targets, indicators and measurability implications at global and national level. (2019).44.Carroll, C. & Noss, R. F. Rewilding in the face of climate change. Conserv. Biol. 00, 1–13 (2020).
    Google Scholar 
    45.Lovejoy, T. E. & Hannah, L. Avoiding the climate failsafe point. Sci. Adv. 4 (2018).46.Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article 

    Google Scholar 
    47.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327 (2009).CAS 
    Article 

    Google Scholar 
    48.Franklin, J. F. & Lindenmayer, D. B. Importance of matrix habitats in maintaining biological diversity. Proc. Natl. Acad. Sci. 106, 349–350 (2009).CAS 
    Article 

    Google Scholar 
    49.Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).Article 
    CAS 

    Google Scholar 
    50.Boesing, A. L., Nichols, E. & Metzger, J. P. Biodiversity extinction thresholds are modulated by matrix type. Ecography 41, 1520–1533 (2018).Article 

    Google Scholar 
    51.Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10, e0140486 (2015).52.Hamann, A., Roberts, D. R., Barber, Q. E., Carroll, C. & Nielsen, S. E. Velocity of climate change algorithms for guiding conservation and management. Glob. Change Biol. 21, 997–1004 (2015).Article 

    Google Scholar 
    53.Dobrowski, S. Z. & Parks, S. A. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Commun. 7 (2016).54.Parks, S. A., Carroll, C., Dobrowski, S. Z. & Allred, B. W. Human land uses reduce climate connectivity across North America. Glob. Change Biol. 26 (2020).55.Carroll, C., Parks, S. A., Dobrowski, S. Z. & Roberts, D. R. Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Glob. Change Biol. 24 (2018).56.Vos, C. C. et al. Adapting landscapes to climate change: examples of climate-proof ecosystem networks and priority adaptation zones. J. Appl. Ecol. 45, 1722–1731 (2008).Article 

    Google Scholar 
    57.Hannah, L. et al. Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 29, 390–397 (2014).Article 

    Google Scholar 
    58.Fitzpatrick, M. C. & Dunn, R. R. Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nat. Commun. 10, 614 (2019).CAS 
    Article 

    Google Scholar 
    59.Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J. & Elston, D. A. Regression analysis of spatial data. Ecol. Lett. 13, 246–264 (2010).Article 

    Google Scholar 
    60.Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    61.Mahony, C. R., Cannon, A. J., Wang, T. & Aitken, S. N. A closer look at novel climates: new methods and insights at continental to landscape scales. Glob. Change Biol. 23, 3934–3955 (2017).Article 

    Google Scholar 
    62.Fitzpatrick, M. C. et al. How will climate novelty influence ecological forecasts? Using the quaternary to assess future reliability. Glob. Change Biol. 24, 3575–3586 (2018).Article 

    Google Scholar 
    63.Mahony, C. R., MacKenzie, W. H. & Aitken, S. N. Novel climates: trajectories of climate change beyond the boundaries of British Columbia’s forest management knowledge system. For. Ecol. Manag. 410, 35–47 (2018).Article 

    Google Scholar 
    64.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (1998).Article 

    Google Scholar 
    65.Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).Article 

    Google Scholar 
    66.Stephenson, N. L. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. J. Biogeogr. 25, 855–870 (1998).Article 

    Google Scholar 
    67.Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).Article 

    Google Scholar 
    68.Svenning, J. C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).Article 

    Google Scholar 
    69.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. U.S.A. 116, 6193–6198 (2019).70.Rodriguez Mega, E. Apocalypic fires are ravaging the worlds largest tropical wetland. Nature 586, 20–21 (2020).71.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. https://doi.org/10.5194/nhess-2020-69 (2020).72.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909 LP–909914 (2019).Article 
    CAS 

    Google Scholar 
    73.Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).74.Parks, S. A. et al. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 11, 035002 (2016).75.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5 (2018).76.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).Article 

    Google Scholar 
    77.Mitchell, T. D. Pattern scaling: an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003).CAS 
    Article 

    Google Scholar 
    78.Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 

    Google Scholar 
    79.Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammal is proportional to home range size. Ecology 83, 2049–2055 (2002).Article 

    Google Scholar 
    80.Smith, A. M. & Green, D. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).Article 

