More stories

  • in

    The Simrad EK60 echosounder dataset from the Malaspina circumnavigation

    Figure 1 presents the track of the eight-month cruise, and Table 1 provides the detail of the legs and dates. On a routine basis R/V Hesperides sailed at an average speed of 11 knots from around 3 pm to 4 am (local time). The vessel arrived on station at around 4 am daily to carry out sampling operations at a fixed point for about 11 hours.Fig. 1Cruise track and integrated backscatter at different stations (NASC, daytime 200 to 1000 m).Full size imageTable 1 Dates and starting points of the 7 legs of the Malaspina cruise.Full size tableAcoustic measurements were carried out continuously using a Simrad EK60 echosounder), operating at 38 and 120 kHz (7° beamwidth transducers) with a ping rate of 0.5 Hz. Unfortunately, the 120 kHz failed during the first leg of the cruise and only 38 kHz data were collected. Echosounder observations were recorded down to 1000 m depth. The echosounder files are in the proprietary Simrad raw format and can be read by various softwares (e.g., LSSS, Echoview, Sonar5, MATECHO, ESP3, echopype, pyEcholab). GPS locations and calibration constants are imbedded in each file.Additionally, daytime data integrated over 2 m vertical bins from 200 to 1000 m depth are provided as Nautical Area Scattering Coefficient (NASC). Each “voxel” is the average of all cleaned and validated data recorded over that depth range, in a time period starting 8 hours before the start of the station (defined as start of the CTD cast) and ending 8 hours after the start of the station, with only data recorded in the period between 1 hour after local sunrise and 1 hour prior to local sunset accepted (i.e., during local daytime hours, but removing crepuscular periods when vertical migration of biota is strong). The relatively long interval over which data were accepted around each station was chosen since the station sampling resulted in noisy acoustic data,, a long interval was therefore chosen to ensure valid data on all stations.Finally, summaries of per station daytime and nighttime acoustic data (omitting data recorded within 1 hour of sunrise and sunset) are provided. The data fields in this file are station date, latitude and longitude, and per day and night average NASC 200–1000 m, average NASC 0–1000, weighted mean depth (WMD) of NASC 200–1000 m, migration amplitude, NASC day-to-night ratio and migration ratio. More

  • in

    Geographical drivers and climate-linked dynamics of Lassa fever in Nigeria

    We analyse weekly reported counts of suspected and confirmed human cases and deaths attributed to LF (as defined in Supplementary Table 1), between 1 January 2012 and 30 December 2019, from across the entire of Nigeria. The weekly counts were reported from 774 LGAs in 36 Federal states and the Federal Capital Territory, under Integrated Disease Surveillance and Response (IDSR) protocols, and collated by the NCDC. All suspected cases, confirmed cases and deaths from notifiable infectious diseases (including viral haemorrhagic fevers; VHFs) are reported weekly to the LGA Disease Surveillance and Notification Officer (DSNO) and State Epidemiologist (SE). IDSR routine data on priority diseases are collected from inpatient and outpatient registers in health facilities, and forwarded to each LGA’s DSNO using SMS or paper form. Subsequently, individual LGA DSNOs collate and forward the data to their respective SE, also by SMS and paper form, for weekly and monthly reporting respectively to NCDC. From mid-2017 onwards, data entry in 18 states has been conducted using a mobile phone-based electronic reporting system called mSERS, with the data entered using a customised Excel spreadsheet that is used to manually key into NCDC-compatible spreadsheets. Data from this surveillance regime (WERs) were collated by epidemiologists at NCDC throughout the period 2012 to March 2018 (Supplementary Fig. 1).Throughout the study period, within-country LF surveillance and response has been strengthened under NCDC coordination2,20,33. LGAs are now required to notify immediately any suspected case to the state-level, which in turn reports to NCDC within 24 h, and also sends a cumulative weekly report of all reported cases. A dedicated, multi-sectoral NCDC LF TWG was set up in 2016 with the responsibility of coordinating all LF preparedness and response activities across states. Further capacity building occurred in 2017 to 2019, with the opening of three additional LF diagnostic laboratories in Abuja (Federal Capital Territory), Abakaliki (Ebonyi state) and Owo (Ondo state) (to a total of five; Fig. 2) and the rollout of intensive country-wide training on surveillance, clinical case management and diagnosis. We note that, due to the rapid expansion in a test capacity, the definition of a suspected case in our data has subtly changed over the surveillance period: from 2012 to 2016, suspected cases include probable cases that were not lab-tested, whereas from 2017 to 2019, all suspected cases were tested and confirmed to be negative.In addition to the WERs data, since 2017 LF case reporting data has also been collated by the LF TWG and used to inform the weekly NCDC LF Situation Reports (SitRep data; https://ncdc.gov.ng/diseases/sitreps). This regime includes post hoc follow-ups to ensure more accurate case counts, so our analyses use WER-derived case data from 2012 to 2016, and SitRep-derived case data from 2017 to 2019 (see Fig. 1 for full time series). A visual comparison of the data from each separate time series, including the overlap period (2017 to March 2018) is provided in Supplementary Fig. 1, and all statistical models considered random intercepts for the different surveillance regimes. Where other studies of recent Nigeria LF incidence have been more spatially and temporally restricted34,35, the extended monitoring period and fine spatial granularity of these data provide the opportunity for a detailed empirical perspective on the local drivers of LF at a country-wide scale and their relationship to changes in reporting effort.Recent trends in LF surveillance in NigeriaWe visualised temporal and seasonal trends in suspected and confirmed LF cases within and between years, for both surveillance datasets. Weekly case counts were aggregated to country-level and visualised as both annual case accumulation curves, and aggregated weekly case totals (Fig. 1 and Supplementary Fig. 1). We also mapped annual counts of suspected and confirmed cases across Nigeria at the LGA-level to examine spatial changes in reporting over the surveillance period (Fig. 2). State and LGA shapefiles used for modelling and mapping were obtained from Humanitarian Data Exchange under a CC-BY-IGO license (https://data.humdata.org/dataset/nga-administrative-boundaries).Analyses of aggregated district data are sensitive to differences in scale and shape of aggregation (the modifiable areal unit problem; MAUP36), and LGA geographical areas in Nigeria are highly skewed and vary over >3 orders of magnitude (median 713 km2, mean 1175 km2, range 4–11,255 km2). We therefore also aggregated all LGAs across Nigeria into 130 composite districts with a more even distribution of geographical areas, using distance-based hierarchical clustering on LGA centroids (implemented using hclust in R), with the constraint that each new cluster must contain only LGAs from within the same state (to preserve potentially important state-level differences in surveillance regime). Weekly and annual suspected and confirmed LF case totals were then calculated for each aggregated district. We used these spatially aggregated districts to test for the effects of scale on spatial drivers of LF occurrence and incidence.Statistical analysisWe analysed the full case time series (Fig. 1) to characterise the spatiotemporal incidence and drivers of LF in Nigeria, while controlling for year-on-year increases and expansions of surveillance effort. We firstly modelled annual LF occurrence and incidence at a country-wide scale, to identify the spatial, climatic and socio-ecological correlates of disease risk across Nigeria. Secondly, we modelled seasonal and temporal trends in weekly LF incidence within hyperendemic areas in the north and south of Nigeria, to identify the seasonal climatic conditions associated with LF risk dynamics and evaluate the scope for forecasting. All data processing and modelling was conducted in R v.3.4.1 with the packages R-INLA v.20.03.1737, raster v.3.4.1338 and velox v0.2.039. Statistical modelling was conducted using hierarchical regression in a Bayesian inference framework (integrated nested Laplace approximation (INLA)), which provides fast, stable and accurate posterior approximation for complex, spatially and temporally-structured regression models37,40, and has been shown to outperform alternative methods for modelling environmental phenomena with evidence of spatially biased reporting41.Processing climatic and socio-ecological covariatesWe collated geospatial data on socio-ecological and climatic factors that are hypothesised to influence either M. natalensis distribution and population ecology (rainfall, temperature and vegetation patterns), frequency and mode of human–rodent contact (poverty and improved housing prevalence), both of the above (agricultural and urban land cover) or likelihood of LF reporting (travel time to nearest laboratory with LF diagnostic capacity and travel time to nearest hospital). For each LGA we extracted the mean value for each covariate across the LGA polygon. The full suite of covariates tested across all analyses, data sources and associated hypotheses are described in Supplementary Table 5.We collated climate data spanning the full monitoring period and up until the date of analysis (July 2011 to January 2021). We obtained daily precipitation rasters for Africa42 from the Climate Hazards Infrared Precipitation with Stations (CHIRPS) project; this dataset is based on combining sparse weather station data with satellite observations and interpolation techniques, and is designed to support hydrologic forecasts in areas with poor weather station coverage (such as tropical West Africa)42. A recent study ground-truthing against weather station data showed that CHIRPS provides greater overall accuracy than other gridded precipitation products in Nigeria43. Air temperature daily minimum and maximum rasters were obtained from NOAA and were also averaged to calculate daily mean temperature. EVI, a measure of vegetation quality, was obtained from processing 16-day composite layers from NASA (National Aeronautics and Space Administration) (excluding all grid cells with unreliable observations due to cloud cover and linearly interpolating between observations to give daily values; Supplementary Table 5).We derived several spatial bioclimatic variables to capture conditions across the full monitoring period (Jan 2012 to Dec 2019): mean precipitation of the driest annual month, mean precipitation of the wettest annual month, precipitation seasonality (coefficient of variation), annual mean air temperature, air temperature seasonality, annual mean EVI and EVI seasonality. We also calculated monthly total precipitation, 3-month SPI44, average daily mean (Tmean), minimum (Tmin) and maximum (Tmax) temperature and EVI variables at sequential time lags prior to reporting week for seasonal modelling (described below in Temporal drivers). SPI is a standardised measure of drought or wetness conditions relative to the historical average conditions for a given period of the year. SPI was calculated within a rolling 3-month window across the full 40-year historical CHIRPS rainfall time series (1981–2020) using the R package SPEI v.1.744.We accessed annual human population rasters at 100 m resolution from WorldPop. We accessed the proportion of the population living in poverty in 2010 ( More

  • in

    Pharmacological modulation of fish-induced depth selection in D. magna: the role of cholinergic and GABAergic signalling

