More stories

  • in

    Population trends of striped hyena (Hyaena hyaena) in Israel for the past five decades

    Kruuk, H. Feeding and social behaviour of the striped hyaena (Hyaena vulgaris). East Afr. Wildl. J. 14, 91–111 (1976).Article 

    Google Scholar 
    Wanger A.P. Behavioral ecology of the striped hyena (Hyaena hyaena) . Diss. Montana State University-Bozeman, College of Letters & Science (2006).AbiSaid, M. & Dloniak, S.M.D. Hyaena hyaena. The IUCN Red List of Threatened Species 2015: e.T10274A45195080 (2015).Abi-Said, M. R. & Abi-Said, D. M. Distribution of the striped hyena (Hyaena hyaena syriaca Matius, 1882) (Carnivora: Hyaenidae) in urban and rural areas of Lebanon. Zool. Middle East 42, 3–1 (2007).Article 

    Google Scholar 
    Al Younis, J. S. Hyaenas in Eastern Jordan. IUCN Hyaena Spec. Group Newsl. 6, 2–3 (1993).
    Google Scholar 
    Qarqaz, M. A., Abu Baker, M. A. & Amr, Z. S. Status and ecology of the Striped Hyena, Hyaena hyaena, in Jordan. Zool. Middle East 33, 87–92 (2004).Article 

    Google Scholar 
    Bhandari, S., Youlatos, D., Thapamagar, T. & Bhusal, D. R. Shrinking striped hyena (Hyaena hyaena Linnaeus, 1758) distribution in Nepal. Eur. J. Wildl. Res. 67, 1–4 (2021).Article 

    Google Scholar 
    Mendelssohn, H. Mass destruction of bird-life by secondary poisoning from insecticides and rodenticides. Atlantic Nat. 17, 247–248 (1962).
    Google Scholar 
    Mendelssohn, H. The impact of pesticides on bird life in Israel. Bull. Int. Council Bird Preserv. 11, 75–104 (1972).
    Google Scholar 
    Hadad, E., Kosicki, J. Z. & Yosef R. Spatial modeling of road collisions of striped hyena (Hyaena hyaena) in Israel. Ecol. Res.Ilani, G. Hyaenas in Israel. Israel Land Nat. 10–18 (1975).Tristram, H. B. The land of Israel: A journal of travels in palestine. Society for Promoting Christian Knowledge, London. 657 pp (1866).Schmitz, E. J. Wird Palästina wieder jüdisch werden?. Das Heilige Land 54, 92–95 (1910).
    Google Scholar 
    Schmitz, E. J. Kampf mit einem Leoparden. Das Heilige Land 56, 23–27 (1912).
    Google Scholar 
    Hadad, E. The persecution of the striped hyaena by humans. Teva HaDvarim 258, 68–78 (2017).
    Google Scholar 
    Hadad, E. 2021. Israel a heaven and a haven for striped hyaenas. Teva HaDvarim 310, 52–63 (2021).Ilani, G. Zoogeographic survey of carnivores in Israel (Golan, Judea and Samaria, Sinai). Pp. 84—94 Unpublished Internal report, Israel Nature Reserves Authority (1979).Skinner, J. D. & Ilani, G. The striped hyaena Hyaena hyaena of the Judean and Negev Deserts and a comparison with the brown hyaena H. brunnea. Israel J. Zool. 28, 229–232 (2013).
    Google Scholar 
    van Aarde, R. J., Skinner, J. D., Knight, M. H. & Skinner, D. C. Range use by a striped hyaena (Hyaena hyaena) in the Negev desert. J. Zool. 216, 575–577 (1988).
    Google Scholar 
    Dolev, A. & Pervolutzky, A. Endangered species in Israel. Red list of threatened species. Pp. 257 Hyaena hyaena (Linnaeus 1758). Nature & Parks Authority and SPNI, Keter Publishers, Jerusalem (2002).Hadad, E. Striped hyaenas in Israel. Teva HaDvarim 232, 3–14 (2015).
    Google Scholar 
    Albada, I. M. Primary survey of the striped hyena, Hyaena hyaena, (Linnaeus, 1758) (Carnivora:Hyaenidae) status in the West Bank Governorates, Palestine. Glob. Scholast. Res. J. Mulitidiscip. 1, 39–44 (2015).
    Google Scholar 
    Handal, E. N., Qumsiehm, G. H., Hammash, S. Y. & Qumsiyeh, M. B. Status and conservation of the striped hyena (Hyaena hyaena) in the occupied Palestinian Territories (West Bank). Jordan J. Nat. History 6, 11–18 (2019).
    Google Scholar 
    Knape, J. Decomposing trends in Swedish bird populations using generalized additive mixed models. J. Appl. Ecol. 53, 1852–1861 (2016).Article 

    Google Scholar 
    Wood, S. N. Generalized additive models: An introduction with R 2nd edn. (Chapman & Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Mills L.S. Conservation of wildlife populations. Demography, genetics, and management. Second Edition. Wiley–Blackwell, Oxford (2013).Rieger, I. Hyaena hyaena. Mammalian Species 150, 1–5. The American Society of Mammalogists (1981).Hofer, H. & Mills, M.G.L. Worldwide distribution of Hyaenas. In: M.G.L. Mills and H. Hofer (eds), Hyaenas. Status survey and conservation action plan, pp. 39–63. IUCN/SSC Hyaena Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK (1998a).Hofer, H. & Mills, M.G.L. Population size, threats and conservation status of hyaenas. In: M.G.L. Mills and H. Hofer (eds) Hyaenas. Status Survey and Conservation Action Plan, pp. 64–79. IUCN/SSC Hyaena Specialist Group. IUCN, Gland, Switzerland and Cambridge, UK (1998b).Bar-Ziv, E., Picardi, S., Kaplan, A., Avgar, T. & Berger-Tal, O. Sex differences dictate the movement patterns of Striped Hyenas, Hyaena hyaena, in a human-dominated landscape. Front. Ecol. Evol. 10, 897132 (2022).Article 

    Google Scholar 
    Shamon, H., Sorek, M., Dan, H. & Shapira, I. A large carnivore in a rapidly changing environment: occurrence and density of the striped hyaena hyaena hyaena in Israel. The 54th Israel Zoological Society Conference, Tel Aviv University, Ramat Aviv (2017).Shamoon, H. & Shapira, I. Limiting factors of Striped Hyaena, Hyaena hyaena, distribution and densities across climatic and geographical gradients (Mammalia: Carnivora). Zool. Middle East 65, 189–200 (2019).Article 

    Google Scholar 
    Yom-Tov, Y. Body sizes of carnivores commensal with humans increased over past 50 years. Funct. Ecol. 17, 323–327 (2003).Article 

    Google Scholar 
    Monchot, H. & Mashkour, M. Hyenas around the city (Kashan, Iran). J. Taphon. 8, 17–32 (2010).
    Google Scholar 
    Panda, D. et al. High striped hyena density suggests coexistence with humans in an agricultural landscape Rajasthan. PLoS ONE 17, e0266832 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mendelssohn, H. & Yom-Tov, Y. A report of birds and mammals which have increased their distribution and abundance in Israel due to human activity. Isr. J. Zool. 45, 35–47 (1998).
    Google Scholar 
    Meretsky, V. J. & Mannan, R. W. Supplemental feeding regimes for Egyptian vultures in the Negev Desert Israel. J. Wildl. Manag. 63, 107–115 (1999).Article 

    Google Scholar 
    Mallon, D. & Budd, K. (eds). Regional red list status of carnivores in the Arabian Peninsula. Cambridge, UK and Gland Switzerland: IUCN, and Sharjah, UAE: Environment and Protected Areas Authority vi+49pp (2011).Jaffa, N. A. B. K-P. S. The Arabian striped Hyena (Hyaena hyaena sultana Pocock, 1934) (Carnivora: Hyaenidae) in the Kingdom of Saudi Arabia. Gazelle Palestin. Biol. Bull. 185, 1–39 (2020).
    Google Scholar 
    Cogal, M., Ilemin, Y. & Sozen, M. Status and distribution of the Striped Hyaena, Hyaena hyaena, in Turkey: An updated assessment (Carnivora: Mammalia). Turk. J. Zool. 45, 131–141 (2021).Article 

    Google Scholar 
    Almasieh, K., Mohammadi, A. & Alvandi, R. Identifying core habitats and corridors of a near threatened carnivore, striped hyaena (Hyaena hyaena) in southwestern Iran. Sci. Rep. 12, 3425 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tourani, M., Moqanaki, E. M. & Kiabi, B. H. Vulnerability of striped hyaenas, Hyaena hyaena, in a human-dominated landscape of Central Iran. Zool. Middle East 56, 133–136 (2012).Article 