    Google Scholar 
    81.Sutherland, G., Harestad, A. S., Price, K. & Lertzman, K. Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv. Ecol. 4 (2000).82.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    83.Michalak, J. L., Lawler, J. J., Roberts, D. R. & Carroll, C. Distribution and protection of climatic refugia in North America. Conserv. Biol. 32, 1414–1425 (2018).Article 

    Google Scholar  More

  • in

    Changes in microbial community phylogeny and metabolic activity along the water column uncouple at near sediment aphotic layers in fjords

    The present study was carried out in six fjords within New Zealand’s Fiordland system, specifically Breaksea Sound, Chalky Inlet, Doubtful Sound, Dusky Sound, Long Sound, and Wet Jacket Arm, as described in Tobias-Hünefeldt et al.15. Analyses were divided into three categories: (1) a multi-fjord analysis comprising five of the tested fjords (excluding Long Sound), (2) a high-resolution study along Long Sound’s horizontal axis, and (3) a depth profile of Long Sound’s deepest location (at 421 m). These categories were established to identify trends across multiple fjords, and then test the trends using a fjord analysed at a higher resolution. Total community composition (via 16S and 18S rRNA gene sequencing) and metabolic potential did not significantly covary across the five studied fjords (Mantel, r  More

  • in

    The effect of estuarine system on the meiofauna and nematodes in the East Siberian Sea

    1.Stein, R. & Macdonald, R. W. Organic carbon budget: Arctic Ocean vs. global ocean. In The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & Macdonald, R. W.) (Springer, 2004).Chapter 

    Google Scholar 
    2.Barber, D. G. & Massom, R. A. The role of sea ice in Arctic and Antarctic polynyas. Oceanogr. Ser. 74, 1–54. https://doi.org/10.1016/S0422-9894(06)74001-6 (2007).Article 

    Google Scholar 
    3.Sheremetevskiy, A. M. Role of meiobenthos of the South Sakhalin shelf, Eastern Kamchatka, and Novosibirsk shallow water area. Issledovaniya Fauny Morei 35, 43 (1987).
    Google Scholar 
    4.Golikov, A. N. Ecosystems of the New Siberian shoals and fauna of the Laptev Sea and adjacent waters of the Arctic Ocean (in Russian). Explor. Fauna Seas 37, 4 (1990).
    Google Scholar 
    5.Golikov, A. N. Fauna of the East Siberian Sea. Part III. Explor. Fauna Seas 49, 57 (1994).
    Google Scholar 
    6.Sirenko, B. I. & Denisenko, S. G. Fauna of the East Siberian Sea, distribution patterns and structure of bottom communities. Explor. Fauna Seas 66, 74 (2010).
    Google Scholar 
    7.Sirenko, B. I. List of species of free-living invertebrates of Eurasian Arctic seas and adjacent deep waters. Explor. Fauna Seas 51(59), 1–76 (2001).
    Google Scholar 
    8.Schmidt-Rhaesa, A. Handbook of Zoology: Gastrotricha, Cycloneuralia, Gnathifera Vol. 2, 608 (De Gruyter, 2020).
    Google Scholar 
    9.Udalov, A. et al. Integrity of benthic assemblages along the arctic estuarine-coastal system. Ecol. Indic. 121, 107115. https://doi.org/10.1016/j.ecolind.2020.107115 (2021).Article 

    Google Scholar 
    10.Portnova, D., Fedyaeva, M., Udalov, A. & Tchesunov, A. Community structure of nematodes in the Laptev Sea shelf with notes on the lives of ice nematodes. Reg. Stud. Mar. Sci. 31, 100757. https://doi.org/10.1016/j.rsma.2019.100757 (2019).Article 

    Google Scholar 
    11.Gallucci, F., Moens, T. & Fonseca, G. Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar. Biodivers. 39(1), 9–25. https://doi.org/10.1007/s12526-009-0003-x (2009).Article 

    Google Scholar 
    12.Lei, Y., Stumm, K., Volkenborn, N., Wickham, S. A. & Berninger, U. G. Impact of Arenicola marina (Polychaeta) on the microbial assemblages and meiobenthos in a marine intertidal flat. Mar. Biol. 157(6), 1271–1282. https://doi.org/10.1007/s00227-010-1407-7 (2010).Article 