    Phototactic behaviourThe optimization results of the proposed behavioural setup allowed the phototactic behaviour of the studied D. magna clone and the effects of FK treatment on this behaviour to be monitored and quantified. Furthermore, the effects of the FKs were evident only upon light exposure, were more apparent after a short (5 min) acclimation to light and were tightly regulated by the light intensity. The above-mentioned factors agree with previous studies, which found a marked positive phototactism of clone P132,8528 and that the effects of the FKs become consistent after 5 min of light exposure28. Moreover, it has also been reported that light intensity controls anti-predatory defences in Daphnia29.The effects of the pharmacological treatments were consistent for GABAergic and muscarinic cholinergic compounds across two or three identical non-consecutive experiments performed over more than one year. Consistency of the toxicological results and, in particular, of the behavioural responses should be compulsory in toxicological studies to increase the credibility and robustness of the findings30,31. Agonists of these two neurotransmitter receptors (DZP, PILO) and the antagonist of the GABA receptor (PICRO) affected the induction of the phototactic behavioural changes (i.e., interfered with fish recognition). The receptor agonists DZP and PILO counteracted the negative phototactism evoked by the FKs, whereas PICRO enhanced the effect of the FKs, increasing the negative phototactism. None of the three applied substances when applied alone induced anti-predatory fish phototactic behaviour, indicating that these compounds interfered with the FK sensorial pathway. Alternatively, the muscarinic cholinergic antagonist SCOP interfered with phototaxis itself, almost completely abolishing the positive phototactic behaviour of the studied clone under both control and FK conditions. This indicates that the muscarinic cholinergic signalling pathway could potentially be a major regulator of anti-predatory fish phototactic behaviour. In D. pulex and D. galeata, the formation of neck teeth or helmets in response to predatory kairomones released by invertebrate predators has been related to a series of biological reactions that involve kairomone perception and neuronal signals, which are converted into endocrine signals and subsequently induce changes in the expression of morphogenetic factors32,33. We previously showed that DZP, PILO, PICRO and SCOP were neuroactive in D. magna, affecting sensitization and/or habituation motile responses to repetitive light stimuli34; thus, it is likely that these compounds disrupted neurological signalling pathways related to the phototactism shifts caused by FK perception or to the phototaxis itself.Little is known about how phototaxis is neuronally coded. In D. pulex, both in silico and experimental works have shown that histaminergic neurons may mediate phototactic responses to UV irradiation12. By using histamine immunohistochemistry, the previous authors labelled putative photoreceptors in the compound eye and neuronal projections from these cells to the brain. The D. pulex genome also has a putative Drosophila orthologue of histidine decarboxylase (the rate-limiting biosynthetic enzyme for histamine), as well as two putative histamine-gated chloride channels (hclA and hclB orthologues). Exposure of D. magna to cimetidine, an H2 receptor antagonist known to block both hclA and hclB in D. melanogaster, inhibited the negative phototactic responses of these orthologues to UV irradiation. In another study, it was found that short-day photoperiods induced a significant increase in light-avoidance behaviours relative to controls and increased glutamate signalling, which is a critical pathway in arthropod light-avoidance behaviour35. It has also been reported that a group of serotonergic cells located in the protocerebrum probably control phototactic behaviour16. Notably, the perception of predatory kairomones and neuronal and cellular wiring is largely unknown in Daphnia2. For example, the receptors that detect invertebrate cues from Notonecta in D. longicephala were shown to be located on the first antennae, from which neurites extend into the deutocerebrum of the brain. However, key olfactory neuronal structures, such as olfactory glomeruli in the deutocerebrum, were not found2.Our results obtained for DZP, an agonist of the GABAA receptor, agree with those of Weiss et al.11, who found that co-exposure to FKs and exogenous GABA ameliorated life history changes to FKs in a D. pulex clone, whereas co-exposure with the GABAA antagonist PICRO did not have any effect. The ineffectiveness of PICRO on the modulation of FK effects in D. pulex found by Weiss et al.11 might indicate species differences resulting from different receptor amino acid sequences. For example, GABAA receptor subtypes with a single amino acid replacement make the Drosophila GABAA receptor PICRO-insensitive36. Indeed, in crustaceans, lobster GABAA receptors were also found to be insensitive to PICRO37. There is also the possibility that FK-mediated changes in phototactic behaviour and life history traits may be controlled by different mechanisms6.Reported information on the modulatory effects of cholinergic compounds on anti-predatory defences in Daphnia is limited to invertebrate predatory cues, which, according to previous studies, should be regulated by neurological mechanisms distinct from those of fish2,11. Our results showed that the neurological cholinergic mechanisms that modulate induced defence responses against invertebrate predators or that mimic these responses are also able to do the same for fish predation but in the opposite way. Physostigmine and carbaryl, which are acetylcholinesterase inhibitors that increase acetylcholine receptor activity, enhanced and mimicked, respectively, the morphogenetic effects of invertebrate kairomones in several Daphnia species11,21,23. Conversely, atropine, which is a muscarinic acetylcholine receptor (AChR) inhibitor like SCOP, diminished neck tooth formation in D. pulex11,21. In our study, SCOP alone abolished the positive phototactism of the studied clone, which mimicked the effects of the FKs. Conversely, PILO, which is a muscarine AChR agonist, ameliorates the phototactic responses to FKs.The nicotinic AChR agonists (NICO, IMI) and antagonist (MEC) only marginally affected the phototactic responses to the FKs. This indicates that muscarinic cholinergic signalling but not nicotinic signalling is involved in phototaxis/phototactic behaviour. It is therefore possible that both FK and SCOP treatment, through inhibition of muscarinic cholinesterase receptor activity, diminished the positive phototaxis of the studied clone, and PILO activation of these receptors ameliorated the effects of the FKs. In insects, neurons that connect olfactory inputs to higher-order brain areas that coordinate behavioural responses are thought to be under cholinergic control38.In general, GABA is known to have inhibitory functions. It has been proposed that the continuous activation of the GABAergic neuronal pathway by endogenous GABA without predatory cues prevents life history shifts11, which in our case would be the transition from positive to negative phototaxis. FKs and PICRO relieve inhibition, which can be re-established by the experimental application of GABAA receptor agonists such as DZP or GABA itself. Our results and those of Weiss et al.11 agree with the previous argument.Equi-effective mixtures of the tested agonists and antagonists had similar effects on D. magna responses to FKs as the single mixture compound treatments did, indicating that the joint effects of agonists and antagonists of the GABAergic and cholinergic signalling pathways can act cooperatively and probably independently, modulating the effects of FKs. This is in line with other findings that showed that key ecophysiological responses in Daphnia are regulated by several signalling receptor pathways, which likely ensures more robust control. This is the case for the storage lipid dynamics associated with moulting and reproduction39.The involvement of additional neurotransmitter signalling pathways, such as the serotonergic pathway, can also be taken into consideration despite being less consistent. Agonists of the serotonin receptor (such as serotonin) or treatments that increase serotonin levels (such as fluoxetine) ameliorated the effects of the FKs in only one experiment, but treatments that decreased serotonin, such as PCPA, increased the effects of the FKs in two out of the three experiments. Previously, we reported that serotonin activity in the brains of D. magna increased with algae food levels, and thus, the effects of fluoxetine on the enhancement of brain serotonin levels could only be observed under limited food conditions24. This indicates that the high levels of food used in our experiments probably prevented fluoxetine from increasing the already high serotonin levels in the central nervous system. Interestingly, inducible fish kairomone changes in phototactic behaviour in Daphnia increased with food level40, which is probably related to high levels of serotonin. On the other hand, the effects of PCPA, which decreases serotonin concentrations26, are unlikely to be modulated by food since this drug inhibits tryptophan hydrolase, the serotonin synthesis rate-limiting enzyme in D. magna41. This is apparently the case in our study.Neurophysiological stimulation experiments with dopaminergic/adrenergic agonists and antagonists were inconclusive since in only one out of two experiments the dopaminergic agonist APO diminish negative phototaxis after FK exposure. We also did not find any effects from the glutamatergic agonists and antagonists on phototactism. This could be related to the low stability of dopaminergic compounds in water and the reported small effects of glutaminergic compounds on the Daphnia motile response to light34.Consistent failure of the tested antihistaminergic drugs to modulate phototactism to visible light disagrees with previous findings that discovered that these drugs affected phototactism but at much higher doses12.Metabolomic changesThe study of metabolomic changes across the treatments that modulated FK-mediated phototactic changes or altered phototaxis provided further experimental evidence of the involvement of key neurological signalling metabolic pathways. Caution must be exercised, however, since the studied receptor agonist and antagonist drugs do not change the neurotransmitters or their related metabolites. Nevertheless, little is known about how these drugs may affect the Daphnia neuronal metabolome. The cholinergic neurotransmitter system is one of the most important systems that plays a pivotal role in learning and memory in animal species, including D. magna34,42. Whole-body concentrations of acetylcholine decreased in females exposed to FKs and those exposed to SCOP and increased in those exposed to the agonists PILO and DZP. Thus, it is possible to establish a direct link between the decreased levels of acetylcholine and decreased positive phototactism in the studied clone. The results obtained for the GABAergic and serotonergic signalling pathways were less convincing, as FKs alone did not consistently affect the levels of GABA and serotonin. However, co-exposure to FK and the GABAA receptor agonist DZP increased endogenous GABA levels, which is in line with the results reported by Weiss et al.11, who also found that the addition of exogenous GABA ameliorated FK effects. Interestingly, the summarized results depicted in Fig. 4 showed that serotonin levels dereased upon exposure to SCOP, PICRO and PILO but PILO also increase the levels of the serotonin degradation metabolite 5-HIAA. This may indicate that PILO may affect the turnover rather than the levls of serotionin.Previous findings have reported altered responses to light in D. magna individuals lacking serotonin16. Therefore, it is possible to establish a link between the observed marked negative phototactism of females exposed to SCOP and low levels of serotonin.Dopaminergic- and adrenergic-related metabolites deserve special attention, although there is only evidence that dopamine is involved in the proliferation and structural formation of morphological defences in Daphnia for invertebrate kairomones22. In some invertebrates, adrenergic signalling is considered to be absent, and the analogous functions are performed by octopamine43. In our study, fish kairomones and SCOP decreased the levels of dopamine and octopamine, whereas females co-treated with the agonists DZP and PILO and FKs showed relatively high levels of dopamine. In the insect Drosophila melanogaster, which shares many gene signalling pathways with Daphnia44, individuals deficient in dopamine show reduced positive phototactism45. Unfortunately, it is not possible to know whether the observed changes in DA in the whole bodies of D. magna indicate that DA is less used or used in excess. Figure 4 indicates that FK and SCOP reduced both DA and its intermediary metabolite L-DOPA. SCOP also increased the DA degradation metabolite 3-MT and two norepinephrine metabolites/neurotransmitters (NOEM, EPPY) that ultimately depend on DA. This means that FK decreased DA probably decreasing its intermediary metabolite L-DOPA, whereas SCOP decreased DA to a greater extent decreasing its intermediary L-DOPA but also increasing its turnover rate. Our neurophysiological stimulation experiments with dopaminergic active compounds are also not conclusive. This suggests that further research is needed to study the involvement of dopaminergic signalling in the response to fish. Existing studies on adrenergic signalling in daphnids indicated that β-blockers such as propranolol diminish the heart rate46 and motile responses to light27, which are related to the known role of adrenergic signalling that regulates blood pressure47 and other fight-or-flight responses to stress48. Future research is needed to elucidate the involvement of OCT, EPPY and NORM in the phototactic response of D. magna to FKs.In summary, this study provides consistent results that muscarinic cholinergic and GABAergic receptor agonists and antagonists are able to ameliorate or enhance, respectively, the phototactic response of adult females from the studied D. magna clone to FKs. Furthermore, inhibition of the muscarinic acetylcholine receptor by SCOP induced the phototactic response to fish kairomones. This may indicate that muscarinic cholinergic antagonists changed phototaxis, whereas muscarinic cholinergic agonists and GABAergic agonists and antagonists changed the perception of FKs. Serotonergic agonists and antagonists were also able to diminish and increase FK effects, respectively, but only in half of the trials performed. The fact that we could not observe effects from the remaining neuroactive agents (i.e., dopaminergic, histaminergic, glutamatergic) could simply be because they are not relevant for predator-induced anti-phototaxis. The study of neurotransmitters and their related metabolite changes allowed us to identify acetylcholine and GABA as putative key metabolites associated with the observed phototactic modulatory effects of FK and cholinergic and GABAergic compounds. Increased and decreased levels of dopamine in the whole bodies of D. magna were related to positive and negative phototactic behaviours, respectively, but could not be related to neurophysiological studies with the tested dopaminergic drugs. More

  • in

    Emergent biogeochemical risks from Arctic permafrost degradation

    1.Mcguire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009). Details Arctic changes under RCP scenarios using a multi-model approach forecasting vegetation offsets of some carbon emissions.
    Google Scholar 
    2.Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).
    Google Scholar 
    3.Chadburn, S. et al. Carbon stocks and fluxes in the high latitudes: using site-level data to evaluate Earth system models. Biogeosciences 14, 5143–5169 (2017).CAS 

    Google Scholar 
    4.Karjalainen, O. et al. Data descriptor: circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 6, 190037 (2019).
    Google Scholar 
    5.Hjort, J. et al. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 9, 5147 (2018).CAS 

    Google Scholar 
    6.Abramov, A., Vishnivetskaya, T. & Rivkina, E. Are permafrost microorganisms as old as permafrost? FEMS Microbiol. Ecol. 97, fiaa260 (2021).CAS 

    Google Scholar 
    7.Ricketts, M. P. et al. The effects of warming and soil chemistry on bacterial community structure in Arctic tundra soils. Soil Biol. Biochem. 148, 107882 (2020).CAS 

    Google Scholar 
    8.Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).CAS 

    Google Scholar 
    9.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020). Seminal paper that identifies abrupt permafrost thaw as an important mechanism in rapid Arctic change.CAS 

    Google Scholar 
    10.Nikrad, M. P., Kerkhof, L. J. & Aggblom, M. M. The subzero microbiome: microbial activity in frozen and thawing soils. FEMS Microbiol. Ecol. 92, fiw081 (2016).
    Google Scholar 
    11.Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–24 (2019).CAS 

    Google Scholar 
    12.Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).CAS 

    Google Scholar 
    13.Anthony, K. W. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).
    Google Scholar 
    14.Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).CAS 

    Google Scholar 
    15.Hong, E., Perkins, R. & Trainor, S. Thaw settlement hazard of permafrost related to climate warming in Alaska. Arctic 67, 93–103 (2014).
    Google Scholar 
    16.Trofimenko, Y. V., Evgenev, G. I. & Shashina, E. V. Functional loss risks of highways in permafrost areas due to climate change. Procedia Eng. 189, 258–264 (2017).
    Google Scholar 
    17.Wurzbacher, C., Nilsson, R. H., Rautio, M. & Peura, S. Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds. ISME J. 11, 1938–1941 (2017).
    Google Scholar 
    18.Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 

    Google Scholar 
    19.Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).CAS 

    Google Scholar 
    20.Walsh, M. G., De Smalen, A. W. & Mor, S. M. Climatic influence on anthrax suitability in warming northern latitudes. Sci. Rep. 8, 9269 (2018).
    Google Scholar 
    21.Zolkos, S. et al. Mercury export from Arctic great rivers. Environ. Sci. Technol. 54, 4140–4148 (2020).CAS 

    Google Scholar 
    22.Ewing, S. A. et al. Uranium isotopes and dissolved organic carbon in loess permafrost: modeling the age of ancient ice. Geochim. Cosmochim. Acta 152, 143–165 (2015).CAS 

    Google Scholar 
    23.Eriksson, M. On Weapons Plutonium in the Arctic Environment (Thule, Greenland). PhD thesis, Lund Univ. (2002).24.Colgan, W. et al. The abandoned ice sheet base at Camp Century, Greenland, in a warming climate. Geophys. Res. Lett. 43, 8091–8096 (2016).
    Google Scholar 
    25.Anisimov, O., Kokorev, V. & Zhiltcova, Y. Arctic ecosystems and their services under changing climate: predictive-modeling assessment. Geogr. Rev. 107, 108–124 (2017).
    Google Scholar 
    26.Pelletier, M., Allard, M. & Levesque, E. Ecosystem changes across a gradient of permafrost degradation in subarctic Québec (Tasiapik Valley, Nunavik, Canada). Arct. Sci. 5, 1–26 (2019).
    Google Scholar 
    27.Perryman, C. R. et al. Heavy metals in the Arctic: distribution and enrichment of five metals in Alaskan soils. PLoS ONE 15, e0233297 (2020).CAS 

    Google Scholar 
    28.Gilichinsky, D. A. & Rivkina, E. M. Permafrost microbiology. Encycl. Earth Sci. Ser. 6, 726–732 (1995). Details the (at the time) emergent field of permafrost microbiology, extremophilic species and future prospects for emergent microbes.
    Google Scholar 
    29.Steven, B., Léveillé, R., Pollard, W. H. & Whyte, L. G. Microbial ecology and biodiversity in permafrost. Extremophiles 10, 259–267 (2006).
    Google Scholar 
    30.Voigt, C. et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide. Glob. Change Biol. 23, 3121–3138 (2017).
    Google Scholar 
    31.Mackelprang, R., Saleska, S. R., Jacobsen, C. S., Jansson, J. K. & Taş, N. Permafrost meta-omics and climate change. Annu. Rev. Earth Planet. Sci. 44, 439–462 (2016).CAS 

    Google Scholar 
    32.Graham, D. E. et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 6, 709–712 (2012).CAS 

    Google Scholar 
    33.Abbott, B. W. et al. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environ. Res. Lett. 11, 034014 (2016).
    Google Scholar 
    34.Ren, J. et al. Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: processes and mechanisms. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.10.019 (2016).35.Dean, J. F. et al. Abundant pre-industrial carbon detected in Canadian Arctic headwaters: implications for the permafrost carbon feedback. Environ. Res. Lett. 13, 34024 (2018).
    Google Scholar 
    36.Jeffries, M. O., Overland, J. E. & Perovich, D. K. The Arctic shifts to a new normal. Phys. Today 66, 35–40 (2013).
    Google Scholar 
    37.El-Sayed, A. & Kamel, M. Future threat from the past. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-11234-9 (2020).38.Houwenhuyse, S., Macke, E., Reyserhove, L., Bulteel, L. & Decaestecker, E. Back to the future in a petri dish: origin and impact of resurrected microbes in natural populations. Evol. Appl. 11, 29–41 (2018).
    Google Scholar 
    39.Miner, K. R. et al. Organochlorine pollutants within a polythermal glacier in the Interior Eastern Alaska Range. Water 10, 1157 (2018).
    Google Scholar 
    40.Li, F. et al. Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nat. Clim. Change 10, 1037–1044 (2020).CAS 

    Google Scholar 
    41.Eriksson, M., Lindahl, P., Roos, P., Dahlgaard, H. & Holm, E. U, Pu, and Am nuclear signatures of the thule hydrogen bomb debris. Environ. Sci. Technol. 42, 4717–4722 (2008).CAS 

    Google Scholar 
    42.Lind, O. C. et al. Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci. Total Environ. 376, 294–305 (2007).CAS 

    Google Scholar 
    43.Slemmons, K. E. H., Saros, J. E. & Simon, K. The influence of glacial meltwater on alpine aquatic ecosystems: a review. Environ. Sci. Process. Impacts 15, 1794 (2013).CAS 

    Google Scholar 
    44.Bidleman, T. F., Jantunen, L. M., Kurt-Karakus, P. B. & Wong, F. Chiral persistent organic pollutants as tracers of atmospheric sources and fate: review and prospects for investigating climate change influences. Atmos. Pollut. Res. 3, 371–382 (2012).CAS 

    Google Scholar 
    45.Chen, M. et al. Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: insights into the impact of global warming on the cycling of emerging pollutants. J. Geophys. Res. Atmos. 124, 7442–7456 (2019).
    Google Scholar 
    46.Goodman, S. & Kertysova, K. The Nuclearisation of the Russian Arctic: New Reactors, New Risks (European Leadership Network, 2020); https://www.europeanleadershipnetwork.org/wp-content/uploads/2020/06/The-nuclearisation-of-the-Russian-Arctic-2.pdf47.Byrne, S. et al. Persistent organochlorine pesticide exposure related to a formerly used defense site on St. Lawrence Island, Alaska: data from sentinel fish and human sera. Toxicol. Environ. Health 78, 37–54 (2015).
    Google Scholar 
    48.The National Academies of Sciences Understanding and Responding to Global Health Security Risks from Microbial Threats in the Arctic (National Academies Press, 2020); https://doi.org/10.17226/2588749.Edwards, A. et al. Microbial genomics amidst the Arctic crisis. Microb. Genom. 6, e000375 (2020). Catalogues known genomic diversity, evolution dynamics and environment of Arctic microbes.
    Google Scholar 
    50.Botnen, S. S., Mundra, S., Kauserud, H. & Eidesen, P. B. Glacier retreat in the high Arctic: opportunity or threat for ectomycorrhizal diversity? FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiaa171 (2020).51.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS 