    Google Scholar 
    Bhandari, S. et al. Climate change threatens striped hyena (Hyaena hyaena) distribution in Nepal. Mammal Res. 67, 433–443 (2022).Article 

    Google Scholar 
    Tichon, J., Gilchrist, J. S., Rotem, R., Ward, P. & Spiegel, O. Social interactions in striped hyena inferred from camera trap data: Is it more social than previously thought?. Curr. Zool. 66, 345–353 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81 (2019).Article 

    Google Scholar 
    Landau, Y., Abu-Rabiya, A., Avlegon, A. & Abu-Siam, S. Seasonl grazing of livestock by Beduin in KKL forests: Developments from 2009 to 2014. Forests 15, 30–39 (2015).
    Google Scholar 
    Jacobson, A. P. et al. Leopard (Panthera pardus) status, distribution, and the research efforts across its range. PeerJ 4, e1974 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lazagabaster, I. A. et al. Changes in the large carnivore community structure of the Judean Desert in connection to Holocene human settlement dynamics. Sci. Rep. 11, 3548 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lazagabaster, I. A. et al. Cave paleozoology in the Judean Desert: assembling records of Holocene mammal communities. J. Quarten. Sci. 37, 651–663 (2022).Article 

    Google Scholar 
    Davidson, A., Malkinson, D. & Shanas, U. Wild boar foraging and risk perception—variation among urban, natural, and agricultural areas. J. Mammal. 20, 1–11 (2022).
    Google Scholar 
    Panda, D. et al. Competitive interactions with dominant carnivores affect carrion acquisition of striped hyena in a semi-arid landscape of Rajasthan India. Mammal Res. https://doi.org/10.1007/s13364-022-00663-1 (2022).Article 

    Google Scholar 
    Mandal, D., Basak, K., Mishra, R. P., Kaul, R. & Mondal, K. Staus of leopard Panthera pardus and striped hyena Hyaena hyaena and their prey in Achanakmar Tiger Reserve, Central Inida. J. Zool. Stud. 4, 34–41 (2017).
    Google Scholar 
    Alam, M. S., Khan, J. A. & Pathak, B. J. Striped hyena (Hyaena hyaena) status and factors affecting its distribution in the Gir National Park and Sanctuary India. Folia Zool. 64, 32–39 (2015).Article 

    Google Scholar 
    Singh, P., Gopalaswamy, A. M. & Karanth, K. U. Factors influencing densities of striped hyenas (Hyaena hyaena) in arid regions of India. J. Mammol. 91, 1152–1159 (2010).Article 

    Google Scholar 
    Handal, E. N., Amr, Z. S., Basha, W. S. & Qumsiyeh, M. B. Illegal trade in wildlife vertebrate species in the West Bank Palestine. J. Asia-Pac. Biodivers. 14, 636–639 (2021).Article 

    Google Scholar 
    Kumbhojkar, S., Yosef, R., Benedetti, Y. & Morelli, F. Human-leopard (Panthera pardus fusca) co-existence in Jhalana Forest Reserve India. Sustainability 11, 3912 (2019).Article 

    Google Scholar 
    Bhandari, S., Bhusal, D. R., Psaralexi, M. & Sgardelis, S. Habitat preference indicators for striped hyena (Hyaena hyaena) in Nepal. Glob. Ecol. Conserv. 27, e01619 (2021).Article 

    Google Scholar  More

  • in

    A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity

    Soule, M. The epistasis cycle: a theory of marginal populations. Annu. Rev. Ecol. Syst. 4, 165–187 (1973).Article 

    Google Scholar 
    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford Univ. Press, 2003).Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldberg, E. E. & Lande, R. Species’ borders and dispersal barriers. Am. Nat. 170, 297–304 (2007).Article 
    PubMed 

    Google Scholar 
    Bachmann, J. C., Rensburg, A. J. V., Cortazar-Chinarro, M., Laurila, A. & Buskirk, J. V. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).Article 
    PubMed 

    Google Scholar 
    Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).Article 
    PubMed 

    Google Scholar 
    Henry, R. C., Bartoń, K. A. & Travis, J. M. J. Mutation accumulation and the formation of range limits. Biol. Lett. 11, 20140871 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perrier, A., Sánchez-Castro, D. & Willi, Y. Environment dependence of the expression of mutational load and species’ range limits. J. Evol. Biol. 35, 731–741 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bontrager, M. et al. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75, 1316–1333 (2021).Article 
    PubMed 

    Google Scholar 
    Santini, L., Pironon, S., Maiorano, L. & Thuiller, W. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42, 696–705 (2019).Article 

    Google Scholar 
    Oldfather, M. F., Kling, M. M., Sheth, S. N., Emery, N. C. & Ackerly, D. D. Range edges in heterogeneous landscapes: integrating geographic scale and climate complexity into range dynamics. Glob. Chang. Biol. 26, 1055–1067 (2020).Article 
    PubMed 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Maxwell, M. F., Leprieur, F., Quimbayo, J. P., Floeter, S. R. & Bender, M. G. Global patterns and drivers of beta diversity facets of reef fish faunas. J. Biogeogr. 49, 954–967 (2022).Article 

    Google Scholar 
    Roy, K., Hunt, G., Jablonski, D., Krug, A. Z. & Valentine, J. W. A macroevolutionary perspective on species range limits. Proc. R. Soc. B 276, 1485–1493 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl Acad. Sci. USA 111, 8125–8130 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donoghue, M. J. & Edwards, E. J. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45, 547–572 (2014).Article 

    Google Scholar 
    Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M. & Hughes, C. E. Biomes as evolutionary arenas: convergence and conservatism in the trans-continental succulent biome. Glob. Ecol. Biogeogr. 29, 1100–1113 (2020).Article 

    Google Scholar 
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).Article 
    PubMed 

    Google Scholar 
    Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).Article 

    Google Scholar 
    Pichancourt, J. B., Firn, J., Chadès, I. & Martin, T. G. Growing biodiverse carbon-rich forests. Glob. Chang. Biol. 20, 382–393 (2014).Article 
    PubMed 

    Google Scholar 
    Pennington, R. T., Lavin, M. & Oliveira-Filho, A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437–457 (2009).Article 

    Google Scholar 
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Chang. Biol. 18, 1042–1052 (2012).Article 

    Google Scholar 
    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).Article 
    PubMed 

    Google Scholar 
    la Sorte, F. A., Butchart, S. H. M., Jetz, W. & Böhning-Gaese, K. Range-wide latitudinal and elevational temperature gradients for the world’s terrestrial birds: implications under global climate change. PLoS One 9, e98361 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    Veresoglou, S. D. & Peñuelas, J. Variance in biomass-allocation fractions is explained by distribution in European trees. New Phytol. 222, 1352–1363 (2019).Article 
    PubMed 

    Google Scholar 
    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105, 367–368 (1947).Article 
    CAS 
    PubMed 

    Google Scholar 
    Whittaker, R. H. Classification of natural communities. Bot. Rev. 28, 1–239 (1962).Article 

    Google Scholar 
    McDonald, R. et al. Species compositional similarity and ecoregions: do ecoregion boundaries represent zones of high species turnover? Biol. Conserv. 126, 24–40 (2005).Article 

    Google Scholar 
    von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 2013).Cardillo, M. Latitude and rates of diversifcation in birds and butterfies. Proc. R. Soc. Lond. B 266, 1221–1225 (1999).Article 

    Google Scholar 
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).Article 
    PubMed 

    Google Scholar 
    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).Article 
    PubMed 

    Google Scholar 
    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004).Article 
    CAS 

    Google Scholar 
    Crane, P. & Scott, L. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142–144 (1993).Article 

    Google Scholar 
    Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).Article 
    PubMed 

    Google Scholar 
    Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkinson, S., Clephan, A. L. & Davies, W. J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol. 126, 1566–1578 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodribb, T. J. & Holbrook, N. M. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol. 162, 663–670 (2004).Article 
    PubMed 

    Google Scholar 
    Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).Article 

    Google Scholar 
    Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).Article 

    Google Scholar 
    Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. 39, L13706 (2012).Article 

    Google Scholar 
    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Basso, B., Martinez-Feria, R. A., Rill, L. & Ritchie, J. T. Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nat. Commun. 12, 1476 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).Article 

    Google Scholar 
    Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J. Big data of tree species distributions: how big and how good? For. Ecosyst. 4, 30 (2017).Article 

    Google Scholar 
    Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).Article 

    Google Scholar 
    Mendez, C. Spatial autocorrelation analysis in R. R Studio/RPubs. https://rpubs.com/quarcs-lab/spatial-autocorrelation (2020).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).Article 

    Google Scholar 
    Fernández-Martínez, M. et al. The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).Article 

