More stories

  • in

    The role of dung beetle species in nitrous oxide emission, ammonia volatilization, and nutrient cycling

    All procedures involving animals were conducted in accordance with the guidelines and regulations from Institutional Animal Care and Use Committee (IACUC) of the University of Florida (protocol #201509019). Tis manuscript is reported in accordance with ARRIVE guidelines.Site descriptionThis study was carried out at the North Florida Research and Education Center, in Marianna, FL (30°46′35″N 85°14′17″W, 51 m.a.s.l). The trial was performed in two experimental years (2019 and 2020) in a greenhouse.The soil used was collected from a pasture of rhizoma peanut (Arachis glabrata Benth.) and Argentine bahiagrass (Paspalum notatum Flügge) as the main forages. Without plant and root material, only soil was placed into buckets, as described below in the bucket assemblage section. Soil was classified as Orangeburg loamy sand (fine-loamy-kaolinitic, thermic Typic Kandiudults), with a pHwater of 6.7, Mehlich-1-extratable P, K, Mg and Ca concentrations of 41, 59, 63, 368 mg kg−1, respectively. Average of minimum and maximum daily temperature and relative humidity in the greenhouse for September and November (September for beetle trial due seasonal appearance of beetles, and October and November to the Pear Millet trial) in 2019 and 2020 were 11 and 33 °C, 81%; 10 and 35 °C, 77%, respectively.Biological material determinationTo select the species of beetles, a previous dung beetle sampling was performed in the grazing experiment in the same area (grass and legume forage mixture) to determine the number of dung beetle species according to the functional groups as described by Conover et al.44. Beetles were pre-sampled from March 2017 to June 2018, where Tunnelers group were dominant and represented by Onthophagus taurus (Schreber), Digitonthophagus gazella (Fabricius), Phanaeus vindex (MacLeay), Onthophagus oklahomensis (Brown), and Euniticellus intermedius (Reiche). Other species were present but not abundant, including Aphodius psudolividus (Linnaeus), Aphodius carolinus (Linnaeus), and Canthon pilularius (Linnaeus) identified as Dweller and Roller groups, respectively. The pre-sampling indicated three species from the Tunneler group were more abundant, and thereby, were chosen to compose the experimental treatments (Fig. 4).Figure 4Most abundant dung beetle species in Marianna, FL used in the current study. Credits: Carlos C.V. García.Full size imageBeetles collection and experimental treatmentsThree species of common communal dung beetles were used: O. taurus (1), D. gazella (2), and P. vindex (3). Treatments included two treatments containing only soil and soil + dung without beetles were considered as Control 1 (T1) and Control 2 (T2), respectively. Isolated species T3 = 1, T4 = 2, T5 = 3 and their combinations T6 = 1 + 2 and T7 = 1 + 2 + 3. Dung beetles were trapped in the pasture with grazing animals using the standard cattle-dung-baited pitfall traps, as described by Bertone et al.41. To avoid losing samples due to cattle trampling, 18 traps were randomized in nine paddocks (two traps per paddock) and installed protected by metal cages, and after a 24-h period, beetles were collected, and the traps removed. Table 1 shows the number of dung beetles, their total mass (used to standardize treatments) per treatment, and the average mass per species. To keep uniformity across treatments we kept beetle biomass constant across species at roughly 1.7 to 1.8 g per assemblage (Table 1). Twenty-four hours after retrieving the beetles from the field traps, they were separated using an insect rearing cage, classified, and thereafter stored in small glass bottles provided with a stopper and linked to a mesh to keep the ventilation and maintaining the beetles alive.Table 1 Total number and biomass of dung beetles per treatment.Full size tableBuckets assemblageThe soil used in the buckets was collected from the grazing trial in two experimental years (August 2019 and August 2020) across nine paddocks (0.9 ha each). The 21 plastic buckets had a 23-cm diameter and 30-cm (0.034 m2) and each received 10 kg of soil (Fig. 5). At the bottom of the recipient, seven holes were made for water drainage using a metallic mesh with 1-mm diameter above the surface of the holes to prevent dung beetles from escaping. Water was added every four days to maintain the natural soil conditions at 60% of the soil (i.e., bucket) field capacity (measured with the soil weight and water holding capacity of the soil). Because soil from the three paddocks had a slightly different texture (sandy clay and sandy clay loam), we used them as the blocking factor.Figure 5Bucket plastic bucket details for dung beetle trial.Full size imageThe fresh dung amount used in the trial was determined based on the average area covered by dung and dung weight (0.05 to 0.09 m2 and 1.5 to 2.7 kg) from cattle in grazing systems, as suggested by Carpinelli et al.45. Fresh dung was collected from Angus steers grazing warm-season grass (bahiagrass) pastures and stored in fridge for 24 h, prior to start the experiment. A total of 16.2 kg of fresh dung was collected, in which 0.9 kg were used in each bucket. After the dung application, dung beetles were added to the bucket. To prevent dung beetles from escaping, a mobile plastic mesh with 0.5 mm diameter was placed covering the buckets before and after each evaluation. The experiment lasted for 24 days in each experimental year (2019 and 2020), with average temperature 28 °C and relative humidity of 79%, acquired information from the Florida Automated Weather Network (FAWN).Chamber measurementsThe gas fluxes from treatments were evaluated using the static chamber technique46. The chambers were circular, with a radius of 10.5 cm (0.034 m2). Chamber bases and lids were made of polyvinyl chloride (PVC), and the lid were lined with an acrylic sheet to avoid any reactions of gases of interest with chamber material (Fig. 6). The chamber lids were covered with reflective tape to provide insulation, and equipped with a rubber septum for sampling47. The lid was fitted with a 6-mm diameter, 10-cm length copper venting tube to ensure adequate air pressure inside the chamber during measurements, considering an average wind speed of 1.7 m s−148,49. During measurements, chamber lids and bases were kept sealed by fitting bicycle tire inner tubes tightly over the area separating the lid and the base. Bases of chambers were installed on top of the buckets to an 8-cm depth, with 5 cm extending above ground level. Bases were removed in the last evaluation day (24th) of each experimental year.Figure 6Static chamber details and instruments for GHG collection in the dung beetle trial.Full size imageGas fluxes measurementsThe gas fluxes were measured at 1000 h following sampling recommendations by Parkin & Venterea50, on seven occasions from August 28th to September 22nd in both years (2019 and 2020), being days 0, 1, 2, 3, 6, 12, and 24 after dung application. For each chamber, gas samples were taken using a 60-mL syringe at 15-min intervals (t0, t15, and t30). The gas was immediately flushed into pre-evacuated 30-mL glass vials equipped with a butyl rubber stopper sealed with an aluminium septum (this procedure was made twice per vial and per collection time). Time zero (t0) represented the gas collected out of the buckets (before closing the chamber). Immediately thereafter, the bucket lid was tightly closed by fitting the lid to the base with the bicycle inner tube, followed by the next sample deployment times.Gas sample analyses were conducted using a gas chromatograph (Trace 1310 Gas Chromatograph, Thermo Scientific, Waltham, MA). For N2O, an electron capture detector (350 °C) and a capillary column (J&W GC packed column in stainless steel tubing, length 6.56 ft (2 M), 1/8 in. OD, 2 mm ID, Hayesep D packing, mesh size 80/100, pre-conditioned, Agilent Technologies) were used. Temperature of the injector and columns were 80 and 200 °C, respectively. Daily flux of N2O-N (g ha−1 day−1) was calculated as described in Eq. (1):$${text{F}}, = ,{text{A}}*{text{dC}}/{text{dt}}$$
    (1)
    where F is flux of N2O (g ha−1 day−1), A is the area of the chamber, and dC/dt is the change of concentration in time calculated using a linear method of integration by Venterea et al.49.Ammonia volatilization measurementAmmonia volatilization was measured using the open chamber technique, as described by Araújo et al.51. The ammonia chamber was made of a 2-L volume polyethylene terephthalate (PET) bottle. The bottom of the bottle was removed and used as a cap above the top opening to keep the environment controlled, free of insects and other sources of contamination. An iron wire was used to support the plastic jar. A strip of polyfoam (250 mm in length, 25 mm wide, and 3 mm thick) was soaked in 20 ml of acid solution (H2SO4 1 mol dm−3 + glycerine 2% v/v) and fastened to the top, with the bottom end of the foam remaining inside the plastic jar. Inside each chamber there was a 250-mm long wire designed with a hook to support it from the top of the bottle, and wire basket at the bottom end to support a plastic jar (25 mL) that contained the acid solution to keep the foam strip moist during sampling periods (Fig. 7). The ammonia chambers were placed installed in the bucket located in the middle of each experimental block after the last gas sampling of the day and removed before the start of the next gas sampling.Figure 7Mobile ammonia chamber details for ammonia measurement in dung beetle trial. Adapted from Araújo et al.51.Full size imageNutrient cyclingPhotographs of the soil and dung portion of each bucket were taken twenty-four hours after the last day of gas flux measurement sampling to determine the dung removal from single beetle species and their combination. In the section on statistical analysis, the programming and statistical procedures are described. After this procedure, seeds of pearl millet were planted in each bucket. After 5 days of seed germination plants were thinned, maintaining four plants per bucket. Additionally, plants were clipped twice in a five-week interval, with the first cut occurring on October 23rd and the second cut occurring on November 24th, in both experimental years. Before each harvest, plant height was measured twice in the last week. In the harvest day all plants were clipped 10 cm above the ground level. Samples were dried at 55 °C in a forced-air oven until constant weight and ball-milled using a Mixer Mill MM 400 (Retsch, Newton, PA, USA) for 9 min at 25 Hz, and analyzed for total N concentration using a C, H, N, and S analyzer by the Dumas dry combustion method (Vario Micro Cube; Elementar, Hanau, Germany).Statistical analysisTreatments were distributed in a randomized complete block design (RCBD), with three replications. Data were analyzed using the Mixed Procedure from SAS (ver. 9.4., SAS Inst., Cary, NC) and LSMEANS compared using PDIFF adjusted by the t-test (P  More