    Google Scholar 
    52.Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W. & Cory, R. M. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8, 772 (2017).
    Google Scholar 
    53.Taş, N. et al. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nat. Commun. 9, 777 (2018).
    Google Scholar 
    54.Price, P. B. Microbial genesis, life and death in glacial ice. Can. J. Microbiol. 55, 1–11 (2009).CAS 

    Google Scholar 
    55.Niederberger, T. D. et al. Microbial characterization of a subzero, hypersaline methane seep in the Canadian high Arctic. ISME J. 4, 1326–1339 (2010).CAS 

    Google Scholar 
    56.Malavin, S., Shmakova, L., Claverie, J. M. & Rivkina, E. Frozen Zoo: a collection of permafrost samples containing viable protists and their viruses. Biodivers. Data J. 8, e51586 (2020).
    Google Scholar 
    57.Gilichinsky, D., Rivkina, E., Shcherbakova, V., Laurinavichuis, K. & Tiedje, J. Supercooled water brines within permafrost—an unknown ecological niche for microorganisms: a model for astrobiology. Astrobiology 3, 331–341 (2003).CAS 

    Google Scholar 
    58.Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc. Natl Acad. Sci. USA 111, 4274–4279 (2014).CAS 

    Google Scholar 
    59.Legendre, M. et al. In-depth study of Mollivirus sibericum, a new 30,000-yold giant virus infecting Acanthamoeba. Proc. Natl Acad. Sci. USA 112, E5327–E5335 (2015).CAS 

    Google Scholar 
    60.MacKelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011). Uses deep metagenomic sequencing to map the impacts of thaw on the Arctic microbial community structure and genomics.CAS 

    Google Scholar 
    61.Mühlemann, B. et al. Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking age. Science 369, eaaw8977 (2020).
    Google Scholar 
    62.Ng, T. F. F. et al. Preservation of viral genomes in 700-y-old caribou feces from a subarctic ice patch. Proc. Natl Acad. Sci. USA 111, 16842–16847 (2014).
    Google Scholar 
    63.Shmakova, L. et al. A living bdelloid rotifer from 24,000-year-old Arctic permafrost. Curr. Biol. 31, PR712–R713 (2021).
    Google Scholar 
    64.Siliakus, M. F., van der Oost, J. & Kengen, S. W. M. Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles 21, 651–670 (2017).CAS 

    Google Scholar 
    65.Edwards, A. Coming in from the cold: potential microbial threats from the terrestrial cryosphere. Front. Earth Sci. 3, 12 (2015).
    Google Scholar 
    66.Mackelprang, R. et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 11, 2305–2318 (2017).CAS 

    Google Scholar 
    67.Bale, N. J. et al. Fatty acid and hopanoid adaption to cold in the methanotroph Methylovulum psychrotolerans. Front. Microbiol. 10, 589 (2019).
    Google Scholar 
    68.Johnson, S. S. et al. Ancient bacteria show evidence of DNA repair. Proc. Natl Acad. Sci. USA 104, 14401–14405 (2007).CAS 

    Google Scholar 
    69.Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature 552, 400–403 (2017).CAS 

    Google Scholar 
    70.Burkert, A., Douglas, T. A., Waldrop, M. P. & Mackelprang, R. Changes in the active, dead, and dormant microbial community structure across a Pleistocene permafrost chronosequence. Appl. Environ. Microbiol. 85, e02646–18 (2019).CAS 

    Google Scholar 
    71.Colangelo-Lillis, J., Eicken, H., Carpenter, S. D. & Deming, J. W. Evidence for marine origin and microbial-viral habitability of subzero hypersaline aqueous inclusions within permafrost near Barrow, Alaska. FEMS Microbiol. Ecol. 92, fiw053 (2016).CAS 

    Google Scholar 
    72.Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).CAS 

    Google Scholar 
    73.Zhong, Z.-P. et al. Viral ecogenomics of Arctic cryopeg brine and sea ice. mSystems https://doi.org/10.1128/mSystems.00246-20 (2020).74.Bay, S. K. et al. Trace gas oxidizers are widespread and active members of soil microbial communities. Nat. Microbiol. 6, 246–256 (2021).CAS 

    Google Scholar 
    75.Aslam, S. N., Huber, C., Asimakopoulos, A. G., Steinnes, E. & Mikkelsen, Ø. Trace elements and polychlorinated biphenyls (PCBs) in terrestrial compartments of Svalbard, Norwegian Arctic. Sci. Total Environ. 685, 1127–1138 (2019).CAS 

    Google Scholar 
    76.Winiger, P. et al. Source apportionment of circum-Arctic atmospheric black carbon from isotopes and modeling. Sci. Adv. 5, eaau8052 (2019).CAS 

    Google Scholar 
    77.Villa, S., Migliorati, S., Monti, G. S., Holoubek, I. & Vighi, M. Risk of POP mixtures on the Arctic food chain. Environ. Toxicol. Chem. 36, 1181–1192 (2017).CAS 

    Google Scholar 
    78.Ma, J., Hung, H., Tian, C. & Kallenborn, R. Revolatilization of persistent organic pollutants in the Arctic induced by climate change. Nat. Clim. Change 1, 255–260 (2011).CAS 

    Google Scholar 
    79.Ji, X., Abakumov, E. & Polyakov, V. Assessments of pollution status and human health risk of heavy metals in permafrost-affected soils and lichens: a case-study in Yamal Peninsula, Russia Arctic. Hum. Ecol. Risk Assess. 25, 2142–2159 (2019).CAS 

    Google Scholar 
    80.Mu, C. et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 161, 54–60 (2019).CAS 

    Google Scholar 
    81.Brown, T. M., Macdonald, R. W., Muir, D. C. G. & Letcher, R. J. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada’s eastern Arctic. Sci. Total Environ. 618, 500–517 (2018).CAS 

    Google Scholar 
    82.Ferrario, C., Finizio, A. & Villa, S. Legacy and emerging contaminants in meltwater of three alpine glaciers. Sci. Total Environ. 574, 350–357 (2017).CAS 

    Google Scholar 
    83.Miner, K. R., Bogdal, C., Pavlova, P. A., Steinlin, C. & Kreutz, K. J. Quantitative screening level assessment of human risk from PCB in glacial meltwater: Silvretta Glacier, Swiss Alps. Ecotoxicol. Environ. Saf. 166, 251–258 (2018).CAS 

    Google Scholar 
    84.Octaviani, M., Stemmler, I., Lammel, G. & Graf, H. F. Atmospheric transport of persistent organic pollutants to and from the Arctic under present-day and future climate. Environ. Sci. Technol. 49, 3593–3602 (2015).CAS 

    Google Scholar 
    85.Nielsen, S. P., Iosjpe, M. & Strand, P. Collective doses to man from dumping of radioactive waste in the Arctic seas. Sci. Total Environ. 202, 135–146 (1997).CAS 

    Google Scholar 
    86.Eickmeyer, D. C. et al. Interactions of polychlorinated biphenyls and organochlorine pesticides with sedimentary organic matter of retrogressive thaw slump-affected lakes in the tundra uplands adjacent to the Mackenzie Delta, NT, Canada. J. Geophys. Res. G Biogeosci. 121, 411–421 (2016).CAS 

    Google Scholar 
    87.St Pierre, K. A. et al. Unprecedented increases in total and methyl mercury concentrations downstream of retrogressive thaw slumps in the western Canadian Arctic. Environ. Sci. Technol. 52, 14099–14109 (2018).
    Google Scholar 
    88.Birnbaum, L. S. When environmental chemicals act like uncontrolled medicine. Trends Endocrinol. Metab. 24, 321–323 (2013).CAS 

    Google Scholar 
    89.Potapowicz, J., Szumińska, D., Szopińska, M. & Polkowska, Ż. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: part I. Case study of Antarctica. Sci. Total Environ. 651, 1534–1548 (2019).CAS 

    Google Scholar 
    90.Kim, K.-S. et al. Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere 94, 151–157 (2014).CAS 

    Google Scholar 
    91.Knutsen, H. K. et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 16, e05194 (2018).
    Google Scholar 
    92.Iszatt, N. et al. Prenatal and postnatal exposure to persistent organic pollutants and infant growth: a pooled analysis of seven European birth cohorts. Environ. Health Perspect. 123, 730–736 (2015).CAS 

    Google Scholar 
    93.Nadal, M., Marquès, M., Mari, M. & Domingo, J. L. Climate change and environmental concentrations of POPs: a review. Environ. Res. 143, 177–185 (2015).CAS 

    Google Scholar 
    94.Toxicological Profile for Lead (Agency for Toxic Substances and Disease Registry, 2020); https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf95.Toxicological Profile for Mercury (Agency for Toxic Substances and Disease Registry, 1999); https://www.atsdr.cdc.gov/ToxProfiles/tp46.pdf96.Toxicological Profile for Cadmium (Agency for Toxic Substances and Disease Registry, 2012); https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf97.Halbach, K., Mikkelsen, Ø., Berg, T. & Steinnes, E. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic. Chemosphere 188, 567–574 (2017).CAS 

    Google Scholar 
    98.Miner, K. R. et al. Legacy organochlorine pollutants in glacial watersheds: a review. Environ. Sci. Process. Impacts 19, 1474–1483 (2017).CAS 

    Google Scholar 
    99.Jamieson, H. E. The legacy of arsenic contamination from mining and processing refractory gold ore at Giant Mine, Yellowknife, Northwest Territories, Canada. Rev. Mineral. Geochem. 79, 533–551 (2014).
    Google Scholar 
    100.Tolvanen, A. et al. Mining in the Arctic environment—a review from ecological, socioeconomic and legal perspectives. J. Environ. Manag. 233, 832–844 (2019).
    Google Scholar 
    101.Liu, X., Jiang, S., Zhang, P. & Xu, L. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments. Environ. Pollut. 160, 161–168 (2012).CAS 

    Google Scholar 
    102.Antcibor, I. et al. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia. Biogeosciences 11, 1–15 (2014).
    Google Scholar 
    103.Lim, A. G. et al. A revised pan-Arctic permafrost soil Hg pool based on western Siberian peat Hg and carbon observations. Biogeosciences 17, 3083–3097 (2020).CAS 

    Google Scholar 
    104.Schuster, P. F. et al. Permafrost stores a globally significant amount of mercury. Geophys. Res. Lett. 45, 1463–1471 (2018).CAS 

    Google Scholar 
    105.Schaefer, K. et al. Potential impacts of mercury released from thawing permafrost. Nat. Commun. 11, 4650 (2020). Estimates future releases of mercury from the permafrost from present to 2300, under RCP scenarios.CAS 

    Google Scholar 
    106.Jiskra, M. E., Sonke, J., Agnan, Y., Helmig, D. & Obrist, D. Insights from mercury stable isotopes on terrestrial-atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences 16, 4051–4064 (2019).CAS 

    Google Scholar 
    107.Blais, J. M. et al. Arctic seabirds transport marine-derived contaminants. Science 309, 445 (2005).CAS 

    Google Scholar 
    108.Brimble, S. K. et al. High Arctic ponds receiving biotransported nutrients from a nearby seabird colony are also subject to potentially toxic loadings of arsenic, cadmium, and zinc. Environ. Toxicol. Chem. 28, 2426–2433 (2009).CAS 

    Google Scholar 
    109.Michelutti, N. et al. Trophic position influences the efficacy of seabirds as metal biovectors. Proc. Natl Acad. Sci. USA 107, 10543–10548 (2010).CAS 

    Google Scholar 
    110.Mallory, M. L. & Braune, B. M. Tracking contaminants in seabirds of Arctic Canada: temporal and spatial insights. Mar. Pollut. Bull. 64, 1475–1484 (2012).CAS 

    Google Scholar 
    111.Lehnherr, I. Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environ. Rev. 22, 229–243 (2014).CAS 

    Google Scholar 
    112.Steinlin, C. et al. A temperate alpine glacier as a reservoir of polychlorinated biphenyls: model results of incorporation, transport, and release. Environ. Sci. Technol. 50, 5572–5579 (2016).CAS 

    Google Scholar 
    113.Pavlova, P. A., Schmid, P., Zennegg, M., Bogdal, C. & Schwikowski, M. Trace analysis of hydrophobic micropollutants in aqueous samples using capillary traps. Chemosphere 106, 51–56 (2014).CAS 

    Google Scholar 
    114.Blais, J. M. et al. Melting glaciers: a major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada. Ambio 30, 410–415 (2001).CAS 

    Google Scholar 
    115.Lafrenière, M. J., Blais, J. M., Sharp, M. J. & Schindler, D. W. Organochlorine pesticide and polychlorinated biphenyl concentrations in snow, snowmelt, and runoff at Bow Lake, Alberta. Environ. Sci. Technol. 40, 4909–4915 (2006).
    Google Scholar 
    116.Elliott, J. E. et al. Factors influencing legacy pollutant accumulation in alpine osprey: biology, topography, or melting glaciers? Environ. Sci. Technol. 46, 9681–9689 (2012).CAS 

    Google Scholar 
    117.Walters, D. M. et al. Trophic magnification of organic chemicals: a global synthesis. Environ. Sci. Technol. 50, 4650–4658 (2016).CAS 

    Google Scholar 
    118.Miner, K. R., Wayant, N. & Ward, H. Preventing chemical release in hurricanes. Science 362, 166 (2018).CAS 

    Google Scholar 
    119.Quadroni, S. & Bettinetti, R. Health risk assessment for the consumption of fresh and preserved fish (Alosa agone) from Lago di Como (northern Italy). Environ. Res. 156, 571–578 (2017).CAS 

    Google Scholar 
    120.Mangano, M. C., Sarà, G. & Corsolini, S. Monitoring of persistent organic pollutants in the polar regions: knowledge gaps & gluts through evidence mapping. Chemosphere 172, 37–45 (2017).CAS 

    Google Scholar 
    121.Villa, S., Vighi, M., Maggi, V., Finizio, A. & Bolzacchini, E. Historical trends of organochlorine pesticides in an alpine glacier. J. Atmos. Chem. 46, 295–311 (2003).CAS 

    Google Scholar 
    122.Garmash, O. et al. Deposition history of polychlorinated biphenyls to the Lomonosovfonna glacier, Svalbard: a 209 congener analysis. Environ. Sci. Technol. 47, 12064–12072 (2013).CAS 

    Google Scholar 
    123.Bizzotto, E. C., Villa, S., Vaj, C. & Vighi, M. Comparison of glacial and non-glacial-fed streams to evaluate the loading of persistent organic pollutants through seasonal snow/ice melt. Chemosphere 74, 924–930 (2009).CAS 

    Google Scholar 
    124.Villa, S., Negrelli, C., Finizio, A., Flora, O. & Vighi, M. Organochlorine compounds in ice melt water from Italian alpine rivers. Ecotoxicol. Environ. Saf. 63, 84–90 (2006).CAS 