    Google Scholar 
    13.Flint, M. V., Poyarkov, S. G. & Rymsky-Korsakov, N. A. Ecosystems of the Siberian Arctic Seas-2017 (Cruise 69 of the R/V Akademik Mstislav Keldysh). Oceanology 58(2), 315–318. https://doi.org/10.1134/S0001437018020042 (2018).ADS 
    Article 

    Google Scholar 
    14.Garlitska, L. A. & Azovsky, A. I. Benthic harpacticoid copepods of the Yenisei Gulf and the adjacent shallow waters of the Kara Sea. J. Nat. Hist. 50, 2941–2959. https://doi.org/10.1080/00222933.2016.1219410 (2016).Article 

    Google Scholar 
    15.Portnova, D., Garlitska, L., Udalov, A. & Kondar, D. Meiobenthos and nematode community in the Yenisei Bay and adjacent parts of the Kara Sea shelf. Oceanology 57(1), 1–15. https://doi.org/10.1134/S0001437017010155 (2017).Article 

    Google Scholar 
    16.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull. Am. Meteorol. Soc. 96(12), 2079–2105. https://doi.org/10.1175/BAMS-D-13-00177.1 (2005).ADS 
    Article 

    Google Scholar 
    17.Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298(5601), 2171–2173. https://doi.org/10.1126/science.1077445 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Polukhin, A. The role of river runoff in the Kara Sea surface layer acidification and carbonate system changes. ERL 14(10), 105007. https://doi.org/10.1088/1748-9326/ab421e (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Lisitzin, A. P. Marginal filter of the oceans. Oceanology 34(5), 735–743 (1994).CAS 

    Google Scholar 
    20.Moens, T., Braeckman, U., Derycke, S., Fonseca, G., Gallucci, F., Gingold, R., Guilini, Katja, Ingles, J., Leduc, D., Vanaverbeke, J., Van Colen, C., Vanreusel, A, & Vincx, M. Ecology of free-living marine nematodes. In Volume 2 Nematoda, 109–152. De Gruyter (2013)21.Aller, J. Y. & Aller, R. C. General characteristics of benthic faunas on the Amazon inner continental shelf with comparison to the shelf off the Changjiang River, East China Sea. Cont. Shelf Res. 6(1–2), 291–310. https://doi.org/10.1016/0278-4343(86)90065-8 (1986).ADS 
    Article 

    Google Scholar 
    22.Soetaert, K., Vincx, M., Wittoeck, J. & Tulkens, M. Meiobenthic distribution and nematode community structure in five European estuaries. Hydrobiologia 311(1), 185–206. https://doi.org/10.1007/BF00008580 (1995).Article 

    Google Scholar 
    23.Tank, S. E. et al. The processing and impact of dissolved riverine nitrogen in the Arctic Ocean. Estuaries Coast 35, 401–415. https://doi.org/10.1007/s12237-011-9417-3 (2012).CAS 
    Article 

    Google Scholar 
    24.Galtsova, V. V., Lukina, T. G. & Vladimirov, M. V. Meiobenthos of Chaunskaya Bay, East Siberian Sea. Issledovaniya Fauny Morei 48(56), 67–97 (1994).
    Google Scholar 
    25.Coull, B. C. Role of meiofauna in estuarine soft‐bottom habitats. Austral Ecol. 24(4), 327–343 (1999).Article 

    Google Scholar 
    26.Vincx, M., Meire, P., & Heip, C. The distribution of nematodes communities in the Southern Bight of the North Sea. Cah Biol Mar. 31(1), 107–129 (1990).27.Vanaverbeke, J., Gheskiere, T., Steyaert, M., & Vincx, M. Nematode assemblages from subtidal sandbanks in the Southern Bight of the North Sea: effect of small sedimentological differences. J. Sea Res. 48(3), 197–207. https://doi.org/10.1016/S1385-1101(02)00165-X (2002)ADS 
    Article 

    Google Scholar 
    28.Steyaert, M., et al. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuar Coast Shelf Sci. 58(2), 353–366 (2003).ADS 
    Article 

    Google Scholar 
    29.Alves, A. S., Adão, H., Patrício, J., Neto, J. M., Costa, M. J., & Marques, J. C. Spatial distribution of subtidal meiobenthos along estuarine gradients in two southern European estuaries (Portugal). J. Mar. Biol. Assoc. U. K. 89(8), 1529–1540 (2009).CAS 
    Article 