  • in

    Photodegradation of a bacterial pigment and resulting hydrogen peroxide release enable coral settlement

    Knowlton, N. The future of coral reefs. Proc. Natl. Acad. Sci. 98, 5419–5425 (2001).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 1979(301), 929–933 (2003).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 1979(318), 1737–1742 (2007).Article 
    ADS 

    Google Scholar 
    Eakin, C. M. et al. Monitoring coral reefs from space. Oceanography 23, 118–133 (2010).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Berkelmans, R. & van Oppen, M. J. H. The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc. R. Soc. B Biol. Sci. 273, 2305–2312 (2006).Article 

    Google Scholar 
    Byler, K. A., Carmi-Veal, M., Fine, M. & Goulet, T. L. Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One 8, e59596 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cumbo, V., van Oppen, M. & Baird, A. Temperature and Symbiodinium physiology affect the establishment and development of symbiosis in corals. Mar. Ecol. Prog. Ser. 587, 117–127 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Mundy, C. N. & Babcock, R. C. Role of light intensity and spectral quality in coral settlement: Implications for depth-dependent settlement?. J. Exp. Mar Biol. Ecol. 223, 235–255 (1998).Article 

    Google Scholar 
    Gleason, D. F., Edmunds, P. J. & Gates, R. D. Ultraviolet radiation effects on the behavior and recruitment of larvae from the reef coral Porites astreoides. Mar. Biol. 148, 503–512 (2006).Article 

    Google Scholar 
    Yusuf, S., Zamani, N. P., Jompa, J. & Junior, M. Z. Larvae of the coral Acropora tenuis (Dana 1846) settle under controlled light intensity. IOP Conf. Ser. Earth Environ. Sci. 253, 012023 (2019).Article 

    Google Scholar 
    Vermeij, M. J. A., Marhaver, K. L., Huijbers, C. M., Nagelkerken, I. & Simpson, S. D. Coral larvae move toward reef sounds. PLoS One 5, e10660 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).Article 

    Google Scholar 
    Price, N. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163, 747–758 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).Article 
    ADS 

    Google Scholar 
    Negri, A., Webster, N., Hill, R. & Heyward, A. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).Article 
    ADS 

    Google Scholar 
    Webster, N. S. et al. Metamorphosis of a scleractinian coral in response to microbial biofilms. Appl. Environ. Microbiol. 70, 1213–1221 (2004).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erwin, P. M., Song, B. & Szmant, A. M. Settlement behavior of Acropora palmata planulae: effects of biofilm age and crustose coralline algal cover. In Proceedings of 11th International Coral Reef Symposium 24, (2008).Siboni, N. et al. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 39, 1703–1713 (2020).Article 

    Google Scholar 
    Petersen, L.-E. et al. Mono- and multispecies biofilms from a crustose coralline alga induce settlement in the scleractinian coral Leptastrea purpurea. Coral Reefs 40, 381–394 (2021).Article 

    Google Scholar 
    Jorissen, H. et al. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci. Rep. 11, 14610 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a pseudoalteromonas bacterium. PLoS One 6, e19082 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803 (2015).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tran, C. & Hadfield, M. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).Article 
    ADS 

    Google Scholar 
    Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 20133086 (2014).Article 

    Google Scholar 
    Petersen, L.-E., Kellermann, M. Y., Nietzer, S. & Schupp, P. J. Photosensitivity of the bacterial pigment cycloprodigiosin enables settlement in coral larvae—light as an understudied environmental factor. Front. Mar. Sci. 8, 749070 (2021).Article 

    Google Scholar 
    Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).Article 

    Google Scholar 
    Harrington, L., Fabricius, K., Death, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).Article 

    Google Scholar 
    Da-Anoy, J. P., Villanueva, R. D., Cabaitan, P. C. & Conaco, C. Effects of coral extracts on survivorship, swimming behavior, and settlement of Pocillopora damicornis larvae. J. Exp. Mar. Biol. Ecol. 486, 93–97 (2017).Article 

    Google Scholar 
    Morse, D. E. & Morse, A. N. C. Enzymatic characterization of the morphogen recognized by Agaricia humilis (Scleractinian Coral) larvae. Biol. Bull. 181, 104–122 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102 (2007).Article 

    Google Scholar 
    Kitamura, M., Schupp, P. J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 50, 6606–6609 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maru, N. et al. Relative configuration of luminaolide. Tetrahedron Lett. 54, 4385–4387 (2013).Article 
    CAS 

    Google Scholar 
    Nietzer, S., Moeller, M., Kitamura, M. & Schupp, P. J. Coral larvae every day: Leptastrea purpurea, a brooding species that could accelerate coral research. Front. Mar. Sci. 5, 466 (2018).Article 

    Google Scholar 
    Moeller, M., Nietzer, S. & Schupp, P. J. Neuroactive compounds induce larval settlement in the scleractinian coral Leptastrea purpurea. Sci. Rep. 9, 2291 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen, L.-E., Kellermann, M. Y. & Schupp, P. J. Secondary metabolites of marine microbes: from natural products chemistry to chemical ecology. In YOUMARES 9 – The Oceans: Our Research, Our Future: Proceedings of the 2018 Conference for Young Marine Researcher in Oldenburg, Germany (eds Jungblut, S. et al.) 159–180 (Springer International Publishing, 2020). https://doi.org/10.1007/978-3-030-20389-4_8.Chapter 

    Google Scholar 
    Fiegel, L. J. et al. A detailed visualization of the early development stages of Leptastrea purpurea reveals distinct bio-optical features. Front. Mar. Sci. 10, 1–10 (2023).
    Google Scholar 
    Strader, M. E., Aglyamova, G. V. & Matz, M. V. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. BMC Genom. 19, 17 (2018).Article 

    Google Scholar 
    Puisay, A. et al. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals. Mar. Environ. Res. 163, 105200 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Perez-Tomas, R. & Vinas, M. New insights on the antitumoral properties of prodiginines. Curr. Med. Chem. 17, 2222–2231 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    You, Z. et al. Insights into the anti-infective properties of prodiginines. Appl. Microbiol. Biotechnol. 103, 2873–2887 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kellermann, M. Y., Yoshinaga, M. Y., Valentine, R. C., Wörmer, L. & Valentine, D. L. Important roles for membrane lipids in haloarchaeal bioenergetics. Biochim. Biophys. Acta (BBA) Biomembr. 1858, 2940–2956 (2016).Article 
    CAS 

    Google Scholar 
    Hirose, M., Yamamoto, H. & Nonaka, M. Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp.. Coral Reefs 27, 247–254 (2008).Article 
    ADS 

    Google Scholar 
    Bollati, E. et al. Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. Elife 11, e73521 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS One 4, e7298 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alegado, R. A. et al. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. Elife 1, e00013 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woznica, A. et al. Bacterial lipids activate, synergize, and inhibit a developmental switch in choanoflagellates. Proc. Natl. Acad. Sci. 113, 7894–7899 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    He, J. et al. Bacterial nucleobases synergistically induce larval settlement and metamorphosis in the invasive mussel Mytilopsis sallei. Appl. Environ. Microbiol. 85, e01039 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, H., Rischer, M., Westermann, M. & Beemelmanns, C. Two distinct bacterial biofilm components trigger metamorphosis in the colonial hydrozoan Hydractinia echinata. MBio 12, e00401 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, C., Fogarty, N. D., Ritson-Williams, R. & Paul, V. J. Interspecific variation in coral settlement and fertilization success in response to hydrogen peroxide exposure. Biol. Bull. 233, 206–218 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boettcher, A. A., Dyer, C., Casey, J. & Targett, N. M. Hydrogen peroxide induced metamorphosis of queen conch, Strombus gigas: tests at the commercial scale. Aquaculture 148, 247–258 (1997).Article 
    CAS 

    Google Scholar 
    Covarrubias, L., Hernández-García, D., Schnabel, D., Salas-Vidal, E. & Castro-Obregón, S. Function of reactive oxygen species during animal development: Passive or active?. Dev. Biol. 320, 1–11 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gauron, C. et al. Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Dev. Biol. 414, 133–141 (2016).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Spatial ecology of the invasive Asian common toad in Madagascar and its implications for invasion dynamics

    Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford University Press, 2017).Book 
    MATH 

    Google Scholar 
    Clobert, J., Baguette, M., Benton, T. G. & Bullock, J. M. Dispersal Ecology and Evolution (Oxford University Press, 2012).Book 

    Google Scholar 
    Shigesada, N., Kawasaki, K. & Takeda, Y. Modeling stratified diffusion in biological invasions. Am. Nat. 146, 229–251 (1995).Article 

    Google Scholar 
    Chuang, A. & Peterson, C. R. Expanding population edges: Theories, traits, and trade-offs. Glob. Change Biol. 22, 494–512 (2016).Article 
    ADS 

    Google Scholar 
    Cayuela, H. et al. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Q. Rev. Biol. 95, 36 (2020).Article 

    Google Scholar 
    Measey, G. J. et al. A global assessment of alien amphibian impacts in a formal framework. Divers. Distrib. 22, 970–981 (2016).Article 