    Google Scholar 
    Bartoń, K. MuMIn: multi-model inference. R package v.1.10.1. (2013).F. Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article 

    Google Scholar  More

  • in

    A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes

    Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing e-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801–1805 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Timmer-Ten Hoor, A. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth. J. Sea Res. 9, 344–350 (1975).Article 
    CAS 

    Google Scholar 
    Cai, L., Shao, M. & Zhang, T. Non-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment. Stand. Genom. Sci. 9, 1302–1310 (2014).Article 

    Google Scholar 
    Wang, S., Jiang, L., Liu, X., Yang, S. & Shao, Z. Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov., hydrogen- and sulfur-oxidizing chemolithoautotrophs within the Epsilonproteobacteria isolated from coastal sediments, and an emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 70, 2657–2663 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Takai, K. et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 56, 1725–1733 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hu, Q., Wang, S., Lai, Q., Shao, Z. & Jiang, L. Sulfurimonas indica sp. nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. Int. J. Syst. Evol. Microbiol. 71, 1466–5034 (2021).Article 

    Google Scholar 
    Wang, S. et al. Sulfurimonas sediminis sp. nov., a novel hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal vent at the Longqi system, southwestern Indian ocean. Antonie Van Leeuwenhoek 114, 813–822 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, S. et al. Characterization of Sulfurimonas hydrogeniphila sp. nov., a novel bacterium predominant in deep-sea hydrothermal vents and comparative genomic analyses of the genus Sulfurimonas. Front. Microbiol. 12, 626705 (2021).Labrenz, M. et al. Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 63, 4141–4148 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henkel, J. V. et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst. Appl. Microbiol. 44, 126155 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ratnikova, N. M. et al. Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. Int. J. Syst. Evol. Microbiol. 70, 487–492 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Han, Y. & Perner, M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front. Microbiol. 6, 989 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-garcía, P. et al. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961–976 (2003).Article 
    PubMed 

    Google Scholar 
    Nakagawa, S. et al. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ. Microbiol. 7, 1619–1632 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huber, J. A. et al. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiol. Ecol. 73, 538–549 (2010).CAS 
    PubMed 

    Google Scholar 
    Meier, D. V. et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 11, 1545–1558 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mino, S. et al. Endemicity of the cosmopolitan mesophilic chemolithoautotroph Sulfurimonas at deep-sea hydrothermal vents. ISME J. 11, 909–919 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Akerman, N. H., Butterfield, D. A., Huber, J. A., Huber, J. A. & Paul, J. B. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front. Microbiol. 4, 185 (2013).Rogge, A., Vogts, A., Voss, M. & Labrenz, M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists. Environ. Microbiol. 19, 2495–2506 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    German, C. R. et al. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc. Natl Acad. Sci. USA 107, 14020–14025 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sylvan, J. B., Pyenson, B. C., Rouxel, O., German, C. R. & Edwards, K. J. Time-series analysis of two hydrothermal plumes at 9°50’ N East Pacific Rise reveals distinct, heterogeneous bacterial populations. Geobiology 10, 178–192 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Perner, M. et al. In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environ. Microbiol. 15, 1551–1560 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Haalboom, S. et al. Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge. Biogeosciences 17, 2499–2519 (2020).Article 
    CAS 

    Google Scholar 
    Li, J. et al. Distribution and succession of microbial communities along the dispersal pathway of hydrothermal plumes on the Southwest Indian Ridge. Front. Mar. Sci. 7, 581381 (2020).Article 

    Google Scholar 
    Dick, G. J. et al. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4, 124 (2013).Dick, G. J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271–283 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    German, C. R. & Seyfried, W. E. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.), 8, 191–233 (Elsevier, 2014).Kadko, D., Baross, J. & Alt, J. The magnitude and global implications of hydrothermal flux. Geophys. Monogr. Ser. 91, 446–466 (1995).
    Google Scholar 
    German, C. R. et al. Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nat. Commun. 13, 6517 (2022).Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konstantinidis, K. T., Rosselló-móra, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murray, A. E. et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat. Microbiol. 5, 987–994 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968–979 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dick, G. J. & Tebo, B. M. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ. Microbiol. 12, 1334–1347 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lesniewski, R. A., Jain, S., Anantharaman, K., Schloss, P. D. & Dick, G. J. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J. 6, 2257–2268 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sheik, C. S. et al. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin. ISME J. 9, 1434–1445 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reed, D. C. et al. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME J. 9, 1857–1869 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, Y. & Perner, M. The role of hydrogen for Sulfurimonas denitrificans’ metabolism. PLoS ONE 9, 8–14 (2014).
    Google Scholar 
    Ilbert, M. & Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta 1827, 161–175 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yu, H. & Leadbetter, J. R. Bacterial chemolithoautotrophy via manganese oxidation. Nature 583, 453–458 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. C. Iron storage in bacteria. Adv. Microb. Physiol. 40, 281–351 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pitcher, R. S. & Watmough, N. J. The bacterial cytochrome cbb 3 oxidases. Biochim. Biophys. Acta 1655, 388–399 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sousa, F. L. et al. The superfamily of heme–copper oxygen reductases: types and evolutionary considerations. Biochim. Biophys. Acta 1817, 629–637 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Park, B. et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 76, 7575–7587 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bayer, B. et al. Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. ISME J. 15, 1025–1039 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yamamoto, M., Arai, H., Ishii, M. & Igarashi, Y. Role of two 2-oxoglutarate: ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions. FEMS Microbiol. Lett. 263, 189–193 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yamamoto, M., Ikeda, T., Arai, H., Ishii, M. & Igarashi, Y. Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles 14, 79–85 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, C. E., Bell, J. M. L. & Ward, F. B. Diversity and distribution of hemerythrin-like proteins in prokaryotes. FEMS Microbiol. Lett. 279, 131–145 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Isaza, C. E., Silaghi-dumitrescu, R., Iyer, R. B., Kurtz, D. M. & Chan, M. K. Structural basis for O2 sensing by the hemerythrin-like domain of a bacterial chemotaxis protein: substrate tunnel and fluxional n terminus. Biogeochemistry 45, 9023–9031 (2006).Article 
    CAS 

    Google Scholar 
    Kendall, J. J., Barrero-tobon, A. M., Hendrixson, D. R. & Kelly, D. J. Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damage. Environ. Microbiol. 16, 1105–1121 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nariya, S. & Kalyuzhnaya, M. G. Hemerythrins enhance aerobic respiration in Methylomicrobium alcaliphilum 20Z R, a methane-consuming bacterium. FEMS Microbiol. Lett. 367, fnaa003 (2020).Sheng, Y. et al. Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854–3918 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl Acad. Sci. USA 110, 330–335 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dede, B. et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 16, 1479–1490 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlindwein, V. (ed.) The Expedition of the Research Vessel ‘Polarstern’ to the Antarctic in 2013 (ANT-XXIX/8). Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 672, 111 (2014); https://doi.org/10.2312/BzPM_0672_2014Boetius, A. The Expedition PS86 of the Research Vessel POLARSTERN to the Arctic Ocean in 2014. Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 685, 133 (2015); https://doi.org/10.2312/BzPM_0685_2015Boetius, A. & Purser, A. The Expedition PS101 of the Research Vessel POLARSTERN to the Arctic Ocean in 2016. Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 706, 230 (2017); https://doi.org/10.2312/BzPM_0706_2017Varliero, G., Bienhold, C., Schmid, F., Boetius, A. & Molari, M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic Polar Front. Front. Microbiol. 10, 665 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alm, E. W., Oerther, D. B., Larsen, N., Stahl, D. A. & Raskin, L. The oligonucleotide probe database. Appl. Environ. Microbiol. 62, 3557–3559 (1996).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).Hassenrück, C., Quast, C., Rapp, J. & Buttigieg, P. Amplicon (GitHub, accessed 15 April 2019); https://github.com/chassenr/NGS/tree/master/AMPLICONMahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. United States (2014). https://www.osti.gov/servlets/purl/1241166Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova, E., Noe, L. & Touzet, H. Sequence analysis SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gruber-vodicka, H. R., Seah, B. K. & Pruesse, E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 5, e00920 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).Zhang, J., Kobert, K., Fluori, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, D., Liu, C., Luo, R., Sadakane, K. & Lam, T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43, 6761–6771 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487–2489 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Preprint at bioRxiv https://doi.org/10.1101/2022.07.11.499243 (2022).Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021).Article 
    PubMed 