    Google Scholar 
    30.Garlitska, L. A., Chertoprud, E. S., Portnova, D. A. & Azovsky, A. I. Benthic harpacticoida of the Kara Sea: Species composition and bathymetrically related distribution. Oceanology 59(4), 541–551. https://doi.org/10.1134/S0001437019040064 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Huang, D. et al. Preliminary study on community structures of meiofauna in the middle and eastern Chukchi Sea. Acta Oceanol. Sin. 40(6), 83–91. https://doi.org/10.1007/s13131-021-1777-3 (2021).ADS 
    Article 

    Google Scholar 
    32.Giere, O. Meiobenthology: The Microscopic Motile Fauna in Aquatic Sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    33.Semiletov, I. et al. The East Siberian Sea as a transition zone between Pacific-derived waters and Arctic shelf waters. Geophys. Res. Lett. https://doi.org/10.1029/2005GL022490 (2005).Article 

    Google Scholar 
    34.Miroshnikov, A. Y. et al. Ecological state and mineral-geochemical characteristics of the bottom sediments of the East Siberian Sea. Oceanology 60(4), 595–610. https://doi.org/10.31857/S0030157420040152 (2020).Article 

    Google Scholar 
    35.Frontalini, F. et al. The response of cultured meiofaunal and benthic foraminiferal communities to lead exposure: Results from mesocosm experiments. Environ. Toxicol. Chem. 37(9), 2439–2447. https://doi.org/10.1002/etc.4207 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Fonseca, G. & Soltwedel, T. Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol. 30, 607–618. https://doi.org/10.1007/s00300-006-0220-8 (2007).Article 

    Google Scholar 
    37.Portnova, D. & Polukhin, A. Meiobenthos of the eastern shelf of the Kara Sea compared with the meiobenthos of other parts of the sea. Reg. Stud. Mar. Sci. 24, 370–378. https://doi.org/10.1016/j.rsma.2018.10.002 (2018).Article 

    Google Scholar 
    38.Alexeev, D. K., & Galtsova, V. V. Effect of radioactive pollution on the biodiversity of marine benthic ecosystems of the Russian Arctic shelf. Polar Sci. 6(2), 183–195 (2012).ADS 
    Article 

    Google Scholar 
    39.Grzelak, K. & Sørensen, M. V. Diversity and community structure of kinorhynchs around Svalbard: First insights into spatial patterns and environmental drivers. Zool. Anz. 282, 31–43. https://doi.org/10.1016/j.jcz.2019.05.009 (2019).Article 

    Google Scholar 
    40.Landers, S. C. et al. Kinorhynch communities from Alabama coastal waters. Mar. Biol. Res. 16(6–7), 494–504. https://doi.org/10.1080/17451000.2020.1789660 (2020).Article 

    Google Scholar 
    41.Holovachov, O. New and known species of the genus Campylaimus Cobb, 1920 (Nematoda: Araeolaimida: Diplopeltidae) from North European marine habitats. Biodivers. Data J. https://doi.org/10.3897/BDJ.7.e46545 (2007).Article 

    Google Scholar 
    42.Sharma, J. & Bluhm, B. A. Diversity of larger free-living nematodes from macrobenthos ( > 250 μm) in the Arctic deep-sea Canada Basin. Mar. Biodivers. 41(3), 455–465. https://doi.org/10.1007/s12526-010-0060-1 (2010).Article 

    Google Scholar 
    43.Kotwicki, L., Grzelak, K. & Bełdowski, J. Benthic communities in chemical munitions dumping site areas within the Baltic deeps with special focus on nematodes. Deep Sea Res. II 128, 123–130. https://doi.org/10.1016/j.dsr2.2015.12.012 (2016).CAS 
    Article 

    Google Scholar 
    44.Netto, S. A., Pagliosa, P. R., Colling, A., Fonseca, A. L. & Brauk, K. M. Benthic estuarine assemblages from the Southern Brazilian marine ecoregion. Braz. Estuaries. https://doi.org/10.1007/978-3-319-77779-5_6 (2018).Article 