    Google Scholar 
    Antonelli, A., Smith, R. J., Perrigo, A. L. & Crottini, A. Madagascar’s extraordinary biodiversity: Evolution, distribution, and use. Science 378, eabf0869 (2022).
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Marshall, B. M. et al. Widespread vulnerability of Malagasy predators to the toxins of an introduced toad. Curr. Biol. 28, R654–R655 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Licata, F. et al. Toad invasion of Malagasy forests triggers severe mortality of a predatory snake. Biol. Inv. 24, 1189–1198 (2022).Article 

    Google Scholar 
    Licata, F. et al. Abundance, distribution and spread of the invasive Asian toad Duttaphrynus melanostictus in eastern Madagascar. Biol. Inv. 21, 1615–1626 (2019).Article 

    Google Scholar 
    McClelland, P., Reardon, J. T., Kraus, F., Raxworthy, C. J. & Randrianantoandro, C. Asian toad eradication feasibility report for Madagascar (Te Anau, 2015).Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: Are all amphibian populations metapopulations?. Ecography 28, 110–128 (2005).Article 

    Google Scholar 
    Shine, R. et al. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci. Rep. 11, 23574 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Myles-Gonzalez, E., Burness, G., Yavno, S., Rooke, A. & Fox, M. G. To boldly go where no goby has gone before: Boldness, dispersal tendency, and metabolism at the invasion front. Behav. Ecol. 26, 1083–1090 (2015).Article 

    Google Scholar 
    Van Petegem, K. H. P. et al. Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evol. Ecol. 29, 299–310 (2015).Article 

    Google Scholar 
    Stuart, Y. E. et al. Rapid evolution of a native species following invasion by a congener. Science 346, 463–466 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Licata, F., Andreone, F., Crottini, A., Harison, R. F. & Ficetola, G. F. Does spatial sorting occur in the invasive Asian toad in Madagascar? Insights into the invasion unveiled by morphological analyses. JZSER 2021, 1–9 (2021).
    Google Scholar 
    Schwarzkopf, L. & Alford, R. A. Nomadic movement in tropical toads. Oikos 96, 492–506 (2002).Article 

    Google Scholar 
    Brown, G. P., Kelehear, C. & Shine, R. Effects of seasonal aridity on the ecology and behaviour of invasive cane toads in the Australian wet–dry tropics. Funct. Ecol. 25, 1339–1347 (2011).Article 

    Google Scholar 
    Duellman, W. E. & Trueb, L. Biology of Amphibians (JHU Press, 1994).Book 

    Google Scholar 
    Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010). https://doi.org/10.7208/9780226893334.Book 

    Google Scholar 
    Shaw, A. K., Kokko, H. & Neubert, M. G. Sex difference and Allee effects shape the dynamics of sex-structured invasions. J. Anim. Ecol. 87, 36–46 (2018).Article 
    PubMed 

    Google Scholar 
    Schwarzkopf, L. & Alford, R. A. Desiccation and shelter-site use in a tropical amphibian: Comparing toads with physical models. Funct. Ecol. 10, 193–200 (1996).Article 

    Google Scholar 
    Wogan, G. O. U., Stuart, B. L., Iskandar, D. T. & McGuire, J. A. Deep genetic structure and ecological divergence in a widespread human commensal toad. Biol. Lett. 12, 20150807 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Licata, F. Exploring the invasion dynamics and impacts of the invasive Asian common toad in Madagascar (University of Porto, 2022).
    Google Scholar 
    Reilly, S. B. et al. Toxic toad invasion of Wallacea: A biodiversity hotspot characterized by extraordinary endemism. Glob. Change Biol. 23, 5029–5031 (2017).Article 
    ADS 

    Google Scholar 
    Jørgensen, C. B., Shakuntala, K. & Vijayakumar, S. Body size, reproduction and growth in a tropical toad, Bufo melanostictus, with a comparison of ovarian cycles in tropical and temperate zone anurans. Oikos 46, 379 (1986).Article 

    Google Scholar 
    Vences, M. et al. Tracing a toad invasion: Lack of mitochondrial DNA variation, haplotype origins, and potential distribution of introduced Duttaphrynus melanostictus in Madagascar. Amphib. Reptilia 38, 197–207 (2017).Article 

    Google Scholar 
    Ngo, B. V. & Ngo, C. D. Reproductive activity and advertisement calls of the Asian common toad Duttaphrynus melanostictus (Amphibia, Anura, Bufonidae) from Bach Ma National Park, Vietnam. Zool. Stud. 52, 12 (2013).Article 

    Google Scholar 
    Licata, F. et al. The Asian toad (Duttaphrynus melanostictus) in Madagascar: A report of an ongoing invasion. In Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions (eds Angelici, F. M. & Rossi, L.) 617–638 (Springer, 2020). https://doi.org/10.1007/978-3-030-42335-3_21.Chapter 

    Google Scholar 
    Moore, M., Solofo Niaina Fidy, J. F. & Edmonds, D. The new toad in town: Distribution of the Asian toad, Duttaphrynus melanostictus, in the Toamasina area of eastern Madagascar. Trop. Conserv. Sci. 8, 440–455 (2015).Article 

    Google Scholar 
    Licata, F. et al. Using public surveys to rapidly profile biological invasions in hard-to-monitor areas. Anim. Conserv. https://doi.org/10.1111/acv.12835 (2023).Article 

    Google Scholar 
    Zhang, M. et al. Automatic high-resolution land cover production in madagascar using sentinel-2 time series, tile-based image classification and google earth engine. Remote Sensing 12, 3663 (2020).Article 
    ADS 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & Mcmahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4, 439–473 (2007).
    Google Scholar 
    Merkel, A. Toamasina Climate (Madagascar). Accessed 20 July 2022. https://en.climate-data.org/africa/madagascar/toamasina/toamasina-4029/
    (2021).Gordon, A. Secondary sexual characters of Bufo melanostictus schneider. Copeia 1933, 204–207 (1933).Article 

    Google Scholar 
    Alford, R. & Rowley, J. Techniques for tracking amphibians: The effects of tag attachment, and harmonic direction finding versus radio telemetry. Amphib. Reptilia 28, 367–376 (2007).Article 

    Google Scholar 
    Lassueur, T., Joost, S. & Randin, C. F. Very high resolution digital elevation models: Do they improve models of plant species distribution?. Ecol. Modell. 198, 139–153 (2006).Article 

    Google Scholar 
    Abrams, M., Crippen, R. & Fujisada, H. ASTER global digital elevation model (GDEM) and ASTER global water body dataset (ASTWBD). Remote Sensing 12, 1156 (2020).Article 
    ADS 

    Google Scholar 
    Brown, G. P., Phillips, B. L., Webb, J. K. & Shine, R. Toad on the road: Use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol. Conserv. 133, 88–94 (2006).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Hijmans, R. J. et al. raster: Geographic data analysis and modeling. https://CRAN.R-project.org/package=raster (2021).Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article 

    Google Scholar 
    Labocha, M. K., Schutz, H. & Hayes, J. P. Which body condition index is best?. Oikos 123, 111–119 (2014).Article 

    Google Scholar 
    Tingley, R. & Shine, R. Desiccation risk drives the spatial ecology of an invasive anuran (Rhinella marina) in the australian semi-desert. PLoS ONE 6, e25979 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, S. J., Sinsch, U. & Alford, R. A. Radio Tracking. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds Heyer, R. et al.) 155–158 (Smithsonian Institution, 1994).
    Google Scholar 
    Altobelli, J. T., Dickinson, K. J. M., Godfrey, S. S. & Bishop, P. J. Methods in amphibian biotelemetry: Two decades in review. Austral. Ecol. 47, 1382–1395 (2022).Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002). https://doi.org/10.1007/978-1-4757-2917-7_3.Book 
    MATH 

    Google Scholar 
    Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2021).Bates, D. et al. lme4: Linear Mixed-Effects Models using ‘Eigen’ and S4. (2020).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. (2022).Hodges, C. W., Marshall, B. M., Hill, J. G. & Strine, C. T. Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape. bioRxiv https://doi.org/10.1101/2021.09.08.459477 (2021).Article 

    Google Scholar 
    Muller, B. J., Cade, B. S. & Schwarzkopf, L. Effects of environmental variables on invasive amphibian activity: Using model selection on quantiles for counts. Ecosphere 9, e02067 (2018).Article 

    Google Scholar 
    Linsenmair, K. E. & Spieler, M. Migration patterns and diurnal use of shelter in a ranid frog of a West African savannah: A telemetric study. Amphib. Reptilia 19, 43–64 (1998).Article 

    Google Scholar 
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).Article 
    PubMed 

    Google Scholar 
    Ward-Fear, G., Greenlees, M. J. & Shine, R. Toads on lava: spatial ecology and habitat use of invasive cane yoads (Rhinella marina) in Hawai’i. PLoS ONE 11, e0151700 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, W.-S., Lin, J.-Y. & Yu, J.Y.-L. Male reproductive cycle of the toad Bufo melanostictus in Taiwan. Zool. Sci. 14, 497–503 (1997).Article 

    Google Scholar 
    Brown, G. P., Phillips, B. L. & Shine, R. The straight and narrow path: the evolution of straight-line dispersal at a cane toad invasion front. Proc. R. Soc. B 281, 20141385 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).Article 
    PubMed 

    Google Scholar 
    Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 14315 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, B. L., Brown, G. P., Travis, J. M. J. & Shine, R. Reid’s paradox revisited: The evolution of dispersal kernels during range expansion. Am. Nat. 172, S34–S48 (2008).Article 
    PubMed 