    Google Scholar 
    Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 248, 726–731 (2015).
    Google Scholar 
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kristensen, D. M. et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26, 1481–1487 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garber, A. I. et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front. Microbiol. 11, 37 (2020).Passardi, F. et al. PeroxiBase: the peroxidase database. Phytochemistry 68, 1605–1611 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lucchetti-miganeh, C., Goudenège, D., Thybert, D., Salbert, G. & Barloy-hubler, F. SORGOdb: superoxide reductase gene ontology curated database. BMC Microbiol. 11, 105 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 4–8 (2016).
    Google Scholar 
    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040–1048 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. et al. A cross-species alignment tool (CAT). BMC Bioinformatics 8, 349 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 314–324, doi: 10.1109/IPDPS.2019.00041 (2019); https://ieeexplore.ieee.org/document/8820962Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jalili, V. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 48, 395–402 (2020).Article 

    Google Scholar 
    Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291–302 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2, W256–W259 (2019).Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Dongen, S. & Abreu-goodger, C. in Bacterial Molecular Networks: Methods and Protocols, Methods in Molecular Biology (eds van Helden, J. et al.) 281–295 (Springer, 2012).Altschup, S. F., Gish, W., Pennsylvania, T. & Park, U. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 

    Google Scholar 
    Nguyen, L., Schmidt, H. A., Haeseler, A., Von & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delmont, T. O. & Eren, A. M. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6, e4320 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jensen, L. J. et al. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, 250–254 (2008).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–360 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2022).Robinson, M. D., Mccarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reiner-Benaim, A. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom. J. 49, 107–126 (2007).Article 
    PubMed 

    Google Scholar 
    Villanueva, R. A. M. & Chen, Z. J. ggplot2: elegant graphics for data analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 17, 160–167 (2019).Diepenbroek, M. et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German Federation for the Curation of Biological Data (GFBio). In Informatik 2014 – Big Data Komplexität meistern Proc. 232 (eds Plödereder, E. et al.) 1711–1725 (Gesellschaft für Informatik, 2014).Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L. M. & Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242, 1–21 (2007).Article 
    CAS 

    Google Scholar 
    Perner, M. et al. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge. FEMS Microbiol. Ecol. 61, 97–109 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Douville, E. et al. The rainbow vent fluids (36°14’N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 184, 37–48 (2002).Article 
    CAS 

    Google Scholar 
    Ji, F. et al. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge. Deep Sea Res. I 122, 41–47 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    Large sinuous rivers are slowing down in a warming Arctic

    Gillet, N. et al. Canada’s Changing Climate Report (Government of Canada, 2019).Bintanja, R. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 6–11 (2018).Article 

    Google Scholar 
    Camill, P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim. Change 68, 135–152 (2005).Article 
    CAS 

    Google Scholar 
    Hollesen, J., Matthiesen, H., Møller, A. B. & Elberling, B. Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nat. Clim. Change 5, 574–578 (2015).Article 

    Google Scholar 
    Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).Article 

    Google Scholar 
    Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).Article 

    Google Scholar 
    Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).Article 

    Google Scholar 
    Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).Article 
    CAS 

    Google Scholar 
    Shevtsova, I. et al. Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environ. Res. Lett. 15, 085006 (2020).Article 

    Google Scholar 
    Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).Article 
    CAS 

    Google Scholar 
    Rowland, J. C. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229–230 (2010).Article 

    Google Scholar 
    Walcker, R., Corenblit, D., Julien, F., Martinez, J. M. & Steiger, J. Contribution of meandering rivers to natural carbon fluxes: evidence from the Ucayali River, Peruvian Amazonia. Sci. Total Environ. 776, 146056 (2021).Article 
    CAS 

    Google Scholar 
    Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).Article 

    Google Scholar 
    Allen, J. R. Sedimentary structures: their character and physical basis. Dev. Sedimentol. 30B, 1–593 (1982).
    Google Scholar 
    Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).Article 

    Google Scholar 
    Chassiot, L., Lajeunesse, P. & Bernier, J. F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).Article 

    Google Scholar 
    Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).Article 
    CAS 

    Google Scholar 
    Horton, A. J. et al. Modification of river meandering by tropical deforestation. Geology 45, 511–514 (2017).Article 

    Google Scholar 
    Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).Article 
    CAS 

    Google Scholar 
    Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).Article 

    Google Scholar 
    Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851(2022).Brown, D. R. N. et al. Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Clim. Change 162, 385–404 (2020).Article 

    Google Scholar 
    Gautier, E. et al. Fifty-year dynamics of the Lena River islands (Russia): spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 783, 147020 (2021).Article 
    CAS 

    Google Scholar 
    Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).Matsubara, Y. et al. Geomorphology river meandering on Earth and Mars: a comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102–120 (2015).Article 

    Google Scholar 
    Lininger, K. B. & Wohl, E. Floodplain dynamics in North American permafrost regions under a warming climate and implications for organic carbon stocks: a review and synthesis. Earth-Sci. Rev. 193, 24–44 (2019).Article 
    CAS 

    Google Scholar 
    Treat, C. C. & Jones, M. C. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. Holocene 28, 998–1010 (2018).Article 

    Google Scholar 
    Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., Williams, R. M. E. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits. J. Geophys. Res. Earth Surf. 124, 2757–2777 (2019).Article 

    Google Scholar 
    Wang, G., Hu, H. & Li, T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 375, 438–449 (2009).Article 

    Google Scholar 
    Tananaev, N. & Lotsari, E. Defrosting northern catchments: fluvial effects of permafrost degradation. Earth-Sci. Rev. 228, 103996 (2022).Article 

    Google Scholar 
    Tarnocai, C., Nixon, M. F. & Kutny, L. Circumpolar-active-layer-monitoring (CALM) sites in the Mackenzie Valley, northwestern Canada. Permafr. Periglac. Process. 15, 141–153 (2004).Article 

    Google Scholar 
    Nguyen, T.-N., Burn, C. R., King, D. J. & Smith, S. L. Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories. Permafr. Periglac. Process. 20, 141–153 (2009).Article 

    Google Scholar 
    Stephani, E., Drage, J., Miller, D., Jones, B. M. & Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafr. Periglac. Process. 31, 239–254 (2020).Article 

    Google Scholar 
    Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zo. J. 15, vzj2016.01.0010 (2016).Article 

    Google Scholar 
    Leopold, L. B., Wolman, M. G. & Miller, J. P. Fluvial Processes in Geomorphology (Dover, 1964).Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).Article 

    Google Scholar 
    Lageweg, W. I. van de et al. Bank pull or bar push: what drives scroll-bar formation in meandering rivers? Geology 42, 319–322 (2014).Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).Article 

    Google Scholar 
    Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).Article 

    Google Scholar 
    Blanckaert, K. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour. Res. 46, W09506 (2010).
    Google Scholar 
    Ielpi, A. & Lapôtre, M. G. A. Biotic forcing militates against river meandering in the modern Bonneville Basin of Utah. Sedimentology 66, 1896–1929 (2019).Article 

    Google Scholar 
    Fox, G. A. et al. Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage. Earth Surf. Process. Landf. 1573, 1558–1573 (2007).Article 

    Google Scholar 
    O’Neill, H. B., Smith, S. L. & Duchesne, C. Long-term permafrost degradation and thermokarst subsidence in the Mackenzie Delta Area indicated by thaw tube measurements. In 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference (eds Bilodeau, J.-P. et al.) 643–651 (ASCE, 2019).Qiu, J. Thawing permafrost reduces river runoff. Nature https://doi.org/10.1038/nature.2012.9749 (2012).Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 2324–2344 (2019).Article 

    Google Scholar 
    Jorgenson, M. T. et al. An Ecological Land Survey for the Colville River Delta, Alaska, 1996 (ABR, Inc., 1997).Park, H., Yoshikawa, Y., Yang, D. & Oshima, K. Warming water in arctic terrestrial rivers under climate change. J. Hydrometeorol. 18, 1983–1995 (2017).Article 

    Google Scholar 
    Roy-Leveillee, P. & Burn, C. R. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. J. Geophys. Res. Earth Surf. 122, 1070–1089 (2017).Article 

    Google Scholar 
    Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes—toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121, 2446–2470 (2016).Article 

    Google Scholar 
    O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).Article 

    Google Scholar 
    French, H. The Periglacial Environment (Wiley, 2017).Prowse, T. D. River-ice ecology. I: Hydrologic, geomorphic, and water-quality aspects. J. Cold Reg. Eng. 15, 1–16 (2001).Article 
    CAS 

    Google Scholar 
    Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).Article 
    CAS 

    Google Scholar 
    Brown, J., Ferrians, O. J. Jr, Heginbottom, J. A. & Melkinov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (USGS, 1997); https://pubs.usgs.gov/cp/45/report.pdfIelpi, A., Lapotre, M. G. A., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Zenodo https://doi.org/10.5281/zenodo.7556050 (2023).Leopold, L. B. & Maddock, T. J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS, 1953).Giorgino, T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1–24 (2009).Article 

    Google Scholar 
    Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).Article 