    Google Scholar 
    125.Miner, K. R. et al. A screening-level approach to quantifying risk from glacial release of organochlorine pollutants in the Alaskan Arctic. J. Expo. Sci. Environ. Epidemiol. 29, 293–301 (2018). Develops the first human risk assessment of glacially stored pollutants in the Arctic.
    Google Scholar 
    126.Czub, G. & McLachlan, M. S. A food chain model to predict the levels of lipophilic organic contaminants in humans. Environ. Toxicol. Chem. 23, 2356–2366 (2004).CAS 

    Google Scholar 
    127.Wang, X., Gong, P., Wang, C., Ren, J. & Yao, T. A review of current knowledge and future prospects regarding persistent organic pollutants over the Tibetan Plateau. Sci. Total Environ. 573, 139–154 (2016).CAS 

    Google Scholar 
    128.Desforges, J. P. et al. Predicting global killer whale population collapse from PCB pollution. Science 361, 1373–1376 (2018).CAS 

    Google Scholar 
    129.Macdonald, R. W. et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci. Total Environ. 254, 93–234 (2000).CAS 

    Google Scholar 
    130.Pavlova, P. A. et al. Polychlorinated biphenyls in a temperate alpine glacier: 1. Effect of percolating meltwater on their distribution in glacier ice. Environ. Sci. Technol. 49, 14085–14091 (2015).CAS 

    Google Scholar 
    131.Wania, F., Westgate, J. N., Technol, E. S. & Asap, A. On the mechanism of mountain cold-trapping of organic chemicals. Environ. Sci. Technol. 42, 9092–9098 (2008).CAS 

    Google Scholar 
    132.Strand, P. & Cooke, A. Environmental Radioactivity in the Arctic (Scientific Committee of the Environmental Radioactivity in the Arctic, 1995).133.Wright, S. M. et al. Spatial variation in the vulnerability of Norwegian Arctic counties to radiocaesium deposition. Sci. Total Environ. 202, 173–184 (1997).CAS 

    Google Scholar 
    134.Mitchell, P. I., León Vintró, L., Dahlgaard, H., Gascó, C. & Sánchez-Cabeza, J. A. Perturbation in the 240Pu/239Pu global fallout ratio in local sediments following the nuclear accidents at Thule (Greenland) and Palomares (Spain). Sci. Total Environ. 202, 147–153 (1997).CAS 

    Google Scholar 
    135.Khalturin, V. I., Rautian, T. G., Richards, P. G. & Leith, W. S. A review of nuclear testing by the Soviet Union at Novaya Zemlya, 1955–1990. Sci. Glob. Secur. 13, 1–42 (2005). Reviews the Novaya Zemlya nuclear testing site history, nuclear releases and posits environmental distribution.
    Google Scholar 
    136.Travkina, A. V. et al. Monitoring the environmental contamination of Kara Sea and shallow bays of Novaya Zemlya. J. Radioanal. Nucl. Chem. 311, 1673–1680 (2017).CAS 

    Google Scholar 
    137.Skorve, J. The environment of the nuclear test sites on Novaya Zemlya. Sci. Total Environ. 202, 167–172 (1997).CAS 

    Google Scholar 
    138.Sarkisov, A. A. The question of clean-up of radioactive contamination in the Arctic region. Her. Russ. Acad. Sci. 89, 7–22 (2019).
    Google Scholar 
    139.Pogrebov, V. B., Fokin, S. I., Galtsova, V. V. & Ivanov, G. I. Benthic communities as influenced by nuclear testing and radioactive waste disposal off Novaya Zemlya in the Russian Arctic. Mar. Pollut. Bull. 35, 333–339 (1997).CAS 

    Google Scholar 
    140.Miroshnikov, A. Y. et al. Radioecological investigations on the northern Novaya Zemlya Archipelago. Oceanology 57, 204–214 (2017).
    Google Scholar 
    141.Salbu, B. et al. Radioactive contamination from dumped nuclear waste in the Kara Sea—results from the joint Russian-Norwegian expeditions in 1992-1994. Sci. Total Environ. 202, 185–198 (1997).CAS 

    Google Scholar 
    142.Oughton, D. H., Børretzen, P., Salbu, B. & Tronstad, E. Mobilisation of 137Cs and 90Sr from sediments: potential sources to Arctic waters. Sci. Total Environ. 202, 155–165 (1997).CAS 

    Google Scholar 
    143.Faria, S. H., Weikusat, I. & Azuma, N. The microstructure of polar ice. Part I: highlights from ice core research. J. Struct. Geol. 61, 2–20 (2014).
    Google Scholar 
    144.Karlsson, N. B. et al. Ice-penetrating radar survey of the subsurface debris field at Camp Century, Greenland. Cold Reg. Sci. Technol. 165, 102788 (2019). The most recent ice-penetrating radar survey of Camp Century, Greenland, characterizing the location and concentration of wastes.
    Google Scholar 
    145.Vandecrux, B., Colgan, W. T., Solgaard, A., Steffensen, J. P. & Karlsson, N. B. Firn evolution at Camp Century, Greenland: 1966-2100. Front. Earth Sci. 9, 578978 (2021).
    Google Scholar 
    146.Vila, E., Hornero-Méndez, D., Azziz, G., Lareo, C. & Saravia, V. Carotenoids from heterotrophic bacteria isolated from Fildes Peninsula, King George Island, Antarctica. Biotechnol. Rep. 21, e00306 (2019).
    Google Scholar 
    147.Chaudhary, D. K., Kim, D. U., Kim, D. & Kim, J. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci. Rep. 9, 4134 (2019).
    Google Scholar 
    148.de Gouw, J. A. et al. Daily satellite observations of methane from oil and gas production regions in the United States. Sci. Rep. 10, 1379 (2020).
    Google Scholar 
    149.Girardot, F. et al. Bacterial diversity on an abandoned, industrial wasteland contaminated by polychlorinated biphenyls, dioxins, furans and trace metals. Sci. Total Environ. 748, 141242 (2020).CAS 

    Google Scholar 
    150.Price, P. B. Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol. Ecol. 59, 217–231 (2007).CAS 

    Google Scholar 
    151.Schütte, U. M. E. et al. Effect of permafrost thaw on plant and soil fungal community in a boreal forest: does fungal community change mediate plant productivity response? J. Ecol. 107, 1737–1752 (2019).
    Google Scholar 
    152.Jensen, P. E., Hennessy, T. W. & Kallenborn, R. Water, sanitation, pollution, and health in the Arctic. Environ. Sci. Pollut. Res. 25, 32827–32830 (2018).
    Google Scholar 
    153.Ewing, S. A. et al. Long-term anoxia and release of ancient, labile carbon upon thaw of Pleistocene permafrost. Geophys. Res. Lett. 42, 10730–10738 (2015).CAS 

    Google Scholar 
    154.Elder, C. D. et al. Seasonal sources of whole-lake CH4 and CO2 emissions from interior Alaskan thermokarst lakes. J. Geophys. Res. Biogeosci. 124, 1209–1229 (2019).CAS 

    Google Scholar 
    155.Jansen, E. et al. Past perspectives on the present era of abrupt Arctic climate change. Nat. Clim. Change 10, 714–721 (2020).
    Google Scholar 
    156.Nellier, Y.-M. et al. Mass budget in two high altitude lakes reveals their role as atmospheric PCB sinks. Sci. Total Environ. 511, 203–213 (2015).CAS 

    Google Scholar 
    157.Garnett, J. et al. Mechanistic insight into the uptake and fate of persistent organic pollutants in sea ice. Environ. Sci. Technol. 53, 6757–6764 (2019).CAS 

    Google Scholar 
    158.Kortenkamp, A. & Faust, M. Regulate to reduce chemical mixture risk. Science 361, 224–226 (2018).CAS 

    Google Scholar 
    159.Kirchgeorg, T. et al. Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the eastern Alps. Environ. Pollut. 218, 804–812 (2016).CAS 

    Google Scholar 
    160.Weil, T. et al. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 5, 32 (2017).
    Google Scholar 
    161.Li, J. et al. Evidence for persistent organic pollutants released from melting glacier in the central Tibetan Plateau, China. Environ. Pollut. 220, 178–185 (2017).CAS 

    Google Scholar 
    162.Walvoord, M. A., Voss, C. I., Ebel, B. A. & Minsley, B. J. Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon. Environ. Res. Lett. 14, 015003 (2019).CAS 

    Google Scholar 
    163.Mogrovejo, D. C. et al. Prevalence of antimicrobial resistance and hemolytic phenotypes in culturable Arctic bacteria. Front. Microbiol. 11, 570 (2020).
    Google Scholar 
    164.Friedman, C. L. & Selin, N. E. Long-range atmospheric transport of polycyclic aromatic hydrocarbons: a global 3-D model analysis including evaluation of Arctic sources. Environ. Sci. Technol. 46, 9501–9510 (2012).CAS 

    Google Scholar 
    165.Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).
    Google Scholar 
    166.Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167 (2015).CAS 

    Google Scholar 
    167.MacInnis, J. J. et al. Fate and transport of perfluoroalkyl substances from snowpacks into a lake in the high Arctic of Canada. Environ. Sci. Technol. 53, 10753–10762 (2019).CAS 

    Google Scholar 
    168.Yeung, L. W. Y. et al. Vertical profiles, sources, and transport of PFASs in the Arctic Ocean. Environ. Sci. Technol. 51, 6735–6744 (2017).CAS 

    Google Scholar 
    169.Colatriano, D. et al. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun. Biol. 1, 90 (2018).
    Google Scholar 
    170.Commane, R. et al. Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proc. Natl Acad. Sci. USA 114, 5361–5366 (2017).CAS 

    Google Scholar 
    171.Hartmann, M. et al. Variation of ice nucleating particles in the European Arctic over the last centuries. Geophys. Res. Lett. https://doi.org/10.1029/2019GL082311 (2019).172.Murray, B. J., Carslaw, K. S. & Field, P. R. Opinion: cloud-phase climate feedback and the importance of ice-nucleating particles. Atmos. Chem. Phys. 21, 665–679 (2021).CAS 

    Google Scholar 
    173.Joyce, R. E. et al. Biological ice-nucleating particles deposited year-round in subtropical precipitation. Appl. Environ. Microbiol. 85, e01567-19 (2019).
    Google Scholar 
    174.Yumashev, D., van Hussen, K., Gille, J. & Whiteman, G. Towards a balanced view of Arctic shipping: estimating economic impacts of emissions from increased traffic on the Northern Sea Route. Clim. Change 143, 143–155 (2017).CAS 

    Google Scholar 
    175.Ramage, J. et al. Population living on permafrost in the Arctic. Popul. Environ. https://doi.org/10.1007/s11111-020-00370-6 (2021).176.Bartsch, A., Pointner, G., Ingeman-Nielsen, T. & Lu, W. Towards circumpolar mapping of Arctic settlements and infrastructure based on Sentinel-1 and Sentinel-2. Remote Sens. 12, 2368 (2020).
    Google Scholar 
    177.Dewailly, E. Canadian Inuit and the Arctic dilemma. Oceanography 19, 88–89 (2006).
    Google Scholar 
    178.Plaza, C. et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631 (2019).CAS 

    Google Scholar 
    179.Kashuba, E. et al. Ancient permafrost staphylococci carry antibiotic resistance genes. Microb. Ecol. Health Dis. https://doi.org/10.1080/16512235.2017.1345574 (2017).180.Dcosta, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).CAS 

    Google Scholar 
    181.Perron, G. G. et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS ONE 10, e0069533 (2015).
    Google Scholar 
    182.Gilichinsky, D. et al. in Psychrophiles: From Biodiversity to Biotechnology (eds Margesin, R. et al.) 83–102 (Springer-Verlag, 2008).183.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).CAS 

    Google Scholar 
    184.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).CAS 

    Google Scholar 
    185.Taubenberger, J. K. et al. Reconstruction of the 1918 influenza virus: unexpected rewards from the past. mBio 3, e00201–12 (2012).
    Google Scholar 
    186.Jordan, D., Tumpey, T. & Jester, B. The Deadliest Flu: The Complete Story of the Discovery and Reconstruction of the 1918 Pandemic Virus (US Center for Disease Control, 2019).187.Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).CAS 

    Google Scholar 
    188.Revich, B., Tokarevich, N. & Parkinson, A. J. Climate change and zoonotic infections in the Russian Arctic. Int. J. Circumpolar Health 71, 18792 (2012).
    Google Scholar 
    189.Waits, A., Emelyanova, A., Oksanen, A., Abass, K. & Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713 (2018).
    Google Scholar 
    190.Hueffer, K., Drown, D., Romanovsky, V. & Hennessy, T. Factors contributing to anthrax outbreaks in the circumpolar north. Ecohealth 17, 174–180 (2020).
    Google Scholar 
    191.Springer, Y. P. et al. Novel Orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 64, 1737–1741 (2017).
    Google Scholar 
    192.Mackay, D. Multimedia Environmental Models (CRC Press, 2001).193.Mackay, D., Celsie, A. K. D., Powell, D. E. & Parnis, J. M. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective. Environ. Sci. Process. Impacts 20, 72–85 (2018).CAS 

    Google Scholar 
    194.Vizcaino, E., Grimalt, J. O., Fernandez-Somoano, A. & Tardon, A. Transport of persistent organic pollutants across the human placenta. Environ. Int. 65, 107–115 (2014).CAS 

    Google Scholar 
    195.Costa, O. et al. First-trimester maternal concentrations of polyfluoroalkyl substances and fetal growth throughout pregnancy. Environ. Int. https://doi.org/10.1016/j.envint.2019.05.024 (2019).196.Adetona, O. et al. Concentrations of select persistent organic pollutants across pregnancy trimesters in maternal and in cord serum in Trujillo, Peru. Chemosphere 91, 1426–1433 (2013).CAS 

    Google Scholar 
    197.Toxicological Profile for Plutonium (Agency for Toxic Substances and Disease Registry, 2010); https://www.atsdr.cdc.gov/toxprofiles/tp143.pdf198.Toxicological Profile for Cesium (Agency for Toxic Substances and Disease Registry, 2004); https://www.atsdr.cdc.gov/toxprofiles/tp157.pdf199.Serikova, S. et al. High carbon emissions from thermokarst lakes of western Siberia. Nat. Commun. 10, 1552 (2019).CAS 

    Google Scholar 
    200.Swingedouw, D. et al. Early warning from space for a few key tipping points in physical, biological, and social-ecological systems. Surv. Geophys. https://doi.org/10.1007/s10712-020-09604-6 (2020).201.Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat. Commun. 10, 1329 (2019).
    Google Scholar 
    202.Tank, S. E. et al. Landscape matters: predicting the biogeochemical effects of permafrost thaw on aquatic networks with a state factor approach. Permafr. Periglac. Process. https://doi.org/10.1002/ppp.2057 (2020).203.Feng, J. et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 8, 3 (2020).
    Google Scholar 
    204.Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 96, 2059–2077 (2015).
    Google Scholar 
    205.Donald, D. B. et al. Delayed deposition of organochlorine pesticides at a temperate glacier. Environ. Sci. Technol. 33, 1794–1798 (1999).CAS 

    Google Scholar 
    206.Hermanson, M. H. et al. Current-use and legacy pesticide history in the Austfonna ice cap, Svalbard, Norway. Environ. Sci. Technol. 39, 8163–8169 (2005).CAS 