    Google Scholar 
    Kot, M., Lewis, M. A. & van den Driessche, P. Dispersal data and the spread of invading organisms. Ecology 77, 2027–2042 (1996).Article 

    Google Scholar 
    Deguise, I. & Richardson, J. S. Movement behaviour of adult western toads in a fragmented, forest landscape. Can. J. Zool. 87, 1184–1194 (2009).Article 

    Google Scholar 
    Mitrovich, M. J., Gallegos, E. A., Lyren, L. M., Lovich, R. E. & Fisher, R. N. Habitat use and movement of the endangered Arroyo toad (Anaxyrus californicus) in coastal southern California. J. Herpetol. 45, 319–328 (2011).Article 

    Google Scholar 
    Urban, M. C., Phillips, B. L., Skelly, D. K. & Shine, R. A toad more traveled: The heterogeneous invasion dynamics of cane toads in Australia. Am. Nat. 171, E134–E148 (2008).Article 
    PubMed 

    Google Scholar 
    Enriquez-Urzelai, U., Montori, A., Llorente, G. A. & Kaliontzopoulou, A. Locomotor mode and the evolution of the hindlimb in western mediterranean anurans. Evol. Biol. 42, 199–209 (2015).Article 

    Google Scholar 
    Junior, B. T. & Gomes, F. R. Relation between water balance and climatic variables associated with the geographical distribution of anurans. PLoS ONE 10, e0140761 (2015).Article 

    Google Scholar 
    Klockmann, M., Günter, F. & Fischer, K. Heat resistance throughout ontogeny: Body size constrains thermal tolerance. Glob. Change Biol. 23, 686–696 (2017).Article 
    ADS 

    Google Scholar 
    Petrovskii, S., Mashanova, A. & Jansen, V. A. A. Variation in individual walking behavior creates the impression of a Lévy flight. PNAS 108, 8704–8707 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindström, T., Brown, G. P., Sisson, S. A., Phillips, B. L. & Shine, R. Rapid shifts in dispersal behavior on an expanding range edge. PNAS 110, 13452–13456 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, R. et al. New weapons in the toad toolkit: A review of methods to control and mitigate the biodiversity impacts of invasive Cane toads (Rhinella marina). Q. Rev. Biol. 92, 123–149 (2017).Article 
    PubMed 

    Google Scholar 
    Novoa, A. et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions 22, 1801–1820 (2020).Article 

    Google Scholar 
    DeVore, J. L., Crossland, M. R., Shine, R. & Ducatez, S. The evolution of targeted cannibalism and cannibal-induced defenses in invasive populations of cane toads. Proc. Natl. Acad. Sci. 118, e2100765118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muller, B. J. & Schwarzkopf, L. Relative effectiveness of trapping and hand-capture for controlling invasive cane toads (Rhinella marina). Int. J. Pest Manag. 64, 185–192 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Evaluation of the growth, adaption, and ecosystem services of two potentially-introduced urban tree species in Guangzhou under drought stress

    Study site, tree selections, and drought-simulation experimentThis research was performed in Guangzhou (22°26′-23°56′N, 112°57′-114°03′E), which is a core city located in subtropical zones. With an area of 7434.4 km2 and a population of 18.87 million, Guangzhou’s urbanization rate has reached 86.46%. To cope with multiple environmental challenges, several urban-forest nurseries were established to cultivate and introduce various tree species. Among them, we selected the one in Tianhe District as our study site. This nursery was not only abundant with native and exotic tree species but also equipped with similar edatope in cities, which was ideal for our research.Tilia cordata Mill. (Tc) and Tilia tomentosa Moench (Tt), originating from the west of Britain and southeast of Europe, were common urban tree species planted in European cities. Based on their performance in providing ecological and landscape functions, these two tree species were considered to be introduced for urban greening. Therefore, Tilia cordata Mill. (Tc) and Tilia tomentosa Moench (Tt) were selected as our objectives, which were investigated for their growth and ecosystem services to evaluate their adaption in Guangzhou. In addition, a native tree species Tilia miqueliana Maxim (Tm) was also implemented concurrent measurement as a comparison.For each of the three surveyed tree species, ten trees with a diameter at breast height (DBH) around 5.5 cm and tree height around 2.5 m were chosen for our experiment, which were thought to possess similar initial statuses. To investigate the impact of drought on the growth and ecosystem services of the three selected tree species, a controlled experiment was launched from January to December in 2020. For each tree species, five trees were planted in the common environment as the controlled group, while the other five trees were under the precipitation-exclusion installation (PEI) as the drought-simulation group. Consisting of several water-proof tents, PEI was adequately large and could completely prevent trees from obtaining rainfalls, which created a precipitation-exclusive environment to simulate an enduring drought event within the whole research period (Fig. 1).Figure 1Schematic diagram of the drought simulation experiment for the three surveyed tree species.Full size imageEnvironmental monitoring systemsClimatic data were sampled every 10 min with a weather station (WP3103 mesoscale automatic weather station, China) located at an unshaded site in the nursery. The data were stored in the logger and copied to our laboratory to produce daily or monthly data. All the climatic variables, including photosynthetically active radiation (PAR, µmol m-2 s-1), wind speed (m s-1), precipitation (mm), and air temperature (°C) were calculated from January to December in 2020.For volumetric soil water content (%; VWC), the HOBO MX2307 system (Onetemp, Adelaide, Australia), placed in a shaded box in the nursery, was applied for all the three tree species from both the controlled and drought-simulation groups. For each individual tree, the sensing probe was inserted horizontally at the depths of 30 cm and located 20 cm in the northern direction from the tree stems. Based on the daily readings, monthly means were calculated from January to December in 2020.Measurement of above-ground growthTo investigate the above-ground growth of the three tree species from both the controlled and drought-simulation groups, their DBH (diameter at breast height, cm), tree height (m), and LAI (leaf area index) were measured at the beginning of each month in 2020. DBH was measured with the help of a caliper (Altraco Inc., Sausalito, California, USA), and their tree heights were measured using a standard tape. The crown analytical instrument CI-110 (Camas, Washington State, USA) was used to capture an accurate image of tree crowns and calculate LAI. Sufficient numbers of points were measured and recorded to describe each tree’s average crown shape. The software FV2200 (LICOR Biosciences, Lincoln, NE) helped compute each tree’s crown width and crown area.Measurement of below-ground growthFine root coring campaigns were launched for all the trees of the three tree species from both the controlled and drought treatment groups every three to four months, i.e., in February, May, September, and December. Although the coring campaign might damage part of the roots, the fine roots obtained each time were a mere portion of the whole root system, not affecting the general development of trees’ underground processes. For every individual tree, two 30-cm soil cores were applied in each direction of north, south, east, and west, of which one was located at 20 cm to the trunk (paracentral roots) and the other one was located at 40 cm (outer roots). In addition, the soil samples were evenly divided into three horizons which were 0–10 cm (shallow layer), 10–20 cm (middle layer), and 20–30 cm (deep layer). Then a sieve with 2-mm mesh size was used to filter all the fine roots. The fine roots were washed carefully to remove the adherent soils and dried in an oven at 65 ℃ for 72 h. Finally, all the samples were weighed using a balance with an accuracy of four decimal places to obtain the dry weight. The fine root biomass at different depths was calculated using the dry weight divided by the cross-sectional area of the auger20.Model’s simulation of ecosystem servicesThe process-based model City-Tree was used to predict the ecosystem services of the three tree species from both the controlled and drought-simulation groups23. The model required the data of tree growth parameters including tree height, DBH, and crown area together with environmental conditions such as edaphic and climatic data24. In this research, cooling, evapotranspiration and CO2 fixation of the three surveyed tree species in the controlled and drought-treatment groups were simulated at the end of 2020.The actual evapotranspiration eta was calculated from the potential evapotranspiration using fetp[t], Tilia’s factors fetp[t], and the reduction factor fred:$${mathrm{et}}_{mathrm{a}}={mathrm{f}}_{mathrm{red}}*{mathrm{f}}_{mathrm{etp}}left[mathrm{t}right]*{mathrm{et}}_{mathrm{p}}$$The process of tree’s evapotranspiration (etp) was calculated on the basis of SVAT algorithm together with Penman formula in the module on water balance as below:$${mathrm{et}}_{mathrm{p}}=left[mathrm{s }/ left(mathrm{s}+upgamma right)right]*left({mathrm{r}}_{mathrm{s}}-{mathrm{r}}_{mathrm{L}}right) /mathrm{ L}+left[1-mathrm{s }/ left(mathrm{s}+upgamma right)right]*{mathrm{e}}_{mathrm{s}}*mathrm{f }left({mathrm{v}}_{mathrm{u}}right)$$with γ: psychrometric constant in hPa K−1; s: the slope of the saturation vapour pressure curve in hPa K−1; rs: short wave radiation balance in W m−2; rL: long-wave radiation balance in W m−2; L: specific evaporation heat in W m−2 mm−1 d; es: saturation deficit in hPa; f (vu): ventilation function with vu being the daily average wind speed in m s−1.Within the module cooling, the energy needed for the transition of water from liquid to gaseous phase was calculated based on the crown area (CA) and the transpiration eta sum:$${mathrm{E}}_{mathrm{A}}= {mathrm{et}}_{mathrm{a}}*mathrm{CA}-left({mathrm{L}}_{mathrm{O}}* -0.00242*mathrm{temp}right) / {mathrm{f}}_{mathrm{con}}$$with EA: energy released by a tree through transpiration (kWh tree-1), LO: energy needed for the transition of the 1 kg of water from the liquid to gaseous phase = 2.498 MJ (kgH2O)-1 and temp = temperature in ℃, fcon: 0.5.The calculation of new assimilation in the module of photosynthesis and respiration was on the basis of the approach of Haxeltine and Prenticem25. The model assumed that 50% of the incoming short-wave radiation is photosynthetic active radiation (PAR). Using the LAI and a light extinction factor of 0.5, the radiation amount of 1 m2 leaf area can be estimated based on an exponential function according to the Lambert–Beer law. This way, the gross assimilation per m2 leaf area as the daily mean of the month can be derived from:$${text{A}} = {text{d}}*{{left[ {left( {{text{J}}_{{text{p}}} + {text{J}}_{{text{r}}} – {text{sqrt}} left( {left( {{text{J}}_{{text{P}}} + {text{J}}_{{text{r}}} } right)^{2} – 4*uptheta *{text{J}}_{{text{p}}} *{text{J}}_{{text{r}}} } right)} right)} right]} mathord{left/ {vphantom {{left[ {left( {{text{J}}_{{text{p}}} + {text{J}}_{{text{r}}} – {text{sqrt}} left( {left( {{text{J}}_{{text{P}}} + {text{J}}_{{text{r}}} } right)^{2} – 4*uptheta *{text{J}}_{{text{p}}} *{text{J}}_{{text{r}}} } right)} right)} right]} {left( {2*uptheta } right)}}} right. kern-0pt} {left( {2*uptheta } right)}}$$with A: gross assimilation [g C m−2 d−1]; d: mean day length of the month [h]; Jp: reaction of photosynthesis on absorbed photosynthetic radiation [g C m−2 h−1]; Jr: rubisco limited rate of photosynthesis [g C m−2 h−1]; θ: form factor = 0.7.Jp was defined as a function of the photosynthetic active radiation PAR in mol m−2 h−1 and the efficiency of carbon fixation per absorbed PAR [g C mol−1].$${text{J}}_{{text{p}}} = {text{c}}_{{text{p}}} {text{*PAR}}$$$${text{c}}_{{text{p}}} = alpha *left( {{text{p}}_{{{text{ci}}}} – {text{r}}} right){ /}left( {{text{p}}_{{{text{ci}}}} – {text{r}}} right)*gamma *{text{m}}_{{{text{co}}_{2} }} *{text{i}}left[ {text{t}} right]$$with α: intrinsic quantum efficiency for CO2 uptake = 0.08; pci: partial pressure of the internal CO2 [Pa]; r: CO2 compensation point [Pa]; ϒ: species dependent adjustment function for tree age; m CO2: molecular mass of C = 12.0 g mol−1; i[t]: influence of temperature on efficiency.Net assimilation AN [g C m−2 d−1] was then derived from the gross assimilation A and the dark respiration Rd by:$${text{A}}_{{text{N}}} = {text{A}} – {text{R}}_{{text{d}}}$$$${text{R}}_{{text{d}}} =upbeta *{text{V}}_{{text{m}}}$$where Vm was calculated as:$${text{V}}_{{text{m}}} = {1 mathord{left/ {vphantom {1 upbeta }} right. kern-0pt} upbeta } * {{{text{c}}_{{text{p}}} } mathord{left/ {vphantom {{{text{c}}_{{text{p}}} } {{text{c}}_{{text{r}}} * {text{PAR}} * left[ {left( {2uptheta – 1} right) * beta * {{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – left( {2uptheta *upbeta *{{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – {text{c}}_{{text{r}}} } right)*varsigma } right]}}} right. kern-0pt} {{text{c}}_{{text{r}}} * {text{PAR}} * left[ {left( {2theta – 1} right) * beta * {{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – left( {2theta *upbeta *{{text{d}} mathord{left/ {vphantom {{text{d}} {{text{d}}_{max } }}} right. kern-0pt} {{text{d}}_{max } }} – {text{c}}_{{text{r}}} } right)*varsigma } right]}}$$By multiplying AN, the number of days and the total leaf area, the entire monthly net assimilation of the tree can be obtained. In this study, we assumed a fixed share of 50% as respiration based on the gross primary production that the resulting net primary production NPP was transformed in the content of fixed carbon by multiplying the value with the carbon conversion factor 0.524.$${mathrm{Carbon}}_{mathrm{fix}}=0.5*mathrm{NPP}$$Statistical analysesThe software package R was used for statistical analysis. To investigate the differences between means, two-sampled t-test and analysis of variance (ANOVA) with Tukey’s HSD (honestly significant difference) test were used. All the cases, the means were reported as significant when P  More