    Google Scholar 
    Sylvester, Z., Durkin, P. R., Hubbard, S. M. & Mohrig, D. Autogenic translation and counter point bar deposition in meandering rivers. GSA Bull. 133, 2439–2456 (2021).Titov, M. Code for dynamic time warping analysis. GitHub http://mlt.github.io/QGIS-Processing-tools/tags/dtw.html (2015).Finotello, A., D’Alpaos, A., Lazarus, E. D. & Lanzoni, S. High curvatures drive river meandering: COMMENT. Geology 47, e485 (2019).Finotello, A. et al. American Geophysical Union, Fall Meeting Abstracts (AGU, 2020).Congedo, L. Semi-automatic classification plugin: a Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 6, 3172 (2021).Article 

    Google Scholar  More

  • in

    Simultaneous sulfate and nitrate reduction in coastal sediments

    Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, et al. Permeable marine sediments: Overturning an old paradigm. Eos, Trans Am Geophys Union. 2001;82:133–6.Article 

    Google Scholar 
    Cook PL, Wenzhöfer F, Rysgaard S, Galaktionov OS, Meysman FJ, Eyre BD, et al. Quantification of denitrification in permeable sediments: Insights from a two‐dimensional simulation analysis and experimental data. Limnol Oceanogr Methods. 2006;4:294–307.Article 
    CAS 

    Google Scholar 
    Evrard V, Glud RN, Cook PL. The kinetics of denitrification in permeable sediments. Biogeochemistry. 2013;113:563–72.Article 

    Google Scholar 
    Huettel M, Berg P, Kostka JE. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Marine Sci. 2014;6:23–51.Article 

    Google Scholar 
    Rao AMF, McCarthy MJ, Gardner WS, Jahnke RA. Respiration and denitrification in permeable continental shelf deposits on the South Atlantic Bight: Rates of carbon and nitrogen cycling from sediment column experiments. Continental Shelf Res. 2007;27:1801–19.Article 

    Google Scholar 
    Billerbeck M, Werner U, Polerecky L, Walpersdorf E, de Beer D, Huettel M Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Marine Ecol Progr Series. 2006;326:61–76.Jansen S, Walpersdorf E, Werner U, Billerbeck M, Böttcher ME, de Beer D. Functioning of intertidal flats inferred from temporal and spatial dynamics of O2, H2S and pH in their surface sediment. Ocean Dyn. 2009;59:317–32.Article 

    Google Scholar 
    de Beer D, Wenzhöfer F, Ferdelman TG, Boehme SE, Huettel M, van Beusekom JEE, et al. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Rømø Basin, Wadden Sea. Limnol Oceanogr. 2005;50:113–27.Article 

    Google Scholar 
    Gao H, Matyka M, Liu B, Khalili A, Kostka JE, Collins G, et al. Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea. Limnol Oceanogr. 2012;57:185–98.Article 
    CAS 

    Google Scholar 
    Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 2009;4:417.Article 
    PubMed 

    Google Scholar 
    Elliott AH, Brooks NH. Transfer of nonsorbing solutes to a streambed with bed forms: Theory. Water Resour Res. 1997;33:123–36.Article 
    CAS 

    Google Scholar 
    Precht E, Huettel M. Advective pore‐water exchange driven by surface gravity waves and its ecological implications. Limnol Oceanogr. 2003;48:1674–84.Article 

    Google Scholar 
    Ahmerkamp S, Marchant HK, Peng C, Probandt D, Littmann S, Kuypers MM, et al. The effect of sediment grain properties and porewater flow on microbial abundance and respiration in permeable sediments. Sci Rep. 2020;10:1–12.Article 

    Google Scholar 
    Ahmerkamp S, Winter C, Krämer K, Beer DD, Janssen F, Friedrich J, et al. Regulation of benthic oxygen fluxes in permeable sediments of the coastal ocean. Limnol Oceanogr. 2017;62:1935–54.Article 
    CAS 

    Google Scholar 
    Cardenas MB, Wilson JL Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resour Res. 2007;43:W08412.Santos IR, Eyre BD, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuarine, Coastal Shelf Sci. 2012;98:1–15.Article 

    Google Scholar 
    Probandt D, Eickhorst T, Ellrott A, Amann R, Knittel K. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2018;12:623–33.Article 
    PubMed 

    Google Scholar 
    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchant HK, Holtappels M, Lavik G, Ahmerkamp S, Winter C, Kuypers MMM. Coupled nitrification–denitrification leads to extensive N loss in subtidal permeable sediments. Limnol Oceanogr. 2016;61:1033–48.Article 

    Google Scholar 
    Marchant HK, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Lavik G, Graf J, et al. Metabolic specialization of denitrifiers in permeable sediments controls N2O emissions. Environ Microbiol. 2018;20:4486–502.Article 
    CAS 
    PubMed 

    Google Scholar 
    Laverman AM, Pallud C, Abell J, Van, Cappellen P. Comparative survey of potential nitrate and sulfate reduction rates in aquatic sediments. Geochimica et Cosmochimica Acta. 2012;77:474–88.Article 
    CAS 

    Google Scholar 
    Fenchel T, Jørgensen B. Detritus food chains of aquatic ecosystems: the role of bacteria. Adv Microb Ecol. 1977;1:1–58.Article 
    CAS 

    Google Scholar 
    Canfield DE, Kristensen E, Thamdrup B Aquatic Geomicrobiology: Elsevier Science; 2005.Froelich PN, Klinkhammer G, Bender ML, Luedtke N, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et cosmochimica Acta. 1979;43:1075–90.Article 
    CAS 

    Google Scholar 
    Eckford RE, Fedorak PM. Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three western Canadian oil fields. J Ind Microbiol Biotechnol. 2002;29:243–54.Article 
    CAS 
    PubMed 

    Google Scholar 
    Grigoryan AA, Cornish SL, Buziak B, Lin S, Cavallaro A, Arensdorf JJ, et al. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina. Appl Environ Microbiol. 2008;74:4324.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hubert C, Nemati M, Jenneman G, Voordouw G. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite. Biotechnol Progr. 2003;19:338–45.Article 
    CAS 

    Google Scholar 
    Greene EA, Hubert C, Nemati M, Jenneman GE, Voordouw G. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ Microbiol. 2003;5:607–17.Article 
    CAS 
    PubMed 

    Google Scholar 
    Wolfe BM, Lui SM, Cowan JA. Desulfoviridin, a multimeric-dissimilatory sulfite reductase from Desulfovibrio vulgaris (Hildenborough) Purification, characterization, kinetics and EPR studies. Eur J Biochem. 1994;223:79–89.Article 
    CAS 
    PubMed 

    Google Scholar 
    Fossing H, Gallardo VA, Jørgensen BB, Hüttel M, Nielsen LP, Schulz H, et al. Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca. Nature. 1995;374:713–15.Article 
    CAS 

    Google Scholar 
    Jørgensen BB. Big sulfur bacteria. ISME J. 2010;4:1083.Article 
    PubMed 

    Google Scholar 
    Marzocchi U, Trojan D, Larsen S, Louise Meyer R, Peter Revsbech N, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Londry KL, Suflita JM. Use of nitrate to control sulfide generation by sulfate-reducing bacteria associated with oily waste. J Ind Microbiol Biotechnol. 1999;22:582–9.Article 
    CAS 
    PubMed 

    Google Scholar 
    McInerney MJ, Bhupathiraju VK, Sublette KL. Evaluation of a microbial method to reduce hydrogen sulfide levels in a porous rock biofilm. J Ind Microbiol. 1992;11:53–8.Article 
    CAS 

    Google Scholar 
    Schwermer CU, Ferdelman TG, Stief P, Gieseke A, Rezakhani N, Van Rijn J, et al. Effect of nitrate on sulfur transformations in sulfidogenic sludge of a marine aquaculture biofilter. FEMS Microbiol Ecol. 2010;72:476–84.Article 
    CAS 
    PubMed 

    Google Scholar 
    Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochimica et Cosmochimica Acta. 1994;58:5115–29.Article 
    CAS 

    Google Scholar 
    Al-Raei AM, Bosselmann K, Böttcher ME, Hespenheide B, Tauber F. Seasonal dynamics of microbial sulfate reduction in temperate intertidal surface sediments: controls by temperature and organic matter. Ocean Dyn. 2009;59:351–70.Article 

    Google Scholar 
    Dyksma S, Pjevac P, Ovanesov K, Mussmann M. Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol. 2018;20:450–61.Article 
    CAS 
    PubMed 

    Google Scholar 
    Musat N, Werner U, Knittel K, Kolb S, Dodenhof T, van Beusekom JEE, et al. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Syst Appl Microbiol. 2006;29:333–48.Article 
    PubMed 