    Google Scholar 
    45.Broman, E., et al. Uncovering diversity and metabolic spectrum of animals in dead zone sediments. Commun. Biol. 3(1), 1–12 (2020).46.Zeppilli, D., et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodiver. 48(1), 35–71 (2018).47.Pérez-García, J. A. et al. Nematode diversity of freshwater and anchialine caves of Western Cuba. PBSW 131(1), 144–155. https://doi.org/10.2988/17-00024 (2018).Article 

    Google Scholar 
    48.Bezzubova, E. M., Seliverstova, A. M., Zamyatin, I. A. & Romanova, N. D. Heterotrophic bacterioplankton of the Laptev and East Siberian Sea shelf affected by freshwater inflow areas. Oceanology 60, 62–73. https://doi.org/10.1134/S0001437020010026 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Vanreusel, A. et al. Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep Sea Res. I 47, 1855–1879. https://doi.org/10.1016/S0967-063728002900007-8 (2000).Article 

    Google Scholar 
    50.Tahseen, Q. Nematodes in aquatic environments: Adaptations and survival strategies. Biodivers. J. 3(1), 13–40 (2012).
    Google Scholar 
    51.Williams, W. J. & Carmack, E. C. The ‘interior’ shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog. Ocean 139, 24–41. https://doi.org/10.1016/j.pocean.2015.07.008 (2015).Article 

    Google Scholar 
    52.Magritsky, D. V. et al. Long-term changes of river water inflow into the seas of the Russian Arctic sector. Polarforschung 87(2), 177–194. https://doi.org/10.2312/polarforschung.87.2.177 (2018).Article 

    Google Scholar 
    53.Anderson, L. G. et al. East Siberian Sea, an Arctic region of very high biogeochemical activity. Biogeosciences 4, 6. https://doi.org/10.5194/bg-8-1745-2011 (2011).CAS 
    Article 

    Google Scholar 
    54.Dmitrienko, I. A. et al. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography. J. Geophys. Res. Oceans. https://doi.org/10.1029/2009JC006020 (2010).Article 

    Google Scholar 
    55.Stein, R. Arctic Ocean Sediments: Processes, PROXIES, and Paleoenvironment (Elsevier, 2008).
    Google Scholar 
    56.Petrova, V. I., Batova, G. I., Kursheva, A. V. & Litvinenko, I. V. Geochemistry of organic matter of bottom sediments in the rises of the central Arctic Ocean. Russ. Geol. Geophys. 51(1), 88–97. https://doi.org/10.1016/j.rgg.2009.12.008 (2010).ADS 
    Article 

    Google Scholar 
    57.Millero, F. J. Thermodynamics of the carbon dioxide system in oceans. GCA 59(4), 661–677. https://doi.org/10.12691/wjce-3-6-1 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Pavlova, G. Y. et al. Intercalibration of Bruevich’s method to determine the total alkalinity in seawater. Oceanology 48, 438. https://doi.org/10.1134/S0001437008030168 (2008).ADS 
    Article 

    Google Scholar 
    59.Dickson, A. G. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water. Version 2 (No. ORNL/CDIAC-74) (1994).60.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: A method for the certification of total alkalinity. Mar. Chem. 80, 185–197. https://doi.org/10.1016/S0304-4203(02)00133-0 (2003).CAS 
    Article 

    Google Scholar 
    61.Lewis, E. & Wallace, D. W. R. Program Developed for CO2 System Calculations. ORNL/CDIAC-105 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 1998).Book 

    Google Scholar 
    62.Shiklomanov, A. I., Holmes, J. W., McClelland, S. E., Tank, R. & Spencer, G.M. Arctic Great Rivers Observatory. Discharge Dataset, Version 20200801 (2020).63.Niemistö, L. A gravity corer for studies of soft sediments. Merentutkimuslait. Julk./Havsforskningsinst. Skr. 238, 33–38 (1974).
    Google Scholar 
    64.Eleftheriou, A. Methods for the Study of Marine Benthos (Wiley, 2013).Book 

    Google Scholar 
    65.Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden, marinen Nematoden. Ark. Zool. 2, 439–484 (1953).
    Google Scholar 
    66.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    67.Heip, C. & Herman, P. Indices of diversity and evenness. Oceanis 24(4), 61–88 (2001).
    Google Scholar  More