  • in

    Strong effects of food quality on host life history do not scale to impact parasitoid efficacy or life history

    Wajnberg, É. et al. (eds) Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications 1st edn. (Blackwell Publishing Ltd, 2008).
    Google Scholar 
    Godfray, H. C. J. Parasitoids: Behavioral and Evolutionary Ecology (Princeton University Press, 1994).Book 

    Google Scholar 
    Morris, R. J., Lewis, O. T. & Godfray, H. C. J. Apparent competition and insect community structure: Towards a spatial perspective. Annales Zoologica Fennici 42, 1–14 (2005).
    Google Scholar 
    Forbes, A. A., Bagley, R. K., Beer, M. A., Hippee, A. C. & Widmayer, H. A. Quantifying the unquantifiable: Why Hymenoptera, not Coleoptera, is the most speciose animal order. BMC Ecol. 18, 1–11 (2018).Article 

    Google Scholar 
    Hassell, M. P. & Waage, J. K. Host–parasitoid population interactions. Annu. Rev. Entomol. 29, 89–114 (1984).Article 

    Google Scholar 
    Lafferty, K. D. et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Veen, F. J. F., Van Holland, P. D. & Godfray, H. C. J. Stable coexistence in insect communities due to density- and trait-mediated indirect effects. Ecology 86, 3182–3189 (2005).Article 

    Google Scholar 
    Schmidt, M. H. et al. Relative importance of predators and parasitoids for cereal aphid control. Proc. R. Soc. Lond. Series B Biol. Sci. 270, 1905–1909 (2003).Article 

    Google Scholar 
    Mills, N. J. & Wajnberg, É. Optimal foraging behavior and efficient biological control methods. In Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field Applications 1st edn (eds Wajnberg, É. et al.) 1–30 (Blackwell Publishing, 2008).
    Google Scholar 
    Vinson, S. B. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).Article 

    Google Scholar 
    Benrey, B. & Denno, R. F. The slow-growth-high-mortality hypothesis: A test using the cabbage butterfly. Ecology 78, 987–999 (1997).
    Google Scholar 
    Chau, A. & Mackauer, M. Host-instar selection in the aphid parasitoid Monoctonus paulensis (Hymenoptera: Braconidae, Aphidiinae): Assessing costs and benefits. Can. Entomol. 133, 549–564 (2001).Article 

    Google Scholar 
    Strand, M. R. & Obrycki, J. J. Host specificity of insect parasitoids and predators. Bioscience 46, 422–429 (1996).Article 

    Google Scholar 
    Vinson, S. B. Host selection by insect parasitoids. Annu. Rev. Entomol. 21, 109–133 (1976).Article 

    Google Scholar 
    Wang, X. G. & Messing, R. H. Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behav. Ecol. Sociobiol. 56, 513–522 (2004).Article 

    Google Scholar 
    Liu, Z., Xu, B., Li, L. & Sun, J. Host-size mediated trade-off in a parasitoid Sclerodermus harmandi. PLoS ONE 6, e23260 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. Y., Yang, Z. Q., Wu, H. & Gould, J. R. Effects of host size on the sex ratio, clutch size, and size of adult Spathius agrili, an ectoparasitoid of emerald ash borer. Biol. Control 44, 7–12 (2008).Article 

    Google Scholar 
    Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: A manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).Article 

    Google Scholar 
    Scriber, J. M. & Slansky, F. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26, 183–211 (1981).Article 

    Google Scholar 
    Moreau, J., Benrey, B. & Thiery, D. Assessing larval food quality for phytophagous insects: Are the facts as simple as they appear?. Funct. Ecol. 20, 592–600 (2006).Article 

    Google Scholar 
    Davidowitz, G., D’Amico, L. J. & Nijhout, H. F. The effects of environmental variation on a mechanism that controls insect body size. Evolut. Ecol. Res. 6, 49–62 (2004).
    Google Scholar 
    Williams, I. S. Slow-growth, high-mortality-a general hypothesis, or is it?. Ecol. Entomol. 24, 490–495 (1999).Article 

    Google Scholar 
    Chen, K. & Chen, Y. Slow-growth high-mortality: A meta-analysis for insects. Insect Sci. 25, 337–351 (2018).Article 
    PubMed 

    Google Scholar 
    Waldbauer, G. P. The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229–288 (1968).Article 

    Google Scholar 
    Hochuli, D. F. Insect herbivory and ontogeny: How do growth and development influence feeding behaviour, morphology and host use?. Austral. Ecol. 26, 563–570 (2001).Article 

    Google Scholar 
    Holmes, L. A., Nelson, W. A. & Lougheed, S. C. Food quality effects on instar-specific life histories of a holometabolous insect. Ecol. Evol. 10, 626–637 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kagata, H. & Ohgushi, T. Bottom-up trophic cascades and material transfer in terrestrial food webs. Ecol. Res. 21, 26–34 (2006).Article 