    Google Scholar 
    Mußmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol. 2005;7:405–18.Article 
    PubMed 

    Google Scholar 
    Dyksma S, Lenk S, Sawicka JE, Mußmann M. Uncultured gammaproteobacteria and desulfobacteraceae account for major acetate assimilation in a coastal marine sediment. Front Microbiol. 2018;9:3124Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen J, Hanke A, Tegetmeyer HE, Kattelmann I, Sharma R, Hamann E, et al. Impacts of chemical gradients on microbial community structure. ISME J. 2017;11:920.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saad S, Bhatnagar S, Tegetmeyer HE, Geelhoed JS, Strous M, Ruff SE. Transient exposure to oxygen or nitrate reveals ecophysiology of fermentative and sulfate‐reducing benthic microbial populations. Environ Microbiol. 2017;19:4866–81.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brunet RC, Garcia-Gil LJ. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol. 1996;21:131–8.Article 
    CAS 

    Google Scholar 
    Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environ Microbiol. 2020;22:2124–39.Article 
    CAS 
    PubMed 

    Google Scholar 
    Krekeler D, Cypionka H. The preferred electron acceptor of Desulfovibrio desulfuricans CSN. FEMS Microbiol Ecol. 1995;17:271–7.Article 
    CAS 

    Google Scholar 
    Seitz H-J, Cypionka H. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch Microbiol. 1986;146:63–7.Article 
    CAS 

    Google Scholar 
    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marietou A. Nitrate reduction in sulfate-reducing bacteria. FEMS Microbiol Lett. 2016;363:fnw155.Article 
    PubMed 

    Google Scholar 
    Marietou A, Griffiths L, Cole J. Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. J Bacteriol. 2009;191:882–889.Article 
    CAS 
    PubMed 

    Google Scholar 
    Korte HL, Saini A, Trotter VV, Butland GP, Arkin AP, Wall JD. Independence of nitrate and nitrite inhibition of Desulfovibrio vulgaris Hildenborough and use of nitrite as a substrate for growth. Environ Sci Technol. 2015;49:924–931.Article 
    CAS 
    PubMed 

    Google Scholar 
    Pereira IA, LeGall J, Xavier AV, Teixeira M. Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochimica et Biophysica Acta (BBA)-Protein Struct Mol Enzymol. 2000;1481:119–130.Article 
    CAS 

    Google Scholar 
    Werner U, Billerbeck M, Polerecky L, Franke U, Huettel M, van Beusekom JEE, et al. Spatial and temporal patterns of mineralization rates and oxygen distribution in a permeable intertidal sand flat (Sylt, Germany). Limnol Oceanogr. 2006;51:2549–63.Article 
    CAS 

    Google Scholar 
    Marchant HK, Lavik G, Holtappels M, Kuypers MMM. The fate of nitrate in intertidal permeable sediments. PLOS ONE. 2014;9:e104517.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Canfield DE. Reactive iron in marine sediments. Geochimica et cosmochimica acta. 1989;53:619–632.Article 
    CAS 
    PubMed 

    Google Scholar 
    Billerbeck M, Werner U, Bosselmann K, Walpersdorf E, Huettel M. Nutrient release from an exposed intertidal sand flat. Marine Ecol Progr Series. 2006;316:35–51.Article 
    CAS 

    Google Scholar 
    Canfield DE, Stewart FJ, Thamdrup B, De Brabandere L, Dalsgaard T, Delong EF, et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean Coast. Science. 2010;330:1375.Article 
    CAS 
    PubMed 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G. Control of biogenic H2S production with nitrite and molybdate. J Ind Microbiol Biotechnol. 2001;26:350–355.Article 
    CAS 
    PubMed 

    Google Scholar 
    Haveman SA, Greene EA, Stilwell CP, Voordouw JK, Voordouw G. Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite. J Bacteriol. 2004;186:7944–7950.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrendt A, de Beer D, Stief P. Vertical activity distribution of dissimilatory nitrate reduction in coastal marine sediments. Biogeosciences. 2013;10:7509–23.Article 

    Google Scholar 
    Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochimica et Cosmochimica Acta. 2020;280:441–52.Article 
    CAS 

    Google Scholar 
    Waite DW, Chuvochina M, Pelikan C, Parks DH, Yilmaz P, Wagner M, et al. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities. Int J Syst Evolut Microbiol. 2020;70:5972–6016.Article 
    CAS 

    Google Scholar 
    Dyksma S, Bischof K, Fuchs BM, Hoffmann K, Meier D, Meyerdierks A, et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 2016;10:1939–1953.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environ Microbiol. 2011;13:758–774.Article 
    CAS 
    PubMed 

    Google Scholar 
    An S, Gardner W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecol Progr Series. 2002;237:41–50.Article 
    CAS 

    Google Scholar 
    Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, et al. Evidence for fungal and chemodenitrification based N2O flux from nitrogen impacted coastal sediments. Nat Commun. 2017;8:15595.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moura I, Bursakov S, Costa C, Moura JJ. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe. 1997;3:279–290.Article 
    CAS 
    PubMed 

    Google Scholar 
    Song G, Liu S, Zhang J, Zhu Z, Zhang G, Marchant HK, et al. Response of benthic nitrogen cycling to estuarine hypoxia. Limnol Oceanogr. 2021;66:652–66.Article 
    CAS 

    Google Scholar 
    Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek. 1983;48:569–583.Article 

    Google Scholar 
    Strohm TO, Griffin B, Zumft WG, Schink B. Growth yields in bacterial denitrification and nitrate ammonification. Appl Environ Microbiol. 2007;73:1420–1424.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rütting T, Boeckx P, Müller C, Klemedtsson L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences. 2011;8:1779–91.Article 

    Google Scholar 
    Røy H, Lee JS, Jansen S, de Beer D. Tide-driven deep pore-water flow in intertidal sand flats. Limnol Oceanogr. 2008;53:1521–30.Article 

    Google Scholar 
    Cline JD. Spectrophotometric determination of hydrogen sulfide in natural waters 1. Limnol Oceanogr. 1969;14:454–458.Article 
    CAS 

    Google Scholar 
    Viollier E, Inglett P, Hunter K, Roychoudhury A, Van, Cappellen P. The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters. Appl Geochem. 2000;15:785–90.Article 
    CAS 

    Google Scholar 
    Røy H, Weber HS, Tarpgaard IH, Ferdelman TG, Jørgensen BB. Determination of dissimilatory sulfate reduction rates in marine sediment via radioactive 35S tracer. Limnol Oceanogr Methods. 2014;12:196–211.Article 

    Google Scholar 
    García-Robledo E, Corzo A, Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chem. 2014;162:30–36.Article 

    Google Scholar 
    Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71.Article 
    CAS 
    PubMed 

    Google Scholar 
    Holtappels M, Lavik G, Jensen MM, Kuypers MMM Chapter ten – 15N-Labeling Experiments to Dissect the Contributions of Heterotrophic Denitrification and Anammox to Nitrogen Removal in the OMZ Waters of the Ocean. In: Klotz MG, editor. Methods in Enzymology. 486: Academic Press; 2011. p. 223-251.Preisler A, De Beer D, Lichtschlag A, Lavik G, Boetius A, Jørgensen BB. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment.ISME J. 2007;1:341–353.Article 
    CAS 
    PubMed 

    Google Scholar 
    Warembourg FR 5 – Nitrogen fixation in soil and plant systems. In: Knowles R, Blackburn TH, editors. Nitrogen Isotope Techniques. San Diego: Academic Press; 1993. p. 127-156.Orellana LH, Rodriguez-R LM, Konstantinidis KT. ROCker: accurate detection and quantification of target genes in short-read metagenomic data sets by modeling sliding-window bitscores. Nucleic Acids Res. 2016;45:e14–e14.PubMed Central 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anantharaman K, Hausmann B, Jungbluth SP, Kantor RS, Lavy A, Warren LA, et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 2018;12:1715–28.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watanabe T, Kojima H, Fukui M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase. Sci Rep. 2016;6:36262.Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Preparation of aluminium-hydroxide-modified diatomite and its fluoride adsorption mechanism