    Google Scholar 
    207.Salvadó, J. A., Sobek, A., Carrizo, D. & Gustafsson, Ö. Observation-based assessment of PBDE loads in Arctic ocean waters. Environ. Sci. Technol. 50, 2236–2245 (2016).
    Google Scholar 
    208.Vecchiato, M. et al. The great acceleration of fragrances and PAHs archived in an ice core from Elbrus, Caucasus. Sci. Rep. 10, 10661 (2020).CAS 

    Google Scholar 
    209.Miteva, V., Teacher, C., Sowers, T. & Brenchley, J. Comparison of the microbial diversity at different depths of the GISP2 Greenland ice core in relationship to deposition climates. Environ. Microbiol. 11, 640–656 (2009).CAS 

    Google Scholar  More

  • in

    Invasive potential of tropical fruit flies in temperate regions under climate change

    1.Aluja, M. Fruit fly (Diptera: Tephritidae) research in Latin America: myths, realities and dreams. Soc. Entomol. Bras. 28, 565–594 (1999).Article 

    Google Scholar 
    2.Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Weldon, C. W., Boardman, L., Marlin, D. & Terblanche, J. S. Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners. Front. Zool. 13, 15 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Weldon, C. W., Díaz-Fleischer, F. & Pérez-Staples, D. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D. et al.) 27–43 (CRC Press, 2020).5.Malacrida, A. R. et al. Globalization and fruit fly invasion and expansion: the medfly paradigm. Genetica 131, 1–9 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Diamantidis, A. D., Carey, J. R., Nakas, C. T. & Papadopoulos, N. T. Ancestral populations perform better in a novel environment: domestication of Mediterranean fruit fly populations from five global regions. Biol. J. Linn. Soc. 102, 334–345 (2011).Article 

    Google Scholar 
    7.Diamantidis, A. D. et al. Life history evolution in a globally invading tephritid: patterns of survival and reproduction in medflies from six world regions. Biol. J. Linn. Soc. 97, 106–117 (2009).Article 

    Google Scholar 
    8.Papadopoulos, N. T., Plant, R. E. & Carey, J. R. From trickle to flood: the large-scale, cryptic invasion of California by tropical fruit flies. Proc. R. Soc. Biol. Sci. Ser. B 280, 20131466 (2013).Article 

    Google Scholar 
    9.EUPHRESCO, project FLY_DETECT. Development and implementation of early detection tools and effective management strategies for invasive non-European and other selected fruit fly species of economic importance (FLY DETECT). Final report. https://doi.org/10.5281/zenodo.3732297. (2020)10.FSA PLH Panel, (EFSA Panel on Plant Health). Pest categorisation of non-EU Tephritidae. EFSA J. 18, e05931 (2020).
    Google Scholar 
    11.Carey, J. R. The Mediterranean fruit fly (Ceratitis capitata). Am. Entomol. 56, 158–163 (2010).Article 

    Google Scholar 
    12.Gutierrez, A. P. Applied Population Ecology: A Supply-Demand Approach. (Wiley, 1996).13.Sinclair, T. R. & Seligman, N. G. Crop modeling: from infancy to maturity. Agron. J. 88, 698–704 (1996).Article 

    Google Scholar 
    14.Gutierrez, A. P. & Ponti, L. Eradication of invasive species: why the biology matters. Environ. Entomol. 42, 395–411 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Asplen, M. K. et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J. Pest Sci. 88, 469–494 (2015).Article 

    Google Scholar 
    16.Neteler, M., Bowman, M. H., Landa, M. & Metz, M. GRASS GIS: a multi-purpose Open Source GIS. Environ. Model. Softw. 31, 124–130 (2012).Article 

    Google Scholar 
    17.Ekesi, S., Mohamed, S. & Meyer, M. D. Fruit Fly Research and Development in Africa—Towards a Sustainable Management Strategy to Improve Horticulture. (Springer, 2016).18.Vera, M. T., Rodriguez, R., Segura, D. F., Cladera, J. L. & Sutherst, R. W. Potential geographical distribution of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with emphasis on Argentina and Australia. Environ. Entomol. 31, 1009–1022 (2002).Article 

    Google Scholar 
    19.De Meyer, M., Robertson, M. P., Peterson, A. T. & Mansell, M. W. Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). J. Biogeogr. 35, 270–281 (2008).Article 

    Google Scholar 
    20.Tuel, A. & Eltahir, E. A. B. Why is the Mediterranean a climate change hot spot? J. Clim. 33, 5829–5843 (2020).Article 

    Google Scholar 
    21.Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. Biol. Sci. Ser. B 276, 1395–1406 (2009).Article 

    Google Scholar 
    22.IPCC, Intergovernmental Panel on Climate Change. Climate change 2014: Impacts, Adaptation, and Vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2014).23.Godefroid, M., Cruaud, A., Rossi, J. P. & Rasplus, J. Y. Assessing the risk of invasion by Tephritid fruit flies: intraspecific divergence matters. PLoS ONE 10, e0135209 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Ponti, L. et al. Biological invasion risk assessment of Tuta absoluta: mechanistic versus correlative methods. Biol. Invasions (in press).25.Carey, J. R., Papadopoulos, N. & Plant, R. The 30‐year debate on a multi‐billion‐dollar threat: tephritid fruit fly establishment in California. Am. Entomol. 63, 100–113 (2017).Article 

    Google Scholar 
    26.Gutierrez, A. P., Ponti, L. & Gilioli, G. Comments on the concept of ultra-low, cryptic tropical fruit fly populations. Proc. R. Soc. B Biol. Sci. 281, 20132825 (2014).Article 

    Google Scholar 
    27.McInnis, D. O. et al. Can polyphagous invasive tephritid pest populations escape detection for years under favorable climatic and host conditions? Am. Entomol. 63, 89–99 (2017).Article 

    Google Scholar 
    28.Barr, N. B. et al. Genetic diversity of Bactrocera dorsalis (Diptera: Tephritidae) on the Hawaiian islands: implications for an introduction pathway into California. J. Econ. Entomol. 107, 1946–1958 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Davies, N., Villablanca, F. X. & Roderick, G. K. Bioinvasions of the medfly Ceratitis capitata: source estimation using DNA sequences at multiple intron loci. Genetics 153, 351–360 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Meixner, M. D., McPheron, B. A., Silva, J. G., Gasparich, G. E. & Sheppard, W. S. The Mediterranean fruit fly in California: evidence for multiple introductions and persistent populations based on microsatellite and mitochondrial DNA variability. Mol. Ecol. Notes 11, 891–899 (2002).CAS 
    Article 

    Google Scholar 
    31.Gutierrez, A. P., Ponti, L. & Cossu, Q. A. Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim. Change 95, 195–217 (2009).Article 

    Google Scholar 
    32.Johnson, M. W. et al. High temperature affects olive fruit fly populations in California’s Central Valley. Calif. Agric. 65, 29–33 (2011).Article 

    Google Scholar 
    33.Gutierrez, A. P., Ponti, L. & Dalton, D. T. Analysis of the invasiveness of spotted wing Drosophila (Drosophila suzukii) in North America, Europe, and the Mediterranean Basin. Biol. Invasions 18, 3647–3663 (2016).Article 

    Google Scholar 
    34.Ponti, L., Gutierrez, A. P., Ruti, P. M. & Dell’Aquila, A. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc. Natl Acad. Sci. USA 111, 5598–5603 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Andrewartha, H. G. & Birch, L. C. The Distribution and Abundance of Animals. (The University of Chicago Press, 1954).36.Huffaker, C. B. & Messenger, P. S. Theory and Practice of Biological Control. (Academic Press, 1976).37.Palladino, P. Defining ecology: ecological theories, mathematical models, and applied biology in the 1960s and 1970s. J. Hist. Biol. 24, 223–243 (1991).Article 

    Google Scholar 
    38.Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584 (2017).Article 

    Google Scholar 
    39.Evans, M. R. Modelling ecological systems in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 367, 181–190 (2012).Article 

    Google Scholar 
    40.Jørgensen, S. E., Nielsen, S. N. & Fath, B. D. Recent progress in systems ecology. Ecol. Model. 319, 112–118 (2016).Article 

    Google Scholar 
    41.FSA PLH Panel, (EFSA Panel on Plant Health). Pest categorisation of non-EU Tephritidae. EFSA J. 18, e05931 (2020).
    Google Scholar 
    42.Messenger, P. S. & van den Bosch, R. in Biological Control (ed. Huffaker, C. B.) 511 (Plenum/Rosetta Press, 1969).43.Grout, T. G. & Stoltz, K. C. Developmental rates at constant temperatures of three economically important Ceratitis spp. (Diptera: Tephritidae) from southern Africa. Environ. Entomol. 36, 1310–1317 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Papanastasiou, S. A., Nestel, D., Diamantidis, A. D., Nakas, C. T. & Papadopoulos, N. T. Physiological and biological patterns of a highland and a coastal population of the European cherry fruit fly during diapause. J. Insect Physiol. 57, 83–93 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Müller, H. G., Wu, S., Diamantidis, A. D., Papadopoulos, N. T. & Carey, J. R. Reproduction is adapted to survival characteristics across geographically isolated medfly populations. Proc. R. Soc. Biol. Sci. Ser. B 276, 4409–4416 (2009).Article 

    Google Scholar 
    46.Wang, J., Zeng, L. & Han, Z. An assessment of cold hardiness and biochemical adaptations for cold tolerance among different geographic populations of the Bactrocera dorsalis (Diptera: Tephritidae) in China. J. Insect Sci. Ludhiana 14, 292 (2014).47.Aluja, M. et al. Nonhost status of Citrus sinensis cultivar Valencia and C. paradisi cultivar Ruby Red to Mexican Anastrepha fraterculus (Diptera: Tephritidae). J. Econ. Entomol. 96, 1693–1703 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Dupuis, J. R., Ruiz‐Arce, R., Barr, N. B., Thomas, D. B. & Geib, S. M. Range‐wide population genomics of the Mexican fruit fly: toward development of pathway analysis tools. Evol. Appl. 12, 1641–1660 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ricalde, M. P., Nava, D. E., Loeck, A. E. & Donatti, M. G. Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. J. Insect Sci. 12, 33 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Duyck, P. F. & Quilici, S. Survival and development of different life stages of three Ceratitis spp. (Diptera: Tephritidae) reared at five constant temperatures. Bull. Entomol. Res. 92, 461–469 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Gutierrez, A. P. & Regev, U. The bioeconomics of tritrophic systems: applications to invasive species. Ecol. Econ. 52, 383–396 (2005).Article 

    Google Scholar 
    53.Gutierrez, A. P. & Ponti, L. The new world screwworm: prospective distribution and role of weather in eradication. Agric. Entomol. 16, 158–173 (2014).Article 

    Google Scholar 
    54.Gutierrez, A. P., Ponti, L. & Arias, P. A. Deconstructing the eradication of new world screwworm in North America: retrospective analysis and climate warming effects. Med. Vet. Entomol. 33, 282–295 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Egartner, A. & Lethmayer, C. Invasive fruit flies of economic importance in Austria – monitoring activities 2016. IOBCWPRS Bull. 123, 45–49 (2017).
    Google Scholar 
    56.Nugnes, F., Russo, E., Viggiani, G. & Bernardo, U. First record of an invasive fruit fly belonging to Bactrocera dorsalis complex (Diptera: Tephritidae) in Europe. Insects 9, 182 (2018).PubMed Central 
    Article 

    Google Scholar 
    57.Liebhold, A. M. et al. Eradication of invading insect populations: from concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).58.Tobin, P. C. et al. Determinants of successful arthropod eradication programs. Biol. Invasions 16, 401–414 (2014).Article 

    Google Scholar 
    59.Gilbert, N., Gutierrez, A. P., Frazer, B. D. & Jones, R. E. Ecological Relationships. (W.H. Freeman and Co., 1976).60.Gutierrez, A. P. Applied Population Ecology: A Supply-Demand Approach (Wiley, 1996).61.Gutierrez, A. P. The physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm. Ecology 73, 1552–1563 (1992).Article 

    Google Scholar 
    62.Gutierrez, A. P., Mills, N. J., Schreiber, S. J. & Ellis, C. K. A physiologically based tritrophic perspective on bottom-up-top-down regulation of populations. Ecology 75, 2227–2242 (1994).Article 

    Google Scholar 
    63.Mills, N. J. & Gutierrez, A. P. in Theoretical Approaches to Biological Control (eds. Hawkins, B. A. & Cornell, V. H.) (Cambridge University Press, 1999).64.Barlow, N. D. in Theoretical Approaches to Biological Control (eds. Hawkins, B. A. & Cornell, H. V.) 43–70 (Cambridge University Press, 1999).65.Manetsch, T. J. Time-varying distributed delays and their use in aggregative models of large systems. IEEE Trans. Syst. Man Cybern. 6, 547–553 (1976).Article 

    Google Scholar 
    66.Buffoni, G. & Pasquali, S. Structured population dynamics: continuous size and discontinuous stage structures. J. Math. Biol. 54, 555–595 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Di Cola, G., Gilioli, G. & Baumgärtner, J. in Ecological Entomology (eds. Huffaker, C. B. & Gutierrez, A. P.) (Wiley, 1999).68.Severini, M., Alilla, R., Pesolillo, S. & Baumgärtner, J. Fenologia della vite e della Lobesia botrana (Lep. Tortricidae) nella zona dei Castelli Romani. Riv. Ital. Agrometeorol. 3, 34–39 (2005).
    Google Scholar 
    69.Vansickle, J. Attrition in distributed delay models. IEEE Trans. Syst. Man Cybern. 7, 635–638 (1977).Article 

    Google Scholar 
    70.Wang, Y. H. & Gutierrez, A. P. An assessment of the use of stability analyses in population ecology. J. Anim. Ecol. 49, 435–452 (1980).Article 

    Google Scholar 
    71.Briére, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).Article 

    Google Scholar 
    72.Frazer, B. D. & Gilbert, N. Coccinellids and aphids: a quantitative study of the impact of adult ladybirds (Coleoptera: Coccinellidae) preying on field populations of pea aphids (Homoptera: Aphididae). J. Entomol. Soc. Br. Columbia 73, 33–56 (1976).
    Google Scholar 
    73.Gutierrez, A. P. & Baumgärtner, J. U. Multitrophic level models of predator-prey energetics: I. Age-specific energetics models—pea aphid Acyrthosiphon pisum (Homoptera: Aphididae) as an example. Can. Entomol. 116, 924–932 (1984).
    Google Scholar 
    74.Bieri, M., Baumgärtner, J., Bianchi, G., Delucchi, V. & von Arx, R. Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Mitteilungen Schweiz. Entomol. Ges. 56, 163–171 (1983).
    Google Scholar 
    75.Messenger, P. S. & Flitters, N. E. Effect of constant temperature environments on the egg stage of three species of Hawaiian fruit flies. Ann. Entomol. Soc. Am. 51, 109–119 (1958).Article 

    Google Scholar 
    76.Carey, J. R. Demography and population dynamics of the Mediterranean fruit fly. Ecol. Model. 16, 125–150 (1982).Article 

    Google Scholar 
    77.Muñiz, M. & Gil, A. Laboratory studies on isolated pairs of Ceratitis capitata—results obtained during the last three years in Spain. In: Cavalloro R (ed), Fruit flies of economic importance; Joint Ad-Hoc Meeting of the Commission of the European Communities and the International Organization for Biological and Integrated Control, Hamburg, West Germany, A.A. Balkema, Rotterdam, Netherlands; Boston, MA, USA, 125–128 (1984).78.Vargas, R. I., Walsh, W. A., Jang, E. B., Armstrong, J. W. & Kanehisa, D. T. Survival and development of immature stages of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Ann. Entomol. Soc. Am. 89, 64–69 (1996).Article 