    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Vidal, M. C. & Murphy, S. M. Bottom-up vs top-down effects on terrestrial insect herbivores: A meta-analysis. Ecol. Lett. 21, 138–150 (2018).Article 
    PubMed 

    Google Scholar 
    Harvey, J. A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117, 1–13 (2005).Article 

    Google Scholar 
    Charnov, E. L., Los-den Hartogh, R. L., Jones, W. T. & van den Assem, J. Sex ratio evolution in a variable environment. Nature 289, 27–33 (1981).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Larson, A. O. The bean weevil and the southern Cowpea weevil in California. United States Department of Agriculture. Technical Bulletin No. 593, Washington, D. C. (1938).Askew, R. R. & Shaw, M. R. Parasitoid communities: their size, structure and development in Insect Parasitoids: 13th Symposium of Royal Entomological Society of London (eds. Waage, J.K. & Greathead, D.J. 225–264 (1986).Holmes, L. A., Nelson, W. A., Dyck, M. & Lougheed, S. C. Enhancing the usefulness of artificial seeds in seed beetle model systems research. Methods Ecol. Evol. 11, 1701–1706 (2020).Article 

    Google Scholar 
    Ellers, J., Van Alphen, J. J. M. & Sevenster, J. G. A field study of size-fitness relationships in the parasitoid Asobara tabida. J. Anim. Ecol. 67, 318–324 (1998).Article 

    Google Scholar 
    Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. 99, 673–686 (2004).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 
    MATH 

    Google Scholar 
    Wood, S. N. Thin-plate regression splines. J. Roy. Stat. Soc. B 65, 95–114 (2003).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020). Accessed 3 April 2020.Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretical Approach 2nd edn. (Springer-Verlag, 2002).MATH 

    Google Scholar 
    Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 111, 1548–1575 (2016).Article 
    CAS 

    Google Scholar 
    Bolker, B., & R Development Core Team Tools for general maximum likelihood estimation. Version 1.0.20. (2017). Accessed 4 April 2020.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometical. J. 50, 346–363 (2008).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Rose, N. L., Yang, H., Turner, S. D. & Simpson, G. L. An assessment of the mechanisms for the transfer of lead and mercury from atmospherically contaminated organic soils to lake sediments with particular reference to Scotland, UK. Geochim. Cosmochim. Acta 82, 113–135 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Holmes, L. A., Nelson, W. A. & Lougheed, S. C. Data from: Food quality effects on instar-specific life histories of a holometabolous insect. Dryad Digital Repository. https://doi.org/10.5061/dryad.d7wm37px7 (2020).Therneau, T. A Package for Survival Analysis in R. R package version 3.2-13. https://CRAN.R-project.org/package=survival. (2021). Accessed 3 April 2020.Efron, B. The Jackknife, the Bootstrap, and Other Resampling Plans (Society for Industrial and Applied Mathematics, 1982).Book 
    MATH 

    Google Scholar 
    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Clancy, K. M. & Price, P. W. Rapid herbivore growth enhances enemy attack: Sublethal plant defenses remain a paradox. Ecology 68, 733–737 (1987).Article 

    Google Scholar 
    Loader, C. & Damman, H. Nitrogen content of food plants and vulnerability of Pieris rapae to natural enemies. Ecology 72, 1586–1590 (1991).Article 

    Google Scholar 
    Uesugi, A. The slow-growth high-mortality hypothesis: Direct experimental support in a leafmining fly. Ecol. Entomol. 40, 221–228 (2015).Article 

    Google Scholar 
    Feeny, P. Plant apparency and chemical defense. in Biochemical Interaction Between Plants and Insects. 1–40 (Springer, 1976).Teder, T. & Tammaru, T. Cascading effects of variation in plant vigor on the relative performance of insect herbivores and their parasitoids. Ecol. Entomol. 27, 94–104 (2002).Article 

    Google Scholar 
    Kagata, H., Nakamura, M. & Ohgushi, T. Bottom-up cascade in a tri-trophic system: Different impacts of host-plant regeneration on performance of a willow leaf beetle and its natural enemy. Ecol. Entomol. 30, 58–62 (2005).Article 

    Google Scholar 
    Vet, L. E. M., Lewis, W. J. & Cardé, R. T. Parasitoid foraging and learning. In Chemical Ecology of Insects 2 (eds Cardé, R. T. & Bell, W. J.) 65–101 (Springer, 1995).Chapter 

    Google Scholar 
    Ishii, Y. & Shimada, M. Learning predator promotes coexistence of prey species in host-parasitoid systems. Proc. Natl. Acad. Sci. 109, 5116–5120 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ode, P. J. & Hardy, I. C. Parasitoid sex ratios and biological control. Behavioral ecology of insect parasitoids. In Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to field applications (eds Wajnberg, E. et al.) 253–291 (Wiley, 2008).Chapter 

    Google Scholar 
    Xiaoyi, W. & Zhongqi, Y. Behavioral mechanisms of parasitic wasps for searching concealed insect hosts. Acta Ecol. Sin. 28, 1257–1269 (2008).Article 

    Google Scholar 
    Otten, H., Wäckers, F., Battini, M. & Dorn, S. Efficiency of vibrational sounding in the parasitoid Pimpla turionellae is affected by female size. Anim. Behav. 61, 671–677 (2001).Article 

    Google Scholar 
    Kaplan, I., Carrillo, J., Garvey, M. & Ode, P. J. Indirect plant-parasitoid interactions mediated by changes in herbivore physiology. Curr. Opin. Insect Sci. 14, 112–119 (2016).Article 
    PubMed 

    Google Scholar 
    Ode, P. J. Plant toxins and parasitoid trophic ecology. Curr. Opin. Insect Sci. 32, 118–123 (2019).Article 
    PubMed 

    Google Scholar 
    Barbosa, P., Gross, P. & Kemper, J. Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregate. Ecology 72, 1567–1575 (1991).Article 
    CAS 

    Google Scholar 
    Barbosa, P. Natural enemies and herbivore–plant interactions: Influence of plant allelochemicals and host specificity. In Novel Aspects of Insect–Plant Interactions (eds Barbosa, P. & Letourneau, L. D. K.) 201–230 (Wiley, 1988).
    Google Scholar 
    Ode, P. J. Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu. Rev. Entomol. 51, 163–185 (2006).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Carbon stocks of billions of individual African dryland trees estimated

    Tucker, C. et al. Nature 615, 80–86 (2023).Article 

    Google Scholar 
    Bayala, J. et al. Agric. Ecosyst. Environ. 205, 25–35 (2015).Article 

    Google Scholar 
    Keesstra, S. D. et al. Soil 2, 111–128 (2016).Article 

    Google Scholar 
    Dewi, S. et al. Int. J. Biodivers. Sci. Ecosyst. Serv. Mgmt 13, 312–329 (2017).Article 

    Google Scholar 
    Ahlström, A. et al. Science 348, 895–899 (2015).Article 
    PubMed 

    Google Scholar 
    Poulter, B. et al. Nature 509, 600–603 (2014).Article 
    PubMed 

    Google Scholar 
    Prăvălie, R. et al. Environ. Res. 201, 111580 (2021).Article 
    PubMed 

    Google Scholar 
    Reij, C. P. & Smaling, E. M. A. Land Use Policy 25, 410–420 (2008).Article 

    Google Scholar 
    Zomer, R. J., Bossio, D. A., Trabucco, A., van Noordwijk, M. & Xu, J. Circ. Agric. Syst. 2, 3 (2022).Article 

    Google Scholar 
    Chomba, S., Sinclair, F., Savadogo, P., Bourne, M. & Lohbeck, M. Front. For. Glob. Change 3, 571679 (2020).Article 

    Google Scholar 
    Dakpogan, A., Bayala, J., Ouattara, I. & Ellington, E. in United for Lands: From National Coalitions to a Pipeline of Bankable Projects for the Great Green Wall 54–56 (United Nations, 2022).
    Google Scholar 
    Garrity, D. P. & Bayala, J. in Sustainable Development Through Trees on Farms: Agroforestry in its Fifth Decade (ed. van Noordwijk, M.) 153–175 (World Agroforestry, 2019).
    Google Scholar 
    Schnell, S., Kleinn, C. & Ståhl, G. Environ. Monit. Assess. 187, 600 (2015).Article 
    PubMed 

    Google Scholar  More

  • in

    Phototrophy by antenna-containing rhodopsin pumps in aquatic environments

    Balashov, S. P. et al. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309, 2061–2064 (2005).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imasheva, E. S., Balashov, S. P., Choi, A. R., Jung, K.-H. & Lanyi, J. K. Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna. Biochemistry 48, 10948–10955 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. Proteorhodopsins: an array of physiological roles? Nat. Rev. Microbiol. 6, 488–494 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vollmers, J. et al. Poles apart: Arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. PLoS ONE 8, e63422 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertsova, Y. V., Arutyunyan, A. M. & Bogachev, A. V. Na+-translocating rhodopsin from Dokdonia sp. PRO95 does not contain carotenoid antenna. Biochem. Mosc. 81, 414–419 (2016).Article 
    CAS 

    Google Scholar 
    Misra, R., Eliash, T., Sudo, Y. & Sheves, M. Retinal–salinixanthin interactions in a thermophilic rhodopsin. J. Phys. Chem. B 123, 10–20 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).Article 
    ADS 
    PubMed 