    Scanning electron microscopy and energy spectrum analysisThe SEM images show the morphological structures of DA and Al-DA before and after adsorption (Fig. 1). DA and Al-DA have disk-like microstructures29 with sur-faces containing both large and small pores, that is, DA and Al-DA have unique multi-level pore structures. The main component of DA and Al-DA is silica, which has a large specific surface area, good thermal stability, and is a natural green material for use as a water treatment agent with a porous structure31. The micrographs show that before adsorption, the DA surface is smooth with a distinct pore structure, whereas modification with aluminium hydroxide makes DA coarse and loose because of the formation of amorphous aluminium hydroxide colloids32. After adsorption, the surface pore structure is covered over for DA and completely covered over for Al-DA, which indicates that F− reacts with Al3+ to form nanoscale precipitates22. The results of the EDS analysis (Fig. 2) show that the content of elemental Al increased from 3.96 to 12.74% after DA was modified with aluminium hydroxide, indicating that Al adhered effectively to the modified DA surface. After adsorption, the content of elemental Al decreased from 3.96 to 1.36% for DA and from 12.74 to 2.03% for Al-DA, which fully confirmed that fluorine preferentially combined with Al to form aluminium precipitates during adsorption, thereby decreasing the Al content.Figure 1SEM images of DA and Al-DA before and after adsorption. (A) Before DA adsorption. (B) After DA adsorption. (C) Before Al-DA adsorption. (D) After Al-DA adsorption.Full size imageFigure 2EDS graphs of DA and Al-DA before and after adsorption. (A) Before DA adsorption. (B) After DA adsorption. (C) Before Al-DA adsorption. (D) After Al-DA adsorption.Full size imageXRD analysisThe surface mineral composition and crystallinity of the materials before and after adsorption were analyzed by XRD (Fig. 3). In the DA and Al-DA patterns, the wide diffraction peaks at approximately 22.0°, 26.0°, and 50.0° mainly correspond to amorphous SiO2, and the diffraction peak at approximately 35° mainly corresponds to amorphous Al2O3, indicating that the material is polycrystalline29. It has been re-ported that amorphous materials may be good adsorbents because of a large specific surface area and numerous active sites33. Many Al(OH)3 peaks and NaCl peaks appear in the XRD pattern of Al-DA, indicating the successful modification of DA by aluminium hydroxide. After adsorption, Na3AlF6 peaks appear in the DA pattern, and Na3AlF6 and AlF3 peaks appear in the Al-DA pattern, whereas the characteristic peaks of NaCl are absent in the Al-DA pattern, which indicates the participation of NaCl in the adsorption process. It has been demonstrated that in the presence of excess sodium fluoride in the reaction solution, the generated aluminium fluoride combines with sodium fluoride to form a NaAlF4 intermediate, which is subsequently converted to cryolite complexes by further adsorption of sodium fluoride34. This result confirms the XRD mapping results.Figure 3XRD patterns of DA and Al-DA before and after adsorption.Full size imageInfrared analysisFigure 4 shows the FTIR spectra of DA and Al-DA before and after adsorption: peaks at 3418, 1635, 1096, 791, and 538 cm−1 appear in the spectrum of DA spectrum before adsorption, and peaks at 3630, 3449, 1637, 1094, 913, 793, and 538 cm−1, appear in the Al-DA spectrum before adsorption. The strong and broad band centered at 3418 cm−1 is due to the stretching vibration of the adsorbed water hydroxyl group (O–H) and the surface hydroxyl group, the vibrational peak at approximately 1635 cm−1 is probably from bound water or the surface hydroxyl group; the peaks at 1096 cm−1 and 538 cm−1 correspond to siloxane groups (Si–O–Si–) and an Al–O absorption band, respectively; and the strong oscillations at 791 cm−1 may be attributed to inorganic Al salts35,36,37. The original absorption peak in the DA spectrum is shifted in the spectrum of DA modified with aluminium hydroxide, confirming the successful modification of DA. The shift of the band at 3418 cm−1 in the DA spectrum to a higher frequency at 3623 cm−1 in the DA spectrum after fluoride absorption is caused by fluoride bonding and has been previously reported38. Another noticeable change in the spectra of DA and Al-DA before and after adsorption is the increase or decrease in the intensity of bending vibrations of specific peaks because the highly electronegative fluoride may have an inductive effect on the respective groups that leads to a blueshift, and the formation of hydrogen bonds leads to a redshift and broadening of the spectral band. The shifts and changes of these peaks indicate the interaction of fluoride with the respective groups29. The new peak at approximately 1170 cm−1 in the spectra of DA and Al-DA with adsorbed fluoride may be due to the formation of Al-F bonds6. The IR spectra show that the formation of a new bonding electronic structure by surface complexation with F− is one of the main mechanisms for the adsorption of F−.Figure 4FTIR spectra of DA and Al-DA before and after adsorption.Full size imageZeta potential analysisThe zeta potential of the material surface plays a very key role in the adsorption process, which reflects the surface charge properties of the material under different pH conditions, and also reflects the surface properties of the material. To obtain the zero charge point of the material, we studied the potential change of the material under different pH values. The results are shown in Fig. 5. In the range of pH 3–11, the zeta potential of the two adsorbents decreased linearly with the increase in pH, and the pHzpc of DA and Al-DA were 9.84 and 10.61, respectively. When pH  More

  • in

    Vole outbreaks may induce a tularemia disease pit that prevents Iberian hare population recovery in NW Spain

    Study siteOur study site is in an intensive agricultural landscape in NW Spain known as “Tierra de Campos”, which occupies part of three out of nine provinces of Castilla-y-León region (Palencia, Valladolid, and Zamora). This area is considered the main “hot-spot” of tularemia in Spain and Southern Europe16 and is characterized by higher-than-average vole abundances during outbreaks17.Iberian hare abundance indexYearly occurrence of vole outbreaks in NW Spain between 1996 and 2020 (i.e., 1997, 1998, 2007, 2008, 2014, 2019) were identified based on reports in the news (historical reconstruction18) and more recently (from 2009 onward) using common vole abundance indices obtained from live-trapping monitoring (i.e.4,19).To study the Iberian hare population trends we used regional hunting statistics available from the regional government (Junta de Castilla-y-León, CAZDATA Project, https://medioambiente.jcyl.es/web/es/caza-pesca/cazdata-banco-datos-actividad.html [Cited 2022 Sep 23]), which included hunting records as well as the number of hunting licences from 1974 to 2020. We used the number of hunted hares divided by the number of hunting licences each year as an abundance index for hares in “Tierra de Campos” (compiling data from the provinces of Palencia, Zamora and Valladolid). CAZDATA Project is an initiative proposed by the Hunting Federation of Castilla y León, which has the support of the regional government and, more importantly, the commitment of almost 60% of the hunting societies in the community to implement a system for monitoring hunting activity. Since this information is gathered by hunters for the benefit of the hunting activity, we are confidence on its reliability to carry out the present study.
    Francisella tularensis prevalence in Iberian haresWe compiled data on F. tularensis prevalence in Iberian hares from 2007 to 2016 using previously published information from a passive surveillance program carried out by the “Regional Network of Epidemiological Surveillance” (Red de Vigilancia Epidemiológica de la Dirección General de Salud Pública) of Castilla-y-León region20. This provided us with information on hare tularemia prevalence (amount of positives/number of screened individual) each year within the three provinces from “Tierra de Campos”.Statistical analysesTo study Iberian hare population trends, we calculated an index of yearly hare population instantaneous growth rate (PGR) using the hunting bag data (hare abundance index) from 1996 to 2020. Hare PGR was calculated as follows:$$PGR= lnleft(frac{{AI}_{t}}{{AI}_{t+1}}right)$$where ln stands for natural logarithm, AIt is Iberian hare abundance index on year t. and AIt+1 is the Iberian hare abundance index on year t + 1. PGRs were estimated yearly from 1996 to 2019. This dependent variable was fitted to a Generalized Linear Mixed Model using the glmmTMB function (GLMMTMB, package glmmTMB21) and a gaussian family distribution and identity link function. The categorical variable vole outbreak year (i.e., with two levels: years with (1) or without vole outbreak (0), hereafter “Vole”) and “Province” (i.e., with three levels: Palencia, Valladolid and Zamora), and their interaction were used as explanatory variables. “Year” of sampling was included as a random factor (i.e., 1996–2019). Significance of the fixed effects in the models was calculated with Type II tests using the function Anova in the car package22. We previously checked the model for overdispersion and distribution fitting using function simulateResiduals (package DHARMa23, simulations = 999). The variable PGR expresses the change between year t and t + 1. We included AI at t as a covariate in the model, in order to take into account density-dependence in hare PGR (the extent to which the abundance changes in between year t and t + 1 depends on the abundance during year t). For this to make biological sense, we rescaled the covariable AI so that it has mean equal to zero. Thus, the effect of the other predictor variables in the model (i.e., “Vole” and “Province”) was interpreted as the effect that these variables have on PGR when the abundance value is at 0. Thus, the effect of “Vole” and “Province” on PGR will be obtained by the mean value of abundance.We assessed the effect of vole outbreak years on the Iberian hare’s population PGR by running a multiple Pearson correlation (function ggscatter) between PGR and AI, considering both, PGR for all the years of the study period (i.e., 1996–2019) and only those years where vole outbreaks were detected (i.e., 1997, 1998, 2007, 2008, 2014, 2019).Finally, we tested for difference in the prevalence of F. tularensis on Iberian hare’s during years with or without vole outbreaks using a GLMMTMB21 with a binomial family distribution and a logit link function, where prevalence of F. tularensis in hares was the dependent variable, and “Vole” outbreak years and “Province” (i.e. Palencia, Valladolid and Zamora) were the responses variables. In this case, the variable “Vole” outbreak years included three levels (i.e. 0 = no vole outbreak, 1 = vole outbreak year, 2 = one year after vole outbreak), to assess if F. tularensis prevalence in hare also persist one year after a vole outbreak. “Year” of sampling was included as a random factor (i.e., 2007–2016). Due to the limited sample size, we did not include the interaction between “Vole” and “Province” to not overfit the model. We also previously checked the model for overdispersion and distribution fitting using function simulateResiduals (package DHARMa23, simulations = 999). All analysis were carried out using the R statistical computing environment24. More