    Google Scholar 
    79.Vargas, R. I., Walsh, W. A., Kanehisa, D., Jang, E. B. & Armstrong, J. W. Demography of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Ann. Entomol. Soc. Am. 90, 162–168 (1997).Article 

    Google Scholar 
    80.Vargas, R. I., Walsh, W. A., Kanehisa, D., Stark, J. D. & Nishida, T. Comparative demography of three Hawaiian fruit flies (Diptera:Tephritidae) at alternating temperatures. Ann. Entomol. Soc. Am. 93, 75–81 (2000).Article 

    Google Scholar 
    81.Delrio, G., Conti, B. & Corvetti, A. Effects of abiotic factors on Ceratitis capitata (Wied.) (Diptera: Tephritidae)—I. Egg development under constant temperatures. In Fruit Flies of Economic Importance 84. Proceedings of the CEC/IOBC “Ad-hoc Meeting” (ed. Cavalloro, R.) 133–139 (A.A. Balkema, 1984).82.Duyck, P. F., Sterlin, J. F. & Quilici, S. Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bull. Entomol. Res. 94, 89–93 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Powell, M. R. Modeling the response of the Mediterranean fruit fly (Diptera:Tephritidae) to cold treatment. J. Econ. Entomol. 96, 300–310 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Shoukry, A. & Hafez, M. The biology of the Mediterranean fruit fly Ceratitis capitata. Entomol. Exp. Appl. 26, 33–39 (1979).Article 

    Google Scholar 
    85.Duyck, P. F., David, P. & Quilici, S. Climatic niche partitioning following successive invasions by fruit flies in La Réunion. J. Anim. Ecol. 75, 518–526 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Dhillon, M. K., Singh, R., Naresh, J. S. & Sharma, H. C. The melon fruit fly, Bactrocera cucurbitae: a review of its biology and management. J. Insect Sci. Ludhiana 5, 40 (2005).CAS 

    Google Scholar 
    87.Messenger, P. S. & Flitters, N. E. Bioclimatic studies of three species of fruit flies in Hawaii. J. Econ. Entomol. 47, 756–765 (1954).Article 

    Google Scholar 
    88.Keck, C. B. Effect of temperature on development and activity of the melon fly. J. Econ. Entomol. 44, 1001–1002 (1951).Article 

    Google Scholar 
    89.Yang, P., Carey, J. R. & Dowell, R. V. Comparative demography of two cucurbit-attacking fruit flies, Bactrocera tau and B. cucurbitae (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 87, 538–545 (1994).Article 

    Google Scholar 
    90.Vayssières, J. F., Carel, Y., Coubes, M. & Duyck, P. F. Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Reunion Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera Tephritidae). Environ. Entomol. 37, 307–314 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article 

    Google Scholar 
    92.Kandakoor, S. B., Chakravarthy, A. K., Rashmi, M. A. & Verghese, A. Effect of elevated carbon dioxide and temperature on biology of melon fruit fly, Bactrocera cucurbitae Coquillett (Tephritidae: Diptera). Afr. Entomol. 27, 36–42 (2019).Article 

    Google Scholar 
    93.Teruya, T. Effects of relative humidity during pupal development on subsequent eclosion and flight capability of the melon fly, Dacus cucurbitae Coquillett (Diptera:Tephiritidae). Appl. Entomol. Zool. 25, 521–523 (1990).Article 

    Google Scholar 
    94.Laskar, N. & Chatterjee, H. The effect of meteorological factors on the population dynamics of melon fly, Bactrocera cucurbitae (Coq.) (Diptera: Tephritidae) in the foot hills of Himalaya. J. Appl. Sci. Environ. Manag. 14, 53–58 (2010).95.Myers, S. W., Cancio-Martinez, E., Hallman, G. J., Fontenot, E. A. & Vreysen, M. J. B. Relative tolerance of six Bactrocera (Diptera: Tephritidae) species to phytosanitary cold treatment. J. Econ. Entomol. 109, 2341–2347 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Zhou, S. H., Li, L., Zeng, B. & Fu, Y. G. Effects of short-term high-temperature conditions on oviposition and differential gene expression of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae. Int. J. Pest Manag. 66, 332–340 (2020).Article 
    CAS 

    Google Scholar 
    97.Vargas, R. I. et al. Area-wide suppression of the Mediterranean fruit fly, Ceratitis capitata, and the Oriental fruit fly, Bactrocera dorsalis, in Kamuela, Hawaii. J. Insect Sci. 10, 135 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    98.Vargas, R. I. & Carey, J. R. Comparative survival and demographic statistics for wild Oriental fruit fly, Mediterranean fruit fly, and melon fly (Diptera: Tephritidae) on papaya. J. Econ. Entomol. 83, 1344–1349 (1990).Article 

    Google Scholar 
    99.Jang, E. B., Nagata, J. T., Chan, H. T. & Laidlaw, W. G. Thermal death kinetics in eggs and larvae of Bactrocera latifrons (Diptera: Tephritidae) and comparative thermotolerance to three other tephritid fruit fly species in Hawaii. J. Econ. Entomol. 92, 684–690 (1999).Article 

    Google Scholar 
    100.Xie, Q., Hou, B. & Zhang, R. Thermal responses of oriental fruit fly (diptera: tephritidae) late third instars: mortality, puparial morphology, and adult emerge. J. Econ. Entomol. 101, 736–741 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Armstrong, J. W., Tang, J. & Wang, S. Thermal death kinetics of Mediterranean, Malaysian, melon, and oriental fruit fly (Diptera: Tephritidae) eggs and third instars. J. Econ. Entomol. 102, 522–532 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Choi, K. S., Samayoa, A. C., Hwang, S.-Y., Huang, Y.-B. & Ahn, J. J. Thermal effect on the fecundity and longevity of Bactrocera dorsalis adults and their improved oviposition model. PLOS ONE 15, e0235910 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Shukla, R. P. & Prasad, V. G. Population fluctuations of the oriental fruit fly, Dacus dorsalis Hendel in relation to hosts and abiotic factors. Trop. Pest Manag. 31, 273–275 (1985).Article 

    Google Scholar 
    104.Hurtado, H. et al. Demography of three Mexican tephritids: Anastrepha ludens, A. obliqua and A. serpentina. Fla. Entomol. 71, 110–120 (1988).
    Google Scholar 
    105.Liedo, P., Carey, J. R., Celedonio, H. & Guillen, J. Size specific demography of three species of Anastrepha fruit flies. Entomol. Exp. Appl. 63, 135–142 (1992).Article 

    Google Scholar 
    106.Carey, J. R. et al. Biodemography of a long-lived tephritid: Reproduction and longevity in a large cohort of female Mexican fruit flies, Anastrepha ludens. Exp. Gerontol. 40, 793–800 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Berrigan, D. A., Carey, J. R., Guillen, J. & Celedonio, H. Age and host effects on clutch size in the Mexican fruit fly, Anastrepha ludens. Entomol. Exp. Appl. 47, 73–80 (1988).Article 

    Google Scholar 
    108.Quintero‐Fong, L. et al. Demography of a genetic sexing strain of Anastrepha ludens (Diptera: Tephritidae): effects of selection based on mating performance. Agric. Entomol. 20, 1–8 (2018).Article 

    Google Scholar 
    109.Tejeda, M. T. et al. Reasons for success: rapid evolution for desiccation resistance and life-history changes in the polyphagous fly Anastrepha ludens. Evolution 70, 2583–2594 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Darby, H. H. & Kapp, E. M. Observations on the thermal death points of Anatrepha ludens (Loew). US Dep. Agric. Tech. Bull. 400, 12445 (1933).111.Flitters, N. E. & Messenger, P. S. Effect of temperature and humidity on development and potential distribution of the Mexican fruit fly in the United States. U. S. Dep. Agric. Tech. Bull. 1330, 1–36 (1965).112.Ruane, A. C., Goldberg, R. & Chryssanthacopoulos, J. Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agric. Meteorol. 200, 233–248 (2015).Article 

    Google Scholar 
    113.Rienecker, M. M. et al. MERRA: NASA’s Modern-Era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).Article 

    Google Scholar 
    114.Dell’Aquila, A. et al. Effects of seasonal cycle fluctuations in an A1B scenario over the Euro-Mediterranean region. Clim. Res. 52, 135–157 (2012).Article 

    Google Scholar 
    115.Artale, V. et al. An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim. Dyn. 35, 721–740 (2010).Article 

    Google Scholar 
    116.Giorgi, F. & Bi, X. Updated regional precipitation and temperature changes for the 21st century from ensembles of recent AOGCM simulations. Geophys. Res. Lett. 32, L21715 (2005).Article 

    Google Scholar 
    117.Gualdi, S. et al. The CIRCE simulations: regional climate change projections with realistic representation of the Mediterranean sea. Bull. Am. Meteorol. Soc. 94, 65–81 (2013).Article 

    Google Scholar 
    118.Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Technical Note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).Article 

    Google Scholar 
    119.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    120.Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).CAS 
    Article 

    Google Scholar 
    121.Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).Article 

    Google Scholar 
    122.GRASS Development Team. Geographic Resources Analysis Support System (GRASS) Software, Version 7.9.dev. (Open Source Geospatial Foundation. http://grass.osgeo.org, (2021).123.Gutierrez, A. P. & Ponti, L. in Invasive Species and Global Climate Change (eds. Ziska, L. H. & Dukes, J. S.) 271–288 (CABI Publishing, 2014).124.Ponti, L. et al. Bioeconomic analogies as a unifying paradigm for modeling agricultural systems under global change in the context of geographic information systems. Geophys. Res. Abstr. 21, 13677 (2019). EGU2019.
    Google Scholar  More

  • in

    Microbial storage and its implications for soil ecology

    1.Pond C. Storage. In: Townsend C, Calow P, editors. Physiological ecology. Oxford: Blackwell Scientific; 1981. p. 190–219.2.Chapin FS, Schulze E, Mooney HA. The ecology and economics of storage in plants. Annu Rev Ecol Syst. 1990;21:423–47.Article 

    Google Scholar 
    3.Moradali MF, Rehm BHA. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020;18:195–210.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Varpe Ø. Life history adaptations to seasonality. Integr Comp Biol. 2017;57:943–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Paul EA. Soil microbiology, ecology and biochemistry. 4th ed. Waltham, MA: Academic Press; 2015.6.Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Commun. 2018;9:1–9.Article 
    CAS 

    Google Scholar 
    7.Rothermich MM, Guerrero R, Lenz RW, Goodwin S. Characterization, seasonal occurrence, and diel fluctuation of poly(hydroxyalkanoate) in photosynthetic microbial mats. Appl Environ Microbiol. 2000;66:13.Article 

    Google Scholar 
    8.Borzi A. Le comunicazioni intracellulari delle Nostochinee. Malpighia. 1887;1:28–74.
    Google Scholar 
    9.Sherman LA, Meunier P, Colón-López MS. Diurnal rhythms in metabolism: a day in the life of a unicellular, diazotrophic cyanobacterium. Photosynth Res. 1998;58:25–42.CAS 
    Article 

    Google Scholar 
    10.Stuart RK, Mayali X, Boaro AA, Zemla A, Everroad RC, Nilson D, et al. Light regimes shape utilization of extracellular organic C and N in a cyanobacterial biofilm. mBio. 2016;7:e00650–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Allen MM. Cyanobacterial cell inclusions. Annu Rev Microbiol. 1984;38:1–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Sanz-Luque E, Bhaya D, Grossman AR. Polyphosphate: a multifunctional metabolite in cyanobacteria and algae. Front Plant Sci. 2020;11:938.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Martin P, Lauro FM, Sarkar A, Goodkin N, Prakash S, Vinayachandran PN. Particulate polyphosphate and alkaline phosphatase activity across a latitudinal transect in the tropical Indian Ocean: polyphosphate in the tropical Indian Ocean. Limnol Oceanogr. 2018;63:1395–406.CAS 
    Article 

    Google Scholar 
    14.Diaz J, Ingall E, Benitez-Nelson C, Paterson D, de Jonge MD, McNulty I, et al. Marine polyphosphate: a key player in geologic phosphorus sequestration. Science. 2008;320:652–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Godwin CM, Cotner JB. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. ISME J. 2015;9:2324–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Oehmen A, Lemos P, Carvalho G, Yuan Z, Keller J, Blackall L, et al. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007;41:2271–300.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Dorofeev AG, Nikolaev YuA, Mardanov AV, Pimenov NV. Role of phosphate-accumulating bacteria in biological phosphorus removal from wastewater. Appl Biochem Microbiol. 2020;56:1–14.CAS 
    Article 

    Google Scholar 
    18.Carrondo MA. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO J. 2003;22:1959–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Canessa P, Larrondo LF. Environmental responses and the control of iron homeostasis in fungal systems. Appl Microbiol Biotechnol. 2013;97:939–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161–203.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Docampo R, Moreno SNJ. Acidocalcisomes. Cell Calcium. 2011;50:113–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Tsednee M, Castruita M, Salomé PA, Sharma A, Lewis BE, Schmollinger SR, et al. Manganese co-localizes with calcium and phosphorus in Chlamydomonas acidocalcisomes and is mobilized in manganese-deficient conditions. J Biol Chem. 2019;294:17626–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelova O, et al. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci USA. 2020;117:32722–30.24.Turner BL. Inositol phosphates in soil: Amounts, forms and significance of the phosphorylated inositol stereoisomers. In: Turner BL, Richardson AE, Mullaney EJ, editors. Inositol phosphates: linking agriculture and the environment. 2007. Wallingford: CABI; 2007. p. 186–206.25.Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Otero A, Vincenzini M. Nostoc (Cyanophyceae) goes nude: Extracellular polysaccharides serve as a sink for reducing power under unbalanced C/N metabolism. J Phycol. 2004;40:74–81.CAS 
    Article 

    Google Scholar 
    27.Wang J, Yu H-Q. Biosynthesis of polyhydroxybutyrate (PHB) and extracellular polymeric substances (EPS) by Ralstonia eutropha ATCC 17699 in batch cultures. Appl Microbiol Biotechnol. 2007;75:871–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Brangarí AC, Fernàndez-Garcia D, Sanchez-Vila X, Manzoni S. Ecological and soil hydraulic implications of microbial responses to stress—a modeling analysis. Adv Water Resour. 2018;116:178–94.Article 

    Google Scholar 
    29.Pal S, Manna A, Paul AK. Production of poly(β-hydroxybutyric acid) and exopolysaccharide by Azotobacter beijerinckii WDN-01. World J Microbiol Biotechnol. 1999;15:11–6.Article 

    Google Scholar 
    30.Kuzyakov Y, Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol Biochem. 2015;83:184–99.CAS 
    Article 

    Google Scholar 
    31.Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol. 2017;101:2203–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Wang JG, Bakken LR. Screening of soil bacteria for poly-β-hydroxybutyric acid production and its role in the survival of starvation. Micro Ecol. 1998;35:94–101.CAS 
    Article 

    Google Scholar 
    33.Hanzlíková A, Jandera A, Kunc F. Poly-3-hydroxybutyrate production and changes of bacterial community in the soil. Folia Microbiologica. 1985;30:58–64.Article 