    Google Scholar 
    Béjà, O., Spudich, E. N., Spudich, J. L., Leclerc, M. & DeLong, E. F. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Atamna-Ismaeel, N. et al. Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. ISME J. 2, 656–662 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Frigaard, N.-U., Martinez, A., Mincer, T. J. & DeLong, E. F. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439, 847–850 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Finkel, O. M., Béjà, O. & Belkin, S. Global abundance of microbial rhodopsins. ISME J. 7, 448–451 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gómez-Consarnau, L. et al. Microbial rhodopsins are major contributors to the solar energy captured in the sea. Sci. Adv. 5, eaaw8855 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeLong, E. F. & Béjà, O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol. 8, e1000359 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Munson-McGee, J. H. et al. Decoupling of respiration rates and abundance in marine prokaryoplankton. Nature 612, 764–770 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W.-W., Sineshchekov, O. A., Spudich, E. N. & Spudich, J. L. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278, 33985–33991 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Man, D. Diversification and spectral tuning in marine proteorhodopsins. EMBO J. 22, 1725–1731 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lanyi, J. K. & Balashov, S. P. in Halophiles and Hypersaline Environments (eds. Ventosa, A., Oren, A. & Ma, Y.) 319–340 (Springer, 2011).Balashov, S. P. et al. Reconstitution of Gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 49, 9792–9799 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kopejtka, K. et al. A bacterium from a mountain lake harvests light using both proton-pumping xanthorhodopsins and bacteriochlorophyll-based photosystems. Proc. Natl Acad. Sci. USA 119, e2211018119 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pushkarev, A. & Béjà, O. Functional metagenomic screen reveals new and diverse microbial rhodopsins. ISME J. 10, 2331–2335 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chazan, A. et al. Diverse heliorhodopsins detected via functional metagenomics in freshwater Actinobacteria, Chloroflexi and Archaea. Environ. Microbiol. 24, 110–121 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Inoue, K. et al. A light-driven sodium ion pump in marine bacteria. Nat. Commun. 4, 1678 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bhosale, P. & Bernstein, P. S. Microbial xanthophylls. Appl. Microbiol. Biotechnol. 68, 445–455 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Demmig-Adams, B., Polutchko, S. K. & Adams, W. W. Structure–function–environment relationship of the isomers zeaxanthin and lutein. Photochem 2, 308–325 (2022).Article 

    Google Scholar 
    Barreiro C. & Barredo J. L. Microbial Carotenoids: Methods and Protocols (Humana Press, 2018).Ram, S., Mitra, M., Shah, F., Tirkey, S. R. & Mishra, S. Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges. J. Funct. Foods 67, 103867 (2020).Article 
    CAS 

    Google Scholar 
    Shibata, M. et al. Oligomeric states of microbial rhodopsins determined by high-speed atomic force microscopy and circular dichroic spectroscopy. Sci. Rep. 8, 8262 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luecke, H. et al. Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc. Natl Acad. Sci. USA 105, 16561–16565 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chuon, K. et al. Assembly of natively synthesized dual chromophores into functional actinorhodopsin. Front. Microbiol. 12, 652328 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yoshizawa, S., Kawanabe, A., Ito, H., Kandori, H. & Kogure, K. Diversity and functional analysis of proteorhodopsin in marine Flavobacteria. Environ. Microbiol. 14, 1240–1248 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ahmed, F. et al. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem. 165, 300–306 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shihoya, W. et al. Crystal structure of heliorhodopsin. Nature 574, 132–136 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kishi, K. E. et al. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185, 672–689.e23 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balashov, S. P., Imasheva, E. S., Wang, J. M. & Lanyi, J. K. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin. Biophys. J. 95, 2402–2414 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lakowicz, J. R. (ed.) in Principles of Fluorescence Spectroscopy 27–61 (Springer, 2006).Dana, J. et al. Testing the fate of nascent holes in CdSe nanocrystals with sub-10 fs pump–probe spectroscopy. Nanoscale 13, 1982–1987 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Polívka, T. et al. Femtosecond carotenoid to retinal energy transfer in xanthorhodopsin. Biophys. J. 96, 2268–2277 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iyer, E. S. S., Gdor, I., Eliash, T., Sheves, M. & Ruhman, S. Efficient femtosecond energy transfer from carotenoid to retinal in Gloeobacter rhodopsin–salinixanthin complex. J. Phys. Chem. B 119, 2345–2349 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doi, S., Tsukamoto, T., Yoshizawa, S. & Sudo, Y. An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli. Sci. Rep. 7, 41879 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagiri, C. et al. Crystal structure of human endothelin ETB receptor in complex with peptide inverse agonist IRL2500. Commun. Biol. 2, 236 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yamashita, K., Hirata, K. & Yamamoto, M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr. D Struct. Biol. 74, 441–449 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine.Acta Crystallogr. D Biol. Crystallogr. 68, 352–367 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3.eLife 7, e42166 (2018).Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).Article 
    PubMed 

    Google Scholar 
    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yamashita, K., Palmer, C. M., Burnley, T. & Murshudov, G. N. Cryo-EM single-particle structure refinement and map calculation using Servalcat. Acta Crystallogr. D Struct. Biol. 77, 1282–1291 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Inoue, K. et al. Exploration of natural red-shifted rhodopsins using a machine learning-based Bayesian experimental design. Commun. Biol. 4, 362 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, I.-M. A. et al. The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities. Nucleic Acids Res. 49, D751–D763 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sunagawa, S. et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat. Methods 10, 1196–1199 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wickham, H. in ggplot2 (eds Gentleman, R., Hornik, K. & Parmigiani, G.) 189–201 (Springer, 2016).Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Individual personality predicts social network assemblages in a colonial bird

    Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. Lond. B 365, 4051–4063 (2010).Article 

    Google Scholar 
    Gosling, S. D. From mice to men: What can we learn about personality from animal research?. Psychol. Bull. 127, 45 (2001).Article 
    CAS 

    Google Scholar 
    Dingemanse, N. J., Class, B. & Holtmann, B. Nonrandom mating for behavior in the wild?. Trends Ecol. Evol. 36, 177–179 (2021).Article 

    Google Scholar 
    Croft, D. P. et al. Behavioural trait assortment in a social network: Patterns and implications. Behav. Ecol. Sociobiol. 63, 1495–1503 (2009).Article 

    Google Scholar 
    Morton, F. B., Weiss, A., Buchanan-Smith, H. M. & Lee, P. C. Capuchin monkeys with similar personalities have higher-quality relationships independent of age, sex, kinship and rank. Anim. Behav. 105, 163–171 (2015).Article 

    Google Scholar 
    Su, X. et al. Agonistic behaviour and energy metabolism of bold and shy swimming crabs Portunus trituberculatus. J. Exp. Biol. https://doi.org/10.1242/jeb.188706 (2019).Article 

    Google Scholar 
    Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).Article 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).Article 

    Google Scholar 
    Frost, A. J., Winrow-Giffen, A., Ashley, P. J. & Sneddon, L. U. Plasticity in animal personality traits: Does prior experience alter the degree of boldness?. P. Roy. Soc. B-Biol. Sci. 274, 333–339 (2007).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. Lond. B 365, 4099 (2010).Article 
    CAS 

    Google Scholar 
    David, M., Auclair, Y. & Cézilly, F. Personality predicts social dominance in female zebra finches, Taeniopygia guttata, in a feeding context. Anim. Behav. 81, 219–224 (2011).Article 

    Google Scholar 
    Favati, A., Leimar, O. & Løvlie, H. Personality predicts social dominance in male domestic fowl. PLoS ONE 9, e103535 (2014).Article 
    ADS 

    Google Scholar 
    McGhee, K. E. & Travis, J. Repeatable behavioural type and stable dominance rank in the Bluefin killifish. Anim. Behav. 79, 497–507 (2010).Article 

    Google Scholar 
    Krause, J., Croft, D. P. & James, R. Social network theory in the behavioural sciences: Potential applications. Behav. Ecol. Sociobiol. 62, 15–27 (2007).Article 
    CAS 

    Google Scholar 
    Flack, J. C., Girvan, M., de Waal, F. & Krakauer, D. C. Policing stabilizes construction of social niches in primates. Nature 439, 426–429 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton University Press, 2008).Book 

    Google Scholar 
    Patriquin, K. J., Leonard, M. L., Broders, H. G. & Garroway, C. J. Do social networks of female northern long-eared bats vary with reproductive period and age?. Behav. Ecol. Sociobiol. 64, 899–913 (2010).Article 

    Google Scholar 
    Gomes, A. C. R., Beltrão, P., Boogert, N. J. & Cardoso, G. C. Familiarity, dominance, sex and season shape common waxbill social networks. Behav. Ecol. 33, 526–540 (2022).Article 

    Google Scholar 
    Croft, D. P., Krause, J. & James, R. Social networks in the guppy (Poecilia reticulata). P. Roy. Soc. B-Biol. Sci. 271, S516–S519 (2004).Article 

    Google Scholar 
    Pike, T. W., Samanta, M., Lindström, J. & Royle, N. J. Behavioural phenotype affects social interactions in an animal network. P. Roy. Soc. B-Biol. Sci. 275, 2515–2520 (2008).
    Google Scholar 
    Aplin, L. M. et al. Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol. Lett. 16, 1365–1372 (2013).Article 
    CAS 

    Google Scholar 
    Massen, J. J. & Koski, S. E. Chimps of a feather sit together: Chimpanzee friendships are based on homophily in personality. Evol. Hum. Behav. 35, 1–8 (2014).Article 

    Google Scholar 
    Rault, J.-L. Friends with benefits: Social support and its relevance for farm animal welfare. Appl. Anim. Behav. Sci. 136, 1–14 (2012).Article 