  • in

    Climate, landscape, and life history jointly predict multidecadal community mosquito phenology

    Visser, M. E. & Holleman, L. J. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc. Biol. Sci. 268, 289–294 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duchenne, F. et al. Phenological shifts alter the seasonal structure of pollinator assemblages in Europe. Nat. Ecol. Evol. 4, 115–121 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bartomeus, I. et al. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proc. Natl. Acad. Sci. U. S. A. 108, 20645–20649 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Organization, W. H. et al. Global vector control response 2017–2030. In Global Vector Control Response 2017–2030 (2017).Reisen, W. K. et al. Effects of warm winter temperature on the abundance and gonotrophic activity of Culex (Diptera: Culicidae) in California. J. Med. Entomol. 47, 230–237 (2010).Article 
    PubMed 

    Google Scholar 
    Denlinger, D. L. & Armbruster, P. A. Mosquito diapause. Annu. Rev. Entomol. 59, 73–93 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mullen, G. R. & Durden, L. A. Medical and Veterinary Entomology. (Academic Press, 2009).Messenger, P. S. Bioclimatic studies with insects. Annu. Rev. Entomol. 4, 183–206 (1959).Article 

    Google Scholar 
    Hard, J. J., Bradshaw, W. E. & Holzapfel, C. M. The genetic basis of photoperiodism and its evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii. Am. Nat. 142, 457–473 (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Danilevskii, A. S. et al. Photoperiodism and seasonal development of insects. In Photoperiodism and Seasonal Development of Insects (1965).Nietschke, B. S., Magarey, R. D., Borchert, D. M., Calvin, D. D. & Jones, E. A developmental database to support insect phenology models. Crop Prot. 26, 1444–1448 (2007).Article 

    Google Scholar 
    Vinogradova, E. B. Diapause in aquatic insects, with emphasis on mosquitoes. In Diapause in Aquatic Invertebrates Theory and Human Use (eds. Alekseev, V. R., de Stasio, B. T. & Gilbert, J. J.) 83–113 (Springer Netherlands, 2007).Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: Ecological and evolutionary contexts. Adv. Insect Phys. 33, 50–152 (2006).Article 

    Google Scholar 
    Belitz, M. W. et al. Climate drivers of adult insect activity are conditioned by life history traits. Ecol. Lett. 24, 2687–2699 (2021).Article 
    PubMed 

    Google Scholar 
    Townroe, S. & Callaghan, A. British container breeding mosquitoes: The impact of urbanisation and climate change on community composition and phenology. PLoS ONE 9, e95325 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westby, K. M., Adalsteinsson, S. A., Biro, E. G., Beckermann, A. J. & Medley, K. A. Aedes albopictus populations and larval habitat characteristics across the landscape: Significant differences exist between urban and rural land use types. Insects 12, 196 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, D., Stucky, B. J., Deck, J., Baiser, B. & Guralnick, R. P. The effect of urbanization on plant phenology depends on regional temperature. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 
    PubMed 

    Google Scholar 
    Diniz, D. F. A., de Albuquerque, C. M. R., Oliva, L. O., de Melo-Santos, M. A. V. & Ayres, C. F. J. Diapause and quiescence: Dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit. Vectors 10, 310 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rund, S. S. C., Moise, I. K., Beier, J. C. & Martinez, M. E. Rescuing troves of hidden ecological data to tackle emerging mosquito-borne diseases. J. Am. Mosq. Control Assoc. 35, 75–83 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewitz, J., U.S. Geological Survey. National Land Cover Database (NLCD) 2019 Products (ver. 2. 0, June 2021): U.S. Geological Survey data release (ver. 2. 0, June 2021): U.S. Geological Survey data release.Woodring, J. et al. Diapause, transovarial transmission, and filial infection rates in geographic strains of La Crosse virus-infected Aedes triseriatus. Am. J. Trop. Med. Hyg. 58, 587–588 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ellwood, E. R. et al. Disentangling the paradox of insect phenology: Are temporal trends reflecting the response to warming?. Oecologia 168, 1161–1171 (2012).Article 
    ADS 
    PubMed 

    Google Scholar 
    Degaetano, A. T. Meteorological effects on adult mosquito (Culex) populations in metropolitan New Jersey. Int. J. Biometeorol. 49, 345–353 (2005).Article 
    ADS 
    PubMed 

    Google Scholar 
    Su, T., Webb, J. P., Meyer, R. P. & Mulla, M. S. Spatial and temporal distribution of mosquitoes in underground storm drain systems in Orange County, California. J. Vector Ecol. 28, 79–89 (2003).PubMed 

    Google Scholar 
    Harbison, J. E., Henry, M., Xamplas, C. & Dugas, L. R. Evaluation of Culex pipiens populations in a residential area with a high density of catch basins in a suburb of Chicago, Illinois. J. Am. Mosq. Control Assoc. 30, 228–230 (2014).Article 
    PubMed 

    Google Scholar 
    Wang, X. et al. Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California. Sci. Rep. 11, 12667 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geery, P. R. & Holub, R. E. Seasonal abundance and control of Culex spp. in catch basins in Illinois. J. Am. Mosq. Control Assoc. 5, 537–540 (1989).CAS 
    PubMed 

    Google Scholar 
    Nelms, B. M., Macedo, P. A., Kothera, L., Savage, H. M. & Reisen, W. K. Overwintering biology of Culex (Diptera: Culicidae) mosquitoes in the Sacramento Valley of California. J. Med. Entomol. 50, 773–790 (2013).Article 
    PubMed 

    Google Scholar 
    Becker, N. et al. Mosquitoes and Their Control (Springer, 2010).Book 

    Google Scholar 
    Bartlett-Healy, K., Crans, W. & Gaugler, R. Temporal and spatial synchrony of Culex territans (Diptera: Culicidae) with their amphibian hosts. J. Med. Entomol. 45, 1031–1038 (2008).Article 
    PubMed 

    Google Scholar 
    Reeves, L. E. et al. Identification of Uranotaenia sapphirina as a specialist of annelids broadens known mosquito host use patterns. Commun. Biol. 1, 92 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burkett-Cadena, N. D. et al. Host reproductive phenology drives seasonal patterns of host use in mosquitoes. PLoS One 6, e17681 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Strien, A. J., Plantenga, W. F., Soldaat, L. L., van Swaay, C. A. M. & Wallisdevries, M. F. Bias in phenology assessments based on first appearance data of butterflies. Oecologia 156, 227–235 (2008).Article 
    ADS 
    PubMed 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giraldo-Calderón, G. I. et al. Vectorbase.org updates: Bioinformatic resources for invertebrate vectors of human pathogens and related organisms. Curr. Opin. Insect Sci. 50, 100860 (2022).Article 
    PubMed 

    Google Scholar 
    Wickham, François, Henry & Müller. dplyr: A grammar of data manipulation. R package version 0.4.Hesselbarth, M. H. K., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    Johnson, M. climateR: climateR. R package version 0.1.0. https://github.com/mikejohnson51/climateR.Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    Schmucki, R., Harrower, C. A. & Dennis, E. B.. rbms: Computing generalised abundance indices for butterfly monitoring count data. R package version.Belitz, M. W., Larsen, E. A., Shirey, V., Li, D. & Guralnick, R. P. Phenological research based on natural history collections: Practical guidelines and a lepidopteran case study. Funct. Ecol. https://doi.org/10.1111/1365-2435.14173 (2022).Article 

    Google Scholar 
    Larsen, E. A., Belitz, M. W., Guralnick, R. P. & Ries, L. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Sci. Rep. 12, 13370 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models Usinglme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression. (SAGE Publications, 2018).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).Article 
    ADS 

    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lüdecke, D. sjPlot: Data visualization for statistics in social science. R package version. More