    Google Scholar 
    34.Iwahara S, Miki S. Production of α-α-trehalose by a bacterium isolated from soil. Agric Biol Chem. 1988;52:867–8.CAS 

    Google Scholar 
    35.Treseder KK, Lennon JT. Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev. 2015;79:243–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.López MF, Männer P, Willmann A, Hampp R, Nehls U. Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. N Phytol. 2007;174:389–98.Article 
    CAS 

    Google Scholar 
    37.Bünemann EK, Smernik RJ, Doolette AL, Marschner P, Stonor R, Wakelin SA, et al. Forms of phosphorus in bacteria and fungi isolated from two Australian soils. Soil Biol Biochem. 2008;40:1908–15.Article 
    CAS 

    Google Scholar 
    38.Genet P, Prevost A, Pargney JC. Seasonal variations of symbiotic ultrastructure and relationships of two natural ectomycorrhizae of beech (Fagus sylvatica/Lactarius blennius var. viridis and Fagus sylvatica/Lactarius subdulcis). Trees. 2000;14:465–74.Article 

    Google Scholar 
    39.Frey B, Brunner I, Walther P, Scheidegger C, Zierold K. Element localization in ultrathin cryosections of high-pressure frozen ectomycorrhizal spruce roots. Plant Cell Environ. 1997;20:929–37.CAS 
    Article 

    Google Scholar 
    40.Hanzlíkova A, Jandera A, Kunc F. Formation of poly-3-hydroxybutyrate by a soil microbial community during batch and heterocontinuous cultivation. Folia Microbiol. 1984;29:233–41.Article 

    Google Scholar 
    41.Mason-Jones K, Banfield CC, Dippold MA. Compound‐specific 13C stable isotope probing confirms synthesis of polyhydroxybutyrate by soil bacteria. Rapid Commun Mass Spectrom. 2019;33:795–802.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Hedlund K. Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol Biochem. 2002;34:1299–307.CAS 
    Article 

    Google Scholar 
    43.White PM, Potter TL, Strickland TC. Pressurized liquid extraction of soil microbial phospholipid and neutral lipid fatty acids. J Agric Food Chem. 2009;57:7171–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems: Global soil microbial biomass C, N and P. Glob Ecol Biogeogr. 2013;22:737–49.Article 

    Google Scholar 
    45.Bååth E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Micro Ecol. 2003;45:373–83.Article 
    CAS 

    Google Scholar 
    46.Soliman AH, Radwan SS. Degradation of sterols, triacylglycerol, and phospholipids by soil microorganisms. Zbl Bakt II Abt. 1981;136:420–6.CAS 

    Google Scholar 
    47.Diakhaté S, Gueye M, Chevallier T, Diallo NH, Assigbetse K, Abadie J, et al. Soil microbial functional capacity and diversity in a millet-shrub intercropping system of semi-arid Senegal. J Arid Environ. 2016;129:71–9.Article 

    Google Scholar 
    48.Bölscher T, Wadsö L, Börjesson G, Herrmann AM. Differences in substrate use efficiency: impacts of microbial community composition, land use management, and substrate complexity. Biol Fertil Soils. 2016;52:547–59.Article 
    CAS 

    Google Scholar 
    49.Mason-Jones K, Schmücker N, Kuzyakov Y. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol Biochem. 2018;124:38–46.CAS 
    Article 

    Google Scholar 
    50.Muhammadi S, Afzal M, Hameed S. Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: Production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev. 2015;8:56–77.Article 
    CAS 

    Google Scholar 
    51.Jose NA, Lau R, Swenson TL, Klitgord N, Garcia-Pichel F, Bowen BP, et al. Flux balance modeling to predict bacterial survival during pulsed-activity events. Biogeosciences. 2018;15:2219–29.CAS 
    Article 

    Google Scholar 
    52.Medeiros PM, Fernandes MF, Dick RP, Simoneit BRT. Seasonal variations in sugar contents and microbial community in a ryegrass soil. Chemosphere. 2006;65:832–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Žifčáková L, Větrovský T, Lombard V, Henrissat B, Howe A, Baldrian P. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome 2017;5:1–12.Article 

    Google Scholar 
    54.Ratcliff WC, Denison RF. Individual-level bet hedging in the bacterium Sinorhizobium meliloti. Curr Biol. 2010;20:1740–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database. 2020;2020:baaa062.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Choi J, Kim S-H. A genome tree of life for the fungi kingdom. Proc Natl Acad Sci USA. 2017;114:9391–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Jun S-R, Sims GE, Wu GA, Kim S-H. Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. Proc Natl Acad Sci USA. 2010;107:133–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Elbahloul Y, Krehenbrink M, Reichelt R, Steinbuchel A. Physiological conditions conducive to high cyanophycin content in biomass of Acinetobacter calcoaceticus strain ADP1. Appl Environ Microbiol. 2005;71:858–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980;143:1384–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Hall KD, Guo J. Obesity energetics: Body weight regulation and the effects of diet composition. Gastroenterology. 2017;152:1718–27.e3.PubMed 
    Article 

    Google Scholar 
    61.Sala A, Woodruff DR, Meinzer FC. Carbon dynamics in trees: feast or famine? Tree Physiol. 2012;32:764–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Varpe Ø, Ejsmond MJ. Trade-offs between storage and survival affect diapause timing in capital breeders. Evol Ecol. 2018;32:623–41.Article 

    Google Scholar 
    63.Heilmeier H, Freund M, Steinlein T, Schulze E-D, Monson RK. The influence of nitrogen availability on carbon and nitrogen storage in the biennial Cirsium vulgare (Savi) Ten. I. Storage capacity in relation to resource acquisition, allocation and recycling. Plant Cell Environ. 1994;17:1125–31.CAS 
    Article 

    Google Scholar 
    64.Pond CM. Ecology of storage. In: Levin SA, editor. Encyclopedia of biodiversity, 2nd ed. Amsterdam: Academic Press; 2013. p. 23–38.65.McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol. 2010;156:1–18.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    66.Donald J, Pannabecker TL. Osmoregulation in desert-adapted mammals. In: Hyndman KA, Pannabecker TL, editors. Sodium and water homeostasis. New York: Springer New York; 2015. p. 191–211.67.Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol. 2016;225:48–56.PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Bailey AP, Koster G, Guillermier C, Hirst EMA, MacRae JI, Lechene CP, et al. Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell. 2015;163:340–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Jenni-Eiermann S, Jenni L. Fasting in birds: general patterns and the special case of endurance flight. In: McCue MD, editor. Comparative physiology of fasting, starvation, and food limitation. 2012. Berlin: Springer; 2012. p. 171–92.70.Fischer B, Dieckmann U, Taborsky B. When to store energy in a stochastic environment. Evolution. 2011;65:1221–32.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Bonnet X, Bradshaw D, Shine R. Capital versus income breeding: An ectothermic perspective. Oikos. 1998;83:333.Article 

    Google Scholar 
    72.de Mazancourt C, Schwartz MW. Starve a competitor: evolution of luxury consumption as a competitive strategy. Theor Ecol. 2012;13:37–49.Article 

    Google Scholar 
    73.Ejsmond MJ, Varpe Ø, Czarnoleski M, Kozłowski J. Seasonality in offspring value and trade-offs with growth explain capital breeding. Am Nat. 2015;186:E111–25.Article 

    Google Scholar 
    74.Kourmentza C, Plácido J, Venetsaneas N, Burniol-Figols A, Varrone C, Gavala HN, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering. 2017;4:55.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    75.Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010;34:952–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Doi Y, Kawaguchi Y, Koyama N, Nakamura S, Hiramitsu M, Yoshida Y, et al. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol Lett. 1992;103:103–8.CAS 
    Article 

    Google Scholar 
    77.Alvarez AHM, Kalscheuer R, Steinbüchel A. Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Lipid. 1997;99:239–46.CAS 
    Article 

    Google Scholar 
    78.Parrou JL, Enjalbert B, Plourde L, Bauche A, Gonzalez B, François J. Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae. Yeast. 1999;15:191–203.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Gebremariam SY, Beutel MW, Christian D, Hess TF. Research advances and challenges in the microbiology of enhanced biological phosphorus removal-A critical review. Water Environ Res. 2011;83:195–219.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86:807–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Matin A, Veldhuis C, Stegeman V, Veenhuis M. Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation. J Gen Microbiol. 1979;112:349–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Poblete-Castro I, Escapa IF, Jäger C, Puchalka J, Chi Lam C, Schomburg D, et al. The metabolic response of P. putida KT2442 producing high levels of polyhydroxyalkanoate under single- and multiple-nutrient-limited growth: Highlights from a multi-level omics approach. Micro Cell Fact. 2012;11:34.CAS 
    Article 

    Google Scholar 
    83.Wilkinson JF, Munro ALS. The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium. In: Powell EO, Evans CGT, Strange RE, Tempest DW, editors. Microbial physiology and continuous culture, Proceedings of the Third International Symposium. Salisbury, United Kingdom: Her Majesty’s Stationery Office; 1967. p. 173–85.84.Alvarez HM, Mayer F, Fabritius D, Steinbüchel A. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol. 1996;165:377–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Orchard ED, Benitez-Nelson CR, Pellechia PJ, Lomas MW, Dyhrman ST. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol Oceanogr. 2010;55:2161–9.CAS 
    Article 

    Google Scholar 
    86.Li J, Mara P, Schubotz F, Sylvan JB, Burgaud G, Klein F, et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature. 2020;579:250–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Preiss J, Romeo T. Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Prog Nucleic Acid Res Mol Biol. 1994;47:299–329.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mackerras AH, de Chazal NM, Smith GD. Transient accumulations of cyanophycin in Anabaena cylindrica and Synechocystis 6308. J Gen Microbiol. 1990;136:2057–65.CAS 
    Article 

    Google Scholar 
    89.Parnas H, Cohen D. The optimal strategy for the metabolism of reserve materials in micro-organisms. J Theor Biol. 1976;56:19–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Dijkstra P, Salpas E, Fairbanks D, Miller EB, Hagerty SB, van Groenigen KJ, et al. High carbon use efficiency in soil microbial communities is related to balanced growth, not storage compound synthesis. Soil Biol Biochem. 2015;89:35–43.CAS 
    Article 

    Google Scholar 
    91.Empadinhas N, da Costa MS. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol. 2008;11:151–61.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Albi T, Serrano A. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol. 2016;32:27.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    93.Sekar K, Linker SM, Nguyen J, Grünhagen A, Stocker R, Sauer U. Bacterial glycogen provides short-term benefits in changing environments. Appl Environ Microbiol. 2020;86:e00049–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Silljé HH, Paalman JW, ter Schure EG, Olsthoorn SQ, Verkleij AJ, Boonstra J, et al. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol. 1999;181:396–400.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Jahid IK, Silva AJ, Benitez JA. Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol. 2006;72:7043–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ramírez-Trujillo JA, Dunn MF, Suárez-Rodríguez R, Hernández-Lucas I. The Sinorhizobium meliloti glyoxylate cycle enzyme isocitrate lyase (AceA) is required for the utilization of poly-β-hydroxybutyrate during carbon starvation. Ann Microbiol. 2016;66:921–4.Article 
    CAS 

    Google Scholar 
    97.Vagabov VM, Trilisenko LV, Kulaev IS. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae. Biochemistry. 2000;65:6.
    Google Scholar 
    98.Schimz K-L, Irrgang K, Overhoff B. Glycogen, a cytoplasmic reserve polysaccharide of Cellulomonas sp. (DSM20108): Its identification, carbon source-dependent accumulation, and degradation during starvation. FEMS Microbiol Lett. 1985;30:165–9.CAS 
    Article 

    Google Scholar 
    99.Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, et al. Analysis of storage lipid accumulation in Alcanivorax borkumensis: Evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol. 2007;189:918–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Busuioc M, Mackiewicz K, Buttaro BA, Piggot PJ. Role of intracellular polysaccharide in persistence of Streptococcus mutans. J Bacteriol. 2009;191:7315–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Ruiz JA, Lopez NI, Fernandez RO, Mendez BS. Polyhydroxyalkanoate degradation Is associated with nucleotide accumulation and enhances stress resistance and survival of Pseudomonas oleovorans in natural water microcosms. Appl Environ Microbiol. 2001;67:225–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, et al. Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. Curr Biol. 2016;26:2862–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Elbein AD. New insights on trehalose: a multifunctional molecule. Glycobiology. 2003;13:17R–27R.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Obruca S, Sedlacek P, Koller M. The underexplored role of diverse stress factors in microbial biopolymer synthesis. Bioresour Technol. 2021;326:124767.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Ayub ND, Tribelli PM, López NI. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles. 2009;13:59–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–94.Article 

    Google Scholar 
    107.Ho A, Kerckhof F-M, Luke C, Reim A, Krause S, Boon N, et al. Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies: Functional traits of methane-oxidizing bacteria. Environ Microbiol Rep. 2013;5:335–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    108.Santillan E, Seshan H, Constancias F, Wuertz S. Trait‐based life‐history strategies explain succession scenario for complex bacterial communities under varying disturbance. Environ Microbiol. 2019;21:3751–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.Article 

    Google Scholar 
    110.Loreau M, de Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013;16:106–15.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry. 2016;127:173–88.CAS 
    Article 

    Google Scholar 
    112.Manzoni S, Porporato A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol Biochem. 2009;41:1355–79.CAS 
    Article 

    Google Scholar 
    113.Schultz P, Urban NR. Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: a modeling study. Ecol Model. 2008;210:1–14.CAS 
    Article 

    Google Scholar 
    114.Torres-Dorante LO, Claassen N, Steingrobe B, Olfs H-W. Polyphosphate determination in calcium acetate-lactate (CAL) extracts by an indirect colorimetric method. J Plant Nutr Soil Sci. 2004;167:701–3.CAS 
    Article 

    Google Scholar 
    115.Micić V, Köster J, Kruge MA, Engelen B, Hofmann T. Bacterial wax esters in recent fluvial sediments. Org Geochem. 2015;89–90:44–55.Article 
    CAS 

    Google Scholar 
    116.Mooshammer M, Wanek W, Zechmeister-Boltenstern S, Richter A. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol 2014;5:1–10.Article 

    Google Scholar 
    117.Op De Beeck M, Troein C, Siregar S, Gentile L, Abbondanza G, Peterson C, et al. Regulation of fungal decomposition at single-cell level. ISME J. 2020;14:896–905.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Chang Biol. 2019;25:3578–90.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Ducklow H, Steinberg D, Buesseler K. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–8.Article 

    Google Scholar 
    120.Wieder WR, Allison SD, Davidson EA, Georgiou K, Hararuk O, He Y, et al. Explicitly representing soil microbial processes in Earth system models: Soil microbes in Earth system models. Glob Biogeochem Cycles. 2015;29:1782–800.CAS 
    Article 

    Google Scholar 
    121.Schimel J, Weintraub MN. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem. 2003;35:549–63.CAS 
    Article 

    Google Scholar 
    122.Ni B-J, Fang F, Rittmann BE, Yu H-Q. Modeling microbial products in activated sludge under feast-famine conditions. Environ Sci Technol. 2009;43:2489–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    123.Godwin CM, Cotner JB. Stoichiometric flexibility in diverse aquatic heterotrophic bacteria is coupled to differences in cellular phosphorus quotas. Front Microbiol 2015;6:1–15.Article 