    Google Scholar 
    Schneider, G. & Krueger, K. Third-party interventions keep social partners from exchanging affiliative interactions with others. Anim. Behav. 83, 377–387 (2012).Article 

    Google Scholar 
    Fraser, O. N. & Bugnyar, T. Do ravens show consolation? Responses to distressed others. PLoS ONE 5, e10605 (2010).Article 
    ADS 

    Google Scholar 
    Rose, P. & Croft, D. The potential of social network analysis as a tool for the management of zoo animals. Anim. Welf. 24, 123–138 (2015).Article 

    Google Scholar 
    Clark, F. E. Space to choose: network analysis of social preferences in a captive chimpanzee community, and implications for management. Am. J. Primatol. 73, 748–757 (2011).Article 

    Google Scholar 
    Corner, L., Pfeiffer, D. & Morris, R. Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). Prev. Vet. Med. 59, 147–167 (2003).Article 
    CAS 

    Google Scholar 
    Hansen, H., McDonald, D. B., Groves, P., Maier, J. A. & Ben-David, M. Social networks and the formation and maintenance of river otter groups. Ethology 115, 384–396 (2009).Article 

    Google Scholar 
    Radosevich, L. M., Jaffe, K. E. & Minier, D. E. The utility of social network analysis for informing zoo management: Changing network dynamics of a group of captive hamadryas baboons (Papio hamadryas) following an introduction of two young males. Zoo Biol. 40, 503–516 (2021).Article 

    Google Scholar 
    Pacheco, X. P. & Madden, J. R. Does the social network structure of wild animal populations differ from that of animals in captivity?. Behav. Processes 190, 104446 (2021).Article 

    Google Scholar 
    Watters, J. V. & Powell, D. M. Measuring animal personality for use in population management in zoos: Suggested methods and rationale. Zoo Biol. 31, 1–12 (2012).Article 

    Google Scholar 
    Koski, S. E. Social personality traits in chimpanzees: temporal stability and structure of behaviourally assessed personality traits in three captive populations. Behav. Ecol. Sociobiol. 65, 2161–2174 (2011).Article 

    Google Scholar 
    Račevska, E. & Hill, C. M. Personality and social dynamics of zoo-housed western lowland gorillas (Gorilla gorilla gorilla). J. Zoo Aqua. Res. 5, 116–122 (2017).
    Google Scholar 
    Stoinski, T. S., Jaicks, H. F. & Drayton, L. A. Visitor effects on the behavior of captive western lowland gorillas: The importance of individual differences in examining welfare. Zoo Biol. 31, 586–599 (2012).Article 

    Google Scholar 
    Wielebnowski, N. C. Behavioral differences as predictors of breeding status in captive cheetahs. Zoo Biol. 18, 335–349 (1999).Article 

    Google Scholar 
    Barrett, L. P. et al. Personality assessment of headstart Texas horned lizards (Phrynosoma cornutum) in human care prior to release. Appl. Anim. Behav. Sci. 254, 105690 (2022).Article 

    Google Scholar 
    Rose, P. E., Brereton, J. E. & Croft, D. P. Measuring welfare in captive flamingos: Activity patterns and exhibit usage in zoo-housed birds. Appl. Anim. Behav. Sci. 205, 115–125 (2018).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Social bonds in a flock bird: Species differences and seasonality in social structure in captive flamingo flocks over a 12-month period. Appl. Anim. Behav. Sci. 193, 87–97 (2017).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Quantifying the social structure of a large captive flock of greater flamingos (Phoenicopterus roseus): Potential implications for management in captivity. Behav. Processes 150, 66–74 (2018).Article 

    Google Scholar 
    Rose, P. E., Croft, D. P. & Lee, R. A review of captive flamingo (Phoenicopteridae) welfare: A synthesis of current knowledge and future directions. Intern. Zoo Yearb. 48, 139–155 (2014).Article 

    Google Scholar 
    Rose, P. E. & Croft, D. P. Evaluating the social networks of four flocks of captive flamingos over a five-year period: Temporal, environmental, group and health influences on assortment. Behav. Processes 175, 104118 (2020).Article 

    Google Scholar 
    Munson, A. A., Jones, C., Schraft, H. & Sih, A. You’re just my type: Mate choice and behavioral types. Trends Ecol. Evol. 35, 823–833 (2020).Article 

    Google Scholar 
    Schuett, W., Tregenza, T. & Dall, S. R. Sexual selection and animal personality. Biol. Rev. 85, 217–246 (2010).Article 

    Google Scholar 
    Jackson, W. M. Why do winners keep winning?. Behav. Ecol. Sociobiol. 28, 271–276 (1991).Article 

    Google Scholar 
    Dammhahn, M. & Almeling, L. Is risk taking during foraging a personality trait? A field test for cross-context consistency in boldness. Anim. Behav. 84, 1131–1139 (2012).Article 

    Google Scholar 
    Van Oers, K., Drent, P. J., De Goede, P. & Van Noordwijk, A. J. Realized heritability and repeatability of risk-taking behaviour in relation to avian personalities. P. Roy. Soc. B-Biol. Sci. 271, 65–73 (2004).Article 

    Google Scholar 
    Hinton, M. G. et al. Patterns of aggression among captive American flamingos (Phoenicopterus ruber). Zoo Biol. 32, 445–453 (2013).Article 

    Google Scholar 
    Royer, E. A. & Anderson, M. J. Evidence of a dominance hierarchy in captive Caribbean flamingos and its relation to pair bonding and physiological measures of health. Behav. Processes 105, 60–70 (2014).Article 

    Google Scholar 
    Carere, C., Drent, P. J., Privitera, L., Koolhaas, J. M. & Groothuis, T. G. Personalities in great tits, Parus major: Stability and consistency. Anim. Behav. 70, 795–805 (2005).Article 

    Google Scholar 
    Jouventin, P., Lequette, B. & Dobson, F. S. Age-related mate choice in the wandering albatross. Anim. Behav. 57, 1099–1106 (1999).Article 
    CAS 

    Google Scholar 
    Black, J. M. Partnerships in Birds: The Study of Monogamy (Oxford University Press, USA, 1996).
    Google Scholar 
    Estevez, I., Andersen, I.-L. & Nævdal, E. Group size, density and social dynamics in farm animals. Appl. Anim. Behav. Sci. 103, 185–204 (2007).Article 

    Google Scholar 
    Pickering, S. The comparative breeding biology of flamingos Phoenicopteridae at the Wildfowl and Wetlands Trust Centre, Slimbridge. Intern. Zoo Yearbook 31, 139–146 (1992).Article 

    Google Scholar 
    Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis (University of Chicago Press, 2008).Book 

    Google Scholar 
    Wilson, A. D., Krause, S., Dingemanse, N. J. & Krause, J. Network position: A key component in the characterization of social personality types. Behav. Ecol. Sociobiol. 67, 163–173 (2013).Article 

    Google Scholar 
    Renner, M. J. & Kelly, A. L. Behavioral decisions for managing social distance and aggression in captive polar bears (Ursus maritimus). J. Appl. Anim. Welf. Sci. 9, 233–239 (2006).Article 
    CAS 

    Google Scholar 
    Stevens, E. F. & Pickett, C. Managing the social environments of flamingos for reproductive success. Zoo Biol. 13, 501–507 (1994).Article 

    Google Scholar 
    Franks, D. W., Ruxton, G. D. & James, R. Sampling animal association networks with the gambit of the group. Behav. Ecol. Sociobiol. 64, 493–503 (2010).Article 

    Google Scholar 
    Haddadi, H. et al. Determining association networks in social animals: Choosing spatial–temporal criteria and sampling rates. Behav. Ecol. Sociobiol. 65, 1659–1668 (2011).Article 

    Google Scholar 
    Whitehead, H. & Dufault, S. Techniques for analyzing vertebrate social structure using identified individuals. Adv. Stud. Behav. 28, 33–74 (1999).Article 

    Google Scholar 
    Borgatti, S.P., M., E., G., & C., F.L. UCINET for windows: software for social network analysis. Analytic Technologies: Harvard, MA (2002).Borgatti, S. P. NetDraw: graph visualization software (Analytic Technologies, 2002).
    Google Scholar 
    Bejder, L., Fletcher, D. & Bräger, S. A method for testing association patterns of social animals. Anim. Behav. 56, 719–725 (1998).Article 
    CAS 

    Google Scholar 
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social network analysis. J. Anim. Ecol. 84, 1144–1163 (2015).Article 

    Google Scholar 
    Perdue, B. M., Gaalema, D. E., Martin, A. L., Dampier, S. M. & Maple, T. L. Factors affecting aggression in a captive flock of Chilean flamingos (Phoenicopterus chilensis). Zoo Biol. 30, 59–64 (2011).
    Google Scholar 
    IBMCorp. IBM SPSS Statistics for Windows. IBM Corp: Armonk, NY (2012).Clarke, K.R. & Gorley, R.N. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth. (2006).Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. (2020).RCoreTeam. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (2021).Budaev, S. V. Using principal components and factor analysis in animal behaviour research: Caveats and guidelines. Ethology 116, 472–480 (2010).Article 

    Google Scholar 
    Whitehead, H. SOCPROG programs: Analysing animal social structures. Behav. Ecol. Sociobiol. 63, 765–778 (2009).Article 

    Google Scholar 
    Whitehead, H. SOCPROG: Programs for analyzing social structure: Whitehead Lab (2019).Hanneman, R.A. & Riddle, M., Chapter 18: Some Statistical Tools. In: Introduction to Social Network Methods. (University of California, Riverside 2005). http://faculty.ucr.edu/~hanneman/.(2005) More