    Google Scholar 
    124.Camenzind T, Philipp Grenz K, Lehmann J, Rillig MC. Soil fungal mycelia have unexpectedly flexible stoichiometric C:N and C:P ratios. Ecol Lett. 2021;24:208–18.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Fatichi S, Manzoni S, Or D, Paschalis A. A mechanistic model of microbially mediated soil biogeochemical processes: a reality check. Glob Biogeochem Cycles. 2019;33:620–48.CAS 
    Article 

    Google Scholar 
    126.Sistla SA, Rastetter EB, Schimel JP. Responses of a tundra system to warming using SCAMPS: a stoichiometrically coupled, acclimating microbe–plant–soil model. Ecol Monogr. 2014;84:151–70.Article 

    Google Scholar 
    127.Lashermes G, Gainvors-Claisse A, Recous S, Bertrand I. Enzymatic strategies and carbon use efficiency of a litter-decomposing fungus grown on maize leaves, stems, and roots. Front Microbiol 2016;7:1–14.Article 

    Google Scholar 
    128.Lee ZM, Schmidt TM. Bacterial growth efficiency varies in soils under different land management practices. Soil Biol Biochem. 2014;69:282–90.CAS 
    Article 

    Google Scholar 
    129.Camenzind T, Lehmann A, Ahland J, Rumpel S, Rillig MC. Trait‐based approaches reveal fungal adaptations to nutrient‐limiting conditions. Environ Microbiol. 2020;22:3548–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    130.Manzoni S, Čapek P, Mooshammer M, Lindahl BD, Richter A, Šantrůčková H. Optimal metabolic regulation along resource stoichiometry gradients. Ecol Lett. 2017;20:1182–91.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    131.Tang J, Riley WJ. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat Clim Chang. 2015;5:5.CAS 
    Article 

    Google Scholar 
    132.Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc. 2021;16:634–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    133.Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, et al. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl Environ Microbiol. 2009;75:2111–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    134.Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat Commun. 2021;12:2009.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Link H, Fuhrer T, Gerosa L, Zamboni N, Sauer U. Real-time metabolome profiling of the metabolic switch between starvation and growth. Nat Methods. 2015;12:1091–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Warren CR. Altitudinal transects reveal large differences in intact lipid composition among soils. Soil Res. 2021;59:644–59.CAS 
    Article 

    Google Scholar 
    137.Wilkinson J. The problem of energy-storage compounds in bacteria. Exp Cell Res. 1959;7:111–30.Article 

    Google Scholar 
    138.Nickels JS, King JD, White DC. Poly-β-hydroxybutyrate accumulation as a measure of unbalanced growth of the estuarine detrital microbiota. Appl Environ Microbiol. 1979;37:459–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma. 2012;249:541–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    140.Alvarez HM. Triacylglycerol and wax ester-accumulating machinery in prokaryotes. Biochimie. 2016;120:28–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    141.Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. N Biotechnol. 2017;37:24–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    142.Obruca S, Sedlacek P, Slaninova E, Fritz I, Daffert C, Meixner K, et al. Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol. 2020;104:4795–810.CAS 
    PubMed 
    Article 

    Google Scholar 
    143.Roach PJ, Depaoli-Roach AA, Hurley TD, Tagliabracci VS. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441:763–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    144.Wang L, Wang M, Wise MJ, Liu Q, Yang T, Zhu Z, et al. Recent progress in the structure of glycogen serving as a durable energy reserve in bacteria. World J Microbiol Biotechnol. 2020;36:14.PubMed 
    Article 

    Google Scholar 
    145.Ruhal R, Kataria R, Choudhury B. Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation: Trehalose metabolism in bacteria. Micro Biotechnol. 2013;6:493–502.Article 
    CAS 

    Google Scholar 
    146.Kalscheuer R. Genetics of wax ester and triacylglycerol biosynthesis in bacteria. In: Timmis KN, editor. Handbook of hydrocarbon and lipid microbiology. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 527–35.147.Rao NN, Gómez-García MR, Kornberg A. Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem. 2009;78:605–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    148.Denoncourt A, Downey M. Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet. 2021;67:331–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    149.Füser G, Steinbüchel A. Analysis of genome sequences for genes of cyanophycin metabolism: Identifying putative cyanophycin metabolizing prokaryotes. Macromol Biosci. 2007;7:278–96.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    150.Watzer B, Forchhammer K. Cyanophycin: a nitrogen-rich reserve polymer. In: Tiwari A, editor. Cyanobacteria. London: InTech; 2018. More

  • in

    Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions

    1.Leach JE, Tringe SG. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A Rev Biol Fertil Soils. 2015;51:403–21.CAS 
    Article 

    Google Scholar 
    3.Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;871:1473–89.Article 

    Google Scholar 
    4.Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Leach JE, Triplett LR, Argueso CT, Trivedi P. Communication in the phytobiome. Cell. 2017;169:587–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vorholt JA, Vogel C, Carlström CI, Müller DB. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe. 2017;22:142–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Douglas AE. The microbial exometabolome: ecological resource and architect of microbial communities. PTRBAE. 2020;375:20190250.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Turroni F, Milani C, Duranti S, Mahony J, van Sinderen D, Ventura M. Glycan utilization and cross-feeding activities by Bifidobacteria. Trends Microbiol. 2018;26:339–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Evans CR, Kempes CP, Price-Whelan A, Dietrich LEP. Metabolic heterogeneity and cross-feeding in bacterial multicellular systems. Trends Microbiol. 2020;28:732–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Smith NW, Shorten PR, Altermann E, Roy NC, McNabb WC. The classification and evolution of bacterial cross-feeding. Front Ecol Evol. 2019;7:153.Article 

    Google Scholar 
    12.Santoyo G, del Orozco-Mosqueda MC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol. 2012;22:855–72.Article 

    Google Scholar 
    13.Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. Bacteria in agrobiology: plant growth responses. Springer: Berlin; 2011. 41–76.14.Xiong W, Guo S, Jousset A, Zhao Q, Wu H, Li R, et al. Bio-fertilizer application induces soil suppressiveness against Fusarium wilt disease by reshaping the soil microbiome. Soil Biol Biochem. 2017;114:238–47.CAS 
    Article 

    Google Scholar 
    15.Qin Y, Shang Q, Zhang Y, Li P, Chai Y. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front Microbiol. 2017;8:2620.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Compant S, Samad A, Faist H, Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res. 2019;19:29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, et al. Bacillus subtilis SQR9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils. 2011;47:495–506.CAS 
    Article 

    Google Scholar 
    18.Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol. 2013;79:808–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, Zhang N, et al. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol plant. 2016;158:34–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Blake C, Nordgaard Christensen M, Kovács ÁT. Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Mol Plant Microbe Interact. 2020;34:15–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Pollut Res. 2018;25:29910–20.CAS 
    Article 

    Google Scholar 
    22.Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, et al. Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cel Rep. 2019;29:1192–202.CAS 
    Article 

    Google Scholar 
    23.Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.CAS 
    Article 

    Google Scholar 
    24.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Zhou C, Shi L, Ye B, Feng H, Zhang J, Zhang R, et al. pheS *, an effective host-genotype-independent counter-selectable marker for marker-free chromosome deletion in Bacillus amyloliquefaciens. Appl Microbiol Biotechnol. 2017;101:217–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lambertsen L, Sternberg C, Molin S. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol. 2004;6:726–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Machado D, Andrejev S, Tramontano M, Patil KR. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 2018;46:7542–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Lieven C, Beber ME, Olivier BG, Bergmann FT, Ataman M, Babaei P, et al. MEMOTE for standardized genome-scale metabolic model testing. Nat Biotechnol. 2020;38:272–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zelezniak A, Andrejev S, Ponomarova O, Mende DR, Bork P, Patil KR. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc Natl Acad Sci USA. 2015;112:6449–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Langdon WB. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 2015;8:1–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    38.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ C(T) method. Methods. 2001;25:402–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Ling N, Raza W, Ma J, Huang Q, Shen Q. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere. Eur J Soil Biol. 2011;47:374–9.CAS 
    Article 

    Google Scholar 
    41.Gordillo F, Chávez FP, Jerez CA. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates. FEMS Microbiol Ecol. 2007;60:322–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Dragoš A, Kiesewalter H, Martin M, Hsu CY, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–.e5.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008;163:173–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Lynne AM, Haarmann D, Louden BC. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12:51–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Ansari FA, Ahmad I. Fluorescent Pseudomonas -FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Sci Rep. 2019;9:1–12.
    Google Scholar 
    47.Santhanam R, Menezes RC, Grabe V, Li D, Baldwin IT, Groten K. A suite of complementary biocontrol traits allows a native consortium of root‐associated bacteria to protect their host plant from a fungal sudden‐wilt disease. Mol Ecol. 2019;28:1154–69.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–E5120.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Ren D, Madsen JS, Sørensen SJ, Burmølle M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 2015;9:81–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Oliveira NM, Martinez-Garcia E, Xavier J, Durham WM, Kolter R, Kim W, et al. Biofilm formation as a response to ecological competition. PLoS Biol. 2015;13:1–23.
    Google Scholar 
    52.Gallegos-Monterrosa R, Mhatre E, Kovács ÁT. Specific Bacillus subtilis 168 variants form biofilms on nutrient-rich medium. Microbiology. 2016;162:1922–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Shao J, Xu Z, Zhang N, Shen Q, Zhang R. Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9. Biol Fertil Soils. 2015;51:321–30.CAS 
    Article 

    Google Scholar 
    54.Stopnisek N, Shade A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME J. 2021;15:2708–22.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)—Pseudomonas fluorescens and Bacillus subtilis: a review. Afr J Agric Res. 2014;9:1265–77.
    Google Scholar 
    56.Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, et al. Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil. 2010;328:483–93.CAS 
    Article 

    Google Scholar 
    57.Gómez Expósito R, Postma J, Raaijmakers JM, de Bruijn I. Diversity and activity of Lysobacter species from disease suppressive soils. Front Microbiol. 2015;6:1243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Peterson SB, Dunn AK, Klimowicz AK, Handelsman J. Peptidoglycan from Bacillus cereus mediates commensalism with rhizosphere bacteria from the Cytophaga-Flavobacterium group. Appl Environ Microbiol. 2006;72:5421–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Tao C, Li R, Xiong W, Shen Z, Liu S, Wang B, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome. 2020;8:137.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Kumar A, Singh J. Biofilms forming microbes: diversity and potential application in plant-microbe interaction and plant growth. Springer: Cham; 2020. 173−97.62.Tabassum B, Khan A, Tariq M, Ramzan M, Iqbal Khan MS, Shahid N, et al. Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol. 2017;121:102–17.Article 

    Google Scholar 
    63.Madsen JS, Røder HL, Russel J, Sørensen H, Burmølle M, Sørensen SJ. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environ Microbiol. 2016;18:2565–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol. 2006;72:3916–23.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 2014;8:894–907.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yannarell SM, Grandchamp GM, Chen SY, Daniels KE, Shank EA. A dual-species biofilm with emergent mechanical and protective properties. J Bacteriol. 2019;201:e00670–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Preussger D, Giri S, Muhsal LK, Oña L, Kost C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biol. 2020;30:1–11.Article 
    CAS 

    Google Scholar 
    68.Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation, and competition in biofilms. Nat Rev Microbiol. 2016;14:589–600.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Estrela S, Sanchez-Gorostiaga A, Vila JCC, Sanchez A. Nutrient dominance governs the assembly of microbial communities in mixed nutrient environments. eLife. 2021;10:e65948.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun. 2019;10:1919.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Yan Q, Lopes LD, Shaffer BT, Kidarsa TA, Vining O, Philmus B, et al. Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the GacS-GacA regulatory system in Pseudomonas protegens. mBio. 2018;9:e01845–17.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mee MT, Collins JJ, Church GM, Wang HH. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci USA. 2014;111:E2149–E2156.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Goldford JE, Lu N, Bajić D, Estrela S, Tikhonov M, Sanchez-Gorostiaga A, et al. Emergent simplicity in microbial community assembly. Science. 2018;361:469–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Lawrence D, Fiegna F, Behrends V, Bundy JG, Phillimore AB, Bell T, et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 2012;10:e1001330.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Evans R, Beckerman AP, Wright RCT, McQueen-Mason S, Bruce NC, Brockhurst MA. Eco-evolutionary dynamics set the tempo and trajectory of metabolic evolution in multispecies communities. Curr Biol. 2020;30:1–5.Article 
    CAS 

    Google Scholar 
    77.Gamez RM, Ramirez S, Montes M, Cardinale M. Complementary dynamics of banana root colonization by the plant growth-promoting rhizobacteria Bacillus amyloliquefaciens Bs006 and Pseudomonas palleroniana Ps006 at spatial and temporal scales. Micro Ecol. 2020;80:656–68.CAS 
    Article 

    Google Scholar 
    78.Feng H, Zhang N, Fu R, Liu Y, Krell T, Du W, et al. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ Microbiol. 2019;21:402–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, et al. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant Microbe interact. 2018;31:995–1005.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Xu Z, Xie J, Zhang H, Wang D, Shen Q, Zhang R. Enhanced control of plant wilt disease by a xylose-inducible degQ gene engineered into Bacillus velezensis strain SQR9XYQ. Phytopathology. 2019;109:36–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    To methanotrophy and beyond! New insight into functional and ecological roles for copper chelators

    1.Kang CS, Liang X, Dershwitz P, Gu W, Schepers A, Flatley A, et al. Evidence for methanobactin “theft” and novel chalkophore production in methanotrophs: impact on methanotrophic-mediated methylmercury degradation. ISME J. 2021;https://doi.org/10.1038/s41396-021-01062-1.2.Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. Methanobactin from methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol Lett. 2020;367:fnaa045.CAS 
    Article 

    Google Scholar 
    3.Kim HJ, Graham DW, DiSpiito AA, Alterman MA, Galeva N, Larive CK, et al. Methanobactin: a copper-acquisition compound from methane-oxidizing bacteria. Science. 2004;305:1612–5.CAS 
    Article 

    Google Scholar 
    4.Lu X, Gu W, Zhao L, Farhan Ul Haque M, DiSpirito AA, Semrau JD, et al. Methylmercury uptake and degradation by methanotrophs. Sci Adv. 2017;3:e1700041.Article 

    Google Scholar 
    5.Ve T, Mathisen K, Helland R, Karlsen OA, Fjellbirkeland A, Røhr ÅK, et al. The Methylococcus capsulatus (Bath) secreted protein, MopE*, binds both reduced and oxidized copper. PLoS ONE. 2012;7:e43146.CAS 
    Article 

    Google Scholar 
    6.DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. Methanobactin and the link between copper and bacterial methane oxidation. Microbiol Mol Biol Rev. 2016;80:387–409.CAS 
    Article 

    Google Scholar 
    7.Kenney GE, Rosenzweig AC. Genome mining for methanobactins. BMC Biol. 2013;11:17.CAS 
    Article 

    Google Scholar 
    8.Yu Z, Zheng Y, Huang J, Chistoserdova L. Systems biology meets enzymology: recent insights into communal metabolism of methane and the role of lanthanides. Curr Issues Mol Biol. 2019;33:183–96.Article 

    Google Scholar 
    9.Gwak J-H, Jung M-Y, Hong HY, Kim J-G, Quan Z-X, Reinfelder JR, et al. Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME J. 2020;14:335–46.CAS 
    Article 

    Google Scholar 
    10.Chang J, Kim DD, Semrau JD, Lee J, Heo H, Gu W, et al. Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Appl Environ Microbiol. 2020;87:e02301–20.
    Google Scholar  More